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a b s t r a c t

We show that in the model of Federico et al. (2017) horizontal mergers may actually spur innovation by
preventing duplication of R&D efforts. Federico et al. do not notice this result because they presume that
the merged firm spreads its R&D expenditure evenly across the research units of the merging firms—a
strategy which is optimal, however, only if the probability of failure is log-convex in the RD effort. The
possibility that mergers spur innovation is more likely, the greater is the value of innovations and the less
rapidly diminishing are the returns to R&D.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In an influential paper, Federico et al. (2017) analyse mergers
in innovative industries. In their model, various firms invest in
independent R&D projects, determining the probability that a pre-
specified innovation is achieved. Federico et al. claim that in this
framework mergers always reduce the R&D efforts of the merging
firms (Proposition 1). We show that, in fact, their analysis requires
one additional assumption which has gone unnoticed so far. The
assumption is restrictive. When it fails, Federico et al.’s result
may be reversed: mergers may increase innovation and consumer
welfare.

The additional assumption serves to justify Federico et al.’s pre-
sumption that the merged firm spreads its total R&D expenditure
evenly across its research units. Their hypotheses that firms are
ex-ante symmetric, and that the returns to R&D are diminishing,
are not sufficient for this. The probability of failure must be a log-
convex function of R&D expenditure.

The reason for this is that in the model different research units
may duplicate the same innovation. This creates convexities in
the merged entity’s profit function that tend to make asymmetry
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efficient. To overcome this tendency, the returns to R&D must
diminish sufficiently rapidly. This is what log-convexity ensures.

But log-convexity may fail for well behaved R&D technolo-
gies. For example, constant elasticity functions entail log-convexity
when R&D expenditure is low but log-concavity when it is high.
In this latter case, the merged firm will operate different research
units at different levels of intensity, even if all units are equally ef-
ficient. This can overturn the result thatmergers impact innovative
activity negatively.

2. The model

Federico et al. consider a radical innovation, such as for instance
the invention of a newproduct. The private value of the innovation,
i.e., the discounted value of the innovator’s profits, is denoted by
V . The social value is greater than V , so that more innovation is
socially desirable.

To discover the new technology, various ex-ante symmetric
firms invest in probabilistically independent R&D projects. A firm i
that makes an R&D expenditure of Ri achieves the innovation with
probability xi = F (Ri), with F (0) = 0. The ‘‘innovation production
function’’ F :

[
0, R̄

]
→ [0, 1] is strictly increasing and concave,

reflecting the presence of diminishing returns to R&D. It satisfies
F (R̄) = 1, where R̄ may be either finite or infinite, and the Inada
condition F ′(0) = ∞. The inverse of F is the R&D cost function
Ri = C(xi). It is strictly increasing and convex, with C(0) = 0 and
C ′(0) = 0.1

1 Federico et al. assume also that C ′(1) = ∞, which implies that R̄ is infinite. We
allow R̄ to be finite to accommodate the iso-elastic example of Section 4. But this
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To get sharper results, we specialize Federico et al.’s model
making conservative assumptions that maximize the likelihood
that mergers have anti-competitive effects. Shapiro (2012) argues
that of allmergers, thosemost likely to diminish innovative activity
are the ones (p. 386)

between the only two firms pursing a specific line of research
to serve a particular need [...], absent a showing that themerger
will increase appropriability or generate R&D synergies thatwill
enhance the incentive or ability of the merged firm to innovate.

Accordingly, we

• consider two firms that merge into a monopoly;
• rule out synergies in research, assuming that the merger

does not affect the innovation production function: all the
merged entity can do is to reallocate R&Dexpenditure across
the merging firms’ research units efficiently;

• abstract from the possibility that the merger may increase
appropriability, assuming that if both firms succeed, each
gets a payoff of 1

2V . The aggregate payoff from innovation
is therefore always V both before and after the merger. For
example, each innovator may have a 50% probability of get-
ting the patent and becoming a monopolist in the product
market. Alternatively, both innovators may be active but
collude perfectly and split the market evenly.

3. Global results

Before the merger, each firm i = 1, 2 chooses Ri so as to
maximize its expected profit

πi = xi
[
(1 − xj)V + xj 12V

]
− Ri

= F (Ri)
[
1 −

1
2F (Rj)

]
V − Ri. (1)

The profit function is concave in Ri, so the best response function
is given by the first-order condition:

F ′(Ri)
[
1 −

1
2F (Rj)

]
V = 1 (2)

if the solution is interior; otherwise, we have a corner solution
Ri = R̄ which entails xi = 1. The equilibrium is the fixed point
of the best response functions. Like Federico et al., we focus on the
symmetric equilibrium R∗

1 = R∗

2 = R∗.
The term inside square brackets in expressions (1) and (2) is

lower than one and reflects the negative externality that each firm
exerts on the other: when the rival also succeeds, the expected
value of the innovation becomes 1

2V rather than V . When the two
firms merge, they internalize the externality. The profit function
becomes

πM = (x1 + x2 − x1x2)V − R1 − R2

= [F (R1) + F (R2) − F (R1)F (R2)] V − R1 − R2. (3)

The first-order conditions for a maximum are

F ′(Ri)
[
1 − F (Rj)

]
V = 1. (4)

Federico et al. focus on the symmetric solution to the system of
the first-order conditions (4), denoted by R1 = R2 = R∗∗. Under
symmetry, the only way to internalize the externality is to reduce
the R&D effort in both research units: R∗∗ < R∗.

However, the symmetric solution R∗∗ may be a saddle point
rather than a maximum. The assumption of diminishing returns
to R&D does not suffice to guarantee the optimality of R∗∗. The
required condition is stated in Proposition 1.

is not crucial for our results. Any function F with a finite R̄ can be approximated
arbitrarily closely by one that belongs to the class considered by Federico et al.
Thus, all the results of this paper would apply with minor changes to their exact
framework.

Proposition 1. The merged entity’s optimal investment strategy is
symmetric if and only if the function 1−F (R) is log-convex at R = R∗∗.

Proof. The critical part of the second-order conditions is that the
determinant of the Hessian matrix is positive. Simple calculations
show that both this condition and the log-convexity of 1−F (R) are
equivalent to

F ′′(R) [1 − F (R)] +
[
F ′(R)

]2
< 0

and are therefore equivalent to each other. ■

To get some intuitive insights, it is useful to think of themerged
firm’s optimization problem as composed of two stages: in the first
stage, the merged entity chooses its aggregate R&D investment; in
the second, it chooses how to split the total investment among the
two research units efficiently. In the second stage, the objective is
simply to maximize the overall probability of success X = x1 +

x2 − x1x2. The term x1x2, which captures the risk of duplication,
creates a convexity in the optimization problem.2 For example,
with constant returns to R&D a symmetric investment strategy is
always inefficient: raising the R&D investment in one research unit
and decreasing it by the same amount in the other always increases
the probability of success. Diminishing returns to R&D counter this
powerful tendency towards asymmetry, to some extent, but to
overcome it fully, the returns to R&D must diminish sufficiently
fast. This is what log-convexity ensures.

The condition in Proposition 1 is local. But varying V from 0
to ∞ makes R∗∗ vary from 0 to R̄. Thus, global log-convexity is
necessary and sufficient to guarantee that a symmetric strategy is
always optimal. Federico et al.’s analysis applies only under this
additional condition.

But log-convexity may fail. If it does, the optimal solution may
be asymmetric. The merged entity may decrease the R&D expen-
diture in one research unit to internalize the externality, reducing
the risk of duplication x1x2, and increase the expenditure in the
other to take advantage of the reduced risk. Consider for instance
the case in which 1 − F (R) is globally log-concave.

Proposition 2. If 1 − F (R) is globally log-concave, then the optimal
strategy for the merged firm is R1 = R̄ and R2 = 0 (or vice versa). The
innovation is achieved with probability one.

Proof. We first show that it is optimal to shut down one research
unit. Let X(R1, R2) = x1 + x2 − x1x2 denote the overall probability
of success. If X(R1 + R2, 0) ≥ X(R1, R2), the claim follows immedi-
ately: any solutionwith positive R&D investments in both research
units is dominated by one in which the same total R&D effort is
concentrated in one unit.

To prove the claim, we must therefore show that if the failure
function 1 − F (R) is log-concave for any R, then X(R1 + R2, 0) ≥

X(R1, R2). Since log[1−F (0)] = 0, concavity of log[1−F (R)] implies

log[1 − F (R1)] + log[1 − F (R2)] ≥ log[1 − F (R1 + R2)]

or, equivalently

log {[1 − F (R1)][1 − F (R2)]} ≥ log[1 − F (R1 + R2)].

But the log function is increasing, so this inequality implies

[1 − F (R1)][1 − F (R2)] ≥ [1 − F (R1 + R2)].

This is equivalent to 1 − X(R1, R2) ≥ 1 − X(R1 + R2, 0) and hence
to X(R1 + R2, 0) ≥ X(R1, R2). This implies that it is optimal to shut
down one research unit, setting, say, R2 = 0.

2 Salant and Shaffer (1998) also note, in a different framework, that non-
concavities may naturally arise when firms coordinate their R&D activities.
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Fig. 1. The probability of success X before the merger (thin curve) and after the
merger (thick curve) in the case θ =

1
2 .

Having shown that R2 = 0, it remains to show that R1 = R̄.
This follows immediately from the first-order condition (4) and the
Inada condition F ′(0) = ∞. Taken together, these conditions imply
that R2 = 0 can be optimal only if F (R1) = 1 and hence R1 = R̄.
(Incidentally, this argument implies thatwith global log-concavity,
R̄ must be finite.) ■

Plainly, under global log-concavity the merger always weakly
increases the probability of success. The increase is strict if R∗ < R̄,
but even if R∗

= R̄ the merger is beneficial as it avoids wasteful
duplication of efforts.

4. The iso-elastic case

Both global log-convexity and global log-concavity are restric-
tive assumptions. In general, the probability of failure may be log-
convex for some values of R, log-concave for others.

Consider, for instance, the case of constant-elasticity innovation
production functions

xi = ARθ
i (5)

where A is a scale parameter that with no further loss of generality
is normalized to 1, so that R̄ = 1, and 0 < θ < 1. In this case, log-
convexity holds when Ri is small (Ri < (1 − θ )1/θ ), log-concavity
when Ri is large (Ri > (1 − θ )1/θ ).

The parameter θ is sometimes referred to as the ‘‘elasticity of
supply’’ of inventions. It captures the extent to which the returns
to R&D are diminishing. The empirical literature suggests that a
reasonable range for this parameter is between a half and two

thirds (Scotchmer, 2004; Denicolò, 2007). Luckily, for the cases
θ =

1
2 and θ =

2
3 the model admits closed-form solutions that

allow a direct comparison of the pre- and post-merger equilibrium.
When θ =

1
2 , the pre-merger equilibrium is

R∗
= min

[
4V 2

(4 + V )2
, R̄

]
. (6)

After the merger, the merged firm chooses symmetric R&D efforts

R∗∗
=

V 2

(2 + V )2
(7)

if the value of the innovation is small, i.e. V < 2. However, when
V ≥ 2 the optimum is given by an asymmetric corner solution:

R1 = R̄; R2 = 0. (8)

In this case, the merger reduces the R&D investment for small
innovations but increases the investment for large innovations.
This result is depicted in Fig. 1.

When θ =
2
3 , the formulas for the pre- and post-merger equi-

librium are too cumbersome to be reported here. The equilibrium
is depicted in Fig. 2. Qualitatively, the pattern is the same as for the
case θ =

1
2 . The main difference is that an asymmetric interior

solution now appears for intermediate values of V . Again, the
merger stifles small innovations but spurs large ones.

In this simple model, monopoly always prevails in the product
market. Therefore, the effect of the merger on consumer surplus
has the same sign as the effect on innovation. When the value of
innovation is large, mergers increase not only innovation but also
social welfare.

5. Extensions

So far we have shown that mergers are more likely to spur
innovation when innovations are large and the returns to R&D do
not decrease too fast. But other factors may also be relevant, as
discussed in Denicolò and Polo (2017). For example, mergers may
affect appropriability. In our simple framework, this possibility
can be captured by assuming that in case of duplication each firm
obtains a fraction δ of V , with δ < 1

2 . Denicolò and Polo (2017)
show that this magnifies the impact of mergers on R&D but does
not affect the sign. A more satisfactory analysis of the issue should
perhapsmodel productmarket competition explicitly. But even so,
the effects of mergers may remain uncertain, as a comparison of
Federico et al. (2017a) and Bourreau and Jullien (2017) suggests.

Denicolò and Polo (2017) discuss also the consequences of
relaxing the assumption of independent R&D projects. Mergers are
more likely to increase innovation with positive correlation, less
likely with negative correlation.

Fig. 2. The R&D investment in each research unit Ri (left panel) and the overall probability of success X (right panel) before and after the merger in the case θ =
2
3 .
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6. Conclusion

This paper shows that horizontal mergers do not necessarily
stifle innovation. Thus, it casts doubts on the robustness of the
‘‘innovation theory of harm’’ articulated in Federico et al. (2017).
The theory maintains that antitrust authorities may do well to
block certain horizontal mergers that would pass the usual static
efficiency tests, on the ground that these mergers hamper innova-
tion. This theory has played a major role in the recent decision of
the European Commission on the Dow-DuPont case. The impact of
the theory on policy may not be limited to Dow-DuPont, however,
as the Commission may apply the theory to other cases in the
future, and other jurisdictions may follow the Commission’s lead.

Our analysis suggests more caution in drawing general conclu-
sions about the impact of mergers on innovation.
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