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11. Entry games and free entry equilibria∗
Michele Polo

1 INTRODUCTION

What are the elements that may explain why certain industries are populated by a large number
of firms, each covering a small fraction of total output, whereas other markets are dominated
by few large firms that supply a relevant fraction of customers? These questions have been at
the core of the topics studied in industrial organization (IO) from the very beginning.1 These
research topics have been approached in the early phases of industrial economics mostly from
an empirical perspective2 within the structure–conduct–performance paradigm, while the
theoretical foundations of endogenous market structures have been explored more rigorously
in the game-theoretic framework of the new IO literature. The analytical framework that has
been developed looks at market entry and exit as the process that endogenously determines
the number and characteristics of active firms in the long run. In this setting, then, other
research questions emerge. How do these market structures change in reaction to a variation
in some key parameters? Are we able to identify a set of robust comparative statics properties
in oligopoly markets, despite the rich variety of models in the IO literature? And finally, on the
normative side, does entry into the market, a key component of the competitive process, lead
to a welfare-maximizing outcome, or might the number and characteristics of firms exceed or
fall short of the level of efficiency?

This chapter deals with the theories of market equilibria when the number and characteris-
tics of active firms are endogenously determined through the process of entry. More precisely,
we shall review the literature on entry games and free entry equilibria in a multi-stage game
framework. A large number of potential entrants decide first whether to enter or not; once all
the firms have undertaken their entry decisions, the active firms compete according to some
oligopoly game. The chapter is organized as follows. In Section 2 we present the general
analytical framework. In Section 3 we analyze a wide range of symmetric oligopoly models to
identify the relationship between the number of firms and the market equilibria: we start with
homogeneous products and competition in strategic substitutes (Section 3.1), moving then to
differentiated products and competition in strategic complements (Section 3.2), next offering
a general explanation of the comparative statics properties (Section 3.3) and concluding
with cartels (Section 3.4). We then move to free entry equilibria and the determinants of
the maximum number of firms (Section 4). Finally, we consider symmetric entry games
under a normative perspective (Section 5), looking at the comparison between the free
entry and the welfare-maximizing number of firms. In Section 6 we review asymmetric

∗ I thank Simon Anderson, Emilio Calvano, Chiara Fumagalli and Michele Grillo for very useful discussions and
suggestions. Usual disclaimers apply.

1 See Bain (1956) and Scherer (1980).
2 See Schmalensee (1989) for a comprehensive survey of the empirical literature.
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free entry equilibria that exploit the aggregative nature of most oligopoly models. We
then present the case of endogenous sunk cost and persistent concentration (Section 7)
and the case of frictionless entry and contestable markets (Section 8). Concluding remarks
follow.

2 ENTRY GAMES

There are several ways to model the entry process and market interaction among active
firms. The various set-ups allow us to highlight different issues, focussing on distinct effects
that interact in the overall market dynamics. We can draw a key distinction between the
environments in which the entry decisions precede the market strategies, and those where
some firms undertake entry decisions after observing their competitors’ market strategies.

In the former case, the market strategies of individual firms cannot be chosen with the
purpose of affecting the entry decisions of any firm, since entry already occurred, although
the features of the market equilibria that result from the aggregate process of entry affect the
early decision to enter the market. In this perspective, multi-stage games represent a suitable
formal framework. There is a large group of m potential entrants j ∈ Im that choose whether
to enter, incurring a fixed set-up cost F > 0, or not; then, once they have taken their decision
and the set of n ≤ m entrants i ∈ In is common knowledge, the active firms play a market
game. This set-up is usually adopted to study long-run free entry equilibria, in which a set
of exogenous variables referring to the primitives of technology and preferences explains the
long-run market structure.

Alternatively, in a second class of strategic environments, a subset of early entrants
(incumbents) commit to observable market strategies before the other firms (entrants) decide
whether to enter or not. The incumbents’ initial strategy, then, may affect the entry decisions
of the latecomers, explaining why this set-up is widely used to study strategic entry deterrence
and foreclosure. In this environment, the market structure is explained by foreclosure
strategies, based on a rich set of strategic tools, rather than by market fundamentals.

The two set-ups are useful to explore different and complementary issues and they are
characterized by a different time horizon. Sequential entry with incumbents and entrants is a
more realistic representation of short-run market dynamics, since entry is typically an ongoing
process where already established and new firms interact. The possibility of foreclosure, then,
is an empirically relevant issue that characterizes the evolution of markets. At the same time,
multi-stage entry games allow us to move away from these short-run phenomena and focus on
the underlying features of preferences and technology as long-run drivers of market evolution.
By shifting attention to this complementary perspective we can identify fundamental forces
that, despite the frictions that in the short run may slow down the process and foreclose the
market, push towards a more or less concentrated market. Since in this chapter the focus is
on long-run market structures rather than foreclosure, we will consider several and different
specifications of multi-stage entry games.

A second relevant feature recurring across models is the assumption of symmetric firms.
Supply-side symmetry is a natural assumption in a long-run perspective, since we may
think that any barrier to adopting best practice technologies, such as patent protection or
private know-how, tends to vanish in the long run. Demand-side symmetry, consistent with
homogeneous products or horizontal product differentiation and different varieties, is a
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convenient assumption when we want to analyze the number of entrants and the distribution
of market shares.3

The different models considered in the following sections make use of the symmetry
assumption at different levels, either by applying it to the whole population of potential
entrants, or to a subset of them identified as marginal entrants, while allowing for asymmetries
across major market players. We shall see that the symmetry assumption is also at the core of
the analysis of potential competition and contestable markets.

3 SYMMETRIC OLIGOPOLY MARKETS

We start our analysis of entry games by considering the (second-stage) market games where
n firms are active, having decided to enter in the first stage. In this section we consider
symmetric market games where all the n firms share the same (best-practice) technology and
no one has an advantage on the demand side, e.g. a higher-quality product. In this setting,
when firms adopt the same strategies ai = a, i ∈ In, then they obtain the same level of profits.
A symmetric environment greatly simplifies the analysis of free entry equilibria, since the
equilibrium profits, as well as the equilibrium strategies, consumers’ surplus and welfare, all
depend on a vector x of parameters related to the properties of costs (technology) and demand
(preferences), and on the number of firms n: �i(a ∗

i , a ∗
−1) = � ∗(n; x). Market equilibria, once

the entry process has been completed, therefore can be analyzed simply in terms of the number
of firms n. The individual equilibrium profits � ∗(n; x) are therefore the object that potential
entrants consider when, at the initial stage of the game, they choose whether to enter or not,
given their expectation of the number of firms that will enter.

Oligopoly theory offers a very rich set of models that describe market interaction among
n competitors, ranging from homogeneous to differentiated products and distinguishing
competition in strategic substitutes or complements. In all these environments, moreover,
demand and cost functions can be specified differently. Finally, beyond static, possibly multi-
stage games, the literature on tacit collusion adds to the toolkit for the analysis of cartels. A
general theory of free entry equilibria has to encompass all these classes of models, admitting
a variety of business strategies, modes of strategic interaction and features of demand and
costs. In this perspective, then, the key point is whether there exist some regularities across
different models in the relationship between the number of (symmetric) active firms n and the
equilibrium profits they obtain � ∗(n; x). A first, relevant result that we are going to present in
the following sections, is that, despite the significant differences in oligopoly equilibria across
models, we can establish under very general conditions a negative relationship between the
equilibrium profits and the number of firms.

We organize the discussion by considering three different cases: homogeneous products and
strategic substitutes, differentiated products and strategic complements, and repeated games.

3 As will be clear in the following sections, this approach does not prevent us from also considering environments
where, for instance, firms offer goods of different quality, which are therefore attractive to consumers in different
ways. What we maintain is that, even in these cases, there is a further dimension of (horizontal) product differentiation
such that for each level of quality several firms may further differentiate their products by variety. In this case,
symmetry is preserved at each layer of quality.
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3.1 Homogeneous Products and Strategic Substitutes

Our first look at symmetric oligopoly equilibria refers to a market with n firms producing
a homogeneous product and competing in strategic substitutes, usually associated with the
Cournot model. Since the pioneering work of Cournot (1838) a large number of contributions
have explored the conditions for the existence of and characteristics of the equilibria when n
firms compete in quantities. McManus (1962, 1964) and Roberts and Sonnenschein (1976),
independently proved the existence of a symmetric equilibrium in symmetric Cournot games
with convex costs. Novshek (1985) showed that an n-oligopoly has a Nash equilibrium if
each firm’s marginal revenue is decreasing in the other firms’ aggregate output. A step
forward in proving the existence of Cournot equilibria under general conditions is in Vives
(1990), who showed in the duopoly case the relationship between the assumptions of the
previous literature and the submodularity of Cournot games. Supermodular games and the
techniques of monotone comparative statics,4 have proved to be extremely useful tools to
explore the properties of Cournot oligopolies and to identify the general conditions under
which the comparative statics of equilibria can be analyzed. We summarize here the main
results following this approach as in Amir and Lambson (2000).

Consider an oligopoly with n firms offering a homogeneous product and producing with
the same cost function C(qi) and incurring no capacity constraint over the relevant output
range. Market inverse demand P(Q ) is a continuous and differentiable function of total output

Q =
n∑

i=1
qi. The profit function of firm i, then, is:

�i(qi, Q−i) = P(Q )qi − C(qi)

where Q−i = {
qj
}

j�=i is the vector of outputs of the other firms. In this traditional specification,
each firm maximizes its profits by choosing a level of output for given strategies of the other
firms, Q−i. It is well recognized that under standard assumptions, firm i’s best reply q̂i(Q−i) =
arg maxqi �i(qi, Q−i) is downward sloping in the other firms’ output, implying a submodular
game and competition in strategic substitutes.

Let us define

�(qi, Q ) := −P ′(Q ) + C ′′(qi). (11.1)

Then, Amir and Lambson (2000) prove that if �(qi, Q ) > 0 on the relevant range of
outputs and the inverse demand function is log-concave, there exists a unique and symmetric
equilibrium, with individual output q ∗(n) nonincreasing in n and total output Q ∗(n) (market
price P(Q ∗(n))) nondecreasing (nonincreasing) in n.5 This condition holds, for instance, in the
set-up adopted in the works of McManus (1962, 1964), Roberts and Sonnenschein (1976) and
Novshek (1985) quoted above and is consistent with the framework proposed in Vives (1999).

4 See Milgrom and Roberts (1990, 1994) and Milgrom and Shannon (1994).
5 Amir and Lambson (2000) prove (Theorem 2.2) a more general result that does not require log-concavity of the

inverse demand function and that allows for multiplicity of Cournot equilibria. In this case the comparative statics
properties with respect to n of total equilibrium output and the equilibrium output of n − 1 firms are preserved by
considering the values of the extremal equilibria. We focus in the text on uniqueness to ease the exposition.
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To illustrate this result with an example let us consider the linear Cournot model: market
demand is Q = S ∗ [α − βp

]
, where S measures market size, e.g. the number of consumers.

Then, the inverse demand is P( Q
S ) = a − b Q

S where a = α
β

, b = 1
β

and Q is total supply.
Firms produce at constant marginal cost c ∈ (0, a) and compete in quantities. Then, each

firm selects its optimal output by solving q ∗
i = arg maxqi

(
P(

Q
S ) − c

)
qi. The symmetric

equilibrium quantity q ∗(n) satisfies for all firms the first-order conditions:(
P

(
nq ∗

S

)
− c

)
− P ′ q ∗

S
= 0, (11.2)

Substituting and solving for the symmetric equilibrium we get:

q ∗(n) = S
a − c

b(n + 1)
, p ∗(n) = a + nc

n + 1
≥ c, � ∗(n) = S

b

(
a − c

n + 1

)2

. (11.3)

When the number of firms increases, therefore, the individual quantity decreases, whereas
total output increases. Consequently, the market clearing price falls and tends to the marginal
cost when the number of firms increases indefinitely. Finally, the equilibrium profits, gross of
the fixed entry costs, decrease in n and tends to zero at the limit, due to the combined quantity
and price effects.

This pattern characterizes the so-called Cournotian paradigm, a representation of the
market equilibrium that depends on the number of firms and that moves from the monopoly to
the perfectly competitive equilibrium as n increases from 1 to infinity. Perfect competition, in
this setting, corresponds to the limiting case when each firm supplies an infinitesimal amount
of output in a market populated by an infinite number of negligible firms.

This structural view of perfect competition can be easily derived from the first-order
conditions that guarantee a profit-maximizing solution for any number of firms. Equation
(11.2), indeed, implies that the market clearing price tends to the marginal cost when the
last term vanishes. There are two possible explanations why P ′ q ∗

S → 0. One argues that
when firms are small with respect to the market, they follow a price-taking behavior; that is,
they expect the market price not to react to any change in their individual output. This case
corresponds to assuming P ′ = 0 in a perfectly competitive market. The other explanation,
which is consistent with the structuralist view of the Cournotian paradigm, instead focusses on
the fact that it is the individual quantity that vanishes as n becomes indefinitely large, whereas
P ′ < 0 even at the limit. In this latter case, indeed, limn→∞ q ∗(n) = 0, as evident from (11.3).

It is interesting to notice that the last term in (11.2) also represents the negative externality
that characterizes strategic interaction in a Cournot game, i.e. ∂�i

∂qj
= P ′ q ∗

S . In other words,
with Cournot competition each firm affects the rivals’ profits when it increases its quantity
since it makes the price fall and reduces the revenues that the competitors obtain from
their production. The level of individual production, therefore, multiplicatively affects this
externality, which vanishes when each firm produces a negligible output. Then, a perfectly
competitive market in a Cournotian perspective is also characterized at the limit by vanishing
externalities across firms. This result confirms the idea that in a perfectly competitive market
no externality occurs, a feature that is driven by the same effect (limn→∞ q ∗(n) = 0) that
explains why the competitive price tends to the marginal cost.
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Finally, market size S increases individual and total quantities as well as the equilibrium
profits.

3.2 Differentiated Products and Strategic Complements

A different class of oligopoly models moves into the realm of differentiated products and
assumes that firms compete in prices, a framework that entails strategic complementarities.
In the product differentiation literature, moreover, we can assume that either differentiation
does not break the intrinsic symmetry of firms’ market positions, or alternatively that product
differentiation introduces a competitive advantage for some firms with respect to the others.
The former case recalls the idea of (horizontal) differentiation by variety, where products
differ in terms of characteristics, each one being more suited to a specific subset of customers.
The latter, instead, captures the idea of (vertical) differentiation in quality. Given our focus on
symmetric equilibria, in this section we shall consider several approaches to differentiation by
variety. We shall consider entry and differentiation by quality in Section 7.

There are three main ways to model the demand side when products are (horizontally)
differentiated: the representative consumer approach characterized by preference for variety;
the discrete choice model where the external observer is able to reconstruct consumers’
behavior up to a random component related to unobservable individual characteristics; and
the address approach that assumes heterogeneous consumers with inelastic demand.6

Let qi = S ∗ Di(pi, p−i) be the demand for product i ∈ In, where S measures the size of the
market and p−i is the vector of prices other than pi. Let us further assume Di(.) is continuous
and differentiable and Ci(Di(.)) = cDi(pi, p−i). Finally, let us assume that each firm offers
only one variety.7 Each firm solves the following problem: maxpi(pi − c)Di(pi, p−i). Under
standard assumptions on the strategy space being compact and convex, and the profit function
being quasi-concave, the following equation identifies the necessary and sufficient conditions
for a maximum:

p ∗
i − c

p ∗
i

= Di
(
p ∗

i , p−i
)

p ∗
i

∂Di
∂pi

= 1

εi
(11.4)

where εi is the price elasticity of demand for product i. In a symmetric equilibrium p ∗
i =

p∗(n), i ∈ In, and

ε ∗(n) =
p ∗(n) ∂Di

∂pi

Di (p ∗(n), p ∗(n))
. (11.5)

6 For a detailed analysis of these three approaches and the relationships among them see Anderson, De Palma and
Thisse (1992). On the representative consumer models see, for instance, the constant elasticity of substitution (CES)
representation adopted in Spence (1976) and Dixit and Stiglitz (1977) and the linear representation in Shubik and
Levitan (1980) and Singh and Vives (1984). On the interpretations of random utility models, we find two approaches:
Manski (1977) assumes that utility is deterministic but it is not perfectly observed by the other agents, with a random
term capturing the unobserved component; Quandt (1956) instead assumes the individual behavior to be intrinsically
probabilistic. Finally, the address model approach was first proposed in Hotelling (1929). See also Salop (1979) and
D’Aspremont et al. (1979).

7 As we shall discuss in Section 4, assuming single-product firms makes the analysis of the maximum number
of varieties and that of firms equivalent. With multi-product firms, instead, the maximum number of varieties will be
larger than the number of active firms in a free entry equilibrium.
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Hence, the pattern of equilibrium prices p ∗(n) when the number of firms increases depends
inversely on the corresponding pattern of ε ∗(n). If limn→∞ ε ∗(n) = ∞, then at the limit the
price converges to the marginal cost, and we replicate the perfectly competitive equilibrium
already found in the case of Cournot competition. When, instead, limn→∞ ε ∗(n) = ε

with ε finite, a positive mark-up persists at the limit, a pattern associated to Chamberlinian
monopolist competition.8 As we shall see, the limiting properties of the different approaches
to product differentiation are consistent with either of the two alternatives.

Let us consider first the case of convergence to competitive equilibria. Generalizing the
duopoly linear model originally proposed by Singh and Vives (1984) and further developed in
Häckner (2000), the utility function of the representative consumer is quasi-linear according
to the expression:

U(q1, . . . , qn; I) = α

n∑
i=1

qi − 1

2

⎛⎝ n∑
i=1

q2
i + 2γ

∑
j�=i

qiqj

⎞⎠+ O (11.6)

where γ ∈ [0, 1) measures product substitutability and O is the money spent on outside goods.
The demand system, then, is:

Di(pi, p−i) = S ∗ α(1 − γ ) + γ
∑

j�=i pj − [
γ (n − 2) + 1

]
pi

(1 − γ )
[
γ (n − 1) + 1

] (11.7)

where S measures the size of the market, i.e. the number of representative consumers. Notice
that in a symmetric price configuration pi = p for i ∈ In, firm i’s demand

Di(p, p) = S ∗ α − p[
γ (n − 1) + 1

]
decreases in the number of firms, since consumers spread their purchases over a larger set of
varieties. The demand elasticity in a symmetric price equilibrium is:

ε ∗(n) =
[
γ (n − 2) + 1

]
p ∗(n)

(α − p ∗(n)) (1 − γ )
. (11.8)

Hence, lim ε ∗(n) = ∞ being p∗(n) < α. Indeed, the equilibrium price

p ∗(n) = α(1 − γ ) + c
[
γ (n − 2) + 1

]
γ (n − 3) + 2

(11.9)

8 See Vives (1999), pp. 160–64 for a detailed discussion.
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tends to the marginal cost when n → ∞. Moreover, the equilibrium quantity and profits

q ∗(n) = S ∗ (α − c)
[
γ (n − 2) + 1

][
γ (n − 1) + 1

] [
γ (n − 3) + 2

] (11.10)

and

� ∗(n) = S ∗ (α − c)2(1 − γ )
[
γ (n − 2) + 1

][
γ (n − 1) + 1

] [
γ (n − 3) + 2

]2 (11.11)

are decreasing in the number of firms n.
A similar pattern can be obtained within the address models of product differentiation.

Following Salop (1979) we can extend the original linear Hotelling duopoly to encompass n
active firms by considering a circular market of length 1 where S consumers are uniformly
distributed according to their individual preferred version t. Firms i ∈ In produce at constant
marginal cost c and sell at price pi horizontally differentiated varieties that are evenly
distributed at xi = i/n around the circle. Finally, a consumer of type t purchasing variety i
has a net utility u ∗ − pi − (xi − t)2/γ . We also use in this class of address models parameter
γ to positively affect product substitutability. When γ is large the utility mostly depends on
the price and the consumers are ready to switch to a more convenient, although more distant,
variety. The demand system, in this setting, is given by:

Di(pi, pi−1, pi+1) = S

[
1

n
− nγ pi + nγ

2
(pi+1 + pi−1)

]
(11.12)

and displays localized competition between neighboring varieties, a notable feature of the
address approach. The demand elasticity in a symmetric equilibrium is

ε ∗(n) = γ n2p ∗(n) (11.13)

and limn→∞ ε ∗(n) = ∞, implying convergence to the marginal cost. Notice also that, for
given n, the elasticity is increasing in the substitutability parameter γ .

The symmetric equilibrium price, quantity and profits, indeed, are given by:

p ∗(n) = c + 1

γ n2
, q ∗(n) = S

n
� ∗(n) = S

γ n3
. (11.14)

Comparing the symmetric equilibria in the Singh and Vives (1984) and in the Salop (1979)
models of product differentiation with those obtained in the Cournot linear model we find
significantly similar comparative statics properties, with price and individual quantity falling
in the number of firms and the price approaching the marginal cost as the number of firms
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tends to infinity. Indeed, the driving effect we highlighted in Cournot, based on vanishing
individual quantities still applies. In the Salop model, however, an additional interesting effect
is at work. When n increases indefinitely the market is completely covered with (locally)
almost identical varieties. Localized competition between adjacent varieties reproduces a
Bertrand environment, leading to marginal cost pricing. This latter effect corresponds to an
increasingly intense price competition between closer and closer variety. In other words, in
the localized competition model of product differentiation an increase in n produces at the
same time a vanishing quantity externality and an increasing price externality, both pushing
towards convergence to a competitive outcome.

We can now turn to the case of monopolistic competition, when positive mark-ups are
associated with a market populated by a very large (i.e. infinite) number of infinitesimal
firms. We illustrate this case referring to the multinomial logit model, thereby also covering
the discrete choice approach to product differentiation. Let the utility of a consumer be
described by a deterministic component U(pi) = α − pi and an additive random independent
and identically distributed (i.i.d.) component ηi that is distributed according to the double
exponential distribution F(x) = exp − [

exp −(γ x + ε
]

where ε is Euler’s constant and γ

a positive constant that negatively affects the variance. Then, the resulting probability of
choosing product i given the vector of prices (p1, . . . , pn) is

Pi(pi, p−i) = exp(−γ pi)
n∑

j=1
exp(−γ pj(μ)

. (11.15)

Then firm i’s expected profits are:

�i(pi, p−i) = S ∗ (pi − c)Pi(pi, p−i).

We can observe that ∂Pi
∂pi

= γ Pi(1 − Pi) and that, therefore, parameter γ , once again, captures

product substitutability. Moreover, in a symmetric equilibrium Pi(p, p)=1
n . Then, the elasticity

of demand is

ε ∗(n) = γ (n − 1)p ∗(n)

n
, (11.16)

with limn→∞ ε ∗(n) = γ p ∗(n) finite.9 Hence, the firms obtain a positive mark-up when n
tends to infinity. The equilibrium price, quantity and profits are:

p ∗(n) = c + n

γ (n − 1)
, q ∗(n) = S

n
, � ∗(n) = S

γ (n − 1)
. (11.17)

9 Parameter γ , as in the previous models, positively affects price elasticity for given n.
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The multinomial logit model10 presents a different pattern of price adjustment, with the
equilibrium price decreasing in the number of firms and converging to a mark-up 1/γ when
n → ∞. Despite the positive mark-up, the firm’s profits vanish at the limit, since the
individual output becomes negligible, as it is in a monopolistic competition environment.
We can also notice that the basic channel of interaction across firms vanishes as well at
the limit: ∂Pi

∂pj
= γ PiPj = γ

n2 . Hence, the “competitive” component of monopolistic com-
petition is associated with vanishing externalities, as already observed when discussing the
Cournot model.

To sum up, the different models of product differentiation display similar comparative static
properties with respect to the number of firms, with the equilibrium price, quantity and profits
falling in n. The main difference rests on the convergence of the equilibrium prices to the
marginal cost, as in a perfectly competitive market, or instead to a positive mark-up over costs
that characterizes monopolistic competition. Moreover, the size of the market, in all cases,
pushes up profits.

The results of the product differentiation literature provide an additional insight related
to the intensity of price competition and its effect on n-firms market equilibria. In the three
models, with a little abuse of notation, we have represented product substitutability through
parameter γ , with the price elasticity increasing and the price and profits falling in γ .

3.3 Explaining the Comparative Statics in a Unified Framework

In the previous sections we have shown that the market equilibria, described by prices
and quantities, share similar comparative statics properties across a wide range of different
oligopoly models and features of preferences and technology. This raises a natural question
of whether this common pattern may be accounted for through a unified explanation. The
theory of monotone comparative statics developed by Milgrom and Roberts (1990, 1994)
and Milgrom and Shannon (1994) offers an enlightening perspective. Their approach allows
the development of new tools with which to study how equilibria change in reaction to a
variation in the parameters and constraints of the maximization problem, moving beyond the
tradition approach based on the implicit function theorem.11 Quoting Amir (2003, p. 2), “if
in a maximization problem, the objective reflects a complementarity between an endogenous
variable and an exogenous parameter, in the sense that having more of one increases the
marginal return to having more of the other, then the optimal value of the former will be
increasing in the latter. In the case of multiple endogenous variables, then all of them must also

10 A similar result is obtained, within the representative consumer approach, assuming Cobb-Douglas preferences
between a numéraire good q0 and a set of differentiated products qi with CES preferences:

U(qo, q1,..., qn) = q1−β

0 q̃β with γ ∈ (0, 1)

and

q̃ =
(

n∑
i=1

q
σ−1
σ

i

) σ
σ−1

.

See Spence (1976), Dixit and Stiglitz (1977) and Anderson et al. (1992) pp. 226–9.
11 Importantly, the new tools help to deal with the comparative statics of multiple equilibria, by studying how

extremal equilibria move in reaction to a change in exogenous variables. For the purpose of our discussion, however,
we shall focus on the case of unique equilibria.
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be complements so as to guarantee that their increases are mutually reinforcing”. The former
property corresponds to increasing differences (between the endogenous and the exogenous
variables, and more in general between two variables), whereas the latter qualifies the function
to be maximized as supermodular.12

When a game is supermodular and characterized by increasing differences, an increase in
the strategy of one player increases the marginal payoff of the strategy of the other players,
inducing them to adjust their optimal choice upwards. This case, therefore, corresponds
to upward-sloping reaction functions or, in the classification of Bulow, Geanakoplos and
Klemperer (1985), strategic complementarity. Moreover, increasing differences between the
endogenous variables and the exogenous variable implies that an increase in the exogenous
variable increases the marginal payoff of the strategy of the players, with an upwards shift in
the best-reply functions.

Increasing differences then can be easily turned into decreasing differences by reverting
the sign of the adjustment or defining a new exogenous variable that is the negative of the
original one. In this case, an increase in the exogenous variable induces a contraction in the
endogenous one.13

We can borrow from the theory of monotone comparative statics two conditions, described
in the statements of Theorem 5 and 6 in Milgrom and Shannon (1994) that, in our setting, fit
the problem. The exogenous variable14 is the number of firms n whereas the endogenous
variables are, depending on the model specification, the quantities qi or prices pi. Then,
we require the profit functions to be supermodular in the strategic variables and to display
decreasing differences in the number of firms. Since we consider continuous and differentiable
functions, the two conditions correspond to ∂�i

∂ai∂aj
> 0 and ∂�i

∂ai∂n < 0 for i, j = In, i �= j,
where ai describes firm i’s strategy, i.e. quantity or price. Moreover, in order to focus on the
comparative statics, we take for granted that an equilibrium exists and is unique, by assuming
that the profit function is strictly quasi-concave in the choice variable and that the best-reply
slope meets the contraction mapping requirement.

Starting with the Cournot case, a first problem arises since in the traditional description
competition is in strategic substitutes, and the game is submodular rather than supermodular.15

A way out of this problem borrows from an early intuition in Novshek (1985) and is developed
in Amir and Lambson (2000). Indeed, a notable property of the Cournot model is that the
profits can be expressed as a function of own output qi and of the aggregate level of output of
the other n − 1 firms Q−i = ∑

j�=i qj, i.e.

�i(qi, Q−i) = P (qi + Q−i) qi − C(qi).

12 See Vives (1999), Chapter 2. When the payoff functions are smooth and the strategy space of each firm and
the exogenous parameters space are one-dimensional, supermodularity and increasing differences boil down to the
condition that the second cross-partials between each firm’s strategic variable and the other firm’s strategic variable
and with the exogenous parameter are positive.

13 Increasing differences is a cardinal property and can be replaced by the ordinal Spence-Mirlees single-crossing
property considered in Milgrom and Shannon (1994). When this property holds, if an increase in the choice variable
is profitable when the exogenous variable is low it is still profitable when the exogenous variable is high, although it
is not required, as in the case of increasing differences, that the profitability is higher in the latter case.

14 Here for convenience we measure the number of firms n as a continuous variable defined on the positive reals.
15 While in a Cournot duopoly this issue is easily adjusted by describing one of the strategies as −q, transforming

the setting into a supermodular game, with n > 2 firms this trick cannot be applied anymore.
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Moreover, we can equivalently describe firm i’s strategy, rather than refer to the choice of
its own output qi, as the selection of a certain level of total output Q for given output Q−i

supplied by the competitors. In this alternative formulation

�̂i(Q, Q−i) = P(Q )(Q − Q−i) − C ((Q − Q−i)) . (11.18)

Then,

∂2�̂i

∂Q∂Q−i
= C ′′(Q − Q−i) − P ′(Q ) = �, (11.19)

which corresponds to (11.1). Then, the condition � > 0 implies the supermodularity of the
modified Cournot game. Decreasing differences can be easily established by noting that when
the other n − 1 firms choose the same output q then Q−i = (n − 1)q. Then, substituting in the
first-order conditions for the choice of Q in the modified Cournot problem we have:

∂�̂i

∂Q
= P ′(Q ) (Q − (n − 1)q) + P(Q ) − C ′ (Q − (n − 1)q) . (11.20)

Hence,

∂2�̂i

∂Q∂n
= q� > 0 (11.21)

when the game is supermodular. We conclude that the equilibrium total output Q ∗(n) is
increasing in the number of firms. In a symmetric equilibrium Q ∗

−i(n) = n−1
n Q ∗(n), and

therefore the output of the firms other than i is increasing in n as well, since both terms n−1
n

and Q ∗(n) are positive and increasing in n. Moreover, since firm i’s best reply in the original
Cournot problem is downward sloping and Q ∗

−i(n) is increasing in n, the individual output
q ∗

i (n) is decreasing in the number of firms. Finally, since demand is bounded, when n → ∞
we must have Q ∗(n) = nq ∗(n) finite and therefore limn→∞ q ∗(n) = 0. Then, given the
first-order conditions of the original Cournot problem, p∗(n) → C ′ (q ∗(n)).

Our discussion offers a clear insight into the advantages of the techniques of monotone
comparative statics. A single and general condition, � = C ′′(qi) − P ′(Q ) > 0, generates
supermodularity of the modified Cournot problem and Q ∗(n) and Q ∗

−i(n) increasing in the
number of firms, while the comparative statics on individual output q ∗

i (n) and the limiting
competitive result on the price derive from the first-order conditions of the original Cournot
problem. Interestingly, the condition � > 0 includes elements of demand and costs, and
both jointly define the relevant condition. This extends with respect to previous contributions
that explored the properties of Cournot equilibria by making specific assumptions on costs or
demand.16

16 See Amir and Lambson (2000) for a general analysis of equilibria in Cournot games.
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Turning to the models of product differentiation and price competition, in an n-firm
oligopoly each one solves maxpi piDi(pi, p−i; n) − C(Di(.)) where we emphasize that,
differently from the homogeneous product case, the number of substitute products n may
directly enter into the expression of the demand for product i. Moreover, notice that in
our symmetric environment we assume that all firms have the same cost structure, i.e.
Ci(Di(.)) = C(Di(.)).

If

∂2�i

∂pi∂pj
= ∂Di

∂pj
+ (pi − C ′)

∂2Di

∂pi∂pj
− C ′′ ∂Di

∂pj

∂Di

∂pi
> 0, (11.22)

for any i, j = In, i �= j, the game is in strategic complements, that is the condition for
supermodularity is met. Then, the equilibrium prices fall in the number of firms if

∂2�i

∂pi∂n
= ∂Di

∂n
+ (pi − C ′)

∂2Di

∂pi∂n
− C ′′

(
∂Di

∂pi

)2

< 0.

Substituting the first-order conditions pi − C ′ = − Di
∂Di/∂pi

and rearranging we get:

∂2�i

∂pi∂n
= ∂Di

∂n
+ pi

εp

∂2Di

∂pi∂n
− C ′′

(
∂Di

∂pi

)2

. (11.23)

Differentiating the elasticity of demand with respect to n, we obtain:

∂εp

∂n
= − εp

Di

[
∂Di

∂n
+ pi

εp

∂2Di

∂pi∂n

]
.

Hence, we can rewrite (11.23) as

∂2�i

∂pi∂n
= −Di

εp

∂εp

∂n
− C ′′

(
∂Di

∂pi

)2

. (11.24)

Then, if (11.22) holds and (11.24)< 0 for all i ∈ In, the symmetric equilibrium prices fall
in the number of firms. We can notice that the conditions (11.22) and (11.24) display a
combination of demand and cost elements, a feature already noticed in the Cournot model.
For instance, if the marginal costs are not decreasing and the demand elasticity is increasing
in the number of firms, then the conditions are met.

Turning to our three examples of differentiated products models referred to in the different
approaches, we have directly derived the equilibrium prices and observed that they fall in the
number of firms. It is easy to check that the two conditions (11.22) and (11.24) are satisfied in
our examples. Indeed, we assumed in the examples linear costs, i.e. C ′′ = 0. Moreover, it can
be easily verified that when the other n − 1 firms set thesame price p, the elasticity of demand
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is increasing in n. Hence, the game features supermodularity and increasing differences and
the prices fall in n.

3.4 Collusive Equilibria

We conclude our review of n-firms oligopolies by considering the case of collusive equilibria.
We refer to the infinite horizon repeated game approach pioneered by Friedman (1971) and
further developed in Fudenberg and Maskin (1986). Since we are considering symmetric
oligopolies, we assume that the basic market interaction can be represented in each period
t = 1, .., T by a symmetric and stationary constituent game � t = {

In, at
i ∈ A, π t

i = π(at)
}
,

where In is the set of n firms, at = (at
i, at

−i) is the vector of actions chosen by firm i
and the other n − 1 firms at time t, A is the set of feasible actions and π t

i = π(at)

the per-period payoff. We further assume that � t has a unique symmetric Nash equi-
librium â = (̂a, .., â) that is Pareto dominated by other market configurations An∗ ={
(a ∗

i , a ∗
−i) ∈ An

∣∣π(a∗
i , a∗

−i) ≥ π( â ) ∀i ∈ In
}
. Let a ∗ be the maximal collusive symmetric

configuration. The firms maximize the discounted sum of profits V0 =
T∑

t=0
δtπ t

i , where

δ = 1/(1 + r) is the discount factor. Each firm observes the other firms’ actions with
a one-period lag. The set of observed actions at time t, the history of the game, then, is
Ht = {

a0, .., at−1
}
.

In what follows we concentrate on symmetric collusive equilibria, in the spirit of the overall
section. Let aC be firm i’s collusive action, aC ∈ An∗ be the vector of collusive actions, and
πC = π(aC) the corresponding individual profits. Notice17 that aC ∈ [

a ∗, â
]
; that is, the

collusive symmetric allocation is in between the Nash equilibrium and the maximal collusive
allocation. Further, define aP = â firm i’s action during the punishment phase, corresponding
to the symmetric Nash equilibrium action in the constituent game, and π P = π( â ) the
punishment individual profits. Finally, let aD = arg maxai π(ai, aC

−i) be firm i’s optimal
deviation when the other firms stick to the collusive action, yielding πD = π(a D, aC

−i). Our
previous discussion implies that πP ≤ πC ≤ πD with strict inequalities if aC < â. We focus
on closed-loop grim-trigger strategies:

σ ∗
i =

⎧⎪⎨⎪⎩
at

i = aC for t = 0

at
i = aC for t > 0 and Ht = {

aC, .., aC
}

at
i = aP for t > 0 and Ht �= {

aC, .., aC
}.

When T = ∞ (infinite horizon), given the strategy followed by the other firms and the
stationarity of the repeated game each firm chooses to collude if the following incentive
compatibility constraint holds:

VC = πC

1 − δ
≥ VD = πD + δ

1 − δ
πP.

17 We implicitly assume in this notation that â > a ∗ , as is the case if the action corresponds to an output level. If,
instead, the action corresponds to a price, the boundaries of the interval should be inverted.
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Then, a well-known result (Folk theorem) states that any allocation a∗ ∈ An∗ can be
implemented as a subgame perfect equilibrium in the game repeated indefinitely (T = ∞)
if the following condition holds18 for all firms i ∈ In:

δ ≥ δ∗ = πD − πC

πD − πP
. (11.25)

We can now address the key issue of whether the price(s), quantities and profits change,
and in which direction, when the number of firms increases. To answer these questions we
can consider two examples of market interaction when firms offer homogeneous products,
characterizing the constituent game �t as a price-setting Bertrand game or a quantity-setting
Cournot game. Let �C = nπC be the total profits of the cartel. Then, in a Bertrand setting
πC = �C/n, πD = �C and πP = 0. Then, the condition (11.25) boils down to

δ ≥ δ∗(n) = n − 1

n

that is increasing in n. In other words, if the basic market interaction takes the form of Bertrand
competition with homogeneous products, the incentive compatibility constraint becomes
tighter the larger the number of firms. The economic intuition is pretty simple: a cartel
with more members distributes the overall profits �C among a larger number of participants,
making the individual profits fall. Deviation and punishment profits, in this setting, are instead
unaffected by the number of cartel members, making the condition for cartel sustainability
harder to meet. We can further observe that the incentive compatibility constraint does not
depend on the specific (symmetric) collusive allocation aC the cartelists agree upon, since the
gains from deviations are always proportional to the collusive profits. Then, a focal outcome
would be to mimic the monopoly price p m. Our prediction, then, is that the market price will
be p m if the number of firms is n ≤ 1

1−δ
, falling to the Nash equilibrium price p = c thereafter.

To sum up, individual profits are strictly decreasing and the market price is weakly decreasing
in the number of firms.

Turning to the Cournot model, we can identify a further element in the comparative statics.
Indeed, in a Cournot setting the profits in the different states vary nonproportionally in the
collusive allocation QC the firms choose to implement. More precisely, the incentive com-
patibility constraint becomes tighter when the firms coordinate on an allocation, summarized
by total output QC; that is, closer to the monopoly output Q m. Hence, in a Cournot setting
the critical discount factor δ ∗(QC, n) is decreasing in the collusive output QC, whereas it
continues to be increasing in the number of firms n.19 The most collusive sustainable output

in a symmetric cartel, Q
C

, then, is (weakly) increasing in the number of firms: if we start from

Q
C = Q m, we can find a number of firms n(Q m, δ) such that δ ∗(Q m, n(Q m, δ)) = δ. For a

larger number of firms the cartel would collapse. However, the firms can coordinate on a less

18 Notice that, having assumed symmetric firms, the incentive compatibility constraint and the threshold discount
factors are the same for each and every firm.

19 For instance, it is easy to show that, in the linear Cournot model when firms implement the monopoly output

the critical discount factor is δ ∗ = n2+2n+1
n2+6n+1

and is therefore increasing in n.
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collusive output (i.e. Q
C

> Q m) such that the incentive compatibility constraint is satisfied.
In general, when (11.25) holds as an equality, for given δ we have

dQ
C

dn
= −

∂δ∗
∂n
∂δ ∗
∂Q

C

≥ 0.

Hence, for n ≤ n(Q m, δ) the individual profits are decreasing in n while the market price is
p m, whereas for n > n(Q m, δ) both the individual profits and the market price are falling in n.

Finally, an informal argument that is often put forward refers to the impact of a larger and
larger cartel on the monitoring activity that the firms have to perform to prevent cheating. It
seems realistic that such activity may take more time the higher the number of firms to be
scrutinized. We can include this further argument by considering that the length of the period
in the repeated game framework may increase when more firms participate in the agreement
and have to be monitored. A longer period, then, corresponds to a lower discount factor
δ, leading to a decreasing relationship δ(n). In this latter case, the incentive compatibility

constraint would become δ ∗(QC
, n) ≥ δ(n) and the effect of the number of firms on the

maximal collusive allocation would be

dQ
C

dn
= −

∂δ∗
∂n − ∂δ

∂n
∂δ ∗
∂Q

C

≥ 0,

implying a stronger expansion in the cartel output when n increases. Finally, when n → ∞
both πP and πC tend to zero and the only sustainable output Q

C
becomes the competitive one.

The effect of market size S on collusive equilibria is twofold. Under constant marginal
costs, market size and the scale of production multiplicatively affect the profits in each of the
relevant states. Then, S cancels out in the expression of the critical discount factor. In other
words, under constant marginal costs the incentive compatibility constraints are unaffected
by market size. On the other hand, the level of collusive equilibrium profits π C increase with
market size.

To sum up, even the cartel equilibria display comparative statics properties similar to those
already highlighted: the individual profits decrease, as does the market price, when the number
of firms increases, and they tend to the perfectly competitive output when n → ∞. Market
size positively affects collusive profits while being neutral on the conditions for sustainability
of the cartel. Moreover, the level of profits in a cartel are higher, for a given number of firms,
than those of the oligopoly equilibria analyzed in the previous sections.

4 FREE ENTRY SYMMETRIC EQUILIBRIA

We can now endogenize the entry decision that determines how many of the m potential
entrants will decide to become active, sinking the entry cost F. In a symmetric setting, the
post-entry profits depend on the number of active firms n and are decreasing in it, as analyzed
in detail across a wide set of models in the previous section. We can summarize the main
findings in the relationship �(n, S, γ ) between the individual profits, the number of firms n,
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the market size S and the variable γ that captures the intensity of price competition. This latter,
therefore, can be referred to as the degree of substitutability among differentiated products,
as in Section 3.2, as well as the mode of competition (price, quantity, collusion). Hence,
the individual profits are decreasing in the number of firms, increasing in market size and
decreasing in the intensity of competition.

The maximum number of firms n ∗ in a symmetric free entry equilibrium (SFEE) is then
captured by the two conditions:

�(n ∗, S, γ ) ≥ F (11.26)

�(n ∗ + 1, S, γ ) < F

The former ensures that all the active firms make non-negative net profits, whereas the latter
implies that in a market equilibrium with n ∗ + 1 firms each one would not cover the sunk
entry costs. Given the monotonicity of the individual profits in n we can therefore write20

n ∗ = n(S, F, γ ), (11.27)

where

∂n ∗

∂S
= −∂�/∂S

∂�/∂n
> 0, ,

∂n ∗

∂F
= 1

∂�/∂n
< 0 and n∗(γ ′) < n ∗(γ ) if γ ′ > γ . (11.28)

Hence, our main predictions state that the number of firms in a symmetric free entry
equilibrium is increasing in market size, decreasing in the sunk entry costs (economies of
scale) and decreasing in the intensity of competition.21 Interestingly, relaxed competition (a
lower γ ), as may arise if products are weak substitutes, or in the case that the industry is
cartelized, is concomitant with an increased number of firms. We can further notice that if
marginal costs are constant, market size multiplicatively increases the profits and therefore
the number of firms depends on the ratio F/S that captures the relevance of economies of
scale with respect to market size. Then, an increase in market size, as it may derive from free
trade agreements, leads to an increase in the number of firms and a fall in prices, making
consumers better off.

The SFEE identifies the maximum number of firms sustainable given market fundamentals
and the prevailing strategic behavior. More specifically, in differentiated products markets we
have identified the maximum number of varieties sustainable in an SFEE, assuming that each
variety requires to sink a cost F to be produced, whereas the number of firms may be lower if
some of them offer a portfolio of different varieties.22

20 We consider here for convenience n as defined on R
+, ignoring the integer issue. Then, given the monotonicity

of profits in n the two conditions for an SFEE boil down to �(n∗ , S, β) = F.
21 We express the relationship between n ∗ and γ to encompass both the case when γ is defined over a compact

interval (the substitutability parameter in the differentiated products models) and when it is a discrete index measuring
the intensity of competition (as when comparing collusive and non-cooperative equilibria).

22 This statement should be further qualified according to the different models of product differentiation. In
general, if in a symmetric multi-product setting each firm offers k varieties some cross-variety effects are internalized,
and therefore the market price should be different (higher) than in the case of single-product firms. With higher
individual profits in the symmetric k-varieties firms equilibrium some further entry should be profitable. Therefore,
the number of multi-product firms should be larger than n∗/k, where n ∗ is the SFEE number of single-product firms.
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5 FREE ENTRY AND SOCIAL EFFICIENCY

Moving from the positive to the normative analysis, we are interested in evaluating whether
the entry process leads to an optimal, excessive or insufficient number of firms. A frequent
presumption is that guaranteeing conditions of free entry is desirable from a social point
perspective. The analysis we have developed in the previous sections allows us to address this
issue and to verify whether and under which conditions free entry leads to socially desirable
outcomes. Spence (1976) and Dixit and Stiglitz (1977) have explored the issue in a monopolist
competition set-up, finding that the number of varieties in a free entry equilibrium falls short of
the social optimum. In a homogeneous product environment, instead, Von Weizsäcker (1980)
and Perry (1984) established an opposite result, with too many firms entering with respect to
the social optimum.

We discuss the social efficiency of SFEE following Mankiw and Whinston (1986) and
Amir, De Castro and Koutsougeras (2014) and adopting the same two-stage game of the
previous sections. We analyze a second-best welfare maximization problem where the social
planner is assumed to control the number of firms but to be unable to affect or determine the
behavior of the active firms once they enter. In the comparison of the equilibrium and the
socially optimal number of firms we focus on the case when the fixed costs are non-negligible
given market size, and the number of firms in either solution is finite.

We start with the case of homogeneous products and quantity competition and then move to
a product differentiation and price competition environment. We can borrow from the analysis
of symmetric market equilibria three conditions that we proved to hold under fairly general
conditions in the Cournot model:23

1. In the symmetric equilibrium the individual output is decreasing in n: q(n) > q(n ′) for
n ′ > n.

2. Total output is increasing in the number of firms: Q(n) = nq(n) < Q(n ′) = n ′q(n ′) for
n < n ′.

3. The price cost margin is non-negative for any number of firms, and strictly positive for a
finite number of firms: P (Q(n)) − C ′ (q(n)) ≥ 0 for all n and P (Q(n)) − C ′ (q(n)) > 0
for n finite.

Given these features, the social planner maximizes total welfare by choosing the number
of firms:

max
n

W(n) =
Q(n)∫
0

P(s)ds − nC (q(n)) − nF (11.29)

23 In their paper, Mankiw and Whinston do not model explicitly the post-entry game and assume that certain
features characterize the firm and aggregate pattern of the equilibrium strategies. We can, instead, explicitly refer to
the properties of the equilibria developed in the previous sections. A similar approach can be found in Amir et al.
(2014).
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Let us define nW as the solution. Then, under 1–3, the SFEE number of firms is higher
than the social optimum, that is n∗ > nW . The result can be easily proved by noting that the
first-order conditions in problem (11.29) are:

W ′(n) = P (.)

[
n
∂q

∂n
+ q(n)

]
− C(q ) − nC ′(q )

∂q

∂n
− F = (11.30)

= �(n) − F + n
[
P (Q(n)) − C ′(q(n))

] ∂q

∂n
.

Since in SFEE �(n ∗) = F, ∂q
∂n < 0 by condition 1 and P (Q(n ∗)) − C ′(q(n ∗)) > 0 for n ∗

finite given condition 3, it follows that W ′(n ∗) < 0 and therefore n ∗ > nW .
The economic intuition of the excessive entry result is straightforward: when an additional

firm enters, it adds to the social welfare the profit �(n)−F but, at the same time, it steals out-
put, and therefore profits, from the other firms, the last term in the derivative (11.30), second
line. The business-stealing effect, captured by condition 1 above, creates a wedge between the
private incentives of the entrant, and the social effect of entry, explaining why too many firms
enter in an SFEE.24 We can observe that when F (or F/S ) tends to zero then P (Q(n ∗)) −
C ′(q(n ∗)) and �(n ∗) vanish, implying that an infinite number of firms enter in equilibrium
and maximize welfare. In other words, the excessive entry result applies to the case of signif-
icant fixed costs and a finite number of firms, whereas it vanishes when fixed costs become
negligible. A policy that expands markets, as it is a free trade approach, therefore can fix the
excessive entry distortion and realign competitive market outcomes and social optimality.

The case of differentiated products adds an additional effect of entry on welfare, since more
firms imply a larger set of varieties available to the consumers. Following Spence (1976) we
capture this effect by assuming that the gross consumers’ benefit is

CS(q) = G

[
n∑

i=1

f (qi)

]
(11.31)

where q is the vector of outputs, f (0) = 0, f ′(.) > 0 and f ′′(.) ≤ 0 for all qi ≥ 0 implies
a preference for variety and G ′(z) > 0, G ′′(z) < 0 for all z ≥ 0 qualifies products as
substitutes.25 The social planner then solves the problem

max
n

W(n) = G
[
nq(n)

]− nC(q(n)) − nF.

Contrary to the case of homogeneous products, when products are differentiated in general
we cannot rank the number of firms in an SFEE and the socially optimal one. The reason is
immediately evident from the first-order conditions of the problem:

W ′(n) = G ′
(

nf ′ ∂q

∂n
+ f

)
− C(q ) − nC ′(q )

∂q

∂n
− F = (11.32)

= �(n) − F + n
(
G ′f ′ − C ′) ∂q

∂n
+ G ′ (f − f ′q

)
24 Mankiw and Whinston show that, when the integer problem is taken into account, n ∗ ≥ nW − 1.
25 Consumers’ utility maximization implies that in a symmetric equilibrium the price is equal to G ′ (nf (q )) f ′(q )

and therefore the profits can be written as � = G ′ (nf (q )) f ′(q )q − C(q ) − F.
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Condition (11.32) shows that an additional firm adds to total welfare the profits generated,
�(n) − F, and further affects total welfare with two additional terms. The first corresponds
to the business-stealing effect already identified in the case of homogeneous products, and
captures the fact that the new firm subtracts output and profits to the competitors, with a lower
net social gain than the private firm and a bias towards excessive entry.

The last term is new and refers to the impact of an additional variety on consumers’ surplus.
G ′f is the marginal social effect of the new variety, whereas G ′f ′q is the firm revenue.
Since the firm does not internalize all the social benefit of the additional variety, the private
incentives are lower than the social ones, leading to underprovision of varieties.

Without specific assumptions on preferences the two terms with opposite signs in (11.32)
do not allow the identification of W ′(n∗) Therefore, we may have an excessive, insufficient
or optimal number of firms entering in an SFEE. Under more specific assumptions on the
utility function, we can generate examples where the ranking can be established. For instance,
Dixit and Stiglitz (1977), using a CES utility function, obtain that the SFEE number of firms is
lower than the welfare-maximizing one, reverting the case of excessive entry that characterizes
a homogeneous product environment.

6 FREE ENTRY EQUILIBRIA WITHOUT SYMMETRY

Although a symmetric environment is a natural reference when analyzing long-run free entry
equilibria, we may be interested in the effects of free entry in oligopoly markets when some
kind of asymmetry has long-lasting effects. This may come from the existence of patents
or other frictions in the adoption of process innovations that prevent the equalization of
production techniques, from persisting advantages on the demand side coming from quality or
brand image, to institutional features that affect the behavior of firms, such as, for instance, the
coexistence of different ownership structures or the presence of state-owned firms. Since free
entry equilibria suggest the pattern of adjustment when the entry process unfolds, asymmetric
oligopolies are an interesting and relevant case to be addressed.

Once firms intrinsically differ, the number of firms is no longer a relevant statistic with
which to describe, in a positive or normative sense, the long-run equilibria. However, many
of the oligopoly models we have already considered in a symmetric setting share a particular
property: that of being aggregative games, which allows us to deal easily with asymmetric
environments.26

The profits of firm i in an aggregative oligopoly game can be written as a function of a

choice variable (action) ai and of the sum of the actions of all market participants A =
n∑

j=1
aj;

that is, �i(ai, A). A very simple illustration is the Cournot model already considered in
Section 3.1. Setting qi = ai we can write �i(ai, A) = P(A)ai − Ci(ai). We also recognize
an aggregative structure in some of the models of product differentiation.27 In the Singh and

26 See Anderson, Erkal and Piccinin (2015) on free entry equilibria with aggregative oligopoly games.
27 One can notice that address models with n > 3, such as the Salop circular road model described above, are not

aggregative games, since the profits of each firm depend only on a subset of prices.
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Vives (1984) linear model the prices enter additively in the demand function and therefore,
setting pi = ai, the profits are written as:

�i(ai, A) = (ai − c)
α(1 − γ ) + γ A − [

γ (n − 1) + 1
]
ai

(1 − γ )
[
γ (n − 1) + 1

] .

Even the logit model shares the feature of an aggregative game, once we define ai =
exp(−γ pi): the profits can be written as

�i(ai, A) = (− log(ai)/γ − ci)
ai

A
.

To illustrate the main features of aggregative games, we use here the linear Cournot model
�i(qi, Q ) = (a−bQ−ci)qi as an example. The traditional setting describes the profit function
as depending on own output and the aggregate of other firms’ production Q−i = ∑

j�=i qj; that
is, �i(qi, Q−i) = (a − b(qi + Q−i) − ci)qi and identifies the best reply

q̂i(Q−i) = a − ci

2b
− Q−i

2
.

Alternatively, following the aggregative setting we can identify the inclusive best reply first
introduced by Selten (1970), where the optimal individual output is consistent with a given
aggregate level of production:28

q̃i(Q ) = a − ci

2
− Q .

Notice that an equilibrium exists only if
n∑

i=1
q̃i(Q ) = Q ; that is, if the sum of the inclusive

best replies has a fixed point.29 Further we can define firm i’s profits, when it and all firms
choose their inclusive best reply, as a function of total output Q :

�i(Q, q̃i(Q ) = � ∗
i (Q ) = (a − ci − bQ )2

b
(11.33)

that is strictly decreasing in Q. The function (11.33) plays a fundamental role in the analysis
of free entry equilibria when asymmetries are admitted. Indeed, it allows the mapping of the
total equilibrium output – in general the aggregate A – into the profits of the individual firms,

28 One can notice that both expressions come directly from the first-order conditions

∂�i

∂qi
= a − ci − b(qi + Q−i) − bqi = 0.

29 Anderson et al. (2015) introduce a set of assumption that guarantee the existence and uniqueness of an
equilibrium in inclusive best replies. Moreover, under these assumptions the nature of interaction (strategic
substitutability or complementarity) of the original best replies translates into an analogous feature of the inclusive
best replies.
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where therefore Q replaces the number of firms as the key driver of equilibrium profits in an
asymmetric setting.

Continuing with our Cournot example, a free entry equilibrium (FEE) can be defined as a
set of quantities

{
(q ∗

i )i∈I
}

and a set of entrants I ⊆ Im, where Im is the set of all m potential
entrants, such that

�i(Q
∗
I ) ≥ Fi for all i ∈ I (11.34)

�j(Q
∗
I + q ∗

j ) < Fj for all j /∈ I

where Q ∗
I = ∑

i∈I q̃i(Q ∗
I ) is the aggregate output of the entrants I. Notice that we are not

imposing symmetry in gross profits �i or in the sunk costs Fi. As a final step, it is often
argued that the marginal entrant in a free entry equilibrium gains zero profit, a condition that
is shared by all firms in a symmetric equilibrium. Anderson et al. (2015) assume that, among
the potential entrants, there is a subset e ⊂ Im of symmetric marginal firms30 with identical
profit function �i = �e(qi, Q ) and entry cost Fi = Fe for all i ∈ e. Some of these marginal
firms may be active, belonging to the set ea ⊂ I.

In a zero-profit free entry equilibrium (ZPFEE) a nonempty set of marginal firms ea is
active and gains zero profit. More formally, a ZPFEE is an FEE with a set I of active firms
such that ea ⊂ I and �i = � ∗

i (Q ∗
I ) = Fi for all i ∈ ea, where � ∗

i (.) is given by (11.33).
The existence of a fringe of symmetric active marginal entrants allows the combination of the
zero-profit condition of the marginal firms with a unique level of aggregate output Q ∗

I and
with a variety of profit levels of the inframarginal (asymmetric) firms. Indeed, since � ∗

i (Q )

is decreasing in Q, from the zero-profit condition for the active marginal firms we obtain Q ∗
I ,

and this latter determines the profits of the other inframarginal firms � ∗
i (Q ∗

I ). The number of
active marginal firms ea is then adjusted through the entry process to find the ZPFEE.

To illustrate these properties it is interesting to analyze how the ZPFEE varies when
exogenous changes in the set of inframarginal firms occur, modifying their profit structure
and, consequently, the optimal output they deliver to the market. Let us consider an exogenous
shock that affects a subset IC of inframarginal firms (the changed firms), such as, for instance,
a process innovation, or a merger, or a privatization, while leaving the other inframarginal
firms in subset IU (the unchanged firms) unaffected. Hence, in the initial state, I = IC∪IU∪ea.

Then, after the shock the set of active firms in a ZPFEE moves from I to I ′. All the changed
and unchanged inframarginal firms remain active both before and after the shock, i.e. IC = I ′

C
and IU = I ′

U . The adjustment to the new ZPFEE works through a variation in the set of active
marginal entrants: ea �= e ′

a. Since e ′
a �= ∅ in the new equilibrium, �i = � ∗

e (Q ∗
I ′) = Fe must

hold for i ∈ e ′
a and therefore total output remains the same; that is, Q ∗

I ′ = Q ∗
I . Consequently,

the profits of the unchanged inframarginal firms do not vary. Hence, for instance, a reduction
in the marginal cost of the changed inframarginal firms IC leads them to produce more in
the new ZPFEE, whereas the unchanged inframarginal firms IU maintain the same level of
production. Since total output does not vary, the set of marginal firms shrinks as does their

30 A possible justification of this key assumption rests on the following argument. The industry is populated by a
set of larger firms that display rich strategies and, through them, are able to introduce some competitive advantage,
i.e. asymmetry. Then, there is a fringe of small firms (the marginal entrants) that are not strategically sophisticated
and adopt a standard and similar technology and are therefore less efficient than the larger ones.
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overall production, adjusting the larger production of the changed inframarginal firms and
maintaining total output Q ∗

I at the initial level.31

This property of the ZPFEE also encompasses the case of the “aggressive leaders” in Etro
(2006), where one firm, the leader, is the inframarginal agent and the other symmetric firms,
the followers, belong to the active marginal entrant group ea. A change in the profits of
the leader, for instance due to some investment, as Etro (2006, p. 150) writes, “does not
affect the equilibrium strategies of the other firms, but it reduces their equilibrium number”.
Interestingly, in this setting with an endogenous number of followers, if the investment
increases the marginal profit of the leader, this latter has an incentive to over-invest, no
matter whether competition is in strategic complements or substitutes. Indeed, if the market
equilibrium output does not change with its investment, whereas its market share and profits
increase, the leader will over-invest. At the limit, if the investment is not costly, the leader has
the incentive to produce more than the usual Stackelberg leader’s output and to monopolize
the market, preventing the entry of the followers.

This result of generalized over-investment is strikingly different from what happens when
the number of followers (entrants) is given and exogenous. In the taxonomy proposed by
Fudenberg and Tirole (1984), when the investment increases the marginal profit, the leader
over-invests (top dog) if competition is in strategic substitutes but it under-invests (puppy
dog) when it competes in strategic complements.

Aggregative games also greatly simplify the normative analysis of asymmetric environ-
ments. Starting with the case of homogeneous products, we observe that consumers’ surplus
depends on aggregate output only,32 i.e. CS = CS(Q ), with CS(0) = 0, CS ′(.) > 0 and
CS ′′(.) ≤ 0 for all Q ≥ 0. Then, when a shock affects a subset of inframarginal firms while
leaving total output Q ∗

I unchanged, consumers’ surplus also does not vary. The only impact
on social welfare comes from the variation in profits of the changed inframarginal firms IC.
Indeed, the profits of the unchanged inframarginal firms IU do not vary and the change in
the number of active marginal firms from ea to e ′

a does not affect welfare, since they gain
zero profits. We conclude that if a shock induces a profitable adjustment in a subset of firms
and a change in their market shares, the only effect on welfare comes from the variation in
the profits of the affected firms, quite in contrast with the impact in the short run when the
number of firms does not vary.

To appreciate the result, let us consider the welfare impact of a merger between two firms
absent any efficiency gain. The short-run effects are well known in the IO literature: the
merged entity internalizes the negative externalities and contracts output; the outsiders react
by expanding their production. The net effect is a fall in total output, consumers’ surplus and
total welfare, an increase in outsiders’ profits and, in the case of constant returns to scale, a
fall in insiders’ profits.33

Once we consider entry and ZPFEE, however, the effects change significantly. Since
additional active marginal firms enter in reaction to the short-run adjustments, total output,

31 This neutrality outcome recalls a case of a competitive market where a fringe of identical firms with constant
marginal costs makes the supply curve flat at some price p. Any efficiency improvement of the inframarginal firms
affects the supply curve but the market equilibrium is always determined by (p, D(p)). The reduction in costs, then,
is cashed in by the inframarginal firms as increased profits. These latter, in a sense, are Ricardian rents.

32 This is true if firms’ activities do not entail any externality, such as, for instance, different levels of pollution. If
this were the case, the composition, and not only the total level of output would matter from a welfare point of view.
In our discussion we are assuming that these composition effects do not arise in a homogeneous product market.

33 See Salant, Switzer and Reynolds (1983).
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consumers’ surplus and outsiders’ profits (IU and ea) do not change. The insiders’ (IC) profits,
due to their output contraction, are weakly lower. If, however, the merger allows the realization
of efficiencies, insiders’ profits, as well as their incentive to merge, increase, as does total
welfare. This result brings with it a strong policy implication in favor of lifting ex ante merger
control and authorization policies. Indeed, since the long-run private and social effects of a
merger coincide, if private firms have an incentive to merge, then social welfare will rise,
whereas socially damaging mergers would never be implemented given the lack of private
incentives.34

In the welfare analysis of homogeneous product markets, we assumed that consumers’
surplus depends only on total output but not on its allocation among the active firms. Moving
to a differentiated products environment a similar assumption may be more problematic.
Indeed, Anderson et al. (2015) show that in aggregative oligopoly games with differentiated
products, a reallocation of a given aggregate among the different varieties, although neutral
on the ZPFEE conditions, may affect total surplus and welfare. In other words, it may be that
consumers’ surplus not only depends on the aggregate, but also on its composition.

They show that the dependence of consumers’ surplus on the aggregate only still persists
with differentiated products if the demand functions satisfy the independence of irrelevant
alternatives (IIA) property; that is, if the ratio of any two demands depends only on their
own prices and not on the prices of other, unconsidered, alternatives. Notably, the logit
model, as well as the demand functions derived from the CES utility function, satisfy the
IIA and therefore the corresponding oligopoly game is not only aggregative, but also allows
the expression of consumers’ surplus as a function of the sum of the prices only.35

7 ENDOGENOUS SUNK COSTS AND PERSISTENT
CONCENTRATION

The entry decision in the previous sections involved sinking a fixed set-up cost F that was
related to some initial indivisible investment. We have not further specified the nature of these
outlays. Assuming that the level of the sunk cost F is an exogenous parameter with respect to
the entry and market strategies may be explained referring to technology (e.g. investment in
a minimum efficient scale plant) or institutions (e.g. the payment of a license fee needed to
operate). The sunk cost may vary, allowing us to extrapolate comparative statics properties,
but for reasons orthogonal to the market strategies adopted by the active firms once entered.
In this sense we can label the environments considered so far as characterized by exogenous
sunk costs.

In this setting, the amplitude of the sunk costs F compared to the size of the market S
is a fundamental driver in determining the maximum number of firms sustainable in a free
entry equilibrium. The limiting case, when F becomes negligible with respect to S, leads

34 Notice that the hands-off policy implications of free entry on merger control are much stronger than the usual
argument that low entry barriers may constitute a favorable element when analyzing a merger. In this latter case easy
entry conditions may mean that pros are balanced with the cons of enhanced market power in the evaluation of a
merger. In the ZPFEE case, free entry is instead sufficient to generate mergers only when they are welfare enhancing.

35 It should be stressed that aggregative product differentiation models do not necessarily satisfy the IIA, as is
evident, for instance, considering the linear model drawn from Singh and Vives (1984). In this case consumers’
surplus depends not only on the aggregate price but also on its composition.
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to convergence to a competitive equilibrium with an infinite number of firms, vanishing
externalities and price converging to the marginal cost.

Although this paradigm can apply to several industries, there are many other sectors where
a relevant part of the sunk costs arise due to specific market strategies of the firms, which
in general we may connect to the effort of attaining a competitive advantage and market
leadership. This is the case with investments in advertising that enhance the perceived quality
of the product, or with R&D expenditures aimed at improving the efficiency of the technology
or the quality of the products.36 Similar effects take place in industries such as media and
entertainment, where market leadership can be reached by securing specific, nonreproducible
inputs such as, for instance, talent and premium content.37 In all these examples, a competitive
advantage is reached through enhanced efforts and, therefore, higher sunk costs. We label this
second class of economic environments endogenous sunk costs.

When sunk costs react to market incentives, we may expect that the entry process, which is
constrained by the need to repay all the sunk outlays, is affected. Indeed, market size, which
drives the tendency to fragmentation in an exogenous sunk cost industry, has the additional
effect of increasing the marginal return to market dominance, incentivizing leadership and
endogenous sunk costs. A central result of the endogenous sunk cost case claims that if
the incentives for effort are sufficiently high, an increase in market size does not lead to an
increasingly fragmented market structure. There exists an upper bound to fragmentation such
that, even at the limit, large firms and concentration persist.

We illustrate this result through a very simple model due to Schmalensee (1992)38 that
conveys the main ideas and intuition. In this setting we set the price p > c fixed and
concentrate on the investment in advertising Ai. The demand for product i has a similar
structure to that in discrete choice models: Di(Ai, A−i) = S ∗ Pi(Ai, A−i) where S is market
size and Pi firm i’s market share. Moreover,

Pi(Ai, A−i) = Aγ
i

n∑
j=1

Aγ
j

(11.35)

where γ ∈ [0, 2] is a parameter that measures the mobility of consumers in reaction to
advertising outlays. Notice that ∂Di

∂Ai
= γ

Ai
Pi ∗ (1 − Pi).

The profit function of firm i, then, is

�i(Ai, A−i) = (p − c)S
Aγ

i
n∑

j=1
Aγ

j

− Ai − F (11.36)

36 A pathbreaking contribution in the theory and empirical analysis of these industries is due to Sutton (1999,
1998), the former referring to advertising-intensive industries and the latter to R&D-intensive sectors. See also Sutton
(2007) for a comprehensive review.

37 See on these examples Motta and Polo (1997, 2003).
38 A full-fledged model based on quantity competition and investments in quality can be found in Sutton (1991,

and 2007, Appendix B).
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where the last two terms refer to endogenous sunk costs in advertising (Ai) and exogenous
sunk entry costs (F ). In this setting there exists a symmetric Nash equilibrium in advertising
levels

A ∗ = (p − c)Sγ
n − 1

n2
(11.37)

that is increasing in market size S and in consumers’ reactivity to advertising γ .
Plugging into the profit function and taking into account that in a symmetric equilibrium

Pi = 1/n, the zero-profit condition can be rewritten as:

1 − γ

n ∗ + γ

n∗2 − F

S(p − c)
= 0, (11.38)

where n ∗ is a solution of the above equation; that is, the SFEE number of firms.
The last term refers to exogenous sunk costs F and vanishes as the size of the market

S increases indefinitely. However, the first two terms, which are directly related to the
endogenous sunk costs in advertising outlays, present a different pattern: they do not depend
on market size.39

When γ ≤ 1, corresponding to consumers poorly reacting to advertising, and therefore a
weak competitive pressure for market leadership, the single positive solution n ∗ of (11.38)
increases indefinitely in market size S, reproducing a pattern we already observed in pure
exogenous sunk cost models. However, for γ ∈ (1, 2] the incentives to invest in market
leadership bite and advertising increases in larger markets, pushing up the endogenous sunk
costs. In this latter case

lim
S→∞

n ∗ = γ

γ − 1
.

The entry process in this case is predominantly governed by the endogenous sunk costs, and
the number of sustainable firms is bounded above for any market size, implying persistent
concentration.40 Moreover, the endogenous sunk costs tend to rise more quickly when
consumers are more responsive to advertising, increasing concentration. Interestingly, in
exogenous sunk costs environments more intense competition is associated with a lower n ∗
and a more concentrated market, although these features dilute and vanish when the market
size increases indefinitely. This pattern of higher concentration when competition is harsher,
instead persists in endogenous sunk cost industries even with growing market size.

39 This feature, literally speaking, depends on the specific set-up of the very simple model we adopt. However, a
general property of this class of models is that when market size increases indefinitely, gross profits and investment
costs once we reach a certain number of firms tend to increase at the same rate. In this case, when S increases,
boosting the gross profits, the incentives to invest in market leadership increase accordingly and the endogenous sunk
costs increase at the same rate, preventing entry of additional firms.

40 Shaked and Sutton (1983) identify a second case when the number of firms does not increase when market size
rises. When firms offer different qualities xi ∈ [x, x

]
and the burden of quality improvements falls on fixed rather than

marginal costs, price competition squeezes the margins. With relatively similar prices the demand for lower-quality
products vanishes and a limited number of firms survives (finiteness property).
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8 FRICTIONLESS ENTRY AND CONTESTABILITY

The general result in the endogenous and exogenous sunk costs cases claims that there exists
a maximum number of firms sustainable in a free entry equilibrium, and that it is decreasing
in the amplitude of the sunk costs F compared with market size S. A concentrated market,
in turn, is associated with noncompetitive mark-ups and allocative inefficiency. At the limit,
when the economies of scale are particularly relevant, then we might find that only one firm
can operate in the market: a case of natural monopoly. The firm will set the monopoly price
p m, being able to cover the high fixed costs with the monopoly margins. A second, symmetric
entrant, pushing the market price down to p(2) = P(Q(2)) with its additional output, would
make losses, since by definition in a natural monopoly it would be unable to cover the fixed
costs. Then, there is a range of fixed costs such that the monopoly price is charged and no
entry occurs. Similar cases can be generated where a small number of firms can be sustained
in a free entry equilibrium.

The contestable markets approach41 challenges this view, arguing that when entry is
frictionless, structural monopoly or oligopoly environments do not lead to monopoly or
oligopoly pricing and the associated allocative distortions. Indeed, potential competition may
exert a sufficient corrective effect on the incumbent, inducing it to set a (second-best) efficient
price to prevent temporary (hit-and-run) entry. Allocative efficiency is therefore ensured by
(potential) competition even when economies of scale are so relevant to preventing actual
competition.

This striking result re-establishes in a free entry environment a central feature of the
Bertrand result, which claims that no relationship exists between the number n > 1 of
active firms and the (socially efficient) oligopoly equilibrium. Indeed, as the exogenous sunk
cost paradigm extends to the free entry case the Cournotian result of smooth convergence to
competitive equilibria, the contestable market approach brings to the stage of the free entry
story a Bertrand-type flavour.

It is now time to specify in more detail what we mean by frictionless entry. As a general
point, the incumbent firm and the (potential) entrant are, under any respect, perfectly identical.

Since we are considering a natural monopoly, the first issue to address is the nature and
amplitude of the fixed costs. Let us consider the following example. On the supply side,
suppose that, in order to operate in the industry, it is necessary to bear a total investment
F for an indivisible capital good that provides production services over a time horizon T.
Let us divide this total time into t periods, whose length we are going to specify below. The
incumbent firm I, then, has to cover a fraction f = F/t of the fixed costs in each of the t periods
it is active in the market, and has variable costs CI(qI). Let us consider the case f ∈ (�2, �m],
where �2 are the gross profits from duopoly and � m the monopoly gross profits. Under this
assumption the number of firms sustainable in the market is n ∗ = 1; that, is the market is a
natural monopoly.

The potential entrant E, if it is willing to enter, has to pay F = t ∗ f to purchase the capital
good. If, after one period, E decides to exit, the residual value of the capital good is (t −1)∗ f .

41 See Baumol, Panzar and Willig (1982). To ease the exposition we present here the case of a contestable natural
monopoly. The authors generalize the contestable market approach to natural monopolies, showing that second-best
efficient allocations arise also in these cases when entry is frictionless. The case of multi-product firms and economies
of scope is a third, relevant extension of the analysis.
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Let α ∈ [0, 1] be the fraction of the residual value that can be cashed back by reselling
the capital good or by using it in other markets. This parameter measures the sunkness of
the initial investment, with α = 1 corresponding to the case when the capital good can be
efficiently recovered after exit and α < 1 to some level of sunkness. If E enters and produces,
its costs are CE(qE). It is evident that, since the incumbent can efficiently use the capital good
in the market for the entire length of its economic life, the entrant is in a symmetric position
on the supply side only if α = 1 and CE(q ) = CI(q ).

Turning to demand, for a given price p the entrant’s demand is DE(p) ≤ DI(p) where the
equals sign corresponds to a symmetric position towards the customers, who are uncommitted
and can switch to the entrant if the price pE is more attractive than the incumbent’s price pI .

The timing of the game is as follows: at s = 0 the incumbent sets a price pI that cannot
be changed for a period of length T/t; just after pI is set the entrant posts its own price pE;
once the two prices are set, the customers choose which of the two firms to patronize and are
supplied immediately; at s = T/t, before the incumbent changes its price, the entrant exits
and resells (or reuses) the capital good, collecting α(t − 1)f .

Once the contestable market story is unbundled, two key ingredients become evident:

1. There is no administrative restriction on entry, as licenses or authorizations.
2. Demand and supply quantities adjust instantaneously while price changes take time.

In this environment, the incumbent sets a (limit) price that prevents the temporary entry of
the competitor:

p̂I = CE (DE( p̂I )) + f [α + t(1 − α)]

DE( p̂I )
. (11.39)

If we compare (11.39) with the second-best Ramsey price

p sb = C
(
D(p sb)

)+ f

D(p sb)

we can immediately notice that the limit price set by the incumbent is second-best efficient if
three further conditions hold:

3. The entrant has access to the same technology as the incumbent, with no restrictions
coming from patents or privately owned know-how: CE(q ) = CI(q ); moreover, it can
instantaneously change the level of production at the desired level.

4. The customers see the entrant and the incumbent as offering perfect substitutes and have
no restrictions or costs in switching from one to the other: DE(p) = DI(p).

5. The fixed indivisible investment is not sunk and the entrant recovers the residual value of
the capital good entirely: α = 1.

Under assumptions 1–5 potential competition is able to discipline the incumbent and
induces second-best efficient outcomes in markets plagued by substantial economies of
scale and concentration. Intuitively, perfect symmetry of the incumbent and the entrant and
frictionless entry allow the market to be supplied, indifferently, by either of the two firms. If
the incumbent commits to a profitable price, it is temporarily replaced by the entrant through
undercutting. In this case, the identity of the provider changes for a period, although the
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market remains a monopoly. To avoid undercutting, the incumbent is forced to adopt the
efficient limit price equal to the average costs. This remarkable result is derived under a set
of specific assumptions, and can be evaluated both with respect to their empirical relevance
and theoretical robustness. On theoretical grounds, the limit price expression (11.39) clearly
shows that substantial departures from the second-best efficient price occur when any of the
assumptions are weakened.

Turning to empirical relevance, the contestable market approach inspired the liberalization
of the airline industry in the USA in the late 1970s.42 In this sector a market corresponds
to a route, and therefore the large investments in aircrafts are not specific to a market: the
aircrafts can be moved to other routes or resold in an efficient market. Alternatively, the
carriers can lease the aircrafts. The other fixed costs, check-in and handling services, are
specific to airports, and therefore to the routes served. In the market reform, the airports, rather
than the carriers, supplied these services, leasing them to the carriers on a variable cost basis.
Hence, Assumption 5 of no sunkness seems consistent with the empirical data, as well as the
access to the same technology (Assumption 3). Price stickiness may derive from contractual
constraints on fares posted in advance (Assumption 2), and lifting authorizations was a key
measure of the reform (Assumption 1). However, Assumption 4 was the Achilles’ heel of the
reform, since slots were assigned under grandfather rights, and the peak-hour more profitable
ones remained in the portfolio of the incumbents. Moreover, in the years after the reform the
carriers reorganized the routes from a spoke-to-spoke to a hub-and-spoke pattern, enhancing
their dominant role in large hubs and achieving high load factors. With DE(p) < DI(p),
after an initial phase of turbulence, the incumbents were able to profitably prevent entries and
maintain dominance in their key hubs.

Hence, although intellectually brilliant, the contestable market approach can hardly be
considered a general theory of free market equilibria due to its lack of robustness. Although
potential competition is an important ingredient in entry games, its impact on the behavior of
active firms has to be carefully evaluated from an empirical point of view.

9 CONCLUSIONS

In this chapter we have reviewed the different branches of the IO literature that analyzes free
entry equilibria and the endogenous determination of market structure. A recurrent theme is
the assumption of symmetric firms, which in a long-run perspective can be justified when
the friction of access to technology and the features of demand allow all firms to refer to a
common set of best practice techniques and to exploit the possibility of (horizontal) product
differentiation. In this perspective, a very rich class of oligopoly models is characterized by
significantly similar comparative statics properties of the market prices, quantities and profits
when the number of active firms increases. Two limiting cases emerge, perfectly competitive
and the monopolistic competitive outcomes, when the number of firms increases indefinitely.
The monotone comparative statics tools allow the identification of the general conditions
behind these results. Long-run market structures under free entry are determined by a small
set of elements referring to technology (economies of scale) and preferences (market size),
with an additional ingredient related to strategies and the intensity of price competition.

42 See Bailey and Panzar (1981) and Fawcett and Farris (1989).
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Hence, the general result of free entry equilibria provides a solid theoretical foundation to
the traditional approach of industrial economics based on the structure–conduct–performance
paradigm.

The normative properties of free entry equilibria show that in a homogeneous product
setting the business-stealing effect is the key element that creates a wedge between the private
incentives and the social planner, determining an excessive number of firms. When product
differentiation is introduced, however, an opposite externality leading to underprovision of
varieties is also introduced, since the private incentives to enter do not include the benefits of
an increased number of substitute products on consumers.

While symmetric market games are a useful reference for the long-run evolution of markets,
asymmetric settings may be relevant both in the long run, when frictions persist, and as a
starting point from which to study the evolution of market structure under free entry. It is
important to notice that some form of symmetry is also maintained in this framework, which
exploits the aggregative nature of many oligopoly models, by assuming that the (relatively
inefficient) marginal entrants are all alike. The zero-profit condition on the marginal entrants,
together with the aggregative nature of the market games, then generates unconventional long-
run effects when a shock hits the active firms. Indeed, in the new free entry equilibria the total
output remains unchanged, while its composition varies, with the change in output of the firms
affected by the shock absorbed by an opposite variation in the number of marginal entrants.
With these results, a hands-off policy is implied.

Endogenous sunk costs related to market strategies provide a different pattern of adjustment
characterized by persistent concentration even in very large markets, in contrast with the
tendency to fragmentation when sunk costs are exogenous. Finally, we review the attempt to
establish efficient entry equilibria even in markets characterized by huge economies of scale
and structural concentration, including natural monopolies, by assuming frictionless entry and
giving a role to potential competition. The contestable markets paradigm refreshes the features
of Bertrand competition in a free entry set-up, in contrast with the Cournotian paradigm of the
exogenous sunk costs approach. Once again, symmetry plays a role, since the effectiveness of
potential competition in disciplining dominant firms rests on the assumption that the entrants
can perfectly replace the incumbent during their temporary raid in the market.
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