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Online Appendix of:  

“Lot Size Constraints and Market Quality:  

Evidence from the Borsa Italiana” 
 

A. Theoretical benchmark 

Equations (4), (5) - Equation (4) and (5) can be obtained by solving for A1, A2 and  the following 

system of the quoted prices and the condition for insiders’ mixed strategies: 

1

2

2 1

[ | 1]

[ | 2]

2( ) ( ) 0

A E V

A E V

V A V A

 

 

   

     (A1) 

Equation (6) - In order to show the validity of (6), notice that when insiders play pure strategies  
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Analogous results can be obtained when measuring liquidity by the price impact of a trade: 
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Measure of informational efficiency - To measure informational efficiency, we use the following 

indicator: 
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with i=1 for small and i=2 for large trades, and  
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We run numerical simulations for this indicator computed for the NC and MTU regimes (Figure 3). 

Empirical predictions: Liquidity - The inside spread is the smallest with the NC semi-separating 

equilibrium and the largest with the MTU equilibrium. The results on liquidity are simply explained 

by inequality (6), which shows that the inside spread is the smallest under the NC semi-separating 

equilibrium, and the widest under MTU. With the semi-separating equilibrium the inside spread 

coincides with the spread associated with small orders, which bears no adverse selection costs and 

hence it is equal to zero. Under MTU, instead, the inside spread coincides with that of large orders, 

which reflect all the adverse selection costs.  

Empirical predictions: Informational efficiency - The effect of the MTU removal on informational 

efficiency hinges on the relative proportion of large uninformed trades. When the proportion of large 

uninformed traders is large, the regime under which informational efficiency is the highest depends 

on the parameter values. When instead the proportion of large uninformed traders is small, 

informational efficiency is the highest under the MTU regime. Numerical simulations, summarized 

in Figure 3, show that informational efficiency is higher under the MTU regime (dashed surface) 

than under the semi-separating regime (solid yellow surface) regardless of the proportion of informed 

traders. However, the difference is much more pronounced when small uninformed traders dominate 

the market. This result derives from the assumption that only insiders possess private information and 

that the presence of small uninformed traders in the semi-separating regime can add noise to the 

process of price discovery. The comparison between the MTU and the NC pooling regimes depends 

on the proportions of both insiders ( ) and of large liquidity traders (  ). Hence, when switching 

from the MTU to the NC regime, the effect on informational efficiency depends on both the type of 

equilibrium that prevails, and on the parameters’ value. 
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B. Liquidity improvement and stock returns 

We examine the cumulative abnormal returns (CARs) around the MTU change.  CARs are 

defined as the sum of abnormal returns from 20 days before the event to 20 days after the event. 

Abnormal returns are estimated as the residuals from the market model. We take the 100 days before 

the event as the estimation period. We use the FTSE MIB index to obtain the market return. Average 

CARs are equal to 0.13% and they are not significantly different from zero (Wilcoxon-z=0.075).  

To further inquire into the valuation effect of the MTU reduction, we regress CARs on the 

relative change in liquidity after the microstructure change. A similar approach is taken by Anand, 

Tanggard and Weaver (2009). We estimate the following model: 

CARi=0+1rLi+i      (A4) 

where
r L , is the relative change in liquidity after the MTU reduction. The results are reported in 

Table A-I. The coefficient of the relative change in liquidity is negative and highly significant for all 

the liquidity measures except for the quoted spread; thus, the stocks that experience a greater 

liquidity improvement exhibit larger returns. This is in line with the interpretation that the liquidity 

improvement has a positive effect on stock prices (e.g., Amihud and Mendelson, 1986; Brennan and 

Subrahmanyam, 1996; Amihud, 2002). It is also in line with prior evidence which documents an 

increase in price after an MTU reduction (Amihud, Mendelson and Uno 1999, Hauser and 

Lauterbach 2003). 

Insert Table A-I here 

C. Sensitivity analysis on liquidity 

In this section, we test whether our results on the liquidity improvement are sensitive to the 

empirical specification we choose and test alternative specifications addressing potential problems 
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due to endogeneity and to correlated error terms. Then we try to alleviate concerns regarding the 

sample size, both time series and cross-section, and the timing of the event. To this end, we estimate 

an alternative low frequency spread measure suggested by Corwin and Schultz (2012) and check the 

robustness of our results along three dimensions: we extend the event window to 80 days around the 

MTU change, we include a larger set of stocks, and we test the effect of seasonality on our findings. 

C.1. Endogeneity and correlated error terms 

We change the model specification in two directions to address possible concerns related to 

endogeneity and correlated error terms (Boehmer, Saar and Yu, 2005): 

i) There might be an endogeneity problem in equations (7) and (8) if trading volume depends 

on the liquidity measure. Therefore, we estimate a two-equation model where liquidity is 

modeled simultaneously with volume. To identify the model, we include two exogenous 

variables in equation (8); following the approach used by Hasbrouck and Saar (2013) we 

employ, as instruments: the average liquidity of the stocks belonging to the same 

capitalization decile (excluding the stock under consideration), IL, and the average volume 

change of the stocks belonging to the same capitalization decile (excluding the stock under 

consideration), IVLM.1 We then estimate the following model with three-stage least squares.2 

As in equation (8), there are 2,198 observations:   

                                                   
1
 For all the liquidity measures, we find that IL is positively and significantly correlated with L whereas it is not 

significantly correlated with VLM. Furthermore, IVLM is positively and significantly correlated with VLM whereas it 

is not significantly correlated with L. Boehmer, Saar and Yu (2005) use the standard deviation of daily inventory 

closing positions of specialists as instrument for the first equation, and the systematic component of volume as 

instrument for the second equation. As there are no specialists operating on the stocks in our sample, we are not able 

to use the instrument for the first equation suggested by Boehmer, Saar and Yu (2005). We also re-estimated the 

model using IL as instrument for the first equation and the systematic component of volume for the second equation 

and we obtained similar results.  
2
 We also estimated the model with two stage least squares and obtained analogous results. 
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To further examine the robustness of the results to a problem of cross-correlated error 

terms, we estimate a specification considering the cross-sectional averages of the 

variables and a dummy for the Post period. Here there are 40 observations corresponding 

to the number of days in the analysis (for example, Lt refers to the average L on day t 

across the 55 stocks in the sample) :  

        0 1 2 3 4t t t t t tL POST VLM VLT P                (A6) 

The results concerning the aforementioned models are presented in Table A-II. They are 

qualitatively analogous to the previous findings.  

Insert Table A-II here 

C.2. High-low spread: low frequency alternative liquidity measure 

Our intraday dataset consists of 55 stocks in the 40-day event window around the MTU 

reduction. We extend our robustness analysis by computing a daily bid-ask spread estimator 

developed by Corwin and Schultz (2012), which we denote as “high-low spread estimator”. This 

simple measure allows us to conduct the event study over a larger event window and with a larger set 

of stocks relying only on daily stock price data. First, we extend the event window to 80 days to 

check again whether our results are driven by a local market trend. Then, we expand our sample to 

the 137 Italian stocks which are available in DataStream and with a price greater than €1 at the time 

of the MTU change. Finally, we test whether our results are an artifact of any seasonal pattern in the 

data; to do this we collect ten years (1996-2007) of data in an 80-day event window around the MTU 
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change date and measure the average Pre and Post spreads around the date to see whether there is a 

decrease in spreads in those months.3  

The proposed high-low spread estimator is derived based on the intuition that the high-low 

price ratio consists of both variance and bid-ask spread components. Since only the variance 

component is proportional to the return interval, one can extract the spread component by measuring 

high-low ratios over a single day and two consecutive single days. In particular, the high low spread 

estimate is a function of two parameters, 𝛽 and 𝛾 

𝛽 = ∑  ln (
𝐻𝑡+𝑗

𝐿𝑡+𝑗
)21

𝑗=0      (A7) 

where 𝐻𝑡  and 𝐿𝑡 are the daily high and low prices on day t, respectively.  

𝛾 = [𝑙𝑛 (
𝐻𝑡,𝑡+1

𝐿𝑡,𝑡+1
)]

2

     (A8) 

where 𝐻𝑡,𝑡+1 and 𝐿𝑡,𝑡+1 are the highest and lowest prices over two consecutive days t and t+1, 

respectively. 

Then the spread estimator is a transformation of these two parameters 

𝑎 =
√2𝛽−√𝛽

3−2√2
− √

𝛾

3−2√2
     (A9) 

𝑆 =
2(𝑒𝑎−1)

1+𝑒𝑎
       (A10) 

Following Corwin and Schultz (2012) we adjust the spread measure for overnight changes 

and days with infrequent trading.4  

                                                   
3
 The same analyses cannot be performed using daily bid-ask spreads based on DataStream because for most stocks 

the bid and ask prices are not available in the period around December 2001 and January 2002. 
4
 When we compute the period averages, we only include the days with positive spreads and obtain comparable 

estimates with intraday data. 



 

 

7 

EXTENDING THE TIME SAMPLE AND THE NUMBER OF STOCKS  

The first row in Table A-III shows the change in the high-low spread in an 80-day event 

window around the date of the MTU change. It is based on the 55 Italian firms included in the main 

analysis, whereas the second row extends the sample to the 137 Italian stocks available in 

DataStream.  We first note that by using the low-frequency estimator we still observe a substantial 

decrease in equally weighted spreads across firms, in line with the results reported in the main 

analysis. The results are similar once we extend our sample to 137 stocks.  

Insert Table A-III here 

CONTROLLING FOR A SEASONAL PATTERN  

One might be concerned that this shift only reflects a seasonal pattern in the Italian market, 

i.e., larger spreads in the last months of the year relative to the first months when our event takes 

place. To address this concern, we compute the 10-year average (1996-2007, excluding the event 

year) of the bid-ask spread in a window of 80 days around the date of the MTU change, January 14. 

Specifically, in each year and for each firm, we compute the average spread in the 40-day period 

before and in the 40-day period after January 14. The average is computed including the 30 firms that 

have complete data over 10 years. The last row in Table A-III shows that there is no such a 

downward seasonal pattern in spread. On the contrary, over the ten years, the spreads, on average, 

increase in the period considered. 

D. Estimation of informational efficiency: The magnitude of the pricing error (following 

Hasbrouck, 1993) 

The observed logarithm of price, pt, is assumed to be decomposed in pt=mt+st, where mt is 

the efficient price corresponding to the expected value of the future payoffs – given all available 
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information – and it is a random walk, with  mt=mt-1+wt;  st is the deviation of the price from the 

fundamental value, denoted as pricing error.  

To obtain an estimate of the variance of the pricing error, the change in price and a set of 

trade characteristics are assumed to follow a VAR with five lags: 
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where rt is the difference in (log) prices pt and xt is a column vector of trade-related variables: the 

sign of the trade, signed trading volume, and the signed square root of trading volume to model 

concavity between prices and trades. The corresponding VMA representation is: 
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Only the variance of the efficient price is exactly identified in the model. To identify the 

variance of the pricing error we use the Beveridge and Nelson (1981) restriction. The pricing error 

can be written as: 

...... 1,21,201,11,10   ttttt vvvvs      (A13) 

One can thus derive the variance of the random walk component of the price and that of the 

pricing error: 
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]´[)cov(][0
2

jjj jjs v        (A15) 

where    1

*

jk kj a ;    1

*

jk kj b . 

We estimate the model with the returns computed on the midquotes corresponding to the 

trades. The measure of informational efficiency is the ratio of the standard deviation of the pricing 

error to the standard deviation of the logarithm of price.  
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E. Probability of informed trading and arrival rate of informed and uninformed traders 

(Easley et al., 1996) 

 We also estimate the model of Easley et al. (1996). The model allows us to have an estimate 

of the probability of informed trading (PIN) and of the arrival rates of informed and uninformed 

traders in the market.  

 The probability of informed trading, as derived by Easley et al. (1996) and in many 

modifications, has been widely used in different fields of financial economics. The model is akin to 

our theoretical benchmark, as it can be seen as an extension of Easley and O’Hara (1987). In a 

market for a single risky asset, a competitive market maker receives orders from informed and 

uninformed traders. The market game is repeated over T days. At the beginning of each day an 

information event occurs with probability  ; the event is good news with probability )1(   and 

bad news with probability  . Informed traders know whether the event is good or bad news; 

uninformed traders trade for liquidity reasons. Orders from informed and uninformed traders follow a 

Poisson process with daily intensity   and  , respectively. The probability of observing B buys and 

S sells on day t, conditional on the parameters of the model ( ],,,[  ), can be derived as: 
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where ty  contains the number of buys and sells on day t.  

By assuming that  T
tty

1
 are i.i.d, the likelihood function can then be computed: 
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The probability of informed trading is defined as the ratio of the arrival rate of informed orders to the 

arrival rate of all orders: 

                            




2
PIN         (A18) 

To estimate PIN and the parameters of the model, only the number of buys and sells in each day in 

the sample is needed.5 As in the prior analyses we classify trades as buys or sells by comparing the 

transaction price to the preceding midquote.  

Table A-VI reports the results of the estimation. First, we note that PIN decreases after the 

MTU change and the median decrease is significantly different from zero. The decrease in the 

probability of informed trading is an indication that the proportion of uninformed traders decreases. 

If retail traders’ orders are uninformed, the decrease in PIN may be a piece of evidence in line with 

the conjectured increase in retail trading activity after the MTU reduction.  

Insert Table A-VI here 

 Furthermore, we examine the parameters of PIN. Both   (number of informed traders per 

day) and  (number of uninformed traders per day) increase. This is consistent with the increase in 

trading volume documented in Table III. However, only the increase in the number of uninformed 

traders is significantly different from zero. Because retail traders are likely to be uninformed, this 

result may further support the conjecture that retail trading increases after the MTU reduction. 

We note that the results of the model of Easley et al. (1996) have to be taken with caution as 

we are not able to assess what portion of uninformed orders are originated from retailers and from 

institutional traders. 

                                                   
5
 We maximize the likelihood function numerically by using the NLMIXED procedure in SAS. The maximization 

converges for 44 stocks in both the Pre and Post periods; therefore, we report the results only for these 44 stocks in 

Table A-VI. We also repeated the analysis for the remaining 11 stocks by excluding, for each stock/period, the days 

with the minimum number of trades, until convergence is achieved. The results obtained using 55 stocks are 

untabulated; inference is unchanged.   
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Table A-I: Association between cumulative abnormal returns and the liquidity improvement 

This table reports the results of the following model: 

0 1i r i iCAR L       

We regress cumulative abnormal returns, CAR, of each stock, i, on relative change (from PRE to 
POST) in the period-average daily level (obtained from intra-day observations) of the liquidity 

measures, 
r L , i.e., (Li,POST-Li,PRE)/Li,PRE. Abnormal returns are estimated as the residuals from 

the market model; we take the 100 days before the MTU reduction as the estimation period. We 
use the FTSE MIB index to obtain the market return. CARs are defined as the sum of abnormal 
returns from 20 days before the event to 20 days after the event. The regression involves 55 
observations. As measures of liquidity we use the quoted spread (QS) and the relative spread 
(RS). We report a t-test based on heteroskedasticity consistent standard errors (we use the 
Huber-White estimator of the variance-covariance). Reported coefficients are multiplied by 10. 
***, ** and * indicate statistical significance at the 1%, 5% and 10% levels, respectively. 
 

 

QS 
Level 1 

RS 
Level 1 

RS 
Level 2 

RS 
Level 3 

RS 
Level 4 

RS 
Level 5 

Intercept 0.179  -0.378*   -0.286   -0.248 -0.238   -0.227 

 
     (0.881)     (-1.725) (-1.532) (-1.421)     (-1.405) (-1.369) 

r L  0.159    -0.385**      -0.480***     -0.499***    - 0.518***      -0.532*** 

 
     (1.151)     (-2.620) (-2.789)      (-2.873)      (-2.928)  (-2.893) 

R
2
 0.021      0.136  0.165   0.174  0.182   0.186 
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 Table A-II: Bid-ask spread – Alternative specifications 
The table presents the results of robustness checks of the multivariate liquidity analysis. Panel A reports the 
results from the following simultaneous equation model (equation A5): 
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We regress daily values (t refers to the day considered) of the liquidity measures (obtained, as before, from 
intra-day data) on dummy variables for the days in Post (Day

k
 is equal to one for day k after the MTU reduction 

and zero otherwise), on trading volume, on price volatility and on transaction price. The regression involves 
2,198 observations. We present a signed rank Wilcoxon test for the null hypothesis that the median coefficient of 
the 20 Day

k
 dummy variables in the first equation is equal to zero.  

Panel B reports the results of the following cross-sectional average model (equation A6). POST is a dummy 
variable for the Post period. We use one observation for each day, t, resulting in a total of 40 observations: 

0 1 2 3 4t t t t t tL POST VLM VLT P          
 

We report a t-test based on heteroskedasticity consistent standard errors (we use the Huber-White estimator of 
the variance-covariance matrix). Reported coefficients are multiplied by 10. ***, ** and * indicate statistical 
significance at the 1%, 5% and 10% levels, respectively. 

 

  Panel A Panel B 

           Median ( k )       Wilcoxon-z                1          t-stat 

Level 1 Quoted spread  -0.017 -3.471*** -0.018              -3.281*** 

Level 1 Relative spread  -0.002 -3.919*** -0.002              -5.620*** 

Level 2 Relative spread -0.002 -3.322*** -0.003              -3.659*** 

Level 3 Relative spread -0.002 -2.762*** -0.003              -2.824*** 

Level 4 Relative spread -0.003 -2.688*** -0.003             -2.517** 

Level 5 Relative spread -0.003               -2.464** -0.004             -2.138** 
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Table A-III: High-low spread around the MTU change 
The table compares the cross-sectional average of the high-low spread (HL-Spread, calculated following Corwin 
and Schultz, 2012) in a 80-days window around the date of the MTU change. Specifically, individual stocks 
averages by periods are (equally weighted) averaged across all the stocks. The first row includes the 55 firms 
included in the main analysis. The second row extends the analysis to the 137 Italian firms with available data in 
DataStream. In the first two rows, Pre and Post refer to the 40 trading days before and after the MTU reduction 
(January 14, 2002), respectively. The third row reports the 10-year average (1996-2007, excluding the event year) 
of bid-ask spreads around the date of the MTU change (Pre and Post refer to the 40 trading days in each year 
before and after January 14, respectively); it includes the 30 firms which have complete data over 10 years. 
Reported levels of the high-low spread are multiplied by 10. ***, ** and * indicate statistical significance at the 1%, 
5% and 10% levels, based on Wilcoxon signed rank test. 

 

 Sample Pre Post Post-Pre (Post-Pre)/Pre 

HL Spread 55 firms 0.127 0.114 -0.013      -0.102*** 

HL Spread 137 firms 0.125 0.118 -0.007 -0.056*** 

10-year Avg. HL Spread  30 firms 0.118 0.127  0.009        0.076 

 

  



 

 

15 

Table A-IV: Market depth – Univariate tests 
The table compares the cross-sectional average of daily (obtained as the daily average of intra-day observations) 
market depth at the five levels of the book before and after the reduction of the MTU. Specifically, individual stocks 
averages by periods are averaged across all the stocks.  It is computed as the number of shares offered (or the 
corresponding Euro value) on the buy and on the sell side of the book. We analyze depth at the first five levels of 
the book. In addition, we compute cumulative depth (as the sum of depth at all the book levels). The significance 
level corresponding to a Wilcoxon signed rank test is reported. ***, ** and * indicate statistical significance at the 
1%, 5% and 10% levels, respectively. 
 

             Pre             Post Post-Pre (Post-Pre)/Pre 

Level 1 Total # of shares 41,917 58,798 16,881*** 0.384*** 

Level 2 Total # of shares 61,480 86,298 24,818*** 0.434*** 

Level 3 Total # of shares 60,200 83,223 23,023*** 0.407*** 

Level 4 Total # of shares 58,532 78,866 20,334*** 0.359*** 

Level 5 Total # of shares 56,661 75,458 18,797*** 0.328*** 

Level 1 Total Euro value 196,273 262,599 66,326*** 0.417*** 

Level 2 Total Euro value 284,440 374,508 90,068*** 0.470*** 

Level 3 Total Euro value 276,209 358,135 81,926*** 0.438*** 

Level 4 Total Euro value 267,550 340,561 73,011*** 0.380*** 

Level 5 Total Euro value 259,698 322,504 62,806*** 0.346*** 

Cumulative (1-5) Total # of shares 278,790 382,643 103,853*** 0.378*** 

Cumulative (1-5) Total Euro value 1,284,170 1,658,308 374,138*** 0.406*** 
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Table A-V: Cost of executing a market order – Univariate analysis 
The table compares the cross-sectional average of daily (obtained as the daily average of intra-day observations) 
cost of executing market orders measures before and after the reduction of the MTU. Specifically, individual stocks 
averages by periods are averaged across all the stocks. The cost of a market order is computed as the difference 
between the ask (for buy orders) or the bid price (for sell orders) and the midquote corresponding to the trade. In 
computing the cost of a market order that walks up the book, the difference is weighted on the quantities 
corresponding to the different trades. We also consider the cost of a market order as a proportion of the prevailing 
midquote. We compute the cost of a market order of different size (5,000 Euro/midquote; 10,000 Euro/midquote; 
20,000 Euro/midquote; 30,000 Euro/midquote). The significance level corresponding to a Wilcoxon signed rank test 
is reported. Reported levels of the cost of executing a market order are multiplied by 10. ***, ** and * indicate 
statistical significance at the 1%, 5% and 10% levels, respectively. 
 

Order size 
(€ thousand divided  

by midquote) 
Order direction 

         Pre         Post  Post-Pre (Post-Pre)/Pre 

5 Buy  0.129 0.117 -0.012*** -0.095*** 

5 Buy  0.135 0.121 -0.014*** -0.105*** 

5 Sell  0.015 0.014 -0.001*** 0.093*** 

5 Buy (mq) 0.016 0.014 -0.002*** -0.102*** 

5  Sell (mq) 0.157 0.140 -0.017*** -0.111*** 

10 Buy  0.165 0.146 -0.019*** -0.122*** 

10 Sell  0.019 0.016 -0.003*** -0.108*** 

10 Buy (mq) 0.019 0.016 -0.003*** -0.119*** 

10 Sell (mq) 0.213 0.183 -0.030*** -0.135*** 

20 Buy  0.226 0.199 -0.027*** -0.146*** 

20 Sell  0.025 0.021 -0.004*** -0.131*** 

20 Buy (mq) 0.025 0.021 -0.004*** -0.143*** 

20 Sell (mq) 0.259 0.220 -0.039*** -0.147*** 

30 Buy  0.272 0.242 -0.030*** -0.159*** 

30 Sell  0.030 0.025 -0.005*** -0.142*** 

30 Buy (mq) 0.031 0.026 -0.005*** -0.156*** 
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Table A-VI: PIN and arrival rate of informed and uninformed traders 
This table compares the average (across stocks) parameters of the Easley et al. (1996) model 
and the average (across stocks) probability of informed trading (PIN) in the Pre and Post periods. 

The model and the estimation procedure is described in Appendix E.  refers to the probability of 

an information event;is the probability that the event is bad news; is the rate of arrival of 

uninformed orders;  is the rate of arrival of informed orders. The table presents the results for 
the 44 stocks for which the maximization procedure converges in both periods. A Wilcoxon 
signed-rank test for the null hypothesis that the median change is zero is reported. ***, ** and * 
indicate statistical significance at the 1%, 5% and 10% levels, respectively. 
 

 
Pre Post Post-Pre Wilcoxon-Z 

PIN 0.183 0.157 -0.027    2.182** 

 0.487 0.452 -0.035  0.870 

 0.537 0.479 -0.057  1.126 

 570.591 644.800 74.210     -3.373*** 

 440.181 453.520 13.339 -1.342 

 
 

 

 


