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Abstract

We determine optimal market access pricing for an exchange or Social Planner. Exchanges optimally

use rebate-based pricing (vs. strictly positive fees) when ex ante gains-from-trade and trading activity

are low (high). Exchange rebate-based pricing increases (decreases) welfare when investor valuation

dispersion and trading activity are low (high). A Social Planner increases welfare using rebate-based

pricing. High-frequency traders strengthen exchange incentives for rebate-based pricing; a new explan-

ation for widespread Maker-Taker and Taker-Maker pricing. With HFTs, rebate-based pricing improves

total welfare, but Pareto transfers are needed to improve investor welfare. Sequential bargaining games

between competing exchanges setting fees have pure-strategy equilibria.
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Access fees and rebates in securities markets are at the top of the agenda of financial regulators and market

operators around the world. Following the introduction of Regulation National Market System (Reg NMS,

2007) in the US (and related regulation in Europe), market access pricing has become a strategic tool for

trading platforms and exchanges to attract trading volume especially for liquid stocks (Cardella, Hao and

Kalcheva, 2015 and O’Hara, 2015). In particular, rebates incentivize investors to submit certain types of

orders, while investors using other order types are charged fees. For example, Maker-Taker pricing pays

investors rebates when their limit orders (making liquidity) are executed and charges fees on market orders

(taking liquidity), while under Taker-Maker (also called inverted) pricing the fees and rebates are reversed.

The economic magnitude of access pricing revenue for exchanges is material. For example, for the London

Stock Exchange group, it totals £407m, which represents 19 percent of the Total Group income in 2019.

However, rebate–based access pricing has been criticized by some practitioners as well as by Angel, Harris,

and Spatt (2013), Harris (2015), and Spatt (2019) on agency, price transparency and regulatory grounds.

Our paper models optimal access pricing in a dynamic limit order market in which traders arrive sequen-

tially with heterogeneous random private asset valuations and choose endogenously when to submit market

or limit orders and, when submitting limit orders, at which limit prices. Our analysis follows seminal theor-

etical research by Colliard and Foucault (2012); Foucault, Kadan, and Kandel (2013); and Chao, Yao, and

Ye (2018) showing how fees and rebates for taking and making liquidity via market and limit orders can

alleviate trading frictions from price discreteness. In particular, price discreteness limits the prices at which

investors can transact, but access fees and rebates can be used to adjust net transaction prices, and, thereby,

the rewards and costs for liquidity supply and demand.

Building from first principles, our analysis extends previous literature in two main directions. First,

we show that optimal access pricing crucially depends on how heterogeneous investor gains from trade are
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relative to the tick size. When investors in a market have larger gains from trade, the exchange’s incentive to

subsidize trade by offering rebate-based pricing decreases. Second, we show that fees and rebates are still

critical in resolving the discrete trading friction even when investors have an expanded choice of orders. In

particular, investors can choose their limit price and choose between market orders vs limit order, and high

frequency traders can decide whether or not to trade. In addition, fees and rebates continue to affect trading

when, in contrast to the previous literature, liquidity supply is no longer monopolistic.

We make five main contributions towards understanding market access pricing:

• First, regulatory constraints have important effects on access pricing. With regulatory caps on access

fees, an exchange’s optimal access pricing and the relation between access pricing and welfare both

depend on the mix of investors in a market and on the tick size. Access pricing rebates are optimal

in markets populated by short-term speculative traders with small gains-from-trade, whereas strictly

positive fees with no rebates are optimal in markets populated by long-term investors with large gains-

from-trade. Equilibrium access pricing in a small tick market is isomorphic to the large tick market in

that optimal access pricing scales linearly in the tick size.

• Second, from a policy perspective, we show that rebate-based access pricing can always be structured

by a welfare-maximizing Social Planner in a way that increases total welfare. However, the welfare

effects of rebate-based pricing by a profit-maximizing exchange are more nuanced: Optimal access

pricing by an exchange leads to Pareto improvement when ex ante gains-from-trade are small but to

deadweight welfare losses when investor gains-from-trade are larger.

• Third, we identify a seeming inconsistency between price-friction models of access pricing and how

rebate-based pricing is used in practice. In a basic price-friction model, an exchange’s incentives for

rebate-based access pricing are weak for liquid stocks with high trading activity and large ex ante
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investor gains-from-trade, which appears inconsistent with current practice.

• Fourth, we provide a resolution to this puzzle that involves high-frequency trading and liquidity provi-

sion. When HFT market makers are added to the price-friction model, an exchange’s incentives to use

rebate-based pricing increase. Thus, our analysis identifies the growth of HFT market making, which

is prevalent in liquid stocks, as a cause for widespread rebate-based access pricing by exchanges in US

and European markets. We also show that, with HFTs, optimal rebate-based pricing by an exchange

leads to increased total welfare, but Pareto transfers are needed to improve investor welfare.

• Fifth, we present a solution to a non-existence problem for pure-strategy equilibrium for exchange

competition in access pricing in Chao et al. (2018). If access fee setting is modeled as sequential

moves by exchanges, rather than as simultaneous moves (as in Chao et al. (2018)), then there are

many pure-strategy equilibria corresponding to different amounts of exchange precommitment.

Our analysis constructs three models of optimal access pricing by a profit-maximizing exchange or,

alternatively, by a welfare-maximizing Social Planner: Our first model has two periods and is solved in

closed-form for a price grid with a range of different possible tick sizes. Technically, solving such a model

is an open question, which Chao et al. (2018) describe as requiring “complex mathematical construction to

circumvent the noncontinuity” in prices (Chao et al. (2018), page 1089). The source of the difficulty is that

endogenous order choice becomes important when there are multiple possible limit prices inside the investor

valuation support. However, we show that optimal access pricing for an exchange takes a simple functional

form. This lets us give the first full analysis of how ex ante investor valuation heterogeneity and the tick size

have different effects on access pricing and welfare given endogenous limit price choice by investors.

Regulatory restrictions on access pricing are an important element in our analysis. In the absence of

a regulatory cap, widening the valuation support holding the tick size fixed proportionally re-scales op-
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timal access pricing. In contrast, decreasing the tick size holding the valuation support fixed does not affect

optimal access pricing. With regulatory restrictions, however, optimal access pricing depends on both the

magnitude of investor valuation dispersion and also on the tick size. Changing the investor valuation support

changes the ex ante demand for trading relative to the tick-size friction thus affecting optimal access pricing.

When the dispersion of investor private valuations is low (and potential gains-from-trade are small), a com-

bination of rebates and fees (Maker-Taker or Taker-Maker) is optimal for an exchange in order to overcome

the discrete tick-size friction. In contrast, when potential gains-from-trade are large, trading is generated

endogenously, and there is less incentive for the exchange to subsidize trading. As a result, a unique set

of strictly positive fees on both market and limit orders (i.e., no rebates) is optimal. When fees are capped

relative to the tick size, changing the tick size changes the constraint on fees allowed by regulation and

therefore the optimal access pricing. We show, as a result, with a regulatory constraint, a small tick market

is isomorphic to the large tick market.

Our welfare analysis of access pricing compares a market with optimal access pricing by a profit-

maximizing exchange with two other related markets: One market with no access fees or rebates and an-

other market with optimal access pricing by a Social Planner who maximizes the total welfare of all market

participants. Optimal rebate-based access pricing by an exchange increases total welfare when the investor

valuation support is small (i.e, investors are ex ante similar, and gains-from-trade are small). However, when

investor valuations are sufficiently ex ante heterogeneous, then rebate-based pricing by an exchange reduces

total welfare given the reduced need to cross-subsidize trading. In contrast, we show a Social Planer always

uses rebate-based access pricing to improve total welfare. Taken together, our welfare analysis indicates a

possible positive role for rebate-based access pricing and for regulation of access fees.

Our second model extends the two-period model to include a third period of trading. This change is not

just quantitative (i.e., more rounds to trade). It also has a qualitative impact on endogenous order choice. In
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particular, with more than two trading periods, investors can choose between limit and market orders. This

is new relative to Foucault et al. (2013) and Chao et al. (2018) in which the market/limit order choice is

exogenous. Our three-period model offers two insights both about the market power of liquidity providers,

and about the effect of trading activity on access pricing:

• Taker-Maker and Maker-Taker pricing is no longer symmetric.

• The incentive for the exchange to offer rebate-based access pricing decreases.

In a two-period model, the first investor to arrive is a monopolist in providing liquidity, but in a more active

three-period market, the first investor is not a monopolist. The next arriving trader may decide to compete

and undercut a standing limit order or may supply liquidity on the other side of the market via a limit

order rather than taking liquidity via a market order.1 This increase in possible order choices leads to the

following result: When trader valuations are not too dispersed, both Maker-Taker and Taker-Maker pricing

are optimal, but they are no longer symmetric, with the take rebate in Taker-Maker pricing being larger than

the make rebate in Maker-Taker pricing. The intuition is that in Taker-Maker pricing the investor posting

a limit order in the first period has no rebate and, hence, tends to post less aggressive limit orders. The

investor in the second period then has a choice whether to post market order or a limit order to try for price

improvement. To promote executions, the exchange has an incentive to induce the investor in the second

period to take, rather than make, liquidity and, therefore, offers a larger rebate compared to Maker-Taker

pricing. In addition, if the maximum fee is capped by regulation, as in real markets, then we show that,

moving from a two-period to a three-period market, the take rebate needs to be larger than the make rebate.

Greater trading activity — as proxied for here by the addition of a third period — increases the prob-

ability of transactions, giving exchanges less incentive to subsidize trading via rebates. Therefore, the set

1In a 2-period market, the investor arriving in the second period has no choice other than trading with whatever limit order is
posted in the first period or not trading.
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of parameterizations with rebate-based pricing shrinks, and the model departs from the empirical fact of

widespread rebate-based pricing for actively traded large-cap stocks where long-term traders with large

gains-from-trade are generally very active.

Our third model includes HFTs in the three-period framework. Heterogeneous investor speed and HFTs

are important features of financial markets (see Brogaard, Hagströmer, Nordén, and Riordan (2015)), Our

analysis shows that HFT liquidity provision has a significant impact on access pricing and welfare via its

impact on investor order choice. HFTs in our model are opportunistic liquidity suppliers, who, as in Li,

Wang, and Ye (2019), have zero gains-from-trade and react immediately to orders posted by regular traders.

In equilibrium, HFTs increase transaction execution by augmenting the set of potential counter-parties for

investors, which increases welfare and exchange profits. As a result, the presence of HFTs expands the

set of market parameterizations (i.e., the set of possible investor valuation supports) in which the exchange

optimally offers rebate-based access pricing.

The increased use of rebate-based pricing with HFTs, and the fact that rebates may be paid to HFTS,

may appear surprising at first. In our model, fast HFTs and slower regular investors both endogenously

choose limit prices. Therefore, rebates induce changes in endogenous limit prices that adjust the optimal

cum-fee net prices paid or received by HFTs. Our result is new relative to Foucault et al. (2013), in which

rebates are paid to slower traders but limit prices are fixed. The offsetting changes in endogenously chosen

limit prices adjust the incidence of who receives rebates and pays fee. In particular, what matters for trading

is not fees and rebates per se, but rather the cum-fee net prices paid or received by HFTs. Thus, either

directly (via a rebate) or indirectly (via limit order prices), rebate-based access pricing incentivizes HFTs to

provide liquidity thus cross-subsidizing investors posting aggressive limit prices. In addition, the fact that

HFTs expands the set of markets with rebate-based access pricing is a new potential explanation for the use

of rebates even in active markets and matches the empirical evidence of Cardella et al. (2015) of widespread
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rebate-based pricing after Regulation NMS and the concurrent increase in HFT activity.

1 Background information and prior research

Reg NMS established the regulatory foundation for the current architecture of US equity markets. This

regulation includes an explicit limit on the cost of accessing (i.e., posting and trading on) quotes displayed

by U.S. equity trading platforms. Rule 610 caps access fees to no more than $0.003 per share for stocks

priced over $1, and to no more that 0.3% of the quoted price for stocks priced below $1. In addition,

the Sub-Penny Rule 612 of Reg NMS prohibits exchanges, market makers, and electronic platforms from

displaying, ranking or accepting quotes on NMS securities in sub-penny increments unless a stock is priced

less than $1 per share. Thus, under Reg NMS, access fees cannot exceed one third of the tick size.2

In Europe, MiFID II (Directive 2014/65/EU) and MiFIR (Regulation 600/2014/EU) mandates a reduc-

tion in the tick size for European stocks and thereby implicitly reduced the maximum access fees given

that the standard practice on European exchanges is to cap fees relative to the tick size.3 MiFID II also

sharpened the regulation of access fees by requiring new incentives on market making agreements under

Stress Market Conditions (RTS 8), a maximum Order-To-Trade ratio for each instrument (RTS 9), and a

periodic disclosure by exchanges of the percentage of fees and rebates on total turnover (RTS 27). It also

bans “cliff-edge“ pricing structures in which customer-specific fees are reduced retroactively for market

participants who reach a trading volume threshold (RTS 10).

Access pricing has been investigated in a small number of theoretical papers. The starting point for work

2According to the more recent S.E.C. (2018) Release No.34-82873 on Transaction Fee Pilot for NMS Stocks “For maker-taker
exchanges, the amount of the taker fee is bounded by the cap imposed by Rule 610(c) on the fees the exchange can charge to access
its best bid/offer for NMS stocks. This cap applies to the fees assessed on an incoming order that executes against a resting order
or quote, but does not directly limit rebates paid. The Rule 610(c) cap on fees also typically indirectly limits the amount of the
rebates that an exchange offers to less than $0.003 per share in order to maintain net positive transaction revenues. For taker-maker
exchanges, the amount of the maker fee charged to the provider of liquidity is not bounded by the Rule 610(c) cap, but such fees
typically are no more than $0.003, and the taker of liquidity earns a rebate." If the price of a protected quotation is less than $1.00,
the access fee is no more than 0.3% of the quotation price per share SEC (2009).

3See Article 49 of MiFID II and the following Regulatory Technical Standard 11 (RTS 11, ESMA 2017). ESMA (2015)
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on price discreteness frictions is Colliard and Foucault (2012), which shows that the breakdown between

make and take fees has no effects on the cum-fee-spread (net of fees spread) in a competitive market with

continuous prices. The reason is that traders can neutralize changes in fees by making offsetting changes

in the pricing aggressiveness of limit orders. Subsequent research has identified and studied two channels

through which a price-discreteness friction affects access pricing and trading: Market monitoring and limit

order price choice. Foucault et al. (2013) show how price discreteness and access pricing affect investor

monitoring incentives and the order-arrival process in a coordination game matching buyers and sellers.

However, investor gains-from trade are non-random and known, and there is no decision about posted limit

prices (which are exogenously fixed in their analysis) or choice between limit and market orders. Foucault

et al. (2013) show that, in single market with a discrete tick size, the make-take breakdown affects market

quality. In contrast, we study a trading game in which potential buyers and sellers and an exchange decide

how to split random investor gains-from-trade. In particular, investors endogenously choose the limit prices

at which limit orders are posted so as to maximize their expected share of the gains-from-trade, and the

exchange’s access pricing affects both the probability of transactions and the exchange’s profit per trade.

Panayides, Rindi, and Werner (2017) show how a change in trading fees affects market quality when two

trading platforms compete for the provision of liquidity.

Our analysis is closely related to Chao et al. (2018), which models optimal access pricing both in a single

monopolistic market and also with competition between multiple markets. In terms of modeling structure,

we extend their model by expanding the scope of endogenous order choice (i.e., by wider parametric changes

in both the support of investor valuations and the price grid), adding additional rounds of trading, and

including HFTs. These changes lead to three sets of new insights: First, optimal access pricing is strictly

rebate-based in Chao et al. (2018), which provides an explanation for widespread rebate-based pricing post

Reg NMS. We show that, with a more realistic regulatory constraint just on the fee size but not on rebates,
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optimal access pricing depends on the investor population in the market. As a result, strictly positive access

pricing by exchanges is possible when the ex ante gains-from-trade are large. In addition, we provide an

alternative explanation for widespread rebate-based access pricing due to the growing importance of HFTs

after Reg-NMS. Second, Chao et al. (2018) show the absence of pure-strategy equilibria with competing

exchanges and simultaneous moves. In contrast, we show that pure-strategy equilibria exist if competition

between exchanges occurs through sequential-move bargaining. We specifically construct pure-strategy

equilibria with price discrimination and then show that Bertrand competition, as in Chao et al. (2018), still

need not drive exchange profits to zero. Third, our analysis identifies an asymmetry between make and take

fees. In Chao et al. (2018), there are pairs of symmetric Taker-Maker and Maker-Taker pricing schedules

that are both optimal for exchanges. In contrast, we show that optimal Taker-Maker and Maker-Taker can be

asymmetric when there are more than two periods of trading (i.e., in our three-period model). Our analysis

below shows that the reason for these asymmetries is that make fees affect the choice of which limit orders

investors submit, whereas take fees only affect the decision of whether or not to use a market order. Thus,

allowing for endogenous choice of posted limit prices in our model leads to new insights.

Angel et al. (2013) and Spatt (2019) take a different approach from the price-friction literature. They

emphasize that access fees and rebates have important potential effects via the transparency of economic

prices (price + access pricing) vs quoted prices, the efficacy of regulatory protections based on quoted

prices, agency issues when brokers do not pass through fees and rebates to their clients, and impeding

intermarket competition. Harris (2015) points out further that negative fees allow for intra-tick trading, thus

by-passing the Reg NMS trade-through rule. Li, Ye, and Zheng (2020) show how fees affect order routing

decision in fragmented markets and create demand for complex order types. In contrast, our analysis is

based on the idea that constraining trade to a discrete price grid creates trading frictions and that access

pricing potentially reduces those frictions. Both sets of considerations are likely to be important. Moreover,
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a complete understanding of access pricing is likely to involve interactions between these various effects

and price frictions.

A sizable empirical literature investigates different aspects of access pricing.4 Malinova and Park (2015)

find evidence following changes in access fees and rebates on the Toronto Stock Exchange (TSX) that

appears to support the Colliard and Foucault (2012) irrelevance prediction provided that the TSX price tick-

size is interpreted as being economically small. However, using Rule 605 data, O’Donoghue (2015) finds

that changes in the split of trading fees between liquidity suppliers and demanders affect order choice and

execution quality as predicted by Foucault et al. (2013). Battalio, Corwin, Jennings (2016) find that access

fees and rebates appear to affect broker order-routing decisions. Panayides et al. (2020) find that quoted and

cum-fee spreads are affected by change in total fees on the BATS European platforms, CXE and BXE.

Empirical research finds that rebate-based access pricing is related to HFTs. Menkveld (2013) shows that

access rebates are a significant part of HFT profits. We show that HFTs activity makes rebate–based pricing

more likely in equilibrium. This is also consistent with evidence in Cardella, Hao, and Kalcheva (2015) that

Reg NMS was followed by the adoption of rebate–based access pricing by most trading platforms in U.S.

markets and by a sharp increase in HFT firm trading. O’Hara (2015) also links HFT trading activity and the

increased use of rebate–based access pricing around the world.

2 Two-Period Model

We begin our analysis with a parsimonious model with two dates, t1 and t2, on which investors arrive

sequentially over a trading day and potentially submit orders. With only two periods, the model dynamics

can be solved analytically. We use this model to develop basic intuition about access pricing in a setting in

4In addition to the research discussed here, see also Bourke, DeSantis, and Porter (2019), Baldacci, Possamaï, and Rosenbaum
(2019), Brauneis, Mestel, Riordan, and Theissen (2019), Skjeltorp, Sojli, and Tham (2012), He, Jarnecic, and Liu (2015), Clapham,
Gomber, Lausen, and Panz (2017), Anand, Hua, and McCormick (2016), Comerton-Forde, Grégoire, and Zhong (2019), Lin, Swan,
and Harris (2019) and Brolley and Malinova (2013).
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which investors endogenously choose their posted limit prices. Section 3 extends this basic model to more

than two periods, and Section 4 introduces trading speed heterogeneity with high-frequency traders (HFTs).

At each period tz ∈ {t1, t2} a risk-neutral trader arrives characterized by a private valuation equal to βtz

which is an i.i.d drawn from a uniform distribution, U [β ,β ], where β and β are the limits of the trader

valuation supports. The mean of the valuation support v is constant over time and denotes the ex ante asset

value. Traders with more extreme βtz realizations have stronger demands to trade, whereas traders with βtz

realizations close to v are more willing to supply liquidity. Therefore, the support width ∆ = β−β measures

the ex ante gains-from-trade and, thus, the associated demand for trade. The wider the support, [β ,β ], the

higher is the probability that arriving traders will have strong heterogeneous directional demands to trade,

such as, e.g., long–term asset managers. The smaller the support [β ,β ], the higher is the probability that

arriving traders will prefer to profit as passive liquidity providers.

Prices are quoted on a discrete price grid {. . . ,P−k, . . . ,P−1, P1, . . . ,Pk, . . .} centered around the mean

investor private valuation v with a fixed tick size τ . The state of the limit order book at time tz is a vector

Ltz = [DPk
tz ], where DPk

tz indicates the total limit order depth at price Pk at time tz. Investors trade using limit

orders, which supply depth to the book, and market orders, which hit standing limit orders and take depth

from the book. The initial limit order book Lt0 at the start of the day is assumed to be empty, and then we

model how the book evolves over time. Let xtz denote a generic action taken by an investor at a date tz.

Trading and limit order book dynamics take a particularly simple form in a two-period market: An investor

arriving at time t1 chooses between submitting a limit buy order LBPk or limit sell order LSPk at one of the

available price levels Pk on the price grid or a no trade NT . Market orders are not possible at t1 given the

empty initial book. Let XL denote the set of possible limit buy and sell orders at all possible limit prices.

Next, the investor arriving at t2 chooses between submitting a market buy order MBPk or sell order MSPk

that is executed immediately given the standing book Lt1 at the best bid (for market sells) or offer (for market
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buys) price Pk or, instead, does not trade NT .5 In the two-period model, limit orders are not used at t2 since,

after the final round of investor arrival, a limit orders posted at t2 would not be executed.

Consistent with common practice in today’s financial markets, the trading platform may set different

access fees ξ (x) for different order types x. An investor offering liquidity by posting a limit order pays

a make fee MF . An investor taking liquidity via a market order (or via a marketable limit order) pays a

take fee T F . Access pricing for an exchange is denoted as the set Ξ = {ξ (x)}∀x = {MF,T F}. Rebates are

negative fees, which are a cost for the trading platform and a reward for the investor receiving them. Under

a Maker-Taker structure, investors submitting market orders pay a take fee (T F > 0) to the trading platform,

and investors posting limit orders receive a make rebate (MF < 0) whenever their limit order executes.

In a Taker-Maker structure, the fees and rebates are reversed so that now limit-order submitters pay make

fees (MF > 0), and market-order submitters receive take rebates (T F < 0). Also, consistent with current

practice and with Foucault et al. (2013), access fees and rebates in our model are subject to regulation. For

notational simplicity, we assume the maximum allowable fee (whether take or make) is one tick (i.e., rather

than a fraction of a tick as in, e.g., Reg NMS). Thus, the regulatory constraint on fees is more binding

for smaller tick sizes. There are no direct regulatory constraints on rebates in our model, but Lemma 1 in

Appendix A shows that if fees are capped at one tick, then in equilibrium exchange rebates are never larger

than one tick. The welfare impact of a regulatory cap on fees is considered below in Section 5.

Quoted prices and the access fees and rebates determine the net prices paid and received by investors

when trading, which we call cum-fee prices. Let Pcum,MS
k = Pk−T F denote the cum-fee price received from

a market order to sell at the quoted price Pk (net of take fees paid to the exchange) , and let Pcum,MB
k =Pk+T F

be the cum-fee price paid on a market order to buy at Pk (net of take fees paid to the exchange). Similarly,

Pcum,LS
k = Pk−MF is the cum-fee price for a limit order to sell and Pcum,LB

k = Pk +MF is the cum-fee price

5Marketable limit orders that cross with the best available bid/ask on the opposite side of the standing book Ltz−1 are treated as
market orders in terms of both order execution and exchange access pricing.
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for a limit order to buy.

Our model determines optimal fees for an exchange or, alternatively, a Social Planner in a Stackelberg

game in which the exchange/Social Planner is a Stackelberg leader and investors are Stackelberg followers.

We solve the model in two steps: Taking market access pricing Ξ as given, we first solve for optimal investor

trading strategies — i.e., the optimal responses of the Stackelberg followers — in the trading subgame.

These optimal investor strategies are computed by solving the trading subgame by backward induction.

Given this characterization of optimal investor trading, we then solve for the optimal access pricing Ξ given

an exchange’s profit-maximization problem or a Social Planner’s total welfare-maximization problem.

Given a standing book Ltz−1 and access pricing Ξ, the expected payoff on an order xtz for an investors

arriving at time tzwith a private valuation βtz is:

π
INV
tz (xtz |βtz ,Ξ,Ltz−1) =



[βtz −P(xtz)−ξ (xtz)]Pr(θ xtz
tz |Ξ,Ltz−1) if xtz is a buy order

[P(xtz)−βtz−ξ (xtz)]Pr(θ xtz
tz |Ξ,Ltz−1) if xtz is a sell order

0 if xtz is NT

(1)

where P(xtz) is the posted price at which order xtz trades if it is executed and ξ (xtz) = T F for market orders

and MF for limit orders. θ
xtz
tz denotes the set of future trading states in which an order xtz submitted at time

tz is executed, and Pr(θ xtz
tz |Ξ,Ltz−1) is the associated probability of execution. If xtz is a market order, then

P(xtz) is the best standing quote on the other side of the market at time tz, and Pr(θ xtz
tz |Ξ,Ltz−1) = 1, since

market orders are executed immediately at the standing bid or ask (if that side of the book is non-empty).

If xtz is a non-marketable limit order, then the execution price P(xtz) is its limit price, and the execution

probability Pr(θ xtz
tz |Ξ,Ltz−1), which is the probability of later investors choosing to hit standing limit orders

with market orders, is between 0 and 1. Limit order execution probabilities depend parametrically on the

valuation support S and the tick size τ . Liquidity is endogenous, and, thus, the order-execution probabilities
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Pr(θ xtz
tz |Ξ,Ltz−1) in (1) are endogenous. Tables A1 and B1 in the Appendix detail the actions available to

traders, their associated expected payoffs, and order submission and execution probabilities.

An investor arriving at time tz chooses his order xtz to maximize his expected payoff from (1):

max
xtz∈Xtz

π
INV
tz (xtz |βtz ,Ξ,Ltz−1) (2)

given his private value realization βtz . This is a discrete-choice problem where the optimal order-submission

strategy xtz(βtz |Ξ,Ltz−1) assigns orders that maximize (2) to each of the different possible investor valuations

βtz in the support [β ,β ] at time tz conditional on the standing book Ltz−1 at tz and the access pricing Ξ. The

optimization problem in (2) is tractable because the investor expected payoffs π INV
tz (xtz |βtz ,Ξ,Ltz−1) from (1)

for different orders xtz are linear in the investor valuation βtz . Consequently, the maximized expected profit

in (2) for βtz valuations in the support S is the upper envelope of the linear expected payoff functions, and

optimal orders are associated with different intervals of βtz valuations in between points where the optimized

linear expected payoff functions intersect. A key intuition is that the investor’s optimal order choice depends

on a trade-off between order-execution probabilities and price improvement: More aggressive limit order

prices reduce the payoff conditional on execution, but can increase the probability of execution.

A novel feature of our analysis, relative to other access pricing models, is endogenous choice of posted

limit prices. This means we need to consider the market order submission decision given different hypothet-

ical limit orders at multiple hypothetical possible posted limit prices. To simplify the backward induction

analysis, we first reduce the number of prices we need to consider by identifying a priori prices at which

investors might actually post limit orders rather than considering hypothetical limit order at all prices on the

price grid. Lemma 2 in Appendix A shows that investors only submit limit buys at posted prices for which

the corresponding cum-fee market sell price is Pcum,MS
k ≤ β and, by symmetry, limit sells at such that the
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cum-fee market buy price is Pcum,MB
k ≥ β .

Consider the last round of trading at t2 in the two-period market when investors submit market orders or

decide not to trade. An investor is willing to submit a market sell MSPk,t2 to hit a limit buy at a posted price

Pk if his payoff Pcum,MS
k −βt2 > 0 is positive, where Pcum,MS

k = Pk−T F is the cum-fee price for a market sell

at the posted price Pk.6 Given the investor valuation βt2 is drawn from U [β , β̄ ] with support width ∆, the

order-submission probability of a market sell, MSPk,t2 , at t2 given the cum-fee price Pcum,MS
k is:

Pr(xMS
k,t2 |Ξ,Lt1) = max

{
0,

Pk−T F−β

∆

}
= Pr(θ xLB

k
t1 |Ξ,Lt0) (3)

which is, therefore, the execution probability Pr(θ xLB
k

t1 |Ξ,Lt0) of a limit buy LBPk,t1 posted at Pk at t1.7 In

particular, this probability is well-defined (i.e., ≤ 1) for all priori possible limit prices from Lemma 2. By

symmetry, the order-submission probability of a market buy MBPk,t2 at a posted price Pk at t2 given a cum-fee

market-buy price Pcum,MB
k = Pk +T F is:

Pr(xMB
k,t2 |Ξ,Lt1) = max

{
0,

β̄ −Pk−T F
∆

}
= Pr(θ xLS

k
t1 |Ξ,Lt0), (4)

which is the execution probability Pr(θ xLS
k

t1 |Ξ,Lt0) of a limit sell, LSPk,t1 posted at t1.

Next, consider the initial time t1 in the two-period market. The limit order book opens empty, and so the

investor arriving at t1 chooses between submitting limit orders and submitting no order (NT ). From Lemma

3 in Appendix A, an investor with βt1 > v is a potential buyer who only submits a limit buy or a NT. This

investor optimally posts a limit buy LBPk,t1 at a price Pk if two conditions hold: First, the expected payoff

6We extended our previous notation so that, for example, xMS
k,t2 and MSPk,t2 are used interchangeably for a market sell order at Pk

at t2. When possible, we simplify the notation to make it consistent with the notation used in the figures.
7The book opens empty at t1 and therefore the only possible limit buy a seller at t2 can hit is a limit buy posted at t1
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from LBPk,t1 given a private valuation βt1 is positive so that it dominates NT :

(βt1−Pcum.LB
k )×Pr(θ xLB

k
t1 |Ξ,Lt0)> 0 (5)

and, second, it is greater than the expected payoff from all other alternative limit buys LBP∼k,t1 :

(βt1−Pcum,LB
k )×Pr(θ xLB

k
t1 |Ξ,Lt0)> (βt1−Pcum,LB

∼k )×Pr(θ xLB
∼k

t1 |Ξ,Lt0) (6)

where∼ k indexes any other possible limit price P∼k, and where Pcum,LB
k = Pk+MF and Pcum,LB

∼k = P∼k+MF

are the associated cum-fee limit-buy prices. Hence, the order-submission probability of LBPk,t1 at t1 is the

probability that conditions (5) and (6) are both satisfied:

Pr(xLB
k,t1 |Ξ,Lt0)

= Pr
[
(βt1−Pcum,LB

k )×Pr(θ xLB
k

t1 |Ξ,Lt0)> 0,

(βt1−Pcum,LB
k )×Pr(θ xLB

k
t1 |Ξ,Lt0)> (βt1−Pcum,LB

∼k )×Pr(θ xLB
∼k

t1 |Ξ,Lt0), ∀ ∼ k
]

(7)

A potential seller at t1 with βt1 < v submits a limit sell LSP−k,t1 if symmetric conditions hold:

(Pcum,LS
−k −βt1)×Pr(θ

xLS
−k

t1 |Ξ,Lt0)> 0 (8)

(Pcum,LS
−k −βt1)×Pr(θ

xLS
−k

t1 |Ξ,Lt0)> (Pcum,LS
∼−k −βt1)×Pr(θ

xLS
∼−k

t1 |Ξ,Lt0) (9)

where Pcum,LS
−k = P−k +MF and Pcum,LS

∼−k = P∼−k +MF are the cum-fee limit-sell prices. Thus, the order-
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submission probability of LSP−k,t1 at t1 is the probability that conditions (8) and (9) both hold:

Pr(xLS
−k,t1 |Ξ,Lt0)

= Pr
[
(Pcum.LS
−k −βt1)×Pr(θ

xLS
−k

t1 |Ξ,Lt0)> 0,

(Pcum,LS
−k −βt1)×Pr(θ

xLS
−k

t1 |Ξ,Lt0)> (Pcum,LS
∼−k −βt1)×Pr(θ

xLS
∼−k

t1 |Ξ,Lt0), ∀ ∼ k
]

(10)

Access pricing Ξ in our model is set either by an exchange or, alternatively, by a Social Planner. In

doing so, both take into account optimal investor trading behavior given the access pricing Ξ. An exchange

chooses Ξ to maximize its expected payoff from completed transactions:

max
MF,T F

−τ<MF,T F<+τ

π
Ex
t1 (MF,T F ) =

 ∑
xt1∈XL

Pr(xt1 ,θ
xt1
tz |Ξ)

 (MF +T F) (11)

where Pr(xtz ,θ
xtz
tz |S,τ,Ξ) are transaction probabilities induced by the exchange Ξ fees and the optimal in-

vestor order–submission strategies from (2), which are products of the submission probabilities of different

limit orders xtz ∈ XL and their execution probabilities summed over all possible states of the book Ltz−1

Pr(xtz ,θ
xtz
tz |Ξ) = ∑

Ltz−1

Pr(Ltz−1 |Ξ)Pr(xtz |Ξ,Ltz−1)Pr(θ xtz
tz |Ξ,Ltz−1) (12)

The formula in (12) reflects the fact that, in a limit order market, transactions only occur when limit orders

are first submitted and then later executed. The exchange has non-negative profits since T F = MF = 0 is

feasible and gives zero profits.

A Social Planner chooses fees to maximize the total welfare of all market participants:

max
MF,T F

−τ<MF,T F<+τ

MF+T F≥0

∑
tz∈{t1,t2}

(
W INV

tz (MF,T F)+π
Ex
tz (MF,T F)

)
(13)
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= ∑
xt1∈XL

(
W INV

t1 (xt1 |Ξ,Lt0)+W INV
t2 (x̃t2(xt1) |Ξ,Lt0)+Pr(xt1 ,θ

xt1
t1 |Ξ)(MF +T F)

)

given that limit orders xt1 are only submitted at t1 and lead to investor welfare:

W INV
t1 (xt1 |Ξ,Lt0) =

∫
βt1∈Bt1 (xt1 ,Ξ,Lt0 )

It1× [βt1 −P(xt1)−MF)] f (βt1)dβt1×Pr(θ
xt1
t1 |Ξ,Lt0) (14)

where Itz is an indicator variable equal to 1 (−1) for buy (sell) orders at tz, Bt1(xt1 ,Ξ,Lt0) is the interval of

the βt1 realizations for which a given limit order xt1 is optimal at t1, and where market orders x̃t2(xt1) at t2

executing earlier limit orders xt1 from t1 lead to investor welfare:

W INV
t2 (x̃t2(xt1) |Ξ,Lt0) = Pr(xt1 |Ξ,Lt0)×

∫
βt2∈Bt2 (x̃t2 (xt1 ),Ξ,Lt1 )

It1× [P(xt1) − βt2 −T F)] f (βt2)dβt2 (15)

given the interval Bt2(x̃t2(xt1),Ξ,Lt1) of βt2 realizations for which a market order x̃t2(xt1) is optimal at t2. The

third term in (13) is the exchange’s profit πEx
tz (MF,T F) from (11).

Given the optimization problems solved by investors and the exchange, or by the investors and the Social

Planner, we can define an equilibrium:

Definition. A Subgame Perfect Nash Equilibrium of the trading game is a collection {xtz(βtz |Ξ,Ltz−1),

Pr(θ xtz
tz |Ξ

∗,Ltz−1), Ξ∗} of order-submission strategies, order-execution probabilities, and access fees such

that conditions 1, 2 and 3 or conditions 1, 2 and 4 hold:

1. The equilibrium order-submission strategies xtz(βtz |Ξ,Ltz−1) solve investors’ optimization problems

(2) given the equilibrium execution probabilities Pr(θ xtz
tz |Ξ

∗,Ltz−1).

2. The order-execution probabilities Pr(θ xtz
tz |Ξ

∗,Ltz−1) for an order xtz submitted at time tz are consistent

with the equilibrium order-submission strategies xtz(βtz |Ξ,Ltz−1) at times tz′ > tz.
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3. The access fees Ξ∗ are optimal for the exchange given its optimization problem (11).

4. The access fees Ξ∗ are optimal for the Social Planner given its optimization problem (13).

As in Foucault et al. (2013), a discrete tick size guarantees traders cannot neutralize access pricing by

adjusting posted limit prices to exactly offset the impact of access fees and rebates on their net cum-fee

transaction prices. Our model differs from Foucault et al. (2013) in that investors in our model have random

gains-from-trade and exogenous arrival/monitoring timing. Our model also differs from both Foucault et al.

(2013) and Chao et al. (2018) in that the endogenous choice of limit order prices is central in our model.8

2.1 Results

This section solves for equilibrium fees in the two-period {t1, t2} model in closed-form using results and

proofs in Appendix B. Our analysis then examines the relation between access pricing and the investor

valuation support S = [β , β̄ ], the tick size τ , and investor trading behavior. In particular, we consider access

pricing in a market with a large tick size (Section 2.1.1) and then in a market with a small tick size (Section

2.1.2). In the large-tick market (LTM), the tick size is normalized to τ = 1, and the price grid has four

possible price levels, Pk = {P−2,P−1,P1,P2}, centered around the mean investor valuation v with P−2 <

P−1 < v < P1 < P2. The outside quotes are P2 = v− 3
2 τ and P−2 = v+ 3

2 τ , and the inside quotes are P1 =

v− 1
2 τ and P−1 = v+ 1

2 τ . In a small-tick market (STM), the tick size is set to τ

3 relative to the LTM tick

size. The resulting STM price grid has ten price levels p j = {p−5, p−4, p−3, p−2, p−1, p1, p2, p3, p4, p5},

with p−1 < v < p1 where the furthest outside STM quotes coincide with the outside LTM quotes with

p−5 = P−2 = v− 3
2 τ and p5 = P2 = v+ 3

2 τ .

The Subgame Perfect Nash equilibrium has qualitatively different access pricing and trading strategies

8Foucault et al. (2013) has an extension in which the limit price is determined by Nash Bargaining. In contrast, limit price
choice in our model is a decision of the limit order submitter. Chao et al. (2018) includes one example of endogenous limit order
choice, but otherwise their analysis is focused more on exchange competition than on investor order choice.
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for different investor valuation support widths ∆ given a tick size τ . The largest support we consider in the

LTM, [v− 5
2 τ,v+ 5

2 τ], has a width ∆ = 5τ , which corresponds to a market populated by very heterogeneous

traders, some of whom have strong trading demands (who prefer to take available liquidity) and others with

weaker trading demands (who tend to supply liquidity). The specific rationale for our largest support is that

it is the largest support such that in equilibrium traders never want to post limit orders beyond the outside

quotes {P−2,P2} in the LTM or {p−5, p5} in the STM. Smaller valuation support widths ∆ correspond to

market environments in which arriving traders are ex ante more predisposed to supply liquidity because in-

dividual potential gains-from-trade are small. Our analysis does not depend on the mean investor valuation,

since v just centers the price grid and valuation support S.

2.1.1 Optimal access pricing for an exchange in a Large Tick Market

The exchange solves problem (11) to set its access pricing Ξ to maximize its expected profit given the trading

behavior Ξ induces in the investor trading subgame. Appendix B presents the equilibrium construction and

shows that the equilibrium fees and rebates for the exchange are given by the simple close-form expressions

in Theorem 1 for supports S with widths ∆ in different ranges.

Theorem 1. When the valuation support width is ∆ ≤ 3τ , the equilibrium access pricing for a profit-

maximizing exchange in the two-period LTM where τ = 1 is either Taker-Maker with fees and rebates

MF∗ =
∆+3

6
T F∗ =

∆−3
6

< 0, (16)

or Maker-Taker with fees and rebates

MF∗ =
∆−3

6
< 0 T F∗ =

∆+3
6

. (17)

20



When the valuation support with is ∆ ∈ [3τ,5τ], the equilibrium access fees are strictly positive and unique

MF∗&T F∗ =



1 & 1
2(∆−3) if 3τ < ∆≤ 4τ

1 & 1
4(∆−2)

(
∆2−5∆+8

)
if 4τ < ∆≤ 4.7τ

1
2 & 1 if 4.7τ < ∆≤ 5τ

(18)

The different access pricing in the different ranges of ∆ are due to the fact that, as the valuation support

widens, the set of ex ante feasible prices expands to include more possible limit prices, and the execution

probabilities of limit orders at more extreme limit prices increases.

Figure 1 shows equilibrium fees and rebates from Theorem 1. The upper plot in Figure 1 shows the equi-

librium MF (solid lines) and T F (dashed lines) chosen by the exchange in the LTM for different valuation

support widths ∆ on the horizontal axis. For support widths ∆ ≤ 3τ , there are two symmetric Maker-Taker

(blue lines) and Taker-Maker (orange) equilibria given in (16) and (17) in Theorem 1. For support widths

∆ ∈ (3τ,5τ], equilibrium access fees are non-negative (i.e., with no rebates) and unique as given in (18).

Table 1 provides additional details about equilibrium trading strategies and market properties for the

LTM. For different valuation support widths ∆, it reports the equilibrium access pricing, the buyer’s trading

strategies, the cum-fee buy and sell transaction prices Pcum,LB
k and Pcum,MS

k , the equilibrium probabilities

of buy limit order submission, Pr(xtz |Ξ,Ltz−1), and execution, Pr(θ xtz
tz |Ξ,Ltz−1), the equilibrium transaction

probability, ∑xt1∈XL Pr(xt1 ,θ
xt1
tz |Ξ), and the equilibrium expected exchange profit, πEx(MF,T F). When

there are pairs of symmetric Maker-Taker and Taker-Make equilibria — in which the cum-fee prices and the

exchange’s net profit per transaction are the same — they are shown in two rows of fees for the associated

support ∆.9 When there is just one row of fees for a given ∆, the profit-maximizing access pricing is unique.

9To economize space, Table 1 does not report the equilibrium strategies of the seller arriving at t2 as they can be inferred from
the buyer’s equilibrium strategies at t1. For example, if a limit buy is posted at t1, xLB

t1 , the equilibrium strategy of the seller taking
liquidity at t2 will be a market sell, xMS

t2 . In addition, Table 1 does not report the probability of No Trade as it is the complement
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The results are symmetric for limit sells at time t1.

Proposition 1 presents a property of the equilibrium fees, which is illustrated quantitatively in Table 1

and follows immediately from the fees and rebates in (16) and (17) in Theorem 1.

Proposition 1. The sum of the make and take fees is one third of the support width, MF +T F = ∆/3 for all

support widths ∆ < 3τ in the two-period LTM.

The key part of the proof is that the exchange’s expected profit can be expressed as

π
Ex(MF,T F) = 2 max

{
0,

β −Pcum,LB
−1

∆

}
(MF +T F) max

{
0,

Pcum,MS
−1 −β

∆

}
(19)

which is the product of the relevant limit-order submission probability at time t1, the net fee, and the relevant

market-order submission probability at time t2. The specific functional form of (19) follows from there

just being two periods and from the uniform valuation distribution assumption and symmetry between the

buy and sell sides of the market. The three components β −Pcum,LB
−1 , MF +T F = Pcum,LB

−1 −Pcum,MS
−1 , and

Pcum,MS
−1 − β in (19), when they are positive, sum to the valuation support width ∆. Proposition 1 shows

that the product in (19) is maximized by the exchange choosing MF and T F to set these three components

equal to each other, which implies that MF +T F = ∆/3. The next proposition highlights other two specific

properties of the equilibrium fees and rebates in Theorem 1.

Proposition 2.

1 If investor valuation dispersion is low (i.e., the valuation support width is ∆≤ 3τ), symmetric Maker-

Taker and Taker-Maker equilibria exist in the two-period LTM. If valuation dispersion is higher (i.e.,

the support width is ∆ ∈ [3τ,5τ]), the equilibrium T F and MF are jointly positive and unique.

to 0.5 of the probability of order submission on one side of the market. For example, for the support [9.8333,10.1667] with the
smallest width 0.33τ , the probability of No Trade at t1 is 0.5−0.333 = 0.167.
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2 When an exchange optimally uses Maker-Taker or Taker-Maker access pricing in the two-period LTM,

then rebates are decreasing and fees are increasing as the valuation support width ∆ increases.

The profit-maximizing access pricing depends on the relationship between the support of traders’ valu-

ation and the tick size. Here we hold the tick size fixed at τ = 1 and vary the support width ∆. Proposition

2 states that, given a tick size τ , optimal access pricing depends on the support of traders’ valuations and

therefore on the types of traders populating the market. As the support of investor valuations increases,

the ex ante potential gains-from-trade increase, which increases investor trading demand. As a result, the

exchange has less need to incentivize trading. In equilibrium, the exchange exploits investors’ greater ex

ante gains-from-trade by increasing fees and reducing rebates. When the investor valuation support is small

(and trading demand is low), there is a pair of symmetric Taker-Maker and Maker-Taker equilibria. This is

the same as in Chao et al. (2018). The intuition for the multiplicity of equilibria in these parameterizations

is that the same cum-fee prices can be achieved either by subsidizing liquidity supply (which leads to more

aggressive posted limit prices) or by subsidizing liquidity demand (which leads to less aggressive posted

prices). In contrast, when ∆ is larger (and trading demand is greater), then the positive-fee equilibrium is

unique. This is a new result. Proposition 2 leads to an empirical prediction:

Empirical Prediction: Exchanges in markets with low investor-valuation dispersion optimally use rebate-

based Taker-Maker and Maker-Taker access pricing. Conversely, exchanges in markets with high valuation

dispersion optimally have a unique optimal positive-fee access pricing.

The relation between investor valuation heterogeneity and when an exchange optimally uses rebate-

based pricing vs positive fees from Proposition 2 is clear in Figure 1. With a very narrow trader-valuation

support width 0.33τ , the LTM has a pair of symmetric Maker-Taker and Taker-Maker equilibria. Since this

valuation support is within the inside LTM quotes, P−1 and P1, there are no prices at which buyers and sellers

would mutually transact in the absence of rebates. Thus, a rebate on either limit orders or market orders is
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necessary for trading. Consider a potential buyer with a high personal valuation βt1 > v who arrives at

t1. (The case of a potential seller with a low valuation at t1 is symmetric). With Maker-Taker pricing

(T F = 0.556 and MF =−0.444), the exchange offers a rebate on liquidity-making via limit orders such that

the buyer is willing to use an aggressive LBP1 limit order at t1 to offer to buy at a quoted price P1 above his

valuation (βt1 ≤ β̄ < P1) to earn the make rebate. An investor with a low valuation βt2 arriving at t2 can then

sell at P1 above his valuation (βt2 ≤ β̄ < P1) but must also pay a take fee. In this case, Maker-Taker pricing

generates trading by cross-subsidizing liquidity-making via limit orders at aggressive posted prices at t1 and

imposing fees on liquidity-taking via market orders at t2 (which benefit from the aggressive limit prices).

The converse logic applies to the Taker-Maker equilibrium pricing (MF = 0.556 and T F =−0.444). Now

investors with high valuations βt1 at t1 use LBP−1 limit orders to buy at P−1, and investors at t2 then either use

MSP−1 market orders to sell at P−1 and receive the take rebate, or they do not trade. In each case, investor

trading decisions depend on the cum-fee prices they pay or receive net of market access fees and rebates

(rather than on quoted prices alone), and the exchange uses its access pricing to affect the cum-fee prices.

The relationship between access pricing and the support width in Proposition 2 is also evident in Figure

1 and Table 1. Starting from the smallest valuation support, 0.33τ , the exchange monotonically increases

both MF and T F as the support width ∆ increases up until the point that the regulatory cap on fees binds.

For example, when the support width reaches 2τ , the buyer still buys either at P−1 or at P1 and the exchange

sets the symmetric Taker-Maker and Maker-Taker pricing with a positive fee of 0.883 and rebate of -0.167.

Taker-Maker and Maker-Taker access pricing persists until, holding the LTM tick size fixed at τ , the investor

valuation support reaches the outside quotes P−2 and P2 with a width ∆ = 3τ .

Proposition 2 and Figure 1 show three things happen once ∆ > 3τ: First, investor trading demand

is sufficiently strong that the exchange ceases giving rebates to incentivize trade and switches to strictly

positive-fee access pricing. Second, the regulatory cap on fees is reached on one side of the market. Third,
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optimal access pricing becomes unique. As a result, the exchange starts charging the highest possible

make fee on limit orders given the regulatory cap, MF = 1.000, and also charges a positive take fee for

market orders. For example, when the support width is 3.1τ , the optimal take fee is T F = 0.050. In these

parameterizations, low-valuation investors still profitably sell at the low price P−1. In equilibrium, a high-

valuation investor arriving at t1 knows that, given the wide valuation support and the relatively low T F , there

is a sufficiently high probability of a seller arriving in t2 willing to demand liquidity at the lower price P−1.

As in Foucault et al. (2013) and Chao et al. (2018), access fees by a profit-maximizing exchange have

two effects: First, they can help a market mitigate the discrete tick-size trading friction. This aspect of

access pricing is related to asymmetries between the make and take fees, which adjust the gains from trade

between liquidity makers and takers. We measure this asymmetry by the absolute difference |MF∗−T F∗|.10

Second, the net fee MF∗+ T F∗ determines (along with the probability of a transaction) the exchange’s

expected profit in (11). These quantities, which can be computed analytically for the LTM from Theorem

1, are illustrated for the LTM in columns 5 and 6 of Table 1. We see that the access pricing asymmetry is

decreasing and the net fee is increasing as the valuation support width ∆ increases up to a support width of

4.7τ . This is consistent with trading frictions becoming less important as ex ante investor gains from trade

increase. As the ex ante demand for trade increases, mitigation of trading frictions becomes less important

for the exchange than profiting from both sides of transactions. Interestingly, the relation of access pricing

and the support width can have jumps, as can be seen when ∆ exceeds 4.7τ . The reason is that profit-

maximizing fees and optimal investor trading are all endogenously determined in equilibrium. Thus, we

note that optimal strategies for investors also change at 4.7τ (i.e., rather than buying at P−1 and P−2 now

investors buy at P−1 and P1). However, the exchange’s expected profit in Table 1 is still increasing in investor

trading demand, as measured by ∆. Although the net fee per transaction is now lower, the greater willingness

10We thank Thierry Foucault for helpful insights on the relation of fee asymmetries and net fees.
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to trade increases the probability of completed transactions.

We note two differences about optimal access pricing in our model relative to Chao et al. (2018). One

new feature is that equilibrium fees in our model are jointly positive for some parameterizations, whereas

Chao et al. (2018) only have rebate-based access pricing. The reason for this difference is that Chao et al.

(2018) constrain access pricing so that jointly positive fees are not allowed. A second new feature in our

model is that make and take fees are not equivalent, unlike in Chao et al. (2018). While there are pairs of

symmetric optimal fees for some market parameterizations, optimal fees are unique for other parameteriza-

tions in our model. In particular, the exchange’s optimal fees are unique in the two-period market once the

investor valuation support ∆ is larger than 3τ , which is where the exchange starts using strictly positive take

and make fees. For example, when ∆ = 3.1τ , the unique equilibrium fees are MF = 1.000 and T F = 0.050.

In particular, the symmetric fees MF = 0.050 and T F = 1.000 lead to lower exchange expected profits. The

reason is a conceptual asymmetry between make and take fees. In our two-period market, this asymmetry

takes the following form: Market orders in the two-period model are only used at time t2 and, thus, take fees

only affect the willingness of the investor at time t2 to trade with whatever limit order happens to be in the

book. In contrast, limit-order submitters at time t1 have a decision about which price to post a limit order.

When the investor valuation support is small, only one limit buy (or sell) price is ex ante feasible (i.e., has an

positive expected profit), but when the valuation support is larger, multiple prices are ex ante feasible, and

the limit-price decision becomes non-trivial. As a result, with a large valuation support, make fees affect a

more complicated decision of limit-order submitters about where to post limit order (and can be used by the

exchange to deter the submission of orders with low execution probabilities but private gains from favorable

execution prices) as opposed to the simpler trade/no-trade decision of market-order submitters.11 Section 3

11For example, in the ∆ = 3.1τ market discussed above, the hypothetical symmetric fees are suboptimal because, with MF =
0.050, buy limit orders at P−1 and P1 both can have positive expected profits for some realized β s. Thus, given a low make fee (like
0.050) and a sufficiently wide investor valuation support (like ∆ = 3.1τ) — such that there is a sufficient probability of investors
at t2 with very low private valuations who would be willing to sell at a low cum-fee price of P−1−T F , — some investors at t1
(with valuations only slightly above v) would post buy limit orders at P−1 rather than at P1. Since such orders have lower execution
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shows a related asymmetry in make and take fees in our three-period market.

Qualitative changes in the equilibrium investor strategy at t1 generally coincide with discrete changes in

the exchange’s optimal fees. We see this clearly in Table 1 and Figure 1. As the valuation support width

∆ increases beyond 4τ (in the region with strictly positive fees), buyers start using two possible different

limit orders at t1 — i.e., they now buy at P−1 or at P−2 — for two different intervals of βt1 . When ∆ = 4τ ,

the buyer has no incentive to post a limit buy at P−2 (i.e., a seller with the minimum possible valuation of 8

would not sell at the cum fee sell price Pcum,MS
−2 = 8.5−0.5 = 8), but with a wider support, e.g., ∆ = 4.1τ ,

the buyer does have an incentive to post limit buys at 8.5 as the incoming seller even with the minimum

valuation 7.95 would be willing to sell at Pcum,MS
−2 = 8.5−0.513 = 7.987. The exchange exploits the larger

ex ante gains-from-trade of sellers at t2 by setting a higher T F , and keeps charging buyers at t1 the maximum

MF = 1.000 up until the support width reaches ∆ = 4.8τ . Once ∆ ≥ 4.8τ , the buyer switches from using

LBP−2 and LBP−1 to using LBP−1 and LBP1, and the exchange halves the MF to 0.500 and increases the T F

to 1.000. This increases the transaction probabilities, which increases the exchange’s profit.

2.1.2 Small tick market

A general issue of interest is the relation between access pricing and both the support S of investor private

valuations and the tick size τ . Section 2.1.1 shows how optimal access pricing is driven by the relative size

of the valuation support width ∆ holding the tick size τ fixed. This section shows how optimal access pricing

is also driven by the absolute tick size τ given that the regulatory cap on fees is tied to the absolute tick size.

We change the tick size τ and compare LTMs and STMs given the same range of valuation supports. The

comparative static for τ depends on both the relative tick-size channel and also on an absolute tick-size

channel.

probabilities than limit orders at P1, this reduces the exchange’s expected profits relative to the equilibrium fees, thereby making
the hypothetical symmetric fees MF = 0.050 and T F = 1.000 suboptimal.
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Figure 1: Make Fees and Take Fees in a 2-Period Market with Profit-Maximizing Exchange. This figure reports the equilibrium make fees (MF &
mf) and take fees (TF & tf) in the Large Tick Market (LTM) (upper panel) and Small Tick Market (STM) (lower panel) corresponding to different investor valuation supports
with widths ranging from 0.33τ to 5τ on the horizontal axes (where τ = 1 is the tick size in the LTM). The figure reports in blue (orange) italics the equilibrium fees MF
(TF). The Taker-Maker and Maker-Taker pricing structures are optimal and symmetric for a support with widths ranging from 0.33τ to 3τ in the large tick market, and for a
support with widths ranging from 0.33τ to τ in the small tick market.



Table 1: 2-Period Large Tick Market (LTM) with Profit-Maximizing Exchange: Equilibrium Fees and Trading Strategies.
This table reports for different investor valuation support width, ∆ = β − β expressed in terms of the LTM tick size, τ (column
1), the extreme values of the support, β and β̄ (column 2), the equilibrium make and take fees, MF∗ and T F∗ (column 3 and 4),
the sum and the absolute difference of the equilibrium MF∗ and T F∗ (column 5 and 6), the buyer’s equilibrium trading strategies
at t1, xt1 other than No Trade (column 7) and the associated probability of submission at t1, Pr(xt1 |Ξ∗,Lt0) (column 8). The table
also shows the cum-fee buy and sell prices Pcum,LB

k and Pcum,MS
k (column 9 and 10), the equilibrium probability of execution of

the buyer’s order posted at t1, Pr(θ
xt1
t1 |Ξ

∗,Lt0), which correspond to the unconditional probability of MS at t2 (column 11), the
equilibrium transaction probability Pr(xtz ,θ

xtz
tz |S,τ,Ξ) (column 12), and the exchange expected profit from both buyers and sellers,

πEx(MF∗,T F∗) (column 13). When the equilibrium pricing is rebate-based for a given support, we report the Taker-Maker fees on
the first row and then the Maker-Taker fees on the second row. Results are rounded to the third decimal.

Support width β , β̄ MF∗ T F∗ MF∗+T F∗ |MF∗-T F∗| Eq.Strategy xt1 Pr. Submission Pcum,LB
k Pcum,MS

k Pr. Execution Pr.Trans Exchange E[Profit]
∆ = β −β at t1 Pr(xt1 |Ξ∗,Lt0 ) Pr(θ

xt1
t1 |Ξ

∗,Lt0 ) πEx(MF∗,T F∗)

0.556 -0.444 0.111 1.000 LBP−1 0.333 10.056 9.944 0.333 0.222 0.025
0.33τ 9.833, 10.167

-0.444 0.556 0.111 1.000 LBP1 0.333 10.056 9.944 0.333 0.222 0.025

0.667 -0.333 0.333 1.000 LBP−1 0.333 10.167 9.833 0.333 0.222 0.074
τ 9.500, 10.500

-0.333 0.667 0.333 1.000 LBP1 0.333 10.167 9.833 0.333 0.222 0.074

0.833 -0.167 0.666 1.000 LBP−1 0.333 10.333 9.667 0.333 0.222 0.148
2τ 9.000, 11.000

-0.167 0.833 0.666 1.000 LBP1 0.333 10.333 9.667 0.333 0.222 0.148

1.000 0.000 1.000 1.000 LBP−1 0.333 10.500 9.500 0.333 0.222 0.222
3τ 8.500, 11.500

0.000 1.000 1.000 1.000 LBP1 0.333 10.500 9.500 0.333 0.222 0.222

3.1τ 8.450, 11.550 1.000 0.050 1.050 0.950 LBP−1 0.339 10.500 9.450 0.323 0.219 0.229

4τ 8.000, 12.000 1.000 0.500 1.500 0.500 LBP−1 0.375 10.500 9.000 0.250 0.188 0.281

4.1τ 7.950, 12.050 1.000 0.513 1.513 0.487 LBP−1 , LBP−2 0.369, 0.131 10.500, 9.500 8.987, 7.987 0.253, 0.009 0.189 0.286

4.7τ 7.650, 12.350 1.000 0.611 1.611 0.389 LBP−1 , LBP−2 0.342 , 0.157 10.500 , 9.500 8.889 , 7.889 0.264 , 0.051 0.197 0.317

4.8τ 7.600, 12.400 0.500 1.000 1.500 0.500 LBP1 , LBP−1 0.104, 0.396 11.000, 10.000 9.500, 8.500 0.396, 0.188 0.231 0.346

5τ 7.500, 12.500 0.500 1.000 1.500 0.500 LBP1 , LBP−1 0.100 , 0.400 11.000 , 10.000 9.500 , 8.500 0.400 , 0.200 0.240 0.360

Theorem 2. The equilibrium access pricing Ξ∗ in the two-period STM with a tick size τST M equal to a

fraction τST M

τ
of the tick size τ of the LTM, for 0 < ∆≤ 5τ , is given by:

Ξ
∗ = {mf∗, tf∗}= {τST M

τ
MF∗,

τST M

τ
T F∗} (20)

where MF∗ and T F∗ are the optimal LTM access pricing given the tick size τ in Theorem 1.

The STM and LTM equilibrium access pricing are isomorphic in that optimal access pricing scales
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linearly in the tick size τ . This follows because τ is a normalization (see proof of Theorem 2 in Appendix

B.3). Thus, all else equal, when regulation caps fees to be smaller than the tick size (in Section 2.1.4 we

relax this assumption), a smaller tick size leads the exchange to set weakly smaller fees and rebates.

Figure 1 (lower panel) (and Table D1 in Online Appendix D.2) illustrate Theorem 2 for a STM with

a tick size 1
3 τ , which is 1

3 of the LTM tick size τ = 1.12 The optimal access pricing in this STM is 1
3 of

the pricing in a LTM market with the same relative valuation support ratio ∆/τ . For example, consider a

LTM with a valuation support ∆ = τ = 1. Theorem 1 gives the optimal LTM Taker-Maker and Maker-Taker

fees to be {MF∗,T F∗}= {2
3 ,−

1
3} and {−1

3 ,
2
3} respectively. From Theorem 2, the optimal STM fees for a

support 1
3 τ are therefore {mf∗, tf∗}= {2

9 ,−
1
9} and {−1

9 ,
2
9}, which are one third smaller.

Given Theorem 2, all the results for the LTM also hold in the STM. For example, we see in Figure 1

(lower panel) that, as the valuation support increases, the STM exchange still has an incentive to increase

its fees and reduce its rebates. The STM access pricing changes are qualitatively the same as in the LTM

but rescaled. In addition, the region of valuation supports in Figure 1 consistent with the STM exchange

profitably using Taker-Maker or Maker-Taker pricing is narrower, and the fees themselves are smaller in

absolute values. Not surprisingly, STM access pricing reaches the threshold when both fees are positive

earlier since the regulatory cap on fees (which is tied to the tick size) binds sooner in absolute terms (although

exactly the same in proportional terms relative to the tick size).13 Thus, the exchange’s optimal access

pricing Ξ∗ depends on both the absolute tick size (given the regulatory cap on fees tied to the tick size) and

the relative size of the investor valuation support compared to the tick size.

Empirical Prediction: When, holding the trading population constant, the tick size increases (decreases),

12The exchange profit functions and their maximizers are qualitatively similar in the STM to the Figure D1 for the LTM and are
available from the authors upon request.

13To ease the comparison between the STM and the LTM, we provide finer numerical detail for the STM in the regions of the
valuation support where there are discontinuities in optimal access pricing. These correspond to support widths in the LTM where
there are discontinuities in access pricing divided by three.
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the exchange has an incentive to offer greater (smaller) fees and rebates.

It is not just the absolute value of the tick size that matters when determining the optimal fee structure but

also the relative tick size given the valuation support width. More precisely, when the tick size is smaller,

the exchange has less freedom in setting the trading fees.

Our empirical prediction can be tested by investigating how a change in the tick size alters the incentive

for the exchange to offer rebates. Our model predicts that when, all else equal, the tick size increases, the ex-

change, to attract volume, should increase the rebates offered to the same population of market participants.

However, with competition, if the exchange does not adjust the rebates to the new tick size, it runs the risk

of seeing orders migrating to other more profitable venues. Comerton-Forde et al. (2019) investigate the

effects of an increase in the tick size within the U.S. tick size pilot program started in October 2016 and,

interestingly, find that following the increase in the U.S. tick size from 1 penny to 5 pennies a substantial

amount of orders migrated from the maker-taker to the taker-maker inverted fees platforms. This finding is

consistent with our model’s prediction that following an increase in the tick size the exchange should offer

greater rebates to ensure that volume is maximized within a trading platform.

2.1.3 Optimal fees for a Social Planner

This section considers optimal fees in the two-period model set by a Social Planner rather than by a profit-

maximizing exchange. Figure 2 shows the welfare-maximizing MF and TF for different investor valuation

support widths ∆ for the large tick market (upper part) and small tick market (lower part). Tables 2 reports

additional detail about equilibrium strategies, cum fee buy and sell prices, and the welfare of both limit

(W INV
t1 ) and market orders (W INV

t2 ) in the LTM. (See Table D2 in Online Appendix D.2 for the STM.) From

the same logic as Theorem 2, optimal Social Planner fees for the STM and LTM are isomorphic, because

the tick size τ is a normalization.
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The Social Planner fees and rebates in the LTM are symmetric and equal to 0.5 up to the 2τ support

width. As the support grows beyond 2τ , the welfare-maximizing fees become asymmetric with the TF

rebate and the MF fee decreasing in the Taker-Maker regime down to ±0.250 and increasing in the Maker-

Taker regime up to ±0.750. The reason the absolute value of the fees decreases in the Taker-Maker and

instead increases in the Maker-Taker is that, when there are two — rather than a unique — equilibrium sets

of fees, the cum-fee buy and sell prices for the Taker-Maker have to be the same as those for the Maker-

Taker so that traders’ payoffs are the same under the two regimes. Therefore, the equilibrium Taker-Maker

cum-fee limit buy price at P−1 (i.e., v− 1
2 τ +MFT M) has to be equal to the Maker-Taker cum-fee limit buy

price at P1 (i.e., v+ 1
2 τ +MFMT ). For example, when the valuation support is 3τ , the Taker-Maker rebate is

0.250, whereas Maker-Taker rebate is 0.750, so that Taker-Maker Pcum,LB
−1 = Maker-Taker Pcum,LB

1 . Beyond

the 3τ support width, the TF rebate reverts reaching ±0.750 when the support is 5τ .

The pattern in the Social Planner’s welfare-maximizing fees follows from four intuitions: The first is

that when ∆≤ 2τ , the Social Planner can use fees and rebates to allow trading at a mid-quote equal to v. The

second intuition is that, as the valuation support width ∆ widens, mid-quote trading is no longer possible.

In particular, investors at time t2 eventually become potentially willing to hit limit orders with worse limit

prices. This creates an incentive for investors at t1 with valuations βt1 close to v to submit worse limit orders,

which give them a private gain from price improvement, but which lower total welfare due to their lower

execution probability. To maximize total welfare, the Social Planner adjusts access prices to prevent this for

a range of ∆s. For example, for ∆ between 2τ and 3τ , the Social Planner in the Taker-Maker equilibrium

in the LTM reduces the take rebate to deter execution of limit buys at P−2 at t2 so that potential buyers at

t1 will not submit them and instead continue to submitting limit buys at P−1. The third intuition is that

expected welfare on submitted limit orders is maximized if the probability of limit order submission and the

probability of submission of market orders that execute standing limit orders are equal. However, deterring
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latent limit orders at worse prices skews these probabilities away from equality. Thus, there is a trade-off

between these two effects. For example, in the LTM, once ∆ exceeds 3τ , the probability distortion is so

large, that the Social Planner switches and begins to adjust fees to reduce the probability distortion. As

a result, potential buyers at t1 with valuation above but close to v start submitting limit buys at P−2 (while

investors at t1 with higher valuations βt1 continue to submit limit orders at P−1 for the higher order-execution

probability). The fourth intuition is that another effect of a wider support ∆ is that there are more investors

at t1 with extreme valuations who value higher execution probability more than price improvement. The

Social Planner also uses access pricing to increase the endogenous number of such investors. For example,

that is why the Social Planner continues increasing the take rebate above 0.5 when ∆ is between 4τ and

5τ . Interestingly, the lower part of Figure 2 for the STM shows that this pattern in optimal Social Planner

access pricing repeats for even larger relative support widths ∆ as additional prices successively further from

v become ex ante feasible limit prices. Given the isomorphism between the LTM and STM, this implies the

equilibrium MF and TF in the LTM fluctuate between ±0.250 and ±0.750 when the support widens further

beyond 5τ .

2.1.4 Regulatory regimes

Regulatory restrictions can have a major impact in equilibrium on optimal access pricing by an exchange.

To show the impact, we compare two alternative regulatory regimes: The first regime is one in which the

exchange can freely choose its access pricing. We call this the “No Restrictions" regime. The second is the

regime in our model, which assumes the trading platform cannot set trading fees that exceed the tick size,

−τ ≤ MF ≤ τ and −τ ≤ T F ≤ τ . We call this the RRS Regulatory Restrictions regime. As discussed in

Section 1, this is qualitatively similar to US regulation (and also with Foucault et al. (2013)).14

14Using a cap of 0.3 of the tick size from Reg NMS makes our results tighter. In Europe, there is no formal regulatory cap but
informal regulatory understandings and industry norms following US markets lead exchanges usually to set fees less than one tick.
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Figure 2: Make Fees and Take Fees in a 2-period Model with Social Planner This figure reports the equilibrium make fees (MF & mf) and take fees (TF
& tf) in the Large Tick Market (LTM) (upper panel) and Small Tick Market (STM) (lower panel) corresponding to different investor valuation supports with widths ranging
from 0.33τ to 5τ on the horizontal axes (where τ = 1 is the tick size in the LTM). The figure reports in blue (orange) italics the equilibrium fees MF (TF). The Taker-Maker
and Maker-Taker pricing structures are optimal and asymmetric.



Table 2: 2-Period Large Tick Market (LTM) with Social Planner: Equilibrium Fees and Trading Strategies. This table
reports for different investor valuation support width, ∆ = β −β expressed in terms of the LTM tick size, τ (column 1), the extreme
values of the support, β and β̄ (column 2), the equilibrium make and take fees, MF and TF (column 3 and 4), the sum and the
absolute difference of the equilibrium MF∗ and T F∗ (column 5 and 6), the buyer’s equilibrium trading strategies at t1, xt1 other
than No Trade (column 7) and the associated the cum-fee buy and sell prices Pcum,LB

k and Pcum,MS
k (column 8 and 9). It also reports

the equilibrium welfare of the limit order submitted at t1, W
xt1
t1 , and the welfare associated with the market order posted at t2, W

xt2
t2 ,

as well as the sum of limit and market orders W
xt1
t1 +W

xt2
t2 (columns 10, 11 and 12). When the equilibrium pricing is rebate-based

for a given support, we report the Taker-Maker fees on the first row and then the Maker-Taker fees on the second row. Results are
rounded to the third decimal.

Support width β , β̄ MF TF |MF-TF| Eq.Strategy Pcum,LB
k Pcum,MS

k W. xt1 W. xt2 W. xt1 + xt2
∆ = β −β xt1

0.500 -0.500 1.000 LBP−1 10.000 10.000 0.125 0.125 0.250
τ 9.500, 10.500

-0.500 0.500 1.000 LBP1 10.000 10.000 0.125 0.125 0.250

0.500 -0.500 1.000 LBP−1 10.000 10.000 0.250 0.250 0.500
2τ 9.000, 11.000

-0.500 0.500 1.000 LBP1 10.000 10.000 0.250 0.250 0.500

0.375 -0.375 0.750 LBP−1 9.875 9.875 0.338 0.253 0.591
2.5τ 8.750, 11.250

-0.625 0.625 1.250 LBP1 9.875 9.875 0.338 0.253 0.591

0.250 -0.250 0.500 LBP−1 9.750 9.750 0.417 0.260 0.677
3τ 8.500, 11.500

-0.750 0.750 1.500 LBP1 9.750 9.750 0.417 0.260 0.677

0.375 -0.375 0.750 LBP−1, LBP−2 9.875, 8.875 9.875, 8.875 0.485 0.285 0.770
3.5τ 8.250, 11.750

-0.625 0.625 1.250 LBP1, LBP−1 9.875, 8.875 9.875, 8.875 0.485 0.285 0.770

0.500 -0.500 1.000 LBP−1, LBP−2 10.000, 9.000 10.000, 9.000 0.562 0.313 0.875
4τ 8.000, 12.000

-0.500 0.500 1.000 LBP1, LBP−1 10.000, 9.000 10.000, 9.000 0.562 0.313 0.875

0.625 -0.625 1.250 LBP−1, LBP−2 10.125, 9.125 10.125, 9.125 0.639 0.349 0.988
4.5τ 7.750, 12.250

-0.375 0.375 0.750 LBP1, LBP−1 10.125, 9.125 10.125, 9.125 0.639 0.349 0.988

0.750 -0.750 1.500 LBP−1, LBP−2 10.250, 9.250 10.250, 9.250 0.710 0.396 1.106
5τ 7.500, 12.500

-0.250 0.250 0.500 LBP1, LBP−1 10.250, 9.250 10.250, 9.250 0.710 0.396 1.106

To compare the effects of these two regulatory restrictions on optimal access pricing, we also solve

our two-period model in the No Restrictions regime for different supports and different tick sizes. Table

3 illustrates the differences between the two regimes for two different support widths, ∆ = τ and ∆ = 2τ ,

and two different tick sizes, τ and τ

3 . With “No Restrictions" on access pricing, the Taker-Maker (shown)
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and symmetric Maker-Taker (not shown) pricing structures are both optimal in equilibrium. The exchange

optimally charges the same positive fee MF and pays same rebate TF irrespective of the tick size. Under this

regime, when we hold the support constant and change the tick size, the exchange holds the optimal fees

constant and forces investors to trade at the outside quotes. When instead, still under the “No Restrictions"

regime, we hold the tick size constant either at Tick = τ or at τ

3 and increase the support width ∆, the

exchange changes its optimal fees to exploit the larger gains from trade by increasing the positive charge

and reducing the rebate. This result comes from the same logic as the first part of Theorem 1 when the

tick-size constraint is not binding. It follows then that the total fee increases proportionally with the support.

When access pricing is subject to the RRS Regulatory Restrictions regime, the results differ. For the

parameterizations considered in Table 3, we see the Taker-Maker pricing and symmetrically the Maker-

Taker pricing prevail when the tick size is equal to τ . When we hold the support constant and change

the tick size, as in Table 3, we also change the regulatory restriction. For a smaller tick size (e.g., τ

3 )

both the positive charge on MF and the rebate on TF are smaller. Once again, the net fee is one third of

the valuation support width. Intuitively, under the RRS Regulatory Restrictions, the exchange, not being

allowed to impose extreme trading fees given the cap, maximizes profits by imposing the symmetric Taker-

Maker or Maker-Taker pricing when the support is equal to the tick size. When instead, still under the RRS

Regulatory Restrictions regime, we hold the tick size constant and increase the support, as in Table 3, the

exchange exploits the larger gains-from-trade and sets strictly positive fees. This result holds both with the

“No Restrictions" and with the RRS Regulatory Restrictions.

2.1.5 Exchange Competition in Trading Fees

Having examined access pricing with a single monopolistic exchange, we next consider duopolistic competi-

tion between exchanges. A striking result in Chao et al. (2018) is the absence of pure-strategy equilibria with

36



Table 3: Optimal Trading Fees and Restrictions This table reports the equilibrium optimal make (MF) and take fee (TF),
Exchange Expected Profit, equilibrium strategies, cum-fee buy and sell prices (Pcum,LB

k and Pcum,MS
k ) for a support with width ∆ = τ

and ∆ = 2τ for markets with two different tick size specifications (τ , τ

3 ) and under two different regulatory regimes. The “RRS
Regulatory Restrictions" are −τ ≤MF,T F ≤ τ; the “No Restrictions" protocol imposes no restrictions on MF and TF fees.

Support 1τ Support 2τ

Tick=τ Tick= τ

3 Tick=τ Tick= τ

3

MF 0.667 0.667 0.833 0.833
“No Restrictions" TF -0.333 -0.333 -0.167 -0.167

Exchange E[Profit] 0.074 0.074 0.148 0.148
−∆≤MF ≤ ∆ Eq.Strategies xt1 LB9.500 LB9.500 LB9.500 LB9.500 & LB9.167

−∆≤ T F ≤ ∆ Pcum,LB
k 10.167 10.167 10.333 10.333 & 10.000

Pcum,MS
k 9.833 9.833 9.667 9.667 & 9.333

MF 0.667 0.333 0.833 0.333
“RRS Regulatory TF -0.333 0 -0.167 0.292

Restrictions" Exchange E[Profit] 0.074 0.074 0.148 0.130
−τ ≤MF ≤ τ Eq.Strategies xt1 LB9.500 LB9.833 LB9.500 LB9.500 & LB9.833

−τ ≤ T F ≤ τ Pcum,LB
k 10.167 10.167 10.333 10.167 & 9.833

Pcum,MS
k 9.833 9.833 9.667 9.541 & 9.208

competing exchanges. As a result, Chao et al. (2018) derive mixed-strategy equilibria. However, a critical

assumption in Chao et al. (2018) is that competing exchanges move simultaneously in setting their access

pricing schedules. We revisit exchange competition with one significant change: We consider a sequential-

move Nash bargaining equilibrium with a series of alternating access-pricing ”moves” by the exchanges.

These pricing moves consist of announcements of proposed access pricing schedules possibly bundled with

threats of how an exchange will respond if its proposal is not accepted. The sequential moves could, in prin-

ciple, continue for an arbitrary number of multiple rounds, but, we consider here a simple game with only

three moves by two exchanges to illustrate our main points. We show, in particular, that important features

of the Chao et al. (2018) analysis still hold in a sequential-move equilibrium. In particular, our equilibria

also do not converge to zero-profit Bertrand competition. This is, in part, due to the same two-sided nature

of the market (Rochet and Tirole (2006)) that drives Chao et al. (2018) competition analysis. In particular,
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investors have heterogeneous preferences over both order execution probability and execution price given

their realized valuations βtz .

The change from simultaneous moves to finite sequential-move bargaining means, most importantly,

that now pure-strategy equilibria are possible. Indeed, multiple pure-strategy equilibria are possible depend-

ing on the exchanges’ precommitment ability. With sequential bargaining, exchanges observe each others’

access pricing schedules and then set their access pricing as best responses to the pricing and threats of

the other exchanges. In particular, exchanges can take into account how other exchanges threaten to re-

spond to proposed pricing schedules. In contrast, in a simultaneous-move equilibrium, exchanges set their

fees given beliefs about other exchanges’ fees but are unable to respond to other exchanges’ actual fees or

follow through on contingent threats if an exchange’s access-pricing proposal is countered in a way that

triggers a threatened response. Sequential-move Nash is realistic in that exchanges in actuality can observe

each others’ pricing schedules when setting their access pricing. For example, on September 2012 (two

years since its last change in fees on November 2010), Turquoise reduced its rebate-based access pricing

from TF=0.30 bps and MF=-0.20 bps to TF=0.30 bps and MF=-0.14 bps. On January 2013 (four months

later), BATS Europe reacted by reducing the rebate-based pricing on CXE from TF=0.30 bps and MF=-0.20

bps to TF=0.30 bps and MF=-0.15 bps.15 This timing seems more consistent with sequential moves than

simultaneous moves.

Consider a fee-setting game between two exchanges, denoted as exchange A and exchange B, in which

A moves first, B responds, and then A has the final move. The nature of the equilibrium depends on how

much pre-commitment power exchange A has. We specifically consider a variation on a grim trigger equi-

librium in which exchange A moves first and sets access prices {MFA,T FA} and stipulates some schedule

15See, for example, the access price list for Turquoise: https://www.lseg.com/sites/default/files/content/documents/Turquoise
%20tariff%20schedule%20-%207.8.9%20%28Eff.%2001%20July%202020%29_0.pdf
and for CXE: https://cdn.cboe.com/resources/participant_resources/CboeEurope_TradingPricing.pdf
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{MFB,T FB} that exchange B should use so as not to trigger a threatened counterresponse {M̂FA
, ˆT FA}

by exchange A. Our analysis here focuses on the threatened counterresponse. One possible threat is for ex-

change A to counter any unacceptable positive-profit fee schedule {MFB
,T FB} 6= {MFB,T FB} by exchange

B by matching the take rebate/fee ˆT FA
= T FB (so as to keep market-order submission incentives and, thus

limit-order execution probabilities, unchanged relative to exchange B) but improve the attractiveness for li-

quidity makers by lowering the make fee/raising the make rebate so that M̂FA
<MFB with M̂FA

+ ˆT FA
> 0.

This is possible since the schedule {MFB
,T FB} has positive profits by hypothesis. In this case, the exchange

A’s threat schedule would attract all limit orders at time t1 since it is has lower make costs than {MFB
,T FB}

and equally good order execution probabilities at t2. We call this a MF-undercutting/TF-matching schedule.

It is a specific type of grim trigger threat. Credible threats often require precommittment. However, it is

reasonable to suppose that precommitment difficulty is increasing in the ex post suboptimality of a threat.

Hence, the MF-undercutting/TF-matching threat should have relatively low precommitment difficulty since

exchange A still earns positive expected profits, rather than a loss, if it follows through on the threat.

Different pure-strategy equilibria can be sustained given the particular commitment mechanisms avail-

able to exchanges to make credible threats. We illustrate several possible forms of credible threats and the

associated sequential-move bargaining equilibria. Our insight is that standard results about sequential bar-

gaining with precommitment apply to the access pricing game between the duopolistic exchanges. Thus,

pure-strategy equilibria for the exchanges seem plausible. In addition, we show that, as in Chao et al. (2018),

Bertrand competition between the exchanges does not lead to zero-profits here.

Theorem 3. (i) Monopolistic access pricing can be implemented as a grim trigger sequential-move equilib-

rium of the exchange-competition subgame in which exchange A sets access prices using the monopolistic

pricing schedule and exchange B does not compete. (ii) Monopolistic access pricing can also be implemen-

ted in a grim trigger sequential-move equilibrium in which exchanges A and B both set access prices to the
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identical monopolistic schedule, and investors mix between them in submitting their limit orders at time t1.16

It is also possible to implement monopolistic equilibria with price discrimination with competing ex-

changes. For example, Chao et al. (2018) construct an equilibrium for a single exchange operator that runs

multiple exchanges that price discriminate between investors with high realized gains-from-trade and those

with low realized gains-from-trade.

Theorem 4. (i) A price-discrimination equilibrium for a single exchange operator with two exchanges

can be implemented in a grim trigger sequential-move equilibrium with competing exchange operators if

operator A operates two exchanges. (ii) A price discriminating equilibrium can also be implemented in a

grim trigger sequential-move equilibrium by exchanges A and B both using one of the two discriminating

pricing schedules.

Other pure-strategy equilibria can be implemented without grim trigger precommitment. For example,

the opposite extreme is no precommitment.

Theorem 5. With no precommitment and two rounds of trade and no precommitment, a Stackelberg equi-

librium can be implemented by exchanges A and B.

Both exchanges in the Stackelberg equilibrium can have trading volume and positive profits given that this

is a two-sided market in which limit order submitters care about both limit order submission costs (which

are affected by makes fees) and limit order execution probabilities (which are affected by take fees). Thus,

this key insight about exchange competition in Chao et al. (2018) is still robust with sequential moves, but

now mixed strategies are not needed for the exchanges.

Chao et al. (2018) cite changing fee schedules as evidence consistent with their simultaneous-move

mixed-strategy equilibria. Our analysis of exchange competition is consistent with a different interpretation

16The equilibrium in part (ii) has pure strategies for the two exchanges although it does involve mixed strategies for investors.
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of these same empirical facts. First, the time lag between when one exchange changes its fees and another

exchange changes its fees is measured in months (e.g., as the previously mentioned Turquoise-CXE sequen-

tial moves show). Thus, it is reasonable to think exchanges set their fees knowing other exchanges’ currently

prevailing fees and also with some forecast of how other exchanges may respond to changes in a exchange’s

fees. Second, exchanges in our model change access pricing, not as draws from a distribution over pos-

sible pricing schedules that they are indifferent about, but rather as optimal responses to changing market

conditions and changing exchange market power (i.e., which may affect the credibility of their threats and

bargaining power). In particular, if the distribution of private values of arriving investors become more or

less heterogeneous (i.e., if the investor valuation support widens or contracts), our analysis shows exchanges

have an incentive to change their fees. In addition, we predict exchanges change their fees in response to

both changing public information about the probability distribution of arriving investors and also in response

to private information about investors trading on their exchange and given inferences about the distribution

of investors on other exchanges. Third, equilibrium with unrestricted exchange entry with simultaneous

moves in Chao et al. (2018) involves an infinite number of exchanges, whereas with sequential-move bar-

gaining, our model can implement pure-strategy equilibria with a small number of competing exchanges.

This seems consistent with the fact that, in practice, a relatively small number of exchanges and exchange

operators account for a substantial share of trading volume. For example, the LSE and Turquoise exchanges

(run by LSE) and Cboe BXE (the former BATS Europe) and Cboe CXE (former Chi-X Europe) exchanges

(run by BATS) account for approximately 90% of trading volume in UK stocks.

The insight here extends to other trading subgames such as, for example, a model with more than two

periods, such as our 3-period extension in Section 3, and markets with high frequency trading in Section 4.

With HFTs, exchanges set their fees in response not only to changes in the distribution of arriving regular

investors, but also in order to attract HFTs that may also have market power and that may have changing
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cost structures that may imply different break-even fees and rebates (i.e., break-even net of HFT fixed and

marginal operational costs may be positive, rather than 0 as in our analysis, and may change over time).

Once again, there exist threats that, if credible, allow monopolistic or other oligopolistic profit-sharing rules

to be implemented. Thus, the main conclusions in this section are that pure-strategy equilibria can exist with

sequential Nash bargaining but that, as in Chao et al. (2018), exchange competition still need not lead to

zero equilibrium exchange profits, both with and without precommitment.

3 Three-Period model

Our analysis is readily extended to a richer market environment with an arbitrary number N of investor

arrivals at times tz ∈ {t1, . . . , tN}. This extension lets us describe the effect of increased trading activity on

access pricing. In particular, trading activity can refer either to potentially longer trading horizons or to

more frequent investor arrival over a fixed horizon (e.g. over a trading day). From a modeling viewpoint,

there are two new elements: First, the limit order book can accumulate depth at a given price or at different

prices in the multiperiod market whereas there is at most only one limit order in the book in the two-period

model. In particular, the arrival of new limit and market orders augments or reduces the depth of the limit

order book respectively, leading to dynamics:

Ltz = Ltz−1 +Qtz z = 1, . . . ,N (21)

where Qtz = [QPk
tz ] is a vector of changes in the limit order book due to an arriving investor’s action xtz at

tz. The change QPk
tz in depth at price Pk is “+1” when an arriving limit order adds an additional share and

“−1” when a market order executes a limit order where Pk is the best bid or offer (BBO), and otherwise is

zero (at other prices unaffected by arriving orders). The changes QPk
tz are all zero if no order is submitted.
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Second, investors arriving after t1 and before tN have a non-trivial choice between market and limit orders.

Once again, an arriving investor at t1 still only chooses between different limit orders at different possible

limit prices and NT , and the investor in the final time tN still chooses between buy and sell market orders

and NT . For tractability, we assume limit orders cannot be modified or cancelled after submission and that

investors can only send one order of unitary size at a time.17

The objectives for access pricing with N periods are analogous to those in the two-period model. An

exchange chooses its fees, Ξ, to maximize its expected payoff from completed transactions:

max
MF,T F

−τ<MF,T F<+τ

∑
tz∈{t1,...,tN}

π
Ex
tz (MF,T F) =

 ∑
tz∈{t1,...,tN}

∑
xtz∈XL

Pr(xtz ,θ
xtz
tz |Ξ)

 (MF +T F) (22)

given the transaction probabilities Pr(xtz ,θ
xtz
tz |Ξ) defined in (12) but where now the limit-order execution

probabilities Pr(θ xtz
tz |Ξ,Ltz−1) need to take into account the fact that a limit order submitted at time tz can

potentially be executed at multiple possible dates in the future.

A Social Planner maximizes the total welfare, which generalizes to the N-period model to:

max
MF,T F

−τ<MF,T F<+τ

MF+T F≥0

∑
tz∈{t1,...,tN}

(
W INV

tz (MF,T F)+π
Ex
tz (MF,T F)

)
(23)

= ∑
tz∈{t1,...,tN}

∑
∀Ltz−1

Pr(Ltz−1 |Ξ)×
[

∑
xtz∈XL

(∫
βtz∈Btz (xtz ,Ξ,Ltz−1 )

Itz × [βtz −P(xtz)−MF)] f (βtz)dβtz ×Pr(θ xtz
tz |Ξ,Ltz−1)

+Pr(xtz |Ξ,Ltz−1)× ∑
tn∈{tz+1,...,tN}

∑
∀Ltn−1

Pr(Ltn−1 ∩N
xtz

tn−1
|xtz ,Ltz−1 ,Ξ)

∫
βtn∈Btn (x̃tn (xtz ),Ξ,Ltn−1 )

Itz × [P(xtz)− βtn −T F)] f (βtn)dβtn

+Pr(xtz ,θ
xtz
tz |Ξ)(MF +T F)

)]

where W INV
tz (MF,T F) is the expected welfare of arriving investors at each date tz and πEx

tz (MF,T F) is the

exchange’s expected profit from (22) from limit orders submitted at dates tz and subsequently executed at

17As noted in Parlour and Seppi (2008), such limit orders are essentially “take it or leave it” offers of liquidity.
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later dates. The first term on the right is the welfare of investors who submitted different possible limit

orders xtz ∈ XL at all dates tz where Btz(xtz ,Ξ,Ltz−1) is the interval of private value realizations βtz at time tz

for which a limit order xtz is optimal given the book Ltz−1 and fees Ξ. The second term on the right is the

welfare of investors who subsequently submit market orders x̃tn(xtz) at later dates tn > tz that execute earlier

limit orders xtz , where Btn(x̃tn(xtz),Ξ,Ltn−1) is the corresponding interval of private value realizations βtn at

times tn > tz for which the market order x̃tn(xtz) is optimal at date tn. Investor private valuations at different

dates (i.e., βtz or βtn at tz or tn) are i.i.d. random variables with uniform distributions U [β ,β ]. The indicator

function Itz denotes limit buys (Itz = +1) and sells (Itz = −1) at tz. The conditioning information at date tn

includes both the incoming book Ltn−1 and also the fact that the limit order from tz is still unexecuted as of

date tn−1. In particular, N
xtz

tn−1 denotes the set of states in which the limit order xtz from tz is not executed

before time tn. The optimization in (23) is subject to a non-negative net fee constraint (individual rationality)

for the exchange (MF +T F ≥ 0) and a regulatory tick-size constraint on fees. Using first principles, we

have the following existence result for a general N-period model:

Theorem 6. The equilibrium of a trading game with N periods and a price grid with a fixed number of

prices exists and can be constructed analytically via backward induction.

Proofs for general N-period models are in Appendix A. The functional forms of both the exchange profit

function and the Social Planner total welfare function can be complex as the number of periods grows and as

the number of possible limit prices increases — i.e., as more limit orders become a priori feasible as larger

investor valuation supports encompass more prices. Therefore, rather than explicitly differentiating the ana-

lytic exchange expected profit function or the analytic Social Planner total welfare, we report results using

a search algorithm to solve the first-order conditions for Ξ∗. Section E in the Online Appendix presents the

Simulated Annealing Algorithm (SA) and Grid Search Algorithm (GS) we use to find numerical results.18

18As a robustness check, we confirmed that optimal fees computed using the SA and GS algorithms in the two-period model
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Although we obtain optimal fees of the three-period model numerically, Appendices F.1 and F.2 show how

to obtain a closed-form solution for the three-period benchmark model without and with HFTs.

To illustrate optimal access pricing and trading in a multi-period market, we consider a three-period

market with investor arrival dates {t1, t2, t3}. Two key intuitions drive our results: First, in the two-period

model in Section 2, investors in the first period are monopolists in supplying liquidity since there is no

opportunity for later traders to compete against the first-period trader’s limit orders. In particular, investors

at t2 can only accept or decline liquidity offered by a limit order posted at time t1 since the game ends after

t2. With more than two periods, the first-period liquidity supply is no longer monopolistic, and some amount

of intertemporal competition in liquidity supply is possible. Second and relatedly, a higher level of market

activity with more rounds of investor-arrival increases the opportunities for limit order execution.

Figure 3 shows equilibrium access pricing for the three-period model for different investor valuation

supports.19 Many of the results for the three-period model are similar to the two-period model. There

is still a region of valuation supports with both Taker-Maker and Maker-Taker equilibria and, again, as

the valuation support width ∆ increases, the exchange optimally increases both MF and T F subject to the

regulatory cap, and eventually there is a unique equilibrium with strictly positive fees. However, there are

also some differences. To help explain these differences, Table 4 reports the equilibrium strategies, order-

execution probabilities and other information for the three-period LTM.

Proposition 3. The set of valuation supports associated with rebates is smaller in the three-period model,

and fees are larger, and rebates are smaller.

Comparing Figures 1 and 3 shows that the region with rebate-based access pricing (Maker-Taker or

Taker-Maker) is smaller in the three-period market. The largest valuation support width associated with

agree with the analytic ones.
19Once again, the 3-period exchange profit functions look qualitatively similar to those for the two-period exchange modulo the

asymmetry discussed below.
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rebate-based pricing is 2.3τ in the three-period market vs. 3τ in the two-period framework. In addition,

because trading volume is higher in the three-period model, exchange profits are higher. The levels of fees

(rebates) in the three-period model are also larger (smaller). The intuition for the effect of the number of

trading periods on the use of rebates and the level of access pricing is the following: Holding everything

fixed, the probability limit orders are executed increases because there are more opportunities for investors

with complementary reasons to trade to arrive and trade with each other. As a result, the exchange can set

larger fees and has less of an incentive to offer rebates.

Proposition 4. Maker-Taker and Taker-Maker pricing is asymmetric in the three-period model with smaller

rebates in the Maker-Taker equilibrium than in the Taker-Maker equilibrium.

This asymmetry in rebate-based access pricing is new and is in contrast to the symmetry in our two-

period model and also in Chao et al. (2018). The equilibrium fees are asymmetric because in the three-period

model the investor at time t1 is no longer a monopolist in liquidity provision. An arriving investor at time

t2 can compete with the t1 limit order (by submitting a limit order in the same direction as the t1 limit order

with a better price) or may seek price improvement (by submitting a limit order in the opposite direction of

the t1 limit order rather than hitting it with a market order).

Consider, for example, the equilibrium strategies in Row 1 of Table 4 for a support width ∆ = 0.33τ . In

the Taker-Maker equilibrium, when the investor in period t1 limit buys (LBP−1) at the price P−1, an incoming

seller in period t2 has the option of either market selling (MSP−1) at P−1 or limit selling (LSP1) at the higher

price P1. In contrast, in the Maker-Taker equilibrium, the investor at t1 limit buys (LBP1) at P1 (because of

the rebate MF =−0.428), which consequently means a seller at t2 has no other trading option than market

selling (MSP1) at the high price P1 — since limit selling at P−1 is not allowed given the pre-existing limit

buy at P1 in order to prevent a locked market — and therefore will be charged a positive fee T F = 0.557.20

20The state of the book when the seller arrives at t2 has a limit order at P1, hence the seller does not compete for the provision of
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This theoretical result about the connection between access pricing and locked markets is new.21

Table 4 shows that in the Taker-Maker equilibrium the seller at t2 opts only to market sell at P−1. This

choice is driven by the higher TF rebate (-0.443) that encourages market orders at t2 — and, thus transactions

— over limit orders at t2 in the Taker-Maker equilibrium. The two grey rows 3 and 4 in Table 4 show that if,

off equilibrium, the exchange hypothetically were to use symmetric fees — i.e., the equilibrium Taker-Maker

TF and MF are flipped for the Maker-Taker MF and TF, or if the equilibrium Maker-Taker TF and MF are

flipped and used for the Taker-Maker MF and TF — an incoming seller would opt for either market selling

(MSP−1) or limit selling (LSP1), and exchange profits would be smaller. This explains why, in equilibrium,

the exchange offers a larger TF rebate than the MF rebate.

Observation: The minimum rebate (in absolute value) in the three-period Taker-Maker equilibrium, |T F |,

is strictly positive, whereas it is 0 in the Maker-Taker equilibrium, |MF |, because the regulatory cap on the

Taker-Maker T F binds for smaller support widths than in the Maker-Taker equilibrium.

This discontinuity can be seen in Figure 3. When ∆ is just larger than 2.3τ , the minimum Taker-Maker

rebate |T F | on the left is close to |−1.04| but the minimum Maker-Taker rebate |MF | on the right is 0.

The comparison between the two-period and three-period markets shows how optimal access fees differ

for stocks with different rates of trading activity. In particular, high investor arrival is associated with a

reduced need for rebates to encourage trading. However, empirically, exchanges use rebate-based access

pricing for actively traded stocks. That is another inconsistency with the predictions of basic price-friction

models of access pricing. In contrast, HFT trading in the next section provides a potential explanation.

liquidity as a limit sell order at P−1 is dominated by the market sell order at P1.
21We thank Mao Ye for insights on this point.
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Figure 3: Make Fees and Take Fees in 3-Period Market. This figure reports the equilibrium make fees (MF) and
take fees (TF) in the Large Tick Market (LTM) corresponding to different investor valuation supports ranging from 0.33τ and 5τ ,
(where τ is the tick size in the LTM) on the horizontal black axes. The left (right) part of the figure reports the equilibrium trading
fees consistent with the Taker-Maker (Maker-Taker) fee structure. The figure reports in blue (orange) italic the equilibrium MF
(TF) set by the exchange.

4 High frequency trading and access pricing

Our previous results show that an exchange’s optimal access pricing depends crucially on the mix of in-

vestors in the market. In particular, the more traders have concentrated personal valuations, the greater is the

exchange’s incentive to offer rebates. In real markets, one important type of traders whose personal valu-

ations typically do not differ from the fundamental asset value are high frequency traders (HFTs).22 This

section extends our analysis to include HFT firms.

22There are many types of HFT trading strategies ranging from latency arbitrage to order anticipation. We focus here on HFTs
engaging in a type of reactive liquidity provision.
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Table 4: 3-Period Large Tick Market (LTM). Equilibrium Fees and Trading Strategies. This table reports for different investor valuation support width, ∆ = β −β

expressed in terms of the LTM tick size τ (column 1), the extreme values of the support, β and β̄ (column 2), the equilibrium make and take fees (MF∗ and T F∗) (column
3 and 4), the sum and the absolute difference of the equilibrium MF∗ and T F∗ (column 5 and 6), the equilibrium orders xt1 at t1 other than No Trade (column 7) and the
equilibrium orders xt2 at t2, conditional on the trading strategy indicated at t1 (column 8). The table also shows the associated probabilities of submission, Pr(xt1 |Ξ∗,Lt0) and
Pr(xt2 |Ξ∗,Lt1), (column 9 and 10), as well the cum-fee buy and sell prices Pcum,LB

k and Pcum,MS
k (column 11 and 12), the probability of execution of the order posted at t1,

Pr(θ
xt1
t1 |Ξ

∗,Lt0), (column 13), the equilibrium transaction probability Pr(xtz ,θ
xtz
tz |S,τ,Ξ) (column 14), and the Exchange Expected Profit, πEx(MF∗,T F∗) (column 15). The

third and fourth gray rows report results (marked with a *) for off-equilibrium fees that symmetrically flip the corresponding equilibrium fees. When the equilibrium pricing
is rebate-based for a given support, we report the Taker-Maker fees on the first row and then the Maker-Taker fees on the second row. When, for a given support and set of
fees, there are multiple optimal orders given different valuations βt1 for the investor at t1, these orders are shown on different rows along with the optimal potential responses
at t2.

Support width β , β̄ MF∗ T F∗ MF∗+T F∗ |MF∗-T F∗| Eq.Strategies xtz Pr. Submission Pcum,LB
k Pcum,MS

k Pr. Execution Pr. Trans Exchange E[Profit]
∆ = β −β Pr(xtz |Ξ∗,Ltz−1 ) Pr(θ

xt1
t1 |Ξ

∗,Lt0 ) πEx(MF∗,T F∗)
t1 t2 t1 t2

0.572 -0.443 0.129 1.015 LBP−1 MSP−1 0.284 0.328 10.072 9.943 0.548 0.391 0.051
0.33τ 9.833, 10.167

-0.428 0.557 0.129 0.985 LBP1 MSP1 0.284 0.328 10.072 9.943 0.548 0.391 0.051

0.557* -0.428* 0.129 0.985 LBP−1* MSP−1* & LSP1* 0.328* 0.266* & 0.062* 10.057* 9.927*& 9.943 0.475* 0.388* 0.050*
0.33τ* 9.833, 10.167

-0.443* 0.572* 0.129 1.015 LBP1* MSP1* 0.328* 0.284* 10.057* 9.927* 0.487* 0.383* 0.050*

0.716 -0.328 0.388 1.044 LBP−1 MSP−1 0.284 0.328 10.216 9.828 0.548 0.392 0.152
τ 9.500, 10.500

-0.284 0.672 0.388 0.956 LBP1 MSP1 0.284 0.328 10.216 9.828 0.548 0.392 0.152

0.933 -0.156 0.777 1.089 LBP−1 MSP−1 0.284 0.328 10.433 9.656 0.548 0.392 0.304
2τ 9.000, 11.000

-0.067 0.845 0.778 0.912 LBP1 MSP1 0.284 0.328 10.433 9.655 0.548 0.392 0.304

1.000 -0.102 0.898 1.102 LBP−1 MSP−1 0.284 0.328 10.500 9.602 0.548 0.392 0.351
2.31τ 8.850, 11.150

-0.001 0.898 0.897 0.899 LBP1 MSP1 0.284 0.328 10.499 9.602 0.548 0.392 0.351

2.4τ 8.800, 11.200 0.019 0.913 0.932 0.894 LBP1 MSP1 0.284 0.328 10.519 9.587 0.548 0.392 0.365

3τ 8.500, 11.500 0.155 1.000 1.155 0.845 LBP1 MSP1 0.282 0.333 10.655 9.500 0.556 0.395 0.456

3.1τ 8.450, 11.550 1.000 0.132 1.132 0.868 LBP−1 LBP1, MSP−1, LSP1 0.339 0.016, 0.278, 0.060 10.500, 11.500 9.368, 9.500 0.487 0.414 0.468

LBP−1 LBP1, MSP−1, LSP1, LSP2 0.367 0.125, 0.231, 0.125, 0.270 10.500, 11.500 9.078, 9.500, 10.500 0.404 0.430 0.612
4τ 8.000, 12.000 1.000 0.422 1.422 0.578

LBP−2 LBP−1, MSP−2, LSP1, LSP2 0.133 0.375, 0.000, 0.356, 0.270 9.500, 10.500 8.078, 10.500, 11.500 0.012

LBP1 LBP2, MSP1 0.149 0.009, 0.393 11.015, 12.015 9.562 0.628 0.432 0.627
4.1τ 7.950, 12.050 0.515 0.938 1.453 0.423

LBP−1 LBP1, MSP−1, LSP1 0.347 0.252, 0.088, 0,408 10.015, 11.015 8.562, 9.985 0.187

LBP1 LBP2, MSP1 0.108 0.052, 0.400 11.240, 12.240 9.500 0.619 0.451 0.785
5τ 7.500, 12.500 0.740 1.000 1.740 0.260

LBP−1 LBP1, MSP−1, LSP1 0.344 0.252, 0.137, 0.315 10.240, 11.240 8.500, 9.760 0.259



Our main result is that the constant presence of HFT liquidity providers increases the incentive for

rebate-based access pricing by profit-maximizing exchanges. This theoretical linkage is consistent with

the empirical prevalence of both rebate-based access pricing and HFTs. We also demonstrate a third non-

equivalence of Maker-Taker vs Taker-Maker pricing with HFTs. This non-equivalence is due to asymmetries

in how Maker-Taker and Taker-Maker pricing differentially incentivize posted liquidity in the limit order

book vs latent liquidity from HFT orders. HFT firms differ from regular investors (INV) in four ways in

our model: First, rather than having stochastic private valuations, HFT firms have the same non-random

valuation equal to the mean INV valuation v. Second, rather than arriving sequentially, our HFTs are con-

tinually present. Unlike in Foucault et al. (2013), our HFTs have no monitoring costs. Thus, they can react

quickly to market events (i.e., order submissions by INVs) before the next INV arrives. Third, as in Li et al.

(2019), our HFT firms are opportunistic liquidity providers who take advantage of any profitable trading

opportunities in limit orders from arriving regular INVs.

For example, if an INV posts an aggressive buy (sell) limit order in period tz such that the associated

cum-fee price for a sell (buy) market order is above (below) the HFT valuation v, an HFT firm quickly

submits a sell (buy) market order within the same period tz to take the other side of the profitable trade.

We call these fast market orders. If more than one HFT submits a fast market order, then one is randomly

selected for execution, and the rest are cancelled. Fourth, maintaining standing limit order positions is costly

for HFTs.

Budish, Cramton, and Shim (2015) endogenize limit order submission costs by showing there is a natural

bid-ask spread for HFT limit orders given endogenous picking-off costs for stale orders.23 For simplicity,

however, we just assume directly that HFTs are unwilling to provide ex ante liquidity via limit orders (as a

23Allowing for the possibility that HFTs might sometimes use limit orders when they are unwilling to use fast market orders
given a hypothetical exchange access pricing structure would simply complicate the analysis. In Budish et al. (2015), the break-
even condition in a limit order book such that HFT firms supply liquidity is that the payoff from market making is at least equal
to the costs of being sniped by other competing HFT firms. Thus, our assumption of no HFT limit orders is simply a convenient
reduced-form for picking-off risks for a smart trading crowd as first suggested in Seppi (1997).
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reduced-form for picking-off costs), but that HFTs are willing to provide liquidity ex post to regular INVs

via fast market orders. This friction in HFT liquidity-provision simply means there is not a tight (i.e, one

tick) standing bid-ask spread. This creates space for the trading dynamics in our model. Our analysis shows

how rebate-based access pricing can counteract this friction.

Previous research on HFTs often draws a sharp dichotomy between two types of HFT firms: HFT

snipers who consume liquidity via market orders and HFT market makers who trade via limit orders (as

in, e.g., Budish et al. (2015)). Our modeling of HFTs blurs this distinction. In our model, aggressive INV

orders can be interpreted as "requests for liquidity," and our HFTs provide reactive liquidity in the form of

transaction consummation. Effectively, they function in a limit order market like dealers in that they respond

ex post to arriving orders. This is consistent with empirical evidence in Latza, Marsh, and Payne (2014) and

Hendershott and Riordan (2013).24

The HFT optimization problem is as follows: HFTs have the ability to react and submit orders in period tz

after any orders submitted by the INV in period tz. Thus the HFT action set, XHFT
tz = {MBPk(Ltz )

,MSPk(Ltz )
,NT},

consists of fast buy and sell market orders — where k(Ltz) denotes the BBO price at which the HFT hits

INV limit orders at time tz — and also the no-trade alternative.

In each period tz, HFT firms choose their order xHFT
tz to maximize their expected payoff depending on

whether or not there is an aggressive limit order in the book Ltz it would be profitable to trade with:

max
xHFT

tz ∈XHFT
tz

π
HFT
tz (xHFT

tz |Ξ,Ltz) =


[v −P(xHFT

tz )−ξ (xHFT
tz )] if xHFT

tz is a buy & there is a limit sell in Ltz

[P(xHFT
tz )− v−ξ (xHFT

tz )] if xHFT
tz is a sell & there is a limit buy in Ltz

0 if xHFT
tz is NT .

(24)

The execution probability for a fast market order is 1 if it is submitted. The key intuition is that HFTs

provide latent liquidity: HFTs are continuously present and willing to immediately take the opposite side of

24In today’s markets, HFT firms can act both as passive (e.g., Quantlab and Jump Trading) and as aggressive liquidity providers
(Hudson River Trading and Citadel Securities). In addition, HFT firms are sensitive to rebate based pricing and can easily adjust
their dynamic trading strategies to take advantage of profitable trading fees.
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limit orders posted by INVs provided that the posted limit prices are sufficiently aggressive. In particular,

the corresponding cum-fee price must higher than v for a MS and lower than v for a MB.

The INV optimization problem is formally the same as in (2) with the same action set X INV
tz as without

HFTs. However, the specifics of the order-execution probabilities Pr(θ
xINV

tz
tz |Ξ,Ltz−1) with HFTs differ from

those without HFTs due to the possibility of immediate execution of aggressive INV limit orders by HFT

fast orders. For example, limit orders are now possible in equilibrium for INVs in the final trading time t3

due to the possibility of execution by the HFTs. However, if access pricing is such that HFTs choose not to

trade, then the market reduces to a market without HFTs.

Competition by the HFTs simplifies the structure of equilibrium. Since HFTs are always willing to buy

and sell at v, the exchange can set the fees and rebates Ξ so that in equilibrium the cum-fee prices paid

and received by the HFTs is their break-even valuation v. Considering our regulatory constraint that fees

cannot exceed the tick size, this has the implication that HFTs only trade at either P−1 or at P1. In addition,

when the exchange set Taker-Maker or Maker-Taker pricing, limit buys at prices below P−1 and limit sells

at prices above P1 are never used in equilibrium. HFTs and INVs know such limit orders would always be

undercut by future HFTs who will be willing to trade via fast market orders at their break-even cum-fee

prices. Therefore, the INVs choose between submitting limit orders at P−1 and P1, market orders (if there

are any pre-existing limit orders in the book at P−1 and P1), and NT .

The exchange sets its access fees and rebates to maximize its expected payoff given the INV and HFT

behavior induced by its access pricing Ξ. Formally, this problem is the same as in (22) but now with the

specific forms of order-submission and order-execution probabilities associate with HFTs.

A Subgame Perfect Nash Equilibrium consists of: i) Order-submission strategies xINV
tz and xHFT

tz for

INVs and HFTs that maximize their expected trading profits given the order-execution probabilities they

induce and ii) access fees Ξ that maximize the exchange’s expected profit.
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Theorem 7. The equilibrium of an N-period model with HFTs exists and can be constructed using an

analytic recursion.

The proof of Theorem 7 is in Appendix A. Given the market access fees, the trading subgame can

be solved in closed-form to determine the equilibrium order-submission strategies in each period of the

trading game. The equilibrium execution probabilities, the equilibrium thresholds and the equilibrium order

submission strategies, can be derived using an analytic recursion as described in Appendix F.2. However,

solving for profit-maximizing access pricing in the three-period model with HFTs can be complicated, so

we again solve for optimal exchange fees using the SA and GS numerical algorithms in section E of the

Online Appendix.

An important consideration in optimal access pricing by the exchange is that HFTs are willing to trade at

cum-fee prices equal to their break-even valuation v, which is ex ante common knowledge. This fact allows

take fees and rebates to be set to reduce HFT trading profits to zero and to use these savings to increase the

exchange’s profit per trade or to reduce INV trading costs and thereby increase trading and, thus, increase

exchange profits or total welfare.

Figure 4 shows on the left (right) the equilibrium fees and rebates in the three-period market with HFTs

for different INV valuation supports for the exchange (social planner). Table 5 shows cum-fee prices, op-

timal orders, and other details. Comparing the results with HFTs for the exchange in Figure 4 with the

previous three-period model without HFTs in Figure 3, there are several points to make: First, rebate-based

access pricing is optimal for a wider range of INV valuation supports with HFTs than in markets without

HFTs. In particular, the region denoting Taker-Maker access pricing extends up to a maximum valuation

support width of 4τ with HFTs, whereas it is only 2.3τ in the three-period market without HFTs. These

results lead to our fourth empirical prediction:

Empirical Prediction 4: Markets with HFTs are more likely to have rebate-based access pricing.
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This result is a new explanation for widespread rebate-based access pricing in U.S. markets since Reg NMS.

In particular, it is consistent with empirical findings of Cardella et al. (2015) that most U.S. exchanges

adopted a rebate-based pricing in 2008 following Reg NMS and the concurrent growth of HFT trading.25

Second, Taker-Maker and Maker-Taker access pricing both maximize the exchange’s expected profit

when investor valuations are similar to each other (i.e., the valuation support is small). The corresponding

fees and rebates are asymmetric, but they result in identical cum-fee prices and transaction outcomes —

in terms of probabilities of execution and submission — since investors undo differences in the two access

pricing schedules by submitting limit orders at different endogenous posted prices. Figure 4 and Table

5 show that the exchange sets either the MF or TF to attract HFTs. For example, when the valuation

support width is 0.33τ , the exchange in the Taker-Maker regime pays a take rebate equal to half a tick

(T F = −0.50τ) so that HFT firms have an incentive to submit fast market sells to execute INV aggressive

limit buys at a posted price of P−1 and, thus, receive a cum-fee MS price of P−1 +T F = v. Similarly, in the

Maker-Taker regime the exchange charges a take fee equal to half a tick (T F = 0.50τ), so that HFTs have an

incentive to submit fast market sells to take the other side of aggressive INV limit buys with a posted price

at P1 and, thus, receive a cum-fee MS price of P1−T F = v. Since HFTs break-even at v, the exchange has

no incentive to offer a rebate greater than half a tick in the Taker-Maker regime. In the Maker-Taker regime

instead the exchange cannot charge the HFTs more than half a tick.

Third, once INV valuations are sufficiently heterogeneous ex ante, the equivalence between Taker-Maker

and Maker-Taker pricing breaks down. With a valuation support width ∆ between 2τ and 4τ , Taker-Maker

pricing with the maximum possible make fee MF = 1 and a take rebate T F = −0.5 is the unique optimal

access pricing for the exchange. The TF rebate gives HFTs their minimum acceptable expected trading

profit, and the INV investors are paying the maximum possible make fee MF given the regulatory constraint.

25Similar results hold also in the small tick market (STM). In results available from the Authors upon request, we show that
when, all else equal, the tick size is smaller the exchange has a a smaller incentive to use rebate-based access pricing.
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Notice there is no equivalent Maker-Taker pricing regime. For support widths ∆ over the interval [2τ,4τ], the

Maker-Taker pricing regime cannot reproduce the same cum-fee prices and transaction outcomes as in the

Taker-Maker pricing regime. The reason is as follows: i) It is not profitable for an HFT seller to take the other

side of a limit buy at P−1 using a fast market sell (and receive a cum-fee MS price of P−1−T F < P−1 < v),

and so a LBP−1 from an INV remains standing in the book into later periods. ii) A standing limit buy at P−1

from an INV in an earlier period preempts liquidity provision by HFT buyers in later periods. In particular,

a later INV seller cannot submit an aggressive limit sell at P−1 to trade with a later HFT buyer because, with

a standing LB in the book at P−1, the later INV’s aggressive LSP−1 would be automatically converted into

a MSP−1 and crossed with the standing LBP−1 (i.e., the market cannot be locked with standing limit buy

and limit sell orders both at P−1). However, the cum-fee MS price when an INV seller takes the other side

of a standing LBP−1 is P−1−T F < P−1, which is worse than the cum-fee LS price P−1−MF > P−1 on an

aggressive limit sell to trade with an HFT.26 Given the worse terms of trade when INVs are blocked from

accessing HFT latent liquidity by standing limit orders, there is less trading by INV investors. iii) When

the investor valuation support widens sufficiently, the execution probability of a ”blocking” limit buy at P−1

becomes large enough such that some INVs prefer the probability of price improvement by posting a less

aggressive limit buy LBP−1 over certain execution by trading with an aggressive LBP1 with an HFT.

This analysis points out a fundamental incentive-compatibility difference between Maker-Taker and

Taker-Maker pricing with HFTs. Taker-Maker pricing directly subsidizes HFT liquidity provision (making

HFTs willing to take the other side of INV limit orders with worse prices for the HFTs) and penalizes

limit order submission (which shrinks the ex ante feasible limit order action set for INVs to a single posted

price, P−1, for limit buys and a single posted price, P1, for limit sells). In contrast, Maker-Taker pricing

subsidizes INV limit orders and penalizes HFT market orders. Maker-Taker pricing can implement the same

26With Maker-Taker MF < 0.
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equilibrium outcomes as with Taker-Maker pricing provide the INVs post limit orders at more aggressive

prices (i.e., which are less attractive for INVs but more attractive for the HFTs) so as to pass through

the subsidy to the HFTs. However, if the INV investor valuation support is too wide, less aggressive limit

orders also become ex ante feasible. In order to implement the Taker-Maker equilibrium, it must be incentive

compatible for INVs to choose to post the more aggressively priced limit order than the less aggressive order.

As our analysis shows, this is incentive compatible when the valuation support width ∆ is less than 2τ (for

which the probability of less aggressive limit order execution is low), but not when ∆ is greater than 2τ (and

the probability of less aggressive limit order execution is higher). Once again, this incentive compatibility

issue is not present in the Taker-Maker regime because HFTs are subsidized directly and because there is

only one ex ante feasible LB and LS price respectively.

Fourth, when INVs become even more heterogeneous, and the investor valuation support in Figure 4

widens beyond 4τ , the exchange exploits the high ex ante gains-from-trade by setting strictly positive make

and take fees for all market participants. In particular, when the support width ∆ reaches 4τ , optimal access

pricing changes discontinuously, and the exchange optimally sets the take fee to T F = 0.500 (so HFT firms

will submit fast market sells at P1) and sets the make fee to MF = 0.520 (so selling at P−1 will be profitable

for enough INVs). However, now, as seen in Table 5, some INVs submit less aggressive limit buys LBP−1

(for price improvement) rather than aggressive limit buys LBP1 to trade with an HFT. Figure 4 shows that, as

the support widens further beyond 4τ , the exchange holds the TF constant at 0.500 and gradually increases

the MF to take advantage of the larger INVs’ gains from trade.

To summarize, our model shows that exchange profits increase when HFTs are active in the market.

The reason is that HFTs are willing to both buy or sell, unlike regular INVs who have directional trading

demands. Thus, participation by HFT firms can generate greater volume than INVs alone. Exchanges,

therefore, use rebate-based access pricing to cross-subsidize HFTs trading. This is the reason the region
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associated with optimal take rebates is larger with HFTs than in the three-period model without HFTs.

Empirically, rebate-based pricing via Maker-Taker pricing is more common than rebate-based Taker-Maker

pricing. In our model, however, Taker-Maker rebate pricing is optimal over a wider set of market para-

meterizations than Maker-Taker pricing. This is because of the assumption that our HFT firms trade via

fast market orders. In a model in which the assumed HFT trading friction is less, HFTs might also provide

liquidity through limit orders and, thus, subsidizing HFT limit orders via Maker-Taker pricing is likely to

become more viable. Thus, our key point here is the role of rebate-based access pricing as a means to sub-

sidize HFT liquidity provision. Our HFT results are also consistent with Foucault et al. (2013), who show

that the fee breakdown matters when the tick size is positive. Holding the total fee constant, Foucault et al.

(2013) show that when the gains-from-trade to market takers increase relative to the gains-from-trade to the

market makers, the optimal trading fees become larger.

Social Planner and HFTs: To assess further the welfare impact of HFT firms, we consider access pricing

by a Social Planner in the three-period market with HFTs:

max
MF,T F

−τ<MF,T F<+τ

MF+T F≥0

∑
tz∈{t1,t2,t3}

(
W INV

xtz
(MF,T F)+W HFT

xtz
(MF,T F)+π

Ex
tz (MF,T F)

)
(25)

= ∑
tz∈{t1,t2}

∑
xtz∈XL

Pr(Ltz−1 |Ξ)
(∫

βtz∈Btz (xtz ,Ξ,Ltz−1 )
Itz × [βtz −P(xtz)−MF)] f (βtz)dβtz ×Pr(θ xtz

tz |Ξ,Ltz−1)

+Pr(xtz |Ξ,Ltz−1)Htz Itz × [P(xtz)− v−T F ]

+Pr(xtz |Ξ,Ltz−1)(1−Htz) ∑
xtn∈{xt2 ,xt3}

∑
∀Ltn−1

Pr(Ltn−1 ∩N
xtz
tn−1
|xtz ,Ltz−1 ,Ξ)

∫
βtn∈Btn (x̃tn (xtz ),Ξ,Ltn−1 )

Itz × [P(xtz)− βtn −T F)] f (βtn)dβtn

+
[
Pr(xtz ,θ

xtz
tz |Ξ)

]
(MF +T F)

)
.

The expression for total welfare with HFTs in (25) and the associated logic is parallel to the three-period of

total welfare in (23) but with the addition of HFT welfare. A limit order submitted at tz that is immediately

executed by an HFT at date tz leads to the HFT welfare in line 3, but if the limit order is not executed
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by an HFT and is instead executed later by an arriving regular investor at some date tn > tx, then the INV

submitting that market order has the welfare in line 4. The indicator function Htz keeps track of whether a

limit order at time tz is executed by the HFT at time tz (Htz = 1) or not (Htz = 0).

The Subgame Perfect Equilibrium with a Social Planner and HFTs, takes the following form: With

valuation support widths of up to 2τ , total welfare is maximized by access pricing:

Ξ
∗ = {MF∗,T F∗}=


MF∗ =−0.5τ & T F∗ = 0.5τ if Maker-Taker

MF∗ = 0.5τ & T F∗ =−0.5τ if Taker-Maker

(26)

Figure 4 on the right, shows the equilibrium MF (solid blue line) and TF (dashed orange line) set by a Social

Planner. The equilibrium is symmetric for S≤ 2τ , whereas it is unique Taker-Maker for 2τ < S≤ 5τ .

In the Maker-Taker equilibrium, the INV trading strategy is stationary. In each period, INVs trade by

posting limit buy orders at P1 (and limit sell orders at P−1) and competition drives HFTs to immediately

take these orders by trading at their break-even cum-fee price that includes a positive take fee T F = 0.5τ .

Symmetrically, in the Taker-Maker equilibrium, the INV trading strategies are also stationary. INVs trade

by posting limit buy orders at P−1 (and limit sell orders at P1), and HFTs trade at the break-even cum-fee

price that include the rebate of half a tick, T F = −0.5τ . Note that the Social Planner’s take fees/rebates

are the same as those set by a profit-maximizing exchange. However, the Social Planner sets a larger MF

rebate with Maker-Taker pricing and a smaller positive MF fee in Taker-Maker pricing until the exchange

just breaks even in order to encourage more INV limit orders.

Once the valuation support exceeds 2τ , Maker-Taker pricing is suboptimal. This is because INVs with

private valuations βt close to v would start posting limit buys at P−1 rather than at P1 (and the reverse for

limit sells). Although individually optimal for these investors, it reduces total welfare. Thus, the unique
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Social Planner optimal pricing is Taker-Maker for a valuation support greater than 2τ .

To summarize, since HFTs are continuously willing to buy or sell, the Social Planner maximizes total

welfare by setting access fees and rebates to maximize total volume subject to constraints that trading must

be individually rational for the INVs, the HFTs, and the exchange. Once again, since HFTs trade exclusively

via fast market orders in our model, Taker-Maker pricing subsidizes HFTs directly whereas as with the profit-

maximizing exchange market, there is an incentive compatibility complication that limits the usefulness of

Maker-Taker pricing. Intuitively we expect again that if HFTs could post limit orders, then Maker-Taker

pricing might become even more robust as a way to maximize total welfare.

5 Welfare

Access pricing that maximizes exchange profits does not necessarily improve the overall welfare of other

market participants. This section revisits the four markets discussed in the previous sections — the two-

period LTM, the two-period STM and three-period with and without HFTs — and investigates how access

pricing affects the welfare of market participants.

We compare equilibrium welfare in our four market settings under three different regimes in which

access pricing is set by an exchange; by a Social Planner; and a “benchmark” case with no fees or rebates

(i.e., MF = T F = 0). Figures 5 and 6 show our welfare results for different investor valuation supports ∆.

Total welfare is computed for all investors (INV ) and the exchange (Ex) at all dates:

TW = ∑
tz∈{t1,...,tN}

(
W INV

tz (MF,T F)+π
Ex
tz (MF,T F)

)
(27)
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Figure 4: Pattern of Make Fees and Take Fees: 3-Period Model with High Frequency Traders (HFT) This figure shows the equilibrium make
fees (MF) and take fees (TF) in the Large Tick Market (LTM) corresponding to different investor valuation supports ranging from 0.33τ to 5τ (where τ is the tick size in
the LTM) on the horizontal black axes. The left (right) part of the figure reports the equilibrium trading fees consistent with the Taker-Maker (Maker-Taker) fee structure.
The left figure reports in blue (orange) solid (dashed) line the equilibrium MF (TF) set by the exchange. The right figure reports in blue (orange) solid (dashed) line the
equilibrium MF (TF) set by the Social Planner.
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Table 5: 3-Period Large Tick Market with HFTs: Equilibrium Fees and Trading Strategies. This table reports for different investor valuation support width ∆ = β−β

are expressed in terms of the LTM tick size τ (column 1), the extreme values of the support, β and β̄ (column 2), the equilibrium make and take fee, MF∗ and T F∗, (column
3 and 4), the sum and the absolute difference of the equilibrium MF∗ and T F∗ (column 5 and 6), the equilibrium orders xt1 at t1, other than No Trade (column 7) and the
equilibrium orders xt2 at t2 conditional on the trading strategy indicated at t1 (column 8). The table also shows the associated probabilities of submission, Pr(xt1 |Ξ∗,Lt0) and
Pr(xt2 |Ξ∗,Lt1) (column 9 and 10), as well the cum-fee buy and sell price, Pcum,LB

k and Pcum,MS
k , (column 11 and 12), the probability of execution of the order posted at t1,

Pr(θ
xt1
t1 |Ξ

∗,Lt0), (column 13) and the exchange expected profit πEx(MF∗,T F∗) (column 14). When the equilibrium pricing is rebate-based for a given support, we report
the Taker-Maker fees on the first row and then the Maker-Taker fees on the second row. When, for a given support and set of fees, there are multiple optimal orders given
different valuations βt1 for the investor at t1, these orders are shown on different rows along with the optimal potential responses at t2. We do not report the order-submission
probabilities for HFT fast market orders (e.g. MSPHFT

−1 ) after aggressive limit orders because in equilibrium they are always equal to 1. We only report the Pr. Execution of
the limit order posted at t1.

Support width β , β̄ MF∗ T F∗ MF∗+T F∗ |MF∗-T F∗| Eq. Orders xtz Pr. Submission Pcum,LB
k Pcum,MS

k Pr. Execution Exchange E[Profit]
∆ = β −β Pr(xtz |Ξ∗,Ltz−1 ) Pr(θ

xt1
t1 |Ξ

∗,Lt0 ) πEx(MF∗,T F∗)
t1 t2 t1 t2

0.585 -0.500 0.085 1.085 LBP−1, MSPHFT
−1 LBP−1, MSPHFT

−1 0.245 0.245 10.085 10.000 1 0.127
0.33τ 9.833, 10.167

-0.415 0.500 0.085 0.915 LBP1, MSPHFT
1 LBP1, MSPHFT

1 0.245 0.245 10.085 10.000 1 0.127

0.750 -0.500 0.250 1.250 LBP−1, MSPHFT
−1 LBP−1, MSPHFT

−1 0.250 0.250 10.250 10.000 1 0.375
τ 9.500, 10.500

-0.250 0.500 0.250 0.750 LBP1, MSPHFT
1 LBP1, MSPHFT

1 0.250 0.250 10.250 10.000 1 0.375

0.975 -0.500 0.475 1.475 LBP−1,MSPHFT
−1 LBP−1, MSPHFT

−1 0.250 0.250 10.475 10.000 1 0.712
1.9τ 9.050, 10.950

-0.025 0.500 0.475 0.525 LBP1, MSPHFT
1 LBP1, MSPHFT

1 0.250 0.250 10.475 10.000 1 0.712

2τ 9.000, 11.000 1.000 -0.500 0.500 1.500 LBP−1, MSPHFT
−1 LBP−1, MSPHFT

−1 0.250 0.250 10.500 10.000 1 0.750

3τ 8.500, 11.500 1.000 -0.500 0.500 1.500 LBP−1, MSPHFT
−1 LBP−1, MSPHFT

−1 0.333 0.333 10.500 10.000 1 1.000

3.9τ 8.050, 11.950 1.000 -0.500 0.500 1.500 LBP−1, MSPHFT
−1 LBP−1, MSPHFT

−1 0.372 0.372 10.500 10.000 1 1.115

LBP1, MSPHFT
1 LBP−1; LBP1, MSPHFT

1 0.130 0.333, 0.161 11.020, 10.020, 11.020 10.000, 10.000 1 1.167
4τ 8.000, 12.000 0.520 0.500 1.020 0.020

LBP−1 LBP1, MSPHFT
1 ; MSP−1, LSP1 0.365 0.245, 0.168, 0.327 10.020, 11.020 9.000, 10.000, 9.980 0.315

LBP1, MSPHFT
1 LBP−1; LBP1, MSPHFT

1 0.120 0.286, 0.162 11.257, 10.257, 11.257 10.000, 10.000 1 1.522
5τ 7.500, 12.500 0.757 0.500 1.257 0.257

LBP−1 LBP1, MSPHFT
1 ; MSP−1, LSP1 0.328 0.259, 0.236, 0.212 10.257, 11.257 9.000, 10.000, 9.743 0.391



in three cases: First, ExchangeTW is total welfare given the optimal trading fees set by the profit-maximizing

exchange. Second, BenchmarkTW is computed using zero fees and rebates {MF† = 0,T F† = 0}. Third,

SocialPlannerTW is total welfare given optimal fees {MF∗,T F∗} chosen by the Social Planner. The figures

also show the welfare breakdown for investors (INV ), HFT firms (HFT ) where relevant, and the exchange

(EXCH) for different investor valuation supports. Finally, the figures show three different regions: The

PIW region in which optimal fees by the profit-maximizing exchange are Pareto-improving with all market

participants better off relative to the no-fee benchmark. The RW region in which optimal access pricing by

an exchange increases total welfare, but reallocations of welfare are needed from the exchange to investors

for investors to be better off. The DL region in which total welfare is lower due to dead weight losses, but

the exchange is better off. Our findings are consistent across all four market settings.

• The PIW region (in which the exchange’s profit-maximizing fees improve welfare for all market

participants) happens for small valuation supports ∆. This is expected, since, when the support is

small relative to the tick size, there is no-trade without a take or make rebate. For example, in the

LTM when the support equals the tick size (i.e., β = P−1 and β = P1) even though some investors are

willing to limit buy (sell) at P−1 (P1), no investors will market sell (buy) at P−1 (P1) without a rebate.

In general, the reason why rebate based pricings Pareto improve welfare, even when there are gains

from trade, is an externality in investor behavior: Individual investors care about both the probability

of order execution (which increases total welfare) and also about their execution price (which affects

their personal payoff but is neutral for total welfare). When the valuation support is small relative to

the tick size, there are many investors for whom the favorable execution-price externality makes them

unwilling to trade at available prices. An exchange can increase its expected profit and simultaneously

improve total welfare by setting fees and rebates to reduce the price-improvement externality and,

thereby, increase the order-execution probability.
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• The RW region (in which total welfare increases but investors are worse off unless there are Pareto

transfers from the exchange to investors) occurs for somewhat larger valuation supports. As the valu-

ation support widens, a growing share of arriving investors have sufficiently strong trading demands

(extreme private valuations) that rebates are not needed for trading. However, there is also an extern-

ality in exchange behavior. Exchange expected profits and, thus, their access pricing depend on their

net fee (which reduces total welfare) as well as on the order-execution probability. When valuation

dispersion becomes larger relative to the tick size, exchanges set larger net fees to increase their ex-

pected profit although this reduces order-execution probabilities. For a range of support widths ∆, the

net effect of rebate-based exchange fees is to increase total welfare relative to the no-fee-and-rebate

equilibrium, but with the exchange capturing a growing share of the gains-from-trade at the expense

of investors. This leads to the RW region.

• The PIW and RW regions shrink when the tick size is smaller and when the number of trading periods

is larger. In particular: the PIW (RW) region extends up to supports of 1.27τ (1.88τ) for the LTM

but only to 0.42τ (0.63τ) for the STM; and the PIW (RW) region only extends to supports of 1.2τ

(1.62τ) for the three-period LTM down from 1.27τ (1.88τ) for the two-period LTM. The effect is

stronger when decreasing the tick size,27 but the intuition is similar. The frictions associated with the

price grid discreteness are alleviated both when the tick size is smaller and when the number of trading

period is larger. Consequently, the positive effect of rebates on investors’ welfare is also smaller.

• Finally, the DL region (where the exchange is better off but there are total dead weight losses relative

to the no-fee equilibrium because the welfare gains for the exchange are smaller than the investors

losses) happens when the investor valuation support is even larger. For example, for the two-period

market, the DL region extends beyond 1.88τ , for the three-period beyond 1.62τ , and for the three-

27We only increase the number of periods by just one trading round, so the increase in trading activity is positive but small.
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period with HFTs it extends beyond 3.90τ .28 Once the dispersion in investor valuations is large

relative to the tick size, the exchange’s profit-maximizing net fee becomes so large that it reduces

total welfare. The shaded areas reported in Figures 5 and 6 show the DL region due to rebate-based

pricing — as opposed to positive pricing — set by a profit-maximizing exchange.29 As the incentive

for the exchange to set rebate-based pricing decreases with tick size and trading activity, the dark

shaded DL region also decreases when the tick size is smaller and the trading game is longer.

Interestingly, in the framework with 3-period and HFTs the dark shaded DL region disappears and

there are no dead weight losses associated with rebate based pricing by the exchange. In contrast, the

RW region increases substantially with HFTs. The reason being that the rebates set by the exchange

subsidize an increase in trading opportunities for all investors thus strongly increasing trading oppor-

tunities for investors and consequently enhancing exchange profits, with the result that the increase in

exchange profits induced by rebate-based pricings is larger than the increase in investors losses.

Figures 5 and 6 also show the welfare improvement by the Social Planner. The setting that benefits

the most from the Social Planner is the market with HFT firms. The framework that benefits the least is

the small tick market. This is intuitive. With a small tick size, the benefit from rebate-based pricing is the

smallest. Note that in all DL regions in which an exchange uses rebate-based pricing, a Social Planner also

sets rebate-based pricing. Thus, the dead weight loss is not due to rebates per se, but to the fact that the

exchange sets rebates to maximize its own profits. When setting rebates, the exchange faces a trade-off. The

smaller the investors gains from trade, the larger the rebates necessary to induce them to participate and the

smaller the exchange net revenue from each trade. Hence, in equilibrium the exchange does not subsidise

investors with smaller gains from trade. The Social Planner pricing instead aims to maximize all investors

welfare and therefore it also subsidises traders with smaller gains from trade. This is the reason why in
28In the 2-period frameworks the DL region starts earlier, as the STM is isomorphic to the LTM framework - see Theorem 2.
29See Tables 1, D1, 4 and 5
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Figures 5 and 6 SocialPlannerTW is always greater or equal than BenchmarkTW so that in correspondence

of the DL region, the Social Planner rebate-based pricing leads to an improvement in total welfare.

Our welfare results have policy implications. In particular, rebate-based pricing is not detrimental per se

to investors given price frictions. It is how exchanges set fees in combination with rebates that can generate

dead weight losses. Our result, therefore, suggests a positive potential role for regulation limiting the ability

of exchanges to set fees that are too large. Our results also have policy implications for the regulatory cap

on access fees.

Proposition 5. Optimal access pricing by an exchange: When the valuation support ∆ is sufficiently large

such that the exchange optimally sets strictly positive fees, a smaller regulatory cap on fees can increase

total welfare. However, when ∆ is sufficiently small such that welfare is increasing in rebate-based pricing,

a tighter regulatory cap on fees can possibly reduce total welfare.

Optimal access pricing by the Social Planner: Tighter regulatory caps on fees can potentially reduce total

welfare.

For optimal access pricing by an exchange, this proposition follows immediately from the existence

of welfare-increasing and deadweight loss regions with rebate-based pricing. The intuition is that, when

rebates are needed to encourage trading, a cap on fees potentially reduces the possible rebates the exchange

can afford. In contrast, when the exchange uses strictly positive fees, which increases its profits but which

leads to deadweight welfare losses, a tighter cap on its fees can alleviate this problem. For access pricing

by the Social Planner, the intuition follows from the fact that the Social Planner always optimally needs

rebate-based access pricing to improve total welfare.
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Figure 5: Welfare: 2-period LTM and STM This figure shows how the welfare of the Exchange (EXCH) - dashed line, Investors, (INV - dotted line) and Total Welfare (INV +
EXCH - dashed-dotted line) change with the investors’ support (S) in the large tick market (LTM) on the left and in the small tick market (STM) on the right. Both figures also report the welfare
of investors under the Benchmark regime (solid line) with no trading fees (MF=TF=0). The support is expressed in large tick unit of measure (τ). Both figures show the results for three regions:
Pareto Improvement Welfare (PIW), Redistribution Welfare (RW) and Deadweight Loss (DL).
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Figure 6: Welfare: 3-period LTM and 3-period LTM with HFT This figure shows on the left how the welfare of the Exchange (EXCH) - dashed line, Investors, (INV -
dotted line) and Total Welfare (INV + EXCH - dashed-dotted line) change with the investors’ support (S) in the large tick market (LTM); and on the right it shows how the welfare of the Exchange
(EXCH) - dashed line, Investors and High Frequency Traders (INV&HFT - dotted line) and Total Welfare of Investors, HFTs and the Exchange (INV&HFT+EXCH - dashed-dotted line) change
with the investors’ support (S). Both figures also report the welfare of investors under the Benchmark regime (solid line) with no trading fees (MF=TF=0). The support is expressed in large tick
unit measure (τ). Both figures show the results for three regions: Pareto Improvement Welfare (PIW), Redistribution Welfare (RW) and Deadweight Loss (DL). The shaded area indicates the DL
region with rebate-based pricing.
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6 Conclusions

This paper models optimal access pricing for an exchange or Social Planner and gives new insights about

access pricing, its drivers and welfare effects. Our analysis shows investor valuation dispersion is a key

driver of optimal access pricing. When the market is mainly populated by investors with valuations close

together, the equilibrium access pricing by a profit-maximizing exchange is rebate-based. When the market

is populated by long-term investors with ex ante disperse valuations, the exchange chooses jointly positive

make and take fees. The Social Planner instead sets rebate-based pricing so the net fee is zero.

Access pricing in our model can alleviate trading frictions generated by price discreteness. With regu-

latory constraints on access fees, the tick size also affects optimal access pricing. Optimal access pricing

scales linearly with the tick size and depends on both the absolute tick size and on the tick size relative to

investor-valuation dispersion. When the tick size is small, the region of investor supports consistent with a

rebate-based pricing is small, and exchanges have a lower/smaller degree of freedom in setting access fees.

From a policy perspective, regulation crucially affects access pricing. When there is no cap, the exchange

maximizes its expected profit using rebate-based access pricing that induces market participants to trade at

the outside quotes. When access fees are instead capped by the tick size, the exchange uses rebate-based

pricing when the trader valuation support is small and investors need to be cross-subsidized to trade at the

inside quotes. In this case, a tighter regulatory cap on fees can reduce total welfare. When traders have

dispersed valuations, the exchange sets positive make and take fees. In this second case, a tighter cap can

increase total welfare.

Importantly for regulators, our analysis also shows that rebate-based pricing is not welfare reducing per

se, but rather that the welfare effects of rebate-based pricing depend on the incentives of who sets access

fees and rebates and on the magnitude of trading frictions relative to investor ex ante trading demand. In
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particular, we show that a Social Planner always uses rebate-based access pricing to increase total welfare.

In contrast, welfare with optimal access pricing by a profit-maximizing exchange is more nuanced with

three different possible welfare effects: First, when the market is populated by investors with small gains-

from-trade, and frictions from price discreteness are severe, we find rebate-based pricing by the exchange

reduces pricing frictions and Pareto improves total welfare for both investors and the exchange. Second,

when investors have large gains-from-trade, and the tick size friction is less severe, optimal exchange access

pricing — without and sometimes even with rebates — can lead to total deadweight losses as increased

profits for the exchange are less than welfare losses for investors. Third, when investor gains-from-trade are

in between, rebate-based optimal access pricing by an exchange increases total welfare with higher exchange

expected profits but reduces welfare for investors without Pareto transfers.

Our model analyzes two other important determinants of optimal access pricing: The amount of trading

activity and HFTs. In a basic price-friction model, an exchange’s incentive for rebate-based pricing is

weak for active stocks with high trading activity and large gains-from-trade. For such stocks, there is less

need to subsidize trading via rebate-based pricing and therefore the potential welfare improvement from

rebate-based pricing is low. This appears inconsistent with current market practices with widespread rebate-

based pricing for liquid stocks. However, when we extend our model to include HFTs, we can explain

this seeming inconsistency. An exchange optimally uses rebate-base pricing to attract HFT firms, and the

range of investor valuation supports associated with a rebate-based pricing is wider than without HFTs.

This helps explain why rebate-based access pricing became predominant, since Reg NMS led to a sharp

increase in HFT activity. The increase in HFT led to increased trading opportunities for regular investors

and, thus, increased volume, and, hence, also to increased exchange profits. As a consequence, exchanges

have an incentive to cross-subsidize investors by offering rebates to HFTs. Rebate-based pricing allows the

compensation paid to HFTs for the provision of liquidity to be minimized thus leading to an increase in
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both trading activity and total welfare. When gains-from-trade are small, rebate-based pricing with HFTs

leads to a small Pareto improvement in welfare — thus making investors overall better off compared to

the framework without HFTs. However, the most important effect of rebate-based pricing with HFTs is

the increase in the "Redistribution Welfare" region and disappearance of the DL region. By subsidizing

HFTs, rebates increase trading activity, thus increasing the exchange’s welfare at the expenses of regular

investors in a way that increases total welfare. This means that HFTs increase a regulator’s incentive to

implement Pareto transfers from the exchange to regular investors. It is also the reason a Social Planner

always sets access fees — conditional on any support — to attract HFT firms. The Social Planner also sets

the exchange’s net profits to zero and redistributes welfare from the exchange to regular investors, which

leads to Pareto improvement in welfare. Thus, rebate-based access pricing and HFT liquidity provision

potentially can have a positive welfare impact given appropriate regulation.

Our model has a number of other “firsts” from a modeling perspective. Our model is the first to provide

a complete analysis of the effect of endogenous limit price choice and market/limit order choice on access

pricing. Our model also is the first to consider more than two periods. This extension lets us show that access

pricing changes with greater market activity. We also are the first to formally model the Social Planner.
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Appendices

A General proofs

Lemma 1. If access pricing fees are capped at one tick by regulation, then an exchange never sets rebates

larger than one tick in equilibrium.

Proof for Lemma 1 If the access rebate is larger than the access fee, then the exchange’s net profit per

transaction is negative. However, an exchange can always earn a zero net profit per transaction by setting its

rebates equal to its fee. Thus seeting rebates larger than fees does not maximize exchange profits (if profit-

maximizing exchanges set access pricing) and violates incentive compatibility (if a welfare-maximizing

Social Planner sets access pricing). Q.E.D.

Lemma 2. Given access pricing such that the exchange has a non-negative profit MF +T F ≥ 0 per trans-

action, a priori arriving investors only consider submitting limit buys (sells) at posted prices Pk that are

sufficiently low (high) such that the associated cum-fee prices for market sells (buys) satisfies Pcum,MS
k < β

(Pcum,MB
k > β ).

Proof for Lemma 2: : This follows immediately from the fact that submitting a limit buy is only profitable

for an investor if the cum-fee limit-buy price Pcum,LB
k = Pk +MF ≤ β and the fact that Pcum,MS

k = Pk−T F =

Pk +MF− (MF +T F) where MF +T F ≥ 0 for an exchange with a non-negative profit per transaction and,

thus, the cum-fee market sell price satisfies Pcum,MS
k ≤ β . The argument for limit sells is symmetric. Q.E.D.
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Lemma 3. If the standing limit order book is symmetric at a time tz, then investors with βtz > v are potential

buyers at time tz (i.e., they either submit limit buy orders or NT but they never submit limit sell orders).

Similarly, investors with βtz < v are potential sellers at time tz.

Proof of Lemma 3: This result follows from the fact that the investor expected profit functions from limit

buy and sell orders are symmetric and increasing in the distance of βtz from the posted limit prices. Q.E.D.

Comment about Lemma 3: In particular, Lemma 3 applies at time t1 since the initial book is empty.

Lemma 4. i) In a Taker-Maker regime with−1≤ T F < 0≤MF ≤ 1, limit orders are never posted at prices

Pk outside of the interval [β −1, β̄ ] for limit buys or outside of the interval [β , β̄ +1] for limit sells. ii) In a

Maker-Taker regime with −1≤MF < 0≤ T F ≤ 1, limit orders are never posted at prices Pk outside of the

interval [β , β̄ + 1] for limit buys or outside of the interval [β − 1,> β̄ ] for limit sells. iii) In a positive-fee

regime with 0≤ T F ≤ 1 and 0≤MF ≤ 1, limit buy and sell orders are never posted at prices Pk outside of

the interval [β , β̄ ] for both limit buys or limit sells.

Proof of Lemma 4: In a Taker-Maker regime, the highest possible cum price Pcum,MS
k = Pk − T F for a

market sell given a limit buy at a posted price Pk < β − 1 is Pk + 1 < β given the bounded take rebate

−T F ≤ 1. Thus, no investor arriving at t2 will be willing to submit a market sell given a limit buy at posted

prices Pk < β − 1. Similarly, the lowest possible cum price Pcum,LB
k = Pk +MF for a limit buy at a posted

price Pk > β̄ is Pk > β̄ given the non-negative fee MF > 0 in a Taker-Maker regime. As a result, no investor

arriving at t1 will be willing to post a limit buy at prices Pk > β̄ . A similar logic applies for the result for

potential posted limit prices in the Maker-Taker regime and the positive-fee regime. Q.E.D.

Proof for Theorem 6: The proof strategy is standard for finite sequential games and consists of three steps:

The recursion step for deriving analytic investor strategies is the following: Given access pricing fees Ξ, the
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Table A1: Trading Strategies and Payoffs This table reports the trading strategies and associate payoffs available to investors .

Action Payoff

Market Order to Sell: xMS
tz = MSPtz P(xtz)−βtz−T F

Limit Order to Sell: xLS
tz = LSPtz [P(xtz)−βtz−MF ]Pr(θ xtz

tz |Ξ,Ltz−1)

No Trade: NTtz 0
Limit Order to Buy: xLB

tz = LBPtz [βtz −P(xtz)−MF ]Pr(θ xtz
tz |Ξ,Ltz−1)

Market Order to Buy: xMB
tz = MBPtz βtz−P(xtz)−T F

order-execution probabilities Pr(θ xtz
tz |Ξ,Ltz−1) for computing the investor expected profit for each possible

order xtz ∈ Xtz at any time tz in the investor maximization problem (2) are either 1 for market orders at the

BBO or are determined recursively for limit orders from the order-submission probabilities Pr(xtz |Ξ,Ltz−1) at

later dates. The upper envelope of the expected investor payoffs for the different possible actions at a generic

time tz determines the optimal investor actions at tz and, given the distribution over the investor valuation

βtz the associated order-submission probabilities for the optimal actions in terms of intervals on the investor

valuation support S for any incoming book Ltz−1 . Given the assumptions of a discrete number of possible

investor actions and discrete tine, the set of possible incoming books is finite.

The initiation step starts the recursion at the terminal period tN , at which time the order-execution prob-

abilities take a simple form: They are zero for new limit orders (since the game ends after time tN) and one

for market orders (which can only be submitted if the book is non-empty). Thus, investor expected profit

for different orders, the upper envelope, the optimal orders, and the order-submission probabilities at time

tN can be derived directly.

The exchange profit optimization step is then as follows: The order-submission and order-execution

probabilities from the first two steps can then be used to construct the exchange’s expected profit in (22) ana-

lytically given arbitrary fees Ξ. Given the analytic exchange expected profit function, the profit-maximizing

fees Ξ∗ can then be found analytically since the set of possible fees and rebates is compact given the regu-
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latory cap on access fees. Q.E.D.

Proof of Theorem 7: The proof structure is the same as for Theorem 6 with the addition that INVs and HFTs

investors arrive sequentially. First, the recursion step again involves characterizing analytic optimal order

submissions and order-submission probabilities in term of intervals of valuations βt+z along the support S

associated with the analytic upper envelope of the payoffs of all of the possible investor actions. Again, there

are a finite number of possible investor actions with linear payoff and a finite number of periods and, thus,

at each point in time tz, a finite set of possible prior histories Ltz−1. Analytic order-execution probabilties

can then be computed from the analytic order-submission probabilities. Second, the initiation step at time

N involves optimization with only market orders for which the a priori execution probability is one. Third,

the exchange profit optimization step is logically similar to the same step in Theorem 6. Q.E.D.

B Equilibrium of Two-Period Model and Proof of Theorem 1

This Appendix solves for the profit-maximizing exchange’s optimal access pricing in the two-period model

given the regulatory constraint and given optimal trading by investors. Since the investors’ optimal orders

are solutions to discrete choice problems, their trading strategies and the exchange’s optimal fees change

qualitatively in different regions of the parameter space in terms of the size of the investor valuation support

∆ relative to the tick size τ , which is normalized to 1 in the LTM.

B.1 Case 1: 0 < ∆≤ 3τ0 < ∆≤ 3τ0 < ∆≤ 3τ

Our analysis of this first case shows that, when ∆≤ 3τ , optimal access pricing by the exchange in equilibrium

takes the functional forms in (16) for Taker-Maker pricing and (17) for Maker-Taker pricing.
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Figure B1: Taker-Maker Pricing: ΞT M = {0≤MF ≤ 1,−1≤ T F ≤ 0} This Figure provides a graphical repres-
entation of how to obtain the equilibrium probabilities of order submission and execution for the Taker-Maker pricing structure and
the support ∆ ∈ [β , β̄ ]. P2 and P−2 are the outside quotes of the LTM, whereas P1 and P−1 are the inside quotes of the LTM. Pcum,LB

−1

and Pcum,MS
−1 are the cum-fee buy and sell prices, respectively. LBP−1,t1 is a limit buy order posted at P−1 at t1, and MSP−1,t2 is a

market sell order posted at P−1 at t2.

∆
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3−∆

2
3−∆

2
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P−1
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−1︷ ︸︸ ︷

LBP−1,t1

MF︷ ︸︸ ︷

Figure B2: Maker-Taker Pricing: ΞMT = {−1 ≤MF ≤ 0,0 ≤ T F ≤ 1} This Figure provides a graphical rep-
resentation of how to obtain the equilibrium probabilities of order submission and execution for the Maker-Taker pricing structure
and the support ∆ ∈ [β , β̄ ]. P2 and P−2 are the outside quotes of the LTM, whereas P1 and P−1 are the inside quotes of the LTM.

Pcum,LB
1 and Pcum,MS

1 are the cum-fee buy and sell prices, respectively. LBP1,t1 is a limit buy order posted at P1 at t1, and MSP1,t2 is
a market sell order posted P1 at t2.
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Table B1: Submission and Execution Probability. This table reports the price levels on the LTM price grid (column 1)

and the associated probabilities Pr(βt1 > Pcum,LB
k ) = max{0, β̄−Pcum,LB

k
∆

} and Pr(Pcum,LS
−k > βt1) = max{0, Pcum,LS

−k −β

∆
}, which, in

equilibrium, correspond to the submission probabilities for limit orders posted at Pk and at P−k at t1 (columns 2 and 3). In addi-

tion, the table reports the associated limit order execution probabilities, Pr(θ xLB
k

t1 |Ξ,Lt0) = Pr(xMS
k,t2 |Ξ,Lt0) = max{0, Pcum,MS

k −β

∆
} and

Pr(θ
xLS
−k

t1 |Ξ,Lt0) = Pr(xMB
−k,t2 |,Ξ,Lt0) = max{0, β̄−Pcum,MB

−k
∆

} (columns 4 and 5).

Pk Pr(βt1 > Pcum,LB
k ) Pr(Pcum,LS

−k > βt1) Pr(θ xLB
k

t1 |Ξ,Lt0) Pr(θ
xLS
−k

t1 |Ξ,Lt0)

P3 max
{

0, 1
∆
[∆

2 −
5
2 −MF ]

}
max

{
0, 1

∆
[∆

2 −
5
2 −MF ]

}
max

{
0, 1

∆
[∆

2 +
5
2 +T F ]

}
max

{
0, 1

∆
[∆

2 +
5
2 +T F ]

}
P2 max

{
0, 1

∆
[∆

2 −
3
2 −MF ]

}
max

{
0, 1

∆
[∆

2 −
3
2 −MF ]

}
max

{
0, 1

∆
[∆

2 +
3
2 −T F ]

}
max

{
0, 1

∆
[∆

2 +
3
2 −T F ]

}
P1 max

{
0, 1

∆
[∆

2 −
1
2 −MF ]

}
max

{
0, 1

∆
[∆

2 −
1
2 −MF ]

}
max

{
0, 1

∆
[∆

2 +
1
2 −T F ]

}
max

{
0, 1

∆
[∆

2 +
1
2 −T F ]

}
P−1 max

{
0, 1

∆
[∆

2 +
1
2 −MF ]

}
max

{
0, 1

∆
[∆

2 +
1
2 −MF ]

}
max

{
0, 1

∆
[∆

2 −
1
2 −T F ]

}
max

{
0, 1

∆
[∆

2 −
1
2 −T F ]

}
P−2 max

{
0, 1

∆
[∆

2 +
3
2 −MF ]

}
max

{
0, 1

∆
[∆

2 +
3
2 −MF ]

}
max

{
0, 1

∆
[∆

2 −
3
2 −T F ]

}
max

{
0, 1

∆
[∆

2 −
3
2 −T F ]

}
P−3 max

{
0, 1

∆
[∆

2 +
5
2 −MF ]

}
max

{
0, 1

∆
[∆

2 +
5
2 −MF ]

}
max

{
0, 1

∆
[∆

2 −
5
2 −T F ]

}
max

{
0, 1

∆
[∆

2 −
5
2 −T F ]

}

Taker-Maker: We first consider Taker-Maker pricing ΞT M = {0 ≤ MF ≤ 1,−1 ≤ T F ≤ 0} with a take

rebate and a positive make fee. Given ∆ ≤ 3, the lower investor-valuation bound in this case is β = P−2 +

3−∆

2 , and the upper bound is β = P2− 3−∆

2 , as illustrated in Figures B1 and B2. Consider first a potential

buyer arriving at t1 with βt1 > v. The logic for a potential seller arriving at t1 is symmetric.

Order-submission probabilities for each possible market order at t2 can be computed using (3) and (4)

given the valuation-support restriction ∆≤ 3 and Taker-Maker pricing. Columns 4 and 5 in Table B1 report

the market order submission probabilities for the price levels in Column 1:

Pr(xMS
k,t2 |Ξ,Lt1) = max

{
0,

Pk−T F−β

∆

}
= max

{
0,

1
∆

[
∆

2
+

Pk−P−k

2
−T F

]}
(28)

Pr(xMB
−k,t2 |Ξ,Lt1) = max

{
0,

β̄ −P−k−T F
∆

}
= max

{
0,

1
∆

[
∆

2
− Pk−P−k

2
−T F

]}
(29)

For example, Row 5 in Column 4 and Row 5 in Column 5 in Table B1 gives the order-submission probability
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at t2 of a market sell at P−1, which is equal to the order-submission probability of a market buy at P1

Pr(xMS
−1,t2 |Ξ,Lt1) = max

{
0,

Pcum,MS
−1 −β

∆

}
(30)

= Pr(xMB
1,t2 |Ξ,Lt1) = max

{
0,

β̄ −Pcum,MB
1
∆

}
= max

{
0,

1
∆

[
∆

2
− 1

2
−T F

]}
.

To understand the intuition in the last term in (30), note from Figure B1 that only traders with βt2 in the

interval [β ,Pcum,MS
−1 ] with width ∆

2 −
1
2 −T F are willing to use a market order to sell at a posted price P−1.

This interval is equal to half of the support minus half the tick size, hence 1
2 , given τ = 1, which is the

distance from the fundamental asset value v to P−1, minus TF (negative in the Taker-Maker regime), which

increases the interval of the support including β s belonging to sellers. This interval is strictly positive for

∆≥ 1, which means that Pr(xMS
−1,t2 |Ξ,Lt1)> 0 for ∆≥ 1.

The market-order submission probabilities at t2 are, in turn, respectively the corresponding order-execution

probabilities of limit orders posted at t1. Thus, we can consider the expected profits for all possible limit or-

ders that a potential buyer and symmetrically a potential seller can post at t1. We verify the conditions under

which (5) and (6) hold — and symmetrically (8) and (9) — and finally compute the limit order submission

probabilities at t1 consistent with both (7) and (10) .

To check that conditions (5) and (8) hold, we compute Pr(βt1 > Pcum,LB
k ) and Pr(Pcum,LS

−k > βt1) for each

order in Columns 2 and 3 of Table B1. For example, for a limit buy at P−1 and limit sell at P1 we have:

Pr(βt1 > Pcum,LB
−1 ) = max

{
0,

β̄ > Pcum,LB
−1

∆

}
(31)

= Pr(Pcum,LS
1 > βt1) = max

{
0,

Pcum,LS
1 > β

∆

}
= max

{
0,

1
∆

[
∆

2
+

1
2
−MF

]}
.

To understand the intuition for the final term in (31), notice, for example, from Figure B1 that only traders

with a βt1 in the interval [Pcum,LB
−1 , β t1 ] with width ∆

2 +
1
2 −MF will be willing to buy at the quoted price P−1.
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This interval is equal to half of the investor valuation support (consistent with Lemma 3 only traders with a

personal evaluation larger than the fundamental value v will be buying) plus half the tick size (the distance

between the mid-point of the support/fundamental asset value v and P−1) minus MF, which decreases the

interval of the support including β s belonging to buyers.

We also need to check whether both conditions (6) and (9) hold for each possible order at t1:

• First, consider a limit buy at P2 and symmetrically a limit sell at P−2. Given the assumed investor

valuation support with width ∆≤ 3 and given the positive MF with Taker-Maker pricing, the expected

payoff associated with limit orders at P2 (P−2) would be negative since the associated cum-fee buy

(sell) price would be above (below) the maximum (minimum) possible trader valuation. Hence, such

limit orders would never be submitted.

• Second, the expected profit (βt1−Pcum,LB
−1 )×Pr(θ

xLB
−1

t1 |Ξ,Lt0) on a limit buy at P−1 for a potential buyer

with βt1 > v and (Pcum,LS
1 −βt1)×Pr(θ xLS

1
t1 |Ξ,Lt0) on a limit sell at P1 for a potential seller with βt1 < v

is:

(
|βt1 − v|+ 1

2
−MF

)
max

{
0,

1
∆

[
∆

2
− 1

2
−T F

]}
, (32)

which is positive given Take rebates (0≥ T F ≥−1) and Make fees (1≥MF ≥ 0).

• Third, the expected profit (βt1 −Pcum,LB
−2 )×Pr(θ

xLB
−2

t1 |Ξ,Lt0) on a limit buy at P−2 for a potential buyer

with βt1 > v or (Pcum,LS
2 −βt1)×Pr(θ xLS

2
t1 |Ξ,Lt0) on a limit sell at P2 for a potential seller with βt1 < v

is:

(
|βt1 − v|+ 3

2
−MF

)
max

{
0,

1
∆

[
∆

2
− 3

2
−T F

]}
, (33)

To characterize when the expected profit on limit buys at P−1 (and limit sells at P1) are greater than on limit
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buys at P−2 (and limit sells at P2), we write the expected profits in (32) for limit buys at P−1 and limit sells

at P1 as a∗b where a = |βt1 − v|+ 1
2 −MF and b = 1

∆

[
∆

2 −
1
2 −T F

]
. Given this, we derive the β threshold

between a limit buy at P−1 and a limit buy at P−2 as the β values for which (34) holds

(βt1 −Pcum,LB
−2 )×Pr(θ

xLB
−2

t1 |Ξ,Lt0)− (βt1 −Pcum,LB
−1 )×Pr(θ

xLB
−1

t1 |Ξ,Lt0) = 0 (34)

The βt1 values which satisfy (34) are

β
xLB

P−2
,xLB

P−1
t1 =


v+ ∆

2 −2+MF−T F T F < 0 ∧ T F < ∆−3
2

v− 1
2 +MF Otherwise

(35)

We can now compute the order-submission probabilities from (7) for a limit buy at P−1 and at P−2

Pr(xLB
−1,t1 |Ξ,Lt0) =


1
∆
[∆+1

2 −MF ] T F ≥ 0 ∨ T F ≥ ∆−3
2

1
∆

[
2−MF +T F

]
Otherwise

(36)

Pr(xLB
−2,t1 |Ξ,Lt0) =



1
∆

[
∆−4

2 +MF−T F
]

(MF > 1
2 ∧T F < 0∧T F < ∆−3

2 ) ∨

(
MF ≤ 1

2 ∧MF > T F + 1
2 ∧MF > 4−∆

2 +T F
)

0 Otherwise

(37)

Lastly, the expected profit (βt1 −Pcum,LB
1,LB )×Pr(θ xLB

1
t1 |Ξ,Lt0) on a limit buy at P1 for a potential buyer with

βt1 > 0 and (Pcum,LS
−1 −βt1)×Pr(θ

xLS
−1

t1 |Ξ,Lt0) on a limit sell at P−1 for a potential seller with βt1 < 0 is:

(
|βt1 − v|− 1

2
−MF

)
max

{
0,

1
∆

[
∆

2
+

1
2
−T F

]}
. (38)

Comparing (32) and (38) shows that, in Taker-Maker regimes, limit buys at P−1 always have higher expected
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profit than limit buys at P1 and that limit sells at P1 have higher expected profits than limit sells at P−1:30

(βt1 −Pcum,LB
1 )×Pr(θ xLB

1
t1 |Ξ,Lt0)− (βt1 −Pcum,LB

−1 )×Pr(θ
xLB
−1

t1 |Ξ,Lt0) (39)

= (Pcum,LS
−1 −βt1)×Pr(θ

xLS
−1

t1 |Ξ,Lt0)− (Pcum,LS
1 −βt1)×Pr(θ

xLS
1

t1 |Ξ,Lt0)

= (|βt1 − v|− ∆

2
)−MF +T F ≤ 0

where the inequality in the third line follows because |βt1 − v| ≤ ∆

2 by definition for all βt1 and because

MF ≥ 0 and T F ≤ 0 in the Taker-Maker regime. We can now set the optimizing function for both the

exchange and the Social Planner.

Comment: The discussion above identifies which orders are possibly used in the two-period trading sub-

game in the LTM with τ = 1. This analysis is used next to derive optimal fees in the LTM. Section B.3

generalizes the trading subgame analysis to price grides with more prices.

Exchange Problem: Taker-Maker ∆ ∈ (0,3]∆ ∈ (0,3]∆ ∈ (0,3] The exchange chooses MF and T F to maximize its profits

given the optimal strategy for potential buyers and sellers posting limit orders LBP−1,t1 and LSP1,t1 and

LBP−2,t1 and LSP2,t1 at t1, which we have derived as a function of the trading fees MF and T F and the

investor valuation-support width ∆.31 From now onward we concentrate on the buy side, the sell side be-

ing symmetric. The exchange’s expected profit is equal to the submission probability Pr(xLB
−1,t1 |Ξ,Lt0) of

LBP−1,t1 and the submission probability Pr(xLB
−2,t1 |Ξ,Lt0) of LBP−2,t1 , times the associated execution prob-

ability Pr(θ
xLB
−1

t1 |Ξ,Lt0) and Pr(θ
xLB
−2

t1 |Ξ,Lt0) times the per share net fee, MF+TF. Table B1 reports the order-

30Using the representation for the expected profit for a limit buy at P−1 and limit sell at P1 in (32) as a ∗ b where a = |βt1 −
v|+ 1

2 −MF and b = 1
∆

[
∆

2 −
1
2 −T F

]
, the expected profit for a limit buy LBP1 at P1 and limit sell LSP−1 at P−1 in (38) can be

represented as (a−1)(b+1). Taking the difference a∗b− (a−1)(b+1) and substituting in for a and b gives the third line in (39).
31The case of a seller posting LSP1,t1 or LSP2,t1 is symmetric. As in real markets, traders arrive sequentially and, hence, either a

buyer or seller may arrive at t1.
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execution probabilities.

max
MF,T F

0≤MF≤τ
T F≤MF

π
Ex,LT M(MF,T F) (40)

=
[
Pr(xLB

−1,t1 |Ξ,Lt0)×Pr(θ
xLB
−1

t1 |Ξ,Lt0)+Pr(xLB
−2,t1 |Ξ,Lt0)×Pr(θ

xLB
−2

t1 |Ξ,Lt0)
]
× (MF +T F)

=


(−∆+2MF−1)(MF +T F)(−∆+2T F +1)

4∆2 T F ≥ 0∨2T F +3≥ ∆

− (MF +T F)(−(∆−3)∆+4MF +2(∆−2)T F−8)
4∆2 Otherwise

The first order conditions are:
(−∆+2T F +1)(−∆+4MF +2T F−1)

4∆2 = 0 T F ≥ 0∨2T F +3≥ ∆

−8MF +∆(∆−2T F−3)+8
4∆2 = 0 Otherwise

(41)


(−∆+2MF−1)(−∆+2MF +4T F +1)

4∆2 = 0 T F ≥ 0∨2T F +3≥ ∆

∆(∆−2MF−3)−4(∆−2)T F +8
4∆2 = 0 Otherwise

(42)

From the first-order conditions, the equilibrium optimal Take-Make fees for the exchange are in (16).

The second and mixed partial derivatives δT F,T F , δMF,MF and δMF,T F are

δT F,T F ,δMF,MF ,δMF,T F

=


{

1
∆2

[
−∆−1+2MF

]
, 1

∆2

[
−∆+1+2T F

]
, 1

∆2

[
−∆+2MF +2T F

]}
T F ≥ 0 ∨ T F ≥ ∆−3

2{
1

∆2

[
−∆+2

]
, − 2

∆2 , −∆

2

}
Otherwise

(43)

which, together with the equilibrium fees from (16), gives the determinant

Det(MF∗,T F∗) = δMF,MF(MF∗,T F∗)×δT F,T F(MF∗,T F∗)− (δMF,T F(MF∗,T F∗))2 =
1

3∆2 > 0 (44)
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Since the second-order conditions for profit-maximizing fees are satisfied, and the MF and T F in (16)

maximize the exchange profit. This completes our analytic construction of the Taker-Maker equilibrium

for the ∆ ≤ 3τ case. Table 1 illustrates optimal Take-Make fees for the ∆ ≤ 3τ case. These values were

computed by substituting various widths ∆ into the formulas for the equilibrium fees MF∗ and T F∗ in (16).

Social Planner Problem: Taker-Maker ∆ ∈ (0,3]∆ ∈ (0,3]∆ ∈ (0,3] The Social Planner sets MF and T F to maximize total

welfare of market participants, which is the sum of the welfare of investors submitting limit orders at t1 and

market orders at t2, and expected exchange profits:

max
MF,T F

0≤MF≤τ
MF+T F≥0

∑
tz∈{t1,t2}

(
W INV

tz (MF,T F)+π
Ex
tz (MF,T F)

)
(45)

= W INV
t1 (xLB

−1,t1 |Ξ,Lt0)+W INV
t1 (xLB

−2,t1 |Ξ,Lt0)+W INV
t2 (xMS

−1,t2 |Ξ,Lt0)

+W INV
t2 (xMS

−2,t2 |Ξ,Lt0)+
[
Pr(xLB

−1,t1 ,θ
xLB
−1

t1 |Ξ)+Pr(xLB
−2,t1 ,θ

xLB
−2,t1

t1 |Ξ)
]
(MF +T F)

where the welfare of investors submitting limit buys and market sells, and of exchange profits are defined in

(14) and (15), and (22) and (12). We present the welfare of the buy side (the sell side being symmetric):
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W INV
t1 (xLB

−1,t1 |Ξ,Lt0) =
∫

βt1∈Bt1 (x
LB
−1,t1

,Ξ,Lt0 )
[βt1 −P(xLB

−1,t1)−MF)]
1
∆

dβt1 ×Pr(θ
xLB
−1

t1 |Ξ,Lt0) (46)

=



1
18

MF = 1 ∧ T F = 0 ∧ ∆ = 3

1
18 (MF−2)2 0≤MF < 1 ∧ T F = 0 ∧ ∆ = 3

1
4∆2

[
(T F +1)(T F−∆+2)(2T F−∆+1)

]
MF = 1 ∧ −1 < T F < 0 ∧ T F ≤ ∆−3

2 ∧ ∆≤ 3

− 1
4∆2

[
(MF−T F−2)(2T F−∆+1)(MF +T F−∆+1)

]
0≤MF < 1 ∧ −1 < T F < 0 ∧ T F ≤ ∆−3

2 ∧ ∆≤ 3

− 1
16∆2

[
(∆−1)2(2T F−∆+1)

]
MF = 1 ∧ ∆ > 1 ∧ ((T F = 0 ∧ ∆ < 3)∨

(
T F ≤ ∆−3

2 ∧ T F < 0)
)

− 1
16∆2

[
(∆−2MF +1)2(∆−2T F−1)

]
MF < 1∧MF ≥ 0∧∆ > 1∧

(
(T F = 0∧∆ < 3)∨ (T F ≤ ∆−3

2 ∧T F < 0)
)

where the region of integration is Bt1(x
LB
−1,t1 ,Ξ,Lt0) = [β̂

xLB
P−2

,xLB
P−1

t1 ,β ], and β̂
xLB

P−2
,xLB

P−1
t1 is defined in (34).

W INV
t1 (xLB

−2,t1 |Ξ,Lt0) =
∫

βt1∈Bt1 (x
LB
−2,t1

,Ξ,Lt0 )
[βt1 −P(xLB

−2,t1)−MF)]
1
∆

dβt1 ×Pr(θ
xLB
−2,t1

t1 |Ξ,Lt0) (47)

=



− (2T F−∆+3)(4−2MF +2T F−∆)(2(MF +T F−1)−∆)

16∆2 (2T F +3 < ∆∧ ((0 < MF < 1
2

∧((MF = T F + 1
2 ∧∆ < 3)∨

(MF < T F + 1
2 ∧T F < 0∧∆≤ 3)∨

(MF > T F + 1
2∧

T F ≥−1∧∆+2MF < 2T F +4)))∨

(−1≤ T F < 0∧ 1
2 < MF ≤ 1∧∆≤ 3)))∨

(0≤MF ≤ 1
2 ∧T F ≥−1∧

∆≤ 3∧∆+2MF > 2T F +4)

0 Otherwise

where the region of integration is Bt1(x
LB
−2,t1 ,Ξ,Lt0) = [v, β̂

xLB
P−2

,xLB
P−1

t1 ], and β̂
xLB

P−2
,xLB

P−1
t1 is defined in (34).

85



W INV
t2 (xMS

−1,t2 |Ξ,Lt0) = Pr(xLB
−1,t1 |Ξ,Lt0)×

∫
βt2∈Bt2 (x

MS
−1,t2

,Ξ,Lt1 )
[P(xLB

−1,t1)−βt2 −T F)]
1
∆

dβt2 (48)

=
1

8∆

[
(∆−2T F−1)2]×



1
2

(2MF < 1∧ (MF < T F + 1
2 ∨ (MF = T F + 1

2 ∧∆≤ 3)∨

(MF > T F + 1
2 ∧2MF +∆≤ 2T F +4)))∨

(2MF = 1∧ (T F = 0∨ (2T F +3≥ ∆∧−1 < T F ≤ 0)))

1
3 MF = 1∧T F = 0∧∆ = 3

1
3
[
2−MF

] 1
2 < MF < 1∧T F = 0∧∆ = 3

1
∆

[
T F +1

]
MF = 1∧−1 < T F < 0∧T F ≤ 1

2 ∆− 3
2

1
∆

[
T F−MF +2

]
(−1 < T F < 0∧ 1

2 < MF < 1∧T F ≤ 1
2 ∆− 3

2 )∨

(2MF < 1∧MF > T F + 1
2 ∧T F ≤ 1

2 ∆− 3
2 > 2T F +4)

1
2∆

[
2T F +3

]
2MF = 1∧−1 < T F < 0∧T F < 1

2 ∆− 3
2

1
2∆

[
∆−1

]
MF = 1∧ ((T F = 0∧∆ < 3)∨ (T F > 1

2 ∆− 3
2 ∧−1 < T F < 0))

1
2∆

[
∆+1−2MF

] 1
2 < MF < 1∧ ((T F = 0∧∆ < 3)∨ (T F > 1

2 ∆− 3
2 ∧−1 < T F < 0))



where the region of integration is Bt2(x
LB
−1,t2 ,Ξ,Lt0) = [β ,P−1−T F ].

W INV
t2 (xMS

−2,t2 |Ξ,Lt0) = Pr(xLB
−2,t1 |Ξ,βt2 ,Lt0)×

∫
βt2∈Bt2 (x

MS
−2,t2

,Ξ,Lt1 )
[P(xLB

−2,t1)−βt2 −T F)]
1
∆

dβt2 (49)

=


1

16∆2

[
(∆−2T F−3)2(∆+2MF−2T F−4)

]
T F ≥−1∧T F <

∆−3
2
∧∆≤ 3∧

(
MF >

1
2
∨
(

MF > T F +
1
2
∧∆+2MF > 2T F +4

))
0 Otherwise

where the region of integration is Bt2(x
MS
−2,t2 ,Ξ,Lt1) = [β ,P−2−T F ]. Substituting (46), (47), (48) and (49)

into the welfare function of the Social Planner, (45), we obtain a functional form whose components are

subject to different boundary conditions. The Social Planner problem then simplifies to:
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max
MF,T F

0≤MF≤τ
MF+T F≥0

∑
tz∈{t1,t2}

(
W INV

tz (MF,T F)+π
Ex
tz (MF,T F)

)
(50)

=



(−2∆+2T F +1)(−∆+2T F +1)
16∆

2MF = 1∧0 < ∆≤ 1∧(
(∆+2T F +1 > 0∧T F +1≥ 0∧

(2T F +1 < 0∨

(T F < 0∧2T F +1 < ∆)))∨

(
− 1

2 < T F < 0∧2T F +1 < ∆
))

∆(∆−2T F−1)2−4(MF−T F−2)(−∆+2T F +1)(−∆+MF +T F +1)
16∆2 −1 < T F < 0∧1 < ∆≤ 3∧(

(2MF = 1∧2T F +3 = ∆)∨

(
0≤MF < 1

2 ∧2T F +3≤ ∆∧

(MF ≤ T F + 1
2 ∨∆+2MF ≤ 2T F +4)

))

The fees MF∗ and T F∗ in Table 2 maximize (50) for values of 0 < ∆≤ 3 satisfying the given conditions of

(50). For example, for ∆ = 2 the second expression in (50) is maximized by MF∗ = 0.5 and T F∗ = −0.5.

Figure D2 in Section D.2 in the Online Appendix shows plots of the Social Planner’s value function for the

Taker-Maker case for the different values of the support (∆ ∈ {τ,2τ,2.5τ,3τ}).

Comment: When ∆ ∈ (0,3τ), the logic of the construction of optimal Maker-Taker fees for a profit-

maximizing exchange and the Social Planner is similar to the logic for Taker-Maker fees. To conserve

space, the details for the Maker-Taker derivation are in Online Appendix D.1.
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Table B2: Difference in expected payoff from different orders. This table reports the difference in the expected payoffs from different orders indicated in column 1.
Column 2 reports such differences as a function of ∆, whereas columns 3 to 6 reports the same differences for different values of ∆.

∆ ∆ = 1 ∆ = 2 ∆ = 3 ∆ = 4

Pr(βt1−Pcum,LB
2 (xt1))×Pr(θ xLB

2
t1 |Ξ,Lt0)−Pr(βt1−Pcum,LB

1 (xt1))×Pr(θ xLB
1

t1 |Ξ,Lt0)
4MF−3∆+2T F+5

2∆2 2MF +T F +1 1
8(4MF +2T F−1) 1

9(2MF +T F−2) 1
32(4MF +2T F−7)

Pr(Pcum,LS
1 (xt1)−βt1)×Pr(θ xLS

1
t1 |Ξ,Lt0)−Pr(Pcum,LS

2 (xt1)−βt1)×Pr(θ xLS
2

t1 |Ξ,Lt0)

Pr(βt1−Pcum,LB
2 (xt1))×Pr(θ xLB

2
t1 |Ξ,Lt0)−Pr(βt1−Pcum,LB

−1 (xt1))×Pr(θ
xLB
−1

t1 |Ξ,Lt0)
2MF−3∆+4T F+5

2∆2 MF +2T F +1 1
8(2MF +4T F−1) 1

9(MF +2T F−2) 1
32(2MF +4T F−7)

Pr(Pcum,LS
−1 (xt1)−βt1)×Pr(θ

xLS
−1

t1 |Ξ,Lt0)−Pr(Pcum,LS
2 (xt1)−βt1)×Pr(θ xLS

2
t1 |Ξ,Lt0)

Pr(βt1−Pcum,LB
2 (xt1))×Pr(θ xLB

2
t1 |Ξ,Lt0)−Pr(βt1−Pcum,LB

−2 (xt1))×Pr(θ
xLB
−2

t1 |Ξ,Lt0)
−3∆+6T F+9

2∆2 3(T F +1) 3
8(2T F +1) T F

3
3
32(2T F−1)

Pr(Pcum,LS
−2 (xt1)−βt1)×Pr(θ

xLS
−2

t1 |Ξ,Lt0)−Pr(Pcum,LS
2 (xt1)−βt1)×Pr(θ xLS

2
t1 |Ξ,Lt0)

Pr(βt1−Pcum,LB
1 (xt1))×Pr(θ xLB

1
t1 |Ξ,Lt0)−Pr(βt1−Pcum,LB

−1 (xt1))×Pr(θ
xLB
−1

t1 |Ξ,Lt0)
T F−MF

∆2 T F−MF T F−MF
4

T F−MF
9

T F−MF
16

Pr(Pcum,LS
−1 (xt1)−βt1)×Pr(θ

xLS
−1

t1 |Ξ,Lt0)−Pr(Pcum,LS
1 (xt1)−βt1)×Pr(θ xLS

1
t1 |Ξ,Lt0)

Pr(βt1−Pcum,LB
1 (xt1))×Pr(θ xLB

1
t1 |Ξ,Lt0)−Pr(βt1−Pcum,LB

−2 (xt1))×Pr(θ
xLB
−2

t1 |Ξ,Lt0)
−2MF+2T F+2

∆2 −2MF +2T F +2 1
2(−MF +T F +1) −2

9(MF−T F−1) 1
8(−MF +T F +1)

Pr(Pcum,LS
−2 (xt1)−βt1)×Pr(θ

xLS
−2

t1 |Ξ,Lt0)−Pr(Pcum,LS
1 (xt1)−βt1)×Pr(θ xLS

1
t1 |Ξ,Lt0)

Pr(βt1−Pcum,LB
−1 (xt1))×Pr(θ

xLB
−1

t1 |Ξ,Lt0)−Pr(βt1−Pcum,LB
−2 (xt1))×Pr(θ

xLB
−2

t1 |Ξ,Lt0)
−MF+T F+2

∆2 −MF +T F +2 1
4(−MF +T F +2) 1

9(−MF +T F +2) 1
16(−MF +T F +2)

Pr(Pcum,LS
−2 (xt1)−βt1)×Pr(θ

xLS
−2

t1 |Ξ,Lt0)−Pr(Pcum,LS
−1 (xt1)−βt1)×Pr(θ

xLS
−1

t1 |Ξ,Lt0)



B.2 Case 2: 3τ < ∆≤ 5τ3τ < ∆≤ 5τ3τ < ∆≤ 5τ

We now consider different ranges of β valuations that are characterized by unique equilibrium strategies.

As before we first consider the regime with a maximizing exchange and then a regime with a Social Planner

setting optimal fees.

Exchange Maximizing Problem: Positive Fees ∆ ∈ (3,5]∆ ∈ (3,5]∆ ∈ (3,5] Table 1 show that with the exchange setting

optimal fees there are three β ranges characterized by different equilibrium strategies: ∆ ∈ (3,4], ∆ ∈

(4,4.7] and ∆ ∈ (4.7,5]. All these β ranges are characterized by strictly positive fees, ΞPF = {0 ≤MF ≤

1,0≤ T F ≤ 1}.

Subcase ∆ ∈ (3,4]∆ ∈ (3,4]∆ ∈ (3,4]: Given 3τ < ∆ ≤ 4τ , traders choose among the same orders as in Case 1. Note that

Table B2 shows that a limit order to buy at P2 (sell at P−2), and a limit order to buy at P−2 (sell at P2)

are dominated strategies for this subcase. Hence, to determine the optimal MF and TF, we maximize the

exchange profits conditional on the buyer choosing LBP−1,t1 , the case of the seller choosing LSP1,t1 arriving

at t1 being symmetric:

max
MF,T F
MF≤τ
T F≤τ

3<∆≤4

π
Ex,LT M(MF,T F) =

(
Pr(xLB

−1,t1 |Ξ,Lt0)×Pr(θ
xLB
−1

t1 |Ξ,Lt0)
)
× (MF +T F)

=−
(∆−1)(MF+TF)

(
−∆

2 +TF+ 1
2

)
2∆2 (51)

The Kuhn-Tucker Lagrangian is:

L(MF,T F,λk,vh) = π
Ex,LT M(MF,T F)−λ1(−MF +1)−λ2(−T F +

∆−3
2

) (52)
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The Kuhn-Tucker conditions are:

∂L(MF,T F,λk,vh)

∂MF
= λ1 +

(∆−1)(∆−2T F−1)
4∆2 ≥ 0 & MF× ∂L(MF,T F,λk,vh)

∂MF
= 0 (53)

∂L(MF,T F,λk,vh)

∂T F
=

( 1
2 −

∆

2

)
MF +(1−∆)T F +∆

(
∆
(
λ2 +

1
4

)
− 1

2

)
+ 1

4
∆2 ≥ 0 &T F× ∂L(MF,T F,λk,vh)

∂T F
= 0

(54)

∂L(MF,T F,λk,vh)

∂λ1
= (MF−1)≥ 0 & λ1×

∂L(MF,T F,λk,vh)

∂λ1
= 0 (55)

∂L(MF,T F,λk,vh)

∂λ2
= (T F− ∆−3

2
)≥ 0 & λ2×

∂L(MF,T F,λk,vh)

∂λ2
= 0 (56)

The equilibrium MF∗ and T F∗ that satisfy these conditions are given in the first line of (18): By substituting

a given value of ∆ into MF∗ and T F∗ in the first line (18), we obtain the equilibrium fees in Table 1.

Table B3: Equilibrium Submission Probability This table reports the equilibrium submission probabilities for the buy side,
Pr(xLB

k,t1 |Ξ,Lt0), conditional on the support ∆. Equilibrium submission probabilities for the sell side, Pr(xLS
−k,t1 |Ξ,Lt0) are symmetric.

0 < ∆≤ 4τ 4 < ∆≤ 4.7τ 4.7 < ∆≤ 5τ

Taker-Maker Maker-Taker Positive Fees Positive Fees

Pr(xLB
1,t1 |Ξ,Lt0) max

{
0, 1

∆
[∆

2 −
1
2 −MF ]

}
max

{
0, 1

∆
[T F−MF ]

}
for β > ∆

2 +9.5

Pr(xLB
−1,t1 |Ξ,Lt0) max

{
0, 1

∆
[∆

2 +
1
2 −MF ]

}
max

{
0, 1

∆
[T F +1]

}
max

{
0, 1

∆
[∆

2 +
1
2 −T F ]

}
for β > MF + ∆

2 −T F +8 for MF +9.5 < β < MF + ∆

2 +9

Pr(xLB
−2,t1 |Ξ,Lt0) max

{
0, 1

∆
[∆

2 +MF−T F−2]
}

for 10 < β < MF + ∆

2 −T F +8

Subcase ∆ ∈ (4,4.7]∆ ∈ (4,4.7]∆ ∈ (4,4.7]: We have shown that for investor valuation supports with widths up ∆ = 4, there

are dominant orders for potential buyers and sellers, and so the optimal order-submission strategy can be

obtained by comparing the expected payoff associated with each possible order, as shown in Tables B1 and

B2; in the latter we present the differences in expected payoffs conditional on different supports. However,
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for investor valuation supports with widths ∆ > 4, there are two possible equilibrium limit orders, which

we report in Table B3 showing that both a limit buy order at P−1 and a limit buy at P−2 may be optimal

depending on the investors’ evaluation, βt1 . We also report conditions on the value of β such that the

equilibrium strategies hold. To determine the optimal MF and TF, the exchange maximizes its expected

profits conditional on the buyer choosing either LBP−2,t1 , or LBP−1,t1 the case of the seller arriving at t1

being symmetric:

max
MF,T F
MF≤τ
T F≤τ

MF+T F≥0
4<∆≤4.7

π
Ex,LT M(MF,T F) (57)

=
[
Pr(xLB

−1,t1 |Ξ,Lt0)×Pr(θ
xLB
−1

t1 |Ξ,Lt0)+Pr(xLB
−2,t1 |Ξ,Lt0)×Pr(θ

xLB
−2

t1 |Ξ,Lt0)
]
× (MF +T F)

=
(MF+TF)

(( 3
4 −

∆

4

)
∆+MF+

(
∆

2 −1
)

TF−2
)

∆2

The Kuhn-Tucker Lagrangian is:

L(MF,T F,λk,vh) = π
Ex,LT M(MF,T F)−λ1(−MF +1)−λ2(−T F +

4−∆

2
)

The Kuhn-Tucker conditions are:
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∂L(MF,T F,λk,vh)

∂MF
=

8MFT F−4MF(1+∆)+∆(−1−2T F +∆−4∆λ1)

4∆2 ≥ 0 & MF× ∂L(MF,T F,λk,vh)

∂MF
= 0

(58)

∂L(MF,T F,λk,vh)

∂T F
=

4MF2 +4(1−3T F)T F−2MF∆+∆(−1+∆−4∆λ2)

4∆2 ≥ 0 & T F× ∂L(MF,T F,λk,vh)

∂T F
= 0

(59)

∂L(MF,T F,λk,vh)

∂λ1
= (−MF +1)≥ 0 & λ1×

∂L(MF,T F,λk,vh)

∂λ1
= 0 (60)

∂L(MF,T F,λk,vh)

∂λ2
= (−T F +

4−∆

2
)≥ 0 & λ2×

∂L(MF,T F,λk,vh)

∂λ2
= 0 (61)

The equilibrium MF∗ and T F∗ that satisfy these conditions are in the second line of (18): By substituting a

given value of ∆ into MF∗ and T F∗ in the second line of (18), we obtain the equilibrium fees in Table 1.

Subcase ∆ ∈ (4.7,5]∆ ∈ (4.7,5]∆ ∈ (4.7,5]: In this case, the investor valuation support width can be as large as 5τ , which is the

difference between P3 and P−3. So we also consider the investor’s profit conditional on orders posted at P3

and P−3. Table B1 shows that the investor’s profit is zero if he buys at P3 or sells at P−3. Table B3 shows

that for this interval of the support the equilibrium strategies are either xLB
1,t1 = LBP1,t1 , or xLB

−1,t1 = LBP−1,t1 .

Therefore, to determine the optimal MF and TF, we maximize the exchange profits conditional on the buyer

optimally using these two strategies, the case of the seller arriving at t1 being symmetric:
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max
MF,T F
MF≤τ
T F≤τ

4.7<∆≤5

π
Ex,LT M(MF,T F) (62)

=
[
Pr(xLB

1,t1 |Ξ,Lt0)×Pr(θ xLB
1

t1 |Ξ,Lt0)+Pr(xLB
−1,t1 |Ξ,Lt0)×Pr(θ

xLB
−1

t1 |Ξ,Lt0)
]
× (MF +T F)

=
(MF +T F)

(
(∆−1)∆−2(∆+1)MF +4MFT F−4T F2 +2T F

)
4∆2

The Kuhn-Tucker Lagrangian is:

L(MF,T F,λk,vh) = π
Ex,LT M(MF,T F)−λ1(−MF +1)

The Kuhn-Tucker conditions are:

∂L(MF,T F,λk,vh)

∂MF
=

8MFT F−4MF(1+∆)+∆(−1−2T F +∆+4∆λ1)

4∆2 ≥ 0 & MF× ∂L(MF,T F,λk,vh)

∂MF
= 0

(63)

∂L(MF,T F,λk,vh)

∂T F
=

4MF2 +4(1−3T F)T F−2MF∆+(1−∆)∆

4∆2 ≥ 0 & T F× ∂L(MF,T F,λk,vh)

∂T F
= 0

(64)

∂L(MF,T F,λk,vh)

∂λ1
= (−MF +1)≥ 0 & λ1×

∂L(MF,T F,λk,vh)

∂λ1
= 0 (65)

The equilibrium MF∗ and T F∗ that satisfy these conditions are given in the third line of (18) and in Table

1. Q.E.D.

Social Planner Problem: TM and MT ∆ ∈ (3,5]∆ ∈ (3,5]∆ ∈ (3,5] Table 2 shows that with the Social Planner setting optimal

fees there is a unique β range characterized by both TM and MT pricing.

Subcase ∆ ∈ (3,5]∆ ∈ (3,5]∆ ∈ (3,5]: Under the Taker-Maker regime, to determine the optimal MF and TF, the Social Planner

maximizes total welfare from both limit buy orders and market sell orders, and exchange profit as defined

in (13), (14) and (15), as well as (22) and (12). We present the welfare of the buy side of the market (the sell
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side being symmetric):

max
MF,T F
T F≤τ

MF≤τ
MF+T F≥0

3<∆≤5

∑
tz∈{t1,t2}

(
W INV

tz (MF,T F)+π
Ex
tz (MF,T F)

)
(66)

= W INV
t1 (xLB

−1,t1 |Ξ,Lt0)+W INV
t2 (xMS

−2,t2 |Ξ,Lt0)+W INV
t2 (xMS

−1,t2 |Ξ,Lt0)

+W INV
t2 (xMS

−2,t2 |Ξ,Lt0)+
[
Pr(xLB

−1,t1 ,θ
xLB
−1

t1 |Ξ)+Pr(xLB
−2,t1 ,θ

xLB
−2,t1

t1 |Ξ)
]
(MF +T F)

where the welfare from a limit buy at P−1 and from a limit buy at P−2 with 3 < ∆≤ 5 are respectively:

W INV
t1 (xLB

−1,t1 |Ξ,Lt0) =
∫

βt1∈Bt1 (x
LB
−1,t1

,Ξ,Lt0 )
[βt1 −P(xLB

−1,t1)−MF)]
1
∆

dβt1 ×Pr(θ
xLB
−1

t1 |Ξ,Lt0) (67)

=


(T F +1)(−∆+T F +2)(−∆+2T F +1)

4∆2 MF = 1∧−1 < T F ≤ 0∧3 < ∆≤ 5

− (MF−T F−2)(−∆+2T F +1)(−∆+MF +T F +1)
4∆2 −1≤ T F ≤ 0∧3 < ∆≤ 5∧0≤MF < 1

W INV
t2 (xMS

−2,t2
|Ξ,Lt0) = Pr(xLB

−2,t1 |Ξ,Lt0)×
∫

βt2∈Bt2 (x
MS
−2,t2

,Ξ,Lt1 )
[P(xLB

−2,t1)−βt2 −T F)] 1
∆

dβt2 (68)

=



− (−∆+2T F +3)(−∆−2MF +2T F +4)(2(MF +T F−1)−∆)

16∆2 (∆≤ 5∧∆ > 3∧T F +1≥ 0∧

((2MF > 1∧MF ≤ 1∧T F ≤ 0)∨ (MF ≥ 0∧

MF ≥ T F + 1
2 ∧2MF ≤ 1)))∨

(MF ≥ 0∧T F ≤ 0∧

((∆+2MF > 2T F +4∧MF < T F + 1
2∧

∆≤ 5)∨ (∆ > 3∧∆+2MF < 2T F +4)))

0 Otherwise

Whereas the welfare from a market sell at P−1 and from a market sell at P−2 when 3<∆≤ 5 are respectively:

W INV
t2 (xMS

−1,t2 |Ξ,Lt0) = Pr(xLB
−1,t1 |Ξ,Lt0)×

∫
βt2∈Bt2 (x

MS
−1,t2

,Ξ,Lt1 )
[P(xLB

−1,t1)−βt2 −T F)]
1
∆

dβt2 (69)
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=
(∆−2T F−1)2

8∆


1
2

2MF +∆≤ 2T F +4∧MF < T F + 1
2 ∧2MF ≤ 1

T F +1
∆

MF = 1∧T F >−1

−MF +T F +2
∆

MF < 1∧
(
2MF > 1∨MF ≥ T F + 1

2 ∨2MF +∆ > 2T F +4
)



W INV
t2 (xMS

−2,t2 |Ξ,Lt0) = Pr(xLB
−2,t1 |Ξ,Lt0)×

∫
βt2∈Bt2 (x

MS
−2,t2

,Ξ,Lt1 )
[P(xLB

−2,t1)−βt2 −T F)]
1
∆

dβt2 (70)

=


(∆−2T F−3)2(∆+2MF−2T F−4)

16∆2 MF ≥ T F + 1
2 ∨2MF > 1∨∆+2MF > 2T F +4

0 Otherwise

By substituting (67), (68), (69) and (70) into the welfare function of the Social Planner, (66), we obtain a

functional form whose components are subject to different boundary conditions. The following component

has the highest total welfare:

max
MF,T F
T F≤τ

MF≤τ
MF+T F≥0

3<∆≤5

∑
tz∈{t1,t2}

(
W INV

tz (MF,T F)+π
Ex
tz (MF,T F)

)
(71)

=
2∆3−∆2(4MF +6T F +3)+∆(MF(8T F +4)+4T F(T F +2)+7)+8(MF−T F−2)(MF +T F)

16∆2

The optimal fees presented in Table 2 are determined by the boundary conditions of the different parts of

the total welfare functional form. By substituting any 3 < ∆ ≤ 5 and the optimal MF∗ and T F∗ in (72) we

obtain the total welfare presented in Table 2. Figure D3 in Online Appendix D shows plots of the Social

Planner’s value function for the Taker-Maker case for the different support values (∆∈ {3.5τ,4τ,4.5,τ,5τ})

in Table 2.

Subcase ∆ ∈ (3,5]∆ ∈ (3,5]∆ ∈ (3,5]: Under the Maker-Taker regime, the Social Planner maximizes total welfare from limit

buy orders and market sell orders at P−1, as well as limit buy order and market sell orders at P1. As before,
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we present the welfare of the buy side of the market - the sell side being symmetric:

max
MF,T F
MF≤τ
T F≤τ

MF+T F≥0
3<∆≤5

∑
tz∈{t1,t2}

(
W INV

tz (MF,T F)+π
Ex
tz (MF,T F)

)
(72)

= W INV
t1 (xLB

−1,t1 |Ξ,Lt0)+W INV
t1 (xLB

1,t1 |Ξ,Lt0)+W INV
t2 (xMS

−1,t2 |Ξ,Lt0)+W INV
t2 (xMS

1,t2 |Ξ,Lt0)

+
[
Pr(xLB

−1,t1 ,θ
xLB
−1

t1 |Ξ)+Pr(xLB
1,t1 ,θ

xLB
1

t1 |Ξ)
]
(MF +T F)

Where the welfare from a limit buy at P−1 and from a limit buy at P1 with 3 < ∆≤ 5 are respectively:

W INV
t1 (xLB

−1,t1 |Ξ,Lt0) =
∫

βt1∈Bt1 (x
LB
−1,t1

,Ξ,Lt0 )
[βt1 −P(xLB

−1,t1)−MF)]
1
∆

dβt1 ×Pr(θ
xLB
−1

t1 |Ξ,Lt0) (73)

=



− (−∆+2T F +1)(−∆−2MF +2T F)(2(MF +T F−1)−∆)

16∆2 (MF + 3
2 < T F ∧MF ≥−1∧T F ≤ 1∧ ((∆ > 3∧∆+2MF < 2T F)∨

(∆+2MF > 2T F ∧∆≤ 5)))∨ (3 < ∆≤ 5∧ ((MF + 3
2 ≥ T F∧

T F ≥ 0∧−1≤MF ≤− 1
2 )∨ (−

1
2 < MF ≤ 0∧0≤ T F ≤ 1)))

0 Otherwise

W INV
t1 (xLB

1,t1 |Ξ,Lt0) =
∫

βt1∈Bt1 (x
LB
1,t1

,Ξ,Lt0 )
[βt1 −P(xLB

1,t1)−MF)]
1
∆

dβt1 ×Pr(θ xLB
1

t1 |Ξ,Lt0) (74)

=


− (MF−T F)(−∆+2T F−1)(−∆+MF +T F +1)

4∆2 0≤ T F ≤ 1∧3 < ∆≤ 5∧−1≤MF < 0

T F
(
∆2 +2T F2−3∆T F +T F−1

)
4∆2 MF = 0∧0 < T F ≤ 1∧3 < ∆≤ 5

Whereas the welfare from a market sell order at P−1 and from a market sell order at P1 when 3 < ∆≤ 5 are

respectively:

W INV
t2 (xMS

−1,t2 |Ξ,Lt0) = Pr(xLB
−1,t1 |Ξ,Lt0)×

∫
βt2∈Bt2 (x

MS
−1,t2

,Ξ,Lt1 )
[P(xLB

−1,t1)−βt2 −T F)]
1
∆

dβt2 (75)

=


(∆−2T F−1)2(∆+2MF−2T F)

16∆2 MF + 3
2 ≥ T F ∨MF >− 1

2 ∨∆+2MF > 2T F

0 Otherwise
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W INV
t2 (xMS

1,t2 |Ξ,Lt0) = Pr(xLB
1,t1 |Ξ,Lt0)×

∫
βt2∈Bt2 (x

MS
1,t2

,Ξ,Lt1 )
[P(xLB

1,t1)−βt2 −T F)]
1
∆

dβt2 (76)

=
(∆−2T F +1)2

8∆


1
2

2MF +∆≤ 2T F ∧MF + 3
2 < T F ∧MF ≤− 1

2

T F
∆

MF = 0∧T F > 0

T F−MF
∆

MF < 0∧
(
2MF +1 > 0∨MF + 3

2 ≥ T F ∨2MF +∆ > 2T F
)


By substituting (73), (74), (75) and (76) into the welfare function of the Social Planner, (72), we obtain a

functional form whose components are subject to different boundary conditions. The following component

has the highest total welfare:

max
MF,T F
MF≤τ
T F≤τ

MF+T F≥0
3<∆≤5

∑
tz∈{t1,t2}

(
W INV

tz (MF,T F)+π
Ex
tz (MF,T F)

)

=
(∆−1)∆(2∆+1)+8MF2−4∆MF(∆−2T F +1)+4(∆−2)T F2 +2(4−3∆)∆T F

16∆2 (77)

The optimal fees presented in Table 2 are determined by the boundary conditions of the different parts of

the total welfare functional form. By substituting any 3 < ∆ ≤ 5 and the optimal MF∗ and T F∗ in (77)

we obtain the total welfare presented in Table 2. Figure D3 in Section ?? in the Online Appendix shows

plots of the Social Planner’s value function for the Maker-Taker case for the different values of the support

(∆ ∈ {3.5τ,4τ,4.5,τ,5τ}) in Table 2.

B.3 Two-period market equilibrium with an arbitrary absolute tick size

Proof of Theorem 2: The proof follows from rescaling all of the variables in the model relative to an

absolute tick size τ > 0. In particular, we define scaled quantities M̂F = MF/τ , ˆT F = T F/τ , β̂tz = βtz/τ ,

ˆ̄
β = β̄/τ , β̂ = β/τ , and prices P̂j = Pj/τ for all h. Given this rescaling, we next observe that all of the
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order-submission and order-execution probabilities are homogeneous of degree zero in the absolute tick

size τ . In particular, the absolute tick size factors out of both the numerator and denominator and cancels.

Similarly, the conditional payoffs on executed orders for the exchange and investors is homogeneous of order

one. Thus, changing the tick size does not change relative comparisons for prices centered around a given

fundamental valuation v. The rescaled optimization problems for the investors and exhange are, therefore,

equivalent to the optimization problem with a tick of 1. This gives us the solutions to the exchange’s optimal

scaled fees. Multiplying the scaled fees by the absolute tick size τ gives the corresponding absolute fees

MF = M̂Fτ and MF = M̂Fτ . Q.E.D.

Equilibrium in trading subgame in two-period model: This rest of this section derives a property of the

β thresholds that drives the solution of the 2-period models for the equilibrium order execution and order

submission probabilities. We show that the distance between two consecutive thresholds is a linear function

of the tick size and that it is equal to 2 ticks. This result has an important implication as it implies that by

changing the tick size the distance between two adjacent thresholds changes proportionally and so do both

the equilibrium probabilities of executions, and the equilibrium probabilities of submission.

Suppose that two limit buy orders posted at Pk and Pj, with j < k, are such that PMS,cum
k ∈ (β ,β ) and

PMS,cum
j ∈ (β ,β ), so that there is a positive well-defined probability of an investor arriving at t2 who would

be willing to MS against these LBs. The expected profit on a limit buy at Pk at t1 given βt1 > Pk is

π
INV
t1 (LBPk) = Pr(βt2 < PMS,cum

k )(βt1 −PLB,cum
k ) =

PMS,cum
k −β

β −β
(βt1 −PLB,cum

k ). (78)

Similarly, the expected profit on a limit buy at Pj at t1 given βt1 > Pk (and, thus, βt1 > Pj) is

π
INV
t1 (LBPj) = Pr(βt2 < PMS,cum

j )(βt1 −PLB,cum
j ) =

PMS,cum
j −β

β −β
(βt1 −PLB,cum

j ). (79)
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Notation: Define n j,k = (Pk−β )− (Pj−β )> 0, which is the integer number of ticks between Pj and Pk.

Consider the Taker-Maker market with a positive make fee MF > 0 and a negative take fee T F < 0.32

Using the above notation, we have PMS,cum
k = Pk−T F = Pj +n j,k−T F and PLB,cum

k = Pk+MF = Pj +n j,k+

MF . In addition, we can write PLB,cum
k = PLB,cum

j +n j,k and PMS,cum
k = PMS,cum

j +n j,k. Thus, we have

π
INV
t1 (LBPk) ≥ π

INV
t1 (LBPj) (80)

→
PMS,cum

k −β

β −β
(βt1 −PLB,cum

k ) ≥
PMS,cum

j −β

β −β
(βt1 −PLB,cum

j )

→ βt1 ≥ Pj +Pk−β −T F +MF

so that the break-point β
j,k

t1 where profits are equated for a LB at a fixed price Pj vs. LBs at higher prices

Pk > Pj is

β
j,k

t1 = Pj +Pk−β −T F +MF (81)

where Pj +Pk−β −T F +MF > 0 in the Taker-Maker regime (where −T F +MF > 0) and Pj−β > 0.

This has the following useful implication about the thresholds for a fixed limit price Pj and higher limit

prices Pk: Consider two limit prices Pk ∈ (Pj,β ) and Pk′ ∈ (Pk,β ]. The difference between the two respective

breakpoints is β
j,k′

t1 −β
j,k

t1 = k′− k. Thus, the breakpoints for a given price Pj and higher limit prices are

ordered in that β
j,k

t1 < β
j,k′

t1 given k < k′, and, moreover, that breakpoints for consecutive higher prices with

(P′k− β ) = (Pk− β )+ 1 are equally spaced exactly one tick apart. Similarly, the breakpoints for a given

price Pk and lower prices are ordered in that β
j′,k

t1 < β
j′,k

t1 given j′ < j, and, moreover, that breakpoints for

consecutive lower prices with (P′j−β ) = (Pj−β )−1 are equally spaced exactly one tick apart.

Another implication here is that if k > j > 0 and k′ > j′ > 0 where j+k = j′+k′, then β
j,k

t1 = β
j′,k′

t1 . The

same is true for 0 > k > j and 0 > k′ > j′ where j+ k = j′+ k′. The corresponding result when k > 0 > j

32Maker-Taker and positive fee pricing each lead to analogous results.
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or k′ > 0 > j′ is slightly different since there is no P0.

Construction of upper envelope: To get started, we initially ignore the possibility of limit sells. That will

be addressed below. Start at lowest ex ante feasible limit price on price grid. Call this price P̀ . No one at t1

would be willing to LB at the next highest price P̀ +1 until their βt1 is at least above PLB,cum
`+1 . Thus, there is

an interval βt1 values above PLB,cum
` for which LBP̀ dominates LBs at any higher LB price. The interval for

which LBP̀ dominates other LBs extends until the break-point β
`,`+1
t1 at which point a LB at P̀ +1 becomes

optimal. In particular, we know that P̀ +1 is the next optimal limit price rather than some higher price Pk

because, holding price P̀ fixed, we have from above that β
`,`+1
t1 < β

`,k
t1 for k > `+1. The interval for which

LBP̀ +1 is optimal extends to β
`+1,`+2
t1 and so on.

Next, define `∗ as the index of the lowest price such that the interval [β `∗−1,`∗
t1 ,β `∗,`∗+1

t1 ] includes the

mid-valuation v. Since only potential buyers with βt1 > v submit limit buys, we have the following upper

envelope for optimal limit buy orders when limit sell orders are also possible: The limit buy LBP̀ ∗ is used for

βt1 ∈ [v,β `∗,`∗+1
t1 ], the limit buy LBP̀ ∗+1 is used for βt1 ∈ [β `∗,`∗+1

t1 ,β `∗+1,`∗+2
t1 ], the limit buy LBP̀ ∗+2 is used

for βt1 ∈ [β `∗+1,`∗+2
t1 ,β `∗+2,`∗+3

t1 ], and so on. This continues up to the price Pm, which is defined as the lowest

price such that β
m,m+1
t1 > β . It follows, then, that investors at t1 with βt1 ∈ [β

m−1,m
t1 ,β ] optimally submit LBPm

limit orders.. Thus, the upper envelope continues with intervals up to . . . , [β m−2,m−1
t1 ,β m−1,m

t1 ], [β m−1,m
t1 ,β ] .

Putting everything together, the limit buys LBP̀ ∗ , LB`∗+1, . . .LBPm are optimal in the associated intervals

[v,β `∗,`∗+1
t1 ], [β `∗,`∗+1

t1 ,β `∗+1,`∗+2
t1 ], . . . [β m−1,m

t1 ,β ]

Order-submission probabilities: Given our assumption that β is uniformly distributed, the order-submission

probabilities for optimal LBs at t1 are just the width of the interval for which they are optimal divided by the

length ∆ of the full valuation support.

Consider first an arbitrary “interior” interval [β k−1,k
t1 ,β k,k+1

t1 ] for 1 < k < m. Note here that the critical values,
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from above, are given by

β
k−1,k
t1 = Pk−1 +Pk−β −T F +MF (82)

β
k,k+1
t1 = Pk +Pk+1−β −T F +MF

Thus, the width of any “interior” interval is

β
k,k+1
t1 −β

k−1,k
t1 = Pk +Pk+1−β −T F +MF− (Pk−1 +Pk−β −T F +MF) = 2 (83)

The construction for the upper envelope of limit sells is symmetric.

C Exchange Competition in Access Pricing

Proof of Theorem 3: Part (i) The monopolistic equilibrium in (i) can be implemented by the exchange A

setting its access pricing to be the monopolistic access pricing schedule and threatening to switch to the MF-

undercutting/TF-matching schedule if exchange B competes at all via any positive-profit schedule that would

attract orders given the two-sided nature of the market. If A has access to a commitment mechanism that

makes this threat credible, then, in equilibrium, exchange B is indifferent between competing (in which case

it earn profits of 0) and not competing (in which case exchange A earns monopolistic profits and exchange

B again earns profits of 0) and, thus, is willing to not-compete.

Part (ii) The equilibrium in (ii) can be implemented by the exchange A setting its pricing to be the

monopolistic pricing schedule and threatening to switch to the MF-undercutting/TF-matching schedule if

exchange B competes using a positive-profit pricing schedule that differs from the monopolistic schedule. If

A has access to a commitment mechanism that makes this threat credible, then, in equilibrium, exchange B

strictly prefers matching exchange A’s monopolistic pricing schedule since this lets exchange B earn positive
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expected profits if investors at t1 randomize with positive probability on submitting limit orders to exchanges

A and B, whereas any other pricing schedule results in zero-profits for exchange B. Q.E.D.

Proof of Theorem 4 : Part (i) The discriminating equilibrium can be implemented in part (i) by the same

logic as for the equilibrium in part (i) of Theorem 3. Exchange operator A proposes the two discriminating

price schedules for its two exchanges, A1 and A2 and then makes a grim trigger contingent undercutting

strategy threat if operator B proposes any positive-profit pricing schedule that would attract trading volume.

Part (ii) The discriminating equilibrium can also be implemented in part (ii) by exchange operator A

proposing to use one of the two discriminating pricing schedules in its exchange and making a grim trigger

contingent threat to undercut operator B unless operator B uses the other discriminating price schedule in its

exchange. Q.E.D.

Proof of Theorem 5 A Stackelberg equilibrium exists because this is a sequential finite game of full

information with respect to the two exchanges. Thus, for each proposed price schedule for exchange A,

there is an optimal response for exchange B. Thus, exchange A, as the Stackelbert leader, proposes using the

pricing schedule that maximizes exchange A’s expected profit conditional on exchange B’s optimal response

as the Stackelberg follower. Q.E.D.
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Online Appendix

D 2-period trading game

This section examines the 2-period {t1, t2} version of the general model. The model is solved by backwards

induction in two steps. We first take market access pricing Ξ set by the Stackelberg leader as given and

solve for the optimal investor trading strategies in the trading subgame. Given this characterization of

optimal investor trading - the optimal response of the follower - we then solve for the optimal access pricing

given the exchange’s profit-maximization problem or given the Social Planner’s total welfare-maximization

problem.

D.1 Construction of optimal Maker-Taker fees

This section provides details for the construction of optimal Maker-Taker access pricing in the two-period

LTM. The logic is similar to the construction of optimal Taker-Maker fees in Appendix B.

Maker-Taker: Now consider Maker-Taker pricing, ΞMT = {−1 ≤ MF ≤ 0,0 ≤ T F ≤ 1}, with a make

rebate and a positive take fee, as illustrated in Figure B2. Once again, we determine the optimal strategies

for arriving investors at times t1 and t2 and the associated order-submission probabilities:

• First, given a positive take fee TF and an investor valuation support width ∆ ≤ 3, the expected profit

on limit buys at P−2 and limit sells at P2 at t1 is zero as there will be no sellers (buyers) at t2 willing

to sell (buy) at a cum-fee price smaller (higher) than P−2 (P2). Thus, such limit orders are not used in

this case.

• Second, the expected profit (βt1 −Pcum,LB
2 )×Pr(θ xLB

2
t1 |Ξ,Lt0) on a limit buy at P2 for a potential buyer

with βt1 > Pcum,LB
2 or (Pcum,LS

−2 − βt1)× Pr(θ
xLS
−2

t1 |Ξ,Lt0) on a limit sell at P−2 with βt1 < Pcum,LB
−2 in
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non-negative.

(
|βt1 − v|+ 3

2
−MF

)
max

{
0,

1
∆
[
∆

2
+

3
2
−T F ]

}
> 0. (84)

However with Maker-Taker pricing and 0 < ∆≤ 5 a limit buy at P2 is always dominated by a limit buy at P1

(βt1 −Pcum,LB
2 )×Pr(θ xLB

2
t1 |Ξ,Lt0)> (βt1 −Pcum,LB

1 )×Pr(θ xLB
1

t1 |Ξ,Lt0) (85)

The conditions under which (85) holds are


MF = 0 & T F = 0 & β > v+

∆

2
+2

β > v+2+MF−T F +
1
2

∆ & 0 < T F ≤ 1 & −T F ≤MF ≤ 0

(86)

It is straightforward to show that the first condition in (86) is never satisfied for 0<∆≤ 5 since β > v+ ∆

2 +2

is a β value that falls beyond β as v+ ∆

2 = β . The second condition is never satisfied as the minimum value

of MF−T F consistent with Maker-Taker is−2 and therefore for the second condition in (86) to be satisfied

we need β > v+ ∆

2 which is impossible as v+ ∆

2 = β .

Third, the expected profit (βt1 − Pcum,LB
1 )× Pr(θ xLB

1
t1 |Ξ,Lt0) from a limit buy at P1 or (Pcum,LS

−1 − βt1)×

Pr(θ
xLS
−1

t1 |Ξ,Lt0) on limit sell at P−1 is non negative:

(
|βt1 − v|− 1

2
−MF

)
max

{
0,

1
∆
[
∆

2
+

1
2
−T F ]

}
, (87)

Lastly, the expected profit (βt1 − Pcum,LB
−1 )× Pr(θ

xLB
−1

t1 |Ξ,Lt0) from a limit buy at P−1 or (Pcum,LS
1 − βt1)×

Pr(θ xLS
1

t1 |Ξ,Lt0) from limit sell at P1 is positive and equal to:

(
|βt1 − v|+ 1

2
−MF

)
max

{
0,

1
∆
[
∆

2
− 1

2
−T F ]

}
, (88)
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Hence we have to compute the threshold between a limit buy at P−1 and a limit buy at P1

(βt1 −Pcum,LB
−1 )×Pr(θ

xLB
−1

t1 |Ξ,Lt0)− (βt1 −Pcum,LB
−1 )×Pr(θ xLB

1
t1 |Ξ,Lt0) = 0 (89)

The βt1 values which satisfy (89) are:

β
xLB

P−1
,xLB

P1
t1 = v+

1
2

∆+MF−T F (90)

We can now compute the order-submission probabilities from (7) for a limit buy at P−1 and P1

Pr(xLB
−1,t1 |Ξ,Lt0) =



1
∆

[
MF−T F + 1

∆
) (MF ≤− 1

2 ∧MF > T F− 3
2 ∧∆+2MF−2T F > 0)∨

(MF >− 1
2 ∧T F < 1∧1T F + 1

2 < 1
2 ∆)

0 Otherwise

(91)

Pr(xLB
1,t1 |Ξ,Lt0) =




1
2 MF ≤− 1

2

1
2 (∆−2MF−1)

∆
Otherwise

T F ≥ 1∨T F + 1
2 ≥

1
2 ∆



1
2 MF <− 1

2 ∧ (MF + 3
2 ≤ T F

∨(T F < MF + 3
2 ∧

1
2 ∆≤ T F−MF))

T F
∆

MF = 0∧T F > 0

T F−MF
∆

(MF <− 1
2 ∧T F < MF + 3

2 ∧

T F−MF < 1
2 ∆)∨− 1

2 < MF < 0

T F+ 1
2

∆
MF =− 1

2 ∧T F > 0

0 Otherwise

Otherwise

(92)
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We can now set the optimizing function for both the exchange and the Social Planner.

Exchange Problem: Maker-Taker ∆ ∈ (0,3]∆ ∈ (0,3]∆ ∈ (0,3] Under the Maker-Taker regime the exchange will set the fees

such that an investor arriving at t1 will optimally choose either LBP−1,t1 or LSP1,t1 . As for the Taker-Maker

regime, the exchange anticipates that the optimal order submission strategy for the buyer (seller) is to buy at

P−1 (sell at P1) or to buy at P1 (sell at P−1) (the case of the seller arriving at t1 being symmetric):

max
MF,T F

0≤T F≤τ
MF≤T F
0<∆≤3τ

π
Ex,LT M(MF,T F) (93)

=
[
Pr(xLB

−1,t1 |Ξ,Lt0)×Pr(θ
xLB
−1

t1 |Ξ,Lt0)+Pr(xLB
1,t1 |Ξ,Lt0)×Pr(θ xLB

1
t1 |Ξ,Lt0)

]
× (MF +T F)

where (93) can be obtained by using (91) and (92) together with the probability of the limit buy order

execution, Pr(θ
xLB
−1

t1 |Ξ,Lt0) and Pr(θ xLB
1

t1 |Ξ,Lt0) from Table B1.

From the first-order conditions of (93) — that we compute in the Online Appendix — we obtain the

equilibrium optimal Make and Take fees for the exchange that are in (17). The determinant is:

Det(MF∗,T F∗) = δMF,MF(MF∗,T F∗)×δT F,T F(MF∗,T F∗)− (δMF,T F(MF∗,T F∗))2 (94)

=


0 ∆≤ 0∨∆ > 3

1
3∆2 Otherwise

where the three second partial derivatives are

δMF∗,MF∗ ,δT F∗,T F∗ ,δMF∗,T F∗ =


{
− 2

3∆
, − 2

3∆
, − 1

3∆

}
0 < ∆≤ 3{

0, 0, 0
}

Otherwise

(95)

Since the determinant is positive, the second-order condition is satisfied. Q.E.D.
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Table 1 shows that when the exchange opts for a Taker-Maker (or Maker-Taker) pricing Proposition 1 holds

in equilibrium:

Pr(xLB
−1,t1 |Ξ,Lt0) = Pr(θ

xLB
−1

t1 |Ξ,Lt0) =
(MF +T F)

∆
=

1
3

(96)

and

Pr(xLB
1,t1 |Ξ,Lt0) = Pr(θ xLB

1
t1 |Ξ,Lt0) =

(MF +T F)

∆
=

1
3

(97)

As Figure B1 (and B2) shows, to maximize expected profits the exchange has to maximize the product of 3

components, β̄ −Pcum,LB
−1 , (MF+TF), Pcum,MS

−1 −β (and , β̄ −Pcum,LB
1 ,(MF+TF), Pcum,MS

1 −β ), and the sum

of these three components are constrained to be equal to ∆. Q.E.D.

Social Planner Problem: Maker-Taker ∆ ∈ (0,3]∆ ∈ (0,3]∆ ∈ (0,3] Under Maker-Taker regime to determine the optimal MF

and TF, the Social Planner maximizes the total welfare of market participants. Total welfare, welfare from

both limit buy orders and market sell orders, and exchange profit are defined in (13), (14) and (15), as well

as (22) and (12). We present the welfare of the buy side (the sell side being symmetric):

max
MF,T F

0≤T F≤τ
MF+T F≥0

0<∆≤3τ

∑
tz∈{t1,t2}

(
W INV

tz (MF,T F)+π
Ex
tz (MF,T F)

)
(98)

= W INV
t1 (xLB

−1,t1 |Ξ,Lt0)+W INV
t1 (xLB

1,t1 |Ξ,Lt0)+W INV
t2 (xMS

−1,t2 |Ξ,Lt0)

+W INV
t2 (xMS

1,t2 |Ξ,Lt0)+
[
Pr(xLB

−1,t1 ,θ
xLB
−1

t1 |Ξ)+Pr(xLB
1,t1 ,θ

xLB
1

t1 |Ξ)
]
(MF +T F)

W INV
t1 (xLB

−1,t1 |Ξ,Lt0) =
∫

βt1∈Bt1 (x
LB
−1,t1

,Ξ,Lt0 )
[βt1 −P(xLB

−1,t1)−MF)]
1
∆

dβt1 ×Pr(θ
xLB
−1

t1 |Ξ,Lt0) (99)
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=



− (−∆+2T F +1)(−∆−2MF +2T F)(2(MF +T F−1)−∆)

16∆2 (2T F +1 < ∆∧ ((−1 < MF <− 1
2 ∧ ((MF + 3

2 = T F ∧∆ < 3)∨

(MF + 3
2 < T F ∧T F < 1∧∆≤ 3)∨

(MF + 3
2 > T F ∧T F ≥ 0∧∆+2MF < 2T F)))∨

(T F < 1∧T F ≥ 0∧MF ≤ 0∧∆≤ 3∧ (2MF +1 > 0∨

(MF + 3
2 > T F ∧∆+2MF > 2T F ∧MF +1≥ 0)))))∨

(−1≤MF ≤− 1
2 ∧T F ≥ 0∧∆≤ 3∧∆+2MF > 2T F)

0 Otherwise

where the region of integration is Bt1(x
LB
−1,t1 ,Ξ,Lt0) = [v,β

xLB
P−1

,xLB
P1

t1 ], and β
xLB

P−1
,xLB

P1
t1 is defined in (90).

W INV
t1 (xLB

1,t1 |Ξ,Lt0) =
∫

βt1∈Bt1 (x
LB
1,t1

,Ξ,Lt0 )
[βt1 −P(xLB

1,t1)−MF)]
1
∆

dβt1 ×Pr(θ xLB
1

t1 |Ξ,Lt0) (100)

=



1
18

MF = 0∧T F = 1∧∆ = 3

1
18

(MF−1)2 −1≤MF < 0∧T F = 1∧∆ = 3

− (MF−T F)(−∆+2T F−1)(−∆+MF +T F +1)
4∆2 −1≤MF < 0∧0 < T F < 1∧2T F +1≤ ∆∧∆≤ 3

− (∆−1)2(−∆+2T F−1)
16∆2 MF = 0∧∆ > 1∧ ((T F = 1∧∆ < 3)∨ (2T F +1 > ∆∧T F < 1))

(∆−2MF−1)2(∆−2T F +1)
16∆2 MF < 0∧MF +1≥ 0∧∆ > 1∧ ((T F = 1∧∆ < 3)∨ (2T F +1 > ∆∧T F < 1))

T F(∆2 +2T F2−3∆T F +T F−1)
4∆2 MF = 0∧0 < T F < 1∧2T F +1≤ ∆∧∆≤ 3

where the region of integration is Bt1(x
LB
1,t1 ,Ξ,Lt0) = [β

xLB
P−1

,xLB
P1

t1 ,β ].

W INV
t2 (xMS

−1,t2 |Ξ,Lt0) = Pr(xLB
−1,t1 |Ξ,Lt0)×

∫
βt2∈Bt2 (x

MS
−1,t2

,Ξ,Lt1 )
[P(xLB

−1,t1)−βt2 −T F)]
1
∆

dβt2 (101)

=


(∆−2T F−1)2(∆+2MF−2T F)

16∆
2 T F ≥ 0∧2T F +1 < ∆∧∆≤ 3∧ (MF >− 1

2 ∨ (MF + 3
2 > T F ∧∆+2MF > 2T F))

0 Otherwise

where the region of integration is Bt2(x
MS
−1,t2 ,Ξ,Lt1) = [β ,P−1−T F ].

W INV
t2 (xMS

1,t2 |Ξ,Lt0) = Pr(xLB
1,t1 |Ξ,Lt0)×

∫
βt2∈Bt2 (x

MS
1,t2

,Ξ,Lt1 )
[P(xLB

1,t1)−βt2 −T F)]
1
∆

dβt2 (102)

108



=
(∆−2T F +1)2

8∆



1
2

(MF =− 1
2 ∧ (T F = 1∨ (2T F +1≥ ∆∧0 < T F ≤ 1)))∨

(MF <− 1
2 ∧ (MF + 3

2 < T F ∨ (MF + 3
2 ≤ T F ∧∆≤ 3)∨ (MF + 3

2 > T F ∧2MF +∆≤ 2T F)))

1
3

MF = 0∧T F = 1∧∆ = 3

1−MF
3

− 1
2 < MF < 0∧T F = 1∧∆ = 3

T F
∆

MF = 0∧0 < T F < 1∧2T F +1≤ ∆

T F−MF
∆

(− 1
2 < MF < 0∧0 < T F < 1∧2T F +1≤ ∆)∨ (MF <− 1

2 ∧MF + 3
2 > T F ∧2MF +∆ > 2T F)

2T F +1
2∆

MF =− 1
2 ∧0 < T F < 1∧2T F +1 < ∆

∆−1
2∆

MF = 0∧ ((T F = 1∧∆ < 3)∨ (2T F +1 > ∆∧0 < T F < 1))

−2MF +∆−1
2∆

− 1
2 < MF < 0∧ ((T F = 1∧∆ < 3)∨ (2T F +1 > ∆∧0 < T F < 1))



where the region of integration is Bt2(x
MS
1,t2 ,Ξ,Lt1) = [β ,P1−T F ].

By substituting (99), (100), (101) and (102) into the welfare function of the Social Planner, (98), we

obtain a functional form whose components are subject to different boundary conditions. The following

component has the highest total welfare:

max
MF,T F

0≤T F≤τ
MF+T F≥0

0<∆≤3τ

∑
tz∈{t1,t2}

(
W INV

tz (MF,T F)+π
Ex
tz (MF,T F)

)
(103)

=



(∆−2MF−1)(∆−2T F +1)2

16∆2 +
1
16

(∆−2T F +1)
(
MF =−1

2
∧0 < T F ≤ 1

2
∧0 < ∆≤ 1∧

∆+2T F > 1
)
∨
(
MF =−1

2
∧ 1

2
< T F < 1∧

2T F−∆ < 1∧0 < ∆≤ 1
)

∆(∆−2T F +1)2−4(MF−T F)(−∆+2T F−1)(−∆+MF +T F +1)
16∆2 0 < T F < 1∧1 < ∆≤ 3∧(

(MF =−1
2
∧2T F +1 = ∆)∨

(
−1≤MF <− 1

2 ∧2T F +1≤ ∆∧

(MF +
3
2
≤ T F ∨∆+2MF ≤ 2T F)

))

The optimal fees MF∗ and T F∗ presented in Table 2 are those that maximize (103) for any value of 0<∆≤ 3

that satisfies the boundary conditions of (103). For example, for ∆ = 2 the second equation in (103) is
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maximized for MF∗ =−0.5 and T F∗ = 0.5.

The optimal fees presented in Table 2 are determined by the boundary conditions of the different parts

of the total welfare functional form. By substituting any 0 < ∆ ≤ 3 and the optimal MF∗ and T F∗ in

(103) we obtain the total welfare presented in Table 2. Figure D2 in Online Appendix D.2 shows plots of

the Social Planner’s value function for the Maker-Taker case for the different values of the support (∆ ∈

{τ,2τ,2.5τ,3τ}) in Table 2.

D.2 Additional numerical illustrations

STM equilibrium Tables D1 and D2 provides additional numerical results for the two-period STM equilib-

rium given a profit-maximizing exchange and the Social Planner.

Exchange’s expected profit surface: Figure D1 illustrates the exchange’s expected profit function surface

for different combinations of fees and rebates given different investor valuation supports in the two-period

market. The blue dots denote profit-maximizing combinations of make and take fees. The symmetric pairs of

profit-maximizing MF and T F are clearly visible when the investor valuation supports are narrow. However,

once again we see the profit-maximizing access pricing is unique once the valuation support is large enough.

Social Planner’s objective function surface: Figure D2 illustrates the social planner expected total welfare

function surface for different combinations of fees and rebates given different investor valuation supports.
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Table D1: 2-Period Small Tick Market (SMT): Equilibrium Fees and Trading Strategies. This table reports for different
investor valuation support width, ∆ = β −β still expressed in terms of the LTM tick size τ (column 1), the extreme values of the
support, β and β̄ (column 2), the equilibrium make and take fees (mf∗ and tf∗) (column 3 and 4), the sum and the absolute difference
of the equilibrium MF∗ and T F∗ (column 5 and 6), the equilibrium trading strategies at t1, xt1 other than No Trade (column 7)
and the associated probability of submission at t1, Pr(xt1 |Ξ∗,Lt0) (column 8). The table also shows the cum-fee buy and sell prices
(Pcum,LB

j and Pcum,MS
j ) (column 9 and 10), the probability of execution of the order posted at t1, Pr(θ

xt1
t1 |Ξ

∗,Lt0), which correspond

to the unconditional probability of MS at t2 (column 11), the equilibrium transaction probability Pr(xtz ,θ
xtz
tz |S,τ,Ξ) (column 12),

and the exchange expected profit from both buyers and sellers, πEx(mf∗, tf∗) (column 13). When the equilibrium pricing is rebate
based, for each support we report first Taker-Maker set of fees and then the Maker-Taker set of equilibrium mf∗ and tf∗.

Support β , β̄ mf∗ tf∗ mf∗+tf∗ |mf∗-tf∗| Eq. Orders xt1 Pr. Submission Pcum,LB
j Pcum,MS

j Pr. Execution Pr. Trans Exchange E[Profit]
∆ = β −β at t1 Pr(xt1 |Ξ∗,Lt0 ) Pr(θ

xt1
t1 |Ξ

∗,Lt0 ) πEx(m f ∗, t f ∗)

0.222 -0.111 0.111 0.333 LBp−1 0.333 10.056 9.944 0.333 0.222 0.025
0.33τ 9.833, 10.167

-0.111 0.222 0.111 0.333 LBp1 0.333 10.056 9.944 0.333 0.222 0.025

0.333 0.000 0.333 0.333 LBp−1 0.333 10.167 9.833 0.333 0.222 0.074
τ 9.500, 10.500

0.000 0.333 0.333 0.333 LBp1 0.333 10.167 9.833 0.333 0.222 0.074

1.03τ 9.485, 10.515 0.333 0.017 0.350 0.316 LBp−1 0.338 10.167 9.816 0.322 0.218 0.076

1.1τ 9.450, 10.550 0.333 0.050 0.383 0.283 LBp−1 0.348 10.167 9.783 0.303 0.211 0.081

1.33τ 9.333, 10.667 0.333 0.167 0.500 0.167 LBp−1, LBp−2 0.375, 0.126 10.167, 9.833 9.667, 9.334 0.251, 0.001 0.188 0.085

1.37τ 9.315, 10.685 0.333 0.171 0.504 0.162 LBp−1, LBp−2 0.369, 0.131 10.167, 9.833 9.662, 9.329 0.253, 0.009 0.189 0.095

1.57τ 9.215, 10.785 0.333 0.204 0.537 0.129 LBp−1, LBp−2 0.353, 0.147 10.167, 9.833 9.629, 9.296 0.263, 0.051 0.197 0.106

1.6τ 9.200, 10.800 0.167 0.333 0.500 0.166 LBp1, LBp−1 0.104, 0.396 10.334, 10.050 9.834, 9.500 0.396, 0.188 0.231 0.115

1.67τ 9.165, 10.835 0.167 0.333 0.500 0.166 LBp1, LBp−1 0.100, 0.400 10.334, 10.050 9.834, 9.500 0.400, 0.200 0.240 0.120

LBp1, LBp−1 0.059, 0.351 10.389, 10.055 9.834, 9.500 0.412, 0.237 0.226 0.125
1.9τ 9.050, 10.950 0.222 0.333 0.555 0.111

LBp−2 0.091 9.722 9.167 0.061

2τ 9.000, 11.000 0.333 0.292 0.625 0.041 LBp−1, LBP−2 0.313, 0.187 10.167, 9.833 9.541, 9.208 0.271, 0.104 0.208 0.130

LBp−1, LBp−2 0.222, 0.222 10.167, 9.833 9.500, 9.167 0.333, 0.222 0.259 0.173
3τ 8.500, 11.500 0.333 0.333 0.666 0.000

LBp−3 0.056 9.500 8.834 0.111

LBp−1, LBp−2 0.167, 0.167 10.166, 9.833 9.500, 9.167 0.375, 0.292 0.292 0.194
4τ 8.000, 12.000 0.333 0.333 0.666 0.000

LBp−3 0.167 9.500 8.834 0.208

LBp−1, LBp−2 0.133, 0.133 10.166, 9.833 9.500, 9.167 0.400, 0.333 0.307 0.204
5τ 7.500, 12.500 0.333 0.333 0.666 0.000

LBp−3, LBp−4 0.133, 0.100 9.500, 9.167 8.834, 8.500 0.267, 0.200
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Table D2: 2-Period Small Tick Market (STM): Social Planner Equilibrium Fees and Trading Strategies. This table reports
for different investor valuation support width, ∆ = β −β expressed in terms of the LTM tick size, τ (column 1), the extreme values
of the support, β and β̄ (column 2), the equilibrium make and take fees, mf and tf (column 3 and 4), the sum and the absolute
difference of the equilibrium MF∗ and T F∗ (column 5 and 6), the buyer’s equilibrium trading strategies at t1, xt1 other than No
Trade (column 7) and the associated the cum-fee buy and sell prices (Pcum,LB

k and Pcum,MS
k ) (column 8 and 9). It also reports the

equilibrium welfare of the limit order submitted at t1, W
xt1
t1 , and the welfare associated with the market order posted at t2, W

xt2
t2 , as

well as the sum of limit and market orders W
xt1
t1 +W

xt2
t2 (columns 10, 11 and 12). When the equilibrium pricing is rebate based,

for each support we report first the Taker-Maker set of fees and then the Maker-Taker set of equilibrium MF and TF. Results are
rounded to the third decimal.

Support width β , β̄ mf tf |mf-tf| Eq.Strategy Pcum,LB
k Pcum,MS

k W. xt1 W. xt2 W. xt1 + xt2
∆ = β −β xt1

0.167 -0.167 0.334 LBp−1 10.000 10.000 0.042 0.042 0.084
0.33τ 9.833, 10.167

-0.167 0.167 0.334 LBp1 10.000 10.000 0.042 0.042 0.084

0.167 -0.167 0.334 LBp−1 10.000 10.000 0.083 0.083 0.167
0.67τ 9.665, 10.335

-0.167 0.167 0.334 LBp1 10.000 10.000 0.083 0.083 0.167

0.083 -0.083 0.166 LBp−1 9.917 9.917 0.139 0.087 0.226
τ 9.500, 10.500

-0.250 0.250 0.500 LBp1 9.917 9.917 0.139 0.087 0.226

0.167 -0.167 0.334 LBp−1, LBp−2 10.000, 9.667 10.000, 9.667 0.188 0.104 0.292
1.33τ 9.333, 10.667

-0.167 0.167 0.334 LBp1, LBp−1 10.000, 9.667 10.000, 9.667 0.188 0.104 0.292

0.250 -0.250 0.500 LBp−1, LBp−2 10.083, 9.750 10.083, 9.750 0.237 0.132 0.369
1.67τ 9.165, 10.835

-0.083 0.083 0.166 LBp1, LBp−1 10.083, 9.750 10.083, 9.750 0.237 0.132 0.369

0.083 -0.083 0.166 LBp−1, LBp−2 9.917, 9.583 9.917, 9.583 0.337 0.176 0.513
2.33τ 8.833, 11.167

-0.250 0.250 0.500 LBp1, LBp−1 9.917, 9.583 9.917, 9.583 0.337 0.176 0.513

0.250 -0.250 0.500 LBp−1, LBp−2 10.083, 9.750 10.083, 9.750 0.434 0.224 0.658
3τ 8.500, 11.500 LBp−3 9.417 9.417

-0.083 0.083 0.166 LBp1, LBp−1 10.083, 9.750 10.083, 9.750 0.434 0.224 0.658
LBp−2 9.417 9.417

0.083 -0.083 0.166 LBp−1, LBp−2 9.917, 9.583 9.917, 9.583 0.532 0.272 0.804
LBp−3 9.250 9.250

3.67τ 8.165, 11.835
-0.250 0.250 0.500 LBp1, LBp−1 9.917, 9.583 9.917, 9.583 0.532 0.272 0.804

LBp−2 9.250 9.250

0.250 -0.250 0.500 LBp−1, LBp−2 10.083, 9.750 10.083, 9.750 0.630 0.320 0.950
LBp−3, LBp−4 9.417, 9.083 9.417, 9.083

4.33τ 7.833, 12.167
-0.083 0.083 0.166 LBp1, LBp−1 10.083, 9.750 10.083, 9.750 0.630 0.320 0.950

LBp−2, LBp−3 9.417, 9.083 9.417, 9.083

0.083 -0.083 0.166 LBp−1, LBp−2 9.917, 9.583 9.917, 9.583 0.727 0.368 1.095
LBp−3, LBp−4 9.250, 8.917 9.250, 8.917

5τ 7.500, 12.500
-0.250 0.250 0.500 LBp1, LBp−1 9.917, 9.583 9.917, 9.583 0.727 0.368 1.095

LBp−2, LBp−3 9.250, 8.917 9.250, 8.917
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Figure D1: 2-Period Large Tick Market (LTM): Exchange Expected Profit Function and Access Pricing. This figure shows the exchange profit
function and the equilibrium make fees and take fees for the LTM corresponding to different investor valuation supports with widths ranging from 0.33τ to 5τ (where τ = 1
is the tick size in the LTM) as reported on the horizontal axis. The three-dimensional figures indicate (blue dots) the optimal make fee (MF), the optimal take fee (TF), and
the associated equilibrium exchange expected profit for each support.



Figure D2: Social Planner - Total Welfare This figure shows the objective function of the Social Planner under both the
Taker-Maker regime (Panels a,c,e and g), and the Maker-Taker regime (Panels b,d,f and h), for the 4 different supports reported in
Table 2, ∆ ∈ {τ,2τ,2.5τ,3τ}

(a) Taker-Maker ∆ = τ (b) Maker-Taker ∆ = τ

(c) Taker-Maker ∆ = 2τ (d) Maker-Taker ∆ = 2τ

(e) Taker-Maker ∆ = 2.5τ (f) Maker-Taker ∆ = 2.5τ

(g) Taker-Maker ∆ = 3τ (h) Maker-Taker ∆ = 3τ
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Figure D3: Social Planner - Total Welfare This figure shows the objective function of the Social Planner under both the
Taker-Maker regime (Panels a,c,e and g), and the Maker-Taker regime (Panels b,d,f and h), for the 4 different supports reported in
Table 2, ∆ ∈ {3.5τ,4τ,4.5τ,5τ}

(a) Taker-Maker ∆ = 3.5 (b) Maker-Taker ∆ = 3.5τ

(c) Taker-Maker ∆ = 4τ (d) Maker-Taker ∆ = 4τ

(e) Taker-Maker ∆ = 4.5τ (f) Maker-Taker ∆ = 4.5τ

(g) Taker-Maker ∆ = 5τ (h) Maker-Taker ∆ = 5τ
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E Simulated Annealing (SA) and Grid Search (GS) Algorithms

This section explains how we implement the SA and GS algorithms to find the equilibrium profit-maximizing

exchange fees Ξ∗ = {MF∗,T F∗}. Given the valuation support and tick size, we choose a stratified collec-

tion of starting points that cover the set of regulatory-allowed fees (T F ≤ 1 and MF ≤ 1) with non-negative

exchange profits (with T F +MF ≥ 0). In particular, we use fee starting points from a larger set of fees with

non-negative profits (T F ≤ 1.5 and MF ≤ 1.5 and T M +MF ≥ 0). Figure E1 illustrates the collection of

starting points for the large tick market. We included fee pairs outside of the set allowed by regulation to

ensure that fees on the boundary of the regulatory set were not under-explored. To reduce computation time,

we found that initial fees equal to ±0.2 and ±0.6 could be excluded. We then apply the SA algorithm to

each of these starting points.

The simulated annealing (SA) algorithm is an iterative procedure. For each starting point Ξ0 in our

stratified collection of starting points of fees, the SA algorithm here searches for the fees that produce the

largest profit for the exchange, πEx, conditional on the associated optimal behavior of investors given the

exchange’s fees. Our specific implementation of SA is based on Givens and Hoeting (2005).

Let η denote a generic round in the SA iteration associated with a given starting point Ξ0, and let

Ξη = (MFη ,T Fη) denote the candidate pair of fees in round η . The next pair of candidate fees Ξη+1 is

determined as follows: If Ξη achieves a greater expected exchange profit πEx
η than the expected exchange

profit πEx
η−1 using the fees Ξη−1 from the prior round η − 1 (which is always true by definition for η = 0),

then MFη+1 is randomly selected from the interval {MFη − ε,MFη + ε} and T Fη+1 is from the interval

{T Fη − ε,T Fη + ε}, both with independent Uniform probability. Our SA implementation sets ε = 0.25

so that the sampling region has an amplitude of a half tick. If instead the exchange profit associated with

Ξη is less than or equal to the exchange profit associated with Ξη−1, then Ξη+1 is randomly selected from
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a 2ε interval centered at Ξη with probability ζη = e
πEx

η −πEx
η−1

χη or from a 2ε interval centered round Ξη−1

with probability 1− ζη , where χη is a parameter that starts at χ0 = 0.8 and reduces to 0.9× χη at each

η iteration until it reaches its minimum that we set at 0.066667. This results in 162 iterative rounds for a

given starting point.33 The intuition for declining values of χη is the following: When πEx
η > πEx

η−1, our SA

algorithm searches near the most recent best fees Ξη . However, when πEx
η ≤ πEx

η−1, the SA searches with

some probability around the prior round’s more profitable fees Ξη−1 with a probability that is increasing in

how much bigger πEx
η−1 is than πEx

η . The fact that χη shrinks in later rounds causes the probability ζη with

which the SA algorithm explores the neighborhood of the less profitable fees in later rounds to be smaller

than in earlier rounds conditional on a given profitability difference πEx
η −πEx

η−1. This is because in earlier

round η we want the algorithm to explore regions of the parameter space away from a prior better fee pair,

but in later rounds we want the algorithm to explore more around the better for the two alternatives.

Figure E1: Simulated Annealing (SA) Algorithm: Large Tick Market (LTM) initial Sets of MFη and
T Fη . This Figure reports the initial combinations of MFη and T Fη , from which the SA algorithm starts to numerically maximize
the exchange profits πEx.
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Our SA algorithm produces a total of 10692 pairs of candidate exchange fees given our initial collection

of 66 starting pairs of exchange fees and iterative sequences of 162 rounds. At this point, we only inlude fee

33See Givens and Hoeting (2005).
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pairs allowed by regulation. We identify 8 pairs of fees (Ξ† = {MF†,T F†}) to pass into our GS algorithm

consisting of the 4 fee pairs with MF† > T F† and the 4 fee pairs such that MF† < T F† with the maximum

exchange profit subject to a constraint that the differences in exchange profits are approximately 10−4 (i.e.,

subject to rounding). The GS algorithm further refines these eight best fees Ξ† from the SA algorithm. For

each input fee pair Ξ†, the GS algorithm sequentially generates a series of 6 grids of fees. The first grid (Grid

#1) consists of fee pairs that differ from the input pair (MF†,T F†) by all combinations of 7 steps of 0.02

(i.e., −0.06,−0.04, . . . ,0, . . . ,0.06). Given the fee pair Ξ†,1 = {MF†,1,T F†,1} with the highest expected

exchange profit on Grid #1, the GS algorithm then generates a second grid (Grid #2) of fees that differ from

Ξ†,1 by 7 steps of ∆ = 0.01 (−0.03,−0.02, . . . ,0, . . . ,0.03). The profit-maximizing fees Ξ†,2 are then used

to construct a third grid (Grid #3) with a granularity of 0.005. This procedure continues with further grid

granularities of 0.0025, 0.000125, and finally 0.000065 for Grid #6. The fees associated with the highest

πEx from Grid #6 for each of the 8 best SA fee pairs Ξ† are then compared. Our solution for the exchange’s

profit-maximizing equilibrium fees Ξ∗ = {MF∗,T F∗} is the pair of fees from this final comparison leading

to the highest expected exchange profit.

Tables E1 and E2 illustrate how the GS algorithm works. Suppose one the 8 best SA fee pairs Ξ† is

{MF† =−0.270,T F† = 0.494}. Table E1 shows the 49 fee pairs associated with this Ξ†. In this example,

the fee pair Ξ†,1 = {MF†,1 =−0.310,T F†,1 = 0.514} has the highest expected exchange profits on Grid #1.

Given {MF†,1 =−0.310,T F†,1 = 0.514}, the GS algorithm then generates Grid #2. Table E2 shows the 49

variations of {MF†,2 = −0.310,T F†,2 = 0.514} in this Grid #2. The best fees Ξ†,2 on this Grid #2 would

then be used to generate a Grid #3, and so forth.
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Table E1: Example of Grid #1 This Table shows combinations of MF and TF that differ by up to ±3 steps of 0.02 from Ξ†.
The two bold pairs are the input fees Ξ† and the fees Ξ†,1 with the largest exchange profits in this illustration.

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
-0.06 -0.33,0.434 -0.31,0.434 -0.29,0.434 -0.27,0.434 -0.25,0.434 -0.23,0.434 -0.21,0.434
-0.04 -0.33,0.454 -0.31,0.454 -0.29,0.454 -0.27,0.454 -0.25,0.454 -0.23,0.454 -0.21,0.454
-0.02 -0.33,0.474 -0.31,0.474 -0.29,0.474 -0.27,0.474 -0.25,0.474 -0.23,0.474 -0.21,0.474

0 -0.33,0.494 -0.31,0.494 -0.29,0.494 -0.27,0.494 -0.25,0.494 -0.23,0.494 -0.21,0.494
0.02 -0.33,0.514 -0.31,0.514 -0.29,0.514 -0.27,0.514 -0.25,0.514 -0.23,0.514 -0.21,0.514
0.04 -0.33,0.534 -0.31,0.534 -0.29,0.534 -0.27,0.534 -0.25,0.534 -0.23,0.534 -0.21,0.534
0.06 -0.33,0.554 -0.31,0.554 -0.29,0.554 -0.27,0.554 -0.25,0.554 -0.23,0.554 -0.21,0.554

Table E2: Example of Grid #2 This Table shows combinations of MF and TF that differ by up to ±3 steps of 0.01 from Ξ†,1.
The two bold pairs are the input fees Ξ†,1 from Grid #1 in Table E1 and the fees Ξ†,2 with the largest exchange profits in this
illustration.

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
-0.03 -0.34,0.484 -0.33,0.484 -0.32,0.484 -0.31,0.484 -0.30,0.484 -0.29,0.484 -0.28,0.484
-0.02 -0.34,0.494 -0.33,0.494 -0.32,0.494 -0.31,0.494 -0.30,0.494 -0.29,0.494 -0.28,0.494
-0.01 -0.34,0.504 -0.33,0.504 -0.32,0.504 -0.31,0.504 -0.30,0.504 -0.29,0.504 -0.28,0.504

0 -0.34,0.514 -0.33,0.514 -0.32,0.514 -0.31,0.514 -0.30,0.514 -0.29,0.514 -0.28,0.514
0.01 -0.34,0.524 -0.33,0.524 -0.32,0.524 -0.31,0.524 -0.30,0.524 -0.29,0.524 -0.28,0.524
0.02 -0.34,0.534 -0.33,0.534 -0.32,0.534 -0.31,0.534 -0.30,0.534 -0.29,0.534 -0.28,0.534
0.03 -0.34,0.544 -0.33,0.544 -0.32,0.544 -0.31,0.544 -0.30,0.544 -0.29,0.544 -0.28,0.544

F Three-Period Model

This Appendix reports our proofs for the three-period version of the model. In Section F.1 we consider the benchmark

version of the model without fees (MF = T F = 0) and we show how to solve it in closed-form, given the investor

valuation support and tick size. We present the solution for a valuation support width ∆ = 2τ , i.e., S = [β ,β ] =

[v− τ,v+ τ], and a tick size equal to τ (LTM). Solutions for other support widths and for the small tick size can be

obtained in a similar way. In Section F.2 we show how to solve the 3-period benchmark model with HFTs in closed-

form, and in Section E in the Online Appendix we show how the simulated annealing (SA) and the grid search (GS)

algorithms work.

F.1 3-Period Benchmark Model

The model is solved by backward induction starting from period t3 and Tables F1, F2 and F3 report the equilibrium

thresholds, the equilibrium probabilities of execution and the equilibrium probabilities of submission respectively at
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t3, t2 and t1. We solve the model for the buy side, the sell side being symmetric.

Period t3: Table F1 reports the equilibrium strategies (column 1), their payoffs (columns 2), the β thresholds and the

associated order submission probabilities (columns 3 and 4) for the different states of the book at t3, resulting from the

equilibrium strategies at t1 and t2.

Equations (28) and (29) from Appendix B report a general expression for the market order submission probabilities

at t2 of the 2-period trading game; Table B1 reports the order submission probabilities associated with different order

types. With ∆ = 2τ , and MF = T F = 0, investors optimally choose orders at either P−1 or P1. A buyer at t1 or at t2

would not choose to buy at P−2 as he anticipates that no seller would be willing to sell at a price Pj ≤ β . Likewise, a

seller would not sell at a price Pj ≥ β . Hence both buyers and sellers would either buy at P−1, or at P1 or decide not

to trade. The possible states of the book at t3 depend on the equilibrium strategies at t1 and t2. For example, [00B0],

[0B00] and [0000] are books that open with either a LBP−1, or a LBP1 and with no orders previously posted at any price

level, respectively. The upper part of Table F1 indicates the equilibrium strategies at t3 when at t1 the investor submits

an LBP−1, and at t2 investors post either an MSP−1 [0000], or an LSP1 [0SB0], or an LBP1 [0BB0].

If at t3 the book opens empty, [0000], independently of his personal evaluation, the investor arriving at t3 cannot

trade: there are no limit orders to hit with a market order, and being t3 the last period of the trading game, a limit order

would never be executed. Hence, the investors payoff is equal to zero along all the support [v− τ,v+ τ]. If instead

the book opens [0SB0], an investor can either MSP−1, or MBP1, or decide not to trade (NT). If the investor opts for a

MSP−1,t3 his payoff will be P−1−βt3 −T F = v− 1
2 τ +βt3 , and he will market sell if βt3 < P−1. Given P−1 = v− 1

2 τ

and ∆ = 2τ (β = v− τ), the MSP−1,t3 probability of submission is:

Pr(MSP−1,t3 |Ξ,Lt2) =
P−1−β

β −β
=

1
4
= Pr(θ LBP−1

t2 |Ξ,Lt2). (104)

Note that the probability of submission of MSP−1 is the probability that the investor’s personal evaluation

βt3 falls between β and the threshold between MSP−1 and NT, β
MSP−1,NT
t3 . Such a threshold can be derived

by equating the payoff of the two adjacent strategies, v− 1
2 τ +βt3 = 0. The order submission probabilities
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of the other possible orders at t3 - both in the upper and in the lower panel of Table F1 - can be obtained in

a similar way.

Period t2: Having solved the model at t3, it is now possible to determine the optimal trading strategies at t2

as the probabilities of submission at t3 are the execution probabilities of the limit orders standing in the book

at t2. Table F2 reports the equilibrium strategies at t2 given a book that opens either [00B0] or [0B00]. Note

that the book at t2 cannot open empty as at t1 the investor either chooses LBP−1 or LBP1. Table F1 indicates

that if an investor posts a LBP−1 or a LBP1, his order can be executed either at t2 or at t3, and therefore the

probability of execution is non-zero. As a consequence, given any value of the investor’s βt1 within the 2τ

support, the buyer (seller) will either choose a LBP−1 (LSP1 ) or LBP1 (LSP−1 ).

For example, if the book opens [00B0] at t2, the incoming investor will either MSP−1, or LSP1, or LBP1.

The payoff and the equilibrium thresholds of the MSP−1 can be derived as we did for t3. The payoff from

a LSP1 is instead (P1− βt2 −MF)Pr(θ LSP1
t2 |Ξ,Lt1) where Pr(θ LSP1

t2 |Ξ,Lt1) is the probability of submission

of a MBP1 at t3. Table F1 indicates that this probability is 0.250, and therefore the payoff of LBP1 is

equal to (P1−βt2)×0.250 = 2.625−0.250βt2 as reported in Table F2. The equilibrium thresholds between

MSP−1 and LSP1, β
MSP−1,LSP1
t2 = 9.167 = v− 5

6 τ , can be derived by equating the two payoffs (9.500−βt2 =

2.625−0.250βt2) and solving for βt2 .

The payoffs, the equilibrium thresholds, and the order submission probabilities of the other orders posted

at t2 can be derived in a similar way.

Period t1: The equilibrium strategies, the payoffs, the thresholds and the order submissions at t1 can be

derived by considering the order submission probabilities obtained both at t3, and at t2. For example, Table

F3 reports the payoff from LBP−1 as

(βt1 −P−1−MF)Pr(θ LBP−1
t1 |Ξ,Lt0) =−2.375+0.250βt1 (105)

121



where

Pr(θ LBP−1
t1 |Ξ,Lt0) = Pr(MBP−1,t2|Ξ,Lt1)+

(
1−Pr(LBP1,t2 |Ξ,Lt1)

)
×Pr(MBP−1,t3 |Ξ,Lt2) = 0.250 (106)

and the probabilities in (106) have been derived by backward induction at t3 and t2. The probability of execu-

tion of LBP−1 at t1 is equal to the probability that the buy order at P−1 is executed at t2 (Pr(MBP−1,t2|Ξ,Lt1)),

plus the probability that it can be executed at t3. The latter is equal to the probability that at t2 the order

is not undercut by a trader buying aggressively at P1 (1−Pr(LBP1,t2 |Ξ,Lt1)), times the probability that it is

executed at t3 (Pr(MBP−1,t3 |Ξ,Lt2)). Note that Pr(θ LBP−1
t1 |Ξ,Lt0) > 0 and therefore the payoff from LBP−1

is equal to zero for βt3 = P−1 < v, which confirms that at t1 NT cannot be an equilibrium strategy.

Lemma 3 shows that investors with β > v (β < v) are potential buyers (sellers), therefore the equilibrium

probability of submission of LBP−1 at t1 can be obtained by computing the probability that the buyer’s

personal evaluation falls between v and the threshold β
LBP−1,LBP1
t1 . This threshold can be derived by equating

the payoffs from the two equilibrium strategies:

(βt1 −P−1−MF)Pr(θ LBP−1
t1 |Ξ,Lt0) = (βt1 −P1−MF)Pr(θ LBP1

t1 |Ξ,Lt0) (107)

−2.375+0.250βt1 =−9.844+0.938βt1

β
LBP−1,LBP1
t1 = v+

259
300

τ

It follows that the probability of LBP−1 submission at t1 is equal to
β

LBP−1 ,LBP1
t1

−v

β−β
= 0.432.

The other order submission probabilities presented in Table F3 can be derived in a similar way. We have

shown that the 3-period benchmark model can be solved in closed-form. Along the same lines the 3-period

model can be solved for any possible set of trading fees, Ξ = [MF,T F ].
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F.2 3-Period Benchmark Model with HFT

As for the 3-period model, we now show how to obtain a closed-form solution for the benchmark model

(this time with HFTs) without fees, a support equal to 2τ and the large tick size, τ . Tables F4, F5 and

F6 report the equilibrium strategies, the payoffs, the β thresholds and the order submission probabilities

obtained solving the model by backward induction from t3 to t2 and then t1.

The solution of this model with HFTs is similar to the previous one (Section F.1) a part from the inter-

action of regular investors with HFT firms which act as opportunistic liquidity providers. As before, given

a ∆ = 2τ support and a tick size equal to τ , investors are not willing to post orders at prices below P−1 or

above P1, and therefore the INV s’ set of profitable strategies only include P−1 and P1.

HFTs have a personal evaluation equal to v (β = v) and therefore they are willing to take the other side

of a trade only if - in absence of fees - they buy (sell) at prices below (above) v. Precisely, an HFT is always

willing to use a market sell (buy) MSP1 (MBP−1) to immediately execute an INV ’s limit buy (sell) LBP1

(LSP−1). Because HFT firms are faster than INV s, they can send flash orders that take the other side of a

profitable aggressive limit order and execute immediately. Following Budish et al. (2015), we assume that

HFT firms are unwilling to provide ex ante liquidity via limit orders.

The striking difference between this model with HFTs and the 3-period game without HFTs is that when

the book opens empty on the ask, on the bid or on both sides, there is now an investor willing to post an

aggressive limit order and exploit the latent liquidity demand offered by the HFT firm. We observe this

behaviour in all the three periods of the trading game. When there are no standing limit orders in the limit

order book at any price, which may be the case at time t = t1 and also at t = t2, t3 if there are no standing

LOs after time t1, t2 (Tables F4, F5 and F6), an INV natural buyer with βt > v not only may choose NT

as in Section F.1, but he can now also choose a LBP1 and trade with the HFT firm. In particular, with no

limit sell orders at prices P≤ P1 (against which a LBP1 would be automatically crossed), a posted LBP1 will
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be immediately executed by a MSP1 from an HFT seller with probability 1. A natural seller has the same

option of either posting an aggressive LSP−1 or decide not to trade.

For example, when the book opens empty at t3 following a LBP−1 at t1 and a MSP−1 at t2 (Table F4), a

natural seller will post an aggressive LSP−1 that will immediately execute against an HFT’s MBP−1. As the

payoff is equal to P−1−βt3 −MF , the seller will limit sell up to βt3 < P−1, i.e., βt3 < v− 1
2 τ which is the β

threshold between LSP−1 and NT , β
LSP−1,NT
t3 . Therefore the β range consistent with LSP−1 is between β and

v− 1
2 τ , and therefore given that β is uniformly distributed, the probability of LSP−1 submission is 0.250.

The other equilibrium thresholds, order execution and order submission probabilities at t3 can be obtained

in a similar way.

Table F5 reports the equilibrium strategies at t2. Compared to the previous case without HFTs, now

the book can open either [00B0] or [0000]. If the book opens [00B0] the INV can only attract HFTs by

posting an aggressive limit buy at P1, whereas if the book opens empty, the INV can attract HFTs’ flash

orders both by aggressively selling at P−1 or by aggressively buying at P1. The INV can alternatively limit

sell at P1 or limit buy at P−1 and wait for his order to be executed at t3 with probability Pr(θ LBP−1
t2 |Ξ,Lt1)

and Pr(θ LSP1
t2 |Ξ,Lt1), where as before the execution probability of limit orders at t2 is equal to the INV

equilibrium order submission probabilities at t3 that are equal to 0.250.

The model is finally solved by backward induction at t1 (Table F6) where the equilibrium order strategies

are the same as in Table F3 with the difference that now aggressive limit orders are immediately executed

against the HFTs flash orders with the usual payoff of (P−1 − βt1 −MF) for a LSP−1 and (P1 − βt1 −

MF)Pr(θ LSP1
t1 |Ξ,Lt0) for a LSP1. The β threshold between LSP−1 and LSP1 being determined by equat-

ing the two payoffs and solving for β
LSP−1,LSP1
t 3 = v− 5

6 τ .

The other order submission probabilities presented in Table F6 can be derived in a similar way. We have

shown that the 3-period benchmark model with HFTs can be solved in closed-form. Along the same lines
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the 3-period model with HFTs can be solved for any possible set of trading fees, Ξ = [MF,T F ].

The next step is to show how we obtain the optimal trading fees set either by a profit-maximizing

exchange, or by a Social Planner. To find the fees Ξ∗ that maximize either an exchange’s profit πEx, or the

Social Planner total welfare W , we implement a two-stage process using first the Simulated Annealing (SA)

algorithm and then a grid-search (GS) algorithm to further refine the SA solutions. Results are shown in

Table 4. Section E in the Online Appendix discusses how the SA and the GS work.
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Table F1: 3-Period Large Tick Market (LTM). Equilibrium Strategies at t3. This table shows how to derive the equilibrium
order submission strategies at t3 for the benchmark model which has no trading fees (MF = T F = 0.00) and for an investors’
support equal to 2τ . At t1 the market opens with an empty book, [0000], where each element in the square bracket, Ltz = DPi

tz ,

corresponds to the depth of the book at each price level at time tz, [L
P2
tz ,L

P1
tz ,L

P−1
tz ,LP−2

tz ]. Given the chosen set of fees, four are the
equilibrium strategies at t1, LBP1 and LBP−1 on the buy side and LSP1 and LSP−1 on the sell side. Table F3 presents both the buy
and the sell equilibrium strategies at t1. However, as the equilibrium strategies consistent with the states of the book derived from
the buy side are symmetric to those derived from the sell side, to economize space at t2 we only present the equilibrium strategies
that are consistent with the states of the book derived from the buy equilibrium strategies at t1. Given the equilibrium limit buy
orders at t1, the possible states of the books at the beginning of t2 are: [00B0] following a LBP−1 and [0B00] following a LBP1.
Given the equilibrium strategies at t2 and therefore the possible states of the books at the beginning of t3, this table shows the
equilibrium strategies at t3 (column 1), their payoffs (column 2), the β thresholds (column 3) and the order submission probabilities
(column 4).

Equilibrium Payoff β Threshold Order Submission
Strategy Probability

at t1 the book opens empty [0000]: equilibrium strategy LBP−1
at t2 the book opens [00B0]

t2 equilibrium strategy: MSP−1,t2
at t3 the book opens empty [0000]

NTt3 0 {v− τ ,v+ τ} 1
t2 equilibrium strategy: LSP1

at t3 the book opens [0SB0]
MSP−1,t3 P−1−βt3 −T F = v− 1

2 τ +βt3 {v− τ ,v− 1
2 τ} 0.250

NTt3 0 {v− 1
2 τ ,v+ 1

2 τ} 0.500
MBP1,t3 βt3 −P1−T F =−10.500+βt3 {v+ 1

2 τ ,v+ τ} 0.250
t2 equilibrium strategy: LBP1

at t3 the book opens [0BB0]
MSP1,t3 P1−βt3 −T F = 10.500−βt3 {v− τ ,v+ 1

2 τ} 0.750
NTt3 0 {v+ 1

2 τ ,v+ τ} 0.250

at t1 the book opens empty [0000]: equilibrium strategy LBP1
at t2 the book opens [0B00]

t2 equilibrium strategy: MSP1,t2
at t3 the book opens empty [0000]

NTt3 0 {v− τ , v+ τ} 1
t2 equilibrium strategy: NTt2

at t3 the book opens [0B00]
MSP1,t3 P1−βt3 −T F = 10.500−βt3 {v− τ , v+ τ} 0.750

NTt3 0 {v+ 1
2 τ ,v+ τ} 0.250
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Table F2: 3-Period Large Tick Market (LTM). Equilibrium Strategies at t2. This table shows how to derive the equilibrium
order submission strategies at t2 for the benchmark model which has no trading fees (MF = T F = 0.00) and for a support equal
to 2τ . At t1 the market opens with an empty book, [0000], where each element in the square bracket, Ltz = DPi

tz , corresponds to the

depth of the book at each price level at time tz, [L
P2
tz ,L

P1
tz ,L

P−1
tz ,LP−2

tz ]. Given the chosen set of fees, four are the equilibrium strategies
at t1: LBP1 and LBP−1 on the buy side and LSP1 and LSP−1 on the sell side. At t1 we only present buy equilibrium strategies,
and to economize space, at t2 we present the equilibrium strategies that are consistent with the states of the book derived from
the sell equilibrium strategies at t1, as the equilibrium strategies consistent with the states of the book derived from the buy side
are perfectly symmetric. Given the equilibrium limit buy orders at t1, the possible states of the books at the beginning of t2 are:
[00B0] following a LBP−1 and [0B00] following a LBP1. Column 1 shows the Equilibrium Strategies at t2, column 2 shows the
corresponding payoffs, and columns 3 and 4 show the β thresholds and the order submission probabilities respectively.

Equilibrium Payoff β Threshold Order Submission
Strategy Probability

at t1 the book opens empty [0000]: equilibrium strategy LBP−1
at t2 the book opens [00B0]

MSP−1,t2 P−1−βt2 −T F = 9.500−βt2 {v− τ ,v− 5
6 τ} 0.083

LSP1 (P1−βt2 −MF)Pr(θ LSP1
t2 |Ξ,Lt1) = 2.625−0.250βt2 {v− 5

6 τ ,v+ 1
2 τ} 0.667

LBP1 (βt2 −P1−MF)Pr(θ LBP1
t2 |Ξ,Lt1) =−7.875+0.750βt2 {v+ 1

2 τ ,v+ τ} 0.250

at t1 the book opens empty [0000]: equilibrium strategy LBP1
at t2 the book opens [0B00]

MSP1,t2 P1−βt2 −T F = 10.500−βt2 {v− τ ,v+ 1
2 τ} 0.750

NTt2 0 {v+ 1
2 τ ,v+ τ} 0.250

Table F3: 3-Period Large Tick Market (LTM). Equilibrium Strategies at t1. This table shows how to derive the equilibrium
order submission strategies at t1 for the benchmark model which has no trading fees (MF = T F = 0.00) and for a support equal
to 2τ . At t1 the market opens with an empty book, [0000], where each element in the square bracket, Ltz = DPi

tz , corresponds to the

depth of the book at each price level at time tz, [L
P2
tz ,L

P1
tz ,L

P−1
tz ,LP−2

tz ]. Given the chosen set of fees, four are the equilibrium strategies
at t1: LBP1 and LBP−1 on the buy side and LSP1 and LSP−1 on the sell side (column 1). Column 2 shows their payoffs, and columns
3 and 4 shows the β thresholds and the order submission probabilities respectively.

Equilibrium Payoff β Threshold Order Submission
Strategy Probability

at t1 the book opens empty [0000]
LSP−1 (P−1−βt1−MF)Pr(θ LSP−1

t1 |Ξ,Lt0) = 8.906−0.938βt1 {v− τ ,v− 41
300 τ} 0.068

LSP1 (P1−βt1−MF)Pr(θ LSP1
t1 |Ξ,Lt0) = 2.625−0.250βt1 {v− 41

300 τ ,v} 0.432
LBP−1 (βt1−P−1−MF)Pr(θ LBP−1

t1 |Ξ,Lt0) =−2.375+0.250βt1 {v,v+ 259
300 τ} 0.432

LBP1 (βt1−P1−MF)Pr(θ LBP1
t1 |Ξ,Lt0) =−9.844+0.938βt1 {v+ 259

300 τ ,v+ τ} 0.068
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Table F4: 3-Period Large Tick Market (LTM) with HFTs. Equilibrium Strategies at t3. This table shows how to derive the
equilibrium order submission strategies at t3 for the benchmark model with HFTs which has no trading fees (MF = T F = 0.00) and
for the Investors’ support equal to 2τ . At t1 the market opens with an empty book, [0000], where each element in the square bracket,
Ltz = DPi

tz , corresponds to the depth of the book at each price level at time tz, [L
P2
tz ,L

P1
tz ,L

P−1
tz ,LP−2

tz ]. Given the chosen set of fees, four
are the equilibrium strategies at t1: LBP1 (followed by a MSP1 from an HFT firm) and LBP−1 on the buy side, and LSP1 and LSP−1
(followed by a MBP−1 from an HFT firm) on the sell side. Table F6 presents both the buy and the sell equilibrium strategies at
t1. However, as the equilibrium strategies consistent with the states of the book derived from the buy side are symmetric to those
derived from the sell side, to economize space at t2 we only present the buy equilibrium strategies at t1. Given the equilibrium limit
buy orders at t1, the possible states of the books at the beginning of t2 are: [00B0] following a LBP−1 and [0000] following a LBP1
and a MSP1 from an HFT firm. Given the equilibrium strategies at t2 and therefore the possible states of the books at the beginning
of t3, this table shows the equilibrium strategies at t3 (column 1), their payoffs (column 2), the β thresholds (column 3) and the
order submission probabilities (column 4).

Equilibrium Payoff β Threshold Order Submission
Strategy Probability

at t1 the book opens empty [0000]: equilibrium strategy LBP−1
at t2 the book opens [00B0]

t2 equilibrium strategy: MSP−1,t2
at t3 the book opens empty [0000]
LSP−1 −→ HFT: MBP−1,t3 P−1−βt3 −MF = 9.500−βt3 {v− τ ,v− 1

2 τ} 0.250
NTt3 0 {v− 1

2 τ ,v+ 1
2 τ} 0.500

LBP1 −→ HFT: MSP1,t3 βt3 −P1−MF =−10.500+βt3 {v+ 1
2 τ ,v+ τ} 0.250

t2 equilibrium strategy: LSP1
at t3 the book opens [0SB0]
MSP−1,t3 P−1−βt3 −T F = 9.500−βt3 {v− τ ,v− 1

2 τ} 0.250
NTt3 0 {v− 1

2 τ ,v+ 1
2 τ} 0.500

MBP1,t3 βt3 −P1−T F =−10.500+βt3 {v+ 1
2 τ ,v+ τ} 0.250

t2 equilibrium strategy: LBP1 −→ HFT: MSP1t2
at t3 the book opens [00B0]
MSP−1,t3 P−1−βt3 −T F = 9.500−βt3 {v− τ ,v− 1

2 τ} 0.250
NTt3 0 {v− 1

2 τ ,v+ 1
2 τ} 0.500

LBP1 −→ HFT: MSP1,t3 βt3 −P1−MF =−10.500+βt3 {v+ 1
2 τ ,v+ τ} 0.250

at t1 the book opens empty [0000]: equilibrium strategy LSP−1 −→ HFT: MBP−1t2
at t2 the book opens empty [0000]

t2 equilibrium strategy: LBP1 −→ HFT: MSP1t2
at t3 the book opens empty [0000]
LSP−1 −→ HFT: MBP−1,t3 P−1−βt3 −MF = 9.500−βt3 {v− τ ,v− 1

2 τ} 0.250
NTt3 0 {v− 1

2 τ ,v+ 1
2 τ} 0.500

LBP1 −→ HFT: MSP1,t3 βt3 −P1−MF =−10.500+βt3 {v+ 1
2 τ ,v+ τ} 0.250

t2 equilibrium strategy: LBP−1
at t3 the book opens [00B0]
MSP−1,t3 P−1−βt3 −T F = 9.500−βt3 {v− τ ,v− 1

2 τ} 0.250
NTt3 0 {v− 1

2 τ ,v+ 1
2 τ} 0.500

LBP1 −→ HFT: MSP1,t3 βt3 −P1−MF =−10.500+βt3 {v+ 1
2 τ ,v+ τ} 0.250

t2 equilibrium strategy: LSP1
at t3 the book opens [0S00]
LSP−1 −→ HFT: MBP−1,t3 βt3 −P−1−MF = 9.500−βt3 {v− τ ,v− 1

2 τ} 0.250
NTt3 0 {v− 1

2 τ , v+ 1
2 τ} 0.500

MBP1,t3 βt3 −P1−T F =−10.500+βt3 {v+ 1
2 τ ,v+ τ} 0.250

t2 equilibrium strategy: LSP−1 −→ HFT: MBP−1t2
at t3 the book opens empty [0000]
LSP−1 −→ HFT: MBP−1,t3 P−1−βt3 −MF = 9.500−βt3 {v− τ ,v− 1

2 τ} 0.250
NTt3 0 {v− 1

2 τ ,v+ 1
2 τ} 0.500

LBP1 −→ HFT: MSP1,t3 βt3 −P1−MF =−10.500+βt3 {v+ 1
2 τ ,v+ τ} 0.250



Table F5: 3-Period Large Tick Market (LTM) with HFTs. Equilibrium Strategies at t2. This table shows how to derive the
equilibrium order submission strategies at t2 for the benchmark model with HFT which has no trading fees (MF = T F = 0.00) and
for an investors’ support equal to 2τ . At t1 the market opens with an empty book, [0000], where each element in the square bracket,
Ltz = DPi

tz , corresponds to the depth of the book at each price level at time tz, [L
P2
tz ,L

P1
tz ,L

P−1
tz ,LP−2

tz ]. Given the chosen set of fees, four
are the equilibrium strategies at t1: LBP1 (followed by a MSP1 from an HFT firm) and LBP−1 on the buy side, and LSP1 and LSP−1
(followed by a MBP−1 from an HFT firm) on the sell side. At t1 Table F6 presents both the buy and the sell equilibrium strategies.
However, as the equilibrium strategies consistent with the states of the book derived from the buy side are symmetric to those
derived from the sell side, to economize space at t2 we only present the equilibrium strategies that are consistent with the states of
the book derived from the sell equilibrium strategies at t1. Given the equilibrium limit buy orders at t1, the possible states of the
books at the beginning of t2 are: [00B0] following a LBP−1 and [0000] following a LBP1 and a MSP1 from an HFT firm. Column 1
shows the Equilibrium Strategies at t2, column 2 shows the corresponding payoffs, and columns 3 and 4 show the β thresholds and
the order submission probabilities respectively. We present the β Thresholds and the Order Submission Probabilities only for the
regular investors; HFT firms have β = 1 and take profitable liquidity offered by aggressive orders with probability 1.

Equilibrium Payoff β Threshold Order Submission
Strategy Probability

at t1 the book opens empty [0000]: equilibrium strategy LBP−1
at t2 the book opens [00B0]
MSP−1,t2 P−1−βt2−MF = 9.500−βt2 {v− 1

2 τ ,v− 5
6 τ} 0.083

LSP1 (P1−βt2−MF)Pr(θ LSP1
t2 |Ξ,Lt1) = 2.625−0.250βt2 {v− 5

6 τ ,v+ 1
2 τ} 0.667

LBP1 −→ HFT : MSP1,t2 (βt2−P1−T F) =−10.500+βt2 {v+ 1
2 τ ,v+ τ} 0.250

at t1 the book opens empty [0000]: equilibrium strategy LBP1 −→ HFT: MSP1,t2
at t2 the book opens empty [0000]
LSP−1 −→ HFT : MBP−1,t2 (P−1−βt1−MF) = 9.500−βt1 {v− τ ,v− 5

6 τ} 0.083
LSP1 (P1−βt1−MF)Pr(θ LSP1

t1 |Ξ,Lt1) = 2.625−0.250βt1 {v− 5
6 τ ,v} 0.417

LBP−1 (βt1−P−1−MF)Pr(θ LBP−1
t1 |Ξ,Lt1) =−2.375+0.250βt1 {v,v+ 5

6 τ} 0.417
LBP1 −→ HFT : MSP1,t2 (βt1−P1−MF) =−10.500+βt1 {v+ 5

6 τ ,v+ τ} 0.083

Table F6: 3-Period Large Tick Market (LTM) with HFTs. Equilibrium Strategies at t1. This table shows how to derive the
equilibrium order submission strategies at t1 for the benchmark model with HFTs which has no trading fees (MF = T F = 0.00)
and for an investors’ support equal to 2τ . At t1 the market opens with an empty book, [0000], where each element in the square
bracket, Ltz = DPi

tz , corresponds to the depth of the book at each price level at time tz, [L
P2
tz ,L

P1
tz ,L

P−1
tz ,LP−2

tz ]. Given the chosen set of
fees, four are the equilibrium strategies at t1: LBP1 (followed by a MSP1 from an HFT firm) and LBP−1 on the buy side, and LSP1
and LSP−1 (followed by a MBP−1 from an HFT firm) on the sell side (column 1). Column 2 shows their payoffs, and columns
3 and 4 shows the β thresholds and the order submission probabilities respectively. We present the β Thresholds and the Order
Submission Probabilities only for the regular investors; HFT firms have β = 1 and take profitable liquidity offered by aggressive
orders with probability 1.

Equilibrium Payoff β Threshold Order Submission
Strategy Probability

at t1 the book opens empty [0000]
LSP−1 −→ HFT : MBP−1,t1 (P−1−βt1−MF) = 9.500−βt1 {v− τ ,v− 5

6 τ} 0.083
LSP1 (P1−βt1−MF)Pr(θ LSP1

t1 |Ξ,Lt0) = 2.625−0.250βt1 {v− 5
6 τ ,v} 0.417

LBP−1 (βt1−P−1−MF)Pr(θ LBP−1
t1 |Ξ,Lt0) =−2.375+0.250βt1 {v,v+ 5

6 τ} 0.417
LBP1 −→ HFT : MSP1,t1 (βt1−P1−MF) =−10.500+βt1 {v+ 5

6 τ ,v+ τ} 0.083
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