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is not particularly attractive as a description of preferences and is not
recommended for general use. A nondegenerate steady state, when indi-
vidual tastes differ, can also be achieved by assuming that agents have finite
lives; this is a more plausible avenue which we develop in chapter 3.

Appendix A: Ruling Out Explosive Paths in the Ramsey Model

To show that the saddle point path DD in figure 2.2 is the optimal path, suppose
that the initial capital stock is ko, 0 < ko < k*. Consider any trajectory that starts
above point D, at D', say. This path implies that the economy reaches zero capital
in finite time. The proof turns on the fact that on such a path d2k/df* eventually
becomes negative. Differentiating (2) gives

d*k , dk\ dc dc )
Et‘z'-—[f(k)—n]<;l;>——az<0, as ;l—t>0' fk)—n>0.

Thus k, = ko + [ (dk,/dv) dv will reach zero in finite time.

Note that ¢ is rising on the path starting at D’ all the time until it hits the axis at
point B. But when the path reaches B, k is zero, and the economy has to move to
the origin. Thus ¢ has to jump froma positive value to zero. But such a jump violates
the necessary condition (7'), and it thus cannot have been optimal to start at D".

Consider, alternatively, a trajectory starting below D, for example, at D”. This
path converges asymptotically to A. But such a path violates the transversality
condition. At points close to A, kis approximately constant, whereas from (7') and
k >k,

du'(c)/dt _

W
Thus as f tends to infinity and the trajectory approaches A, the transversality
condition is violated.

Sirnilar arguments apply if the initial capital stock is larger than k*. It follows that
the saddle point path DD is the unique path that satisfies conditions (2), (7'), and (8).

9 +n—fl)>0.

Appendix B: Local Behavior of Capital around the Steady
State in the Ramsey Model

The characteristic equation associated with equation (15) is

2 —0x—p=0.

It has two roots:
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Thus paths that satisfy equation (15) are given by
k, — k* = co exp(Ah) + ¢, exp(ui),

where ¢, and ¢, are arbitrary constants.
As kq is given from history, ¢, and ¢; must satisfy

kg — k* = co exp(0) + ¢, exp(0) = ¢y + ¢;-

In addition, as u is positive, c; must be equal to zero for k to converge to k*. Thus
¢, = 0and ¢g = ko — k*. This implies in turn that

k, = k* + (ko — k*) exp(Ah).

Appendix C: Command Optimum and Decentralized
Equilibrium in the Open Economy Model

We show here the equivalence of the command optimum and the decentralized
competitive equilibrium in the open economy model of section 2.4. For notational
simplicity, we assume that there are as many firms as families so that the same
symbol denotes the ratio of a variable per capita or per firm.

The structure of the economy is the following: Firms rent labor services in the
labor market but own the capital stock; they finance investment through retained
earnings. Families supply labor services and own the firms, receiving profits net of
investment expenses. They allocate their income between consumption and saving,
where saving takes the form of lending to the rest of the world.>’

Value Maximization by Firms

For simplicity, we do not explicitly model the labor market. Labor is supplied
inelastically so that labor market equilibrium implies that each firm hires one worker,
paying wages of {w,} ¢ = [0, 00). The decision problem of a representative firm at
time zero is then to choose the time path of investment that maximizes the present
discounted value of cash flows:

max V, = jw {f(k,) — i, [1 + T(;{—')] — w,} exp(—0f) dt (CD)
) :

subject to dk,/dt = i, and the same technology as the central planner.

By letting g, exp(— 6f) be the Lagrange multiplier associated with the capital
accumulation equation and setting up a present value Hamiltonian, the first-order
conditions lead to equations identical to (43), (37"), and (44). Firms invest until the
marginal cost of investment is equal to the shadow value of installed capital, 4. This
shadow value is itself equal to the present discounted value of future marginal
products. Firms choose the same path of investment and capital accumulation as the
central planner.
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Given our assumption that firms finance investment through retained earnings,
dividends paid by firms are therefore equal to net cash flows>®

Ty = f(kt) — 1 [1 -+ T(';é')] — W (C2)

Utility Maximization by Families

Each family supplies one unit of labor inelastically, receiving wage W, and dividends
n,. Its only decision problem is to choose a path of consumption that maximizes

U, = J u(c,) exp(—08) dt. (C3)

0

It can borrow and lend on the world market at the rate 6. The dynamic budget
constraint is therefore

db,
o ¢, + 0b, — 7 — Wi (Ca)

To this we add the NPG condition:
lim b, exp(—0f) = 0. (C5)

10

The solution to this maximization problem is given by

g =c =10 Jw (, + w,) exp(—6t) dt. (Ce)

0

Replacing 7, by its value from (C2) in (C6) gives the same path of consumption as
equation (42). Families will choose the same path of consumption as the central
planner.

Appendix D: Saddle Point Equilibrium in the Linearized (k, g)
System

Equation (47) linearizes the dynamic system that describes the behavior of gand k
around the steady state values. The solution to such a linear system is given by

k, — k* = c11 exp(yi ) + 12 exp(y2b), D1)

g — 1= ca exp(yf) + €22 exp(y2h),

where y, and y, are the roots of the characteristic equation associated with (47),
namely,

0—vy k‘(ﬂ'(l)\ .
__f//(kx-) 9 —y 4
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and where [c,, ¢,;]and [c,, ¢,,] are eigenvectors associated with each of these two
roots.
The roots are given by

_ 9 '_l" \/52 . 4fn(k*)k¥(p/(1)
3 .

y

Both roots are real, with one root negative and the other positive. The positive root
exceeds 0.
Denote the negative root by y;. The eigenvector associated with y, is given by

—Y k*o'(1) C1'1]
=0, D2
I:”f"(k*) 6 — !/1:\[521 (02

so that ¢y, = {y,[k*¢’(1)]"*}¢,,. Examining (A7), we see that for the path that
converges to (k*, 1), both ¢;, and ¢,, must be equal to zero. (Zero is always an
eigenvector.)

To calculate the constants ¢;, and c,,, note that at time zero, the first row of
(D1)is

ko — k* = ¢y, (D3)

Replacing the ¢’s by their values in (D1) gives the converging path for k and 4.

On all paths other than the converging path, c;, and/or c,, are different from
zero. Thus g and k eventually increase at rate y,. This implies that gk eventually
increases at rate no less than y,, which is itself greater than 6. Thus they all violate
the transversality condition (39).

Of course, the proof that the transversality condition is violated on all but the
saddle point path in the linearized system does not establish the fact that the paths
of the original system that are not saddle point paths explode at a rate greater than
0. A complete proof requires a characterization of the dynamics of the original
nonlinear system along the lines of the proof presented in appendix A.

Problems

1. The Solow growth model. (This follows Solow 1956.)

(a) Consider an economy with a population growth rate equal to n, with constant
returns to scale in production, and in which individuals save a constant fraction, s,
of their income. Show that the differential equation describing the behavior of the
capital stock per capita is given by

dk

E; = Sf (k) - nk,

where f(*) is the production function per capita and s is the savings rate.

(b) Characterize the steady state capital stock per capita in this model.

(c) Examine the stability of the system, and characterize the adjustment of the capital
stock toward its steady state.
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(d) Can a constant saving rate along the path of adjustment be consistent with
intertemporal utility maximization by infinitely long-lived individuals?

(e) Assume that factor markets are competitive. Show that the savings rate that
leads to the golden rule capital stock is equal to the share of capital in production.
Explain.

2. Growth with exogenous technological progress.

Suppose that, in a Ramsey economy, production is given (as in note 13) by the
function

Y, = KK, exp(¢)N)),

where ¢ is the constant and exogenous rate of technical progress. Assume that the
population grows at rate n and that the utility function is of constant relative risk
aversion form, with a coefficient of relative risk aversion equal to y.

(a) Derive and interpret the modified golden rule condition in this case.

(b) Characterize the dynamics of consumption and capital accumulation.

(c) Suppose that the economy is in steady state and that ¢ decreases permanently
and unexpectedly. Describe the dynamic adjustment of the economy to this adverse
supply shock.

3. Optimal consumption with exponential utility.

Consider a family, growing at rate # and with discount rate 6, that faces a given
path of future wages and interest rates and has a constant absolute risk aversion
utility function, with a coefficient of risk aversion a. Solve for the path of consump-
tion, as is done in the text for the CRRA utility function.

4. Government spending in the Ramsey model.

(@) In the Ramsey model, suppose that the government unexpectedly increases
government spending, raising it from a base level g, to the level g, (per capita in
both cases), starting from steady state. Analyze the effects of this increase on the
paths of consumption and capital accumulation.

Note: You may want to use the equivalence between the command and market
solutions and treat the increase in g as a negative additive prodictivity shock.

(b) Do the same exercise, assuming that the economy is not initially in steady state.
Characterize the dynamic effects when utility is of the CARA form. Explain.

(c) Suppose, instead, that the increase in government spending is announced at time
to to take place at time f;, with ¢, > f,. Characterize the dynamic effects on
consumption and capital accumulation from ¢,.

Note: Phase diagrams are convenient to use when characterizing the effects of such
anticipated changes. Note that between £, and ¢, the equations of motion are given
by the dynamic system with g¢ = g, and that after ¢, the equations of motion are
given by the dynamic system with ¢ = g,. Note further that ¢ cannot jump
anticipatedly at time #,. Note finally that k at time ¢, is given and that the system
must converge to the new equilibrium. Show that these conditions uniquely define
the path of adjustment. (Abel 1981 characterizes the effects of anticipated or
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temporary changes in taxation on investment within the g theory using such phase
diagrams.)

5. Savings and investment with costs of adjustment in a closed economy.
(This follows Abel and Blanchard 1983.)

Assume that there are costs of adjusting the capital stock, as in section 2.4, but that
the economy is closed. Derive the optimal paths of consumption and capital
accumulation in this case and provide an explanation of the difference between the
Euler equation for this case and equation (7).

6. Foreign debt and trade surpluses.

(a) Using the relevant budget constraint, show that by, the initial value of external
debt, is equal to the present value of net exports, provided an NPG condition is
satisfied.

(b) Suppose that for some period of time a country’s external debt is growing more
rapidly than at the rate r — n. What can you conclude about the likelihood that the
NPG condition will be violated in the long run? What then is the relevance of the
NPG condition? '

7. Suppose that in a closed economy there is an unexpected permanent reduction
in the efficiency of production, represented in the symbols in the text as an increase
in zo. Assuming that the economy started in a steady state, derive and explain its
optimal dynamic adjustment toward the new steady state.

8. Growth with increasing returns, L
Consider an economy with the production function
Y =K"*N'™%,  b>0,a+b<1

so that there are increasing returns to scale but decreasing returns to capital given
labor. Population is growing at the rate , and there is no depreciation.

(a) Show that it is possible for capital, output, and consumption all to grow at the
same rate g. This is known as balanced growth. Derive the balanced growth rate g,
and explain its dependence on 4, b, and n.

(b) Suppose that the felicity function for the representative family is

uc,) = Ing

and that the family has a constant discount rate 6.

Assuming that the economy converges to a balanced growth path, characterize
the steady state marginal product of capital. Compare it to the modified golden
rule level that would obtain under constant returns (i.e., with b = 0). Explain the
difference.

9. Growth with increasing returns, IL (This follows Rebelo 1987.)

Consider the following economy: Population is constant and normalized to unity,
and the representative individual maximizes
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J U(C) exp(— 0¥ dt.
o .
Kis the capital stock in the economy and can be used either to produce consumption
goods or new capital goods. Let x, 0 < x < 1, be the proportion of capital used in
the production of consumption goods. The two production functions for consump-
tion and investment goods are given by

C = F(zK),
F(0) = 0, F()>0F()<o.

dK/dt = 1 = B(1 — x)K; B is a positive constant. Capital does not depreciate.
(@) What is the maximum growth rate of capital in this economy? What is the
associated level of consumption?
(b) Derive the first-order conditions associated with this maximization problem.
Interpret them. Give, in particular, an interpretation of the Lagrange multipliers and
costate variables as shadow prices.
(c) Assume that F(xK) = A(xK)% where 0 < a < 1, and that U(C) = In(C). Show
that if the economy converges to a balanced growth path, the rate of growth of
consumption is given by a(B — 6). Explain in words.

What happens to the relative price of capital goods in terms of consumption
goods along the balanced growth path?
(d) Contrast your results with those obtained in the conventional Ramsey model.
Explain why they differ.
(e) How does this model do in terms of explaining the basic facts of growth as laid
out by Kaldor and Solow, and summarized in chapter 17 What is the relation of
consumption to income along the balanced growth path? What is the relation of
output to capital? (Be careful about how you define capital—value or volume—

here.)

Notes

1. In chapter 3 we show that people who have finite lives may still act as if they in
effect had infinite lives.

2. Frank Ramsey was a Cambridge, England, mathematician and logician who died
at the age of 26. His genius is evidenced by the fact that he had written three classic
articles in economics by the age at which many economists are contemplating
leaving graduate school. J. M. Keynes (1930) eulogizes Ramsey.

3. If depreciation is exponential at the rate 4, then gross output is ¥ + AK =
E(K, N) + AK = G(K, N). If F(K, N) is degree one homogeneous, so is G(K, N).

4. An alternative plausible formulation is the so-called Benthamite welfare function
in which the felicity function becomes N,u(c,) so that the number of family members
receiving the given utility level is taken into account. Recognizing that N, = Nye™,
we see that the Benthamite formulation is equivalent to reducing the rate of time
preference to (§ — n) because the larger size of the family at later dates in effect
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increases the weight given to the utility of the representative individual in a later
generation.

In assuming that 6 > 0, we depart from Ramsey who, interpreting the maximiza-
tion problem as the problem solved by a central planner, argued that there was no
ethical case for discounting the future.

5. Ordinary calculus optimization methods have to be augmented to handle the
presence of a time derivative in constraint (2). Intriligator (1971) provides an
introduction to intertemporal optimization methods.

6. A warning is in order here. First, under weaker assumptions than those made in
the text, for example, a linear production function or no discounting, an optimum
may not exist. Even if an optimum does exist, the transversality condition, equation
(8), may not be necessary. But if one is ready to set sufficiently strong conditions
for the maximization problem, these problems can usually safely be ignored. For a
more careful statement and further discussion, see Shell (1969) and Benveniste and
Scheinkman (1982).

7. Note from the formulation of the central planner’s problem that it is implicitly
assumed that capital can be consumed.

8. We emphasize again that as intuitive as this argument for the transversality
condition s, there are infinite horizon problems in which the transversality condition
is not necessary for the optimal path. See Shell (1969) and Michel (1982).

9. To show that the utility function converges to the logarithmic function as y tends
to unity, use L'Hospital's rule.

10. On the basic measures of risk aversion, see J. Pratt in Diamond and Rothschild
(1978); see also the following articles in Diamond and Rothschild by Yaari and by
Rothschild and Stiglitz.

Behavior toward risk and the degree of substitution between consumption at
different times are conceptually two different issues. Under the assumption that the
von Neumann-Morgenstern utility integral is additively separable over time, how-
ever, the two depend only on the curvature of the instantaneous utility function
and are thus directly related. See chapter 6 for further discussion.

11. In steady state, with dk/df = 0, we have from (2),
¢ = (k") — nk".

Maximization of ¢* with respect to k* gives the golden rule, that the marginal
product of capital (or interest rate) is equal to the growth rate of population.

12. We freely interchange the marginal product and interest rates. We show later
that in the decentralized Ramsey economy, the two are indeed equal.

13. The result that the steady state interest rate does not depend on the utility
function can, however, be easily overturned. If labor-augmenting (Harrod-neutral)
technical progress is taking place at the rate i, so that

Y, = FIK,, exp(u)N,]
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and if the utility function is of the CRRA class, then the modified golden rule
condition becomes f'(k*) = 0 + ou + n. [In this case k* is the ratio of capital to
effective labor, i.e, K,/exp(uh)N,, and the steady state is one in which consumption
per capita is growing at the rate .]

14. The analysis can also be undertaken in (k, A) space, using the first-order condition

(6).

15. The behavior of consumption on the horizontal axis, where ¢ = 0, depends on
the value of the instantaneous elasticity of substitution ¢(c) for ¢ = 0. Equation (7”)
implies that

dc

T a@[f (k) — 0 — nlc.

If 671(0) is not zero, then dc/dt = 0 when ¢ = 0. We assume this to be the case. If
the condition is not met, one must examine the behavior of ca(c) at ¢ = 0.

16. Throughout the book we will encounter phase diagrams in which there is only
one convergent path. Although we will often simply assume that the economy
proceeds on this converging path, an argument must be made in each case that the
converging path is the only one that satisfies the conditions of the problem. As we
will see in chapter 5, there are cases in which we cannot rule out some of the
diverging paths.

17. Changes in f” and 6 affect both the rate of convergence to the steady state and
the steady state capital stock itself.

18. The condition that the rental rate on capital is equal to the interest rate is special
to this one-good model. If the relative price of capital, p,, could vary, asset market
equilibrium would ensure-that the expected rate of return from holding capital
would be equal to the interest rate. The rate of return from holding capital is the
rental rate, r, plus any capital gains on capital minus depreciation, all expressed
relative to the price of the capital:

. + (dp,/dt) — op,
Pr

rate of return = = real interest rate,

where § is the rate of depreciation. In the single-good model, p, is identically one,
so there are no changes in the relative price of capital, and we are assuming that
is zero; accordingly, the rate of return on capital is r,, which is equal to the interest
rate. (We are implicitly assuming that the economy never specializes completely; if
it did not save at all, the relative price of capital goods could be less than one; if it
did not consume at all, the relative price of capital could exceed one.)

19. For notational convenience we shall assume that there is just one family and
one firm, both acting competitively.

20. There are many alternative ways of describing the decentralized economy. For
example, firms can own the capital and finance investment by either borrowing or
issuing equity. Or, instead of operating with spot factor markets, the economy may




Chapter 2

operate in the Arrow-Debreu complete market framework in which markets for
current and all future commodities, including services, are open at the beginning of
time; all contracts are made then, and the rest of history merely executes these
contracts. Under perfect foresight, all these economies will have the same allocation
of resources.

21. We limit ourselves in what follows to paths of wages and rental rates such that
the following condition is satisfied:

lim eXp[——J (r, — n) dv] = 0.
famdee] (4]

This condition says, roughly, that asymptotically the interest rate must exceed the
rate of population growth. We will show that the equilibrium path indeed satisfies
this condition. A complete argument would show that if this condition is not
satisfied, there is no equilibrium. See note 25 below for further elaboration.

22. In the present model, in which all families are the same, they will in equilibrium
have the same wealth position and hold the same fraction of the capital stock. Since
the aggregate capital stock must be positive, each family will, in equilibrium, have
positive wealth. This is, however, a characteristic of equilibrium, not a constraint
that should be imposed a priori on the maximization problem of each family. In an
economy with heterogeneous families, or families with different paths of labor
income, positive aggregate capital may coexist with temporary borrowing by some
families.

23. Charles Ponzi, one of Boston’s sons, made a quick fortune in the 1920s using
chain letters. He was sent to prison and died poor.

24. This raises the question of how the no-Ponzi-game condition is actually
enforced. The fact that parents cannot, for the most part, leave negative bequests
to their children implies that family debt cannot increase exponentially. It may in
fact impose a stronger restriction on borrowing than the no-Ponzi-game condition
used here.

25. Following up on note 21, there is one loose end in our proof of equivalence,
which we now tie up. We have restricted ourselves to paths where the interest rate
exceeds asymptotically the population growth rate. Given this restriction, we
showed that there is an equilibrium path, which is the same as the central planning
one, so that r converges asymptotically to n + 0. We now need to show that paths
on which the interest rate is asymptotically less than #, cannot be equilibria. To see
why, rewrite the budget constraint facing the family as

da,

il (r, — ma, + (¢, — w,).

Consider then two paths of consumption, which have the same level of consumption
after some time 7T, so that ¢, — w, is the same on both paths after T. Then, if r, — n
is asymptotically negative, both paths will lead to the same asymptotic value of a
(the same level of net indebtedness if a is negative). If one path satisfies the
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no-Ponzi-game condition, so will the other. But this implies that the family will
always want to have very high (possibly infinite) consumption until time T. This
cannot be an equilibrium.

26. We consider endogenous government spending in chapter‘ 11.

27. Government spending, for instance, on education, might substitute for private
spending, in which case the utility function would have to be amended appro-
priately. Similarly, government spending on defense and public safety might con-
tribute to the economy's productive capacity, but we do not model any such
effects.

28. The dynamics of investment and savings in a closed economy with adjustment
costs are studied in Abel and Blanchard (1983).

29. Blanchard (1983), Fischer and Frenkel (1972), and Svensson (1984) have used
similar models to examine the dynamics of foreign debt and the current account.

30. Investment decisions based on adjustment costs have been modeled by Abel
(1981), Eisner and Strotz (1963), Lucas (1967), and Tobin (1969). Our specification
is that of Hayashi (1982).

31. The conditions specified after equation (31) ensure the properties of the
installation cost function iT(i/k). Note that, in practice, when capital depreciates,
the costs of small rates of disinvestment, which can take place through depreciation,
are likely to be very small or zero.

Instead of defining both a production and an installation cost function, we could
have defined a ‘net’ production function that gives output available for consumption
or export, H(K, N, I). This is the approach taken, for example, by Lucas (1967). In
our case HK, N, I) = F(K, N) — I[1 + T(I/K)], where uppercase letters are total
amounts of corresponding per capita variables. The function H(-) has constant
returns to scale if F(-) does.

32. If the world interest rate had differed from the rate of time preference, the
country would either accumulate or decumnulate forever. This follows from
the Euler equation in the absence of population growth, which from section 2.2
will give [du’ (c,)/dt)/u'(c,) = § — r, where r is the interest rate. If the country
accurnulates forever because 9 < r, then it eventually becomes a large economy
and begins to affect the world interest rate; i£6 > r, then the country runs its wealth
down as far as it can. To avoid these difficulties, we set § = r. We could also obtain
convergence to a steady state if we specified a time path for the world interest rate
that converges to 0, rather than always being equal to 6. We assume r = 0 for

simplicity.

33. We state the NPG condition as an equality. We could again state it as an
inequality, requiring the present discounted value of debt to be nonnegative. But if
marginal utility is positive, the central planner will not want to accumulate increas-
ing claims on the rest of the world forever. Thus the NPG condition will hold with
equality. :




34. Defining the costate variable on (31) as p,4, exp(— 6P rather than as a single
variable is a matter of convenience, as will become clear later when we show that
g plays a key role in determining investment.

35. Note that because of the equality of the interest rate and the subjective discount
rate, the marginal propensity to consume out of wealth is equal to 6 independently
of the form of the felicity function.

36. Note that given constant #, equation (39) implies that lim g,, exp(—6f) =0
as f goes to 00. This is, however, not the same as lim g, exp(—6f) =0 as ¢
goes to 00, which is the condition needed to derive (44). To derive (44), one
must characterize the phase diagram associated with equations (37’) and (43) and
show that the only path that satifies these equations and the transversality condition
(39) is a path where both k and g tend to k* and ¢, respectively, so that
lim g, exp(—68) = 0 as t goes to 00.

37. This way of thinking about the investment decision was developed by Tobin,
For that reason, g is often called Tobin’s q. See Hayashi (1982) for a discussion of
the relation of 4 to its empirical counterparts; in particular, Hayashi discusses the
conditions under which average g, as reflected, say, in the stock market valuation
of a firm, is equal to marginal g, the shadow value of an additional unit of installed
capital. Marginal and average q are equal, leaving aside tax issues, if the firm's
production function and the adjustment cost function iT(-) are each first-degree
homogeneous and firms Operate in competitive markets. Under those assumptions
one would expect a tight relation between the market valuation of firms and their
investment decisions. Empirically, although average 4 and investment rates are
indeed correlated, the relation is far from tight (see Hayashi 1982).

38. If there is population growth at the rate n, then g* is given by n = ¢(4*) so that
q° > 1, and k* is given by

07" = f(k*) — n*T'(n).

39. The restriction to local dynamics ensures that dg/dt = 0 is negatively sloped;
away from the steady state there is no assurance that the slope of dg/dt = 0 s
negative without imposing more conditions on the T() function. However, the
restrictions imposed on T(*) are sufficient to ensure that there is a unique steady
state in the neighborhood of which the dg/dt = 0 locus is negatively sloped.

40.In appendix D we show that the transversality condition suffices in the linearized
system to rule out any divergent paths that satisfy the necessary conditions (47).

41. The current account always has present discounted value equal to zero when
condition (32) is satisfied; it is only when the initial debt is zero that the same applies -
to the trade account.

42. Given the equivalence between the command optimum and the decentralized
economy, the shocks can also be interpreted as taxes, where the government is
using the proceeds of the taxes to finance government spending that does not affect
the utility function, as in section 2.3,
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43. This experiment raises the methodological issue of how unexpected changes
can occur in a model in which there is perfect foresight. The correct way to analyze
such changes would be to set up the maximizing problems of the central planner
or economic agents explicitly as decision problems under uncertainty. This sub-
stantially complicates the analysis, and we defer this to chapter 6; we can think of
the approach taken here as a shortcut in which the surprise is an event that was
regarded as so unlikely as not to be taken into account up to the time it occurs.

44. If individuals dislike changes in the rate of consumption so that the felicity
function is, for instance, u(c, dc/dF), the reduction in z, would cause a smaller decline
in consumption than in output initially; the country would in that case initially
borrow abroad temporarily to cushion the shock of the reduction in the standard
of living, and end up with permanently higher debt and lower consumption.

45. We briefly return in chapter 7 to the issue of nonseparability in the context of
a discussion of labor supply.

As we shall see, however, the distinction between the felicity function and the
discount factor becomes somewhat blurred when we allow for more general
formulations of this discount factor.

46. The argument to this point does not eliminate the possibility that there is no
steady state. The argument of this paragraph can be seen, however, to imply the
existence of a steady state withr = 6,,.

47. The no-Ponzi-game condition prevents the shortsighted from going further and
further into debt.

48. Ramsey (1928) conjectured this result; it was proved by Becker (1980).

49. Note the similarity between the discussion here and that of the relationship
between the world interest rate and rate of time preference of a small country in
section 2.4.

50. Because the point we are about to make about the optimal program does not
depend on the presence of x(f) in the discount function, we omit that argument
henceforth.

51. This result is due to Strotz (1956).
52. An example is D(*) = max[0, A — 0(t — 5)].

53. See Elster (1979) and Schelling (1984) for more extensive discussion of how
people do and should deal with inconsistencies. Issues of time consistency also arise
in the context of games between agents or between agents and the government.
We will study these in chapter 11.

54. There is no “correct” way to behave when tastes are dynamically inconsistent,
for there is no way of knowing which is the right set of tastes: the title “Ulysses
and the Sirens” (Elster 1979) refers to Ulysses’s strategy of having himself tied to the
mast to avoid succumbing to the Sirens’ cry—but maybe the real Ulysses was the
one who would have succumbed if the other Ulysses hadn't tied him to the mast.
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55. Epstein and Hynes (1983) suggest an alternative specification, namely,

fm exp [*J‘s u(c,) dv] ds.
0 0

This specification has the same qualitative implication as Uzawa’s but is more
tractable analytically. Note that in this form there is no longer any distinction
between the discount rate and the instantaneous felicity function.

56. Lucas and Stokey (1984) work with a model of this type.

57. Once again, there are many alternative ways of describing the decentralized
economy. Firms could, instead, finance investment by issuing shares or by borrow-
ing either abroad or domestically. The real allocation would be the same in all
cases.

58. If investment is so high that net cash flows are negative, the firm is, in effect,
issuing equity by paying a negative dividend, that s, making a call on stockholders
for cash.
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