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Abstract

We analyze forward-induction reasoning in games with asymmetric information
assuming some commonly understood restrictions on beliefs. Specifically, we assume
that some given restrictions A on players’ initial or conditional first-order beliefs
are transparent, that is, not only the restrictions A hold, but there is common
belief in A at every node. Most applied models of asymmetric information are
covered as special cases whereby A pins down the probabilities initially assigned to
states of nature. But the abstract analysis also allows for transparent restrictions
on beliefs about behavior, e.g. independence restrictions or restrictions induced by
the context behind the game. Our contribution is twofold. First, we use dynamic
interactive epistemology to formalize assumptions that capture foward-induction
reasoning given the transparency of A, and show that the behavioral implications
of these assumptions are characterized by the A-rationalizability solution procedure
of Battigalli [5, 1999], [6, 2003]. Second, we study the differences and similarities
between this solution concept and a simpler solution procedure put forward by
Battigalli and Siniscalchi [12, 2003]. We show that the two procedures are equivalent
if A is "closed under compositions", a property that holds in all the applications
considered by [12, 2003]. We also show that when A is not closed under compositions
the simpler solution procedure of [12, 2003] may fail to characterize the behavioral
implications of forward induction reasoning.
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1 Introduction

Forward induction reflects the idea that players rationalize their opponents’ behavior,
whenever possible. In particular, each player forms an assessment about the opponents’
private information and future (or yet unobserved) moves, given what he observed about
the past play and the presumption that his opponents are strategic. Such strategic reason-
ing has been studied with the tools of epistemic game theory, the formal analysis of how
players’ beliefs about each other are formed and — in dynamic games — how they change
as the play unfolds (see Battigalli & Siniscalchi [11, 2002] and Battigalli & Friedenberg
[9, 2012]). In this paper we consider dynamic games where players may either lack com-
mon knowledge of the payoff functions (incomplete information), or have imperfect and
asymmetric information about chance moves. Our formalism distinguishes between these
two scenarios and can mix elements of both. We provide an epistemic analysis of forward-
induction reasoning when some given restrictions A on first-order beliefs are transparent
to the players, and we show that the behavioral implications of our epistemic assump-
tions are characterized by an iterated deletion procedure called A-rationalizability, first
proposed by Battigalli [5, 1999] (see also [6, 2003]). We also discuss a simpler “naive” A-
rationalizability algorithm put forward by Battigalli & Siniscalchi [12, 2003], arguing that
it is conceptually incorrect for general restrictions A, but equivalent to A-rationalizability
for the type of restrictions most frequently encountered in economic applications (see sec-
tion 3.3), and in particular for the ones assumed in the examples and results of [12, 2003].
The rest of this introduction provides the background for our contribution and spells it
out in more detail.
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1.1 An illustrative example

To illustrate the kind of belief restrictions and forward-induction reasoning analyzed in this
paper we refer to the well known Beer-Quiche game depicted in Figure 1 (see Cho & Kreps
[24, 1987]). We will consider two different scenarios that can be formally distinguished
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within our framework. (1) In the complete-information scenario, which may be easily
implemented in the lab, a ball is drawn from an urn with 90 balls labeled surly (s) and
10 balls labeled wimp (w); Player 1 observes the label, Player 2 does not, and the game
is common knowledge. We will make two very natural assumptions regarding the belief
restrictions that are transparent in this scenario: Players 1 and 2 ex ante assign probability
0.9 to s; furthermore, Player 1 initially believes that the chance move and the strategy of
Player 2 are independent (uncorrelated). Although natural, this second restriction has to
be explicitly assumed as well, because subjective beliefs about the strategies of different
co-players (including chance) may exhibit correlation even though players are aware that
there is no causal dependence between such strategies. (2) In the incomplete-information
scenario there is no ex ante stage and there are are no chance moves: Player 1 just knows
his true payoff type, s or w, which is unknown to Player 2. It is assumed to be transparent
that Player 2 assigns probability 0.9 to the surly type s. But, as we explain below, in this
scenario we cannot even state an assumption about first-order beliefs that corresponds to
the independence assumption stated for scenario (1).

Why do we distinguish between these two scenarios? Didn’t Harsanyi (1967-68) show
that they are equivalent? Harsanyi proved that we can find an isomorphism between
the game with chance moves (1) and the incomplete-information game (2) so that the
Nash equilibria of (1) correspond to the Bayesian Nash equilibria of (2). So, if one is
only interested in Nash equilibrium analysis, the differences between (1) and (2) can be
overlooked. But in this paper we do not presume that players’ choices and beliefs form
an equilibrium, and since (1) and (2) are objectively different situations, no equivalence
can be taken for granted without first proving an appropriate theorem. For example, the
independence restriction assumed within (1) cannot even be stated as such in scenario (2),
where there is no ex ante stage and hence no prior belief of Player 1 that may have the
independence property. The "corresponding" independence assumption that can be ex-
pressed within scenario (2) refers to a property of the second-order beliefs of Player 2:
he believes that Player 1’s first-order belief about 2’s strategy is independent of the payoff
state. Thus, these two independence properties are different and they are not necessarily
equally plausible. Furthermore, they can be properly compared only by using a formal
language that can distinguish between (1) and (2). Such a language is also necessary to
provide transparent results of equivalence (according to a well defined criterion) between
(1) and (2), although proving such equivalences is not a goal of this paper.! That said,
in this introduction we provide an informal analysis of forward-induction reasoning in the
Beer-Quiche game focusing on the complete-information scenario (1). In the Appen-
dix we provide a formal analysis under the two alternative scenarios, assuming different
restrictions on first-order beliefs.

Step 1: Player 1 forgoes his preferred meal (which depends on the chance move he
observed) only if he thinks that this minimizes the probability of a fight. Independence
implies that what he believes about the meal that minimizes the probability of a fight
does not depend on the chance move he observes. Hence, for at least one realization of
the chance move, the preferred meal is the same as the fight-probability minimizing meal
and Player 1 chooses it. In other words, strategy “Q if s, B if w” is irrational under

IFor a result of this sort see, for example, Battigalli et al. [16, 2011, Theorem 3]): absent independent
restrictions, rationality and common belief in rationality have equivalent behavioral implications in the
two scenarios.



the independence restriction. Player 2 does not want to fight a surly type. Since s is ex
ante more likely than w, the strategy “always f” is dominated by the strategy “always
d” and hence ruled out. Step 2: Suppose Player 2 observes B. By forward induction,
he rationalizes this move and, by Step 1, he must believe that Player 1 is playing either
“always B” or “Q) if and only if w”. Hence, his conditional probability of s is between 0.9
( the prior) and 1, which are the two extremes that would result if he were certain of the
first, or — respectively — the second strategy. With this, the best reply to B is d. Step
3: By Step 2, after s Player 1 chooses B, i.e., the strategy “always ()" is deleted. Step
4: By forward induction, even if he were surprised, Player 2 would rationalize ) in
a way consistent with the previous steps and would conclude that Player 1 is using the
strategy “Q if and only if w” and that the state is w. Thus he would fight after (). Step
5: By the previous steps, Player 1 is certain that Player 2 fights if and only if he chooses
Q; therefore he plays the best response strategy “always B”.2

As we show in the Appendix, we can obtain the (B, d) outcome also in the incomplete
information scenario (2) under the assumption that, upon observing B (beer), Player 2
thinks that the surly type is more likely, a restriction on first-order conditional beliefs. The
same conclusion follows if instead we assume that Player 2’s second-order beliefs satisfy
the independence assumption stated above. But in this paper we focus on first-order
beliefs restrictions.

1.2 Transparent restrictions on beliefs and epistemic game the-
ory

As illustrated by the example, in game theory and economics it is common to assume
that certain restrictions on players’ beliefs are transparent, or more precisely that such
restrictions hold and there is common (probability one) belief at every point of the game
that they indeed hold.> Games with chance moves are an obvious case in point. But an
even more prominent example is the use of type structures & la Harsanyi [29, 1967-68|
to model games with incomplete information as Bayesian games. A type structure in
the sense of Harsanyi corresponds to a belief-closed subset of states within the canonical
universal structure that contains all conceivable hierarchies of beliefs based on some given
set of states of nature ©;* the first-order beliefs in a hierarchy of Player i are elements
of A(©), the second-order beliefs are elements of A (© x (A(©))"M7), and so on (see
Mertens & Zamir [30, 1985] and Brandenburger & Dekel [19, 1993]). In the analysis of
dynamic Bayesian games, it is implicitly and informally assumed to be transparent to the
players that initial beliefs about the state of nature and initial beliefs about the exoge-
nous beliefs of others belong to this subset. (In most applied analyses, such transparent
restrictions are derived from information partitions and priors.) The reason why such

2The strategies and conditional beliefs pinned down by this argument concide with the sequential
equilibrium selected by the Intuitive Criterion of Cho and Kreps [24, 1987].

3We refrain from saying that such restrictions are “common knowledge”. We find the use of the “com-
mon knowledge” terminology much too casual in economic theory, as there is often either a terminological
or even a conceptual conflation of (common) knowledge and (common, probability one) belief. We find it
semantically and conceptually useful to reserve “knowledge” for the justified true belief that comes from
observation and logical deduction.

4We distinguish between states of nature, that parametrize payoff functions, and states of the world
that describe every relevant aspect of the situation of strategic interaction.



assumption is not only implicit, but also informal, is that the language of ©-based hier-
archies of beliefs is insufficient to formally describe what players think about the state
of nature and about each other conditional on some moves in the game. Such condi-
tional beliefs should be derived, whenever possible, from initial beliefs about © and about
the behavior and beliefs of others via Bayesian updating. Battigalli & Siniscalchi [10,
1999] show how to construct a so called canonical space containing all the conceivable
hierarchies of conditional probability systems (CPS’s) whereby initial first-order beliefs
are probability measures on states of nature and strategies. Such hierarchies of CPS’s
provide a language that is sufficiently expressive to formally state assumptions about the
transparency of restrictions on beliefs. As an added bonus, this language also allows
to express assumptions about how players’ mutual beliefs in rationality would evolve for
each possible play of the game, and then derive implications about behavior, beliefs about
behavior, and so on. The analysis of players’ mutual beliefs in rationality by means of
hierarchical beliefs about strategies is the goal of epistemic game theory, which goes back
to the work of Aumann [2, 1987], Brandenburger & Dekel [18, 1987], and Tan & Werlang
[36, 1988] for the analysis of static games with complete information. Indeed, the main
motivation of [10, 1999] was to extend epistemic game theory to analyze dynamic games,
with either complete, or incomplete information. In this paper we focus on assumptions
about rationality and hierarchical beliefs whose behavioral implications are captured by
versions of the rationalizability solution concept.

1.3 Rationalizability in dynamic games with incomplete, or asym-
metric information

It has been argued that analyzing a strategic situation with incomplete information by
means of type structures a la Harsanyi and looking at the corresponding Bayesian equilib-
ria may be problematic, and that alternative approaches are worth exploring. Battigalli
[5, 1999], [6, 2003], and Battigalli & Siniscalchi [12, 2003] propose to use instead a solu-
tion concept called A-rationalizability, a kind of extensive-form-rationalizability® deletion
procedure for “games with payoff uncertainty”. According to this procedure, players’
initial and/or conditional beliefs about the true state of nature and their opponents’
strategies satisfy some given restrictions A, which provide the backdrop for rationaliz-
ing observed moves by the opponents. In other words, in non trivial sequential games
with asymmetric information this solution concept captures forward-induction reasoning
under the assumption that the first-order belief restrictions A are in some sense “trans-
parent”.57 This approach encompasses the case of games with objective probabilities of

50On extensive-form rationalizability see [33, 1984], [3, 1996] and [4, 1997].

615, 1999], [6, 2003] and [13, 2007] also analyze a less demanding solution concept that only requires
initial common belief in rationality and the restrictions A. To stress the difference between these
two solution concepts, these papers call “weak A-rationalizability” the one based on assumptions about
initial beliefs, and “strong A-rationalizability” the one capturing forward-induction reasoning. Like other
papers that only analyze the latter solution concept (e.g., [12, 2003] and [9, 2012]), here we simply call it
“A-rationalizability”.

"For applications of the A-rationalizability approach to economic models see, e.g., [6, 2003], [12, 2003],
[7, 2006] and references therein; for applications to robust mechanism design see [35, 2012], [31, 2012]
and the survey [17, 2011]; for applications to non-binding agreecements see [23, 2012] and [37, 2011]; for
empirical applications see [1, 2008]. Attention is restricted to first-order beliefs for the sake of simplicity,



chance moves, which may be asymmetrically observed, as well as incomplete-information
games with hierarchical beliefs implicitly generated by (common or subjective) priors
and information partitions on a set of states of nature ©. But the A-rationalizability
approach is broader in that it also allows to assume that certain restrictions on beliefs
about behavior are made transparent by the context in which the game is played (cf.
Battigalli & Friedenberg [8, 2009], [9, 2012]). In an asymmetric-information framework,
joint restrictions on beliefs about states of nature, or chance moves, and beliefs about
opponents’ behavior may also be important. One such restriction — expressible within the
complete/asymmetric information framework — is that an individual regards the “strat-
egy” of the chance/nature player as independent of the opponents’ strategies (as in the
previous illustrative example), which has been shown to be a crucial assumption underly-
ing the traditional rationalizability concept for games with asymmetric information (see
Battigalli et al. [16, 2011]).

1.4 Epistemic analysis and strong belief

In our view, one can really understand a solution concept S that is meant to capture
some kind of strategic reasoning only if S can be justified as the result of expressible
assumptions about players’ rationality and hierarchical beliefs.® In other words, solution
concept S should characterize the behavioral consequences of the underlying epistemic
assumptions.” Such results are central to the epistemic game theory program. Here
we show that A-rationalizability characterizes forward-induction reasoning under trans-
parency of the given first-order restrictions A. The rest of this introduction discusses such
characterization.

It is routine to extend the results of [18, 1987], [36, 1988] and show that, in static
games, A-rationalizability is justified by the following expressible assumptions:

(a) players are rational and there is correct and common belief in the restrictions A
(i.e., the restrictions A are transparent),

(b) there is common belief of (a).

By the conjunction property of probability-one belief, this in turn is equivalent to the
following expressible assumptions:

(a’) players are rational and their beliefs satisfy the restrictions A,

(b’) there is common belief of (a’).

These assumptions are represented by events in the canonical type structure containing
all the conceivable belief hierarchies generated by the primitive uncertainty about states

as A-rationalizability is meant to be a relatively simple reduction procedure whose implementation does
not involve type structures and beliefs about beliefs. But restrictions on higher-order beliefs (not implied
by the transparency of first-order beliefs restrictions) may well be appropriate in some applications; taking
higher-order belief restrictions into account does not change the essential features of the approach. See, for
example, the rationalizability analysis of Spence’s model in [7, 2006]. Also, Theorem 4 (a straightforward
extension of results due to Battigalli & Friedenberg [9, 2012]) provides a kind of equivalence between
forward-induction reasoning under transparency of first-order and of higher-order beliefs.

8Informally, we call “expressible” an assumption that can be stated using primitive terms and terms
derived from primitive terms or other derived terms (see [16, 2011]).

9More formally, we say that a collection of expressible assumptions A justify a solution concept S, or
equivalently that S characterizes the behavioral implications of A, if for each player ¢ and each piece of
private information 6;, the set of strategies allowed by A for 6; coincides with the set of strategies allowed
by S for 6;.



of nature and actions (see [16, 2011]).

The epistemic justification of A-rationalizability in dynamic games is more complex,
and also more interesting. As we hinted above, this solution concept captures a forward-
induction principle. Loosely stated, A-rationalizability rests on the assumption that each
player ¢ at each information set h ascribes to his opponents the “highest degree of strategic
sophistication” consistent with h given A (cf. Battigalli [3, 1996]). To illustrate, in
the Beer-Quiche example analyzed above, Player 2 interprets () as evidence that Player
1 observed w, even though, according to the solution, ) should not be played at all.
Building on [10, 1999] and [11, 2002], Battigalli & Siniscalchi [13, 2007] provide a rigorous
formalization of this principle based on the notion of “strong belief”. Let €2 be the
canonical state space constructed in Battigalli & Siniscalchi [10, 1999]. Each w € Q
specifies a state of nature (and players’ private information about it), a strategy profile
and a profile of hierarchies of conditional beliefs. Furthermore, no hierarchy satisfying
standard coherency conditions is ruled out. Say that player ¢ strongly believes an event E
if ¢ believes F with probability one whenever his information set does not contradict E.
It is important to note that a player may strongly believe the conjunction of two events
ENF even if he does not strongly believe either E or F.!° For example, suppose ENF is
the event “Eve and Frank go right”, and David strongly believes EN F'. Also assume that
one of David’s information sets corresponds to “either Eve or Frank did not go right”, i.e.
—“FEU-F = =(ENF). If David observes =E U —F, he cannot believe (with probability
one) both E and F', thus, he must give up on at least one of them. Suppose he gives up on
E, i.e. he does not assign probability one to F conditional on - U—F'. Then David does
not strongly believe E because he does not assign probability one to £ conditional on an
observation, (—E U —F'), that is consistent with F. By a similar argument, strong belief
fails monotonicity: even if E C F, strong belief in E does not imply strong belief in F.*!
Since strong belief does not satisfy the standard conjunction and monotonicity properties,
assumptions involving strong belief in multiple events must be stated and analyzed with
care.

Say that there is common strong belief in event E at state w if the following assump-
tions hold at w:

AL all players strongly believe £

AZ  all players strongly believe £ N AL

A% all players strongly believe EN AL N ...N A%

etc.

Battigalli & Siniscalchi [13, 2007] proved the following extension of the static-game
epistemic justification of A-rationalizability given by assumptions (a’)-(b’): a strategy
profile s is strongly A-rationalizable if and only if s is played at some state w where

(o) players are rational (viz., conditional expected utility maximizers) and the restric-
tions A hold,

(") there is common strong belief in (o).

100n the other hand, the conjunction of strong belief in E and strong belief in F' implies strong belief
in ENF.

Tndeed, considering the same events and informational setup as above, ENF C E, F, but we have
just shown that strong belief in £N F' does not imply strong belief in both E and F. Thus, monotonicity
does not hold.



The previous result assumes that the restrictions A hold, but it does not assume that
they are transparent. Consider, for example, the first-order belief restrictions A for the
Beer-Quiche game under the complete information scenario. Since s (surly) is a realization
of a chance move given by a commonly known urn, it seems plausible to assume that it
is transparent that each player initially assigns probability 0.9 to s. Now, according to
epistemic assumption (/3’), there must be common belief at the beginning of the game
that each player initially assigns probability 0.9 to s, but such common belief about initial
first-order beliefs does not necessarily hold after a move by Player 1. Furthermore, (3')
does not require Player 1 to believe that such common belief would persist. Indeed (3)
allows Player 1 to believe that if he made a move that Player 2 cannot “rationalize”, then
Player 2 would stop believing that 1 believes that 2 initially assigns probability 0.9 to s.
Does this matter? Would the behavioral implications change if the restrictions A were
assumed to be transparent? Answering this question requires careful analysis.

1.5 Our contribution

In this paper we extend the static-game epistemic analysis given by assumptions (a)-(b)
above: a strategy profile s is A-rationalizable if and only if s is played at some state of
the world w where

(cv) players are rational and there is correct common belief in A at every node (i.e., A
is transparent),

(B) there is common strong belief in («).

We give the following interpretation. Suppose that due to some pre-game history such
as public information about the composition of an urn, shared experience, or a social
convention, the restrictions A are transparent. This provides a backdrop, or context,
for forward-induction reasoning as expressed by the assumptions («)-(3) stated above:
In other words, while making inferences about the opponents by rationalizing their past
moves, players never consider states of the world inconsistent with the transparency of A.
We show that A-rationalizability allows to derive the behavioral consequences of these
assumptions when the analyst knows A, for example because A reflects objective prob-
abilities made transparent in an experimental setting, or A is given by some commonly
known statistics. Our result also allows to answer the previous question: assumptions
(a’)-(B"), whereby restrictions A are not transparent, have the same behavioral implica-
tions of («)-(B), as both are characterized by A-rationalizability.

Besides A-rationalizability, we also consider a “naive” A-rationalizability algorithm
used in [12, 2003], which is more similar in spirit to Pearce’s [33, 1984] original definition
of rationalizability for extensive-form games. We show that this algorithm is not con-
ceptually correct for arbitrary restrictions A, but it is equivalent to A-rationalizability
(hence it does capture the epistemic assumptions it was meant to capture) if A satisfies a
property of “closedness under composition”. We argue that this property holds in a wide
range of interesting cases. Users of A-rationalizability mostly cite [12, 2003] as a reference
for this concept. It is therefore important for them to be aware that the “naive” solu-
tion algorithm defined there is sound only when it is equivalent to the A-rationalizability
solution concept originally defined in [5, 1999] and epistemically justified here.

A minor, but in our view non-negligeble contribution of this paper is that we consider
very general extensive-game forms, allowing for several players, imperfectly observed ac-



tions, simultaneous moves by subsets of players, chance moves and lack of common knowl-
edge of the payoff functions, whereas all the papers mentioned above make simplifying
assumptions in some of these dimensions. We do not make too much of this, as it is
quite clear that in the cited literature such assumptions are made mainly for notational
convenience. But we point out that our analysis, besides confirming some claims of pos-
sible generalizations made in those papers, allows to represent formally and to compare
the complete- vs incomplete-information interpretations of well known models and exam-
ples of the literature, such as the Beer-Quiche game analyzed above. As argued in the
discussion of that example, this helps shed light on the differences between the complete-
information scenario with asymmetric information about an initial chance move, and the
incomplete information scenario. In particular, our framework and results help to better
compare ex ante and interim rationalizability in dynamic Bayesian games, adding to the
static analysis of Battigalli et al. [16, 2011].

The rest of the paper is structured as follows: Section 2 gives the preliminary concepts
about dynamic games with asymmetric information and interactive conditional beliefs;
Section 3 provides the epistemic justification of A-rationalizability and compares it with
the “naive” reduction algorithm of [12, 2003]; Section 4 concludes with a discussion of
the case when the transparent restrictions on beliefs are not given to the analyst; the
Appendix provides a formal analysis of the Beer-Quiche game and collects all the proofs.

2 The framework

In this section we present the building blocks of our analysis: dynamic games with payoff
uncertainty (subsection 2.1), systems of conditional probabilities (subsection 2.2), type
structures (subsection 2.3), rationality (subsection 2.4), and belief operators, i.e., the
language we need to express our assumptions about interactive beliefs (subsection 2.5).

2.1 Dynamic Games with Payoff Uncertainty

We consider dynamic games allowing simultaneous moves, imperfect information about
past moves and lack of common knowledge of payoff functions, i.e. incomplete information.
Since our formal representation is not standard, we provide a detailed description.

We describe the rules of interaction of the dynamic game under consideration using
the following primitive objects:'?

e A set I of players, plus the chance pseudo Player 0. We let Iy = {0} U I denote the
extended players’ set.

e For each ¢ € Iy, a set of actions A;; for each non-empty subset J C [, we let
Ay =T1,c; Ai denote the set of action profiles for players in J.

12Cf. Osborne-Rubinstein [32, 1994], chapters 6, 11.



e A finite set of histories'?

<N

X C U AJ )
0#£JClIo

that is, sequences of action profiles # = (a',...,a%) with a* = (al);c; for some
non-empty J C I,.

e A player correspondence 1 : X — 2% such that (a',...,a*"!,a*) € X if and only if
(at,...,a" 1) # () and o € Ay, at-1); L(x) is the set of active players at x.

e For each player i € I, an information partition H; of the set {z : i € «(x)} of
histories at which i is active.

By assumption, every prefix of a history in X (including the empty history @) is also
in X, thus X endowed with the precedence “prefix-of” relation is a tree with root @.
The set {a,) : (@, a,)) € X} of feasible action profiles at history x is — by assumption
— a Cartesian product of |.(x)| subsets of actions. The information partition H; is such
that, for every h € H; and x,y € h, player i has the same set of feasible actions at z
and y; furthermore H; satisfies perfect recall.!* As a matter of notation, we let Hy be
the finest partition of {x € X : 0 € «(z)}. Auxiliary notation and definitions, plus two
key additional objects are compiled in the table below; comments will follow. Additional,
derived objects (such as “strategies”) will be introduced later as needed.

Name Notation | Definition
Terminal histories A {ze€ X :u(z)=0}
Actions at h for i € o(h) (h) proja, {a, ) : (¢, a,)) € X} (x € h)

=

Strict precedence relation < r <y < [z strict prefix of y]
Weak precedence relation =< r Ry < [z weak prefix of y]
States of nature C] © =0y x 0O x..x0
Payoff function of i € T u; u; O x 7 —-R

Note that the information structure defined above only describes information
about past moves, including chance moves. If each information set h is a single-
ton, we say that there are observed actions. If — on top of this — only one player is active
at each history we say that the game has perfect information.*®

In order to model payoff uncertainty, i.e. incomplete information about payoff func-
tions, we introduce a nonempty and finite product set of “conceivable” parameter values
© and the parametrized payoff functions u; : © x Z — R (i € I). For every player i € I,
each element 0; € ©; represents Player i’s private information about the unknown aspects
of the game; we call it Player i’s information type. The set Oy (the “information type of

I3For any given set Y, Y <N denotes the set of finite sequences of elements of Y, including the empty

sequence @, that is, Y <N = U Y™ with YO = {@}.
neNU{0}

No information set h € H; contains two ordered histories; furthermore, whenever v/,y"” € h € H;,
2’ € h e H; and («/,a’) < ¢/, there is a history (z”,a"”) such that 2 € h, (z”,a”) < y" and a} = a.

15This is not to be confused with “complete information”, which means that all the rules of the game
and players’ preferences over consequences are common knowledge. Indeed we allow for the opposite, if
there is payoff uncertainty, there is incomplete information.
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Player 0”) represents any residual uncertainty about payoffs that remains after pooling
players’ private information. We often refer to profile 0 = (6;),c;, as the state of nature.
Appending the states of nature to the game tree specified above we obtain an arbores-
cence, that is, a collection of trees (0 x X, <) where (0,x) < (¢',2’) if and only if § = ¢’
and z < 2/. The elements of the information partition H; are related to, but distinct
from the information sets of the graphical representation of the game as an arborescence:
when information h € H; about past moves is combined with the information-type 6;,
we obtain the “traditional” information sets [0;,h] = {(¢',2) : 0, = 6;,2/ € h} in the
arborescence. Also observe that, with this formulation, the actions available to players
at any given history do not depend on their information-type. This restriction could be
removed, at the expense of additional notation; our results do not depend upon it in a
crucial way.!

For instance, in a pure “private-values” setting, Player ¢’s payoff depends solely upon
f; and the terminal history reached. At the opposite extreme, in a “common-values”
environment, players’ payoffs at any terminal history depend only upon 6y; in this case,
each player’s information type 6; is interpreted as payoff-irrelevant private information,
which may be correlated with 6y according to some other player’s subjective beliefs.
We include “Player 0”7 and the residual uncertainty 6y in our framework (adding some
notational complexity) because it is important in economic applications, and because it
helps relate our work to the recent literature on rationalizability in games with incomplete
information. Also, as we clarify in Example 1, moves by Player 0 are interpreted as chance
moves. Our notation allows us to formally distinguish games with imperfect information
about an initial chance move (such as poker) from games with incomplete information.
We do not specify the probabilities of chance moves in our description of the game because
they will be part of the transparent restrictions on beliefs to be introduced later.!” One
can show that under suitable continuity assumptions our analysis can be extended to
games with infinite horizon and finite action sets, and to games with compact action sets
in the last stage and finite action sets in previous stages.'®

We call the structure

= <I,X,L,@o, (@z’>Hz’aui)ieI>

described so far game with payoff uncertainty. It would be perfectly legitimate to call
I' “game with incomplete information”,!? but we refrain from doing so because this ex-
pression is mostly used to refer to Bayesian games. The difference between a Bayesian
game and a game with payoff uncertainty is that the former specifies (implicitly) players’
hierarchies of initial beliefs about the state of nature (or, at least, its payoff-relevant com-
ponent). We shall introduce hierarchies of beliefs of a much richer kind later on in order
to obtain a language that allows us to express assumptions about players’ rationality and
beliefs, and derive the behavioral implications of these assumptions.

16 Battigalli [6, 2003] allows for type-dependent actions sets.

170ur framework allows for the possibility that players do not have common beliefs about the proba-
bilities of chance moves.

18The construction of a canonical type structure ¢ la Battigalli & Siniscalchi applies to this more
general setting (see [10, 1999] and [6, 2003]). The extension of the main epistemic characterization result
of this paper involves, directly or indirectly, a measurable selection argument (see [14, 2012]).

19T exhibits complete information if the payoff map 6 — (u;(6,))ics is constant (which is trivially
true when © is a singleton), otherwise I' has incomplete information.
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Example 1 7To illustrate our notation, consider the Beer-Quiche game depicted in Figure
1 of the Introduction. As we said, our formalism allows us to distinguish two different
scenartos.

(1) In the complete-information scenario, the nodes of Figure 1 correspond to histories:
first Player 0 (Chance) chooses ag € {s,w}, Player 1 observes this move, Player 2 does
not, and the game is common knowledge. In this case, ©; = {0;} (a singleton) for
i =012 X\Z = {2} U{s,w} U ({s,w} x {B,Q}), Z = {s,w} x {B,Q} x {f,d},
U2) =10}, Ao(@) = {s,w}, Hy = {{s},{w}}, Hz = {{(s, B), (w, B)},{(5,Q), (w,Q)}}
and the rest is obvious.

(2) In the incomplete-information scenario, the nodes of Figure 1 correspond to state-of-
nature/history pairs (0, x): Player 1 starts the game knowing his true payoff type, s or w,
the pseudo-player 0 can be omitted, and we have: ©y = {05} (a singleton), ©, = {s,w},
X\Z = {@} U{B,Q}, Z = {B,Q} x {f.d}, I = {{@}}, Ha — {{B}.{Q}}, and the
rest is obvious.

The probabilities of s and w are not part of the description of the game. They will be
described as transparent features of players’ systems of beliefs.

2.2 Conditional Probability Systems

As the game progresses, players update and/or revise their beliefs in light of newly ac-
quired information. In order to account for this process, we represent beliefs by means of
conditional probability systems (Renyi [34, 1955]).

Fix a player i € I. For a given compact?’ metrizable topological space Y with Borel
sigma-algebra B(Y’), consider a non-empty, countable (finite or denumerable) collection
C; C B(Y) of events such that ) ¢ C;. The interpretation is that Player i is uncertain
about the “true” element y € Y, and C; is a collection of conditioning events (or “relevant
hypotheses”) concerning a “discrete” component of y observable by Player .

Definition 1 A conditional probability system (or CPS) on (Y,C;) is a mapping
pll) = BY) x € — [0,1]

satisfying the following axioms:>!

Aziom 1 For all C € C;, p(C|C) = 1.

Aziom 2 For all C € C;, p(-|C) is a probability measure on 'Y .

Aziom 3 For all E € B(Y), B,C €C;, if E C B C C then u(E|B)u(B|C) = u(E|C).

The set of probability measures on Y will be denoted by A(Y'); we shall endow it with
the topology of weak convergence of measures. The set of conditional probability systems
on (Y,C;) can be regarded as a subset of [A(Y)]“ endowed with the product topology, a
compact metrizable space.

20Compactness of the relevant spaces is assumed for simplicity, it can be relaxed with some additional
technical complications.
21(Q, A, Ci, ) is called conditional probability space in [34, 1955].
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Throughout this paper, we shall be interested solely in “relevant hypotheses” cor-
responding to the event that a certain information set h has occurred, plus the empty
information corresponding to the beginning of the game. Each player is uncertain about
the combination of information-types and strategies of his opponents, including chance.
Beliefs about such primitive uncertainty are called first-order beliefs. The “relevant hy-
potheses” correspond to the sets of type-strategy pairs consistent with information sets.
To make this formal, we introduce additional notation and definitions of derived objects,
summarized in the following table:

Name Notation Definition

Eztended inform. structure of i H; H;U{2}

Opponents of i (with chance) —i I\{i}

Strategies of i € I S; [Icq, Ai(h)

Strategy profiles (of —i) S (S-) [Lics, Si ULicrygiy S9)

Outcome function (:S—7 ((s) terminal history given by s
Strat. profiles consistent with h S(h) {seS:3xeh)(r=<((s))}
Strategies of i (—i) cons. with h Si(h) (S—i(h)) | projs,S(h) (projs_,S(h))
Type-strateqy pairs > 0; x S;

Profiles of (—i) type-strat. pairs X (X) [Lics,(©i X 8) (Ijer0 3 (©5 % 5)))
Type-strategy pairs cons. with h Yi(h) O; x S;(h)

Profiles of (—i) pairs cons. with h | £(h) (2_;(h)) | [Lies, 2(7) T Ler gy Zi(h))

Perfect recall implies that the extended information structure H; (endowed with the
obvious precedence relation derived from <)?? is a tree with root {&}. By assumption,
if i € (@) then {@} € H; = H;.*> The sets S(h) provide a strategic-form representation
of the information structure of each player. Perfect recall implies that if h € H; then
S(h) and X(h) can be factored as S(h) = S;(h) x S_;(h) and X(h) = 3;(h) x X_;(h).
To illustrate, in the incomplete-information version of the Beer-Quiche game in part (2)
of Example 1, we have ¥, = {s,w} x {B,Q}, ¥1({B}) = {s,w} x {B}, £,({Q}) =
{s,w} x {Q}; these subsets correspond to the conditioning events for Player 2. An
information-type/strategy pair in ¥; is denoted o; whenever we do not have to refer
specifically to the information component 6; or the strategy component s;.

Player i’s first-order beliefs about the state of nature and his opponents’ behavior may
be represented by taking probability measures in A(X_;) and letting C; = {C C ¥_; :
(3h € H;)(C = ¥_4(h))}.** Since C; is indexed by H;, we denote the collection of CPS’s
on (X_;,C;) thus defined by Afi(3_;). Since ¥_; and H; are finite, A" (X_;) is easily
seen to be a closed subset of the Euclidean |H;| x |X_;|-space.

2That is, (h < ') < (Vo' € K')(3x € h)(z < 2')).

231f the information set of ¢ containing @ also contained another node, then it would contain two nodes
on the same path, thus violating perfect recall.

24If two information sets h, h’ € H; differ only because of moves of i, then ¥_;(h) = X_;(h). Thus,
the cardinality of H; may be smaller than the cardinality of C;: |H;| < C;. This redundancy is innocuous
in our analysis.
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2.3 Type Structures

Next we introduce our representation of hierarchical conditional beliefs (see Battigalli
& Siniscalchi [10, 1999], [11, 2002]). To represent Player i’s higher-order beliefs, we
consider a compact metrizable set of “possible worlds” 2 = Hie Io Q;, where Q; C X, xT;,
projs,§; = 3;, and Ty = {#o} is a singleton that we introduce for notational convenience.
Elements of the compact metrizable spaces T; will be interpreted as “epistemic types”
of i € I; elements of €); are “states of " comprising his information type 6;, strategy s;
and epistemic type t;. Condition projy,2; = 3; means that every o, € ¥, is possible at
some state, but we allow for the possibility that some (6, s;,t;) € ¥; x T; does not belong
to €2; because the possible beliefs of i about the opponents may depend on his
information type. Consistently with our previous notation, we let T_; = Hjelo\{i} T;
and Q-; = [[;c;0\ 1 €% Welet Q_;(h) (resp. Q2(h)) denote the event in ©2_; (resp. §2) that
corresponds to information set h, that is, Q_;(h) = [Lic;o\ {05, 85, t5) € ;1 55 € S5(h)}.
Of course, Q_;({@}) = Q_; (resp. Q({2}) = Q). To represent Player i’s conditional beliefs
about his opponents (including the dummy player 0), we use the collection of observable
events C; = {C € B(Q-;) : (3h € H)(C = Q_;(h))}. The set of CPS’s on (Q_;,C;)
is denoted by AHi(Q_;). Similarly, to represent Player i’s conditional beliefs about the
prevailing state of the world (including his own strategy and type), we use the collection
of observable events C; = {C' € B(Q2) : (3h € H;)(C = Q(h))}. The set of CPS’s on (£2,C;)
is denoted A¥i(Q). Since {@} € H; and 2({@}) = ¥;({o}) x ©_;({9}) = X, each CPS
pe AT(Y) (with Y =X, Q;, Q) contains an “initial” belief u(-|Y).

Note that the finite collections of observable events defined above consist of sets that
are both open and closed in the respective topologies. Battigalli & Siniscalchi [10,
1999] show that, under these conditions, Af(Q_;) and Afi(Q) are closed subsets of
the compact metrizable spaces [A(Q_;)]"i and, respectively, [A(Q)]"i. Hence, they are
compact metrizable in the relative topology.

With this, we provide an implicit representation of hierarchies beliefs by means of
type structures, as is standard in the literature.

Definition 2 A T'-based type structure is a tuple T = (Qq, (24, T}, g:)ic1) such that, Qg =
Yo X {to} and, for everyi € I, T; is compact metrizable, Q); C 3; x T; is closed with
proje, Qi = i, and g; = (gin)nen, : Ty — APi(Q_;) is a continuous mapping given by
coordinate mappings g;p : Ty — A(X_; xT_;) such that g; n(t;)(2-i(h)) =1 (h € H;). The
elements of each set T; are called epistemic types. A I'-based type structure T = (T}, g;)icr
is belief-complete if, for eachi € I, Q; = ¥; x T; and g; : Ty — AT (X_; x T_;) is onto.

Thus, for every possible world w = ((0o, s0), (0;, i, ti)icr) € 2, we specify a state of
nature (0o, (6;)icr), as well as each player i’s dispositions to act (his strategy s;) and
(for real players i € I) his dispositions to believe (his system of conditional probabili-
ties gi(t;) = (9in(ti))nen;). These dispositions also include what a player would do and
think at histories that are inconsistent with w.?® Type structures encode a collection of
infinite hierarchies of CPS’s, one for each epistemic type of each player. It is natural to
ask whether there exists a type structure which encodes all “conceivable” hierarchies of
conditional beliefs. Battigalli & Siniscalchi [10, 1999] shows that such a type structure
can be constructed (for all finite games, and also a large class of infinite games) by taking

2 History h is inconsistent with (or counterfactual at) w = (0, s,t) if s ¢ S(h).
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the sets of epistemic types to be the collection of all possible hierarchies of conditional
probability systems that satisfy certain intuitive coherency conditions.? This is the so
called “canonical” type structure, which turns out to be belief-complete. Every type
structure may be viewed as a belief-closed substructure of the canonical structure.?” One
possible interpretation of a substructure of the canonical structure is that it encodes a
context that makes some belief restrictions (not necessarily first-order belief restrictions)
transparent to the players. We find it conceptually appealing to express our results within
the canonical structure as this forces the analyst to make it explicit in the formulas that
some belief restrictions are transparent to the players. However, as in [11, 2002] and [13,
2007], our results can be stated and proved more generally for any belief-complete type
structure, not only the canonical one. This is convenient because it allows us to skip the
canonical construction.?®

Finally, we derive from the type structure extended belief maps so that at each “per-
sonal state” (0;,s;,t;) player i has beliefs about events in B(f2), that is, events about
himself as well as the other players. This makes our analysis more easily comparable
to the literature on epistemic game theory. Specifically, we assume that for every state
of the world ((0;, s;,t;),w_;) and every information set h € H;, Player i € I would be
certain of t; and 0; if h occurred, and would also be certain of s; given h provided that
s; is consistent with h, i.e. s; € S;(h). We also assume that if s; ¢ S;(h) Player i would
still be certain that his continuation strategy agrees with s;. This means that s; in state
w = ((#;,si,t;),w_;) represents both how Player i would choose at w conditional any
information set h and how he plans to play the game and to continue his play after h.

Formally, Player i’s conditional beliefs on () are given by a continuous mapping

9 = (ginnen, : Qi — AM(Q)
derived from g; by the following formula: for every (s;,0;,t;) € Q;, h € H;, E € B(Q),
gin(0i, 81, 1) (E) = gin(ti) ({wfi € Qi (0,8 t:),w) € E}) ) (1)

where s!'is the unique strategy in S;(h) that coincides with s; at each information set h’
that does not strictly precede h (thus, s? = s; if and only if s; € S;(h)). In principle,
players are free to choose actions that deviate from their plans. But, our definition of
type structure and of the extended belief maps essentially assumes that it is transparent
that players execute their plans, which is germane to a forward-induction analysis.?”

2.4 Sequential Rationality

We take the view that a strategy s; € S; for Player ¢ should be optimal, given Player i’s
beliefs and payoff-type, conditional upon any information set. Two strategies that allow

26Battigalli & Siniscalchi [10, 1999] uses a slightly different definition of type structure. But all the
arguments in [10, 1999] can be easily adapted to the present framework.

2"The representation of a type structure as a belief-closed substructure of the canonical one eliminates
redundant types, i.e. types that yield the same hierarchy of CPS’s. Redundant types do not play any
role in our analysis.

28 A result by Friedenberg [27, 2010] implies that in static games (games where H; = {@} for each
i) every compact-continuous complete structure contains all the “conceivable” hierarchies of beliefs and
is in a precise sense equivalent to the canonical structure. It can be shown that the same holds more
generally for all the dynamic games considered here (De Vito [26, 2012]).

29Gee the discussion section in Battigalli et al [15, 2011].
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the same collection of information sets and select the same actions at such information
sets are indistinguishable by the opponents (or by an external observer). Therefore,
in the following definition, we impose the (continuation) optimality condition only at
information sets consistent with the given strategy. But we remark that, by a well known
dynamic programming argument, this is realization-equivalent to requiring optimality of
the selected action at each information set, given the planned continuation. (Note that
in the epistemic framework described in Section 2.3 the planned continuation of Player i
at information set h is given by his conditional belief about his own behavior.)

Definition 3 Fir a playeri € I, a CPS p; € ATi(X_;) and an information type 0; € ©;.
A strategy s; € S; is a sequential best reply to p, for 6; if and only if, for every h € H;
with s; € S;(h) and every s, € S;(h),

D (0505, iy 54)) = wilBi, 05, (s, 5 )t ({ (0, ) }Es(R)) = 0.

0_i5—;

For each CPS i, € A™i(S_;), let 9,(;) denote the set of sequential best replies to y,; for
0;, and let p;(1;) = {(0;,5:) : s; € ro,(1;)} denote the set of pairs (0;,s;) such that s; is a
sequential best reply to u; for 0;.

It can be shown by standard arguments that p, is a nonempty-valued and upper-
hemicontinuous correspondence (see [6, 2003]). It is convenient to introduce the following
additional notation. Fix a I['-based type structure; for every player i € I, let f; =
(firhnen, * Ti — [A(X)]" denote his first-order belief mapping, that is, for every
t; €T, and h € H;,

fin(ti) = margs,  gin(t:).

It is easy to see that fi(t;) € Ai(Z_,) for every t; € Tj; also, f; is continuous.
Finally, we can introduce our key behavioral assumption. We say that Player ¢ is
rational at a state w = (0, s,t) in 7 if and only if (6;,s;) € p;(fi(t;)). Then the event

R; = {w - (‘9v87t> € : (0i7si) € pz(fz(tl))}

corresponds to the statement “Player i is rational.” (Note that R; is closed because the
correspondence p; o f; is upper hemicontinuous.) We shall also refer to the events R =
ﬂie. ; R; (“every player is rational”) and R_; = iengy B (“every opponent of Player i is
rational”).

A word of caution Events are defined with reference to a specific type structure.

2.5 Belief Operators

The next building block is the epistemic notion of (conditional) probability-one belief, or
(conditional) certainty. Recall that an epistemic type encodes the beliefs a player would
hold, should any one of the possible non—terminal histories occur. This allows us to
formalize statements such as, “Player ¢ would be certain that Player j is rational, were
he to observe h.”
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Given a I'-based type structure 7, for every i € I, h € H;, and event F, define the
event?®’

Bin(E) ={(0,t) € Q : gjy(o,t;)(E) =1}

which corresponds to the statement “Player ¢ would be certain of E, were he to observe
information h.” This definition incorporates the requirement that a player can only be
certain of events which are consistent with her own (continuation) strategy and epistemic
type (recall how ¢ was derived from g; in eq. (1)).

For each player ¢ € I and history h € H;, the definition identifies a set—to—set operator
Bin : B(2) — B(2) which satisfies the usual properties of falsifiable beliefs; in particular,
it satisfies

e Conjunction: For all events E, F € B(2), B;, (ENF) =B,; (E)NB; (F);

e Monotonicity: For all events E, F' € B(Q2): E C F implies B, , (E) C B, (F).

We say that Player i strongly believes that an event E # () is true (i.e., adopts F
as a “working hypothesis”) if and only if he is certain of F at each information set
consistent with £ (including the initial information set {@}). Formally, for any I'-based
type structure and every i € I define the belief operator SB; : B(Q) — B(Q) by SB;(0) = ()
and

SBi(E) = ﬂ Bin(E)

heH;: ENQ(h)#£0

for every event £ € B(Q)\{0}. Note that, as anticipated in the Introduction, in non-
trivial games SB; fails Conjunction and Monotonicity (for more on this see [11, 2002]).
Sometimes we will say that a CPS u strongly believes an event F # () if u(FE|Q(h)) =1
whenever E N Q(h) # 0.

We also define a full belief operator B; : B(2) — B(2) as follows

Bi(E) = (1] Bin(E).

heH,;

Note that belief operator B;(+) inherits the conjunction and monotonicity properties of its
constituents B, ,(-) (h € H;) operators.

Rationality, strong belief and full belief are the building blocks of our epistemic analysis
of forward-induction reasoning with transparent restrictions on beliefs.

3 Forward-induction reasoning with transparent re-
strictions on beliefs

In this section, we introduce restrictions A on first-order beliefs (subsection 3.1). These
restrictions are taken as parametrically given in the definition of A-rationalizability, which
is shown to characterize the behavioral implications of forward-induction reasoning under
transparency of A (subsection 3.2), and to coincide with a simpler reduction procedure
when A satisfies a composition property (subsection 3.3).

30For any measurable (closed) subset E C Q, B, ;,(E) is measurable (closed).
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3.1 Restrictions on Beliefs

A player’s beliefs may be assumed to satisfy some restrictions that are not implied by
mutual, common, or strong belief in rationality. We may distinguish between (i) restric-
tions on “exogenous” (first-order) beliefs, that is, beliefs about the state of nature and
chance moves, and (ii) restrictions on “endogenous” (first-order) beliefs, that is, beliefs
about behavior; our general theory considers both (i) and (ii). We provided examples
in the Introduction; other examples of restrictions on beliefs, as well as applications and
additional discussion, can be found in [12, 2003] and [6, 2003].

Formally, for every player ¢ € [ and every information type 6; € ©;, we consider a
restricted set of beliefs Ay, C AT (Z_;) and we let A = (Ay,)icr6,c0, denote the restric-
tions for all information types of all players. Whenever we talk about restrictions A on
first-order beliefs we take for granted that A is a profile of nonempty and measurable
subsets Ay, (1 € 1, 6; € ©;).

Example 2 Consider the complete-information version (1) of the Beer-Quiche game of
the Introduction (see also Example 1). Since the composition of the urn is common knowl-
edge, it is natural to assume that it is transparent that the prior probability of w is 0.1.
Another quite natural assumption is that it is transparent that the conjecture of Player
1 about the strateqy of Player 2 is independent of the observed realization of the chance
move. Formally, we have

Ar = {pm e A(S.):
(11 (fw} x Sa[So x S2) = 0.1) A (margg, j (-|w) = margs, i, (+|s))},
AQ = {/LQ € AHz(S_Q) : MQ({U}} X Sl|50 X Sl) = 01}

As we made clear, the restrictions A only concern first-order beliefs. But in our epis-
temic analysis we will assume that restrictions A are transparent, thus yielding restrictions
on higher-order beliefs. Note also that distinct information-types 6, 6! of a player may be
associated with different belief restrictions. This makes our approach sufficiently flexible
to encompass the restrictions on infinite hierarchies of exogenous beliefs implicit in the
Bayesian games used in applications (see the discussion of this point in [13, 2007]).

3.2 Common Strong Belief in Rationality and Transparent Re-
strictions on Beliefs

We adopt a uniform notation for the n-fold composition of operators on B(£2). Formally,
fix a map O : B(Q) — B(Q); then, for any event E € B(Q), let O°(E) = E and, for
n>1,let O"(F) = O(0O"Y(E)).

To express our epistemic assumptions, we introduce the auxiliary correct mutual strong
belief operator CSB(-) defined as follows: for each E € B((2)

el

In words, given E = ], Ei, CSB(E) is the set of states of the world where E holds
and each i € I strongly believes F_; = Q; x [] ety Lj- For our epistemic analysis, we
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need not consider events that are not Cartesian products. The reason is that we derive
implications about behavior solely from the rationality of each player and assumptions
of strong belief of events about the opponents. Our results show that step (n + 1) of
a solution procedure characterizes the behavioral implications of epistemic assumptions
expressed by means of n-th iteration of the auxiliary CSB operator. Observe that, like its
constituent operators SB;(-) (i € I), CSB(+) is not monotone. Also note that, by definition,
CSB"(E) = CSB™ (E) N SB(CSB" (E)) C CSB" *(E). Therefore {CSB™(E)},>o is a
decreasing sequence of events, and it makes sense to define CSB*(E) = ﬂ CSB"(E).
n>0
Similarly, we define the mutual full belief operator B(-) as

B(E) = (1 Bi( x proj,_,E)

el

and we let

B*(E) = (| B"(E)

=ENBE)NB(ENB(E))N B(J_E NB(E)NB(ENB(E)))N...,

where the second equality holds because B(-), like each B;(-), satisfies conjunction. We say
that event F is transparent at state w if w € B*(F). It follows from the conjunction prop-
erty of each B; and the continuity of probability measures that B(B*(E)) = ﬂ B™(E).
n>1

Hence B*(F) = ENB(B*(E)) C B(B*(£)). This shows that event F' = B*(E) is self-
evident, i.e., it satisfies F' C B(F).

It is easy to show that, whenever £ =[]
B*(E) are Cartesian products.

Denote by [A] the set of states where players’ first-order beliefs satisfy the restrictions
given by A = (Ay,)icr.0,co,; that is,

E;, also CSB"(FE), B*(E), CSB*(E) and

i€l

[A] = {0, si,ti,w_) € Q1 filts) € Dy}, [A] = [)[A].

i€l

By continuity of the first-order belief function f;, [A;] is compact (hence measurable)
whenever Ay, is compact for each ;. The belief-restrictions A are transparent at each
state w € B*([A]). In our epistemic analysis, we will assume for simplicity that [A] is
compact.?!

As explained above, B*([A]) = [A] N B(B*([A])); a bit more explicitly

B(A) =810 () N BB (AD).

that is, transparency of the belief restrictions A means that such restrictions hold and
are believed to be transparent by every player ¢ conditional on each information set

3'We can prove our main results without assuming compactness of [A], but we are not able to do it
without complicating the analysis. Clearly, compactness of [A] may not hold in interesting applications.
In the incomplete-information scenario of the Beer-Quiche example analyzed in the Appendix, As is not
compact. But exactly the same analysis goes through with any compact subset of A, sufficiently close
to As (that is, sufficiently close in the Hausdorff topology to the closure of Aj).
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h € H; even if h contradicts some event that ¢ was previously certain of. Therefore, the
transparent restrictions provide a backdrop, or context, for forward-induction reasoning:
when player i tries to rationalize the observed moves of the opponents, he does so taking
into account that [A] is transparent and he never doubts the transparency of [A], as in
the following epistemic assumptions:

() players are rational and the restrictions A are transparent,

(8.1) players strongly believe in («)

(8.2) players strongly believe in (o) & (and) (5.1),
(8.k+1) players strongly believe in (a) & (5.1) & ... & (8.k),

ete.

The main result of the paper is that the behavioral implications of the aforementioned
epistemic assumptions are captured by the following solution concept:

Definition 4 (See [5, 1999/, [6, 2003]) Consider the following procedure.

(Step 0) For everyi € {0} U, let )5 = ¥;. Also, let £2; \ = [[;, 204 and X} =
HieIO 22A

(Step n > 0) Let X5, = Yo; for every i € I, and for every o; = (0;,8;) € %y, let
o; € X'a if and only if there exists a CPS p € Ay, such that

1. 0i € p(p);
2. for everym e {1,...,n—1} and h € H;,
S aNEoi(h) # 0 = u(E A15-(h) = 1.

Also let 3", A = H#i Yia and XX = [Lics, XA

i€l
Finally, let X = (50 XA The profiles in ¥ are called A-rationalizable.

Remark 1 A-rationalizability can be more compactly defined as follows: for each i € I

and 0; € ©;, let A = Ay.; given A" ! = (Ag,_l , let Xy = X, for each i € 1
‘ i) jer,eo;

and 0; € ©;, S§ =19, (A;7), B2 = {(0;,5:) : si € S} and
NG ={p; € Ay (Vh € H)(S", N Ei(h) # 0 = p,(57[3(h)) = 1)}

Theorem 1 Fix a collection A = (A;p,)icr0.co; of compact subsets of first-order CPS’s
and a belief-complete type structure T. Then, for every n > 0,

ST = projsCSB"(R N B*([A))),

and
XX = projyCSB* (R N B*([A))).
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This characterization result provides an epistemic justification of A-rationalizability
that makes the transparency of [A] fully explicit in the strong-belief formulas. Next we
present a result showing that A-rationalizability also characterizes the behavioral impli-
cations of assuming rationality and common strong belief in rationality within a
restricted type structure that exactly captures the transparency of [A]. In a sense, the
restricted state space of this type structure captures the context for players’ strategic rea-
soning, as if types for whom the restrictions are not transparent were not even conceivable
(cf. [8, 2009], [9, 2012]).

Fix an arbitrary type structure 7 and (compact) first-order belief restrictions A =
(Aig,)ierp.co,- Since B*([A]) = [A] N B(B*([A])) and [A] is a Cartesian event, we have

B*([A]) = 0 x [ Bi(1A)

icl
where B} ([A]) is the set of (0;,s;,t;) € Q; such that f;(t;) € A;p, and

(Vh € H)(gin(t:)({(0:,57)} x BY;([A]) = 1). (2)

Now, for the chance pseudo-player 0 let Qo = Yo X Toa = 3o X {to} = Qo for
notational convenience; for each real player i € I, consider the following subsets

Qia = Bi([A]) €
Tian = projp,Bi([A]) C T

and define the map g; o by restriction of g;: for every (measurable) E_; C¥_; x T_; o C
E—i X T—i
(Vt; € Tia)(Yh € H)(gina(ti)(E_i) = gin(ti)(E-)).

By eq. (??), gin(t:)(Q—;a(h)) = 1 for every i € I, t; € T;a, h € H;. It follows that
gin(ti) € ATi(X_; x T_; A) for every i € I and t; € T;a. Clearly, each function g; a
inherits continuity from g;. Since the restrictions A are compact, the sets 7; o and ; o
are compact metrizable.??> Therefore

Ta = (0, (Qa, Tin, gin)icr)

is a type structure as per Definition 2, and — of course — Qa = B*([A]). We call 7a the
A-restriction of T and we use subscript A to denote events and belief operators in 7.
For example, Rx is the rationality event in 7p and CSBa(Fa) is correct mutual strong
belief of EA in Ta.

Theorem 2 Fiz a collection A = (A;p,)icr0,co, of compact subsets of first-order CPS’s
and a belief-complete type structure 7. Then Ta, the A-restriction of T, satisfies the
following properties: for everyi € I, 0; € ©;

Nig, = {m; € AT(S2) : (3t € Th) (Vs € Si)(fialts) = pi) A (03,5, t) € Qia)k: (3)

for every n > 0,
(CSBa)"(Ra) = CSB" (RN B*([A])); (4)

32Gee Lemma 1 in the Appendix.
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for every n > 0,
DA = projy(CSBa)"(Ra), (5)

and

YR = proj(CSBa)*(Ra). (6)

Theorem 2 says that (a) the A-restriction of a belief-complete type structure 7 exactly
captures transparency of [A] (because Q2a = B*([A]) and eq.(3) holds), (b) common strong
belief of rationality and transparency of [A] in the belief-complete structure 7 correspond
to common strong belief in rationality in 7a (eq. (4)), and (c¢) A-rationalizability char-
acterizes the behavioral implications of assuming rationality and common strong belief in
rationality within type structure 75 (egs. (5) and (6)).

To illustrate, consider the Beer-Quiche game of Figure 1 under the complete-information
scenario with the restrictions A of Example 2: the prior probability of wimp is 0.1 and
the conjecture of Player 1 about Player 2 is independent of the observed realization of the
chance move. We formally derive the A-rationalizability solution in the Appendix. Here
it is sufficient to go back to the informal argument provided in the Introduction: given
the transparency of A, if Player 1 is rational, believes that Player 2 is rational, and
believes that Player 2 strongly believes that 1 is rational, then he chooses B (Beer) at
information set s. Then Player 2 strongly believes that only a wimp could choose Quiche,
i.e., a Quiche meal is interpreted by Player 2 as “wimpish”. Once this is taken into ac-
count, Player 1 chooses B also at information set w in order to prevent a fight. But even
though, eventually, A-rationalizability prevents Quiche, it still requires that Quiche be
interpreted as “wimpish” by Player 2. This is similar to the best-rationalization principle
described by [3, 1996] and analyzed epistemically by [11, 2002], but here the rational-
ization (forward-induction reasoning) is consistent with transparency of the restrictions
A.

As explained in the Introduction, Battigalli & Siniscalchi [13, 2007] considered different
epistemic assumptions whereby the A-restrictions are not assumed to be transparent,
but rather they are assumed to have the same “epistemic priority” as the rationality
assumption: if information set h € H; contradicts R_; N [A_;] then Player i need not
believe that the A_; restrictions hold, and similarly for higher orders of mutual beliefs.??
Formally, the step-1 epistemic assumption of [13, 2007] is

RN[A]NSB(RNA]) = CSB(R N [A]),

and the step-n epistemic assumption is CSB" (R N [A]). By definition B*([A]) C [A]; can
we then conclude that CSB"(RNB*([A])) € CSB"(RN[A]) (for each n) and therefore the
epistemic assumptions of [13, 2007] are weaker than those of Theorem 1?7 The affirmative
answer would be obvious if CSB(+) were monotone, but we know that this is not the case.
The following Theorem 3 states that, nonetheless, the answer is Yes, but despite being
a weaker epistemic assumption, CSB"(R N [A]) has the same behavioral implications as
CSB"(RNB*([A])), for each n. To see why, let us focus on step n = 1 for simplicity. First
observe that only first-order belief restrictions matter to obtain the behavioral implications

33[13, 2007] also puts forward an incorrectly stated conjecture, the correct version of which is Theorem
1 above.
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of RNB*(|A])), which therefore must be the same as the behavioral implications of RN[A];
indeed

projs R N B*([A])) = Tx = projs R N [A].
Therefore, the information sets consistent with R N B*([A])) and R N [A] are the same.
In particular, for each player i € I, such information sets are given by the collection

But then, mutual strong belief in R N B*([A]) implies mutual strong belief in the RN [A]

despite the non-monotonicity of SB(-):

SB(RNB*([A]) = N Bin(R-i N [B*([A])]-:)
i€LheH; (L, 5)
C N Bin(R_;N[A]_;) = SB(RN[A])
i€lhe€Hy (S, A)
(where we let [E]_; = Q; x projo_, F),* because [B*([A])]-; C [A]_; and each B;(-) is
monotone. Thus,

CSBY (RN B*([A])) = RN B*([A]) N SB(R N B*([A]))
C RN[A]NSB(RN[A]) = CSBY(RN[A]).
The same result holds for each n.

Theorem 3 Fiz a collection A = (Ay,)icro,co, of compact subsets of first-order CPS’s
and a belief-complete type structure T. Then, for everyn > 1,

projyCSB" H(RNB*([A])) = ¥4 = projxCSB" Y(RN[A])
CSB"(RNB*([A])) € CSB"(RN[A)),

and

projsCSB=(RNB*([A])) = XX = projsCSB>(RN[A]),
CSB®(RNB*([A]) C CSB®(RNIA]).

3.3 An algorithmic characterization of A-rationalizability

The A-rationalizability solution concept of Definition 4 is conceptually clear: at each
step of the procedure the set of possible first-order beliefs is reduced by adding further
strong-belief conditions, and the surviving strategies for each information-type are the se-
quential best replies to possible beliefs. Theorems 1, 2 and 5 provide transparent epistemic
assumptions characterizing (justifying) A-rationalizability.

However, A-rationalizability is a somewhat complex procedure as it requires at step
n to keep track of all the previous steps m < n, not just step n — 1. Battigalli & Sinis-
calchi [12, 2003] propose instead a conceptually less transparent, but simpler reduction
algorithm, which just requires a “one-step memory” and is closer to the original definition
of extensive form rationalizability due to Pearce [33, 1984]. This is the solution concept
called “A-rationalizability” in Battigalli & Siniscalchi [12, 2003] and Battigalli [7, 2006].
We refer to it as naive A-rationalizability.

34With this notation, [A_;] = [A]_;.
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Definition 5 (See [12, 2003]) Consider the following procedure.

(Step 0) F?r every i € I, let X0, = %, Also, let X°, , = I M0, and B =
HiGIO E(Z)vA

(Step n > 0) Let ZA]SA = Yo. Then, for every i € I, and for every o; = (0;, ;) € X, let
o; € i]ZA if and only if 0; € XA}ZE and there exists a CPS 1 € Ay, such that

1. o0;€ pz(:“);
2. for every h € H;, if fJT_LZlA NX_;(h) #0, then ,u(ileA\E_i(h)) =1.
Also let XA]ELA =11

S n S n __ S n
i Ei,A and X} = Hie[o Ei,A'

Finally, let f]vo = M0 ig. The profiles in i}vo are called naive A-rationalizable.

It is known that naive A-rationalizability and A-rationalizability are equivalent when
no restrictions are imposed on first-order beliefs (essentially, this is Theorem 1 in [4,
1997]). But this is not true in general. By inspection of the definitions, it is obvious that
Yia = 2? A for n = 1,2 but the equality need not hold for n > 2 if A is not “rich enough”.
Specifically, it is easy to show that E?’ A C f]f’ A, but the inclusion may be strict. To see
the problem, pick o; = (0;,s;) € ﬁ?f’?A. Say that a CPS pu € Afi(X_,) strongly believes
K ; C X if p(K_;|X_;(h)) = 1 whenever K_; N X_;(h) # 0. With this, o; € XAJ?,A
implies that there are CPS’s y!, u? € Ay, such that " strongly believes £, , = £, ,
(n=1,2) and o; € p;(1*) N p;(4?). Define the following “composition” [ of p! and p?: if
22, ANX_i(h) # 0 then a(-[X_i(h)) = p*(-[E_s(h)), otherwise fi(-|E_;(h)) = p'(-|Z_i(h)).
It turns out that i is a CPS and o; € p;(f1); if we knew that g € Ay, we would have
shown that o; € ¥}  because the composition i strongly believes both ¥!; and X2, as
required by Definition 4, part 2. But i need not be in Ay, (see Example 6). Therefore,
absent some assumptions about the structure of A, we may have X2, C f]f A- Given
the non-monotonicity of strong belief, the inclusion %3 C fJ?’A need not be preserved in
the following steps, therefore we cannot even conclude that ¥} C EA)Z for every n. This
discussion motivates the following:

Definition 6 Fiz two subsets K',, K?, C ¥_; and CPS’s ut, u? € A% (X _,); (K, ut, K2, 14?)
is admissible if K2, C K, and u™ strongly believes K™, (n = 1,2). The (K!,, K?))-
composition of p! and p?® is the array o = (u(:|X_;(h))nenm, such that a(-|X_;(h)) =

()12 (h)) whenever K2, NY_;(h) #0, and p(-|X_;(h)) = p*(-|X_;(h)) otherwise.

Remark 2 For every admissible (K1, ut, K%, u?), the (K, K2,)-composition of u' and
u? is a CPS (see the proof of Lemma 4 in the Appendiz).

Definition 7 Fiz i € I; a subset A; C Afi(X_;) is closed under compositions if, for
every admissible 4-tuple (K, p', K2, %) with K", = 34 X [Licngy K7 (n=1,2), when-
ever ut, u? € A; the (K*,, K?,)-composition of u' and u? is also in A;.

Proposition 1 If each Ay, is closed under compositions (i € I, 0; € ©;), then naive A-
rationalizability is equivalent to A-rationalizability: for every i € I and n, X'y = X[ A.
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Theorems 1, 5 and Proposition 1 implies that naive A-rationalizability characterizes
the epistemic assumptions analyzed in subsection 3.2:

Corollary 1 Fiz a collection A = (Ay,)ic19,co;, of compact subsets of CPS’s that are
closed under compositions and a belief-complete type structure T . Then, for everyn > 0,

ZA]ZH = projxCSB"(R N B*([A])) = projxCSB" (R N [A])

and
1% = projCSB® (R N B*([A])) = projxCSB>®(R N [A]).

Of course, closedness under compositions is just a sufficient condition for the above
equivalence. Indeed, we are not aware of any application of the theory where A-rationalizability
differs from naive A-rationalizability. However, we show below a numerical example where
the condition fails and the two solution procedures are not equivalent (Example 6).

Next we provide sufficient conditions for closedness under composition that may be
useful in applications and are easier to verify. The first one is a strong property used by
[13, 2007] to obtain an epistemic justification of naive A-rationalizability (cf. Theorem 5
in the Appendix), the others are interesting special cases.

Definition 8 (cf. [13, 2007]) Fizi € I and regard A" (X_;) as a subset of [ [,y A(S_i(h));
a subset A; C AMi(X_;) is regular if for each h € H; there is a nonempty subset
Ai,h g A(E_Z(h)) SO th(lt AZ = AHZ(E_Z) N (HhEHi Ai,h).35

Remark 3 If A; C Afi(3_;) is reqular then it is closed under composition.

The following examples show how to apply this remark to the rationalizability analysis
of two-person dynamic games with chance moves and two-person dynamic Bayesian games.

Example 3 Generalizing Fxample 2 (Beer-Quiche under the complete-information sce-
nario), suppose that © is a singleton, but there is an initial chance move (1,(&) = {0})
about which Players 1 and 2 are imperfectly and asymmetrically informed, as in poker; fix
mio0 € A(Sy) strictly positive for each i € I and let

Ap = {p; € AT(B ) - p(-1S-) = i x (margg 11;(-[S-:))}-

Since A; is determined by a condition on initial beliefs (the beliefs conditional on infor-
mation set {@}), A; is regular and — by Remark 3 — closed under composition. Formally,
the conditions margg, 1;(-|S_;) = mio (i € I) yield a Bayesian game with heterogeneous
priors,’® and (naive) A-rationalizability corresponds to ex ante (extensive-form) ratio-
nalizability in this Bayesian game, a concept that is generically equivalent to (maximal)

35We conjecture that if A is regular and each A, is closed and convex, then the characterization
of A-rationalizability as iterated A-dominance (Cappelletti [22, 2010]) can be extended to the present
extensive-form setting.

36Tf the reader is wondering why a complete information game corresponds to a Bayesian game, he
should remember that in our terminology (which we claim to be the correct one) “complete informa-
tion” is a substantive assumption, i.e. common knowledge of the payoff functions. On the other hand,
Bayesian games are just mathematical structures that may be used to analyze both games with incom-
plete information and games with asymmetric, imperfect information about an initial chance move, such
as poker. The interpretation of such mathematical structures is immaterial for Harsanyi’s equilibrium
analysis, but not for rationalizability analysis. The reason is that standard notions of rationalizability for
Bayesian games implicitly incorporate independence restrictions, and different restrictions are relevant
under different interpretations (see [16, 2011]).
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iterated removal of weakly dominated strategies in the ex ante strategic form. (Note that
Pearce’s [33, 1984] solution concept allows i to have different conjectures about j after
different observations about the chance move; hence it violates the independence condition
stated above.)

Example 4 Consider a two-person game with no chance moves (Sy is a singleton), fix
belief maps (m; : ©; — A(O_;))i=12 and, for each 0;, let Ay, be the set of CPS’s consistent
with 7;(0;)(+) that satisfy “conditional independence”:

Ay = 1L € AHZ(Z,> : marg(%_iui("zfi) :(7;1(6913)())’
’ ' V05, (6) > 0= BUREEE = 1 (60]6;)14i(s5165)

(we use an obvious notation for marginal probabilities and conditional probabilities —
whenever well defined). Fach set of CPS’s Ay, is determined by conditions on ini-
tial beliefs, hence it is reqular and closed under composition. Formally, the conditions
marge j1;(-|X_;) = mi(0;)(+) (i € I) yield a Bayesian game, and (naive) A-rationalizability
1s extensive-form, interim independent rationalizability for this Bayesian game, which is
generically equivalent to the iterated removal of weakly dominated strategies in the interim
strategic form. (When players move simultaneously, this is equivalent to the application
of Pearce’s [33, 1984] solution concept to the extensive form of the Bayesian game. See
also [16, 2011]).

Example 5 Consider a two-person game with no chance moves where ©q is a singleton;
fix a distribution 6 € A(O© x Z) (i.e., a probability density over the terminal nodes of
the arborescence representing the game); say that § is admissible if it is obtained as the
pushforward of some product measure vy X v € A(3 X Xg) via map (61, $1, 02, $2) —
(01,04,C(s1,82)). Say that CPS u, € AHi(X_;) agrees with the admissible measure § €
A(O x Z) if there exists some measure v; € A(X;) such that 6 is the pushforward of
vi(+) X p;(-|E=:) via map (01, 51,02, 52) — (01,02, ((s1,52)). The set A;(0) of CPS’s that
agree with an admissible 6 € A(Ox Z) is reqular, as it is determined only by a condition on
initial beliefs p,(-|2_;). (In particular, this condition specifies the initial belief marge_,d
of each player © about the information type of the co-player —i, and therefore yields a
simple dynamic Bayesian game.)

Battigalli & Siniscalchi [12, 2003] propose naive A(d)-rationalizability as a forward-
induction refinement criterion: A candidate equilibrium yields a distribution ¢; if ZZ"( 5) +
() then the candidate equilibrium is “consistent with forward-induction reasoning”, oth-
erwise it is not. They show that the Iterated Intuitive Criterion for signaling games is
precisely such a refinement, therefore the naive A(§)-rationalizability criterion is an ex-
tension to more general games of the Iterated Intuitive Criterion. By Proposition 1 this
result applies to A(d)-rationalizability as well. Indeed, all the examples and results of
[12, 2003] about naive A-rationalizability feature conditions derived from restrictions on
initial beliefs only and therefore they also hold for A-rationalizability.

So far we listed examples where A-rationalizability and the naive A-algorithm coin-
cide. But the following example shows that, when closedness under compositions fails, the
two solution procedures may differ because naive A-rationalizability may fail to capture
an inconsistency between the A-restrictions and common strong belief in rationality, given
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transparency of the A-restrictions. This example also shows that naive A-rationalizability
may yield a solution set altogether inconsistent with forward-induction reasoning.?” For
notational simplicity, we look at classes of realization-equivalent strategies, which in this
game are the strategies of the reduced normal form.

' | 4.10

22 | —-1.0

Figure 2

Example 6 In the complete-information game depicted in Figure 2, Ann chooses between
In and Out; given In, Bob chooses between the matriz game on the left or the matrix
game on the right. The given transparent restrictions allow only two possible CPS’s for

each player?

Ay = {pg,Va}, with

1
o' [S) = 1a(Ly°I0) = 5, ma(r*[{rdt rb’}) = 1,

Va(l.y3|5b) = 1, I/a(’r‘.bl|{’l“.b1,7“.b2}) =1,

Ay = {py, e} with
1(018a) = 1, my(I.2*.a*[{s, : 5.(@) = I})
vp(0)S,) = 1, vy(I.a'.a®|{sq : 5.(@) = I})

L,
1.

Let us first compute the sequential best replies to each belief system in A:

pa(,ua) = {O’['xl'GQ}f pa(Va) = {Ovl'xl'al}f
py(y) = {Ly?r b}, py(ve) = {Ly' Ly}

37Qur original example showing the difference between A-rationalizability and naive A-rationalizability
did not have the latter feature. We thank Amanda Friedenberg for providing this example.

38We use the following notation: O is the class of realization-equivalent strategies choosing Out, oth-
erwise strategies are denoted by lists of action labels in an obvious way.
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Note: (1) I.z%.a® is strictly dominated by O and r.b' is strictly dominated by r.b* given
In, but w, and v, respectively assign positive conditional probability to these dominated
strategies, therefore v, does not strongly believe p, (1) U p,(vp), and p, does not strongly
believe p,(p,) U pa(Va), (2) 1, does not strongly believe p,(vy), while v, does. These
preliminary considerations help explain the following derivation, where SY (5’2”‘ ) denotes
A-rationalizability (naive A-rationalizability):>

Step | Ann Bob

1 San =54a =10, L2t d", I.a'.a’} | Sp\ = Sp o = {ly? 707 Ly" Ly*}
2 Sin=52,=1{0 1.2".a’} SE\ =St = {1y} Ly?}

3 SgA =0, SgA = {0} Sg’,A = Sg’,A = {l-yl7l-yg}

n>3| S, =0,5,={0} Spa = Spa = {ly', Ly}

As we said above, the two solution procedures may differ only from round 3, as they
do here. Both procedures stop at round 3. The naive A-rationalizable set is therefore
{0} x {l.y', 143}, whereas we get an empty set with A-rationalizability. By Proposition
1, A cannot be closed under composition. Let us verify this directly: p, strongly believes
Sy and v, strongly believes S; A C Sy o. We can “compose” pu, and v, to obtain a CPS
fi, 0 that O € p,(i,) and [, strongly believes both Sy 5 and Sj 5 :

I, (LY2Sy) = va(Ly?Sy) = 1, i, (rb?[{r.b*, 7.b*}) = p, (r.b%|{r.b", 7.6*}) = 1.

But i, # iy, Va, therefore i, & A,.

Finally, we show that there are no restrictions A such that {O} x {l.y*,1.y3} is A-
rationalizable. Suppose, by way of contradiction, that such A exists. By finiteness,
{0} x {l.y", 1Ly} = Si' s x Sj'a = SiE % Sp3' for some n. Define A} as in Remark 1.
Then we should have {O} = p,(A"), where fi,({l.y*,1.y3}) = 1 for every i, € A,. Pick
any ji, € A" with O € p,(ii,), then also I.xt.a* € p,(f,) (the ex ante value of I.x'.at
is at least 2, and a' is the dominant action in the subgame with root (In,l)), therefore

{O} # pa(A7).

Indeed, we show in the next section that the set {O} x {l.y*,l.y*} of Example 6
cannot result from forward-induction reasoning under any transparent restrictions on
beliefs, including restrictions on higher-order beliefs.

4 Transparent belief restrictions and extensive-form
best response sets

So far we took the perspective of an analyst who knows what belief restrictions are
transparent to the players: given the transparent restrictions A we obtain the behavioral
prediction of forward-induction reasoning, ¥%X. This perspective is valid in many, but
not all applications of the theory. It is therefore interesting to take the perspective of an
analyst who does not know what restrictions are transparent to the players. What can
such an analyst say about the behavioral implications of our theory of strategic thinking?

39Note that in games with complete information ¥ = S.
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If all restrictions are possible, all an analyst can say is that (6, s) must belong to the union
of all solution sets XX°. In static games, where forward induction does not play any role,
this yields an easy answer to our question: just look at the implications of rationality
and common belief in rationality without restrictions on beliefs, i.e., take Ay, = A(X_;)
for each information type of each player. Indeed, let 3°° denote the solution set obtained
without restriction; by monotonicity of probability-one belief, X% C 3 for all restrictions
A; thus, ¥ is also the union of all the solution sets. But this method does not work in
dynamic games, that is, when forward induction matters. The reason is that, as explained
earlier, strong belief is not monotone, therefore we may well have ¥ ¢ % for some A.4°

Battigalli & Friedenberg [8, 2009] and [9, 2012] address this issue within a complete-
information setting.*! We report a straightforward adaptation of their concepts and re-
sults to the present incomplete-information setting.

Definition 9 (¢f. [9, 2012]) An extensive-form best response set (EFBRS) of a game
with payoff uncertainty I is a set of profiles Q = Xo X [[,c; Q@i € X such that, for each
i € I, projo. Qi = ©; and, for each o; € Q;, there is a CPS p,, € AHi(Y ) with

(i) 0i € pi(He,);

() p,, strongly believes Q_; (Vh € H;, X_;(h) N Q—; # 0 = p, (Q—i|X_i(h)) = 1),

(i) pr{110,) € Qs

Condition (iii) is a kind of maximality property: if we have to use belief 11, to “justify”
o; as part of the solution set ), then every other sequential best response to p,, must
also be part of Q.

An event about players’ beliefs, i.e. an “epistemic” event, is self-evident if and only if
it represents the transparency of some restrictions on beliefs (of any order, see Appendix A
in [8, 2009]). Battigalli and Friedenberg show that the EFBRS concept characterizes the
behavioral implications of common strong belief in rationality when some epistemic event
is self-evident. The following definition and theorem make this precise and provide equiva-
lent formal statements of the result. Then an example shows that naive A-rationalizability
may fail to yield an EFBRS.

Definition 10 An event E is called epistemic if it only restricts the beliefs of some players
for some of their information types 0;, that is, for each i € I there is a measurable subset
T; C ©; x T; with projg, T; = ©; so that

o Qo X H{(QZ,SZ,tl) - Qz : (Hz,t,) - Tz}

i€l

[A] and B*([A]) are examples of epistemic events. Recall that the latter is also self-
evident: B*([A]) € B(B*([A])). Adapting the arguments of [8, 2009] and [9, 2012] one

10Battigalli & Friedenberg [9, 2012] provide examples of complete information games where the inclusion
also fails for the corresponding sets of paths, that is, ((S) € ((5°°) for some game and some restrictions
A.

41 Battigalli & Friedenberg [9, 2012] is the abridged published version of [8, 2009]. The latter elab-
orates more on the context interpretation of incomplete type structures and how they are related to
transparent restrictions on beliefs. Battigalli and Friedenberg build on previous work on admissibility by
Brandenburger et al. [21, 2008] and Brandenburger & Friedenberg [20, 2010].
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can show the following:*?

Theorem 4 For every game I' and subset () C X, the following are equivalent:

(1) Q is an EFBRS of T';

(2) Q = XX for some first-order belief restrictions A;

(8) Q = projxCSB*(R) for some type structure T ;

(4) Q = projxCSB>®(R N E) for some self-evident epistemic event E in a belief-complete
type structure 7T ;

(5) @ = proj;CSB*>*(R N B*([A])) in a belief-complete type structure for some compact
first-order belief restrictions A.

Example 7 Consider again the complete-information game of Figure 2 and the belief
restrictions A of Example 6. The corresponding naive A-rationalizable set is S’go =Q =
{0} x {l.y', 1.3}, It can be directly verified that {O} x {l.y*,1.y*} is not an EFBRS:
if uo € Afe(Sy) strongly believes Q, = {l.y*,1.y3} and O € p,(up), then I.zt.a' €
Pa(tto)\Qa; hence at least one of conditions (i)-(iii) of Definition 9 must be violated by
Q. Thus, by equivalence (1) < (3) of Theorem 4, there is no type structure T such
that @ = projxCSB*(R). We can reach the conclusion that @) is not an EFBRS also
indirectly, using implication (2) = (1) of Theorem 4: indeed, we have already proved in
Example 6 that there are no first-order belief restrictions A such that QQ = SX.

[9, 2012] shows that, in games with complete and perfect information and in other
games such as the Finitely Repeated Prisoners’ Dilemma, the characterizing properties of
EFBRS’s can be used to obtain observable implications of forward-induction reasoning,
independently of what is transparent to the players. It would be interesting to obtain
results of this sort for games with payoft uncertainty.

5 Appendix

Subsection 5.1 provides a complete forward-induction analysis of the Beer-Quiche game
under different scenarios and related restrictions on beliefs; 5.2 derives the epistemic
justifications of A-rationalizability; 5.3 proves the equivalence between A-rationalizability
and the naive reduction algorithm when A is closed under compositions.

5.1 Two scenarios for A-rationalizability in the Beer-Quiche game

Complete information scenario We formalize the informal argument provided in
the Introduction for the Beer-Quiche game of Fig. 1 and Example 1 (1). As formally
described in Example 2, assume the following restrictions A are transparent:

e Players ex ante assign 90% (10%) probability to the surly (wimp) state,

42The equivalences stated in the Theorem 4 adapt results of Battigalli and Friedenberg as follows:
(1) & (2) adapts Proposition 1 of [9, 2012]; (1) < (3) adapts Theorem 1 of [9, 2012]; (1) < (4) adapts
Proposition Al of [8, 2009] applied to the E-restriction 7g of a belief-complete type structure 7; finally
(1) = (5) follows from Theorem 2 and (the adaptation of) Proposition 1 in [9, 2012] (the set A constructed
in the proof is finite, hence compact), (5) = (1) follows from Theorem 1 and (2) = (1).
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e According to the ex ante beliefs of Player 1, the chance move and the strategy of
Player 2 are independent.

The behavioral implications of (correct) common strong belief of rationality and trans-
parency of A can be derived with the the (naive) A-rationalizability algorithm (Theorem
1, Corollary 1). To apply the latter, we first note that we may add wlog the further re-
striction that, according to the beliefs of Player 2, the strategy of Player 1 and the chance
move are independent.*> With this, A-rationalizability is a refinement of rationalizability
on the ex ante strategic form of the Bayesian game defined by the first restriction.** In
the table below, we multiply all the expected payoffs by a factor of 10:

1\2 fIB, f1Q | f1B, d|Q | d|B, f|Q | d|B, d|Q

Bls, Blw | 9, 1 9, 1 29, 9 | 29,9
Bls, Qlw | 10, 1 12,0 28,10 | 30, 9
Qls, Blw | 0, 1 18,10 |2, 0 20, 9

Qls, Qw [ 1, 1 21, 9 1, 1 21, 9

Iterated weak dominance on this strategic form deletes f.f and Q.B in step 1, f.d
in step 2, Q.Q in step 3, d.d in step 4 and B.Q in step 5.* This is equivalent (for
this game) to iterated conditional dominance on the strategic form, which gives the A-
rationalizability solution. We summarize the procedure in the table below. For intuitive
explanations based on the epistemic analysis see the Introduction.

Steps | Player 1 Player 2

1 5117A ={B.B,B.Q,Q.Q} S%}A ={fd,dd,d.f}
2 S?A=1{B.B,B.Q,Q.Q} | 53, = {d.d,d.f}

3 SiA ={B.B,B.Q} S%A ={d.d,d.f}

4 SiA ={B.B,B.Q} S§7A ={d.f}

) SiA = {B-B} 525,A - {d-f}

Incomplete-information scenario In this scenario there is no chance move, the
game begins at the “interim” stage, when Player 1 knows the true state; see Example 1
(2). Now there are two conceivable information types of Player 1, s and w, each with
strategy space S; = {B,Q}. Thus

S = {s,w} x {B,Q}, Sy = S5 = {f.d,d.d,d.f, f.f}.

In this scenario, Player 1 has no belief on {s,w}. Intuitively, the reason is that 6 € {s, w}
is just an attribute of Player 1 known to him, not something that he learns. Formally, his
primitive uncertainty space is %_; = Sy. With this, the independence assumption of the

43The coalition formed by the chance player and Player 1 has perfect recall. Therefore, a correlated
strategy of the coalition is realization equivalent to a behavioral strategy of the coalition, which is in turn
equivalent to a product measure.

41 As observed by Battigalli et al [16, 2011], the application of solution concepts (such as rationalizabil-
ity, or iterated dominance) to the ex ante strategic form implicitly relies on the independence assumption
described above.

4We write X.Y for the strategy of Player 1 that selects X in the surly state and Y in the wimp state;
similarly we write x.y for the strategy of Player 2 that selects x if B and y if Q.
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complete-information scenario cannot be expressed as a property of his first-order beliefs.
As we mentioned in the Introduction, there is a property of the second-order beliefs
of Player 2 that could replace the independence property expressible in the complete-
information scenario: according to the second-order beliefs of Player 2, the information
type of Player 1 and his first-order belief about the strategy of Player 2 are independent.
We could provide an epistemic analysis of the game based on the transparency of first
and second-order restrictions and derive results similar to those obtained for the complete-
information scenario. But in this paper we restricted our attention to transparency of first-
order restrictions. Therefore, as an illustration of our approach we assume the following
first-order restrictions A to be transparent:

e Player 2 initially assigns 90% probability to 6 = s,

e conditional on B, Player 2 believes that s is more likely than w.

Formally,
A1,5 = A1,w = A(S2)7

Ny = {uy € AP ({5,0} x {B,Q}) : (a(s) = 0.9) A (1a(s]B) > pp(w| B))},

where we used obvious abbreviations for unconditional, conditional, and marginal proba-
bilities. Note, this is just meant to be an example; we do not claim that the assumption in
the second bullet is more plausible, or “nicer” than the assumption about the second-order
beliefs of Player 2 described above.

The behavioral implications of (correct) common strong belief in rationality and trans-
parency of the restrictions are characterized by a solution procedure that deletes profiles
from the set ¥; x S,. We summarize the steps in the table below and then comment.

Steps | Player 1 Player 2

1 Sia={sw } x {B,Q} SlA—{dddf}
2 ZIA_{(SvB)7( ) )7( 7Q)} SQA:{dddf}
3 ESA_{(SvB)7(va>><w>Q>} S%A:{df}

4 Z4A - {(S,B),(U},B)} Sél {d f}

Step 1, Player 2: We delete f.f (as in the complete-information scenario) and also
f.d (fight if and only if Beer); the reason for the latter is that it is rational to fight if and
only if the conditional probability of the surly type is no more that 50%, therefore, given
the restrictions on beliefs, if it is rational to fight after B then it is a fortiori rational to
fight after (). To sum up, Player 2 does not fight after B.

Step 2, Player 1: Given the above, the surly type has his preferred meal, i.e
type/strategy pair (s, Q) is deleted.

Step 3, Player 2: By a forward-induction argument similar to Step 4 of the complete-
information scenario (see the Introduction), d.d is deleted.

Step 4: Each type of Player 1 is certain of d.f, therefore both types choose Beer.

5.2 Proofs of the characterization results

The proof of the main result (Theorem 1) is adapted from [13, 2007]. First, we need some
preliminaries. Fix a belief-complete type structure and a collection of compact subsets
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A. B*([A]) is a belief-closed subset of this structure that can be constructed as follows
(recall we introduced the singleton Ty = {¢¢} for notational convenience): let

Tia = {(0it) € 0 x Ty« filts) € DNy} (i € 1),
T8,A = @0 X Ty = @0 X {t()},

foreachn >0andi e [

Tin = {(0it;) € TR : (Vhe Hy) | gin(ti)( H (S;xTi))=1] ¢,
jelo\{i}
g,A = @0 X T() = @0 X {to},

ia=[)Tia
n>1

Clearly, N7, _ B™([A]) = Xo X [];c;(Si x T}a) (n>0),% thus B*([A]) = 3¢ x [[;,(S; x
T;A). Note that we had to define T}, as a subset of ©; x T; rather than T;, because
the restrictions on first-order beliefs may depend on the information type 6;. Elements of
T A will be simply called “types”.

We begin with a few preliminary results. Let T3 \ = {t; € T; : (0;,1;) € Tj»} and
Ty A = {ti € Ti : (05,t;) € T; 5} denote the f;-section of, respectively, T}, and Tj 5.
Clearly, Ty A = Nn>1T5! A-

Lemma 1 For alli € I, 0; € ©; and n > 0, the sets Ty x, Ty n, Ti'n and T; A are
closed.

Proof For every 6; € ©;, Ty A = £ (Ay,) is closed because f; is continuous and Ay,
is closed. Therefore, T \ = Ug,co,{0i} X Tj) A is closed because it is the union of finitely
many closed sets.

Now suppose by way of induction that ngjAl is closed for every ¢ and #;, so that

T’Zgl = Ug,co,{0;} X ngjAl is closed for every i. Then the set of probability measures

AT x| =Spen| J] S xTia) =1
Jj€lo\{i} j€lo\{i}
is closed. This implies that the set of conditional beliefs that fully believe || jelo\ {i}(Sj X
TZZI), that is,
H;
A x Ty n (A T (S x TR :
Jj€lo\{i}
is closed as well, because A (X_; x T_;) is closed. Since g; is continuous,
H;
gt (AT EL xT)n AL ] (S5 x T ,
Jj€lo\{i}

46Gince ¥; = ©; x S; and T} C O, x T; we are abusing notation here. This should cause no confusion.
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is closed. This implies that, for every 6;, Ty' 4 is closed, because Té"” A is closed (inductive
hypothesis) and

H;

Ty =T, 'ngrt (AT xTo)n AL T (S5 x Tih
jelo\{i}

Hence Ty A = Nn>0Ty! A 1s closed as well. B

Lemma 2 For every i € I, projo,T; A = ©;, therefore there exists a function ™% -
T; A such that proje, 7 (6;,s:) = ;.

Proof We prove below by induction that 73! 5 # () for every i, 0;, n > 0. By Lemma
1, <T£>n20 is a decreasing sequence of nonempty closed subsets of a compact space. By
the finite intersection property, Ty o = Np>0Ty A 7# 0. Hence, for every i

projo, Tjan = {0 € ©; : Tj A #0} = O;.

Then we can define 79 : ¥; — T% A as follows: for each (0;,s;) € %; pick ty, € T o and
let 79(60;,s:) = (Ql,tgi).

Now we prove by induction that, for every i, §; and n, T A # 0.

Basis step First, for every i € I and 0; € O, fix t; € T; and vy, € Ay, arbitrarily. Also,
let to = to. Now define an array of probability measures py = (19, (-|X—i(h) X T}))hen, €
[A(X_; x T_;)]" as follows: for every measurable subset £ ; C¥_; x T_; and h € H;

po,(E—i|2_i(h) x T_;) = > ve,({(0—i, s—i) }[E-i(h)).

(0—i,5—4,):(0—i,5—i,t ) EE_;

It can be checked that pg is a CPS, that is, py € A"/(X_; x T_;). Since g; : T} —
ATH(E_; x T_;) is onto (belief-completeness), there is some ) € T; such that g;(£5,) = .-
By construction, f;(ty,) = ve, € Ay, thus, tg € Tp A # 0.

As a matter of notation, let ¢ = t, for every 6y € ©g and n > 0.

Induction step Now suppose that, for every ¢ and 0;, Ty} A # () and pick for each # € ©
a profile tj € [[,c; 15 A- For every i € I and 0; define an array of probability measures
pgtt = (g 1B (b ) X T))nen, € [A(E_; x T-;)]"i as follows: for every measurable
subset E_, C>Y_; x T, and h € H;

pp, (B Soi(h) x T-;) = > vo,({(0-i,5-4) }X-i(R)).

(0*“8 17) (3 lﬁfzt >€E—i
As in the basis step, it can be checked that ,u"“ e Ai(Y_; x T_;). Since g; is onto,

there is some ;' € T such that g;(t;™") = MQH By construction, f;(t5™) = vy, € Ay,.
Furthermore, for every h € H; and m € {0,...,n}

gin(tg™) | T S5 x Ty | =w [ T (S5 x TPa)Boi(h) x Ty | =1
Jjelo\{i} jelo\{i}
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(the equalities hold by construction for m = n, then they also hold for m € {0,...,n}
because T7 , C T7'). Since T, (ZE =

ti (filt) € Dg) A(Ym € {0,.n}) [ ginlts) [ T (SixTia) | =1] ;.

j€lo\{i}

it follows that t; ™' € Ty £ 0. W

Lemma 3 Fiz compact restrictions A and maps 75 : Xj — T; 5 (j € Iy) such that
proj@jTj(Qj,sj) = 0,, where T7¢(0o,s0) = (0o,t0). Fix a player i € I and, for each 0; a
first-order CPS iy, € DNg,. Then, for each 0;, there exists an epistemic type t; € T; such

that (0;,t;) € T; x and, for each h € H;, g;n(t;) has finite support and

V(G_i,s_i) < E_Z', (7)
Gin(ts) { (52, 7=i(0-i,5-0))}) = po,({(0-s,5-0) }HEi(h)).

Proof. Define a candidate CPS v; on ¥_; x T_; by setting

vi ({(s—i, 7=i(0-i, 8-0)) i (h) X T) = pg,({(0—i,5-0) }1Xi(h))

for every (6_;,s_;) and h € H;, and extending the assignments by additivity. Axioms 1 and
2 follow immediately from the observation that the map (6_;,s_;) — (s_;, 7_i(0_;,5;))
yields an embedding of |J,,c; supp [, (-[S-i(h))] (a finite sub setset of ¥_;) in ¥_; x T,
so that, for every h € H;, v;(.|3_;(h) x T_;) is indeed a probability measure on ¥_; x T"_;.
By the same argument, v; must also satisfy Axiom 3, i.e. it must be a CPS; of course,
each v;(.|X_;(h) x T_;) has finite support by construction. Since g; is onto, there exists a
type t; € T; such that

Gin(ti) ({(s-is 7=i(0-i,5-4))}) = vi ({ (54, T—i(0 i, 5-4)) }Xi(h) x T)

for every (0_;,s_;) € X_; and h € H;. To see that (0;,t;) € T} A note that by construction
filti) = po, € Do, and gip(t:)(X0 X [T jep iy(S; X Tja)) = 1 for each h, which implies
9in(ti) (X0 X [T;ep 1y (S X Tj4)) = 1 for each h and n. W

We can now prove our main result.

Proof of Theorem 1: To prove the first part, we rely on Lemma 2 and Lemma 3 to
recursively define, for each n > 0, a profile of functions 7" = (77 : ¥; — T} A )iez, such
that, for each (6, s), projg7"(6,s) = 0 and (s, 7"(6,s)) € CSB" (R N B*([A])) whenever
(0,s) € XX.

For the reader’s convenience, we report below the conditions for surviving the (n+1)-th
step of A-rationalizability:

For every i € [ and n > 0, (6;,s;) € EZZI if and only if there exists a CPS py, € Ay,
such that

(0i,5:) € pi(1e,); (8)

(Vm €{0,...,n})(Vh € H;)(E"; AN E_i(h) # 0 = 1, (X7 AlX-(R)) = 1) (9)
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The maps for Player 0 are trivial: 7§ (6o, s0) = (0o,to) for every (6o, so) and n.
As for the real players, let (70 : X; — Tj)ies be any profile of functions such that
proje, 79 (0, s;) = 0;; such functions exist by Lemma 2. Next, assuming that 7 = (77");cp,
has been defined and satisfies projg7™ (6, s) = 0 for every m = 0, ..., n, define 7! as fol-
lows: for each ¢ and o; € Ei\Zzzl let 77" (0;) = 77(0;); for each (0;,5;) € Zzzl there
is first-order CPS py, € Ay, such that eq.s (8),(9) hold and, by Lemma 3, there is an
epistemic type ¢! € T; with (0;,¢;) € T} 5 such that eq. (7) holds (for each h € H;) with
7_i = (77)j2i, s0 that — in particular — f;(t5"") = pp,; then let 707 (0;,5;) = (6;,t57).
Clearly, projg7"t1(6, s) = 6.

Claim 1 For every m >0 and (0,s) € X,
(0,s) € X = (5,7(0, s)) € CSB™(RNB*([A])), (10)
(3t € T)((0,s,t) € CSB™(RNB*(JA])) = (0,s) € ZX . (11)
Eq. (10) implies
YU+ C projCSB™(R N B*([A])).
Eq. (11) implies
projx CSB™(R N B*([A])) € 7.

Therefore the claim implies that
S+ = projyCSB™ (R N B (A))

for every m.
Proof of the claim Recall that CSB™ (R N B*([A])) is a Cartesian product. To ease
notation, for each ¢ € I and h € H;, we write

CSBT; (RN B*([A])) = projo_,CSB™(R N B*([A])),

Basis step Fix (0,s) arbitrarily. Suppose that (6, s) € 4. By construction of 7!, for
each i € I, (6;,5:) € p;(fi(projy,7;(6s,5:))) and 7} (65, 5;) € T; . Therefore (s,7(0,s)) €
RNB*([A]). Since RNB*([A]) = CSBY(RNB*([A])), this proves (10) for m = 0. Next fix
any t € T such that (6, s,t) € CSB°(RNB*([A])). Then, for each i € I, (0;,s:) € p;(fi(t;))
and f;(t;) € Ay,; therefore (6,s) € X&. This proves (11) for m = 0.

Induction step Assume that eq.s (10), (11) hold for each (0,s) and m = 0,...,n — 1.
Then, for each m =0,...,n— 1,7 € [ and h € H;,

2 i(h) NS™ # 0 < Q (k) N CSB™ (RN B*([A])) # 0. (12)

Fix (6, s) arbitrarily. Suppose that (#,s) € ©x"'. By construction of 71, for every
i €1, 7/%(0;,5) € T; 5 and (0;,5;) € p;(fi(projp, 77410, 5:))); therefore (s, 7"1(6,s)) €
R N B*([A]). By the inductive hypothesis and the construction of 7", for every i € I,
m € {0,...,n—1} and (¢',,5" ;) € X,

(6.1, 5,) € T™A) = (s, 74(0,,5,)) € CSB™ (RN B*([A]))).

—1) 2 —1 -1 =i \V =) 0 —

36



Hence, by construction of 7" and eq. (12), for every i € I, m € {0,...,n — 1} and
h € H;,

(Q-i(h) N CSB™(RNB*([A]) #0) =
gin(Projr,7i 1 (0:,5:)) (CSBT,(RNBY([A]) = 1).

Next note that

icl \m=0

CSB"(RNB*([A])) = RNB*([A)) N () {ﬁl SB, (% x [CSB™(RN B*([A]))])}

= RNB*([A]) N Qpx

H{ (9“ Si,ti) € E,L X ﬂ . (Vh S H,L> (Vm S {O, vy — 1}) }
LIV (@) nesBT(RNB([A]) #0) = ((g:n(t:) (CSBT(RNBY([A]) = 1)) -
It follows that (s, 7" (6, s)) € CSB"(RNB*([A])), showing that eq. (10) holds for m = n.

Now fix any t € T such that (6,s,t) € CSB"(R N B*([A])). Then, for every i € I,
(0, 8:) € p;(fi(t:)), fi(t:) € Ay, and (by the inductive hypothesis) for every m € {0, ...,n—
1} and h € H;

(94(h) N CSBT, (R OB (A]) £ 0) = fun(t)(S7) = 1.
By eq. (12), the formula above is equivalent to
S_i(h) NETIA A0 = fin(t)(ZA) =1

for every m € {0,...,n — 1} and h € H;. Therefore (6, s) € Xx"!, showing that eq. (11)
holds with m =n. U

Next we prove the second part of the thesis: ¥ = proj»CSB*(R N B*([A])). Pick
any (o,t) € CSB®(R N B*([A])). Since, Y% = projsCSB"(R N B*([A])) for every
n > 0, we conclude that o € ¥} for every n > 1; so 0 € (), 23 = XX. Hence
projsCSB> (RN B*([A])) € B%X. Now pick any o € ¥ and consider the sequence of sets
K(m,o) = CSB™(RNB*([A])) N ({c} x T), m > 1. B*([A]) is closed and (by standard
arguments) R is closed as well. For every closed event E, i and h € H;, B, is closed,
therefore CSB™(FE) is also closed. {0} x T is obviously closed. Therefore, each K (m, o)
is a nonempty (because o € X! = projzCSB” (R N B*([A]))) and closed subset of the
compact space 2 = ¥ x T'; also, the sequence of sets K(m, o) is decreasing, and hence
has the finite intersection property. Then () # () -, K(m,0) C CSB*(R N B*([A])) and
o € proj=CSB™(R N B*([A])). Therefore ¥¥ C projCSB®(RN B*([4])). B

Proof of Theorem 2 First observe that the set of states of player ¢ in 7 is

Qi,A = B*([A]) = {(Hl,sl,tz) € EZ X T’z . (917tl) € T:,A}a

(2

where T 5 is the set of information/epistemic types defined at the beginning of this
subsection.

Proof of eq. (3) Fix i, 0;. By definition of 7, the right hand side of eq. (3) is
contained in the left hand side. To see that also the converse holds, fix pu, € A;p,; by
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Lemma 3 there is a type t; € T; such that (0;,t;) € T} o and f;(t;) = y1;. By construction,
fin(t;) =margs_,g;n(t;) = margs_ gina(t;) = fi hA( ;) for each h € H; (the second
equality holds because t; € proj. Tin = Tin and g; A is the restriction of g; on T;A).
Thus f; a(t;) = p,; for some t; € T; o such that (0;,s;,t;) € Q; A for every s;. O

Proof of eq. (4) Basis step. Each first-order belief map f; o is the restriction of f;
on Tj o and Qa = B*([A]) = Qo X [[;c{(0s, 56, ti) € Xy x T; : (0,1;) € T o }; therefore

Ra = {(0,s,t) € Qa: (Vi€ I)(si € ro,(fialti))}
= {(0,5,1) € Q: (Vi € I)((si € ro,(fi(t:))) A (0, 1) € T74)))}
= RNB*([A]).
Induction step. Suppose that (CSBa)"(Ra) = CSB"(RNB*([A])). Then
(CSBA)" ™ (Ra) = (CSBA)"(Ra) NSBA((CSBA)"(RA)) =

— CSB"(R N B*(JA])) N SBA(CSB™(R N B*([A])) =
— CSB"(RNB*(]A])N

(Vi€ D)(Yh € H)(Q_.a(h) N CSB",(RNB*([A])) £ 0
“{(Q’S’MQA' = gina(t)(CSB™, (RN B*([A]) = 1) }

_ CSB"(RN B*([A])N

(Vi e I)(Yh € H)(Q_i(h) N CSB™,(RNB*(JA]) #0
" {“”S’t) €0 M(B)(CSB (RN B(A])) = 1) }
— CSB"(RN B*([A]) N SB(CSB™(R N B*([A]))) = CSB™ (R N B*(JA])),

where the second equality follows from the induction hypothesis, the fourth holds because
CSB"(RNB*([A])) C Qa and g; a is the restriction of g; on T; o, and the other equalities
hold by definition. [

Proof of eq.s (5) and (6). Given eq. (4), (5) and (6) follow from Theorem 1. W

Proof of Theorem 3. To shorten the proof, we take advantage of the result due to
Battigalli & Siniscalchi [13, 2007] mentioned in the Introduction:

Theorem 5 Fiz a collection A = (A;p,)icr0,co, of compact subsets of first-order CPS’s
and a belief-complete type structure T. Then, for every n > 0,

Yt = projsCSB™(R N [A])

and

Y2 = projyCSB*(R N [A]).

Sketch of proof of Theorem 5. By inspection of the proof of the main character-
ization result in [13, 2007], it is clear that a separate lemma’” shows the equivalence of
naive A-rationalizability (3% ) and A-rationalizability (£7%) under the assumption that A
is regular, whereas the rest of the proof shows that Theorem 5 holds. This is done within

4TLemma 7 of [13, 2007], which is a special case of our Proposition 1.
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the observable-actions framework, but it is clear that the arguments of the rest of the
proof are unaffected by considering the more general framework of this paper. [J
Theorems 1 and 5 imply

projxCSB" (RN B*([A])) = ¥X = projxCSB" (RN [A])

for each n > 1, including n = oco. An induction argument shows that all the claimed
inclusions hold. Indeed,

CSBY(RNB*([A])) = RNB*([A]) € RN [A] = CSBY(RN[A]).

Suppose that CSB™(R N B*([A])) € CSB"(R N [A]). Recall from subsection 3.2 that, for
each i € [ and £ C Q, we let [E]_; = Q; X proj, .

CSB";(RNB*([A])) := Q; x projg_,CSB" (RN [A]),

CSB",(RN[A]) is similarly defined. Since [CSB"(RNB*([A]))]-; and [CSB",(RN[A])]_;
have the same projection on Y _;, they are consistent with the same information sets of
Player i, even if [CSB"(RNB*([A]))]-; C [CSB",(RN[A])]_;. Let H!* denote the collection
of such information sets; then, by the inductive hypothesis and monotonicity of the B;
operators,

SB;(CSB",(R N B*( = (] Bin(CSB",(RNB*([A))))
heHn
C ﬂ Bin(CSBZ; (RN [A])) = SB;(CSBZ, (RN [A])).
heH?
Recall that, for each E, CSB""'(E) = EN ﬂ SB;(€; x projg_.E). Therefore, given the
icl

above definitions and inclusions,
CSB"*H (RN B*([A])) = CSB™" (RN B*([A])) N ﬂ SB;(CSB™, (RN B*([A])))
el

C CSB"(RN[A]) N[ SBi(CSB",(RN[A])) = CSB™ (RN [A]).

5.3 Equivalence of A-rationalizability and naive A-rationalizability
We begin with a preliminary result about closedness under compositions.

Definition 11 A finite sequence (K™, ™) _, € (2% x AMi(X_;))" is admissible if
{KT,}—1 is a decreasing sequence of product sets with Kg* = o (KT = Xox[Licp iy KJ")
and, for every m, p™ strongly believes K™ (for each h € H;, K™ NYX_;(h) # 0 =
P (KT (h) =1).

Definition 12 Fiz an admissible sequence (K™, u™)" _, and let m(h) = max({1} U {m :
K™ N X_;(h) # 0}). A system of beliefs ,u (wC1Z_i(h)her, € [AZ_)]Hi is the
composition of (K™, u™)" _, if

Vh € Hy, p(-[5-5(h)) = ™M ([2i(R)).
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Lemma 4 The composition p of an admissible sequence (K™, ;™) _, is a CPS such that
p(K™,|X_;(h)) =1 for each h € H; with K™, "X _;(h) # 0.

Proof. We only have to prove that u satisfies the chain rule, the rest follows immedi-
ately by inspection of Definition 12. Fix g,h € H; and E_; sothat E_; C X _;(h) C X_;(g)
(g is a prefix of h); then m(g) > m(h). If m(g) = m(h) then

WE[2 () = p"(ELIZ(9))
= OB i(h) ™ (S i(h)|E-i(9))
P (B[S (h) ™9 (S i(h)[Si(g))
|

= pELEi(h)p(E-i(h)[5-i(g))-
If m(g) > m(h) then, by definition of m(g ) K™y ( )=0and K™ NY_;(g) # 0.
By admissibility of the sequence, ™9 (K™ |Z_Z( )) = 1. Therefore p™ 9)( 41X i(g)) =

P9 (Si(h)|Xi(g)) = 0 and

WE_|S_i(g)) = p"9(E_|2i(g)) =0
= ,Um (E—Z|E Z(h))XO
= "M (E_S_i(h)pm D (Si(h)Si(g))
= (B [Xi(h)p(E-i(h)][X-i(9))-

Lemma 5 Let A; C AHi(X_;) be closed under compositions and fix an admissible se-
quence (K™, ™) _, such that u™ € A, for each m. Then also the composition of
(K™, p™r _, gives a CPS in A,.

Proof. The statement is true by definition for admissible sequences of length 2.
Assume by way of induction that the result holds for admissible sequences of length
n — 1 > 2 and consider an admissible sequence of length n, viz. (K™, ™) _,. Let p
be the composition of the (admissible) prefix (K™, u™)™—",. By the inductive hypothesis,
i € A;. The pair (K™%, p; K™, u™) is admissible since K™; C K™;* and p is a composition
of (K™, i™)"—} so that, in particular, x is a CPS such that K" ' NY (k) # 0 implies

(K” '|¥_i(h)) = 1 for each h € H; (Lemma 4). Now let u* be the composition of
(K™', p; K™, u™). Since A; is closed under compositions, p* € A;. By construction, p*
is the composition of (K™, p™)" _,. B

Proof of Proposition 1. The statement is obvious for n = 1. Now pick n > 1 and
assume by way of induction that the statement it is true for each positive integer up to
n. We have to show that Zle = flle

If o, = (0;,8) € Z"H then there is some 1y, € Ay, satisfying (8)-(9); since EZZl -
YA, then by the mductlve hypothesis o; € XA]ZA = X' A; moreover, since f]”z A=2"A
(again by the inductive hypothesis), (9) implies EA]ELAHE_Z( ) 7 0= py, (xn ialXoi(h) =
1. We conclude that o; € Z”“

In the other direction, suppose o; = (6;,s;) € 2?21 Then also o; € f)?fA for m =
1,...,n, so we can find CPS’s ug' € Ag,, m = 1,...,n, such that, for each m, o; € p;(113")
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and, Vh € H;, ZA]T’A NY_;(h) # 0 implies pg! (X™; A|¥_i(h)) = 1. Therefore the sequence

)

(ATL A g )= is admissible. Now let py be the composition of this sequence. Clearly

i € pi(pg,) and puy, satisfies (9). Moreover, by Lemma 5 p1y, € Ay,. Therefore o; € S7A'.
|
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