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Interactive Epistemology and Solution
Concepts for Games with Asymmetric

Information

Pierpaolo Battigalli, Alfredo Di Tillio, Edoardo Grillo, and Antonio Penta

Abstract

We use an interactive epistemology framework to provide a systematic analysis of some so-
lution concepts for games with asymmetric information. We characterize solution concepts using
expressible epistemic assumptions, represented as events in the canonical space generated by prim-
itive uncertainty about the payoff relevant state, payoff irrelevant information, and actions. In most
of the paper, we adopt an interim perspective, which is appropriate to analyze genuine incomplete
information. We relate Delta-rationalizability (Battigalli and Siniscalchi, Advances in Theoretical
Economics 3, 2003) to interim correlated rationalizability (Dekel, Fudenberg and Morris, Theo-
retical Economics 2, 2007) and to rationalizability in the interim strategic form. We also consider
the ex ante perspective, which is appropriate to analyze asymmetric information about an initial
chance move. We prove the equivalence between interim correlated rationalizability and an ex
ante notion of correlated rationalizability.

KEYWORDS: asymmetric information, type spaces, Bayesian games, rationalizability



1 Introduction
In the last few years, ideas related to rationalizability have been increasingly applied

to the analysis of games with asymmetric information, interpreted either as games

with genuine incomplete information (lack of common knowledge of the mappings

from players’ actions into their payoffs) or games with complete but imperfect in-

formation about an initial chance move.1 Yet there seems to be no canonical defini-

tion of rationalizability for this class of games. Some authors put forward and apply

notions that avoid the specification of a type space à la Harsanyi—Battigalli (2003),

Battigalli and Siniscalchi (2003, 2007), Bergemann and Morris (2005, 2007). Oth-

ers instead deal with solution concepts for the Bayesian game obtained by append-

ing a type space to the basic economic environment—Ely and Pęski (2006), Dekel,

Fudenberg, and Morris (2007). However, while the adoption of a type space (and

Bayesian Nash equilibrium) is common practice in economics, applying notions of

rationalizability to Bayesian games requires some care. It is well known that some

modeling details, which arguably should not matter, do instead affect the conclu-

sions of the analysis, as the following two examples illustrate.

1.1 Ex ante vs interim perspective

Although it seems natural to transform a Bayesian game into a strategic form game

and apply standard rationalizability, there is more than one way to do this, and the

results vary accordingly. Indeed, unlike with Bayesian Nash equilibrium, rational-

izability in the ex ante strategic form, where each player chooses a mapping from

types into actions, is a refinement of rationalizability in the interim strategic form,

where each type of each player chooses an action.2 To see this, consider the game

below, where the payoff state � 2 ‚ D f� 0; � 00g is known only to player 2, who

chooses columns:

L M R

T 0; 3 0; 2 3; 0

B 2; 0 2; 2 2; 3

� 0

L M R

T 3; 3 0; 2 0; 0

B 2; 0 2; 2 2; 3

� 00

1See Battigalli (2003, section 5), and Battigalli and Siniscalchi (2003, section 6) for references

to applications of rationalizability to models of reputation, auctions and signaling. Bergemann and

Morris (2005) apply a notion of iterated dominance to robust implementation. Carlsson and van

Damme (1993) show that global games can be solved by iterated dominance—see also Morris and

Shin (2007) for a recent evaluation of this result and its applications.
2This holds under weak conditions on players’ (subjective) priors: either (a) priors have a com-

mon support, or (b) each player assigns positive prior probability to each one of his types.
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Assume that player 1 ascribes equal probabilities to � 0 and � 00 and that there is

common belief in this fact. Thus we obtain a Bayesian game where player 1 has

only one (uninformed) type, who assigns equal probabilities to the two (informed)

types of player 2, which we can identify with � 0 and � 00. Given any conjecture �

about player 1’s action, L is a best reply only if �ŒT � � 2=3, while R is a best reply

only if �ŒT � � 1=3. Thus the two strategies of player 2 that specify L (resp. R)

under � 0 and R (resp. L) under � 00, cannot be ex ante best replies to any conjecture

�. If player 1 assigns zero probability to these strategies, the expected payoff of T

is at most 3=2, hence T is not ex ante rationalizable. On the other hand, interim

rationalizability regards the two types of player 2 as different players: under � 0
player 2 may believe �ŒT � � 2=3, while under � 00 she may believe �ŒT � � 1=3 (or

vice versa). Thus, in the second iteration of the interim rationalizability procedure

player 1 can assign high probability to R under � 0 and L under � 00, and hence choose

T as a best response. This implies that every action is interim rationalizable.

The difference between ex ante and interim rationalizability, as illustrated in

this example, has been accepted as a natural consequence of the fact that the latter

allows different types of the same player to hold different conjectures. However, we

maintain that it is disturbing: ex ante expected payoff maximization is equivalent to

interim expected payoff maximization,3 and rationalizability is supposed to capture

just the behavioral consequences of the assumption that players are expected payoff

maximizers and have common belief in this fact. Given the above, how can ex

ante and interim rationalizability deliver different results? There must be additional

assumptions (i.e. besides rationality and common belief in rationality) determining

the discrepancy. As we prove in section 4, these have little to do with the fact

that types are treated as distinct players in the interim strategic form; instead, the

reasons are to be found in the different independence assumptions underlying the

two solution concepts; once these assumptions are removed, and thus correlation is

allowed, we obtain equivalent ex ante and interim solution concepts.

1.2 Redundant types

Rationalizability in the (ex ante or interim) strategic form is not invariant to the ad-

dition of redundant types, that is, multiple types that encode the same information

and hierarchy of beliefs. Indeed, Ely and Pęski (2006) and Dekel et al. (2007) no-

ticed that adding redundant types may enlarge the set of rationalizable outcomes.4

In particular, they illustrate this for interim independent rationalizability, which,

3Interim maximization implies ex ante maximization; under the assumptions in footnote 2, also

the converse is true.
4Liu (2009) and Sadzik (2009) analyze related issues of invariance to redundancies.
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as we remark later on in the paper, is equivalent to rationalizability in the interim

strategic form. Dekel et al. (2007) also introduce interim correlated rationalizabil-
ity, a weaker notion that is invariant to the addition of redundant types. To illustrate,

consider the following game, borrowed from Dekel et al. (2007), where the payoff

state � 2 ‚ D f� 0; � 00g is unknown to both players:

B N

B 2; �4 �1; 0

N 0; �1 0; 0

� 0

B N

B �4; 2 �1; 0

N 0; �1 0; 0

� 00

Assume that it is common belief that each player attaches equal probabilities to the

two states. The simplest Bayesian game representing this situation has only one

type Nti for each player i , with beliefs that give equal probabilities to the two pairs

.� 00; Nt�i/ and .� 00; Nt�i/. In this case the ex ante and interim strategic forms coincide,

and B is dominated, hence not rationalizable:

B N

B �1; �1 �1; 0

N 0; �1 0; 0

But we can think of another Bayesian game representing the same situation, where

each player i D 1; 2 has two types, t 0
i and t 00

i , and beliefs are generated by the

common prior below:

t 0
2 t 00

2

t 0
1 1=4 0

t 00
1 0 1=4

� 0

t 0
2 t 00

2

t 0
1 0 1=4

t 00
1 1=4 0

� 00

As before, it is common belief that � 0 and � 00 are considered equally likely, there-

fore we are just adding redundant types. But in the induced Bayesian game, B is

rationalizable for both types of both players. Since ex ante rationalizability im-

plies interim rationalizability, to see this it suffices to show that there are ex ante

rationalizable strategies where either type chooses B . Let XY denote the strategy

where t 0
i chooses X and t 00

i chooses Y . The ex ante strategic form (with every payoff

multiplied by 4 for convenience) is as follows:

BB BN NB NN

BB �4; �4 �4; �2 �4; �2 �4; 0

BN �2; �4 1; �5 �5; 1 �2; 0

NB �2; �4 �5; 1 1; �5 �2; 0

NN 0; �4 0; �2 0; �2 0; 0
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Note that BB is dominated, but the set fBN; NB; NN g � fBN; NB; NN g has the

best response property (Pearce, 1984): as the underlined payoffs indicate, each

strategy in the set of player i is a best response to some strategy in (and hence to

some belief on) the set of player �i . Thus, BN and NB are ex ante rationalizable,

and B is interim rationalizable for every type, hence interim correlated rationaliz-

able for every type.

Adding redundant types can expand the rationalizable set of the strategic

form. As we have already argued, (ex ante or interim) rationalizability must cap-

ture more than just common belief of expected payoff maximization in a situation of

incomplete information. How are these additional assumptions related to the pres-

ence of redundant types? The reason is that a player may have payoff-irrelevant
information that the other player believes to be correlated with the payoff state. The

example shows that this is possible even if this payoff-irrelevant information does

not affect the players’ hierarchies of beliefs about the payoff state. Since actions

may depend on this information, it is possible that a player’s beliefs satisfy condi-

tional independence when considering all the information of the other player, and

yet when they are conditioned only on the payoff-relevant information (and hier-

archy of beliefs over the payoff state) of the other player, they exhibit correlation

between the payoff state and the other player’s action. Thus, whenever redundancy

can indeed be expressed in terms of payoff-irrelevant information, and such infor-

mation is taken into account, conditional independence has less bite, and the set of

rationalizable actions accordingly expands.

1.3 Expressible epistemic characterizations

The two issues illustrated above should make us suspicious about solution concepts

mechanically obtained by applying a known solution algorithm (rationalizability) to

the strategic forms of Bayesian games. In order to understand better the various so-

lution concepts and their different predictions, a formal analysis of their underlying

assumptions is needed, and this is precisely what we propose in this paper. Indeed,

the problem with these notions is that they are not completely transparent because,

unlike rationalizability in games of complete information, they have not been char-

acterized using expressible assumptions about rationality and beliefs. To see what

we mean, recall that for games with complete information, Tan and Werlang (1988)

show that an action is rationalizable if and only if it is consistent with rationality,

i.e. expected payoff maximization, and common belief in rationality.5 These as-

sumptions are expressible in a language describing primitive terms (actions) and

5Brandenburger and Dekel (1987) prove a related result.
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terms derived from the primitives (beliefs about actions, beliefs about actions and

beliefs of others, etc.). As explained in Heifetz and Samet (1998), the expressions

in such a language can be represented as (and indeed identified with) measurable

subsets of the canonical state space where each state specifies the players’ actions

and hierarchies of beliefs about actions.6

Our aim is to characterize rationalizability in games of incomplete infor-

mation in the same manner, and hence achieve a deeper understanding of the is-

sues illustrated above. Expressing assumptions such as rationality, in the context of

games with incomplete information, requires of course a richer language. Thus, our

primitives include not only the actions Ai available to each player i 2 I D f1; 2g,7

but also the private information xi possessed by this player, as well as the payoff

state � . In order to get a general formulation, we explicitly disentangle the aspects

of i ’s information that are payoff-relevant, denoted by �i , from those that are not,

denoted by yi . Thus, i ’s information is xi D .�i ; yi/ 2 ‚i � Yi D Xi , and no

player’s payoff depends on yi . We write � D .�0; �1; �2/ 2 ‚0 � ‚1 � ‚2 D ‚

and we let gi W ‚ � A1 � A2 ! R denote i ’s payoff function, so that we allow

payoff uncertainty to persist (via �0) even after pooling all players’ information.

Note that yi can be strategically relevant because i ’s action can depend on it, and

the other player can believe that it is correlated with �0, thus inducing a potential

correlation between �0 and i ’s action.8 Indeed, our formulation allows us to state

characterization results that otherwise could not be stated—we discuss the role of

�0 and yi in more detail when we preview our results below.

In the language described above, an expressible assumption about player i is

a measurable subset of the space Xi �Ai �Hi , where Hi is the space of hierarchies

of beliefs based on the state of nature and each player’s information and actions.

More precisely, an element of Hi is a sequence .�1
i ; �2

i ; : : :/ where �1
i 2 H 1

i D
�.‚0 �X�i �A�i/ and then, recursively, �k

i 2 �.‚0 �X�i �A�i �H k�1�i /.9 Note

that there is no redundancy in the construction, in the sense that every two points in

the state space ‚0�.X1�A1�H1/�.X2�A2�H2/ must differ in terms of states of

nature, information, actions, or beliefs thereof. Thus, our notion of expressibility is

6This canonical state space is what Mertens and Zamir (1985) call the universal belief space,

when we take their “parameter space” to be the set of action profiles. More details on Heifetz and

Samet (1998) are provided below.
7We assume two players for convenience; we comment on this assumption later on in the paper.
8Economic examples abound: geological information and satellite photographs of a tract of land

on sale are thought to be correlated with the value of the recoverable resources, expert reports on an

object are thought to be correlated with the value of this object, personality traits and propensities

may be thought to be correlated with ability, etc. The applied theorist who models a particular

situation typically specifies these payoff-irrelevant variables.
9As usual, we impose the coherency requirement on the sequences defining Hi .
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precisely that of Heifetz and Samet (1998).10 We insist on solution concepts being

characterized using only expressible assumptions, because the primitive terms of

the language (states of nature, information, actions) and hence the derived terms

(beliefs and beliefs about beliefs over the primitive terms) are suggested by the

problem at hand; our basic tenet is that once all potentially relevant parameters of

the problem are specified, we are bound to use the corresponding (primitive and

derived) terms and nothing more.

To see how we characterize solution concepts, think again of complete in-

formation. In that case, rationalizability gives for each player i a subset Ri � Ai .

The cited result of Tan and Werlang (1988) can then be stated as follows: if the sets

‚0; X1; X2 are all singletons—and hence can be omitted from notation—then an

action ai belongs to Ri if and only if there is some hi D .�1
i ; �2

i ; : : :/ 2 Hi such

that i is rational, that is, ai is a best reply to �1
i , and there is common belief of ratio-

nality at hi , so that �2
i gives probability zero to the set of pairs .a�i ; �1�i/ where �i

is not rational, �3
i gives probability zero to the set of triplets .a�i ; �1�i ; �2�i/ where

�i is not rational, or does not give probability one to i being rational, (or both) and

so on ad infinitum.

Similarly, rationalizability with incomplete information specifies a subset of

Ai as a function of i ’s information and beliefs. More precisely, an interim notion

specifies a correspondence into Ai , whose domain is either Xi or some abstract set

Ti of types à la Harsanyi, whereas an ex ante notion specifies a subset of strate-
gies, which are functions from Xi to Ai .

11 The exercise we perform is then entirely

analogous to the one sketched above for complete information. Given a correspon-

dence Si W Xi � Ai , we look for expressible assumptions in Xi � Ai � Hi which

restricted to each xi 2 Xi , give exactly Si.xi/. Similarly, given a correspondence

10In the formalism of Heifetz and Samet (1998), every subset S � ‚0 � X � A is an expression,

and if e and f are expressions, then :e, e \ f and B
p
i .e/ are also expressions for each i 2 I

and p 2 Œ0; 1�, which we read as “not e”, “e and f ” and “player i attaches probability at least

p to e,” respectively. Heifetz and Samet (1998) show that given any state space specifying, at

each state, the players’ information, actions, and beliefs about the state space itself, we can view

every expression as a measurable subset of it. Conversely, an event is expressible if it belongs to

the � -algebra generated by the expressions, when the latter are themselves viewed as events. It

can be shown that expressibility of every event in the state space is equivalent to non-redundancy

in the sense explained above. It follows that ‚0 � .X1 � A1 � H1/ � .X2 � A2 � H2/ is the

unique (up to isomorphism) state space where all events can be seen as expressions and, conversely,

every expression corresponding to some (nonempty) event in some state space, can be seen as a

(nonempty) event in ‚0 � .X1 � A1 � H1/ � .X2 � A2 � H2/.
11We limit the ex ante analysis to the case where types correspond to information that can be

learned, that is, to the case where Ti D Xi for each player i . We discuss this in more detail later

on in the paper. Note that any set of functions from Xi to Ai can be seen as a set of selections from

the correspondence given by the union of all their graphs; this allows a comparison between ex ante

solution concepts and interim solution concepts.
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Si W Ti � Ai and a type ti 2 Ti , we look for expressible assumptions which,

restricted to some appropriate (expressible) features of ti , give exactly Si.ti/.

1.4 Preview of results

Our exploration begins with belief-free rationalizability and �-rationalizability.

The first solution concept specifies a correspondence Ri W Xi � Ai obtained by it-

erated elimination, for each xi D .�i ; yi/, of actions that are non-best replies, given

�i , to some conjecture �i 2 �.‚0 �X�i �A�i/, where the support of �i is accord-

ingly restricted at every step of the procedure. The second notion generalizes this

procedure, yielding a correspondence R�
i W Xi � Ai obtained by asking that the

conjectures �i used for xi belong to some postulated set �xi
� �.‚0�X�i �A�i/.

The epistemic characterization of �-rationalizability is by means of the following

assumptions:12 (i) the players are rational, (ii) their first-order beliefs satisfy the

restrictions �, and (iii) there is common belief in (i) and (ii). In the case of no

restrictions, �xi
D �.‚0 � X�i � A�i/, condition (ii) becomes vacuously true,

thus belief-free rationalizability is characterized by rationality and common belief

in rationality alone.

Then we move on to interim correlated rationalizability (ICR) and interim
independent rationalizability (IIR). These two notions, like Bayesian Nash equilib-

rium, require a specification of a type space à la Harsanyi, describing the players’

information and beliefs about �0 and each other’s information. Formally, this is

a structure .Ti ; #i ; �i ; �i/i2I where Ti is a space of types and #i W Ti ! ‚i ,

�i W Ti ! Yi and �i W Ti ! �.‚0 � T�i/ are measurable functions. Thus ICR and

IIR yield correspondences ICRi W Ti � Ai and IIRi W Ti � Ai , respectively, ob-

tained by iterated elimination, for each ti 2 Ti , of actions that are non-best replies,

given #i.ti/, to some �i 2 �.‚0 � T�i � A�i/, where as before, the support of �i

is accordingly restricted at every step of the procedure.

Differently from ICR, IIR requires �i to satisfy a conditional independence

property: conditional on t�i , �0 and a�i are independent. This is reflected in the

epistemic characterizations of the two notions, which are deeply different. ICR for

a type ti is characterized by the following expressible assumptions: (i) the players

are rational, (ii) there is common belief in rationality, and (iii) player i ’s information

and hierarchy of beliefs, when restricted to its payoff-relevant aspects (the payoff-

relevant information #i.ti/ and the induced hierarchy of beliefs over the payoff

state), agrees with the one specified by ti . The characterization of IIR is more diffi-

cult, and we can only give it in full when the assumed type space is non-redundant.

12The characterization of �-rationalizability is not new to this paper (see section 3.2); we report

it for completeness and to introduce the subsequent results.
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This is because in the presence of multiple types encoding the same payoff-relevant

and payoff-irrelevant information, as well as the same hierarchy of beliefs, we do

not know how to relate distinct types to distinct expressible assumptions. Whenever

the type space is non-redundant, however, even if there is redundancy in terms of

payoff-relevant information and induced hierarchies of beliefs over the payoff state,

we are able to characterize IIR for a type ti , as follows: (i) the players are rational,

(ii) each player’s beliefs regard the state of nature and the other player’s action as

independent, conditional on the private information and hierarchy of beliefs of the

other player, (iii) there is common belief in (i) and (ii), and (iv) the hierarchy of

beliefs is the one encoded by ti .

In the course of our analysis, we establish two corollaries relating ICR and

IIR to �-rationalizability. Whenever the type space has information types, that is,

Ti D Xi for each player i , �-rationalizability is equivalent to ICR or IIR, provided

that the assumed restrictions are, in a natural sense, those implied by the type space.

The case of information types is also the focus of our last section, in which we

consider ex ante rationalizability. In that section we introduce two new notions, ex
ante �-rationalizability and ex ante correlated rationalizability, which we relate to

the interim solution concepts analyzed earlier. Our main result in that section is that

ex ante correlated rationalizability is equivalent to ICR. Thus, contrary to interim

and ex ante rationalizability, which differ because of their underlying (and different)

independence assumptions, their correlated versions provide the same predictions.

2 Preliminaries
The basic ingredient of our analysis is a structure .‚0;

(
‚i ; Yi ; Ai ; gi

)
i2I

/ where

‚0 is a finite set of states of nature and I D f1; 2g is the set of players; each player

i is endowed with a finite set Ai of feasible actions, and the finite sets ‚i and Yi

represent i ’s payoff-relevant and payoff-irrelevant private information, respectively;

we call each �i 2 ‚i a payoff type and each xi D .�i ; yi/ 2 Xi WD ‚i � Yi an

information type of i . Accordingly, we refer to each � 2 ‚ WD ‚0 � ‚1 � ‚2

as a payoff state and to each x 2 X WD X1 � X2 as an information state, and we

assume that each player i ’s utility depends on the payoff state through the function

gi W ‚ � A ! R, where A D A1 � A2.

A list of symbols at the end of the paper collects the notation introduced

above, as well as the notation introduced in the remainder of this section.

8
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2.1 Type spaces and exogenous beliefs

Interim solution concepts specify actions for each player as a correspondence of

his information type and exogenous beliefs, that is, interactive beliefs about the

state of nature and each other’s information. Such beliefs are often modeled using

Harsanyi’s (1967-68) representation: a type space based on ‚0 � X , or simply

X -space, which is a tuple .Ti ; 	i ; �i/i2I where each Ti is a Polish space and the

functions 	i W Ti ! Xi and �i W Ti ! �.‚0�T�i/ are measurable.13 Such a model

describes the players’ information and, implicitly, their hierarchies of beliefs about

the state of nature and each other’s information; we call these X-hierarchies and

we define them as usual, following Mertens and Zamir (1985), whose construction

we now review. For every player i , let H 1
X;i D �.‚0 � X�i/ designate the space of

first-order X -beliefs, and for all k � 1 define recursively

H kC1
X;i D {(

�`
i

)kC1

`D1
2 H k

X;i � �
(
‚0 � X�i � H k

X;�i

) W
marg‚0�X�i �H k�1

X;�i
�kC1

i D �k
i

}
: (1)

Note that, by the coherency conditions on marginal distributions, each element of

the set in (1) is determined by its last coordinate; thus, whenever convenient, for all

k � 1 we identify H k
X;i with �.‚0 � X�i � H k�1

X;�i/, the space of k-order X -beliefs
of player i . The space of X-hierarchies of i is

HX;i D {(
�k

i

)
k�1

2 X
k�1

�
(
‚0 � X�i � H k�1

X;�i

) W 8k � 1;
(
�`

i

)k

`D1
2 H k

X;i

}
: (2)

This space is compact metrizable (hence Polish), and there is a homeomorphism

'X;i W HX;i ! �.‚0 � X�i � HX;�i/: (3)

The X -hierarchies described by an X -space .Ti ; 	i ; �i/i2I are computed

recursively: for each i 2 I and ti 2 Ti , the first-order X-belief induced by ti is

defined as follows: for each E � ‚0 � X�i ,


1
X;i.ti/ŒE� D �i.ti/

[{
.�0; t�i/ 2 ‚0 � T�i W .�0; 	�i.t�i// 2 E

}]
:

Then, the k-order X -belief induced by ti is defined as follows: for each measurable

E � ‚0 � X�i � H k�1
X;�i ,


k
X;i.ti/ŒE� D �i.ti/

[{
.�0; t�i/ 2 ‚0 � T�i W (�0; 	�i.t�i/; 
k�1

X;�i.t�i/
) 2 E

}]
:

13For any Polish space Z we write �.Z/ for the set of all probability measures on Z, endowed

with the topology of weak convergence. Throughout the paper, a product of topological spaces is

always assumed endowed with the product topology, and a subspace with its relative topology. All

topological spaces are always viewed also as measurable spaces (with their Borel � -algebra).
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This gives a function 
X;i W Ti ! HX;i satisfying, for each ti 2 Ti and each

measurable E � ‚0 � X�i � HX;�i ,

'X;i

(

X;i.ti/

)
ŒE� D

�i.ti/
[{

.�0; t�i/ 2 ‚0 � T�i W .�0; 	�i.t�i/; 
X;�i.t�i// 2 E
}]

: (4)

It is well known that 
X;i is not necessarily injective, that is, there may be multiple

types inducing the same X -hierarchy. More generally, the X -space is said to be

non-redundant if for all i 2 I and distinct ti ; t 0
i 2 Ti , either 	i.ti/ ¤ 	i.t

0
i / or


X;i.ti/ ¤ 
X;i.t
0
i /. In this case, for each player i the space Ti can be seen as

a measurable subset of Xi � HX;i and under this identification, by (4), the tuple

.Ti/i2I is belief-closed in the sense that 'X;i.hX;i/Œ‚ � T�i � D 1 for every ti D

.xi ; hX;i/ 2 Ti .
14

Hierarchies of beliefs over the payoff state

An X -space describes, in particular, the players’ payoff information and their hi-

erarchies of beliefs about the payoff state, which we call ‚-hierarchies. These are

defined just like X -hierarchies, but letting ‚ play the role of X everywhere in (1)

and (2) above. Thus H 1
‚;i D �.‚0 � ‚�i/ is the space of first-order ‚-beliefs of

player i , whereas a k-order ‚-belief of player i is an element of

H kC1
‚;i D {(

�`
i

)kC1

`D1
2 H k

‚;i � �
(
‚0 � ‚�i � H k

‚;�i

) W
marg‚0�‚�i �H k�1

‚;�i
�kC1

i D �k
i

}
;

a ‚-hierarchy of player i is an element of

H‚;i D {(
�k

i

)
k�1

2 X
k�1

�
(
‚0 � ‚�i � H k�1

‚;�i

) W 8k � 1;
(
�`

i

)k

`D1
2 H k

‚;i

}
;

and a homeomorpshim analogous to (3) exists:

'‚;i W H‚;i ! �.‚0 � ‚�i � H‚;�i/:

To see how each type in an X -space .Ti ; 	i ; �i/i2I induces a ‚-hierarchy,

note that for each player i we can write the function 	i as a pair of measurable

functions .#i ; �i/, where #i W Ti ! ‚i and �i W Ti ! Yi . Then for each i 2 I

and ti 2 Ti the induced first-order ‚-belief is 
1
‚;i.ti/ D marg‚0�‚�i


1
X;i.ti/, and

14It is clear that, conversely, every tuple .Ei /i2I where Ei � Xi � HX;i is measurable for every

i 2 I , and which is belief-closed, can be seen as a non-redundant type space.
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recursively, the induced k-order ‚-belief is defined as follows: for each measurable

E � ‚0 � ‚�i � H k�1
‚;�i ,


k
‚;i.ti/ŒE� D �i.ti/

[{
.�0; t�i/ 2 ‚0 � T�i W (�0; #�i.t�i/; 
k�1

‚;�i.t�i/
) 2 E

}]
:

Note that the function 
‚;i W Ti ! H‚;i thus obtained fails to be injective when-

ever, though not only if, the function 
X;i W Ti ! HX;i does so. In other words, two

types inducing the same X -hierarchy must induce the same ‚-hierarchy, while two

types inducing the same ‚-hierarchy may induce distinct X-hierarchies. This fact

plays an important role in the characterization of IIR below; we provide a full char-

acterization of IIR whenever the assumed type space is non-redundant, and only in

such a case; thus, we allow for redundancies in the sense of ‚-hierarchies, though

we cannot extend our characterization to the case of redundancies in the sense of

X -hierarchies.

Type spaces with information types

Applied models in economics often disregard (or do not include for some other rea-

son) payoff-irrelevant information, and assume the simplest possible type spaces,

those where distinct types must differ in the payoff-relevant information that they

encode; in our framework, we can define such a payoff type space as an X -space

.Ti ; #i ; �i ; �i/i2I where for each player i , Ti D ‚i , #i is the identity function, and

�i is constant. In many applied models that do specify payoff-irrelevant informa-

tion in a less trivial way, the analogous simplification is made, by assuming that

information determines X-beliefs;15 formally, a type space with information types
is a type space .Ti ; 	i ; �i/i2I where Ti D Xi and 	i is the identity for each player

i . For brevity, throughout the paper we write just .Xi ; �i/i2I to denote such an

X -space.

Besides being pervasive in applications, type spaces with information types

are special in at least two other respects. First, they are always non-redundant, be-

cause distinct types must differ at least in the information type that they induce.

Second, they feature the following triviality property: the X-hierarchy induced by

each type is determined by its induced first-order X -belief. More precisely, for

every type xi we have the following: every X -hierarchy that (i) has the same first-

order X -belief as the one induced by xi , and (ii) puts positive probability only on

the information-hierarchy pairs of �i that are induced by some type of �i , must co-

incide with the X -hierarchy induced by xi . We record this in the following remark,

which is used in the proofs of Corollaries 1 and 2 below.

15Often it is further assumed that beliefs come from a common prior, but this is irrelevant for our

analysis.
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Remark 1. Fix an X -space with information types .Xi ; �i/i2I . For every i 2 I ,

xi 2 Xi and hX;i 2 HX;i such that marg‚0�X�i
'X;i.hX;i/ D �i.xi/, the conditions

hX;i D 
X;i.xi/ and

'X;i.hX;i/
[
‚0 � [x�i

{
.x�i ; 
X;�i.x�i//

}] D 1

are equivalent. Indeed, the former implies the latter by belief-closedness, while the

converse follows at once from coherency of hX;i .

2.2 Endogenous beliefs and interactive epistemology

Interactive epistemology views solution concepts—correspondences from informa-

tion types into actions, or from types in an X -space into actions—as reduced forms

of models that explicitly describe the players’ (hierarchies of) endogenous beliefs,

that is, beliefs (and beliefs about beliefs) over actions and payoff states and payoff-

irrelevant information. Formally, the space of first-order A-beliefs of player i is

H 1
i D �.‚0 � X�i � A�i/, the space of k-order A-beliefs is

H kC1
i D {(

�`
i

)kC1

`D1
2 H k

i � �
(
‚0 � X�i � A�i � H k

�i

) W
marg‚0�X�i �A�i �H k�1

�i
�kC1

i D �k
i

}
;

and the space of A-hierarchies of player i is

Hi D {(
�k

i

)
k�1

2 X
k�1

�
(
‚0 � X�i � A�i � H k�1

�i

) W 8k � 1;
(
�`

i

)k

`D1
2 H k

i

}
:

Similarly to the spaces of X -hierarchies and ‚-hierarchies, the space of A-hierar-

chies is also compact metrizable, and here, too, there is a homeomorphism

'i W Hi ! �.‚0 � X�i � A�i � H�i/:

The space of A-hierarchies of player i describes all possible beliefs that i can en-

tertain regarding the state of nature, player �i ’s information and action, player

�i’s belief about the state of nature and i ’s information and action, and so on. In

particular, each A-hierarchy embodies an X -hierarchy and a ‚-hierarchy, which

we can compute naturally by recursive marginalization. In what follows we let

%X;i W Hi ! HX;i and %‚;i W Hi ! H‚;i designate these mappings.16

An expressible assumption (or more simply, assumption) about player i is

a measurable subset of Xi � Ai � Hi . A joint assumption is a set of the form

16To see how these are formally defined, define %k
X;i W H k

i ! H k
X;i and %k

‚;i W H k
i ! H k

‚;i

for every k � 1 as follows: %1
X;i .h

1
i / D marg‚0�X�i

h1
i and %1

‚;i .h
1
i / D marg‚0�‚�i

h1
i , and
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E D E1 � E2, where for every player i , Ei is an assumption about i . All the

epistemic characterizations we provide below involve rationality of all players,

which is the joint assumption that each player chooses an action maximizing his

expected payoff given his payoff type and first-order A-beliefs. Thus,17 we let

RAT D ‚0 � RAT 1 � RAT 2, where

RAT i D {(
�i ; yi ; ai ; hi

) 2 Xi � Ai � Hi W
ai 2 arg max

a0

i
2Ai

gi

(
�i ; a0

i ; marg‚0�‚�i �A�i
'i.hi/

)}
:

Our characterizations involve not only rationality, but also common belief in ratio-

nality and possibly other assumptions. Given any joint assumption E D E1 � E2,

for every i 2 I let

Bi.E/ D Xi � Ai � {
hi 2 Hi W 'i.hi/

[
‚0 � E�i

] D 1
}

;

B.E/ D ‚0 � B1.E/ � B2.E/:

Now let B0.E/ D E and recursively define Bk.E/ D B.Bk�1.E// for all k � 1.18

Then the joint assumption of (correct) common belief in E is

CB.E/ D \k�0 Bk.E/:

For each player i , we write CB i.E/ for the projection of CB.E/ on Xi � Ai � Hi .

3 Epistemic characterizations
In this section we provide epistemic characterizations of belief-free rationalizability

(section 3.1), �-rationalizability (section 3.2), interim correlated rationalizability

(section 3.3) and interim independent rationalizability (section 3.4).

recursively, for each measurable E � ‚0 � X�i � H k�1
X;�i ,

%k
X;i .h

k
i /ŒE� D hk

i Œf.�0; x�i ; a�i ; hk�1�i / 2 ‚0 � X�i � A�i � H k�1�i W .�0; x�i ; %k�1
X;�i .h

k�1�i // 2 Eg�

while for each measurable E � ‚0 � ‚�i � H k�1
‚;�i ,

%k
‚;i .h

k
i /ŒE�Dhk

i Œf.�0; ��i ; y�i ; a�i ; hk�1�i /2‚0�X�i �A�i �H k�1�i W.�0; ��i ; %k�1
‚;�i

(
hk�1�i //2Eg�:

17Slightly abusing notation, we denote the linear extension of gi to �.‚ � A/ also by gi .
18Note that B.�/ maps rectangular events into rectangular events. For our purposes it is sufficient

to define mutual belief for this restricted class of events (see Battigalli and Siniscalchi, 2002).
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3.1 Belief-free rationalizability and iterated dominance

The simplest interim solution concept that we consider takes as given the economic

environment alone. The solution set specifies a correspondence Ri W Xi � Ai

for each player i , which is defined as follows: Ri.�i ; yi/ D \k�0Rk
i .�i ; yi/ for all

i 2 I and .�i ; yi/ 2 Xi , where R0
i .�i ; yi/ D Ai and, recursively, Rk

i .�i ; yi/ is the

set of all ai 2 Ai such that for some �i 2 �.‚0 � X�i � A�i/,

supp �i � ‚0 � {
.x�i ; a�i/ 2 X�i � A�i W a�i 2 Rk�1

�i .x�i/
}

;

ai 2 arg max
a0

i
2Ai

∑
�0;��i ;a�i

�i

[f.�0; ��i ; a�i/g � Y�i

]
gi.�0; �i ; ��i ; a0

i ; a�i/:

This version of rationalizability, which is belief-free in that its computation does

not need a specification of X -beliefs of any sort, is equivalent to the following

interim iterated dominance procedure:19 ai 2 Rk
i .�i ; yi/ if and only if there does

not exist ˛i 2 �.Rk�1
i .�i ; yi// such that for every .�0; ��i ; y�i/ 2 ‚0 � X�i and

a�i 2 Rk�1�i .��i ; y�i/,

gi.�0; �i ; ��i ; ˛i ; a�i/ > gi.�0; �i ; ��i ; ai ; a�i/:

Note that the payoff-irrelevant information plays no role here: any two information

types specifying the same payoff type have the same set of belief-free rationalizable

actions. Indeed, rationality itself has nothing to do with payoff-irrelevant informa-

tion, and belief-free rationalizability for an information type is the consequence of

rationality and common certainty of rationality alone, given the payoff information

that it specifies. Thus, belief-free rationalizability is characterized by both of the

following equalities (see Battigalli and Siniscalchi, 1999, Proposition 4): for every

i 2 I and xi D .�i ; yi/ 2 Xi ,
20

Ri.xi/ D projAi
CBi.RAT / \ Œxi �; Ri.xi/ D projAi

CBi.RAT / \ Œ�i �; (5)

where Œ�i � and Œxi � are the assumptions about player i defined as follows:[
�i

] D {
�i

} � Yi � Ai � Hi ;
[
xi

] D {
xi

} � Ai � Hi :

19This extends the classical iterated dominance characterization of rationalizability in complete

information games due to Pearce (1984)—see Battigalli (2003). The procedure has been used by

Bergemann and Morris (2009) to define iterative implementation and prove that it is equivalent to

robust (or type-space-independent) implementation.
20Note that neither directly implies the other. Indeed, the second equality in (5) is equivalent to

Ri .�i ; yi / D projAi
[y0

i
2Yi

CBi .RAT / \ Œ.�i ; y0
i /� for all .�i ; yi / 2 Xi , and therefore it leaves open

the possibility that the first equality is violated for some xi 2 Xi . On the other hand, obtaining the

second equality from the first requires the observation that the belief-free rationalizable actions of

an information type only depends on its payoff type. The analogous remark applies to the alternative

characterizations of �-rationalizability that we provide in (6) and (7) below.
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3.2 �-rationalizability

The notion of �-rationalizability is also meant to capture strategic reasoning in the

assumed economic environment with no reference to type spaces. It generalizes

the belief-free approach described above—see Battigalli (2003) and Battigalli and

Siniscalchi (2003, 2007). The solution concept specifies a correspondence R�
i W

Xi � Ai for each player i , taking as given a profile � of information-dependent

first-order restrictions: formally, � D ..�xi
/xi 2Xi

/i2I where �xi
� �.‚0 �X�i �

A�i/ is a nonempty closed set for each information type xi of each player i . The

set of �-rationalizable actions of .�i ; yi/ 2 Xi is defined as follows: R�
i .�i ; yi/ D

\k�0R
�;k
i .�i ; yi/, where R

�;0
i .�i ; yi/ D Ai and, recursively, R

�;k
i .�i ; yi/ is the

set of all ai 2 Ai such that for some �i 2 �.�i ;yi /,

supp �i � ‚0 � {
.x�i ; a�i/ 2 X�i � A�i W a�i 2 R

�;k�1
�i .x�i/

}
;

ai 2 arg max
a0

i
2Ai

∑
�0;��i ;a�i

�i

[f.�0; ��i ; a�i/g � Y�i

]
gi.�0; �i ; ��i ; a0

i ; a�i/:

Note that with trivial restrictions, that is, with �xi
D �.‚0 � X�i � A�i/

for all i 2 I and xi 2 Xi , this reduces to belief-free rationalizability. As we prove

below, ICR and IIR on type spaces with information types are also special cases of

�-rationalizability. Before proceeding, let us record here the epistemic characteri-

zation of �-rationalizability due to Battigalli and Siniscalchi (2007, Proposition 1).

For each i 2 I and xi 2 Xi , define the assumption[
�xi

] D Xi � Ai � {
.�1

i ; �2
i ; : : :/ 2 Hi W �1

i 2 �xi

}I
define the joint assumption Œ�� D ‚0 � Œ�1� � Œ�2�, where Œ�i � is the assumption

that player i satisfies the restrictions, whatever his information type, that is,[
�i

] D ⋃
xi 2Xi

([
xi

] \ [
�xi

])
:

Then �-rationalizability is characterized by the following generalization of the first

equality in (5): for all i 2 I and xi 2 Xi ,

R�
i .xi/ D projAi

CBi

(
RAT \ Œ��

) \ [
xi

] \ [
�xi

]
: (6)

Thus, �-rationalizability corresponds to the assumption that players are rational,

their information and first-order beliefs satisfy the restrictions �, and there is com-

mon belief in these two facts. As a matter of fact, analogously to belief-free rational-

izability, �-rationalizability for player i depends on his information only through

the corresponding payoff type and restrictions. Thus, a generalization of the second

equality in (5) also holds: for all i 2 I and xi D .�i ; yi/ 2 Xi ,

R�
i .xi/ D projAi

CBi

(
RAT \ Œ��

) \ [
�i

] \ [
�xi

]
: (7)
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3.3 Interim correlated rationalizability

The notion of interim correlated rationalizability or ICR, introduced by Dekel et al.

(2007), applies to the Bayesian game induced by an X -space .Ti ; #i ; �i ; �i/i2I . The

solution set specifies for each player i a correspondence ICRi W Ti � Ai which

is defined as follows:21 ICRi.ti/ D \k�0ICRk
i .ti/, where ICR0

i .ti/ D Ai and,

recursively, ICRk
i .ti/ is the set of all ai 2 Ai for which there exists a measurable

function ��i W ‚0 � T�i ! �.A�i/ such that

supp ��i.�0; t�i/ � ICRk�1
�i .t�i/ for �i.ti/-a.e. .�0; t�i/ 2 ‚ � T�i ; (8)

ai 2 arg max
a0

i
2Ai

∫

‚0�T�i

gi

(
�0; #i.ti/; #�i.t�i/; a0

i ; ��i.�0; t�i/
)

�i.ti/Œd�0 � dt�i �: (9)

The intuition for this solution concept is that type ti of player i forms a probabilistic

conjecture ��i on how the behavior of �i depends on her type t�i and on the state

of nature �0, possibly taking into account an implicit correlation device. Indeed,

as its name suggests, ICR allows the possibility that according to the probability

distribution over ‚0 � T�i � A�i induced by �i.ti/ and ��i ,
22 the state of nature �0

and the opponent’s action a�i are correlated, even after conditioning on �i ’s type.

The conjecture ��i must rationalize ai in the sense of (9), and it must be

itself rationalizable in the sense of being supported by rationalizable actions, as

specified by (8), but is otherwise unrestricted. This is reflected in the following

theorem, which proves that ICR reflects rationality and common belief in rationality

alone, given the ‚-hierarchies induced by the assumed type space. More precisely,

given an X -space and a type ti of player i in it, consider the following assumption:

player i is rational, commonly believes in the rationality of all players, and his

payoff type and ‚-hierarchy are those induced by ti . The theorem below states that

ICR for ti captures the behavioral consequences of this assumption, and indeed of

any other, stronger assumption obtained by restricting i’s exogenous information or

beliefs (while keeping the payoff type and ‚-hierarchy induced by ti , of course).

For each player i , let Ei be the � -algebra of exogenous assumptions about

i , namely, the family of all (measurable) subsets Ei � Xi � Ai � Hi which can

21The sets ‚i and Yi are singletons (and hence do not appear at all) in Dekel et al. (2007). How-

ever, their definitions and results extend seamlessly to our framework. In particular, they prove a

result (Proposition 2) similar to Theorem 1, and they also prove that any two types (possibly from

different type spaces) mapping into the same ‚-hierarchy have the same ICR actions, which obtains

here as an obvious consequence of Theorem 1.
22This is the measure �i such that �i Œf�0g�E�i �fa�i g� D ∫

E�i
��i .�0; t�i /Œa�i ��i .ti /Œ�0�dt�i �

for every .�0; a�i / 2 ‚0 � A�i and measurable E�i � T�i .
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be seen as subsets of Xi � HX;i in the sense that, for some nonempty, measurable

Fi � Xi � HX;i ,

Ei D {
.xi ; ai ; hi/ 2 Xi � Ai � Hi W .xi ; %X;i.hi// 2 Fi

}
:

Given a type space .Ti ; #i ; �i ; �i/i2I we say an exogenous assumption Ei 2 Ei is

‚-compatible with type ti of player i , provided that for all .�i ; yi ; ai ; hi/ 2 Ei ,

�i D #i.ti/ and %‚;i.hi/ D 
‚;i.ti/: (10)

In words, Ei is an exogenous assumption ‚-compatible with ti if all of its elements

specify the payoff type and ‚-hierarchy induced by ti , and if it does not exclude

any action or A-hierarchy whose induced X -hierarchy is not itself excluded. Note

that the largest exogenous assumption ‚-compatible with ti is

Ei D f#i.ti/g � Yi � Ai � {
hi 2 Hi W %‚;i.hi/ D 
‚;i.ti/

}
; (11)

which simply says that i’s payoff type and ‚-hierarchy are those specified by ti ,

whereas a minimal such assumption has the following form: for some yi 2 Yi and

hX;i 2 HX;i with .%X;i/
�1.hX;i/ � .%‚;i/

�1.
‚;i.ti//,

Ei D f#i.ti/g � fyig � Ai � {
hi 2 Hi W %X;i.hi/ D hX;i

}
; (12)

which says that i has payoff type #i.ti/, some fixed payoff-irrelevant information yi

(possibly different from �i.ti/) and some fixed X -hierarchy hX;i (possibly different

from 
X;i.ti/) whose induced ‚-hierarchy is the same as the one induced by ti .

Now we are ready to characterize ICR.

Theorem 1. Fix a type space .Ti ; 	i ; �i/i2I . For all i 2 I , ti 2 Ti , and Ei 2 Ei

‚-compatible with ti ,

ICRi.ti/ D projAi
CBi.RAT / \ Ei :

23 (13)

Proof. See Appendix A.1. �
23One might think that, in order to show that (13) holds for every Ei 2 Ei , it would be enough

to prove it just for the case where Ei is as large as possible, that is, where Ei is the set in (11),

which embodies just the assumption that i ’s payoff type and ‚-hierarchy are those induced by ti .

However, considering a more restrictive assumption—some Ei 2 Ei which is ‚-compatible with ti ,

but which is a strict subset of the set in (11)—can, in principle, change the right-hand side of (13).

See also our comment in footnote 20.
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Interim correlated rationalizability and �-rationalizability coincide in the

case of a type space with information types .Xi ; �i/i2I , whenever � specifies (only)

the restrictions derived from it, that is, whenever for all i 2 I and xi 2 Xi ,

�xi
D {

�i 2 �.‚0 � X�i � A�i/ W marg‚0�X�i
�i D �i.xi/

}
:

This follows from Theorem 1, using (6), as we now show.24

Corollary 1. Fix a type space with information types .Xi ; �i/i2I and let � be the
set of restrictions derived from it. Then for every i 2 I and xi 2 Xi ,

ICRi.xi/ D R�
i .xi/:

Proof. As CB i.RAT \ Œ��/ D CB i.RAT / \ CB i.Œ��/, by (6) and Theorem 1

it suffices to show that CB i.Œ��/ \ Œxi � \ Œ�xi
� is an exogenous assumption ‚-

compatible with xi . Given (12), this will follow from

{
xig � Ai � {

hi 2 Hi W %X;i.hi/ D 
X;i.xi/
} D CB i

(
Œ��

) \ [
xi

] \ [
�xi

]
;

which we now prove. Since fxig�Ai �fhi 2 Hi W marg‚0�X�i
'i.hi/ D �i.xi/g D

Œxi � \ Œ�xi
� and the analogous holds for player �i , it suffices to show: for all

hi 2 Hi with marg‚0�X�i
'i.hi/ D �i.xi/, the conditions %X;i.hi/ D 
X;i.xi/

and
∑

x�i 2X�i
'i.hi/Œ‚0 � .Œx�i � \ Œ
X;�i.x�i/�� D 1 are equivalent. Indeed, this

follows at once from belief-closedness and coherency (see Remark 1). �

3.4 Interim independent rationalizability

The solution concept of interim independent rationalizability or IIR—analyzed in

Ely and Pęski (2006)—also applies to the Bayesian game induced by an X -space

.Ti ; #i ; �i ; �i/i2I . Similarly to ICR, it specifies for each player i a correspondence

IIRi W Ti � Ai thus defined: IIRi.ti/ D \k�0IIRk
i .ti/, where IIR0

i .ti/ D
Ai and, recursively, IIRk

i .ti/ is the set of all ai 2 Ai such that there exists a

measurable function ��i W T�i ! �.A�i/ such that

supp ��i.t�i/ � IIRk�1
�i .t�i/ for �i.ti/-a.e. t�i 2 T�i ; (14)

ai 2 arg max
a0

i
2Ai

∫

‚0�T�i

gi

(
�0; #i.ti/; #�i.t�i/; a0

i ; ��i.t�i/
)

�i.ti/Œd�0 � dt�i �: (15)

24 Corollary 1 can be also proved directly, as we do in Battigalli, Di Tillio, Grillo, and Penta

(2008). Indeed, if � is the set of restrictions derived from a type space with information types

.Xi ; �i /i2I , then �xi
is precisely the set of probability distributions on ‚0 � X�i � A�i induced by

�i .xi / and some conjecture ��i W ‚0 � X�i ! �.A�i /.
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Remark 2. If the type space is finite, then ai 2 IIRi.ti/ if and only if ai is ra-

tionalizable for the corresponding player/type ti in the associated interim strategic
form,25 where the set of players is T1 [ T2 and the set of available actions of each

player/type ti is Ai . Indeed, in this game the payoff to player/type ti when choosing

action ai depends only on the actions chosen by the players/types in T�i , and given

a mixed action profile ��i W T�i ! �.A�i/ for such types, it is defined as

gti
.ai ; ��i/ D

∑
.�0;t�i /2‚0�T�i

�i.ti/Œ�0; t�i �gi.�0; #i.ti/; #�i.t�i/; ai ; ��i.t�i//:

Thus, the set of actions that are rationalizable in the interim strategic form for

player/type ti is ISFRi.ti/ D \k�0ISFRk
i .ti/, where ISFR0

i .ti/ D Ai and

ISFRk
i .ti/ is the set of all ai 2 Ai for which there is ��i W T�i ! �.A�i/ with

supp ��i.t�i/ � ISFRk�1
�i .t�i/ for all t�i 2 T�i and ai 2arg maxa0

i
2Ai

gti
.ai ; ��i/.

As IIR0
i .ti/ D ISFR0

i .ti/ D Ai , an obvious induction shows that these require-

ments are the same as (14) and (15), and hence that IIRi.ti/ D ISFRi.ti/. �

Formally, the only difference from ICR is that the conjecture ��i used by ti
to rationalize ai cannot depend on the state of nature; under the probability distri-

bution on ‚0 � T�i � A�i induced by �i.ti/ and ��i , the conditional probabilities

of �i’s actions given �i ’s type do not depend on �0. Indeed, it is clear that the two

notions coincide if there is only one state of nature, as is the case in many economic

applications;26 we record this fact in the next remark. (Recall that we are assuming

two players—the claims in the remark are not true with more players.)

Remark 3. Assume distributed knowledge of the payoff state, i.e. assume that ‚0

is a singleton. Then ICRi.ti/ D IIRi.ti/ for every type space .Ti ; 	i ; �i ; /i2I and

every i 2 I , ti 2 Ti . Thus, by Theorem 1, IIRi.ti/ D projAi
CB i.RAT / \ Ei for

all i 2 I , ti 2 Ti and Ei 2 Ei ‚-compatible with ti . �

In general, however, IIR and ICR differ, and the characterization of IIR

in the latter remark fails to hold. To be sure, the definition of IIR, just like the

definition of ICR, makes no reference to the mappings .�i/i2I , but unlike with ICR,

25This is independent rationalizability on the interim strategic form of the Bayesian game. But,

by Kuhn’s (1953) equivalence result, with I D f1; 2g, correlated and independent rationalizability

on the interim strategic form are equivalent (T�i is like a coalition with perfect recall in the extensive

form of the Bayesian game).
26Models with private values are an obvious example, but also many models with interdependent

values satisfy this property. For example, consider “wallet games” (Klemperer, 1998), or any model

where �i specifies player i ’s characteristics such as ability or riskiness, and the consequences for

each player of an action profile depend on all players’ characteristics.
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where the exact specification of these mappings (and hence of anything beyond the

induced ‚-hierarchies) is also entirely irrelevant for the solution, the IIR actions

of a type do not depend just on its induced ‚-hierarchy. This is precisely because

the independence between the state of nature and the opponent’s action embodied

in IIR is conditional on the opponent’s type, not just on her ‚-hierarchy (and in the

case of a redundant type space, not even on her X -hierarchy).

As we have argued earlier, we do not know how to express what it means for

two different types to choose different actions, if the difference between the types

themselves is not expressible in the given language, i.e. if the two types induce the

same X -hierarchy. Therefore, our task here is to provide a full characterization

of IIR for those cases where such differences can be traced to expressible features

of the types, namely, for non-redundant type spaces. These can be seen as belief-

closed sets of hierarchies, hence independence conditional on the opponent’s type

does correspond, in those cases, to an expressible assumption. Now we formalize

this assumption and then state our characterization result, which says that IIR is the

expression of rationality, conditional independence, and common belief thereof,

given the X-hierarchies induced by the type space.

For every player i , let Hi;CI designate the set of all hi 2 Hi such that,

according to the belief 'i.hi/, the state of nature and the action of player �i are in-

dependent, conditional on every exogenous assumption about player �i . Formally,

hi 2 Hi;CI provided that for all �0 2 ‚0 and a�i 2 A�i the condition

'i.hi/
[
�0; a�i

∣∣E�i

]
.�/ D 'i.hi/

[
�0

∣∣E�i

]
.�/ 'i.hi/

[
a�i

∣∣E�i

]
.�/ (16)

holds 'i.hi/-almost everywhere, with

'i.hi/Œ� j E�i �.�/ W ‚0 � X�i � A�i � H�i ! �.‚0 � X�i � A�i � H�i/

denoting any regular conditional probability given the measure 'i.hi/ and the � -

algebra E�i . Such regular conditional probability exists because ‚0 � X�i � A�i �
H�i is a Polish space (see Dudley, 2002, p. 345). Moreover, as we establish in Ap-

pendix A.2, the set Hi;CI does not depend on the particular version of conditional

probability that we choose, and furthermore, it is measurable. Thus, we can define

the joint assumption CI D ‚0 � CI1 � CI2, where CI i D Xi � Ai � Hi;CI for

every i 2 I . Now for all i 2 I and hX;i 2 HX;i let

[
hX;i

] D Xi � Ai � {
hi 2 Hi W %X;i.hi/ D hX;i

}
:

With these definitions, we can characterize IIR.
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Theorem 2. Fix a type space .Ti ; #i ; �i ; �i/i2I . For every i 2 I and ti 2 Ti ,

IIRi.ti/ � projAi
CBi.RAT \ CI/ \ [

#i.ti/
] \ [


X;i.ti/
]
:

Furthermore, if the type space is non-redundant, then

IIRi.ti/ � projAi
CBi.RAT \ CI/ \ [(

#i.ti/; �i.ti/
)] \ [


X;i.ti/
]
:

Proof. See Appendix A.3. �

Note that the right-hand side of the first inclusion contains the right-hand

side of the second, because Œ.#i.ti/; �i.ti//� � Œ#i.ti/�. This implies that the two

right-hand sides are equal (and hence the two inclusions are, in fact, equalities) in

the non-redundant case; in this case the IIR actions of type ti depend on payoff-

irrelevant information only through the X-hierarchy induced by ti , and not (di-

rectly) on its own payoff-irrelevant information �i.ti/. In the presence of redundan-

cies, however, the first inclusion is, in general, strict. To illustrate, consider again

the example of section 1.2. Assume that X1 and X2 are both singletons, X1 D f Nx1g
and X2 D f Nx2g, so that the second type space in the example is redundant not only

in terms of ‚-hierarchies, but also in terms of X -hierarchies. All types in the ex-

ample induce the same X-hierarchy: 
X;i.Nti/ D 
X;i.t
0
i / D 
X;i.t

00
i / D hX;i . But, as

we have seen,

IIRi.t
0
i / D IIRi.t

00
i / D fB; N g 	

fN g D IIRi.Nti/ D projAi
CBi.RAT \ CI/ \ Œ Nxi � \ ŒhX;i �:

Similarly to what we showed for ICR, we can identify �-rationalizability

with IIR for an X-space with information types .Xi ; �i/i2I , whenever the following

holds: the restrictions � are derived from the X-space, and moreover, they embody

independence between state of nature and opponent’s action, conditional on the

player’s information. Let us say that �i 2 �.‚0 �X�i �A�i/ satisfies information-
based conditional independence if for all .�0; x�i ; a�i/ 2 ‚0 � X�i � A�i ,

�i Œx�i � > 0 ) �i Œ�0; a�i jx�i � D �i Œ�0jx�i ��i Œa�i jx�i �:

Let �i;CI denote this set of first-order beliefs, and say that � is CI-derived from

.Xi ; �i/i2I if for all i 2 I and xi 2 Xi ,
27

�xi
D {

�i 2 �i;CI W marg‚0�X�i
�i D �i.xi/

}
:

27Analogously to our remark in footnote 24, here we note that the equivalence between IIR and �-

rationalizability (Corollary 2) can be proved directly, and indeed we do so in Battigalli et al. (2008).

If � is the set of restrictions CI-derived from a type space with information types .Xi ; �i /i2I ,

then �xi
is the set of probability distributions on ‚0 � X�i � A�i induced by �i .xi / and some

conjecture ��i W ‚0 � X�i ! �.A�i / satisfying conditional independence, that is, ��i .�0; x�i / D
��i .�

0
0; x�i / for all �0; � 0

0 2 ‚0 and x�i 2 X�i .
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Corollary 2. Fix a type space with information types .Xi ; �i/i2I and let � be the
set of restrictions CI-derived from it. Then for all i 2 I and xi 2 Xi ,

IIRi.xi/ D R�
i .xi/:

Proof. Since CB i.RAT \Œ��/ D CB i.RAT /\CB i.Œ��/ and CB i.RAT \CI/ D
CB i.RAT / \ CB i.CI /, by (6) and Theorem 2 it suffices to prove CB i.Œ��/ \
Œxi � \ Œ�xi

� D CB i.CI / \ Œxi � \ Œ
X;i.xi/�. Indeed, we have Œxi � \ Œ�xi
� D

CIi \ .fxig � Ai � fhi 2 Hi W marg‚0�X�i
'i.hi/ D �i.xi/g/, and analogously

for player �i . Thus, the claim follows by the same argument as in the proof of

Corollary 1. �

4 Ex ante rationalizability
In this section we show that the differences between rationalizability in the ex ante

and interim strategic form of a Bayesian game are due to the different independence

restrictions that are embodied in these solution concepts. This follows from a pre-

liminary result about �-rationalizability that helps clarifying the conceptual issue;

given any set � of information-dependent restrictions on beliefs, we define a no-

tion of ex ante correlated �-rationalizability, and we show that it is in a strong sense

equivalent to the interim notion of �-rationalizability introduced earlier. Then we

define a notion of ex ante correlated rationalizability that is equivalent to ICR in the

same sense.

4.1 Ex ante �-rationalizability

Consider the point of view of player i in an ex ante stage where he does not know

xi yet, and let Si be the set of all functions from Xi to Ai . Then we can define a

structural ex ante strategic form with two real players, 1 and 2, choosing strategies

in S1 and S2, respectively, and a fictitious player choosing an element of ‚0 � X ,

with the payoff function Ngi W ‚0 � X � S1 � S2 ! R of each player i defined by

Ngi.�0; �1; y1; �2; y2; s1; s2/ D gi.�0; �1; �2; s1.�1; y1/; s2.�2; y2//:

Now fix a set of restrictions �i D .�xi
/xi 2Xi

where �xi
� �.‚0 � X�i �

A�i/ for every xi 2 Xi . This entails restrictions on the belief �i 2 �.‚0�X �S�i/

that player i can entertain ex ante about the fictitious player’s choice and the strategy
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of �i . Thus, �i is consistent with �i if �i assigns positive probability to every xi ,
28

and moreover, conditional on xi , it yields interim beliefs in �xi
, that is,

�i Œxi � > 0 and N�i Œ�jxi � 2 �xi
;

where N�i is the probability distribution on ‚0 � X � A�i induced by �i , namely

N�i Œ�0; xi ; x�i ; a�i � D �i

[f.�0; xi ; x�i/g � fs�i 2 S�i W s�i.x�i/ D a�ig
]
:

The set of ex ante �-rationalizable strategies is thus defined: AR�
i D \k�0AR

�;k
i ,

where AR
�;0
i D Si and AR

�;k
i is the set of all si 2 Si such that, for some �i 2

�.‚0 � X � S�i/ consistent with �i ,
29

supp �i � ‚0 � X � AR
�;k�1
�i ; (17)

si 2 arg max
s0

i
2Si

∑
.�0;x;s�i /2‚0�X�S�i

�i Œ�0; x; s�i � Ngi.�0; x; s0
i ; s�i/: (18)

Note that �i may exhibit correlation between the fictitious player and player �i .

In order to relate ex ante �-rationalizability with �-rationalizability, ob-

serve that given a correspondence Fi W Xi � Ai and a set S 0
i � Si , it makes sense

to consider S 0
i and Fi equivalent, and write S 0

i 
 Fi , whenever S 0
i is precisely the

set of selections from Fi . Thus

S 0
i 
 Fi if and only if S 0

i D {
si 2 Si W 8xi 2 Xi ; si.xi/ 2 Fi.xi/

}
:

As the following result shows, this is precisely the sense in which the ex ante �-

rationalizable strategies AR�
i are equivalent to the �-rationalizability correspon-

dence R�
i W Xi � Ai .

Proposition 1. For every i 2 I , AR�
i 
 R�

i .

Proof. See Appendix A.4. �
28We impose this weak requirement to derive well-defined interim beliefs and avoid tedious is-

sues concerning the differences between ex ante and interim expected payoff maximization. Al-

ternatively, we could impose a perfection requirement (see Brandenburger and Dekel, 1987). This

discussion would distract the reader’s attention from the important issues.
29Adapting the argument Battigalli and Siniscalchi (2007) use to prove their Proposition 1, one

can show that AR�
i is the set of ex ante structural strategic form strategies of i that are consistent

with (correct) common belief in rationality and in the restrictions �.
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4.2 Ex ante correlated rationalizability

Corollary 1 and Proposition 1 yield an equivalence result for ex ante and interim

correlated rationalizability in Bayesian games with information types. Before stat-

ing the result formally, let us first review the standard notion of ex ante rational-

izability. We restrict our attention to the case in which Harsanyi types represent

information that can be learned, that is, the case of information types. However, we

remark that an equivalence result like the one stated below can be proved for every
Bayesian game.

A strategy for the Bayesian game induced by a type space with information

types .Xi ; �i/i2I is ex ante rationalizable if it is rationalizable in the ex ante strate-

gic form of the game. To define the ex ante strategic form, we must first specify ex

ante beliefs on ‚0 � X consistent with the type space. Thus, we say that a prior

…i 2 �.‚0 � X/ is consistent with .Xi ; �i/i2I if for all xi 2 Xi ,

…i Œxi � > 0; 30 and …i Œ�jxi � D �i.xi/Œ��:
Once we fix a consistent prior …i for each player i , the ex ante strategic form of

the induced Bayesian game is given by the expected payoff functions specified as

follows: for all i 2 I ,

Ng…i

i .s1; s2/ D
∑

.�0;x/2‚0�X

…i Œ�0; x� Ngi.�0; x; s1; s2/:

It can be verified that the rationalizable strategies in this game do not depend on

the particular priors …1, …2 that we fix, as long as we they are consistent with the

given type space.

It is also standard to show that ex ante rationalizability implicitly relies on

an ex ante independence assumption: a player’s beliefs about .�0; x/ and s�i are

given by a product measure. Indeed, anticipating the next definition, this amounts

to choosing a conjecture of the form �i D …i � �i , where �i 2 �.S�i/. Ex ante

independence implies interim independence, hence ex ante rationalizability implies

interim independent rationalizability, or equivalently, rationalizability in the interim

strategic form of the Bayesian game—see Remark 2.31

30As before, we include this essentially innocuous requirement just to avoid distracting the reader.
31The difference between ex ante and interim rationalizability is related to the difference between

two notions of extensive form rationalizability: the more restrictive one assumes that a player has

an initial conjecture about the opponent’s strategy, which may be revised only after receiving some

information about the opponent’s behavior; the less restrictive, adopted by Pearce (1984), drops the

initial conjecture and allows a player to have different conjectures at different information sets even

if they only reflect information about chance moves. When we consider the extensive form of a static
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We now define a notion of ex ante correlated rationalizability that removes

the said ex ante independence assumption. Fix a type space with information types

.Xi ; �i/i2I and priors …1, …2 consistent with it. For each player i the set of ex
ante correlated rationalizable strategies is defined as ACRi D \k�0ACRk

i , where

ACR0
i D Si and for all k � 1, recursively, ACRk

i is the set of all si 2 Si for which

there exists �i 2 �.‚0 � X � S�i/ such that

marg‚0�X �i D …i ; (19)

supp �i � ‚0 � X � ACRk�1
�i ; (20)

si 2 arg max
s0

i
2Si

∑
�0;x;s�i

�i Œ�0; x; s�i � Ngi.�0; x; s0
i ; s�i/: (21)

It can be shown that, just like with ex ante rationalizability, the ex ante correlated

rationalizable strategies do not depend on the priors that we choose, as long as they

are consistent with .Xi ; �i/i2I .

Proposition 2. Fix a type space with information types and priors consistent with
it. Let � be the restrictions derived from the type space. Then for all i 2 I ,

ACRi D AR�
i :

Proof. Fix a type space .Xi ; �i/i2I with information types, and let � D .�i/i2I be

the set of restrictions derived from it. For every i 2 I and �i 2 �.‚0�X�S�i/, the

conditions of consistency of �i with �i and of marg‚0�X �i D …i with .Xi ; �i/i2I

are identical. Thus, for all k � 1, every such �i is consistent with �i and satisfies

(17) and (18), if and only if it satisfies (19), (20) and (21). �

We can now prove the main result in this section.

Theorem 3. Fix a type space with information types and priors consistent with it.
Then for every i 2 I ,

ACRi 
 ICRi :

Proof. Fix i 2 I . By Proposition 2, ACRi D AR�
i . By Proposition 1, AR�

i 

R�

i . By Corollary 1, R�
i D ICRi . Thus, ACRi 
 ICRi . �

Thus, looking deeper into the discrepancy between ex ante and interim ra-

tionalizability, we see that it is due to the different independence restrictions, not

Bayesian game, the first solution concept yields ex ante rationalizability and the second one yields

interim rationalizability. To the best of our knowledge, Battigalli (1988, pp. 719–720, footnote 1) is

the first published work pointing out the difference.
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to different types being allowed or not to hold different conjectures. Indeed, once

these restrictions are removed, the discrepancy disappears: ex ante correlated ra-

tionalizability treats different types just as different information sets of the same

player, and yet it is fully equivalent to ICR.

5 Discussion

5.1 Extensions

n players. The most natural extension of IIR to static games with more than two

players assumes that each type of each player believes that, conditional on the op-

ponents’ types, the payoff state and all the opponents’ actions are mutually inde-

pendent, whereas the natural extension of ICR allows for general correlation. All

our characterization results have straightforward generalizations to this more gen-

eral framework, except for the one in Remark 3. Indeed, for this natural extension

of IIR, our remark about the equivalence between IIR and ICR under distributed

knowledge of the payoff state does not hold, for the same reasons why indepen-

dent rationalizability is a refinement of correlated rationalizability in games with

complete information.

Dynamic games. �-rationalizability in dynamic games with incomplete informa-

tion has been studied by Battigalli (2003), Battigalli and Siniscalchi (2003, 2007)

and Battigalli and Prestipino (2011). These papers discuss also how to model inde-

pendence assumptions in dynamic games. They study two versions of the solution

concept, one that features a forward induction principle in the spirit of Pearce (1984)

and Battigalli (1997), and a weaker one that does not. Battigalli and Siniscalchi

(2007) give characterizations of both versions, thus extending our characterizations

in (6) and (7). Battigalli and Prestipino (2011) provide an alternative characteriza-

tion of the forward-induction version of �-rationalizability.32 Proposition 1 on ex

ante and interim �-rationalizability can also be extended. Similarly, one can define

versions of ICR and IIR for dynamic Bayesian games with and without forward

induction. (Penta, 2009 deals with the analogue of ICR without forward induction,

defining analogues for the other notions is straightforward.) For these solution con-

cepts, we can provide appropriate extensions of Propositions 1, 2 and Theorem 3;

we conjecture that an extension of Theorem 1 also holds.

32They also show that the definition of �-rationalizability in Battigalli and Siniscalchi (2003) is

equivalent to the more conceptually correct definition of Battigalli (2003), when a profile of sets of

conditional probability systems � satisfies a certain regularity condition (assumed by Battigalli and

Siniscalchi, 2003), but not more generally.
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5.2 Related literature

We already mentioned the relationship with the work of Battigalli (2003) and Bat-

tigalli and Siniscalchi (2003) on �-rationalizability. Here we just notice that none

of these papers makes the difference between payoff relevant and payoff irrelevant

information explicit; actually, their notation and language suggest that only payoff

relevant information is considered, although this is not a formal assumption. Fur-

thermore, these papers assume distributed knowledge of the payoff state, although

their results do not depend on this assumption.

ICR has been introduced by Dekel et al. (2007), who also provide some

epistemic characterization results. They prove that the ICR actions of a type only

depend on the induced ‚-hierarchy.33 The most important differences between

their approach and ours is that they neglect private information (like Ely and Pęski,

2006) and do not state their epistemic results as expressible characterizations, i.e. by

means of events in the appropriate canonical universal type space. These differ-

ences are related. One advantage of modeling private information (including the

payoff irrelevant one) explicitly, is that this provides a sufficiently rich language

with which we can express the property of information-based conditional indepen-

dence and the related characterization of IIR. We find the analogous characteriza-

tion of Dekel et al. (2007) less instructive because it relies on an interpretation of

the type space as an “objective” information system that cannot be expressed in a

formal language. Moreover, in our richer framework we can relate IIR and ICR

to �-rationalizability, and we can formally state the obvious but important point

that ICR and IIR are equivalent with two players and distributed knowledge of the

payoff state.

Ely and Pęski (2006) analyze IIR. Like Dekel et al. (2007), their start-

ing point is the observation that IIR is not invariant to the addition/deletion of

redundant types, and therefore depends on something more than the induced ‚-

hierarchies (or even X -hierarchies). Their approach to IIR is essentially orthog-

onal to ours. We look for conditions under which IIR actions admit an express-

ible characterization, whereas they change the notion of belief hierarchy in order

to obtain one that identifies IIR actions. They show that, under some regularity

conditions, Harsanyi types yield—besides the standard ‚-hierarchies—also richer

33This allows restricting attention to ICR actions in the ‚-based universal type space, as Dekel,

Fudenberg, and Morris (2006), Weinstein and Yildiz (2007), Chen, Di Tillio, Faingold, and Xiong

(2010), and Penta (2009) do in their analysis of the continuity of rationalizable actions with respect

to beliefs hierarchies. (Penta, 2009 considers an extensive form version of ICR.)
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�-hierarchies where i ’s first-order beliefs are elements of �.�.‚0�‚�i//.
34 Then

they show that �-hierarchies identify IIR actions. It is not clear to us whether �-

hierarchies are expressible in a meaningful sense. To elaborate further, take any

type space .Ti ; #i ; �i ; �i/i2I . As Ely and Pęski (2006, p. 28) point out, letting

�i.ti j�/ W T�i ! �.‚0 � ‚�i/ for each i 2 I and ti 2 Ti denote a version of the

conditional probability given �i ’s type t�i , we obtain �-hierarchies: in particular,

the first-order belief in the �-hierarchy induced by type ti is defined as follows: for

every measurable E � �.‚0 � ‚�i/,

�
�;1
i .ti/ŒE� D �i.ti/

[
‚0 � {

t�i 2 T�i W �i.ti jt�i/ 2 E
}]

:

If the type space has information types, so that T�i D X�i , then one can express this

first-order belief as uncertainty about the relevant probability measure in the array

.�i.ti jx�i//x�i 2X�i
, thus making �-hierarchies expressible in some sense. But if

the type space does not have information types, then we are not allowed to identify

T�i and X�i , and this interpretation cannot be offered.

Sadzik (2009) seems to take a similar route to Ely and Pęski (2006): he de-

fines hierarchical beliefs that identify Bayesian equilibrium actions. But on closer

inspection, we find his approach much more similar to ours. He enriches the envi-

ronment by adding to the payoff state � a countable sequence of payoff-irrelevant

(and continuous) signals for each player. On this expanded space of exogenous

primitive uncertainty, call it Z, he constructs a formal language and relates it to stan-

dard Z-based hierarchies, showing that they identify Bayesian equilibrium actions.

We speculatively propose the following interpretation of the difference between our

approach to modeling uncertainty and his: we assume that there is common aware-

ness only of a finite number of signals and consequently put only those signals in

the commonly known environment.35 This justifies conditionally correlated beliefs:

when i conditions on the information type x�i of �i , he suspects that �i may ob-

serve some other payoff irrelevant variable i is not aware of, which in turn may

be correlated with �0, thus allowing correlation between �0 and a�i conditional on

�i’s information type—this is a restatement of the incomplete model interpretation

of conditional correlation given by Dekel et al. (2007). On the other hand, Sadzik

(2009) puts in the environment all the “conceivable” signals, which is justified if

there is common awareness of all of them.

Liu (2009) analyzes Bayesian equilibrium predictions and the role of re-

dundant types using an approach similar to ours. In particular, he distinguishes

34Ely and Pęski (2006) have no private information—in our framework, this would correspond to

the case where Xi is a singleton for each player i . We translate their definitions into our framework

in the obvious way.
35Of course, a player may observe payoff-irrelevant aspects of which the opponent is unaware. In

this case our rationalizability analysis should (and does) neglect these aspects.
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between redundant and non-redundant ‚-based type spaces, arguing that redundant

types should be used only to represent hidden uncertainty entertained by players that

the modeler does not explicitly take into account. Coherently with this approach,

he suggests the modeler should always use a non-redundant type space unless he

is aware there may be some additional strategically relevant information he is un-

aware of.36 In our framework, the additional uncertainty is represented by the set

of payoff irrelevant states Y and the exogenous beliefs of players are modeled us-

ing .‚ � Y /-based type spaces. In addition, Liu (2009) also shows that the same

Bayesian equilibrium predictions can be obtained both with a ‚-based redundant

type space and with an appropriate .‚ � Y /-based non-redundant type space. In-

stead of addressing Bayesian Equilibrium predictions, we use this richer uncertainty

space, to highlight the connections among different definitions of rationalizability

and to investigate the role of expressible independence restrictions.

A Appendices
To ease notation in the proofs below, given a joint assumption E D E1 � E2, for

each k � 0 we define mutual k-order belief in E as MBk.E/ D \0�n�k Bn.E/

and, for each player i , we denote the projection of MBk.E/ on Xi � Ai � Hi

by MBk
i .E/. Note that MB0

i .E/ D Ei and MBk
i .E/ D Ei \ Bi.MBk�1.E//,

while CB i.E/ D \k�0MBk
i .E/. For each player i we let Ui D Xi � Ai � Hi

and UX;i D Xi � HX;i . Moreover, we define MB�1
i .RAT / D Ui , so that letting

MB�1.RAT / D ‚0�U1�U2 we have MBk
i .RAT / D RATi\Bi.MBk�1

�i .RAT //

for all k � 0. Finally, we make use of the mapping %‚;i W HX;i ! H‚;i defined as

%‚;i D %‚;i ı %�1
X;i .

A.1 Proof of Theorem 1

Fix an X -space .Ti ; #i ; �i ; �i/i2I . For each i 2 I and uX;i 2 UX;i define

[
uX;i

] D {
.xi ; ai ; hi/ 2 Ui W .xi ; %X;i.hi// D uX;i

}
:

36He also provides a necessary and sufficient condition on the space ‚ (called “separativity”) to

identify a ‚-based redundant type space with a .‚ � Y /-based non-redundant type space through a

mapping that preserves ‚-hierarchies. Given the finiteness assumption, this condition is satisfied in

our framework.

29

Battigalli et al.: Interactive Epistemology and Games with Asymmetric Information

Published by The Berkeley Electronic Press, 2011



Part I

Here we prove: for all i 2 I , ti 2 Ti and uX;i 2 f#i.ti/g � Yi � .%‚;i/
�1.
‚;i.ti//,

ICRk
i.ti/ � projAi

MBk�1
i .RAT / \ [

uX;i

]
:

This is enough to establish ICRi.ti/ � projAi
CB i.RAT / \ Ei for every Ei 2 Ei

‚-compatible with ti , because every such Ei is a union of events of the form ŒuX;i �

as above (and the union of their projections on Ai is the projection of their union).

The proof is by induction in k. The claim is trivially true for k D 0. Now

let n � 1, assume that the claim is true for k D n � 1, and fix any i 2 I , ti 2 Ti ,

ai 2 Ai , yi 2 Yi and hi 2 Hi such that %‚;i.hi/ D 
‚;i.ti/ and .#i.ti/; yi ; ai ; hi/ 2
MBn�1

i .RAT /. Let &�i W ‚0�U�i ! �.‚0�U�i/ be any conditional distribution

(see e.g. Dudley, 2002, pp. 269-270) given the measure 'i.hi/ and the �-algebra

generated by the mapping

.�0; ��i ; y�i ; a�i ; h�i/ 7! .�0; ��i ; %‚;�i.h�i//:

Since &�i is measurable with respect to this � -algebra, we can view it as a function

with ‚0 � U‚;�i as its domain. Thus, we can define ��i W ‚0 � T�i ! �.A�i/ as

follows: for all .�0; t�i/ 2 ‚0 � T�i ,

��i.�0; t�i/ D margA�i
&�i.�0; #�i.t�i/; 
‚;�i.t�i//: (22)

Note that .#i.ti/; yi ; ai ; hi/ 2 MBn�1
i .RAT / � Bi.‚0 � MBn�2

�i .RAT // implies

supp &�i.�0; u�i/ � f�0g�MBn�2
�i .RAT / for 'i.hi/-a.e. .�0; u�i/ 2 ‚0 � U�i

and hence by (22), using the induction hypothesis and %‚;i.hi/ D 
‚;i.ti/,

supp ��i.�0; t�i/ � ICRn�1
�i .t�i/ for �i.ti/-a.e. .�0; t�i/ 2 ‚0 � T�i :

It is clear that .#i.ti/; yi ; ai ; hi/ 2 MBn�1
i .RAT / � RAT i and %‚;i.hi/ D


‚;i.ti/ imply, using (22),

ai 2 arg max
a0

i

∫

‚0�T�i

gi

(
�0; #i.ti/; #�i.t�i/; a0

i ; ��i.�0; t�i/
)
�i.ti/Œd�0 � dt�i �:

Thus, ai 2 ICRn
i .ti/.
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Part II

Here we prove: for all i 2 I , ti 2 Ti and uX;i 2 f#i.ti/g � Yi � .%‚;i/
�1.
‚;i.ti//,

ICRk
i.ti/ � projAi

MBk�1
i .RAT / \ [

uX;i

]
:

This is enough to establish ICRi.ti/ � projAi
CB i.RAT / \ Ei for every Ei 2 Ei

‚-compatible with ti , because MBk�1
i .RAT / \ ŒuX;i � is a decreasing sequence of

nonempty compact sets converging to CB i.RAT / \ ŒuX;i �, which is therefore a

nonempty subset of CB i.RAT / \ Ei whenever ŒuX;i � � Ei .

The proof is by induction in k. As %X;i is onto for each i 2 I , the claim is

clearly true for k D 0. Now let n � 1, assume that the claim is true for k D n � 1,

and fix i 2 I , ti 2 Ti , yi 2 Yi , hX;i 2 HX;i with %‚;i.hX;i/ D 
‚;i.ti/, and

ai 2 ICRn
i .ti/. Then there is ��i W ‚0 � T�i ! �.A�i/ with

supp ��i.�0; t�i/ � ICRn�1
�i .t�i/ for �i.ti/-a.e. .�0; t�i/ 2 ‚ � T�i ; (23)

ai 2 arg max
a0

i
2Ai

∫

‚0�T�i

gi

(
�0; #i.ti/; #�i.t�i/; a0

i ; ��i.�0; t�i/
)

�i.ti/Œd�0�dt�i �: (24)

Note that by the induction hypothesis ICRn�1
�i .t�i/ D ICRn�1

�i .t 0�i/ for all t�i ; t 0�i 2
T�i such that 	�i.t�i/ D 	�i.t

0�i/ and 
X;�i.t�i/ D 
X;�i.t
0�i/. Thus, without

loss of generality we may assume ��i.�0; t�i/ D ��i.�0; t 0�i/ for all �0 2 ‚0

in each such case. Thus, by (23) and again by the induction hypothesis, there is

e��i W ‚0 � UX;�i ! �.U�i/ satisfying the following: for all .�0; t�i/ 2 ‚0 � T�i ,

margA�i
e��i

(
�0; 	�i.t�i/; 
X;�i.t�i/

) D ��i.�0; t�i/; (25)

and for all .�0; uX;�i/ 2 ‚0 � UX;�i ,

suppe��i.�0; uX;�i/ � MBn�2
�i .RAT / \ [

uX;�i

]
: (26)

Let �i be the probability distribution on ‚0 � U�i induced by 'X;i.
X;i.ti// and

e��i , that is, for every �0 2 ‚0 and measurable E�i � U�i ,

�i

[f�0g � E�i

] D
∫

UX;�i

e��i.�0; uX;�i/ŒE�i � 'X;i.
X;i.ti//Œ�0 � duX;�i �:

Since 'i is onto, there exists hi 2 Hi such that 'i.hi/ D �i . By construc-

tion, 'X;i.%X;i.hi// D 'X;i.hX;i/ and hence %X;i.hi/ D hX;i since 'X;i is injec-

tive. In particular, %‚;i.hi/ D 
‚;i.ti/, which implies .#i.ti/; yi ; ai ; hi/ 2 RAT i

by (24) and (25). Moreover, by (26), 'i.hi/Œ‚0 � MBn�2
�i .RAT /� D 1. Thus,

.#i.ti/; yi ; ai ; hi/ 2 MBn�1
i .RAT /.
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A.2 Measurability of the conditional independence assumption

Since 'i is a homeomorphism, in order to prove that the set Hi;CI is measurable it

suffices to show that the set of all probability distributions on ‚0 �X�i �A�i �H�i

satisfying (16) is measurable. This, in turn, follows from the lemma below, letting

Z D ‚0 � X�i � A�i � H�i , F3 D E�i , F1 D f‚0
0 � X�i � A�i � H�i W ‚0

0 � ‚0g
and F2 D f‚0 � X�i � A0�i � H�i W A0�i � A�ig. (Note that E�i is indeed

countably generated, since X�i � HX;�i is compact metric.) From the proof of the

lemma it also follows that the set Hi;CI does not depend on the particular version

of conditional probability that we choose when defining it, as claimed earlier.

Lemma 1. Fix a Polish space Z with its Borel �-algebra F . Let F1 � F and
F2 � F be two finite sub-algebras, and let F3 � F be a countably generated
sub-�-algebra. Let F23 denote the �-algebra generated by F2 [ F3, and for each
� 2 �.Z/ and E 2 F fix arbitrarily regular versions �ŒEjF3�.�/ and �ŒEjF23�.�/
of the conditional probability of E given F3 and F23, respectively. Then for every
� 2 �.Z/ the following conditions are equivalent:

�
[{

z 2 Z W 8E1 2 F1; 8E2 2 F2;

�ŒE1 \ E2jF3�.z/ D �ŒE1jF3�.z/�ŒE2jF3�.z/
}] D 1 I (27)

�
[{

z 2 Z W 8E1 2 F1; �ŒE1jF3�.z/ D �ŒE1jF23�.z/
}] D 1 : (28)

Furthermore, the set of all � 2 �.Z/ satisfying (27) (or equivalently (28)) is mea-
surable.

Proof. The equivalence between (27) and (28) is well known—see e.g. Billingsley

(1995, p. 456). Now let us verify that the set of all � 2 �.Z/ satisfying (27) is

measurable. Let A be the algebra generated by any countable family that generates

F3. Observe that for every p 2 Œ0; 1�, E 2 F and E3 2 F3, the two conditions

�
[{

z 2 E3 W �ŒEjF3�.z/ � p
}] D �.E3/; (29)

8E 0
3 2 A; E 0

3 � E3 ) �ŒE \ E 0
3� � p�ŒE 0

3� (30)

are equivalent;37 denote by M.p; E; E3/ the set of all � 2 �.Z/ satisfying (29).

By the said equivalence, each such set is measurable. Moreover, the set of all

� 2 �.Z/ satisfying (27) can be written as

⋂
p;q

⋂
E12F1

⋂
E22F2

⋂
E32A

[(
�.Z/n(M.p; E1; E3/\M.q; E2; E3/

))[M.pq; E1\E2; E3/
]

37By definition of conditional probability,
∫

E3
�ŒEjF3�.z/�.dz/ D �ŒE\E3� for every E3 2 F3.

Thus, (29) implies (30) and, conversely, (30) implies that the set fz 2 Z W �ŒEjF3�.z/ < pg is a

F3-measurable event of �-probability zero, i.e. (29).
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where p; q range over the set of rational numbers between 0 and 1. The set above

is measurable, so the proof is complete. �

A.3 Proof of Theorem 2

Part I

Fix an X -space .Ti ; #i ; �i ; �i/i2I . We prove that for all i 2 I , ti 2 Ti and k � 0,

IIRk
i .ti/ � projAi

MBk�1
i .RAT \ CI/ \ [

#i.ti/
] \ [


X;i.ti/
]
:

The claim is trivially true for k D 0. Now let n � 1, assume the claim is true

for k D n � 1, and fix any i 2 I , ti 2 Ti , ai 2 Ai , yi 2 Yi and hi 2 Hi

such that %X;i.hi/ D 
X;i.ti/ and .#i.ti/; yi ; ai ; hi/ 2 MBn�1
i .RAT \ CI/. Let

&�i W ‚0 � U�i ! �.‚0 � U�i/ be any conditional distribution given the measure

'i.hi/ and the � -algebra generated by the sets f�0g � E�i , where �0 2 ‚0 and

E�i 2 E�i . As .#i.ti/; yi ; ai ; hi/ 2 MBn�1
i .RAT \ CI/ � CI i , it follows that

'i.hi/ 2 Hi;CI and hence that margA�i
&�i.�0; u�i/ D margA�i

&�i.�
0
0; u�i/ for

'i.hi/-almost every .�0; t�i/ 2 ‚0 � U�i and every � 0
0 2 ‚0. (This follows at once

from the equivalence between (27) and (28) in Lemma 1.) Moreover, since &�i is

measurable with respect to the said � -algebra, we can view it as a function with

‚0 � UX;�i as its domain. Thus, using the fact that %X;i.hi/ D 
X;i.ti/, there exists

a well defined, measurable ��i W T�i ! �.A�i/ satisfying the following:

��i.t�i/ D margA�i
&�i.�0; 	�i.t�i/; 
X;�i.t�i//

for �i.ti/-a.e. .�0; t�i/ 2 ‚0 � T�i : (31)

Note that

.#i.ti/; yi ; ai ; hi/ 2 MBn�1
i .RAT \ CI/ � Bi.‚0 � MBn�2

�i .RAT \ CI//

implies

supp &�i.�0; u�i/ � f�0g � MBn�2
�i .RAT \ CI/

for 'i.hi/-a.e. .�0; u�i/ 2 ‚0 � U�i (32)

and hence, by the induction hypothesis,

supp ��i.t�i/ � IIRn�1
�i .t�i/ for �i.ti/-a.e. t�i 2 T�i :
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Clearly, .#i.ti/; yi ; ai ; hi/ 2 MBn�1
i .RAT \CI/ � RAT i and %X;i.hi/ D 
X;i.ti/

imply, using (31),

ai 2 arg max
a0

i

∫

‚0�T�i

gi.�0; #i.ti/; #�i.t�i/; a0
i ; ��i.t�i//�i.ti/Œd�0 � dt�i �:

This proves that ai 2 IIRn
i .ti/.

Part II

Fix a non-redundant X -space .Ti ; #i ; �i ; �i/i2I . We prove that for all i 2 I , ti 2 Ti

and k � 0,

IIRk
i .ti/ � projAi

MBk�1
i .RAT \ CI/ \ [(

	i.ti/; 
X;i.ti/
)]

:38

The claim is true for k D 0 because %X;i is onto. Now let n � 1, assume that the

claim is true for k D n � 1, and fix i 2 I , ti 2 Ti and ai 2 IIRn
i .ti/. Fix a

measurable ��i W T�i ! �.A�i/ with

supp ��i.t�i/ � IIRn�1
�i .t�i/ for �i.ti/-a.e. t�i 2 T�i ; (33)

ai 2 arg max
a0

i
2Ai

∫

‚0�T�i

gi.�0; #i.ti/; #�i.t�i/; a0
i ; ��i.t�i// �i.ti/Œd�0 � dt�i �: (34)

By the induction hypothesis, non-redundancy and (33), there exists e��i W UX;�i !
�.X�i � A�i � H�i/ satisfying the following: for all t�i 2 T�i ,

margA�i
e��i

(
	�i.t�i/; 
X;�i.t�i/

) D ��i.t�i/; (35)

and for all uX;�i 2 UX;�i ,

suppe��i.uX;�i/ � MBn�2
�i .RAT \ CI/ \ ŒuX;�i �: (36)

Let �i be the probability distribution on ‚0 � U�i induced by 'X;i.
X;i.ti// and

e��i , that is, for every �0 2 ‚0 and measurable E�i � U�i ,

�i

[f�0g � E�i

] D
∫

HX;�i

e��i.uX;�i/ŒE�i � 'X;i.hX;i/Œ�0 � duX;�i �

Since 'i is onto, there exists hi 2 Hi with 'i.hi/ D �i . By construction, �i 2 Hi;CI

and 'i.%X;i.hi// D 'X;i.
X;i.ti//, hence .#i.ti/; 	i.ti/; ai ; hi/ 2 CI i and, since

38This is enough to establish IIRi .ti / � projAi
CB i .RAT \ CI/ \ Œ.	i .ti /; 
X;i .ti //� because

MBk�1
i .RAT \ CI/ \ ŒuX;i � is a decreasing sequence of nonempty compact sets converging to

CB i .RAT \ CI/ \ ŒuX;i �, which is therefore nonempty.
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'X;i is injective, %X;i.hi/ D 
X;i.ti/. Thus .#i.ti/; 	i.ti/; ai ; hi/ 2 RAT i by (34)

and (35), while (36) implies 'i.hi/Œ‚0 � MBn�2
�i .RAT \ CI/� D 1. Therefore,

.#i.ti/; yi ; ai ; hi/ 2 MBn�1
i .RAT \ CI/.

A.4 Proof of Proposition 1

We prove by induction that AR
�;k
i 
 R

�;k
i for every i 2 I and k � 0. This

trivially holds for k D 0. Let n � 1 and assume that it is true for k D n � 1. In

order to prove it for k D n, fix i 2 I and si 2 Si . If si 2 AR
�;n
i then there exists

�i 2 �.‚0 � X � S�i/ consistent with �i such that

supp �i � ‚0 � X � AR
�;n�1
�i ; (37)

si 2 arg max
s0

i
2Si

∑
�0;x;s�i

�i Œ�0; x; s�i � Ngi.�0; x; s0
i ; s�i/: (38)

Since �i is consistent with �i , for all xi 2 Xi we have �i Œxi � > 0 and, letting

�xi
be the conditional probability given xi induced by �i on ‚0 � X�i � A�i , also

�xi
2 �xi

, hence by the induction hypothesis (37) and (38), respectively, imply that

for every xi D .�i ; yi/ 2 Xi ,

supp �xi
� ‚0 � {

.x�i ; a�i/ 2 X�i � A�i W a�i 2 R
�;n�1
�i .x�i/

}
; (39)

si.xi/ 2 arg max
ai 2Ai

∑
�0;��i ;y�i ;a�i

�xi

[
�0; ��i ; y�i ; a�i

∣∣xi

]
gi.�0; �i ; ��i ; ai ; a�i/: (40)

This proves that si is a selection from R
�;n
i . Conversely, if the latter is true, then

for each xi 2 Xi there exists �xi
2 �xi

such that (39) and (40) hold. Let �i be an

arbitrary full-support probability distribution on Xi , and let �i denote the probabil-

ity distribution on ‚0 � X � S�i defined as follows: for every .�0; xi ; x�i ; s�i/ 2
‚0 � Xi � X�i � S�i , �i Œ�0; xi ; x�i ; s�i � D �i Œxi � �xi

Œ�0; x�i ; s�i.x�i/�. By con-

struction, using the induction hypothesis, (39) and (40) guarantee that �i satisfies

(37) and (38), respectively. Thus, si 2 AR
�;n
i .
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List of symbols
i 2 I D f1; 2g players

�0 2 ‚0 states of nature

�i 2 ‚i player i’s payoff types

xi D .�i ; yi/ 2 Xi D ‚i � Yi player i’s information types

� 2 ‚ D ‚0 � ‚1 � ‚2 payoff states

gi W ‚ � A1 � A2 ! R player i’s utility function

.Ti ; 	i ; �i/ type space

	i W Ti ! Xi ; �i W Ti ! �.‚0 � T�i/

.Ti ; #i ; �i ; �i/ type space (alternative notation)

#i W Ti ! ‚i ; �i W Ti ! Yi

hk
X;i 2 H k

X;i player i ’s k-order X -beliefs

(base ‚0 � X1 � X2)


k
X;i W Ti ! H k

X;i k-order X -beliefs induced by

the types in a type space

hX;i 2 HX;i player i’s X -hierarchies


X;i W Ti ! HX;i X -hierarchies induced by

the types in a type space

'X;i W HX;i ! �.‚0 � X�i � HX;�i/ Mertens-Zamir homeomorphism

hk
‚;i 2 H k

‚;i player i’s k-order ‚-beliefs

(base ‚)


k
‚;i W Ti ! H k

‚;i k-order ‚-beliefs induced by

the types in a type space

h‚;i 2 H‚;i player i’s ‚-hierarchies


‚;i W Ti ! H‚;i ‚-hierarchies induced by

the types in a type space

'‚;i W H‚;i ! �.‚0 � H‚;�i/ Mertens-Zamir homeomorphism

hk
i 2 H k

i player i’s k-order A-beliefs

(base ‚0 � X1 � A1 � X2 � A2)

hi 2 Hi player i’s A-hierarchies

'i W Hi ! �.‚0 � X�i � A�i � H�i/ Mertens-Zamir homeomorphism

%X;i W Hi ! HX;i ; %‚;i W Hi ! H‚;i recursive marginalization mappings
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