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Abstract

We adopt an interactive epistemology perspective to analyze dy-
namic games with partially unknown payoff functions. We consider so-
lution procedures that iteratively delete strategies conditional on pri-
vate information about the state of nature. In particular we focus on a
weak and a strong version of the ∆-rationalizability solution concept,
where ∆ represents given restrictions on players’ beliefs about state
of nature and strategies (Battigalli, 2003, Battigalli and Siniscalchi,
2003). We first show that weak ∆-rationalizability is characterized
by initial common certainty of rationality and of the restrictions ∆,
whereas strong ∆-rationalizability is characterized by common strong
belief in rationality and the restrictions ∆ (cf. Battigalli and Sinis-
calchi, 2002). The latter result allows us to obtain an epistemic char-
acterization of the iterated intuitive criterion. Then we use the frame-
work to analyze the robustness of complete-information rationaliz-
ability solution concepts to the introduction of “slight” uncertainty
about payoffs. If the set of conceivable payoff functions is sufficiently
large, the set of strongly rationalizable strategies with slight payoff
uncertainty coincides with the set of complete-information, weakly
rationalizable strategies.
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1 Introduction

Games with payoff uncertainty are situations of strategic interaction where
players’ payoff functions are not common knowledge. Following Harsanyi’s
approach (Harsanyi, 1967-68), such situations are usually studied as Bayesian
games. A Bayesian game adds to the primitives of the model (players set,
rules of interactions, possible payoff functions, players’ private information
about such functions) a list of “types” for each player, whereby a type de-
termines (implicitly) a whole hierarchy of beliefs about the unknown payoff
parameters. In economic applications the analysis is often simplified by as-
suming that the correspondence from types to hierarchies of beliefs is trivial.
For example, it is often assumed that each player’s first-order beliefs, i.e. his
beliefs about the payoff parameter vector, say θ, are solely determined by his
private information about θ according to some mapping, and that all these
mappings are common knowledge.
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Figure 1: A signaling game.

The signaling game depicted in Fig. 1 provides an example. Players 1
and 2 move sequentially: Player 1 chooses either u (up), thus terminating
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the game, or d (down); after d, Player 2 chooses between a, b, or c. There are
three possible pairs of payoff functions (mappings from complete sequences
of actions to payoffs pairs) indexed by a state of nature θ ∈ {α, β, θ}. Player
1 knows the true θ and Player 2 does not. This is represented by drawing
three possible game trees with distinguished roots α, β and γ respectively
and joining the three possible decision nodes of Player 2 with a dashed line
signifying his ignorance of the true game tree. The model described so far is
what we call a game with payoff uncertainty. A very simple way to obtain
a Bayesian game is to specify an initial belief of the uninformed Player 2
(e.g. Pr2(α) = 1

2
, Pr2(β) = 1

3
, Pr2(γ) = 1

6
as in Fig. 1) and to assume

that it is common knowledge that (Player 1 knows the true θ and) Player
2 holds this initial belief. But one could consider much more complicated
Bayesian games. For example, if Player 1 were unsure about the initial belief
about θ of Player 2, one should introduce several possible types of Player
2, corresponding to possible beliefs about θ, and a belief of Player 1 about
such types. Were this belief not known to Player 2, one should multiply the
possible types of Player 1, and so on.

Equilibria of Bayesian games are very sensitive to the precise specification
of higher-order beliefs (see Weinstein and Yildiz, 2007). This is especially
problematic because economic modelers find it hard to provide non arbitrary
specifications of the fine details of hierarchical beliefs.

Battigalli (1999), Battigalli (2003) and Battigalli and Siniscalchi (2003)
propose a different approach to the analysis of dynamic games with pay-
off uncertainty: instead of specifying a (more or less complex) type space
à la Harsanyi, they suggest to take as given some restrictions ∆ on play-
ers’ initial and updated beliefs about θ and their opponents’ strategies, and
then iteratively delete private information-strategy pairs that are inconsis-
tent with progressively higher levels of mutual certainty of rationality and
of the restrictions ∆. For example, in the signaling game above, the mod-
eler may find it reasonable to assume that Pr2(β) is larger than Pr2(γ), and
there is common certainty of this fact; ∆ would then be the set of beliefs
profiles such that Pr2(β) > Pr2(γ). The resulting solution concept, called ∆-
rationalizability, is therefore parametrized by the assumed restrictions ∆.1

Battigalli and Siniscalchi (2003) specifically focus on a strong version of ∆-
rationalizability, akin to extensive form rationalizability (Pearce, 1984), that

1For this reason it has been referred to as an “umbrella solution concept” by Dekel et
al. (2007).
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also captures a forward induction principle. Indeed, they show that, when
∆ reflects agreement of beliefs with a given probability distribution ζ on
the terminal nodes of a signaling game, then non-emptiness of the strong
∆-rationalizability solution is equivalent to ζ passing the Iterated Intuitive
Criterion of Cho and Kreps (1987). Battigalli (1999, 2003) also considers
a weak version of the solution concept that only relies on initial common
certainty of rationality and the restrictions ∆. These papers present several
examples and economic applications of the approach and report about other
applications in the literature.

To illustrate, independently of Player 2’s initial beliefs, the signaling game
depicted in Fig. 1 has a pooling (sequential) equilibrium where each type
of Player 1 chooses u and Player 2 would choose a after d. To see this,
note that the best response of Player 2 is the action whose label is the
Latin equivalent of the ex-post most likely θ (i.e. a if α is most likely,
etc.); since beliefs off the equilibrium path are not determined via Bayes’
rule, we may have Pr2(α|d) ≥ max{Pr2(β|d),Pr2(θ|d)}, making action a a
(sequential) best response. This outcome is a fortiori weakly ∆-rationalizable
for every ∆ that allows Pr2(α|d) ≥ max{Pr2(β|d),Pr2(θ|d)}. However, the
pooling-equilibrium outcome is not strongly ∆-rationalizable; this follows
from a forward-induction argument. Action d is dominated for type α, and
undominated for types β and γ. If Player 2 believes in the rationality of
Player 1 whenever possible, then Pr2(α|d) = 0 and a is deleted. Therefore
the best response of types β and γ is d, which yields 2 for sure. (The ∆-
restrictions may, or may not, pin down the choice between b and c. If ∆
implies Pr2(β|d) > Pr2(γ|d), then Player 2 best responds with b.)

The above-mentioned papers by Battigalli and Siniscalchi report that ∆-
rationalizability is characterized by explicit and transparent assumptions on
players’ rationality and interactive beliefs. The present paper provides the
interactive-epistemology analysis supporting these claims. Following Batti-
galli and Siniscalchi (1999, 2002), assumptions about rationality and interac-
tive beliefs – including assumptions on how players revise their beliefs when
they observe unexpected moves – are represented as events in a universal
space of states of the world, whereby each state of the world ω specifies the
state of nature θ and how players would behave and think conditional on
every partial history of the game (including those that are counterfactual
at ω). The weak and strong versions of ∆-rationalizability are shown to be
the behavioral consequences of two different sets of assumptions on ratio-
nality and interactive beliefs. Given the above-mentioned equivalence result
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of Battigalli and Siniscalchi (2003), the epistemic characterization of strong
∆-rationalizability also yields an epistemic characterization of the Iterated
Intuitive Criterion.

The interactive-epistemology framework is then used to explore the ro-
bustness of the complete information versions of these solution concepts to
the introduction of “slight” payoff uncertainty. In particular, it is shown
that if the set of conceivable payoff functions is sufficiently large, the set
of strongly rationalizable strategies with slight payoff uncertainty coincides
with the set of complete-information, weakly rationalizable strategies.

This paper is arranged in 5 sections, including the present one, plus an
appendix. In Section 2 we introduce the elements of the analysis: dynamic
games with payoff uncertainty, systems of conditional beliefs, epistemic mod-
els for dynamic games, (sequential) rationality, and belief operators. Sec-
tion 3 is devoted to the epistemic characterization of weak and strong ∆-
rationalizability. Section 4 contains the analysis of robustness of the complete
information versions of weak and strong rationalizability to the introduction
of “slight payoff uncertainty”. Section 5 summarizes the results and discusses
the related literature. The Appendix collects all the proofs.

2 The framework

In this section we present the building blocks of our analysis: dynamic games
with payoff uncertainty (subsection 2.1), systems of conditional probabilities
(subsection 2.2), epistemic models (subsection 2.3), our basic notion ratio-
nality as sequential best response (subsection 2.4), and belief operators, i.e.
the language to express our assumptions about interactive beliefs (subsection
2.5).

2.1 Dynamic Games with Payoff Uncertainty

In order to keep notation at a minimum we restrict our analysis to multistage
games with observable actions (Fudenberg and Tirole (1991), §3.3; Osborne
and Rubinstein (1994), Chap. 6), although most of our results can be ex-
tended to general games. We also note that the majority of dynamic games
of interest in economics fits within this framework.

We describe the dynamic game under consideration using the following
primitive objects: a set I = {1, . . . , |I|} of players, a finite collection H of
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partial histories,2 including the empty history φ, and a finite collection of
terminal histories Z. As the game progresses, the partial history h that
has just occurred becomes public information. At some stages there can be
simultaneous moves. The (finite) set of actions available to Player i at partial
history h ∈ H is denoted Ai(h) and, without loss of generality, it is assumed
to be non-empty (this introduces some redundancies, but it simplifies the
abstract notation). Player i is active if |Ai(h)| ≥ 2 and inactive if |Ai(h)| = 1.
If there is only one active player at each stage, we say that the game has
perfect information.3 To allow for random moves, we also assume that a
fictitious player, Player 0, at each partial history h can take an action a0 in
A0(h), a non-empty finite set (possibly a singleton).

In order to model payoff uncertainty, we consider a set

Θ = Θ0 ×Θ1 × . . .×Θ|I|,

of “conceivable” parameter values, where each set Θj, j = 0, . . . , |I| is non-
empty and finite. For every player i = 1, . . . , |I|, each element θi ∈ Θi

represents Player i’s private information about the unknown payoff-relevant
aspects of the game; we call it Player i’s information type. Each element
θ0 ∈ Θ0 (the information type of Player 0) represents any residual uncertainty
about payoffs that remains after pooling the players’ private information. We
often refer to profile θ = (θ0, θ1, ..., θ|I|) as the state of nature.

Observe that, with this formulation, the actions available to players at any
given history do not depend upon their information-type. This restriction
could be removed, at the expense of additional notation; our results do not
depend upon it in a crucial way.4

Payoffs are associated with terminal nodes, and also depend on the state
of nature θ ∈ Θ: formally, for each player i ∈ I, we consider a parametrized
payoff function

ui : Θ×Z → R.

For instance, in a pure “private-values” setting, Player i’s payoff depends
solely upon θi and the terminal history reached. At the opposite extreme,

2Histories are sequences of consecutive action profiles.
3This is not to be confused with “complete information”, which means that all the

rules of the game and players’ payoff functions (how payoffs depend on terminal histories)
are common knowledge. Indeed we assume the opposite, since there is payoff uncertainty,
there is incomplete information.

4Battigalli (2003) allows for type-dependent actions sets.
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in a “common-values” environment, players’ payoffs at any terminal history
depend only upon θ0; in this case, each player’s information type θi is in-
terpreted as a signal, which may be correlated with θ0 according to i’s (or
someone else’s) subjective beliefs. We include “Player 0” and the residual un-
certainty θ0 in our framework (adding some notational complexity) because
it is important in economic applications, and because it helps to relate our
work to the recent literature on rationalizability in games with incomplete
information. Note that, as long as (real) players believe that the choice of a0

depends (deterministically or stochastically) on θ0, then a0 can be interpreted
as public signal about the residual uncertainty.

We call the structure〈
I,H,Θ0, A0(·), (Θi, Ai(·), ui)i∈I

〉
described so far game with payoff uncertainty. It describes a situation of
strategic interaction where players’ payoff functions are not common knowl-
edge. We prefer to avoid “game with incomplete information” because this
expression is mostly used to refer to Bayesian games. The difference between
a Bayesian game and a game with payoff uncertainty is that the former spec-
ifies (implicitly) players’ hierarchies of beliefs about the state of nature. We
shall introduce hierarchies of beliefs of a much richer kind later on in order
to obtain a language that allows us to express assumptions about players’
rationality and interactive beliefs, and derive the behavioral implications of
these assumptions.

To illustrate our notation with a simple example, consider the signaling
game depicted in Fig. 1. Here I = {1, 2}, H is isomorphic to {φ, d}, Z is
isomorphic to {u, (d, a), (d, b), (d, c)}, Θ0 = {θ̂0}, Θ2 = {θ̂}, A0(φ) = A0(d) =
{â0}, A2(φ) = {â2} and A1(d) = {â1} are singletons, Θ1 = {α, β, γ}, A1(φ) =
{u, d} (thus, to be pedantic, the set of partial histories according to our some-
what redundant notation is H = {φ, (â0, d, â2)}), A2 ((â0, d, â2)) = {a, b, c}
(thusZ = {(â0, u, â2), ((â0, d, â2), (â0, â1, a)), ((â0, d, â2), (â0, â1, b)), ((â0, d, â2), (â0, â1, c))});
the functions ui are determined by the payoff pairs at the terminal nodes of
the arborescence (θ, z).

Beside the basic structure described above, we shall make use of certain
derived objects. First, for every i ∈ {0} ∪ I, we shall denote by Si the set of
strategies available to Player i (including the fictitious Player 0). Formally,

a strategy is a mapping si : H →
⋃
h∈H

Ai(h) such that ∀h ∈ H, si(h) ∈ Ai(h).
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Note that we do not model strategies as functions of θi. The reason is that
we do not assume the existence of an ex ante stage at which symmetrically
uninformed players plan their type-contingent behavior. In keeping with
standard game–theoretic notation, we let S =

∏|I|
i=0 Si and S−i =

∏
j 6=i Sj; to

clarify, here and in the following, both “−i” and “j 6= i” denote the index
set ({0} ∪ I)\{i}). We then define

Σi = Θi × Si, Σ =

|I|∏
j=0

Σj, Σ−i =
∏
j 6=i

Σj;

every σi ∈ Σi is an information type-strategy pair for Player i.
Second, for any history h, S(h) denotes the set of strategy profiles which

induce h; its projections on Si and S−i are denoted by Si(h) and S−i(h), re-
spectively. The correspondence S(·) provides a convenient strategic-form rep-
resentation of the (non-payoff) information structure. To abbreviate notation

we also write Σi(h) = Θi × Si(h), Σ(h) =
∏|I|

j=0 Σj(h), Σ−i(h) =
∏

j 6=i Σj(h)
Using this notation, we can define a strategic–form payoff function Ui :

Σi×Σ−i → R in the usual way: let z(s) denote the terminal history induced
by the strategy profile s ∈ S; for all σi = (θi, si) ∈ Σi and σ−i = (θ−i, s−i) ∈
Σ−i,

Ui(σi, σ−i) = ui(θ, z(s)),

with θ = (θ0, θ1, .., θ|I|), s = (s0, s1, ..., s|I|).
It is convenient to introduce two additional pieces of notation. For every

strategy si, H(si) = {h ∈ H : si ∈ Si(h)} denotes the collection of partial
histories consistent with si. For every partial history h and strategy si, s

h
i

denotes the strategy consistent with h which coincides with si on the set of
partial histories not preceding h (thus, h ∈ Hi(si) implies shi = si).

5

2.2 Conditional Probability Systems

As the game progresses, players update and/or revise their beliefs in light
of newly acquired information. In order to account for this process, we

5Recalling that we assume (without loss of generality) that each player takes an action
immediately after every partial history, sh

i is defined as follows: For all h′ ∈ H, if either
(h′, (aj)j∈I) comes before h or (h′, (aj)j∈I) = h, then sh

i (h′) = ai. Otherwise, sh
i (h′) =

si(h′).
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represent beliefs by means of conditional probability systems (Myerson, 1986;
Renyi, 1955).

Fix a player i ∈ I. For a given measure space (Xi,Ai), consider a non-
empty, finite or countable collection Bi ⊂ Ai of events such that ∅ /∈ Bi.
The interpretation is that Player i is uncertain about the “true” element
x ∈ Xi, and Bi is a collection of observable events – or “relevant hypotheses”
– concerning a “discrete” component of x.

Definition 1 A conditional probability system (or CPS) on (Xi,Ai,Bi) is6

a mapping
µ(·|·) : Ai × Bi → [0, 1]

satisfying the following axioms:

Axiom 1 For all B ∈ Bi, µ(B|B) = 1.

Axiom 2 For all B ∈ Bi, µ(·|B) is a probability measure on (Xi,Ai).

Axiom 3 For all A ∈ Ai, B,C ∈ Bi, if A ⊂ B ⊂ C then µ(A|B)µ(B|C) =
µ(A|C).

The set of probability measures on (Xi,Ai) will be denoted by ∆(Xi); we
shall endow it with the topology of weak convergence of measures. The set
of conditional probability systems on (Xi,Ai,Bi) can be regarded as a subset
of [∆(Xi)]

Bi , endowed with the product topology.
Throughout this paper, we shall be interested solely in “relevant hypothe-

ses” corresponding to the event that a certain partial history has occurred.
Thus, Player i’s first-order beliefs about the state of nature and his oppo-
nents’ behavior may be represented by taking Xi = Σ−i =

∏
j 6=i Θj × Sj and

Bi = {B ⊂ Σ−i : B = Σ−i(h) for some h ∈ H}. We denote the collection
of CPSs on (Σ−i,Bi) thus defined by ∆H(Σ−i). Since Σ−i and H are finite,
∆H(Σ−i) is easily seen to be a closed subset of Euclidean |H| · |Σ−i|-space.

To represent Player i’s higher-order beliefs, we will consider a (finite or

infinite) set of “possible worlds” Ω =
∏|I|

i=0 Ωi, where Ω0 = Σ0 and, for every
player i ∈ I, Ωi ⊂ Σi × Yi and projSi

Ωi = Si. Elements of the sets Yi will
be interpreted as epistemic types of i. As will be clear momentarily, it is

6The tuple (Xi,Ai,Bi, µ) is called conditional probability space by Renyi (1955). When
Xi is finite, Ai = 2Xi , Bi = 2Xi\{∅}, we obtain Myerson’s conditional probability systems
(Myerson, 1986).
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convenient to assume that each Yi is a Polish (i.e. separable and completely
metrizable) space. Consistently with our previous notation, we let Ω−i =
Ω0 ×

∏
j∈I\{i}Ωj.

To represent Player i’s hierarchical beliefs about his opponents, we use
the following structure: let Xi = Ω−i, let Ai be the Borel sigma algebra on
Ω−i and

Bi = {B ∈ Ai : B = {
(
(θ0, s0), (θj, sj, yj)j∈I\{i}

)
∈ Ω−i : s−i ∈ S−i(h)} for some h ∈ H}.

The set of CPSs on (Ω−i,Bi) will be denoted by ∆H(Ω−i). Similarly, to
represent Player i’s hierarchical beliefs about the prevailing state of the world
(including his own strategy and beliefs, as well as his opponents’), let Xi = Ω,
let A be the Borel sigma algebra on Ω and

B = {B ∈ A: B = {((θ0, s0), (θj, sj, yj)j∈I) ∈ Ω : s ∈ S(h)} for some h ∈ H}.

The set of CPSs on (Ω,B) is denoted ∆H(Ω).
Note that Ω−i and Ω are Polish spaces in the respective product topolo-

gies; also, the finite collections Bi and B consist of sets that are both open
and closed in the respective topologies. Battigalli and Siniscalchi (1999) show
that, under these conditions, ∆H(Ω−i) and ∆H(Ω) are closed subsets of the
Polish spaces [∆(Ω−i)]

Bi and, respectively, [∆(Ω)]B. Hence, they are Polish
spaces in the relative topology.

2.3 Epistemic Models

We next introduce our basic representation of hierarchical conditional beliefs
(Ben-Porath, 1997; Battigalli and Siniscalchi, 1999, 2002).

Definition 2 A type space on (H,Θ, S(·), I) is a tuple T = (H, S(·), I,Ω0, (Ωi, Ti, gi)i∈I)
such that, for every i ∈ I, Ti is a Polish space and

1. Ω0 = Σ0;

2. Ωi is a closed subset of Σi × Ti such that projΣi
Ωi = Σi;

3. gi : Ti → ∆H(Ω−i) is a continuous mapping.

For any i ∈ I, the elements of the set Ti are referred to as Player i’s
epistemic types. A type space is compact if all the sets Ti, i ∈ I, are compact
topological spaces.
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Thus, at any “possible world” ω = ((θ0, s0), (θi, si, ti)i∈I) ∈ Ω, we specify
a state of nature (θ0, θ1, . . . , θ|I|), as well as each player i’s dispositions to
act (his strategy si) and (for i ∈ I) his dispositions to believe (his system
of conditional probabilities gi(ti) = (gi,h(ti))h∈H). These dispositions also
include what a player would do and think at histories that are inconsistent
with ω.7

As is traditional in the epistemic analysis of games, we complete a player’s
system of conditional beliefs by assuming that he is certain of his true strat-
egy, information type and epistemic type. More specifically, we assume that
for every state of the world ((θi, si, ti), ω−i) and every history h, Player i ∈ I
would be certain of ti and θi given h, and would also be certain of si given
h provided that si is consistent with h, i.e. si ∈ Si(h). We also assume that
if si /∈ Si(h) Player i would still be certain that his continuation strategy
agrees with si. (The latter assumption is immaterial for our analysis, but we
include it for completeness).

Formally, Player i’s conditional beliefs on (Ω,B) are given by a continuous
mapping

g∗i = (g∗i,h)h∈H : Ωi → ∆H(Ω)

derived from gi by the following formula: for all (θi, si, ti) ∈ Ωi, h ∈ H,
E ∈ A,

g∗i,h(θi, si, ti) (E) = gi,h(ti)
({
ω−i ∈ Ω−i : ((θi, s

h
i , ti), ω−i) ∈ E

})
(1)

Type spaces encode a collection of infinite hierarchies of CPSs for each
epistemic type of each player. It is natural to ask whether there exists a
type space which encodes all “conceivable” hierarchical beliefs. Mertens and
Zamir (1985) and Brandenburger and Dekel (1993) answered this question
in the affirmative when beliefs are represented by probability measures on a
compact Hausdorff or Polish space; Battigalli and Siniscalchi (1999) provide
a counterpart of these results in the present “dynamic” setting where beliefs
are represented by CPSs.

Consider the following definition.

Definition 3 A belief-complete type space on (H,Θ, S(·), I) is a type space
T = (H, S(·), I,Ω0, (Ωi, Ti, gi)i∈I) such that, for every i ∈ I, Ωi = Σi × Ti

7History h is inconsistent with (or counterfactual at) ω = (θ, s, t) if s /∈ S(h).

11



and gi : Ti → ∆H(Ω−i) is onto.8

It is shown in Battigalli and Siniscalchi (1999) that a belief-complete type
space may always be constructed (for all finite games, and also a large class
of infinite games) by taking the sets of epistemic types to be the collection of
all possible hierarchies of conditional probability systems that satisfy certain
intuitive coherency conditions.9 Also, every type space may be viewed as
a belief-closed subspace of the space of infinite hierarchies of conditional
beliefs.10 Finally, since we assume that the set of external states Σ is finite
and hence compact, the belief-complete type space thus constructed is also
compact.

2.4 Sequential Rationality

We take the view that a strategy si ∈ Si for Player i should be optimal, given
Player i’s beliefs and payoff-type, conditional upon any history consistent
with si; we do not impose restrictions on the action specified at histories
that cannot obtain if Player i follows the strategy si. This is a sequential
best response property which applies to plans of actions11 as well as strategies
(see, for example, Rubinstein (1991) and Reny (1992)).

Definition 4 Fix a player i ∈ I, a CPS µi ∈ ∆H(Σ−i) and an information
type θi ∈ Θi. A strategy si ∈ Si is a sequential best reply to µi for θi if and
only if, for every h ∈ H(si) and every s′i ∈ Si(h),∑

σ−i

[Ui(θi, si, σ−i)− Ui(θi, s′i, σ−i)]µi({σ−i}|Σ−i(h)) ≥ 0

8We use “complete” in the same sense as Brandenburger (1998), who shows (in a
different framework) that a (belief-) complete, filter-theoretic type space does not exists.
Of course, this notion of completeness is not to be confused with the topological one.

9Battigalli and Siniscalchi (1999) uses a slightly different definition of type space. But
all the arguments in Battigalli and Siniscalchi (1999) can be easily adapted to the present
framework.

10The representation of a type space as a belief-closed subspace of hierarchies “coalesces”
duplicate types, i.e. types that yield the same hierarchy of CPSs. Duplicate types do not
play any role in our analysis.

11Intuitively, a plan of action for player i is silent about which actions would be taken by
i if i did not follow that plan. Formally, a plan of action is a class of realization-equivalent
strategies. In generic extensive games, a plan of action is a strategy of the reduced normal
form.
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For any CPS µi ∈ ∆H(S−i), let ri(µi) denote the set of pairs (si, θi) such
that si is a sequential best reply to µi for θi.

It can be shown by standard arguments that ri is a nonempty-valued
and upper-hemicontinuous correspondence. It is convenient to introduce the
following additional notation. Fix a type space (H, S(·), I,Ω0, (Ωi, Ti, gi)i∈I).
For every player i ∈ I, let fi = (fi,h)h∈H : Ti → [∆(Σ−i)]

H denote his first-
order belief mapping, that is, for all ti ∈ Ti and h ∈ H,

fi,h(ti) = margΣ−i
gi,h(ti)

(recall that projΣ−i
Ω−i = Σ−i). It is easy to see that fi(ti) ∈ ∆H(Σ−i) for

every ti ∈ Ti; also, fi is continuous.
Finally, we can introduce our key behavioral axiom. We say that Player i

is rational at a state ω = (θ, s, t) in T if and only if (θi, si) ∈ ri(fi(ti)). Then
the event

Ri = {ω = (θ, s, t) ∈ Ω : (θi, si) ∈ ri(fi(ti))}

corresponds to the statement “Player i is rational.” (Note that Ri is closed
because the correspondence ri ◦ fi is upper hemicontinuous.) We shall also
refer to the events R =

⋂
i∈I Ri (“every player is rational”) and R−i =⋂

j∈I\{i}Rj (“every opponent of Player i is rational”).
A word of caution. Events are defined with reference to a specific type

space, but this dependence is immaterial in the following analysis.

2.5 Belief Operators

The next building block is the epistemic notion of (conditional) probability
one belief, or (conditional) certainty. Recall that an epistemic type encodes
the beliefs a player would hold, should any one of the possible non–terminal
histories occur. This allows us to formalize statements such as, “Player i
would be certain that Player j is rational, were he to observe history h.”

Given a type space T = (H, S(·), I,Ω0, (Ωi, Ti, gi)i∈I), for every i ∈ I,
h ∈ H, and E ∈ A, define the event12

Bi,h(E) = {(σ, t) ∈ Ω : g∗i,h(σi, ti)(E) = 1}
12For any measurable subset E ⊂ Ω, Bi,h(E) is closed, hence measurable; this follows

from the continuity of g∗i,h, via an application of the portmanteau theorem.
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which corresponds to the statement “Player i would be certain of E, were he
to observe history h.” Observe that this definition incorporates the natural
requirement that a player only be certain of events which are consistent with
her own (continuation) strategy and epistemic type (recall how g∗i was derived
from gi). Recalling that φ is the empty history, Bi,φ(E) is the event “Player
i believes E at the beginning of the game”.

For each player i ∈ I and history h ∈ H, the definition identifies a set–to–
set operator Bi,h : A → A which satisfies the usual properties of falsifiable
beliefs (see, for example, Chapter 3 of Fagin et al. (1995)); in particular, it
satisfies

• Conjunction: For all events E,F ∈ A, Bi,h (E∩F ) = Bi,h (E)∩Bi,h (F );

• Monotonicity : For all events E,F ∈ A: E ⊂ F implies Bi,h (E) ⊂
Bi,h (F ).

We shall say that Player i strongly believes that an event E 6= ∅ is true
(i.e. adopts E as a “working hypothesis”) if and only if he is certain of
E at all histories consistent with E. Formally, for any type space T =
(H, S(·), I,Ω0, (Ωi, Ti, gi)i∈I), for each i ∈ I define the operator SBi : A → A
by SBi(∅) = ∅ and

SBi(E) =
⋂

h∈H: E∩(Σ(h)×T )6=∅

Bi,h(E)

for all events E ∈ A\{∅}. Note that SBi(E) ⊂ Bi,φ(E) for all E ∈ A; that
is, strong belief implies initial certainty (since φ is the empty history, which
represents the beginning of the game, Bi,φ is the initial certainty operator
for Player i). Also note that in non trivial games SBi fails Conjunction and
Monotonicity (for more on this see Battigalli and Siniscalchi (2002)).

The corresponding mutual belief operators are defined in the obvious way:

Bh (E) =
⋂
i∈I

Bi,h (E),

SB(E) =
⋂
i∈I

SBi(E).
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3 Epistemic Characterization of ∆-Rationalizability

In this section we introduce restrictions ∆ on first-order beliefs (subsection
3.1). These restrictions are taken as parametrically given in the definition of
two solution procedures, weak ∆-rationalizability (subsection 3.2) and strong
∆-rationalizability (subsection 3.3). Finally we show how these solution con-
cepts are implied by assumptions about players rationality and interactive
beliefs, including assumptions on how players revise their beliefs (subsection
3.4).

3.1 Restrictions on Beliefs

A player’s beliefs may be assumed to satisfy some restrictions that are not
implied by mutual, common, or strong belief in rationality. We may dis-
tinguish between (i) restrictions on exogenous (first-order) beliefs, that is,
beliefs about the state of nature and chance moves, and (ii) restrictions on
endogenous (first-order) beliefs, that is, beliefs about behavior; our general
theory considers both (i) and (ii). An example of restrictions on exogenous
beliefs is that chance moves have given “objective” probabilities. Another
example is that players’ beliefs about the state of nature conform to a given
prior on Θ. An example of restrictions on endogenous beliefs is that players’
beliefs satisfy certain independence or conditional independence properties
(see Dekel et al. (2007), Battigalli et al. (2007)). Furthermore, we allow for
the possibility that such restrictions may depend upon each player’s informa-
tion type. Other examples of restrictions on beliefs, as well as applications
and additional discussion, can be found in Battigalli and Siniscalchi (2003)
and Battigalli (2003).

Formally, for every player i ∈ I, every information type θi ∈ Θi, and
every history h ∈ H, consider a set ∆θi,h ⊆ ∆(Θ−i × S−i(h)); say that a
collection ∆θi

of CPSs on Σ−i is regular if there are nonempty and closed
subsets ∆θi,h (h ∈ H) such that

∆θi
= ∆H(Σ−i) ∩

∏
h∈H

∆θi,h.

To simplify notation, we denote the whole set of restrictions by ∆: ∆ =
(∆θi

)i∈I,θi∈Θi
. That is: Player i’s first-order conditional beliefs are required

to be represented by a CPS, but also to satisfy the history– and information-
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type–dependent restrictions encoded in the sets ∆θi,h. Observe that ∆H(Σ−i)
is a subset of

∏
h∈H[∆(Θ−i×S−i(h))], so the above intersection makes sense.

As we made clear, the restrictions ∆ only concern first-order beliefs, but
in our epistemic analysis we will assume that there is initial common certainty
that the restrictions ∆ hold, thus yielding restrictions on hierarchies of beliefs.

We point out that our approach is sufficiently flexible to encompass the
restrictions on infinite hierarchies of exogenous beliefs implicit in Bayesian
games. To clarify this point, recall that information types θi need not be
payoff relevant, they may just represent information that is perceived to be
correlated with the payoff relevant state. More generally, θi might encode
both payoff relevant and payoff irrelevant information. But, to simplify our
discussion of the relationship with Bayesian games, we consider here the ex-
treme “common value” setting whereby only θ0 is payoff relevant. According
to Harsanyi’s approach (Harsanyi, 1967-68) the game model must specify be-
lief mappings πi : Θi → ∆(Θ−i), i ∈ I (which may, but need not be derived
from a common prior Π ∈ ∆(Θ)). Appending the belief mappings (πi)i∈I to
the given game with payoff uncertainty we obtain a Bayesian game. Taking
the marginal of each πi(θi) on Θ0 we obtain the first-order beliefs on the
payoff relevant parameter θ0. Next, using the mappings θj 7−→margΘ0πj(θj)
(j 6= 0, i) it is possible to derive the second-order beliefs of each type θi over
Θ0 × [∆(Θ0)]I\{i}. Proceeding in a similar fashion it is possible to obtain a
Θ0-based infinite hierarchy of beliefs for each type θi of each player i. This is
the representation of hierarchical beliefs about the payoff parameter implicit
in Bayesian games.

Now, for given belief mappings (πi)i∈I we can consider the following re-
strictions:

∆θi
= {µi ∈ ∆H(Σ−i) : margΘ0

µi(·|φ) = πi(θi)}

(recall that µi(·|φ) is the initial belief of i). Assuming initial common cer-
tainty of the restrictions ∆ = (∆θi

)i∈I,θi∈Θi
, we obtain the same Θ0-based

hierarchies of initial belief as in the Bayesian game determined by (πi)i∈I .
13

13For more on this in the context of static games see Battigalli et al. (2007). Later on
we will comment on the possibility to interpret ∆ as “common knowledge restrictions” on
first-order beliefs.
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3.2 Weak ∆-Rationalizability

The first solution concept we consider is a generalization of a notion of ra-
tionalizability for game with complete and perfect information due to Ben-
Porath (1997).14

Definition 5 Consider the following procedure.

(Step 0) For every i ∈ {0}∪I, let W0
i,∆ = Σi. Also, let W0

−i,∆ =
∏

j 6=i W
0
i,∆

and W0
∆ =

∏
i∈{0}∪I W0

i,∆.

(Step n > 0) Let Wn
0,∆ = Σ0. Then, for every i ∈ I, and for every σi =

(θi, si) ∈ Σi, let σi ∈Wn
i,∆ if and only if σi ∈Wn−1

i,∆ and there exists a
CPS µ ∈ ∆θi

such that

1. σi ∈ ri(µ);

2. µ(Wn−1
−i,∆|Σ−i) = 1.

Also let Wn
−i,∆ =

∏
j 6=i W

n
i,∆ and Wn

∆ =
∏

i∈{0}∪I Wn
i,∆.

Note that the above definition is silent about how the players would
change their beliefs if they observed a history h which they previously be-
lieved impossible, even if h is consistent with rationality (and ∆) or mutual
certainty of rationality (and ∆) of any order. Therefore weak rationalizabil-
ity satisfies only a very weak form of backward induction (e.g. in two-stage
games with complete and perfect information) and can not capture any kind
of forward induction reasoning. This is what makes weak rationalizability
different from strong rationalizability, the concept we consider next.

3.3 Strong ∆-Rationalizability

The following solution concept is a generalization of a notion of extensive
form rationalizability put forward by Pearce (1984) and further analyzed by
Battigalli (1996, 1997).

Definition 6 Consider the following procedure.

14Recall that in our framework a game has complete information if Θ is a singleton, and
has perfect information if there is only one active player at every non terminal history.
Thus, according to our definition these two properties are logically independent.
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(Step 0) For every i ∈ {0} ∪ I, let S0
i,∆ = Σ0. Also, let S0

−i,∆ =
∏

j 6=i S
0
i,∆

and S0
∆ =

∏
i∈{0}∪I S0

i,∆.

(Step n > 0) Let Sn0,∆ = Σ0. Then, for every i ∈ I, and for every σi =

(θi, si) ∈ Σi, let σi ∈ Sni,∆ if and only if σi ∈ Sn−1
i,∆ and there exists a

CPS µ ∈ ∆θi
such that

1. σi ∈ ri(µ);

2. for all h ∈ H, if Sn−1
−i,∆ ∩ Σ−i(h) 6= ∅, then µ(Sn−1

−i,∆|Σ−i(h)) = 1.

Also let Sn−i,∆ =
∏

j 6=i S
n
i,∆ and Sn∆ =

∏
i∈{0}∪I Sni,∆.

Finally, let S∞∆ =
⋂
n≥0 Sn∆.

3.4 Characterization Results

We adopt a uniform notation for the n-fold composition of operators. For-
mally, let A be the sigma-algebra of events in a state space Ω, and fix a map
O : A → A; then, for any event E ∈ A, let O0(E) = E and, for n ≥ 1, let
On(E) = O(On−1(E)).

Denote by [∆] the event that the players’ first-order beliefs satisfy the
regular restrictions given by ∆ = (∆θi

)i∈I,θi∈Θi
; that is,

[∆θi
] = {(θi, si, ti, ω−i) ∈ Ω : fi(ti) ∈ ∆θi

} , [∆] =
⋂

i∈I,θi∈Θi

[∆θi
].

Note that these are a well defined events because the sets ∆θi
(by regularity)

are closed and function fi is continuous. Recall that Bφ is the mutual initial
belief operator.

Proposition 1 Fix a collection ∆ = (∆θi
)i∈I,θi∈Θi

of regular subsets of
CPSs. Then, for any belief-complete type space,

(i) for every n ≥ 0, Wn+1
∆ = projΣ

n⋂
k=0

Bk
φ(R ∩ [∆]);

(ii) if the type space is also compact, then W∞
∆ = projΣ

⋂
k≥0

Bk
φ(R ∩ [∆]).
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Proposition 1 says that weak ∆-rationalizability is characterized by the
following assumptions:

(a) Players are rational and their first-order beliefs satisfy restrictions ∆,
(b) there is initial common certainty of (a).
To characterize strong ∆-rationalizability, consider the auxiliary “correct

mutual strong belief” operator CSB : A → A defined by

CSB(E) = E ∩ SB(E)

for any E ∈ A (recall that SB is the mutual strong belief operator). Note
that by definition CSBn(E) = CSBn−1(E) ∩ SB(CSBn−1(E)) ⊂ CSBn−1(E).
Therefore we obtain a decreasing sequence of events, and it makes sense to

define CSB∞(E) =
⋂
n≥0

CSBn(E).

Proposition 2 Fix a collection ∆ = (∆θi
)i∈I,θi∈Θi

of regular subsets of
CPSs. Then, for any belief-complete type space,

(i) for every n ≥ 0, Sn+1
∆ = projΣCSBn(R ∩ [∆]);

(ii) if the type space is also compact, then S∞∆ = projΣCSB∞(R ∩ [∆])

Proposition 2 says that strong ∆-rationalizability is characterized by the
following assumptions:

(a) players are rational and their first-order beliefs satisfy restrictions ∆,
(b.1) players strongly believe in (a)
(b.2) players strongly believe in (a) and (b.1),
...
(b.k+1) players strongly believe in (a),(b.1),...,(b.k),
etc.
This is similar to the best rationalization principle described by Battigalli

(1996) and analyzed epistemically by Battigalli and Siniscalchi (2002), but
here the rationalization is consistent with the restrictions ∆. Thus, Player
i’s own first-order beliefs, when his information type is θi, are an element of
∆θi

; he adopts the working assumption that her opponents are rational and
their beliefs are elements of

∏
j∈I\{i},θj∈Θj

∆θj
; and so on.

A subtle issue pertaining to interactive beliefs about the restrictions ∆
deserves further discussion. The epistemic assumptions of Propositions 1
and 2 only imply that there is initial common certainty of event [∆], but
in a dynamic game this is different from assuming “common knowledge” of
[∆]. The latter would imply common certainty of [∆] conditional on every
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history; on the other hand, according to our epistemic assumptions, common
certainty of [∆] may well fail at some history h 6= φ.

However, we conjecture that the following versions of our epistemic char-
acterization results hold: let BH be the mutual belief operator defined by the

formula BH(E) =
⋂
h∈H

Bh(E). The event
⋂
k≥0 Bk

H([∆]) is essentially equiva-

lent to “common knowledge of [∆].”We then conjecture that

W∞
∆ = projΣ

(⋂
k≥0

Bk
φ(R) ∩ Bk

H([∆])

)
,

S∞∆ = projΣ

(
CSB∞(R) ∩

⋂
k≥0

Bk
H([∆])

)
.

The intuition is that players never get any direct information about (oppo-
nents’) beliefs, and their best responses only depend on first-order beliefs;
therefore, it should be possible to modify higher-order beliefs at any state

of the world ω = (θ, s, t) ∈
⋂
k≥0

Bk
φ(R ∩ [∆]) (or ω ∈ CSB∞(R ∩ [∆])) so as

to obtain a corresponding state ω′ = (θ, s, t′) ∈
⋂
k≥0 Bk

φ(R) ∩ Bk
H([∆]) (or

ω′ ∈ CSB∞(R) ∩
⋂
k≥0 Bk

H([∆])).15

We also remark that Proposition 2 can be used to provide an epistemic
characterization of the Iterated Intuitive Criterion (IIC) for signaling games
(Cho and Kreps, 1987). In such games, I = 2 , Θ0 and Θ2 are singletons, and
Θ1 corresponds to the sender’s private information; terminal histories are of
the form (m, a), where m is the message sent by the sender and a is the action
taken by the receiver. Now fix a probability distribution ζ ∈ ∆(Θ× Z) over
terminal nodes of the game arborescence, interpreted as a candidate equilib-
rium type-dependent outcome (margΘζ is the prior, that is, the commonly
known initial belief of the receiver); then, let ∆ represent the assumption
that both players initially believe that the outcome distribution ζ will obtain.
Note that, although Cho and Kreps proposed the intuitive criterion and IIC
as refinements of Bayes-Nash equilibrium (indeed of sequential equilibrium),

15We present a similar result, Proposition 3, in the next section, with [∆] replaced by
the event that the true state of nature is some given θ̂. However, the proof of Proposition
3 cannot be adapted to prove the above conjecture.
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it make sense to apply these criteria to any self-confirming equilibrium16 dis-
tribution (Kohlberg, 1990). Battigalli and Siniscalchi (2003) show that ζ is a
self-confirming equilibrium outcome that passes the IIC if and only if S∞∆ 6= ∅
(see Sobel et al. (1990) for a related result). It then follows from Proposition
2 that ζ is a self-confirming equilibrium outcome satisfying IIC if and only
if CSB∞(R ∩ [∆]) 6= ∅.

4 Robustness of Rationalizability with Re-

spect to Payoff Uncertainty

We conclude with a collection of results pertaining to the robustness of
forward-induction reasoning to “slight” payoff uncertainty. Our analysis is
similar in spirit to that of Fudenberg et al. (1988) and, especially, Dekel and
Fudenberg (1990); however, our arguments do not involve payoff perturba-
tions and limiting arguments. Rather, we relate robustness (or lack thereof)
to specific assumptions about belief revision.

As in the first reference cited above, we embed a complete information
game within a richer one featuring payoff uncertainty. Specifically, fix a game
IG with payoff uncertainty, a state of nature θ̂ ∈ Θ, and denote by Gθ̂ the

complete information game corresponding to θ̂. Since a complete information
game is a special case of our framework (with Θ = {θ̂}, a singleton), we can
apply the procedures defined in Section 3 to Gθ̂. In particular, we shall
focus on the weak and strong solution procedures obtained for Gθ̂ when no

belief restrictions are assumed; in order to emphasize the dependence on θ̂,
we shall use the notation {Wn

θ̂
}n≥0 and {Sn

θ̂
}n≥0 respectively. Note that

{Sn
θ̂
}n≥0 coincides with (the correlated version of) Pearce’s (1984) extensive

form rationalizability for Gθ̂.
Our objective is to relate weak and strong rationalizability in Gθ̂ with

assumptions about rationality and belief revision in IG . As a preliminary
observation, intuition suggests that analyzing the complete information game
Gθ̂ should be equivalent to analyzing the game IG focusing on states where

(0) the state of nature is θ̂, (1) every player i ∈ I would be certain of (0)
conditional on every history h ∈ H, ... (k+1) every player i would be certain

16We mean self-confirming equilibrium with unitary beliefs (Fudenberg and Levine,
1993) of the “interim game” where each information type of the sender is a separate
player.
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of (k) conditional on every history h ∈ H ... .
The following result validates this intuition and derives its implications for

weak and strong (extensive-form) rationalizability. To capture assumptions
(0), (1), ... we consider the iterations of operator BH defined by

BH(E) =
⋂
h∈H

Bh(E)

and we denote by [θ̂] the set of states of the world in which the state of nature
is θ̂: that is, [θ̂] = {(θ, s, t) ∈ Ω : θ = θ̂}.

Proposition 3 Let IG be a game with payoff uncertainty and fix θ̂ ∈ Θ.
Then, in any belief-complete type space, for all n ≥ 0,

(i) projS

(⋂n
k=0 Bk

φ(R) ∩
⋂
k≥0 Bk

H([θ̂])
)

= Wn+1

θ̂
;

(ii) projS

(
CSBn(R) ∩

⋂
k≥0 Bk

H([θ̂])
)

= Sn+1

θ̂
.

In the setting of Proposition 3, the assumption that the state of nature
is θ̂ is accorded the highest “epistemic priority”: it is maintained throughout
the game, even at histories where the event R ∩ [θ̂] is falsified (furthermore,
this is common certainty).

We now focus on games with distributed knowledge of the state of nature
(Θ0 = {θ̂0}, a singleton) and private values : that is, we assume that, for all
i ∈ I, ui is independent of θ−i. (Note that the private values assumption
makes θ0 redundant. Thus there is no essential loss of generality in assuming
that Θ0 is a singleton. We will drop θ0 from our notation in what follows.)
Our next result may be interpreted as stating that, in such games, assigning
the same epistemic priority to the events R and [θ̂] (as well as to assumptions
concerning the players’ beliefs about them) is actually sufficient to obtain a
characterization of weak and strong rationalizability.

Proposition 4 Let IG be a game with private values and fix θ̂ ∈ Θ. Then,
in any belief-complete type space, for all n ≥ 0,

(i) projS

(⋂n
k=0 Bk

φ(R ∩ [θ̂])
)

= Wn+1

θ̂
.

(ii) projS

(
CSBn(R ∩ [θ̂])

)
= Sn+1

θ̂
.

However, the assumption that the profile of payoff-types is θ̂ (and that
this is common certainty) may conceivably be accorded a low epistemic pri-
ority. In the next proposition we only assume that there is initial common
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certainty of [θ̂]. We interpret this as a form of “slight” payoff uncertainty:
even though there is initial common certainty of θ̂ players may change their
beliefs about the state of nature after they observe unexpected moves. To
elaborate, consider the following, alternative set of assumptions:

(0) every player initially assigns positive probability to every profile θ−i,
and probability at least p ∈ (0, 1) to θ̂−i;

(1) every player initially assigns probability at least p to (0);
. . .
(k) every player initially assigns probability at least p to (k − 1).
In other words, there is initial common p-belief in the profile θ̂. The

assumption of initial common certainty of [θ̂] may then be seen as a limiting
case of this alternative hypothesis as p→ 1.

It is then natural to ask whether forward-induction reasoning generally
retains its bite in this setting. The main result of this subsection shows
that, if the range of conceivable payoff functions is large, then the answer is
negative.

More specifically, we analyze the implications of iterated correct strong
belief in rationality at states in which there is common certainty conditional
on the initial history alone that the state of nature is θ̂.

We say that the game IG is rich if for all j ∈ I, sj ∈ Sj and µ ∈ ∆H(Σ−j)
there is some θj ∈ Θj such that sj is a sequential best response to µ for
θj.

17 Embedding a complete information game within a rich game with
payoff uncertainty is similar in spirit to considering “elaborations” of a given
extensive game, as in Fudenberg et al. (1988).18

Proposition 5 Let IG be a game with private values, and fix θ̂ ∈ Θ. If IG
is rich, then, in any belief-complete type space, for all n ≥ 0,

projS

(
CSBn(R) ∩

(
n⋂
k=0

Bk
φ([θ̂])

))
= Wn+1

θ̂
.

17Note that a sufficient condition for richness is that each Θj contains an indifferent
payoff-type, i.e. some θ∗j such that uj(θ∗j , ·) is constant. Alternatively, it is sufficient to
assume that, for every player j and sj ∈ Sj , there is a type θj(sj) such that sj is weakly
dominates for θj(sj) every s′j not realization equivalent to sj . Weinstein and Yildiz (2007)
use a similar assumption.

18On the other hand, we emphasize that our assumptions require that players initially
assign probability zero to states of nature other than θ̂, and there is initial common
certainty of this.
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As was noted above, this result is related to Dekel and Fudenberg’s anal-
ysis of the robustness of iterated weak dominance with respect to “slightly
incomplete information (Dekel and Fudenberg, 1990).” Indeed, the procedure

they characterize coincides with
{

Wn
θ̂

}
n≥1

ifGθ̂ is a perfect information game

without ties between payoffs at distinct terminal histories (cf. Ben-Porath
(1997)).

5 Concluding Remarks

This paper contributes to the literature on rationalizability in games of in-
complete information. As in some previous work of ours (Battigalli and Sinis-
calchi, 1999, 2002), we take an interactive-epistemology perspective whereby
solutions concepts are characterized by looking at the behavioral conse-
quences of explicit and transparent assumptions about rationality and inter-
active beliefs. These assumptions correspond to events in a belief-complete
space of states of the world, such as the universal space of infinite hierarchies
of conditional beliefs analyzed by Battigalli and Siniscalchi (1999).19 For this
reason, we do not represent players’ possible hierarchies of beliefs about the
state of nature in the game model, as is done (implicitly) in Bayesian games.
Our primitives only comprise a set Θ of states of nature, players’ private
information about the state of nature, a set H ∪ Z of feasible (partial and
terminal) histories of action profiles (representing feasible moves and their
order), and parametrized utility functions ui : Θ × Z → R. Simultaneous-
moves games (with unknown payoffs) and complete-information games are a
special cases. We call such a structure “game with payoff uncertainty”. Any
assumption about players’ (exogenous and endogenous) beliefs is represented
as an event in the belief-complete space of states of the world.

We consider two versions of ∆-rationalizability, an “umbrella solution
concept” put forward and analyzed by Battigalli (1999, 2003) and Batti-
galli and Siniscalchi (2003). These solutions concepts, weak and strong ∆-
rationalizability, take as parametrically given some restrictions ∆ on players’
first-order beliefs.20 The two solution concepts differ in how players are sup-

19Tan and Werlang (1988) is the first paper adopting this approach, but it only covers
simultaneous moves games with complete information.

20Of course, we cover as a special case the possibility that there are no restrictions at
all. The epistemic analysis of this special case was provided by Battigalli and Siniscalchi
(1999, 2002).
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posed to revise their beliefs upon observing unexpected moves: strong ratio-
nalizability features a forward-induction principle, weak rationalizability does
not. Therefore the two notions coincide for simultaneous moves games. We
prove that weak ∆-rationalizability is characterized by initial (and correct)
common certainty of rationality and of the restrictions ∆, whereas strong
∆-rationalizability is characterized by (correct) common strong belief in ra-
tionality and ∆. From the latter characterization result and an equivalence
result due to Battigalli and Siniscalchi (2003), we also obtain an epistemic
characterization of the Iterated Intuitive Criterion for signaling games (Cho
and Kreps, 1987).

Next, we use our framework to provide an epistemic analysis of the ro-
bustness of forward-induction reasoning in situations where there is initial
common certainty of the true state of nature, as in complete information
games, but (unlike complete information games) players may revise their be-
liefs about the state of nature when they face unexpected moves. We obtain
epistemic characterizations of the complete-information versions of weak and
strong rationalizability under alternative sets of assumptions concerning the
epistemic priority (as determined by players’ belief revision policies) of hy-
potheses concerning rationality versus hypotheses about the state of nature.
In particular, we show that in a private-values setting, if the parameter space
Θ is sufficiently rich, initial common certainty of the true state of nature (pay-
off parameter) θ̂ and common strong belief in rationality are equivalent to
initial common certainty of rationality and θ̂, and yield the weakly rational-
izable strategies of the complete information game corresponding to θ̂. This
shows that forward-induction reasoning is not robust to the introduction of
“slight payoff uncertainty” if the set of conceivable payoff functions is very
large. This confirms a similar result obtained by Dekel and Fudenberg (1990)
with a different approach.

We now discuss the related literature. For the applications of rationaliz-
ability to economic models with incomplete information, we refer to Batti-
galli (1999, 2003), Battigalli and Siniscalchi (2003) and the references therein.
Here we consider the theoretical literature on this topic.

The standard way to analyze incomplete-information games is to adopt
Harsanyi’s approach (Harsanyi, 1967-68): represent them as Bayesian games
and then analyze the Bayes-Nash equilibria or the rationalizable strategies
of such games. The types in a Bayesian game do not only specify a player’s
information, they also parametrize hierarchical beliefs about payoff-relevant
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parameters. Therefore, an information type may correspond to a set of types
in the Bayesian game. Here we refer to the latter types as types à la Harsanyi,
or simply “Harsanyi types”.

Battigalli and Siniscalchi (2003) show that, in any given game with payoff
uncertainty IG, ∆-rationalizability yields the set of equilibrium outcomes of
all the Bayesian games consistent with IG and with the restrictions ∆. Batti-
galli (1999) proves a similar result relating weak rationalizability and weakly
perfect Bayesian equilibrium outcomes. Bergemann and Morris (2007) ob-
tain results of the same kind for static games with payoff uncertainty (which
they call “belief-free incomplete information games”) without considering
restrictions on first-order beliefs. In particular, they show that the set of
incomplete-information correlated-equilibrium outcomes of a game IG co-
incides with the set of Bayes-Nash equilibria (“interim equilibria” in their
terminology) of all the common-prior Bayesian games consistent with IG.

Pearce (1984) put forward a notion of extensive form rationalizability
(EFR). Static and dynamic Bayesian games can be represented as exten-
sive form games with imperfect information about an initial chance move;
therefore, EFR can be applied to Bayesian games. In static Bayesian games,
EFR coincides with interim rationalizability, i.e. rationalizability in the in-
terim strategic form.21 Ely and Pesky (2006) and Dekel et al. (2007) noticed
that interim rationalizability implicitly rests on a conditional-independence
assumption: conditional on the (Harsanyi) type of every opponent, each
player regards θ and his opponents’ actions as mutually independent. This
assumption makes the rationalizable actions depend on features of Harsanyi
types not captured by the corresponding hierarchical beliefs about the payoff-
relevant parameters. This problem, which arises only when there is residual
uncertainty about the payoff parameter (i.e. when Θ0 is not a singleton) is
addressed by these authors in different ways. Ely and Pesky (2006) put for-
ward an alternative notion of hierarchical beliefs that is sufficient to identify
interim-rationalizable actions, but they do not provide an epistemic charac-
terization of interim rationalizability via expressible assumptions on players’
rationality and interactive beliefs. Dekel et al. (2007) instead remove the
conditional independence assumption to obtain a weaker notion of interim
correlated rationalizability, which turns out to depend only on hierarchical

21For the definition of the interim strategic form of a Bayesian game see, for example,
§2.6 in Osborne and Rubinstein (1994). A Bayes-Nash equilibrium is a Nash equilibrium
of the interim strategic form.
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beliefs about the payoff parameters. They also provide an epistemic charac-
terization of this solution concept.

We can relate ∆-rationalizability to EFR and interim rationalizability
for Bayesian games under the assumption that the types à la Harsanyi
correspond to our information types (which implies that information types
map onto the set of infinite hierarchies of beliefs implicitly specified by the
Bayesian game). In this case it can be shown that, in static games, interim
rationalizability/EFR is equivalent to ∆-rationalizability, provided that ∆
represents the belief mappings of the Bayesian Game and the conditional-
independence hypothesis. Interim correlated rationalizability is equivalent
to ∆-rationalizability if ∆ represents the belief mappings. Battigalli et al.
(2007) elaborates on the relationships between these solution concepts and
their epistemic characterizations. We conjecture that a similar equivalence
result holds for dynamic Bayesian games with two players: with appropriate
restrictions ∆, EFR on the extensive form of the Bayesian game should be
equivalent to strong ∆-rationalizability.22 In particular, this would follow
from our conjecture in Section 3.4 that strong ∆-rationalizability is charac-
terized by common strong belief in rationality and “common knowledge” of
the restrictions ∆.

6 Appendix: Proofs

6.1 Main Characterization Results

Proposition 4 does not follow from Propositions 1 and 2, but the proofs are
very similar. We shall emphasize the proof of Propositions 1 and 2, and note
the modifications required to establish Proposition 4.

We begin with two preliminary results. In the first, recall that T−i =∏
j∈I\{i} Tj whereas Σ−i =

∏
j∈{0}∪I\{i} Sj, but this is immaterial.

Lemma 6 Fix a map τ−i : Σ−i → T−i. Also, fix a first-order CPS δi ∈
∆H(Σ−i). Then there exists an epistemic type ti ∈ Ti such that, for each

22Our conjecture considers only two-person games because Battigalli (1996) shows that,
in n-person games, Pearce’s EFR relies on an ill-conceived structural consistency property.
A result for n-person games should therefore refer to amended versions of EFR: either
one that allows for correlation in beliefs about opponents, or one that incorporates an
appropriate independence assumption.
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h ∈ H, gi,h(ti) has finite support and

gi,h(ti) ((σ−i, τ−i(σ−i))) = δi(σ−i|Σ−i(h))

for all σ−i ∈ Σ−i.

Proof. Define a candidate CPS µi on Σ−i × T−i by setting

µi ({(σ−i, τ−i(σ−i))} |Σ−i(h)× T−i) = δi(σ−i|Σ−i(h))

for every h ∈ H, and extending the assignments by additivity. Axioms 1 and
2 follow immediately from the observation that the map σ−i 7→ (σ−i, τ−i(σ−i))
yields an embedding of

⋃
h∈H supp [δi(.|Σ−i(h))] ⊂ Σ−i (a finite set) in Σ−i×

T−i, so that, for every h ∈ H, µi(.|Σ−i(h)×T−i) is indeed a probability mea-
sure on Σ−i× T−i. By the same argument, µi must also satisfy Axiom 3, i.e.
it must be a CPS; of course, each µi(.|Σ−i(h) × T−i) has finite support by
construction. Since gi is onto, there exists a type ti ∈ Ti such that

gi,h(ti) ((σ−i, τ−i(σ−i))) = µi((σ−i, τ−i(σ−i))|Σ−i(h)× T−i) = δi(σ−i|Σ−i(h))

for all σ−i ∈ Σ and h ∈ H.

The next lemma provides an alternative characterization of {Sn∆}∞n=0,
where ∆ = (∆θi

)i∈I,θi∈Θi
is any regular collection of subsets of CPSs.

Lemma 7 Suppose ∆ is regular. For every i ∈ I and n ≥ 1, (θi, si) ∈ Sni,∆
if and only if there exists a CPS µ ∈ ∆θi

such that (θi, si) ∈ ri(µ) and

∀m = 0, . . . , n− 1, ∀h ∈ H : Sm−i,∆ ∩ Σ−i(h) 6= ∅ ⇒ µ(Sm−i,∆|Σ−i(h)) = 1
(2)

Proof: The statement is obvious for n = 1. Now pick n ≥ 2 and assume
it is true for m = 0, . . . , n − 1. If σi = (θi, si) ∈ ri(µ) for some µ ∈ ∆θi

satisfying (2), then σi ∈ Sn−1
i,∆ by the induction hypothesis, because Sm−i,∆ ∩

Σ−i(h) 6= ∅ ⇒ µ(Sm−i,∆|Σ−i(h)) = 1 for m = 0 . . . n− 2; moreover, since also

Sn−1
−i,∆ ∩ Σ−i(h) 6= ∅ ⇒ µ(Sn−1

−i,∆|Σ−i(h)) = 1, and σi ∈ ri(µ), we conclude
σi ∈ Sni,∆.

In the other direction, suppose σi = (θi, si) ∈ Sni,∆. Then also σi ∈ Smi,∆
for m = 0, . . . , n− 1, so we can find CPSs µm ∈ ∆θi

, m = 0, . . . , n− 1, such
that, for each such m, σi ∈ ri(µm) and, for any h ∈ H, Sm−i,∆ ∩ Σ−i(h) 6= ∅
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implies µm(Sm−i,∆|Σ−i(h)) = 1. Now construct a new CPS µ as follows: for
any h ∈ H, let m(h) = max{m = 0, . . . , n − 1 : Sm−i,∆ ∩ Σ−i(h) 6= ∅},
and define µ(·|Σ−i(h)) = µm(h)(·|Σ−i(h)). It is easy to verify that this is
a well-defined CPS, i.e. µ ∈ ∆H(Σ−i)) (for a similar construction, see e.g.
Battigalli (1997)).

By construction, µ(·|Σ−i(h)) ∈ ∆θi,h for all h. By definition of regularity,
∆θi

= ∆H(Σ−i) ∩
∏

h∈H∆θi,h. Therefore µ ∈ ∆θi
. Moreover, clearly σi ∈

ri(µ). Finally, µ satisfies (2), which concludes the proof.

Note that Lemma 7 also applies to games with complete information (take
Θi to be a singleton for each i); hence, in the setting of Section 4, it applies
to the game Gθ̂ and the sets Sn

θ̂
, n = 0, 1, ... .

We can finally prove our main result.

Proof of Proposition 2: To prove (i), we proceed by induction, assum-
ing first that the sets appearing in the statement are nonempty.

(Step 0.) Fix (σ, t) = (θ0, s0, θ1, s1, ..., θ|I|, s|I|) ∈ CSB0(R∩[∆]) = R∩[∆].
Then by definition σi = (θi, si) ∈ ri(fi(ti)) and fi(ti) ∈ ∆θi

for every i ∈ I,
which implies that σ ∈ S1

∆.
Conversely, for each i ∈ I and σi ∈ Σi, pick τ 0

i (σi) ∈ Ti arbitrarily.
Now fix σ ∈ S1

∆, and for each player i ∈ I and θi ∈ Θi, let µi ∈ ∆θi
be

such that σi = (θi, si) ∈ ri(µi). Now Lemma 6 yields a type τ 1
i (σi) ∈ Ti such

that gi,h(τ
1
i (σi))({(σ′j, τ 0

j(σj))j 6=i}) = µi(σ
′
−i|Σ−i(h)) for every σ′−i ∈ Σ−i, and

hence fi(τ
1
i (σi)) = µi. Thus, (σi, τ

1
i (σi))i∈I ∈ R ∩ [∆].

Finally, for each i ∈ I, we complete the definition of the function τ 1
i (·) by

letting τ 1
i (σi) = τ 0

i (σi) for σi ∈ Σi \ S1
i,∆.

(Step n > 0.) Now assume that Part (i) has been shown to hold for
m = 0, . . . , n − 1, and that, for each such m, we have defined functions
τm+1
i : Σi → Ti such that (σi, τ

m+1
i (σi))i∈I ∈ CSBm(R ∩ [∆]) whenever

σ ∈ Sm+1
∆ . Finally, let the functions τ 0

i (·) be defined as above.
Note that, for any event E ∈ A and n ≥ 1,

CSBn(E) = E ∩
⋂
i∈I

{
n−1⋂
m=0

SBi(Ωi × [projΩ−i
CSBm(E)])

}
(3)

Also note that, for any i ∈ I, h ∈ H and event E such that projΩi
E = Ωi,

E ∩ (Σ(h)× T ) 6= ∅ ⇔ [projΣ−i
E] ∩ Σ−i(h) 6= ∅ (4)
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Now consider (σ, t) ∈ CSBn(R∩ [∆]) and fix i ∈ I. By Equation 3 (taking
E = R∩ [∆]) we conclude that σi = (θi, si) ∈ ri(fi(ti)) and fi(ti) ∈ ∆θi

; also,
for any m = 0, . . . , n−1, the induction hypothesis and Equation 4 imply that,
for any h ∈ H, Sm+1

−i,∆ ∩ Σ−i(h) = [projΣ−i
CSBm(R ∩ [∆]] ∩ Σ−i(h) 6= ∅ if and

only if [Ωi×projΩ−i
CSBm(R∩[∆])]∩(Σ(h)×T ) 6= ∅. Now Equation 3 and the

definition of strong belief implies that, for any h ∈ H satisfying the latter
condition for some m = 0, . . . , n − 1, gi,h(ti)(projΩ−i

CSBm(R ∩ [∆])) = 1.
This implies fi(ti)(projΣ−i

CSBm(R∩ [∆])|Σ−i(h)) = 1; in turn, the induction

hypothesis implies fi(ti)(S
m+1
−i,∆|Σ−i(h)) = 1. Hence, Lemma 7 implies that

σi ∈ Sn+1
i,∆ .

For the converse implication, begin by defining

mi(σi) = max{m = 0, . . . , n : σi ∈ Smi,∆}
for every i ∈ I and σi ∈ Σi; recall that S0

i,∆ = Σi, so mi(·) is well-defined

for every σi ∈ Σi. Now consider σ ∈ Sn+1
∆ and fix a player i ∈ I. By

Lemma 7, we can find a CPS µi ∈ ∆H(Σ−i) satisfying Equation 2. By
Equation 4 and the induction hypothesis, for h ∈ H and m = 0, . . . , n − 1,
[Ωi×projΩ−i

CSBm(R∩[∆])]∩(Σ(h)×T ) 6= ∅ if and only if Sm+1
−i,∆∩Σ−i(h) 6= ∅.

But if the latter inequality holds, µi(S
m+1
−i,∆|Σ−i(h)) = 1 by Equation 2.

Now define τ−i : Σ−i → T−i by letting

τ−i(σ
′
−i) = (τ

mj(σ′j)

j (σ′j))j 6=i ∀σ′−i ∈ Σ−i;

Lemma 6 now yields a type τn+1
i (σi) ∈ Ti such that

gi,h(τ
n+1
i (σi))({(σ′j, τ

mj(σ′j)

j (σ′j))j 6=i}) = µi({σ′−i}|Σ−i(h))

for all h ∈ H and σ′−i ∈ Σ−i. Now note that, for m = 0, . . . , n− 1,

σ′−i ∈ Sm+1
−i,∆ ⇒ (σ′j, τ

mj(σ′j)

j (σ′j))j 6=i ∈ projΩ−i
CSBm(R ∩ [∆])

because, for all j 6= i: (a) mj(σ
′
j) ≥ m + 1 if σ′−i ∈ Sm+1

−i,∆; (b) if mj(σ
′
j) ≥ 1

then, by the induction hypothesis,

(σ′j, τ
mj(σ′j)

j (σ′j)) ∈ projΩj
CSBmj(σ′j)−1(R ∩ [∆]);

and finally (c) the sets (CSBm(R ∩ [∆]))m≥0 are monotonically decreasing.
But then

g∗i,h(σi, τ
n+1
i (σi))(Ωi × projΩ−i

CSBm(R ∩ [∆])) = 1
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for any m = 0 . . . n− 1 and h ∈ H such that [Ωi × projΩ−i
CSBm(R ∩ [∆])] ∩

(Σ(h)×T ) 6= ∅, because by the argument above supp µ(·|Σ−i(h)) ⊂ Sm+1
−i,∆ at

any such history.
Moreover, since by construction fi(τ

n+1
i (σi)) = µi, we also have σi =

(θi, si) ∈ ri(fi(τn+1
i (σi))) and fi(τ

n+1
i (σi)) ∈ ∆θi

.
Repeating the argument for every i ∈ I yields a profile of types (τn+1

i (σi))i∈I
which, by Equation 3, satisfies (σi, τ

n+1
i (σi))i∈I ∈ CSBn(R ∩ [∆]). To com-

plete the induction step, for each i ∈ I we now define the function τn+1
i (·)

for σi ∈ Σi \ Sn+1
i,∆ by letting τn+1

i (σi) = τni (σi) for any such strategy σi.

The argument just given shows that if one of the sets appearing in the
statement of (i) is nonempty, so is the other one. Hence, the proof of (i) is
complete.

For Part (ii), assume first that S∞∆ 6= ∅. Then Sn∆ 6= ∅ for all n ≥ 0; hence
CSBn(R∩ [∆]) 6= ∅ for n ≥ 0 by Part (i). Then CSB∞(R∩ [∆]) is nonempty,
because T is compact by assumption and the nested, nonempty closed sets
{CSBn(R ∩ [∆])}n≥0 form a family with the finite intersection property.

Now suppose (σ, t) ∈ CSB∞(R ∩ [∆]). Since, by Part (i), Sn+1
∆ =

projΣCSBn(R ∩ [∆]) for any n ≥ 0, we conclude that σ ∈ Sn∆ for every
n ≥ 1; so σ ∈

⋂
n≥1 Sn∆ = S∞∆ . Hence projΣCSB∞(R ∩ [∆]) ⊂ S∞∆ .

Next, let N be the smallest integer such that SN∆ = S∞∆ (which must exist
because Σ is finite). Pick any σ ∈ SN∆ = S∞∆ and consider the sequence of sets
M(m,σ) = CSB(N−1)+m(R∩ [∆])∩ ({σ}×T ), m ≥ 0 (let M(0, σ) = {σ}×T
if N = 0). Each set M(m,σ) is nonempty and closed; also, the sequence of
sets M(m,σ) is decreasing, and hence has the finite intersection property.
Then ∅ 6=

⋂
m≥0M(m,σ) ⊂ CSB∞(R ∩ [∆]), so S∞∆ ⊂ projΣCSB∞(R ∩ [∆]).

If S∞∆ = ∅, let N be the smallest integer such that SN∆ = ∅. Since
SN∆ = projΣCSBN−1(R ∩ [∆]), we conclude that CSBN−1(R ∩ [∆]) = ∅, so
CSB∞(R ∩ [∆]) = ∅, and again S∞∆ = projΣCSB∞(R ∩ [∆]).

The proof of Proposition 1 is analogous, but simpler; we only provide
a sketch.23 To elaborate, Step (0) is identical. In Step n, for any (σ, t) ∈⋂n
k=0 Bk

φ(R∩[∆]), it is enough to verify that gi,φ(ti)
(
margΩ−i

⋂n−1
k=0 Bk

φ(R ∩ [∆])
)

=

1, so that, by the induction hypothesis, fi,φ(ti)
(
Wn
−i,∆

)
= 1; the argu-

ments given above then imply that σ ∈ Wn+1
∆ , as required. Conversely,

23An analogous result is proved in Battigalli and Siniscalchi (1999), without exogenous
restrictions on beliefs.
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for σ ∈ Wn+1
∆ and i ∈ I, Def. 5 implies that σi = (si, θi) ∈ ri(µ) for

some µ ∈ ∆θi
such that µ(Wn

−i,∆|Σ−i) = 1; invoking the induction hy-
pothesis, for every σ′−i ∈ supp µ one can find τ−i(σ−i) ∈ T−i such that
(σ′−i, τ−i(σ

′
−i)) ∈ projΩ−i

⋂n
k=0 Bk

φ(R∩ [∆]). It is then sufficient to construct a
type ti ∈ Ti such that fi(ti) = µ and gi,φ(ti)({σ′−i, τ−i(σ′−i)}) = µ({σ′−i}|Σ−i)
for all σ′−i ∈ supp µ.

Finally, the following observations allow one to modify the proof of Propo-
sition 2 to prove Part (ii) of Proposition 4. Fix a player i ∈ I and a profile
of payoff-types θ̂ ∈ Θ.

First, note that, for any CPS µi ∈ ∆H(Σ−i), one can define a “marginal”
CPS µSi ∈ ∆H(S−i) by letting µSi ({s−i}|Σ−i(h)) = µi(Θ−i×{s−i}|Σ−i(h)) for
each h ∈ H; conversely, for any CPS νSi ∈ ∆H(S−i), one can define a CPS
νi ∈ ∆H(Σ−i) by letting νi({(θ̂−i, s−i)}|Σ−i(h)) = νSi ({s−i}|S−i(h)) for each
h ∈ H.

With these definitions, for any strategy si ∈ Si, by the private values
assumption (θ̂i, si) ∈ ri(µi) implies si ∈ ri,θ̂(µSi ), and conversely si ∈ ri,θ̂(νSi )

implies (θ̂i, si) ∈ ri(νi), where ri,θ̂(·) denotes Player i’s best response corre-
spondence in the game Gθ̂. This allows one to adapt Step 0 in the above

proof of Part (i) and show that S1
θ̂

= W1
θ̂

= projSR ∩ [θ̂]. We leave the rest
of the proof of Part (i) to the reader.

As for the proof of Part (ii), note that, since Σ(h) = Θ × S(h) for all
h ∈ H, E ∩ (Σ(h) × T ) 6= ∅ if and only if [projS−i

E] ∩ S−i(h) 6= ∅ for any
event E such that projSi

E = Si. The inductive step in the proof of Part (i)
of Proposition 2 may then be easily adapted to the present context. Again
we leave the details to the reader.

6.2 Other Proofs

Proposition 3

Proof. Given a belief-complete type space for game IG we derive a belief-
complete type space for game Gθ̂ as follows:

For all k = 0, 1, ... and i ∈ I, let T 0
θ̂,i

= Ti,

T k+1

θ̂,i
=

{
ti ∈ T kθ̂,i : ∀h ∈ H, gi,h(ti)

(∏
j 6=i

{θ̂j} × Sj × T kθ̂,j

)
= 1

}
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and
Tθ̂,i =

⋂
k≥0

T k
θ̂,i
.

We take Tθ̂,i to be Player i’s space of epistemic types in game Gθ̂ and define

the belief mapping gθ̂,i : Tθ̂,i → ∆H
(∏

j 6=i Sj × Tθ̂,j
)

so that, for all ti ∈ Tθ̂,i,
gθ̂,i(ti) is the CPS satisfying

∀h ∈ H, ∀s−i ∈ S−i,∀K−i ⊂ Tθ̂,−i (measurable),

gθ̂,i,h(ti) ({s−i} ×K−i) = gi,h(ti)
(
{θ̂−i, s−i} ×K−i

)
.

(we abuse notation in writing ordered tuples and Cartesian products: the
meaning is obvious). By construction (Tθ̂,i, gθ̂,i)i∈I defines a belief-complete
type space for game Gθ̂ and for all i ∈ I, (s, t) ∈ S × Tθ̂, h ∈ H, E ⊂ S × Tθ̂
(measurable),

(s, t) ∈ Bθ̂,i,h(E)⇔ (θ̂, s, t) ∈ Bi,h({θ̂} × E)

and
(s, t) ∈ Rθ̂ ⇔ (θ̂, s, t) ∈ R ∩ [θ̂],

where Bθ̂,i,h and Rθ̂ denote the (i, h)-belief operator and the rationality event
in the type space for game Gθ̂. By Propositions 1 and 2 these equivalences
imply the thesis.

Proposition 5

Proof. The statement is obviously true for n = 0. Suppose it is true for
index n − 1. It can be easily shown by induction that, for every event E,
CSBn(E) ⊂

⋂n
k=0 Bk

φ(E), which implies

CSBn(R) ∩

(
n⋂
k=0

Bk
φ([θ̂])

)
⊂

n⋂
k=0

(
Bk
φ(R) ∩ Bk

φ([θ̂])
)

=
n⋂
k=0

(
Bk
φ(R ∩ [θ̂])

)
.

Therefore, by Proposition 4, projS

(
CSBn(R) ∩

(⋂n
k=0 Bk

φ([θ̂])
))
⊂ W n+1

θ̂
.

Assume that s ∈ W n+1

θ̂
. Fix i ∈ I. By assumption there exists a CPS ν ∈

∆H(S−i) such that si ∈ rθ̂,i(ν) (rθ̂,i is Player i’s best response correspondence
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in Gθ̂) and ν
(
W n
θ̂,−i|S−i

)
= 1. We now construct a CPS µ ∈ ∆H(Ω−i) having

ν as marginal CPS on S−i.

By the induction hypothesis, projS−i

(
CSBn−1(R) ∩

(⋂n−1
k=0 Bk

φ([θ̂])
))

=

W n
θ̂,−i. Hence, for any s−i ∈ W n

θ̂,−i we can find θ−i(s−i) ∈ Θ−i and t−i(s−i) ∈

T−i such that (θ−i(s−i), s−i, t−i(s−i)) ∈ projΩ−i
CSBn−1(R)∩

(⋂n−1
k=0 Bk

φ([θ̂])
)

.

Since the game IG is rich, projS−i
Σn = S−i, where Σn is the result of the

procedure in Definition 6 when there are no restrictions on first order beliefs.
By Proposition 2 projΣCSBn−1(R) = Σ. Therefore projS−i

CSBn−1(R) = S−i,
and for every s−i ∈ S−i \W n

θ̂,−i we can find θ−i(s−i) ∈ Θ−i and t−i(s−i) ∈ T−i
such that (θ−i(s−i), s−i, t−i(s−i)) ∈ projΩ−i

CSBn−1(R).
We have thus defined a map s−i 7−→ (θ−i(s−i), s−i, t−i(s−i)) which pro-

vides an embedding of S−i into Ω−i. As in the proof of Lemma 6, we can
then construct a CPS µ ∈ ∆H(Ω−i) such that, for all s−i ∈ S−i and h ∈ H,
µ({θ−i(s−i), s−i, t−i(s−i)|Σ−i(h)× T−i) = ν(s−i|S−i(h)). Therefore,

µ

(
projΩ−i

CSBn−1(R) ∩

(
n−1⋂
k=0

Bk
φ([θ̂])

)
|Σ−i(φ)× T−i

)
= ν(W n

θ̂,−i|S−i(φ)) = 1

and µ(projΩ−i
CSBn−1(R)|Σ−i(h)× T−i) = 1 for all h ∈ H.

Since we are considering a belief-complete space there is an epistemic
type ti ∈ Ti such that gi(ti) = µ. By the private values assumption (θ̂i, si) ∈
ri(fi(ti)).

Repeat the same construction for each player and let (s, t) be the tuple
of strategies and epistemic types thus obtained. It now follows that

(θ̂, s, t) ∈ CSBn(R) ∩

(
n⋂
k=0

Bk
φ([θ̂])

)
.

This concludes the proof.
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