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Focusing on signaling games, I illustrate the relevance of the rationalizability approach
for the analysis multistage games with incomplete information. I define a class of iterative
solution procedures, featuring a notion of “forward induction”: the Receiver tries to
explain the Sender’s message in a way which is consistent with the Sender’s strategic
sophistication and certain given restrictions on beliefs. The approach is applied to some
numerical examples and economic models. In a standard model with verifiable messages
a full disclosure result is obtained. In a model of job market signaling the best separating
equilibrium emerges as the unique rationalizable outcome only when the high and low
types are sufficiently different. Otherwise, rationalizability only puts bounds on the
education choices of different types.
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1. Introduction

Rationalizability is a solution concept that captures the implications of rationality
and common belief in rationality. It has been argued that rationalizability is relevant
and important in the analysis of incomplete information games (Battigalli and
Siniscalchi, 2003a; Battigalli, 2003; Dekel et al., 2003; Ely and Peski, 2004). In the
context of dynamic games, a strong version of rationalizability also involves the
forward-induction assumption that players try to rationalize the past actions of
their opponents. In this paper I apply this strong rationalizability approach to the
analysis of signaling games. For the sake of completeness in this Introduction I first
provide a general discussion of incomplete information games and then I consider
signaling games.

In a typical game of incomplete information the relationship between actions
and payoffs is not commonly known. Different players have different pieces of infor-
mation about this relationship. I call such pieces of information “payoff-relevant
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types”, or — more simply, payoff-types,a and I call a complete specification of the
payoff-relevant parameters of the game state of nature. A basic description of an
incomplete information game would simply specify the rules of interaction (feasible
sequences of actions, information about previous actions, etc.), a set of conceivable
states of nature, and a set of conceivable payoff-types for each player. However,
according to Harsanyi’s (1967–68) approach, this description of the strategic sit-
uation is insufficient. In order to apply game-theoretic (equilibrium) analysis and
derive implications about behavior this basic structure has to be augmented with
a type space, that is, a mathematical structure which provides an implicit descrip-
tion of the possible configurations of interactive believes: each player’s beliefs about
his opponents’ payoff-types (first-order beliefs) and each player’s beliefs about his
opponents’ beliefs (higher-order beliefs). A Harsanyi-type encodes both a player’s
payoff-types and his first-order and higher-order beliefs concerning payoff-types.
A type-space-augmented incomplete information game — also called Bayesian
game — is structurally similar to a standard game where the players have asym-
metric information about an initial chance move affecting their payoffs. Hence an
appropriate analog of the Nash equilibrium concept, the Bayesian-Nash equilib-
rium, can be used to analyze strategic interaction under incomplete information.
A Bayesian-Nash equilibrium specifies a choiceb for every Harsanyi-type of every
player so that the choice of each Harsanyi-type is a best response to its beliefs
given a correct conjecture about the choice that each possible type of the oppo-
nents would make.

There is an important conceptual difference between games with incomplete
information and games with asymmetric information about an initial chance move.
In the latter there is an ex ante stage in which the players are equally uninformed,
after which the players learn their private information. Games with asymmetric
information about a chance move (such as Poker) have been studied since the very
infancy of game theory, well before Harsanyi’s seminal contribution on incomplete
information games. On the other hand, in games with incomplete information there
is no ex ante stage. It is quite simply the case that some players happen to know
some relevant facts unknown to other players.c For example, an economic agent
typically knows more than other agents about his own preferences and innate abil-
ities. In what follows I argue that this difference has been too often overlooked in
applications, and I propose an alternative method of analysis of incomplete infor-
mation games that does not rely on type spaces à la Harsanyi and Bayesian-Nash
equilibrium.

aThis terminology has become rather standard in the recent literature on incomplete informa-

tion games and type spaces: see, e.g., Battigalli (2003), Battigalli and Siniscalchi (2003a) and
Bergemann and Morris (2004). Harsanyi (1967–68) used the term “attribute vector”.
bIn a dynamic game, the choice concerns a plan of action.
cOne may consider the case of incomplete, and yet completely symmetric information, but it is less
interesting. Also, one may consider games featuring both asymmetric information about an initial
chance move, and incomplete information. The methodology I propose can be easily extended to
cover these cases.
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Harsanyi’s analysis of games with incomplete information is in principle quite
flexible. Indeed, it has been argued that without specific assumptions about players’
interactive beliefs, the Bayesian-Nash equilibrium concept has very weak behavioral
implications. Generalizing an observation due to Brandenburger and Dekel (1987),
Battigalli and Siniscalchi (2003a) show that any behavior consistent with common
certainty of rationality is also consistent with some Bayesian-Nash equilibrium as
long as we consider a sufficiently rich type space.d In other words, the equilib-
rium assumption that players have correct conjectures about the choice that each
Harsanyi-type would make does not have any behavioral implication beyond com-
mon certainty of rationality, if it is not coupled with specific assumptions about
interactive beliefs. As in games of complete information, the behavioral conse-
quences of common certainty of rationality can be weak or strong, depending on
the details of the model at hand. But it is worth noting that in order to derive such
implications it is not necessary to refer to type spaces à la Harsanyi. One only has
to perform a solution procedure similar to iterated dominance: at each round of the
procedure one eliminates, for each payoff-type of each player, the choices that are
not best responses to any belief about the combinations of payoff-types and choices
for the other players that survived the previous rounds. It is also possible to adapt
the procedure to take into account that some features of the players’ first-order
beliefs may be common certainty (for example, there may be common certainty
of the fact that every opponent of player i assigns at least a 50% probability to a
particular payoff-type θ∗i ).

To sum up, in order to derive behavioral implications going beyond the conse-
quences of common certainty of rationality, one has to make specific assumptions
about the players’ interactive beliefs concerning payoff-types. But, in my opin-
ion, Harsanyi’s emphasis on the structural similarity between Bayesian games and
standard games with asymmetric information, has led many applied economists to
acritically use assumptions about interactive beliefs that are often implausible and
not well-understood. For example, in economic models with incomplete information
on one side, such as signaling games, it is almost always assumed that the beliefs of
the uninformed players about the payoff-type of the informed player are commonly
known. This amounts to assuming a small type space where there is a one-to-one
correspondence among payoff-types and Harsanyi-types.e

This widespread modeling strategy raises several problems. It is clear that
small type spaces are used for tractability reasons: calculating the Bayesian-Nash

dRelated results can be found in in Dekel et al. (2003) and Ely and Peski (2004).
eBergemann and Morris (2004) call “naive” a type space where beliefs are derived from a common
prior on the set of states of nature. This property of interactive beliefs is much stronger than the
existence of a common prior on the set of states of the world. In two-person games with incomplete
information on one side, we have a naive type space if and only if the (first-order) belief of the
uninformed player is common knowledge.

On the conceptual interpretation of the common prior assumption see, for example, Morris
(1995), Gul (1998), Aumann (1998), Bonanno and Nehring (1999), and Feinberg (2000).
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equilibria of a game-theoretic model with a large and complex type space may
be very difficult. But, except for tractability, economists often do not have other
compelling reasons for using small type spaces. Furthermore, it is not clear, a pri-
ori, how these assumptions about interactive beliefs affect the set of equilibrium
outcomes in particular cases.

Another shortcoming of the standard approach à la Harsanyi is that it does not
provide an adequate framework to formulate and evaluate assumptions about how
the players would revise their beliefs if they observed unexpected moves by their
opponents. A plethora of refinements of the Bayesian-Nash equilibrium concept have
been proposed, much to the confusion of applied economists. Many of these refine-
ments are supposed to capture the “forward-induction” assumption that players try
to rationalize the observed behavior of their opponents in order to make inferences
about their private information and/or strategic intent. This kind of strategic con-
siderations have been extensively studied within a class of simple dynamic games
of incomplete information: signaling games, i.e., leader-follower games where (only)
the leader knows the state of nature.

In this paper I illustrate a different approach to the analysis of signaling games. I
consider a class of iterative solution procedures that take as given some restrictions
on players’ beliefs about the payoff-types and the strategies of their opponents. Such
solution procedures are akin to extensive-form rationalizability (Pearce (1984)).

As in the complete information case, there are several possible definitions of the
rationalizability solution concept for dynamic games, corresponding to different
assumptions about how players would update their beliefs if they observed unex-
pected behavior. Here I consider a class of rationalizability procedures capturing
different notions of forward induction. Each procedure corresponds to a parametri-
cally given pair of subsets of first-order beliefs (about the opponent’s payoff-types
and strategies) of the Sender (Player 1) and Receiver (Player 2). These procedures,
on top of common belief in rationality, also capture the assumption that the Receiver
always tries to “rationalize” the observed choice of the Sender, that is, he ascribes
to the Sender the highest degree of “strategic sophistication” consistent with the
Sender’s message, given common knowledge of the explicit restrictions of first-order
beliefs.f (Of course, the case of no explicit restriction on first-order beliefs is also
consistent with our general analysis.)

To illustrate, consider the example depicted in Fig. 1. In a signaling game the
states of nature correspond to the payoff-types of the Sender. There are two con-
ceivable states of nature, θ′ and θ′′. The Sender can go left (L) or right (R). Action
(message) L terminates the game. The Receiver can respond to right with up (u) or
down (d). The first number at each terminal node is the Sender’s payoff, the second
number is the Receiver’s payoff. Note that the figure does not represent an initial
chance move selecting the type, nor prior probabilities attached to θ′ and θ′′. In this
particular example, I do not consider any explicit restriction on first-order beliefs.

f I will be more explicit and precise in Subsec. 2.4.
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Fig. 1.

Action R is dominated when the state of nature is θ′. But, if the state is θ′′, R is a
best response to the conjecture that the Receiver would play up with probability at
least 1/2. Thus, the only way to rationalize R is to believe that the state is θ′′, and
the best response to R given this belief is up. The Sender anticipates this response.
Therefore the rationalizable solution is that the Sender chooses left if the state is
θ′, and right if the state is θ′′, and the Receiver plays the strategy “up if right”.g

I apply this approach to some examples and economic models. In some cases it is
possible to obtain the same qualitative results as in the more standard equilibrium
analysis based on Bayesian games with small type spaces. In other cases weaker
results obtain.

I first consider a model due to Sanford Grossmanh whereby the Sender can make
statements about his type (e.g., “quality”) and would like to convince the Receiver
that his type is as high as possible. Such statements are certifiable (hence truthful)
but may be only partially revealing. The standard result obtained in the literature
is that in every (perfect Bayesian) equilibrium the Sender fully discloses his true
type. Under a very weak restriction on beliefs, I obtain the same result with the
rationalizability solution procedure.

Next I analyze a version of Spence’s job market signaling model whereby edu-
cation complements ability in enhancing productivity. As is well known, for any
prior distribution on abilities, this model has a continuum of pooling and separat-
ing (perfect Bayesian) equilibrium outcomes, but only the most efficient separating
equilibrium outcome passes the Intuitive Criterion, a forward-induction refinement.

gThis is the result we would obtain in any Bayesian game based on Fig. 1 by looking at the
Bayesian-Nash equilibria satisfying the test of dominated messages.
hSee Grossman (1981) and also Grossman and Hart (1980).
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Under very weak restrictions on beliefs, I show that the same outcome is selected
by the rationalizability solution procedure, provided that high ability workers are
sufficiently different from low ability workers. If this condition does not hold, ratio-
nalizability only yields a lower and upper bound on education.

Notions of rationalizability incorporating explicit restrictions on beliefs are dis-
cussed in Rabin (1994) and used in the analysis of specific economic models by
Watson (1993, 1996, 1998), Cho (1994, 2003, 2004), Battigalli and Watson (1997),
Perry and Reny (1999), Battigalli (2001), Battigalli and Siniscalchi (2003b) and
Dekel and Wolinsky (2003). Notions of rationalizability incorporating forward
induction assumptions in the context of dynamic games of incomplete information
are discussed and analyzed in Sobel et al. (1990), Battigalli and Siniscalchi (2002,
2003a) and Battigalli (2003). Focusing on finite games, Battigalli and Siniscalchi
(2002) provide a complete epistemic characterization of such solution procedures,
and Battigalli and Siniscalchi (2003a) relate them to the Bayesian equilibrium and
self-confirming equilibrium concepts. Battigalli (2003) provides existence and char-
acterization results for infinite dynamic games. Hu (2004) provides epistemic char-
acterizations and robustness results for infinite games with simultaneous moves.
Bergemann and Morris (2003, 2004) study implementation and mechanism design
with large type spaces. Dekel et al. (2003) and Ely and Peski (2004) analyze interim
(correlated) rationalizability in Bayesian games. Restricting attention to games with
simultaneous moves, the main difference between interim rationalizability and the
class of solution procedures put forward by Battigalli and Siniscalchi (2003a) is that
the former takes as given a specific type space à la Harsanyi while the latter refer
only to payoff-types. But (not surprisingly) interim rationalizability is equivalent
to the Battigalli-Siniscalchi procedure that takes as given the restrictions on beliefs
implied by the type space.i

The remainder of the paper is organized as follows. Section 2 introduces the
general definition of rationalizability in signaling games for given restrictions on
beliefs. This solution concept is applied to a simple model of disclosure in Sec. 3
and to a model of job market signaling in Sec. 4. Section 5 offers some concluding
remarks. The Appendix contains a more general specification of the disclosure model
and the most tedious proofs.

2. Rationalization in Signaling Games

2.1. Signaling games

A signaling game is a two-stage game with incomplete information on one side where
the informed party (Player 1, or Sender) chooses a “message” m from some set M

and the uninformed party (Player 2, or Receiver) responds with an action a from
some set A. Here I assume, without substantial loss of generality, that the set of

iMore precisely, the equivalence holds whenever the restrictions on beliefs implied by the given
type space only reflect common knowledge restrictions on first-order beliefs.
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feasible messages of the Sender does not depend on his private information and that
the set of feasible responses for the Receiver does not depend on the message sent
by the Sender. Therefore a signaling game can be represented as a mathematical
structure

Γ = 〈Θ, M, A, u, v〉
with the following interpretation:

• Θ is the (nonempty) set of conceivable payoff-types and coincides with the set of
states of nature, an element θ ∈ Θ represents what the Sender might know about
how messages and responses are associated to payoffs;

• M is the (nonempty) set feasible messages by the Sender;
• A is the (nonempty) set of feasible responses by the Receiver;
• u : Θ × M × A → R is the Sender’s payoff function, v : Θ × M × A → R is the

Receiver’s payoff function.

The set of strategies of the Receiver is S2 = AM .j

To illustrate, in the example depicted in Fig. 1 one has Θ = {θ′, θ′′}, M =
{L, R}, A = {u, d}. Payoff function u is given by the first number at each terminal
node, and payoff function v by the second number. In particular, to represent that
fact that the Receiver is inactive after message L and that payoffs after this message
are as in Fig. 1, I let u(θ, L, a) = 1 and v(θ, L, a) = 0 for all θ ∈ Θ and a ∈ A.
Therefore, the action of the Receiver after message L can be omitted from the
graphical representation.

In the applications in Secs. 3 and 4 I analyze infinite signaling games, but to
avoid technicalities in the abstract analysis, I assume in this section that Θ, M ,
and A are finite sets.k

Note that I am not including in Γ any representation of the Receiver’s beliefs
about the Sender’s payoff-type. Therefore Γ is not a game is the usual technical
sense. In order to obtain a Bayesian (extensive-form) game from Γ, one has to
append to Γ a type space based on Θ (for more on this, see Subsec. 2.6).

2.2. First-order beliefs and best responses

The first-order beliefs of the players describe their (probabilistic) conjectures about
the payoff-type and behavior of the opponent as the play unfolds. Higher-order
beliefs will not be explicitly represented in the formalism of this paper. Therefore I
will often omit the “first-order” qualification.

Since the Receiver has no private information and the Sender moves only once,
at the beginning of the game, I can simply represent the Sender’s beliefs about the

jFor given sets X and Y , Y X denotes the set of functions from X to Y .
kSee Battigalli (2003) for an analysis of rationalizability in infinite dynamic games of incomplete
information.
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Receiver as a probability measure µ1 ∈ ∆(S2). As is well known, the Sender’s beliefs
can be equivalently represented by a vector of conditional probability measures
π ∈ [∆(A)]M (formally, π corresponds to a behavioral strategy of the Receiver). I
let π(a|m; µ1) denote the conditional probability of action a given m derived from
belief µ1:

π(a|m; µ1) := µ1({s2 ∈ S2 : s2(m) = a}).
The Receiver has beliefs about the Sender’s payoff-type and behavior. Further-

more, the Receiver updates his initial beliefs after receiving a message, using Bayes
rule whenever he has initially assigned a strictly positive probability to the message
actually received. Therefore the Receiver’s beliefs are represented by some system
of conditional probabilities

µ2 =
(
µ2(·|φ), (µ2(·|m))m∈M

) ∈ ∆(Θ × M) × [∆(Θ)]M

(where φ is the “empty history” and µ2(·|φ) is the initial belief of the Receiver)
such that, for all m ∈ M and all θ ∈ Θ,

(i) µ2(Θ(m)|m) = 1 (the Receiver believes what he observes)
(ii) if µ2(Θ × {m}|φ) > 0, then

µ2(θ|m) =
µ2((θ, m)|φ)

µ2(Θ × {m}|φ)
.

The set of conditional probability systems satisfying (i) and (ii) is denoted
∆∗(Θ, M).

The best response correspondence for the Sender is BR1 : Θ × ∆(S2) � M ,
where

∀θ ∈ Θ, ∀µ1 ∈ ∆(S2), BR1(θ, µ1) := arg max
m

{∑
a

u(θ, m, a)π(a|m, µ1)

}
.

The best response correspondence for the Receiver is BR2 : M × ∆(Θ) � A,
where

∀m ∈ M, ∀p ∈ ∆(Θ), BR2(m, p) := argmax
a

{∑
θ

v(θ, m, a)p(θ)

}
.

Thus, a (sequentially) rational Receiver with a system of conditional beliefs µ2 ∈
∆∗(Θ, M) follows a strategy s2 such that s2(m) ∈ BR2(m, µ2(·|m)) for all m ∈ M .

2.3. Explicit assumptions on beliefs

Roughly speaking, I call “explicit” those assumptions about first-order beliefs that
are not derived from iterated mutual belief in rationality, and I represent them with
given restricted sets of beliefs ∆ = (∆1, ∆2), ∆1 ⊆ ∆(S2), ∆2 ⊆ ∆∗(Θ, M). For
example, if it is assumed that (a) the Receiver initially believes that θ′ is as least as
likely as θ′′, then attention is restricted to the set

∆2 = {µ2 ∈ ∆∗(Θ, M) : µ2({θ′} × M |φ) ≥ µ2({θ′′} × M |φ)}.
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If the Sender believes (a) and he also believes that the Receiver is rational, then
the Sender’s belief µ1 must satisfy

µ1({s2 : ∃µ2 ∈ ∆2, ∀m ∈ M, s2(m) ∈ BR2(m, µ2(·|m))}) = 1.

I do not call this restriction on µ1 “explicit” because it is not assumed at the outset,
but rather derived by the standard assumption that what the modeler assumes
about the Receiver (in this case (a) and the Receiver’s rationality) is also believed
by the Sender.l

2.4. Rationalization

Fix some explicit restrictions about first-order beliefs represented by the pair of
subsets ∆ = (∆1, ∆2). As explained in the Introduction, I would like to define an
iterative solution procedure that captures a form of forward-induction reasoning
based on the “rationalization” of the messages of the Sender given the restrictions
∆. More specifically the procedure reflects the following assumptions about behavior
and interactive beliefs:

(A1.S) The Sender is rational and has beliefs in ∆1

(A1.R) The Receiver is rational and has beliefs in ∆2

(A2.S) The Sender believes (A1.R)
(A2.R) The Receiver believes (A1.S) whenever possible (that is, he initially

believes (A1.S) and continues to do so after each message m consistent with (A1.S))
. . .

(Ak + 1.S) The Sender believes (A1.R), . . . , (Ak.R)
(Ak + 1.R) The Receiver believes (A1.S), . . . , (Ak.S) whenever possible
. . .

Assumptions (A2.R), . . . , (Ak.R) capture a notion of forward induction: even if
he is “surprised” by a message, the Receiver tries to rationalize the observed message
in a way which is consistent with the Sender being strategically sophisticated. The
higher the index k, the higher the degree of strategic sophistication ascribed to the
Sender.

Note that assumption (Ak+1.R) does not imply assumption (Ak.R). The reason
is that there may be some message m which is consistent with (A1.S), . . . , (Ak−1.S),
but inconsistent with (A1.S), . . . , (A.k − 1.S), (Ak.S). In this case (Ak.R) implies
that, upon observing m, the Receiver believes (A1.S), . . . , (Ak − 1.S), while (Ak +
1.R) does not have any implication about the Receiver’s beliefs after m. For further
discussion of this point see Battigalli and Siniscalchi (2002).

Battigalli and Siniscalchi (2002) formally express these assumptions (by means
of “complete extensive-form type spaces”) and show that the pairs of payoff-types
and messages of the Sender, and the strategies of the Receiver consistent with

lOne could consider type-dependent explicit restrictions, that is, ∆1 = (∆1
θ)θ∈Θ, with ∆1

θ ⊆ ∆(S2)
for all θ (cf. Battigalli and Siniscalchi (2003a)). I ignore this generalization here because it is not
relevant in the examples and applications of this paper.
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assumptions (A1)-(Ak) are those and only those which belong, respectively, to the
subsets Σ1(k, ∆) and S2(k, ∆) defined by the following procedure that iteratively
deletes type-message pairs for the Sender and strategies for the Receiver:

• Let Σ1(0, ∆) = Θ × M and S2(0, ∆) = S2.
• For k = 1, 2, . . . , let Θ(m, k − 1, ∆) := {θ : (θ, m) ∈ Σ1(k − 1, ∆)} (set of types

consistent with step k − 1 and message m), then

Σ1(k, ∆) =
{
(θ, m) ∈ Σ1(k − 1, ∆) : ∃µ1 ∈ ∆1,

m ∈ BR1(θ, µ1) and µ1(S2(k − 1, ∆) = 1
}
,

S2(k, ∆) =
{
s2 ∈ S2(k − 1, ∆) : ∃µ2 ∈ ∆2, ∀m, s2(m) ∈ BR2(m, µ2(·|m)),

Θ(m, k − 1, ∆) 	= ∅ ⇒ µ2(Θ(m, k − 1, ∆)|m) = 1
}
.

The last equation corresponds to the assumption that the Receiver rationalizes,
if possible, the observed message.

Definition 1. Fix a pair of subsets of beliefs ∆ = (∆1, ∆2), where ∅ 	= ∆1 ⊆
∆(S2) and ∅ 	= ∆2 ⊆ ∆∗(Θ, M). A message m is (k, ∆)-rationalizable for θ if
(θ, m) ∈ Σ1(k, ∆); strategy s2 is (k, ∆)-rationalizable if s2 ∈ S2(k, ∆). Message
m is ∆-rationalizable for θ if (θ, m) ∈ Σ1(∞, ∆) :=

⋂
k Σ1(k, ∆); strategy s2 is

∆-rationalizable if s2 ∈ S2(∞, ∆) :=
⋂

k S2(k, ∆).m

Remark 1. By finiteness of Σ1 and S2, there is some index K such that Σ1(K, ∆) =
Σ1(∞, ∆) and S2(K, ∆) = S2(∞, ∆).

The simplest illustration of this solution procedure is given by the forward induc-
tion solution of the game depicted in Fig. 1, which I informally discussed in the
Introduction. In this example, there are no explicit restrictions on beliefs (i.e.,
∆ = (∆(S2), ∆∗(Θ, M))), therefore I omit ∆ from the notation. It can be easily
checked that Σ1(1) = {(θ′, L), (θ′′, L), (θ′′, R)}. Since there is a pair (θ, m) ∈ Σ1(1)
such that m = R (i.e., Θ(R, 1) 	= ∅), then the Receiver rationalizes message R,
and the only possible rationalization is that the Sender’s type must be θ′′. Thus
S2(∞) = S2(2) = {u} and Σ1(∞) = Σ1(3) = {(θ′, L), (θ′′, R)}.

The set of ∆-rationalizable profiles may be empty because the explicit restric-
tions on beliefs represented by ∆ may conflict with iterated mutual belief in rational-
ity. I here report two existence results proved elsewhere (Battigalli, 2003; Battigalli
and Siniscalchi, 2003a).

First, it can be proved by standard methods that if ∆ only restricts the initial
beliefs of the Receiver about the state of nature, then the ∆-rationalizable solution is
non-empty. This also holds in infinite signaling games if some regularity assumptions
are satisfied.

mIn Battigalli (2003) I use the phrase strong ∆-rationalizability and I compare this solution concept
to a weaker one which does not capture forward-induction reasoning. The weak rationalizability
concept is not very interesting in signaling games.
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The second result concerns the special case where the restrictions ∆ state that
players’ beliefs “agree” with a particular distribution on the terminal nodes of the
arborescence representing the signaling game, say ζ ∈ ∆(Θ × M × A). This may
be the case when Sender and Receiver are repeatedly drawn at random from large
heterogenous populations and joint statistics about payoff-types and actions are
made public, so that beliefs reflect these statistics. Then, it can be shown that
the ∆-rationalizable solution is not empty if and only if distribution ζ is a self-
confirming equilibrium outcome satisfying the Intuitive Criterion of Cho and Kreps
(1987).n

2.5. A “Beer-Quiche” example

The game depicted in Fig. 2 corresponds to the well-known Beer-Quiche example
used by Cho and Kreps (1987) to discuss equilibrium refinements in signaling games.
Of course, Cho and Kreps analyze a standard extensive-form game with a common
prior on the set of payoff-types. In their example the surly type θ(σ) has prior
probability 9

10 . They show that only the equilibrium whereby each type chooses B

satisfies their Intuitive Criterion.
I mentioned above how ∆-rationalizability can be used to characterize the Intu-

itive Criterion. But the analysis of this subsection is not related to this result. Here
I illustrate the ∆-rationalizability procedure showing that the same result obtained
by Cho and Kreps for their Quiche-Beer example can be obtained with very weak
restrictions on beliefs. I assume that (it is common belief that) the prior probability
assigned by player 2 to θ(σ) is more than 1

2 . Furthermore, I also assume that (it is

Fig. 2.

nCho and Kreps defined a refinement of sequential equilibrium; but their criterion can be applied
to any self-confirming equilibrium distribution.
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common belief that) player 2’s posterior probability of the surly type θ(σ) is higher
after observing B (beer) than after observing Q (quiche). Thus the restricted set
of beliefs for player 2 is

∆2 = {µ2 : µ2(θ(σ)|φ) > 1/2, µ2(θ(σ)|Q) < µ2(θ(σ)|B)}
(I use obvious abbreviations for marginal probabilities). There are no restrictions
on player 1’s beliefs.

First step: It is easy to see that both Q and B are (1, ∆)-rationalizable for both
types.o But the second restriction on beliefs implies that, if the Receiver fights after
B, he also fights after Q. Thus, strategy [f if B, d if Q] (fight after beer, don’t fight
after quiche) is deleted, and

S2(1, ∆) = {[f if B, f if Q], [d if B, f if Q], [d if B, d if Q]}.

Second step: This in turn implies that a fight after B is less likely than a fight after
Q. Formally,

µ1(S2(1, ∆)) = µ1({[f if B, f if Q], [d if B, f if Q], [d if B, d if Q]}) = 1 ⇒
π(f |B; µ1) = µ1([f if B, f if Q]) ≤ µ1({[f if B, f if Q], [d if B, f if Q]})

= π(f |Q; µ1)

Since the only reason for a surly type to have quiche for breakfast is to decrease
the probability of a fight, the only (∆, 2)-rationalizable choice for the surly type
θ(σ) is B. On the other hand, it makes sense for type θ(ω) (wimp) to forgo his
preferred breakfast (quiche) hoping to avoid a fight. Thus,

Σ1(2, ∆) = {(θ(σ), B), (θ(ω), B), (θ(ω), Q)}.

Third step (forward induction): Since Q is a (2, ∆) -rationalizable choice for θ(ω),
but not for θ(σ), Q is sure evidence that player 1 is a wimp (θ = θ(ω)). Formally
Θ(Q, 2, ∆) = {θ(ω)} 	= ∅ implies µ2(θ(ω)|Q) = 1.

Furthermore, since the only (2, ∆)-rationalizable choice for θ(σ) is B, observing
B cannot decrease the probability of θ(σ).p Therefore µ2(θ(σ)|B) ≥ µ2(θ(σ)|φ) >

1/2, where the latter inequality is an explicit restriction of beliefs. This implies that
the unique ∆-rationalizable strategy for Player 2 is “fight after quiche, don’t fight
after beer.” To summarize:⋂

k

S2(k, ∆) = S2(3, ∆) = {[d if B, f if Q]}.

oNote that if Σ1(1, ∆) = Σ1, then S2(k+1, ∆) = S2(k, ∆) for k odd, and Σ1(k+1, ∆) = Σ1(k, ∆)
for k even. Therefore we may consider only one player at each step.
pBy Bayes rule,

µ2(θ(σ)|B) =
µ2(B|θ(σ))µ2(θ(σ)|φ)

µ2(B|θ(σ))µ2(θ(σ)|φ) + µ2(B|θ(ω))µ2(θ(ω)|φ)

=
µ2(θ(σ)|φ)

µ2(θ(σ)|φ) + µ2(B|θ(ω))µ2(θ(ω)|φ)
≥ µ2(θ(σ)|φ).
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Fourth step. Given this, the only ∆-rationalizable choice for type θ(ω) is B:⋂
k

Σ1(k, ∆) = Σ1(4, ∆) = {(θ(ω), B), (θ(σ), B)}.

[Note that Q is not rationalizable for either type, but the best ∆-rationalization
of message Q is that the state of nature must be θ(ω) and that Player 1, not having
fully rationalizable beliefs, chooses his coeteris paribus preferred breakfast.]

2.6. Comparison with Bayesian games

The simplest and most common way to obtain a Bayesian game from the signaling
game Γ = 〈Θ, M, A, u, v〉 is to add a probability measure on the states of nature,
ρ ∈ ∆(Θ). The interpretation would be that it is common belief at the beginning
of the game that the Receiver’s beliefs about the Sender’s payoff-type are given by
ρ. Therefore payoff-types are in one-to-one correspondence with Harsanyi-types.

More generally, one may obtain a Bayesian game by appending to Γ a larger
type space à la Harsanyi based on Θ, that is, a structure 〈Θ, B1, B2, τ1, τ2〉, where
Bi is a set of “purely epistemic parameters” for Player i, τ1 : Θ × B1 → ∆(B2)
and τ2 : B2 → ∆(Θ × B1) are functions specifying the players’ beliefs for each
epistemic state. Pairs (θ, b1) ∈ Θ × B1 and parameters b2 ∈ B2 are “Harsanyi-
types”. The first-order beliefs of the Receiver, if his Harsanyi-type is b2, are given
by τ1

2 (b2) := margΘτ2(b2) ∈ ∆(Θ). The second-order beliefs of Harsanyi-type (θ, b1)
of the Sender about the first-order beliefs of the Receiver are obtained from the
probability measure τ1(θ, b1) ∈ ∆(B2) and the Receiver’s first-order belief function
τ1
2 (·) : B2 → ∆(Θ). For example, the probability that Harsanyi-type t1 ∈ Θ × B1

would assign to the event “the Receiver assigns probability at least 1
2 to payoff-type

θ” is τ1(t1)({b2 ∈ B2 : τ1
2 (b2)(θ) ≥ 1

2}). Higher and higher order beliefs can be
derived in a similar fashion.

The reason why I do not append a type space to Γ is twofold.
(i) On the one hand, I want to be able to consider assumptions about beliefs,

such as
“At the beginning of the game, the Receiver assigns probability at least 1

2 to
payoff-type θ, and there is common certainty of this fact.”

If this is the only assumption about initial (interactive) beliefs one is willing
to make, then one has to consider a type space so large and complex that it is
possible to represent it and analyze the equilibria of the corresponding Bayesian
game only through indirect methods. These indirect methods amount to a kind of
iterative deletion procedure somewhat similar to the one put forward in Subsec. 2.4.
This iterative deletion procedure is called weak rationalizability in Battigalli (2003)
because, unlike the rationalizability procedure defined in this paper, it does not
capture any kind of forward induction reasoning.

This is to be contrasted with the standard applications of Harsanyi’s theory,
which consider extremely simple type spaces corresponding to implausibly strong



March 23, 2006 10:51 WSPC/151-IGTR 00079

80 P. Battigalli

assumptions on interactive beliefs, directly compute the (relatively few) equilibria,
and maybe proceed to apply some refinement to get rid of the “implausible” ones.

(ii) On the other hand, one might want to take as given some assumptions about
beliefs concerning the opponents’ behavior and/or assumptions about how players
update their beliefs. Consider for example the following assumptions:

(a) “The conditional probability the Receiver would assign to payoff-type θ after
message m2 is higher than the conditional probability he would assign to θ after
message m1”, or

(b) “The Receiver would believe that the Sender is rational whenever this is con-
sistent with the Sender’s message”,

as well as further assumptions concerning interactive beliefs about (a) and (b).
These assumptions involve conditional beliefs about the opponent’s payoff-type

and behavior. Thus they cannot be represented using a type space of the form
〈Θ, B1, B2, τ1, τ2〉 (i.e., a type space à la Harsanyi based on Θ), which only describes
possible beliefs about the Sender’s payoff-type, possible beliefs about such beliefs,
etc. In order to represent such assumptions one would have to work with the more
complex “dynamic” type spaces first put forward by Ben Porath (1997) and fully
analyzed in Battigalli and Siniscalchi (1999). This means going beyond Harsanyi’s
methodology because such type spaces include (1) beliefs about behavior (which
Harsanyi opposed on the ground that all such beliefs must be endogenously derived
through equilibrium analysis) and (2) the conditional beliefs that the Receiver
would hold after each message. Note that including (1) is a necessary condition for
including (2): without (1) it is impossible to relate conditional and unconditional
beliefs via Bayes rule. Dynamic type spaces of this kind can be used to formally
express the above mentioned assumptions, but — again — in order to find the
behavioral consequences of (rationality and) these assumptions about beliefs, one
must use characterization results saying something like “the only outcomes consis-
tent with (a), (b), rationality (r), and assumptions concerning interactive believes
about (a), (b) and (r) are those found with solution procedure S” (see Battigalli
and Siniscalchi (2002)).

Here I rely on these characterization results, which allow me to use the solution
procedure with no direct reference to type spaces of any sort.

3. Application (i): Disclosureq

Consider a two-person signaling game where the Sender, Player 1, provides certifi-
able information about the state of nature (his payoff-type). The Receiver, Player 2,
observes the Sender’s message and then takes an action affecting the Sender’s payoff

qThe model of information transmission of this section builds on Grossman and Hart (1980)
and Grossman (1981). See also Okuno-Fujiwara et al. (1990), Bolton and Dewatripont (1997,
Chapter 5) and the references therein.
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as well as his own. For concreteness, the Sender may be thought of as a seller, the
Receiver as a buyer. The state of nature θ ∈ Θ can be thought of as the quality of
the product and the Receiver’s action, a ∈ A, as the quantity purchased or the total
price paid. In this section I analyze a simplified model. The Appendix contains a
much more general analysis.

The set of states of nature is the finite set of integers Θ = {1, 2, . . . , K}. Player 1
can send messages of the form “The state of nature is at least k”. I denote such a
message with the symbol [θ ≥ k]. If the Sender does not tell the truth, this is verified
and he pays a very large fine. Thus, rationality implies that he always tells the truth.
However, rationality per se does not rule out “understatements”, i.e., Player 1 could
send message [θ ≥ k] even if the true state is k∗ > k. Player 2 responds with an
action a ∈ A = [0, +∞). The Sender’s payoff is a strictly increasing function of a.
The Receiver preferences are given by a loss function L(θ, a) = −(θ − a)2, thus,
the Receiver always wants to choose his (conditional) estimate of state of nature
[BR2(p) = Ep(θ)], and a rational Sender who anticipates a rational response would
like to induce with his message the highest possible estimate by the Receiver.

There is no exogenous restriction on the Sender’s beliefs (i.e., ∆1 = ∆(S2)). As
for the Receiver, I consider a very weak restriction:

(Mild skepticism) When Player 2 receives message m = [θ ≥ k] he assigns
positive probability to k, the lowest state consistent with m (under the assumption
that m is true). That is

∆2 = {µ ∈ ∆∗(Θ, M) : ∀k, µ(k|[θ ≥ k]) > 0}.
I show that ∆-rationalizability yields full disclosure, that is, Player 1 never

makes “understatements” and, for each k, Player 2 responds to message [θ ≥ k]
with action (estimate) a = k.

To see this, first note that every message is consistent with the Sender’s rational-
ity, and a rational Sender always tells the truth to avoid punishments. Therefore,
by forward induction, the Receiver always believes that the observed message is
true. In particular, this means that if he observes message [θ ≥ K] his estimate of
the state is a = K, but if he observes any other message [θ ≥ k] (with k < K) — by
mild skepticism — his estimate is strictly below the highest state K. Anticipating
this, the Sender chooses message [θ ≥ K] when the state is K because this induces
the highest estimate.

Now suppose that the Receiver observes message [θ ≥ K−1]. What is the “best
rationalization” of this message? The Receiver reasons that if the state were K the
Sender would try to induce the highest estimate by choosing message [θ ≥ K] and
therefore he would not make the “understatement” [θ ≥ K−1], and since a rational
Sender always tells the truth, it must be the case that the state is indeed K − 1.
Anticipating this, if the state is K − 1 the Sender chooses message [θ ≥ K − 1]
because it induces the highest possible estimate among the truthful messages.

Assume by way of induction that ∆-rationalizability implies that for some inte-
ger 	 and each state k ≥ K − 	 the Sender chooses message [θ ≥ k], and that the
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Receiver’s estimate conditional on each message [θ ≥ k′] such that k′ ≥ K − 	 is
a = k′. Then a similar “best rationalization” argument shows that if the Receiver
observes message [θ ≥ K − 	− 1] his estimate is precisely a = K − 	− 1. Therefore

Proposition 1. For each k ∈ Θ, the unique ∆-rationalizable message for k is
[θ ≥ k] and the unique ∆-rationalizable response to message [θ ≥ k] is a = k.

The argument above is similar to an intuitive “unraveling” argumentr used
to show why a perfect Bayesian equilibrium that passes the test of dominated
messages must satisfy full disclosure (since sending false messages is dominated,
the test of dominated messages guarantees that the Receiver would believe the
literal meaning of every message, including those off the equilibrium path).s The
compellingness of such “unraveling” arguments is due to their inductive structure.
But a rigorous proof of the equilibrium result, one way or the other, has to proceed
by contradiction.

The key step is that the equilibrium must be separating. Let m be a message
on the equilibrium path, and let Θ∗(m) be the set of types sending message m

with positive probability in equilibrium; if Θ∗(m) is not a singleton, then m is
an “understatement” for the payoff type θ∗m := maxΘ∗(m) and the equilibrium
estimate conditional on m is below θ∗m, therefore payoff-type θ∗m would be strictly
better off sending message [θ ≥ θ∗m], which contradicts the equilibrium assumption.
Thus Θ∗(m) must be a singleton for each message on the equilibrium path, that
is, the equilibrium must be separating. It follows that the equilibrium must satisfy
full disclosure.

As with other applications of equilibrium analysis, the mathematical argument
is simple enough, but it does not show why strategic reasoning should make the
players hold equilibrium beliefs in the first place.

Note also that more general Bayesian extensions of the given economic model,
whereby belief functions are consistent with a common prior on the set of states of
the world but Harsanyi-types and payoff-types do not coincide, may have perfect
Bayesian equilibria which satisfy mild skepticism and pass the test of dominated
messages, and yet do not satisfy full disclosure off the equilibrium path (an example
is provided in the Appendix).

4. Application (ii): Job Market Signaling

Consider a standard game-theoretic version of Spence’s model of job market sig-
naling with two types of workers (see e.g., Cho and Kreps (1987)).

Player 1, a worker of ability θ′ or θ′′, with 0 < θ′ < θ′′, chooses an education level
e ∈ [0, +∞) and has payoff function u(θ, e, w) = w − c(θ, e), where c : R

2
+ → R+

is a smooth cost function that satisfies the standard assumption that the marginal

rSee, e.g., Chapter 5 of Bolton and Dewatripont (2005).
sInstead of applying the test of dominated messages, most disclosure models directly assume that
the Sender is constrained to tell the truth.
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cost of education is positive, increasing in e and decreasing in ability
(∂c(θ,e)

∂e > 0,
∂2c(θ,e)

∂e2 > 0, ∂2c(θ,e)
∂e∂θ > 0

)
.

Player 2, a “representative firm,” observes e and chooses the wage w ∈ [0, +∞).
Player 2’s payoff is v(θ, e, w) = −(eθ − w)2 and thus he “rationally” sets the wage
equal to the subjectively expected value of eθ conditional on e.

The restricted set of beliefs for Player 1, ∆1, is the set of probability measures
µ1 ∈ ∆(S2) with countable support. As for player 2, I assume that ∆2 is the set of
monotonic conditional probability systems, that is, the set of µ2 such that µ2(θ′′|e),
the conditional probability assigned to the high-ability type, is non-decreasing in e.
Countability of supports is merely a technical assumption that simplifies the analy-
sis. Monotonicity is similar to the “plausibility” property postulated by Kreps and
Wilson (1982) in their analysis of reputation and entry deterrence.t

Player 2’s strategies can be represented by functions ϑ(e) fixing the wage per unit
of education. Function ϑ(·) is a best response to the system of conditional beliefs µ2

if and only if ϑ(e) = θ′[1−µ2(θ′′|e)]+θ′′µ2(θ′′|e). Therefore best responses to beliefs
in ∆2 are in one-to-one correspondence with the set of non-decreasing expectation
functions ϑ(e) with range [θ′, θ′′]. Let

Ω(1, ∆) =
{
ϑ(·) ∈ [θ′, θ′′]R+ : e′′ > e′ ⇒ ϑ(e′′) ≥ ϑ(e′)

}
.

Ω(1, ∆) is the set of Player 2’s (1, ∆)-rationalizable strategies represented as con-
tingent choices of wage per unit of education.

Player 1’s (1, ∆)-rationalizable beliefs are summarized by his expectation of
Player 2’s expectation of θ conditional on the chosen education level e. Let this
second-order expectation (which coincides with the expected wage per unit of edu-
cation) be denoted by ϑ̂(e). Assuming that Player 2 is a maximizer (expected-loss
minimizer), Player 1 expects to get wage eϑ̂(e), with ϑ̂(·) ∈ Ω(1, ∆).u At a subjec-
tively optimal choice of education for payoff-type θ, say e∗, ϑ̂(·) must be continuous
from the right and the marginal rate of substitution MRS(θ, e∗) = ∂c(θ,e)

∂e must
satisfy the first-order condition

MRS(θ, e∗) ≥ ϑ̂(e∗) + e∗ · dϑ̂(e∗+)
de

. (1)

where dbϑ(e∗+)
de is the right-derivative of ϑ̂(·) at e∗.v

tSee also the analysis of rationalizable bidding in auctions with interdependent values due to
Battigalli and Siniscalchi (2003b) and Cho (2003, 2004).
uFix belief µ ∈ ∆(S2) with countable support {s1

2(·), . . . , sk
2(·), . . .} and corresponding wages per

unit of education {ϑ1(·), . . . , ϑk(·), . . .}. Player 1’s expected wage conditional on e is ebϑ(e) =
e

P
k µ(sk

2)ϑk(e). Since for each k, ϑk(·) is non decreasing with range in [θ′, θ′′], bϑ(·) must have
the same properties.
vMore generally, it is the right-limsup of the incremental ratio of bϑ(·) at e∗.
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Fig. 3.

Fig. 4.

It turns out that the set of ∆-rationalizable choices depends on how close θ′ and
θ′′ are to each other. In particular, it depends on the relation between the following
numbers (see Figs. 3 and 4):

• e∗(θ) = argmaxe≥0 u(θ, e, θe), θ = θ′, θ′′ (complete information choice),
• e˜(θ) = argmaxe≥0 u(θ, e, θ̂e), θ 	= θ̂ (e˜(θ′) is the choice that payoff-type θ′ would

make in the “best case scenario” where Player 2 has the unshakable certainty that
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the true type is θ′′, similarly e˜(θ′′) is the best choice of θ′′ in the “worst case
scenario”),

• e(θ′) solves u(θ′, e, θ′′e) = u(θ′, e∗(θ′), θ′e∗(θ′)) and ē(θ′′) solves u(θ′′, e, θ′′e) =
u(θ′′, e˜(θ′′), θ′e˜(θ′′)),

• ê(θ′′) solves u(θ′′, e, MRS(θ′′, e) · e) = u(θ′′, ē(θ′), θ′′ē(θ′)).

If θ′ and θ′′ are not too close to each other, then ē(θ′) ≤ e∗(θ′′). Note that
strict monotonicity, strict convexity of the cost of education and the single-crossing
property imply

e∗(θ′) < e˜(θ′) < e(θ′) < e(θ′′),

e∗(θ′) < e˜(θ′′) < ê(θ′′) ≤ e∗(θ′′) < e(θ′′).

The following result shows that, if θ′ and θ′′ are not too close to each other,
∆-rationalizability yields the same result as in the most efficient separating equi-
libria (i.e. those that satisfy the Intuitive Criterion), otherwise ∆-rationalizability
only yields bounds on the possible education choices for each ability level.

Proposition 2. If (a) ē(θ′) < e˜(θ′′) or (b) e˜(θ′′) ≤ ē(θ′) ≤ e∗(θ′′), then the
unique ∆-rationalizable choice of payoff type θ ∈ {θ′, θ′′} is the same level of edu-
cation as in the complete information model, that is, e∗(θ).

If (c) ē(θ′) > e∗(θ′′), then each choice e ∈ [ê(θ′′), ē(θ′)] is ∆-rationalizable for
both types and e∗(θ′) is also rationalizable for type θ′.

Proof. Any education level can be justified as a best reply to some belief. Thus
Σ1(1, ∆) = Σ1. This implies that S2(k + 1, ∆) = S2(k, ∆), for k odd, and Σ1(k +
1, ∆) = Σ1(k, ∆) for k even.

Let Ω(k, ∆) denote Player 2’s (k, ∆)-rationalizable choices of wage per unit of
education. In general, (k, ∆)-rationalizable beliefs for Player 1 can be summarized
by some function ϑ̂(·) ∈ Ω(k, ∆) giving the expected wage per unit of education
and having the same properties of Player 2’s (k − 1, ∆)-rationalizable expectation
functions. Let M(θ, k, ∆) denote the set of (k, ∆)-rationalizable messages for θ.
Then

M(θ′, 2, ∆) = [e∗(θ′), ē(θ′)], M(θ′′, 2, ∆) = [e˜(θ′′), ē(θ′′)].

To see this, first note that for any conjecture ϑ̂(·) ∈ Ω(1, ∆) about Player 2, the first
order condition (1) for type θ′ is necessarily violated for every e∗ < e∗(θ′) because
strict convexity of the disutility of education, monotonicity of ϑ̂(·) and ϑ̂(e) ≥ θ′

imply

MRS(θ′, e∗) < MRS(θ′, e∗(θ′)) = θ′ ≤ ϑ̂(e∗) + e∗ · dϑ̂(e∗+)
de

.

No education level e > ē(θ′) can be justified for θ′ because, since ϑ̂(e) ≤ θ′′ for
all e, type θ′ would get a higher expected utility by choosing e∗(θ′). Every e∗ ∈
[e∗(θ′), e˜(θ′)] is a best response to the (1, ∆)-rationalizable constant conjecture
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ϑ̂(e) ≡ MRS(θ′, e∗) ∈ [θ′, θ′′]. Every e∗ ∈ [e˜(θ′), ē(θ′)] is a best reply to the (1, ∆)-
rationalizable conjecture

ϑ̂(e) =

{
θ′ if e < e∗,

θ′′ if e ≥ e∗.
(2)

M(θ′′, 2, ∆) is obtained in a similar way. Using forward induction and monotonicity,
the (2, ∆)-rationalizable beliefs of the firm are (monotonic and) such that

µ(θ′′ | e) =

{
0 if e < e˜(θ′′), e ≤ ē(θ′),

1 if e ≥ e˜(θ′′), e > ē(θ′).

Thus one obtains

Ω(3, ∆) =

{
ϑ(·) ∈ Ω(1, ∆) : ϑ(e) =

{
θ′ if e < e˜(θ′′), e ≤ ē(θ′),

θ′′ if e ≥ e˜(θ′′), e > ē(θ′)

}
.

At this point the analysis must proceed on a case by case basis. Here I consider
only case (a). The other cases are analyzed in the Appendix.

Case (a): e˜(θ′′) > ē(θ′). In this case e∗(θ) (θ = θ′, θ′′) is the unique best reply for
type θ to every right-continuous conjecture ϑ̂(·) ∈ Ω(3, ∆). Non-right-continuous
conjectures in Ω(3, ∆) either have no best reply at all or have e∗(θ) as the unique
best reply. Thus the unique (4, ∆)-rationalizable action for type θ is e∗(θ), θ = θ′, θ′′.
The ∆-rationalizable strategies for Player 2 are represented by functions in the set

Ω(∞, ∆) = Ω(5, ∆) =

{
ϑ(·) ∈ Ω(3, ∆) : ϑ(e) =

{
θ′ if e ≤ e∗(θ′)

θ′′ if e ≥ e∗(θ′′)

}
.

5. Conclusions

In this paper I analyzed and applied a class rationalizability solution procedures
for incomplete information games, focusing on signaling games. These procedures
are parametrized by given explicit restrictions on players’ beliefs about payoff-
types and behavior, and also capture the forward induction principle that a player
tries to rationalize the past moves of his opponent. The solutions procedures are
given a transparent interpretation in terms of interactive beliefs. To illustrate the
methodology I analyzed some numerical examples, a model of disclosure and a
model of job market signaling. In some cases I obtain the same results as with
standard equilibrium analysis complemented by forward induction selection criteria.
In other cases (some parameterization of the job market signaling model) I only
obtain bounds on behavior, whereas the forward induction equilibrium is unique.

Battigalli and Siniscalchi (2003a) show that the proposed methodology is con-
sistent with Harsanyi’s (1967–68) analysis of incomplete information games in its
most general form (i.e., without Harsanyi’s consistency assumption). Indeed, it
can be regarded as a way to characterize specific subsets of Bayesian equilibrium
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outcomes. Yet, it differs from the typical applications of Harsanyi’s approach,
which assume “small” type spaces, e.g., by postulating a one-to-one correspon-
dence between payoff-types and Harsanyi-types. I refer to such applications as the
standard methodology.

I see the following advantages of my approach over the standard methodology.
First, unlike Bayesian equilibrium, the iterative solutions proposed here can be com-
puted without specifying an epistemic type space; information partitions on the set
of states of nature are sufficient. Second, the assumptions about first-order beliefs
(the explicit restrictions) are typically weaker and more intuitive than in the stan-
dard theory, and the assumptions about higher order beliefs are more transparent.
Third, my approach can be used to test the robustness of the results obtained by
standard methods with respect to the equilibrium assumption and the specification
of the space of interactive beliefs (the type space à la Harsanyi). Fourth, the appli-
cations show that looking at the step-by-step procedures which yield rationalizable
outcomes may clarify some aspects of strategic thinking that are overlooked by
standard equilibrium analysis.
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Appendix A. Rationalizability in a general model of disclosure

The following model is a generalization of the model of Sec. 3:

• There is a finite ordered set of Sender’s types, Θ = {θ1, . . . , θK}, θ1 > θ2 > · · · >

θK , and a continuum of Receiver’s actions A = [0, +∞).
• The set of messages is M = 2Θ\{∅}, where m ⊆ Θ has the literal interpretation

“My type belongs to m.”w

• The payoff of the Sender is increasing in the action of the Receiver, and if he
sends a false message he has to pay a fine:

u(θ, m, a) =

{
f(a), if θ ∈ m

f(a) − P, if θ /∈ m

where f is a positive strictly increasing bounded function and P > sup f .
• The Receiver’s payoff v : Θ × A → R is independent of the message and is such

that there is a well-defined best reply function BR2 : ∆(Θ) → A satisfying the
following weak monotonicity property: ∀q′, q′′ ∈ ∆(Θ),

[q′ 	= q′′ ∧ maxSupp(q′) ≤ min Supp(q′′)] ⇒ BR2(q′) < BR2(q′′) (A.1)

(standard conditions such as supermodularity of function v imply the weak mono-
tonicity property (A.1)). When Supp(q) = {θ} we write BR2(q) = BR2(θ).

wMore generally, it is suffices to assume that M ⊆ 2Θ is rich, i.e., for each θ there is some m ∈ M
such that θ = minm.
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Fix any simple Bayesian game obtained from this model by assuming a strictly
positive common prior on the set of states of nature Θ. It can be shown that
any sequential (or perfect Bayesian) equilibrium that passes the test of dominated
messagesx must satisfy full disclosure, that is, for all messages m, the Receiver’s
chooses a = BR2(minm) and no type θ sends a message m with min m < θ. This
means that vague messages like “my quality is at least θ” are implicitly understood
as revealing that the quality is indeed θ.

Full disclosure is also implied by ∆-rationalizability assuming the following weak
restriction on conditional beliefs:

• The (first-order) beliefs of the Sender are unrestricted. The restricted set of con-
ditional systems ∆2 is characterized by a mild skepticism condition: the Receiver
never rules out the lowest type consistent with a given message, that is,

∆2 = {µ2 ∈ ∆∗(Θ, M) : ∀m ∈ M, µ2(min m | m) > 0}.
Proposition 3. ∆-rationalizability implies full disclosure, that is, m is rationaliz-
able for θ only if θ = min m, and the only rationalizable strategy of the Receiver is
s∗2(m) = BR2(min m) for all m.

Proof.
Preliminary Remark 1. I first show by induction that for every k = 0, 1, 2, . . . the
strategy s∗2 defined by s∗2(m) = BR2(min m) is (k, ∆)-rationalizable [i.e., s∗2 ∈
S2(k, ∆)] and each message m is (k, ∆)-rationalizable for payoff-type θ = min m

[i.e., min m ∈ Θ(m, k, ∆)]. By definition, s∗2 ∈ S2(0, ∆) = S2. Suppose by way of
induction that s∗2 ∈ S2(k, ∆) and minm ∈ Θ(m, k, ∆) for each m. Let µ∗ be the
conditional probability system defined by

∀θ ∈ Θ, µ∗((θ, {θ})|φ) = 1,

∀m ∈ M, µ∗(min m|m) = 1

[i.e., the Receiver initially believes that the Sender will just reveal the state, hence
he believes what the Sender says if m = {θ}, and after non-singleton (vague)
messages, which falsify the initial belief, his revision rule is to assign probability
one to the smallest state consistent with the message]. By definition, µ∗ satisfies
mild skepticism (µ∗ ∈ ∆2). By the inductive hypothesis, minm ∈ Θ(m, k, ∆) for
all m, therefore

∀m ∈ M, µ∗(Θ(m, k, ∆)|m) = µ∗(min m|m) = 1.

By definition, s∗2(m) = BR2(min m) = BR2(µ∗(·|m)) for all m. Therefore s∗2 sat-
isfies all the conditions to survive step k + 1: s∗2 ∈ S2(k + 1, ∆). Furthermore, for
every payoff-type θ, the set of best responses to s∗2 is BR1(θ, s∗2) = {m : θ = min m}.

xThat is, each Bayesian perfect equilibrium with a system of beliefs µ such that Supp(µ(·|m)) ⊆ m
for each m ∈ M .
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Since s∗2 ∈ S2(k, ∆) (inductive hypothesis), it follows that min m ∈ Θ(m, k + 1, ∆)
for all m. This proves the claim.

Preliminary Remark 2: Rationality of the Sender (only) implies that he always
tells the truth:

Σ1(1, ∆) = {(θ, m) : θ ∈ m}
i.e.,Θ(m, 1, ∆) = m

It follows from these preliminary remarks that, for each step k, each message m

is consistent with (k, ∆) rationalizability, and a (k+1, ∆)-rationalizable strategy s2

must select, for each m, a best reply to a belief µ(·|m) such that Supp(µ(·|m)) ⊆
Θ(m, k, ∆) ⊆ m. Thus,

S2(k + 1, ∆) ⊆ {s2 : BR2(min Θ(m, k, ∆)) ≤ s2(m) ≤ BR2(maxΘ(m, k, ∆))}
⊆ {s2 : BR2(minm) ≤ s2(m) ≤ BR2(maxm)}.

Main Proof. For any message m with at least k elements, let θk
m denote the kth

element of m in decreasing order: θ1
m = maxm, θ2

m = max(m\{maxm}), etc. I
stipulate by convention that, if m has less than k elements, then θk

m = min m. I
prove that ∀k ≥ 0,

∀m ∈ M, max Θ(m, 2k + 1, ∆) ≤ θk+1
m . (A.2)

By the preliminary remarks, this implies that

S2(2k + 2, ∆) ⊆ {
s2 : BR2(minm) ≤ s2(m) ≤ BR2(θk+1

m )
}
;

hence s∗2 is the only ∆-rationalizable strategy of the Sender. Since u(θ, m, a) is
strictly increasing in its third argument, the complete result easily follows.

The second preliminary remark implies that Eq. (A.2) holds for k = 0. Suppose
by way of induction that Eq. (A.2) holds for a given k. It must be shown that
maxΘ(m, 2k + 3, ∆) ≤ θk+2

m . This is true by convention if m has less than k + 2
elements. Thus, suppose that m has at least k + 2 elements and consider a type
θ′ ∈ m such that θ′ > θk+2

m , that is, θ′ ≥ θk+1
m . I prove that m is not (2k + 3, ∆)-

rationalizable for θ′.
A message is (2k + 3, ∆)-rationalizable for θ′ if it is a best response for θ′ to a

belief µ1 with µ1(S2(2k+2, ∆)) = 1. I prove that the (revealing) message m′ = {θ′}
is a strictly better response for θ′ to such a belief µ1 than message m.

Every strategy s2 ∈ S2(2k + 2, ∆) is a sequential best response to some condi-
tional probability system µ2 that satisfies mild skepticism [µ2(min m′|m′) > 0 for
every m′] and is such that µ2(Θ(m′, 2k + 1, ∆)|m′) = 1 for every m′. (The Prelim-
inary Remarks shows that these two conditions are mutually consistent, therefore
such beliefs do exist.) Thus, mild skepticism, the inductive hypothesis and the choice
of θ′ yield

µ2(·|m) 	= µ2(·|{θ′}) ∧ maxSuppµ2(·|m) ≤ θk+1
m ≤ θ′ = min Suppµ2(·|{θ′}).
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By the weak monotonicity assumption (A.1), this implies BR2(µ2(·|m)) < BR2(θ′).
Therefore µ1(S2(2k + 1, ∆)) = 1 yields

maxSuppπ(·|m; µ1) < min Suppπ(·|{θ′}; µ1),

which in turn implies that, for θ′, m′ = {θ′} is a strictly better response to µ1

than m. This proves that θ′ /∈ Θ(m, 2k + 2, ∆), as desired.

Example of Bayesian equilibrium (with payoff-irrelevant Harsanyi
types) that does not exhibit full disclosure.

There are two Harsanyi-types for the Receiver, B2 = {b′2, b′′2}, while Harsanyi-types
coincide with payoff-types for the Sender (with the notation of Sec. 2.6, B1 is a
singleton). The belief functions are given by τ1(θk)(b′2) = 1 and τ2(b′2)(θk) = 1/K =
τ2(b′′2)(θk) for all k, that is, each type of the Sender is certain that the (Harsanyi)
type of the receiver is b′2, and each type of the receiver has a uniform belief on Θ.
[Note that these beliefs are consistent with a common prior p ∈ ∆(Θ × B2) with
strictly positive marginal on Θ, that is, p(θk, b′2) = 1/K for all k.] In equilibrium,
each type θk chooses the revealing message mk = {θk}. The posterior beliefs of
type b′2 satisfy µ(minm|m, b′2) = 1 for all m. Since the Sender is certain that the
Receiver’s (Harsanyi) type is b′2, the Sender expects him to play strategy s2(m) =
BR2(minm). Hence, sending the revealing message is indeed a best response. The
posterior beliefs of type b′′2 are uniform on m and b′′2 plays the sequential best
response to such system of beliefs. Note that in this example posterior beliefs cannot
be derived via Bayes rule if m is not a singleton; therefore posterior beliefs do not
violate Bayes rule. Of course, each type b2 chooses a sequential best response to
µ(·|·, b2). This a perfect Bayesian (or sequential) equilibrium where the strategy of
Harsanyi-type b′′2 does not satisfy full disclosure.

Appendix B. Job market signaling: proof of Proposition 2 (b), (c)

Case (b): e˜(θ′′) ≤ ē(θ′) ≤ e∗(θ′′). In this case the set of (4, ∆)-rationalizable
messages for the low type θ′ is

M(4, ∆, θ′) = {e∗(θ′)} ∪ [e˜(θ′′), ē(θ′)].

To see this, note that any education choice e < e˜(θ′′) reveals Player 1 as type θ′

and can be optimal only if e = e∗(θ′). The latter is justified by any conjecture like
(2) with e∗ > ē(θ′) (see Sec. 4). Every choice e∗ ∈ [e˜(θ′′), ē(θ′)] is justified by the
(3, ∆)-rationalizable conjecture (2). M(4, ∆, θ′′) = {e∗(θ′′)} as in case (a). Thus the
only (5, ∆)-rationalizable strategy for Player 2 and (6, ∆)-rationalizable conjecture
for both types of Player 1 are given by the function

ϑ(e) =

{
θ′ if e ≤ ē(θ′)

θ′′ if e > ē(θ′)
.

The best reply to ϑ(·) for type θ is e∗(θ), θ = θ′, θ′′.
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Case (c): ē(θ′) > e∗(θ′′). In this case M(4, ∆, θ′) = {e∗(θ′)} ∪ [e˜(θ′′), ē(θ′)] as in
case (b), but, unlike case (b),

M(4, ∆, θ′′) = [ê(θ′′)), ē(θ′)].

To see this, note that by choosing e > ē(θ′) Player 1 is revealed as type θ′′.
Thus any choice e∗ > ē(θ′) is dominated by e ∈ (ē(θ′), e∗) for θ′′. Similarly, any
e∗ < ē(θ′) must be justified by a conjecture ϑ̂(·) such that u(θ′′, e∗, ϑ̂(e∗)e∗) ≥
u(θ′′, ē(θ′), θ′′ē(θ′)), i.e., the point (e∗, ϑ̂(e∗)e∗) must lie on or above the
θ′′-indifference curve through point (ē(θ′), θ′′ē(θ′)) (see Fig. 4). Any choice e∗ ∈
[ê(θ′′), e∗(θ′′)) is justified for θ′′ by the (3, ∆)-rationalizable conjecture

ϑ̂(e) =


θ′ if e < ê(θ′′)

MRS(θ′′, e∗) if e ∈ [ê(θ′′), e∗(θ′′)]

θ′′ if e > e∗(θ′′)

.

Any choice e∗ ∈ [e∗(θ′′), ē(θ′)] is justified for θ′′ by the (3, ∆)-rationalizable con-
jecture (2). Choices e∗ < ê(θ′′) cannot be justified by (3, ∆)-rationalizable conjec-
tures: By way of contradiction, let ϑ̂(·) be a (3, ∆)-rationalizable conjecture justi-
fying e∗ < ê(θ′′). Since (e∗, ϑ̂(e∗)) must lie above the θ′′-indifference curve through
(ē(θ′), θ′′ē(θ′)), θ̂(e∗) ≥ MRS(θ′′, ê(θ′′)) (see Fig. 4). MRS(θ′′, e) is strictly increas-
ing in e, thus MRS(e∗, θ′′) < MRS(ê(θ′′), θ′′). These inequalities jointly violate the
first order condition (1).

Therefore Player 2’s ∆-rationalizable strategies and Player 1’s rationalizable
conjectures are the functions ϑ̂(·) ∈ Ω(3, ∆) such that ϑ̂(e) = θ′ if e < ê(θ′′), and
ϑ̂(e) = θ′′ if e > ē(θ′), which implies the thesis.
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