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Abstract

In this paper, we analyze two nested iterative solution procedures for infinite, dynamic games of

incomplete information. These procedures do not rely on the specification of a type space à la

Harsanyi. Weak rationalizability is characterized by common certainty of rationality at the beginning

of the game. Strong rationalizability also incorporates a notion of forward induction. The solutions

may take as given some exogenous restrictions on players’ conditional beliefs. In dynamic games,

strong rationalizability is a refinement of weak rationalizability. Existence, regularity properties, and

equivalence with the set of iteratively interim undominated strategies are proved under standard

assumptions. The analysis mainly focus on two-player games with observable actions, but we show

how to extend it to n-player games with imperfectly observable actions. Finally, we briefly survey

some applications of the proposed approach.
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1. Introduction and overview

In a n-person game of incomplete information some of the crucial elements

governing strategic interaction—such as individual feasibility constraints, how actions

are mapped into consequences and individual preferences over consequences—are

represented by a vector of parameters u which is (partially) unknown to some players.

For the sake of simplicity, let us assume that u determines the shape of each player’s

payoff function and that it can be partitioned into subvectors u1;…; un whereby each
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player i ¼ 1;…; n knows ui. We call u the state of Nature and ui the private information

or payoff-type of player i. The form of the parametric payoff functions uið·; uÞ—or, more

generally, the form of the mapping associating each conceivable state of Nature u to

the ‘true’ (but unknown) game G(u)—is assumed to be common knowledge. In this

paper, we take this mapping u 7! GðuÞ as the fundamental description of a strategic

situation with incomplete information and we put forward and analyze solution

concepts associating to any such mapping a set of possible outcomes. Our approach is

related to, but different from Harsanyi’s (1967–1968) seminal paper on incomplete

information games. Harsanyi’s Bayesian model is now so entrenched in the literature

that only a handful of ‘pure’ game theorists still pay attention to its subtleties. In order

to motivate and better understand our contribution it is useful to go through Harsanyi’s

model in some detail.1

1.1. Harsanyi’s Bayesian model

As Harsanyi noticed, one way to provide a Bayesian analysis of incomplete information

games is to endow each player with a hierarchy of beliefs, that is, (i) a subjective

probability measure on the set of conceivable states of Nature, or first-order belief, (ii) a

subjective probability measure on the set of conceivable first-order beliefs of his

opponents, or second-order beliefs, and so on. In principle, a complete description of every

relevant attribute of a player should include, not only his payoff-type, but also his

epistemic type, that is, an infinite hierarchy of beliefs. Furthermore, (infinitely) many

hierarchies of beliefs could be attached to a given payoff-type. This hierarchies-of-beliefs

approach is mathematically feasible (see e.g. Mertens and Zamir, 1985), but it does not

seem to provide a tractable framework for a direct analysis of incomplete information

games. Its usefulness consists mainly in providing a theoretical framework for the analysis

of the epistemic foundations of game-theoretic solution concepts.2

Harsanyi’s (1967–1968) contribution was twofold. On the one hand, he put forward a

general notion of ‘type space’ which provides an implicit, but relatively parsimonious

description of infinite hierarchies of beliefs. On the other hand, he showed how to analyze

incomplete information games with the standard tools of game theory. A type space can be

defined as follows. For each player i and each payoff-type ui [ Qi (Qi is the set of i’s

conceivable payoff-types) we add a parameter ei corresponding to a purely epistemic

component of player i’s attributes. In general, different values of ei can be attached to a given

payoff-type ui. This way we obtain a set Ti # Qi £ Ei of possible attributes, or Harsanyi-

types, of player i. A Harsanyi-type encodes the payoff-type and the epistemic type of a

player. In fact, the beliefs of any given player i about his opponents’ payoff-types as well as

their own beliefs are determined by a function pi : Ti ! DðT2iÞ; where T2i ¼
Q

j–iTj: Note

that the array of conditional probabilities ðpiðtiÞÞti[Ti
can always be derived from some

‘prior’, i.e. there is at least one probability measure Pi [ DðT2i £ TiÞ such that piðtiÞ ¼

Pið·ltiÞ; but such a ‘prior’ does not represent i’s beliefs in a hypothetical ex ante stage, it is

only a technical device to express the belief function pi(·). It is assumed that the vector of

1 For thorough discussion of the Bayesian model see Harsanyi (1995), Gul (1998), and Dekel and Gul (1997).
2 See Dekel and Gul (1997), Battigalli and Bonanno (1999) and the references therein.
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functions ðp1;…; pnÞ is common knowledge. Therefore every ti [ Ti corresponds to an

infinite hierarchy of beliefs: the first-order belief p1
i ðtiÞ is simply the marginal of pi(ti) onQ2i

the (k þ 1)-order belief implicit in ti is derived from pi(ti) and knowledge of the n 2 1

functions pk
j ð·Þ; j – i, mapping the opponents’ Harsanyi-types into k-order beliefs. When we

add a type space on top of the map u 7! GðuÞ we obtain a Bayesian game. A Bayesian

equilibrium is a vector of behavioral rules bi : Ti ! Si (i ¼ 1;…n; Si is the strategy set for

player i) such that for each player i and each Harsanyi-type ti ¼ ðui; eiÞ; strategy si ¼

biðui; eiÞ maximizes i’s expected payoff given the payoff-type ui, the subjective belief

piðui; eiÞ and the (n 2 1) tuple of functions b2i. Note that, for any fixed vector of behavioral

rules, a vector of Harsanyi-types ðt1;…; tnÞ provides an implicit, but complete description of

every relevant aspect of the world: the state of Nature, each player’s subjective beliefs about

the state of Nature and his opponents’ behavior and each player’s subjective beliefs about

his opponents beliefs. In other words, once we fix a type space and an equilibrium, we obtain

a fully fledged epistemic model of the game, i.e. a model specifying the possible interactive

beliefs concerning both payoff-types and players’ choices.

Within this framework, the players’ situation in a game of incomplete information is

formally similar to the interim stage of a game with complete, but imperfect and

asymmetric information whereby ti represents the private information of player i about the

realization of an initial chance move, such as the cards player i has been dealt in a game of

poker. Harsanyi pushed the analogy even further by assuming that all the subjective beliefs

pi(ti) ði ¼ 1;…; n; ti [ TiÞ can be derived from a common prior P [ Dð
Qn

j¼1 TjÞ so that

piðtiÞ ¼ Pð·ltiÞ: In this case, Bayesian equilibrium simply corresponds to a Nash

equilibrium of a companion game with a imperfect information about a fictitious chance

move selecting the vector of attributes according to probability measure P. This is the

so-called ‘random vector model’ of the Bayesian game.3 From the point of view of

equilibrium analysis, we can equivalently associate to the given Bayesian game a

companion game with complete information whereby for each player/role i ¼ 1;…; n

there is a population of potential players characterized by the different attributes ti [ Ti.

An actual player is drawn at random from each population i to play the game. The joint

distribution of attributes in the n populations is given by the common prior P. This is the

‘prior lottery model’ of the Bayesian game.

1.2. Drawbacks of standard Bayes–Nash equilibrium analysis

Harsanyi’s analysis of incomplete information games has offered invaluable insights

to economic theorists and applied economists, but its success should not make us

overlook some potential drawbacks of this approach and of its standard applications to

economic models. These potential drawbacks are all related to the following facts:

(a) a Bayesian game provides only an implicit and (in general) non-exhaustive—or

3 Any extensive-form game, either a standard one with a common prior on initial nodes, or a game with

heterogeneous subjective priors, admits a normal form. Bayesian equilibrium of the original game corresponds to

Nash equilibrium of this normal form. Yet we find this use of the phrase ‘Nash equilibrium’ slightly misleading:

Nash equilibrium is usually associated to the idea of correct conjectures, whereas in a Bayesian equilibrium

conjectures about behavioral rules are correct, but conjectures about the probabilities of actual actions may be

incorrect in the sense that they do not correspond to any objective (or intersubjective) probability distribution.
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non-universal—representation of the conceivable epistemic types; (b) representing a

Bayesian game with the ‘random vector model’ or the ‘prior lottery model’ blurs the

fundamental distinction between games with genuine incomplete information and

games with imperfect, asymmetric information: in the former there is no ex ante stage

at which the players analyze the situation before receiving some piece of information

selected at random.

(a) Non-transparent assumptions about beliefs. We mentioned that for every Harsanyi-

type in a Bayesian game we can derive a corresponding infinite hierarchy of beliefs. The

derivation makes sense if it is assumed that the Bayesian game is common knowledge.4

Mertens and Zamir (1985) shows that this informal assumption is without loss of

generality because (i) the space of n-tuples of (consistent) infinite hierarchies of beliefs is

a well- defined type space in the sense of Harsanyi and (ii) every type space is essentially a

belief-closed subspace of the space of infinite hierarchies of beliefs, which is therefore a

universal type space.5 This means that the class of all Bayesian models is sufficiently rich,

but whenever we consider a particular (non-universal) model, or a subclass of models, we

rule out some epistemic types. If, on top of this, we add the equilibrium hypothesis that

players’ conjectures about their opponents’ behavioral rules are correct, we end up making

assumptions about players’ interactive beliefs, which are often questionable and—due to

the implicit representation of epistemic types—non-trasparent.6

For example, ‘agreement’ and ‘no-trade’ results hold for Bayesian models satisfying

the common prior assumption, but the meaning of this assumptions as a restriction on

players’ hierarchies of beliefs is not obvious.7 For the sake of tractability, applied

economists often restrict their attention to an even smaller class of Bayesian models by

assuming that there is a one-to-one correspondence between payoff-types and Harsanyi-

types. These strong and yet only implicit assumptions about players’ hierarchies of beliefs

may affect the set of equilibrium outcomes in an important way. But we have a hard time

reducing these assumptions to more primitive and transparent axioms.

(b1) No ex ante stage and plausibility of assumptions about beliefs. The formal

similarity between Bayesian games and games with asymmetric information may be

misleading. We are quite ready to accept that in the ‘random vector model’ players assign

the same prior probabilities to chance moves.8 Similarly, assuming a common probability

measure over players’ attributes is meaningful and plausible, if not compelling, in the

‘prior lottery model.’ For example, it can be justified by assuming that the statistical

4 If we regard the Bayesian game itself as a subjective model of a given player, then we have to assume that this

player is certain that everybody shares the same model (cf. Harsanyi, 1967–68).
5 See also Brandenburger and Dekel (1993) and references therein. Battigalli and Siniscalchi (1999a) provides

analogous results for infinite hierarchies of systems of conditional beliefs in dynamic games of incomplete

information.
6 As clarified in Battigalli and Siniscalchi (2001b), it is the interaction between restricted type spaces and the

equilibrium assumption that yields restrictions on behavior beyond those implied by common certainty of

rationality.
7 For more on this see, for example, Gul (1998) and Dekel and Gul (1997). Bonanno and Nehring (1999)

‘makes sense’ of the common prior assumption in incomplete information games, characterizing it as a very

strong ‘agreement’ property.
8 For a discussion of the common prior assumption in situations with asymmetric, but complete information see

Morris (1995).
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distribution of characteristics in the population of potential players is commonly known.

But in games with genuine incomplete information there is no ex ante stage and prior

probabilities are only a convenient, but unnecessary notational device to specify players’

infinite hierarchies of beliefs. Thus, the common prior assumption and the conflation of

payoff-types and Harsanyi-types are much harder to accept.

(b2) No ex ante stage and learning. The lack of an ex ante stage also makes the

equilibrium concept more problematic. A Nash equilibrium of a given ‘objective’ game G

may by interpreted as a stationary state of a learning process as the players repeatedly play

G. Furthermore, it is possible to provide sufficient conditions such that learning eventually

induces a Nash equilibrium outcome.9 We cannot provide a similar justification for

equilibria of Bayesian games representing genuine incomplete information. Let u be the

actual state of Nature in a game of incomplete information G and recall that G(u) denotes

the ‘true objective game’ corresponding to u. Let us assume that the players interact

repeatedly. By the very nature of the problem we are considering, we have to assume that

the state of Nature u is fixed once and for all at the beginning of time rather than being

drawn at random according to some i.i.d. process. By repeatedly playing G(u) the players

can learn (at most) to play a Nash equilibrium of G(u), not a Bayesian equilibrium of

(some Bayesian game based on) G.10,11

1.3. Rationalizable outcomes of incomplete information games

To summarize what we said so far, in order to analyze an economic model with

incomplete information G using Harsanyi’s approach we have to specify a type space

based on G and then look for the Bayesian equilibria of the resulting Bayesian game. The

specification of the type space is hardly related to the fundamentals12 of the economic

problem and yet may crucially affect the set of equilibrium outcomes. This raises several

related theoretical questions. Can we analyze incomplete information games without

specifying a type space? Can we provide an independent justification for the Bayesian

equilibrium concept? Which results of the Bayesian analysis are independent of the exact

specification of the type space? Is it possible to provide a relatively simple characterization

of the set of all Bayesian equilibrium outcomes?

9 In general, convergence is not guaranteed and, even if the play converges, the limit outcome is a self-

confirming (or conjectural) equilibrium, which need not be equivalent to a Nash equilibrium. See Fudenberg and

Levine (1998) and references therein.
10 More generally, their pattern of behavior may converge to what Battigalli and Guaitoli (1997) call ‘a

conjectural equilibrium at u,’ which need not correspond to a Nash equilibrium of GðuÞ.
11 Dekel et al. (2001) shows that the Bayes–Nash equilibrium concept is very hard to justify in terms of learning

even for games with asymmetric information where the ex ante stage is real, but players have subjective

heterogeneous priors on the state of Nature, which is drawn at random in each repetition according to and i.i.d.

process. The reason is rather obvious: even if in equilibrium conjectures about opponents’ behavioral rules are

correct, the subjective probabilities assigned to opponent’s actions may be incorrect. If there is enough ex post

monitoring, the players will eventually find it out and revise their beliefs about Nature moves. If there is little ex

post monitoring, there is no reason why players should come to have correct conjectures about their opponents

behavioural rules.
12 By ‘fundamentals’ we mean the conceivable configurations of technologies and tastes, corresponding to the

states of Nature.
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The answer to these questions can be found in the literature on rationalizability. Let us

consider complete information games first, i.e. games with only one conceivable state of

Nature. The set of rationalizable strategies in a static game with complete information is

obtained by an iterative deletion procedure which (in two-person games) coincides with

iterated strict dominance (Pearce, 1984). Rationalizability exactly characterizes the

strategies consistent with common certainty of rationality (Tan and Werlang, 1988) and

also the set of subjective correlated equilibrium outcomes (Brandenburger and Dekel,

1987). Note that, according to the terminology used so far, a subjective correlated

equilibrium is simply a Bayesian equilibrium of a model with a unique state of Nature and

hence with payoff-irrelevant Harsanyi-types.

This paper puts forward and analyzes some notions of rationalizability for games with

genuine incomplete information, but the proposed solutions are also relevant for games

with asymmetric information where the statistical distribution of attributes in the

population of potential players is not known. We focus mainly on the analysis of dynamic

games, where players can signal their types and strategic intent. But the basic idea is more

easily understood if we consider static games first. Consider the following procedure:

(Basis Step) For every player i, payoff-type ui and strategy si in G, we check whether si can

be justified as a feasible best response for ui to some probabilistic beliefs about the

opponents’ payoff-types and behavior. If the pair (ui, si) does not pass this test it is

‘removed.’ (Inductive Step) For every i, ui and si we check whether si is a feasible best

response for ui to some probabilistic beliefs about the opponents assigning probability zero

to the (vectors of) pairs (u2i, s2i) removed so far. Note that (epistemic) type spaces are not

mentioned. The procedure depends only on the ‘fundamentals’ of the economic model.

Not surprisingly, this solution is equivalent to an iterative ‘interim’ dominance procedure.

Furthermore, it turns out that it exactly characterizes the set of all possible equilibrium

outcomes of the Bayesian games based on G (Battigalli and Siniscalchi, 2001b). It is also

easy to provide an epistemic characterization à la Tan and Werlang (1988) of the

rationalizable outcomes as those consistent with common certainty of rationality (see

Battigalli and Siniscalchi (1999a) in the context of dynamic games).

Let us see how the solution procedure works in a textbook example. Consider a Cournot

duopoly with one-sided incomplete information. The inverse demand schedule P(Q) is

linear and firms have constant marginal costs. The marginal cost firm 1, c1, is common

knowledge, but c2 the marginal cost of firm 2, is unknown to firm 1. The range of

conceivable values of c2 is a closed interval strictly contained in [0, P(0)] and containing

c1 in its interior. Both firms are expected profit maximizers. Fig. 1 shows the reaction

functions for firm 1 (r1(q2)), for the most efficient type of firm 2ðr2ð �u; q1ÞÞ; and for the least

efficient type of firm 2ðr2ð
�
u; q1ÞÞ: In this model, there is no loss of generality in considering

only best responses to deterministic beliefs.13 The first step of the rationalizability

procedure eliminates, for each type of each firm, all the outputs above the monopolistic

choice (e.g. r2(u2,0) for type u2 of firm 2), which is the best response to the most optimistic

conjecture about the opponent (assuming that the opponent might also be irrational).

In fact, all the eliminated outputs are strictly dominated for type ui by the monopolistic

choice of ui, while the remaining outputs are best responses to some conjecture. In

13 This is true in a large class of games. See Proposition 3.9.
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the second step of the procedure we eliminate, for each type of each firm, all the outputs

below the best response to the most pessimistic conjecture consistent with rationality of

the opponent. For example, for firm 1 we eliminate all the outputs below r1ðr2ð �u; 0ÞÞ: In the

third step, we eliminate, e.g. for firm 1, all the outputs above r1ðr2ð
�
u; r1ð0ÞÞ; which is the

best response to the most optimistic conjecture consistent with the opponent being rational

and certain that everybody is rational. In the limit we obtain a set of rationalizable

outcomes represented by the rectangle ABCD in Fig. 1.

Let us compare rationalizable outcomes and standard Bayesian equilibrium outcomes.

The standard Bayesian model specifies the belief of player 1 about u2, say p [ D(Q2). It is

assumed that it is common knowledge that p indeed represents the belief of player 1. The

Bayesian equilibrium strategy for player 1 is given by the intersection between the graph

of r1(·) and the graph of r2ðEð ~u;pÞ; ·Þ; where Eð ~u;pÞ denotes the expected value of u2 given

p. The set of Bayesian equilibrium outcomes for all possible p [ D(Q2) is the

parallelogram A0BC0D in Fig. 1. But if we consider all the possible specifications of a type

space à la Harsanyi, the set of Bayesian equilibrium outcomes coincides with the set of

rationalizable outcomes.14

The procedure described above is relevant if we do not want to rule out any conceivable

epistemic type. However, it may be plausible to assume that players’ beliefs satisfy some

qualitative restrictions. The iterative solution concept can be easily modified to

accommodate restrictions on first-order beliefs (informally) assumed to be commonly

known. In the general definition of the solution procedure these exogenous restrictions on

players’ beliefs are parametrically given.

Fig. 1. Duopoly with one-sided incomplete information.

14 Battigalli and Siniscalchi (2001b) shows how to construct a type space such that, in the resulting Bayesian

game, each rationalizable outcome is a Bayesian equilibrium outcome. Here we provide a simpler example.

Assume that there are two epistemic types for each payoff-type. Thus T1 ¼ {t1
1 ; t

2
1} and T2 ¼ Q2 £ {e1

2; e
2
2}:

Assume p1ðt
1
1Þ is degenerate on ð �u; e1

2Þ; p1ðt
2
1Þ is degenerate on ð

�
u; e2

2Þ; and p2ðu2; e
j
2Þ assignes probability one to t

j
1

for all u2 and j. (These belief functions are consistent with a ‘correlated’ common prior.) In the Bayesian

equilibrium where type t1
1ðt

2
1Þ chooses the lowest (highest) rationalizable output for firm 1, all the points in the

vertical segments AD and BC are equilibrium outcomes.
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The analysis of incomplete information games is particularly interesting when they

have a dynamic structure, because in this case a player can make inferences about the

types and/or strategic intents of his opponents by observing their behavior in previous

stages of the game. As in the complete information case, there are several possible

definitions of the rationalizability solution concept for dynamic games, corresponding to

different assumptions about how players would update their beliefs if they observed

unexpected behavior. Here we consider two nested solution concepts for (possibly

infinite) multi-stage games with incomplete information, called weak rationalizability

and strong rationalizability. Rigorous axiomatizations of these solution concepts involve

the definition of extensive-form epistemic models and are given elsewhere (Ben Porath,

1997; Battigalli and Siniscalchi, 1999a,b, 2001a). Intuitively, weak rationalizability

simply assumes that players choose sequential best responses to their systems of

conditional beliefs, updating via Bayes rule whenever possible, and this is common

certainty at the beginning of the game. On top of this, strong rationalizability also

assumes that each player keeps believing that his opponents are rational even when they

behave in an unexpected way, provided that their behavior can somehow ‘rationalized’ (a

more detailed account is provided in Section 3). Thus, unlike weak rationalizability,

strong rationalizability incorporates a forward induction criterion.

1.4. Related literature

The solution concepts developed in this paper extend notions of rationalizability for

extensive-form games with complete information put forward and analyzed by Pearce

(1984), Battigalli (1996, 1997) and Ben Porath (1997). The idea of using some notion of

rationalizability to analyze games of incomplete information is a quite natural

development of Bernheim (1984) and Pearce’s (1984) work on complete information

games and it appears in some papers in the literature (although several papers take for

granted the common prior assumption and/or identify payoff-types and Harsanyi-types).

Battigalli and Guaitoli (1997) analyzes the extensive-form rationalizable paths of a simple

macroeconomic game with incomplete information and no common prior. This paper also

puts forward a notion of conjectural (or self-confirming) equilibrium at a given state of

Nature of an incomplete information game. Battigalli and Siniscalchi (2001b) relate

rationalizability in incomplete information games to Bayesian equilibria and to the iterated

intuitive criterion. Cho (1994) and Watson (1998) use a notion of subform rationalizability

to analyze dynamic bargaining with incomplete information. Watson (1993, 1996) obtains

reputation and/or cooperation results for perturbed repeated games under mild restrictions

on players’ beliefs. Perry and Reny (1999) consider some specific social choice problems

with incomplete information and propose extensive-form mechanisms to implement

desirable outcomes in iteratively undominated strategies. Rabin (1994) proposes to

combine rationalizability and exogenous restrictions on players’ beliefs to introduce

behavioral assumptions in game-theoretic analysis. A different approach to incomplete

information games is proposed in Sákovics (2001). He considers Bayesian models with

finite hierarchies of beliefs and puts forward a novel solution concept, called ‘mirage

equilibrium.’
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In the last section, we will comment more specifically on a number of applications of

our approach.

1.5. Structure of the paper

The rest of the paper is organized as follows. Section 2 contains the game-theoretic set

up. Weak and strong rationalizability are defined and analyzed in Section 3 focusing on

two-person games with observable actions. Existence and regularity properties are proved

for a class of ‘simple’, but possibly infinite games. We also extend to the present

framework some known results relating rationalizablity and iterative dominance. Section 4

shows how the analysis can be extended to n-person games with imperfectly observable

actions. Section 5 briefly reports on a number of applications of the proposed

methodology. Section 6 concludes. The appendix contains some details about infinite

dynamic games of incomplete information and all the proofs.

2. Game-theoretic framework

2.1. Games of incomplete information with observable actions

A game of incomplete information with observable actions is a structure

G ¼ N; ðQiÞi[N ; ðAiÞi[N ; H
pð·Þ; ðuiÞi[N

� �
given by the following elements:15

† N is a non-empty, finite set of players.

† For each i [ N;Qi # Rmi is a non-empty set of possible types for player i and Ai # Rni

is a non-empty set of possible actions for player i (R k is the k-dimensional Euclidean

space).

† Let Q ¼
Q

i[NQi and A ¼
Q

i[NAi: Then

Ap ¼ {f} <
[t¼1

t¼1

At

 !
;

that is, Ap is the set of finite and countably infinite sequences of action profiles,

including the empty sequence f, and

Hpð·Þ : Q! 2Ap

(2A p

is the power set of Ap) is a non-empty valued correspondence assigning to each

profile of types u the set HpðuÞ of feasible histories given u. For every history h [
HpðuÞ one can derive the set Aðu; hÞ ¼

Q
i[NAiðui; hÞ of feasible action profiles. A

history h [ HpðuÞ is terminal at u if Aðh; uÞ ¼ B (every infinite feasible history is

15 The following model generalizes Fudenberg and Tirole (1991, pp 331–332) and Osborne and Rubinstein

(1994, pp 231–232). The Appendix A provides further details.

P. Battigalli / Research in Economics 57 (2003) 1–38 9



terminal). We let

HðuÞ ¼ {h [ Ap : Aðu; hÞ – B};

HðuiÞ ¼ {h [ Ap : ’u2i [ Q2i;Aððui; u2iÞ; hÞ – B};

H ¼ <
u[Q

HðuÞ;

respectively, denote the set of feasible non-terminal histories at u, or for ui, and the set

of a priori feasible non-terminal histories.

† Define the set Z of outcomes as follows:16

Z ¼ {ðu; hÞ : h [ HpðuÞ;Aðu; hÞ ¼ B}:

For all i [ N,

ui : Z! R

is the payoff function for player i (R denotes the set of real numbers).

Parameter ui represents player i’s private information about the feasibility constraints

and payoffs. For brevity, we call ui the ‘payoff-type’ of player i. It is assumed that G is

common knowledge. The array u ¼ (ui)i[N is interpreted as a state of Nature; it completely

specifies the unknown parameters of the game and the players’ interactive knowledge

about them. Player i at (u, h) knows (ui, h) and whatever can be inferred from history h

given that G (hence Hpð·ÞÞ is common knowledge. Chance moves and residual uncertainty

about the environment can be modeled by having a pseudo-player c [ N with a constant

payoff function. The ‘type’ uc of this pseudo-player represents the residual uncertainty

about the state of Nature which would remain after pooling the private information of the

real players. Players’ common or heterogeneous beliefs about chance moves can be

modeled as exogenous restrictions on beliefs (see below).

Game G is static if for all u [ Q and a [ Aðu;fÞ; (a) is a terminal history at u. Game G

has private values if, for all i [ N, ui(ui, u2i, ·) is independent of u2i. A player of type ui is

active at history h if Ai(ui, h) contains at least two elements. G has no simultaneous moves

if for every state of Nature u and every history h [ HðuÞ there is only one active player. In

this case, G can be represented by an extensive form with decision nodes (u, h), u [ Q,

h [ HðuÞ (pairs (u, f) are the initial nodes of the arborescence) and information sets for

player i of the following form:

Iðui; hÞ ¼ {ðui; u2i; hÞ : h [ Hðui; u2iÞ};

where ui is active at h. Game G has (incomplete but) perfect information if it has no

simultaneous moves and HpðuÞ is independent of u.17

Note that the basic model G does not specify players’ beliefs about the state of Nature u.

This is what makes G different from the standard notion of a Bayesian game. As mentioned

in Section 1, if we want to provide a general (albeit implicit) representation of players’

16 The feasibility correspondence is such that, if ððui; u2iÞ; hÞ [ Z; then (ðui; u
0
2iÞ; hÞ [ Z; for all u02i).

17 In this case, G can also be represented by a game tree (with decision nodes h [ H) featuring perfect

information and payoff functions ni: Q £ Z ! R, where Z is the set of terminal nodes.
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beliefs about the state of Nature and of their hierarchies of beliefs, we have to embed

each set Qi in a possibly richer set Ti of ‘Harsanyi-types’ and specify belief functions

pi: Ti ! D(T2i).

Turning to the topological properties of G, we endow Ap and Z with the standard

‘discounting’ metrics (see Appendix A) and throughout the paper we rely on the following

assumption:

Assumption 0. A and Q are closed, Hp(·) is a continuous correspondence and, for all

i [ N, ui is a continuous function.

2.2. Strategic forms

A feasible strategy for type ui is a function si : H! Ai such that si(h) [ Ai(ui,h) for all

h [ HðuiÞ:
18 The set of feasible strategies for type ui is denoted Si(ui) and

Si ¼
[
u[Q

SiðuiÞ

denotes the set of a priori feasible strategies. (By definition of H, for all h [ H; Ai(ui,h)

is nonempty. Therefore Si(ui) is also nonempty.)

The basic elements of our analysis are feasible type-strategy pairs: (ui, si) is a feasible

pair if si [ Si(ui). A generic feasible pair for player i is denoted si and the set of such

feasible pairs for player i is the graph of the correspondence Sið·Þ : Qi ! 2Si ; i.e.

Si U {ðui; siÞ [ Qi £ Si : si [ SiðuiÞ}

The sets of profiles of feasible pairs for all players and for the opponents of a player i are,

respectively, S ¼
Q

j[N Sj and S2i ¼
Q

j–i Sj: Each profile s ¼ ½ðui; siÞ	i[N induces a

terminal history zðsÞ [ HðuÞ and hence an outcome zpðsÞ ¼ ðu; zðuÞÞ [ Z: Therefore,

for each player i, we can derive the following strategic form payoff function:

Ui ¼ ui+z
p : S! R:

Furthermore, for each a priori feasible history h [ H we can define the set of profiles of

feasible pairs consistent with h:

SðhÞ ¼ {s [ S : h is a prefix of zðsÞ}:

Clearly, S(f) ¼ S. We let Si(h) denote the projection of S(h) on Si, that is, the set of (ui,

si) such that strategy si is feasible for type ui and does not prevent history h. It can be easily

checked that, for all h [ H;

SðhÞ ¼
Y
i[N

SiðhÞ – B:

The information of player i about his opponents at history h is represented in strategic form

by S2i(h), the projection of S(h) on S2i.

We endow the sets Si (i [ N) with the standard metrics derived from the metric on Z
(see Appendix A).

18 We let the domain of si be H (instead of HðuiÞÞ only for notational simplicity.
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Lemma 2.1. For all h [ H;SiðhÞ is closed.

2.3. Conditional beliefs

Players’ beliefs in dynamic games can be represented as systems of conditional

probabilities. Let S be a metric space with Borel sigma-algebra S. Fix a nonempty

collection of subsets B # S\{B}, to be interpreted as ‘relevant hypotheses.’

Definition 2.2. (cf. Rényi, 1955) A conditional probability system (or CPS) on (S, S, B)

is a mapping

mð·l·Þ : S £B! ½0; 1	

satisfying the following axioms:

Axiom 1. For all B [ B, m(BlB) ¼ 1.

Axiom 2. For all B [ B, m(·lB) is a probability measure on (S, S).

Axiom 3. For all A [ A, B, C [ B, A # B # C ) m(AlB)m(BlC) ¼ m(AlC).

The set of probability measures on (S, S) is denoted by DðSÞ; the set of conditional

probability systems on ðS;S;BÞ can be regarded as a subset of ½DðSÞ	B (the set of mappings

from B to DðSÞÞ and it is denoted by DBðSÞ: The topology on S and S (the smallest sigma-

algebra containing this topology) are understood and need not be explicit in our notation. It

is also understood thatDðSÞ is endowed with the topology of weak convergence of measures

and ½DðSÞ	B is endowed with the product topology.

A relatively simple way to represent the beliefs of a player i in a dynamic game with

incomplete information is to consider the set DBi ðS2iÞ of conditional probability systems

on ðS2i;S2i;BiÞ; where S2i is the set of type-strategy profiles for his opponents, S2i is

the Borel sigma algebra of S2i, and

Bi ¼ {B # S2i : ’ h [ H;B ¼ S2iðhÞ}

is the family of ‘strategic-form information sets’ for player i.19 By Lemma 2.1, Bi is a

collection of closed subsets and thus DBiðS2iÞ is indeed a well-defined space of

conditional probability systems.

19 Two points are worth discussing. (1) In a situation of incomplete information, when player i forms his beliefs

he already knows his private information ui. Therefore it would be more germane to the analysis of incomplete

information games to consider the set DBiðuiÞðS2iÞ of conditional beliefs for type ui, where

BiðuiÞ ¼ {B , S2i : ’ h [ HðuiÞ;B ¼ S2iðhÞ}:

(2) A player also has beliefs about himself and they may be relevant when we discuss the epistemic foundations

of a solution concept. Once again, we do not explicitly consider such beliefs for notational simplicity. This does

not alter the analysis in any essential way. Our representation of a player’s beliefs and our game theoretic analysis

are consistent with the following epistemic assumption: at a state of the world where player is type is ui and i’s

plan is si [ Si(ui), player i would be certain of ui at each history h [ HðuiÞ and would be certain to follow plan si

at each history h consistent with si.
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An element of DBi ðS2iÞ only describes the first-order conditional beliefs of player i.

Only such beliefs are explicit in the game-theoretic analysis of this paper, but the

motivations and epistemic foundations of the solution concepts to be proposed below at

least implicitly consider higher order beliefs. Battigalli and Siniscalchi (1999a) shows how

to construct infinite hierarchies of conditional beliefs which represent the epistemic type of

a player, that is, the beliefs that this player would have, conditional on each history, about

the state of Nature, his opponents’ strategies and his opponents’ epistemic types. This

construction allows one to define formal notions of conditional common certainty and

strong belief which are informally used in this paper to motivate and clarify the proposed

solution concepts. Formal epistemic characterizations of solution concepts in terms of

infinite hierarchies of conditional beliefs can be found in Battigalli and Siniscalchi (1999a,

b, 2001a).

2.4. Sequential rationality

A strategy ŝi is sequentially rational for a player of type ûi with conditional beliefs mi if

it maximizes the conditional expected utility of ûi at every history h consistent with ŝi:

Note that this is a notion of rationality for plans of actions20 rather than strategies (see for

example, Reny, 1992). Let

Hðui; siÞ ¼ {h [ HðuiÞ : ðui; siÞ [ SiðhÞ}

and

Siðui; hÞ ¼ {si [ SiðuiÞ : ðui; siÞ [ SiðhÞ}

respectively denote the set of histories consistent with (ui, si) and the set of strategies

consistent with (ui, h). Given a CPS mi [ DBiðS2iÞ and a history h [ Hðui; siÞ; let

Uiðui; si;m
ið·lS2iðhÞÞÞ ¼

ð
S2iðhÞ

Uðui; si;s2iÞm
iðds2ilS2iðhÞÞ

denote the expected payoff for type ui from playing si given h, provided that the integral on

the right hand side is well-defined.21

Definition 2.3. A strategy ŝi (i ¼ 1,2,…) is sequentially rational for type ûi with respect to

beliefs mi [ DBi ðS2iÞ; written ðûi; ŝiÞ [ riðm
iÞ or equivalently ŝ [ riðûi;m

iÞ; if for all

h [ Hðûi; ŝiÞ where player i is active and all si [ Siðûi; hÞ the following inequality is well-

defined and satisfied:

Uiðûi; ŝi;m
ið·lS2iðhÞÞÞ $ Uiðûi; si;m

ið·lS2iðhÞÞÞ:

Lemma 2.4. If SiðûiÞ is compact and Uiðûi; si;s2iÞ is upper-semicontinuous in si, bounded

and measurable in s2i, then riðûi;m
iÞ – B:

20 Formally, a plan of action is a maximal set of strategies consistent with the same histories and prescribing the

same actions at such histories.
21 Even in well-behaved games (e.g. the Ultimatum Game with a continuum of offers), for some choices of mi

and/or si, the strategic form payoff function Ui is not integrable.
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2.5. Exogenous restrictions on beliefs

A player’s beliefs may be assumed to satisfy some restrictions that are not implied by

mutual or common belief in rationality. We call such restrictions exogenous, although they

may be related to some structural properties of the model. We may distinguish between (i)

restrictions on beliefs about the state of Nature and chance moves and (ii) restrictions on

beliefs about behavior. Our general theory and the applications mentioned in Section 5

consider both (i) and (ii). Some examples of restrictions of the first kind are the following:

† Some ‘objective probabilities’ of chance moves might be known or satisfy some known

restrictions such as positivity or independence across nodes.22

† It may be common belief that all the opponents’ payoff-types are considered

possible a priori by each player (cf. Dekel and Wolinsky, 2001; Siniscalchi, 1998,

Ch. 5). Or it may be common belief that the prior probability of a ‘crazy type’ upi
committed to play a strategy spi (either because spi is dominant for upi or because

Siðu
p
i Þ ¼ {upi }Þ is either positive or bounded below by a given positive number

1iðu
p
i Þ: This kind of restriction is considered in the analysis of reputation by

Battigalli and Watson (1997) and Battigalli (2001).

The following are examples of restrictions of the second kind:

† Specific structural properties of the game such as stationarity or monotonicity may be

somehow reflected in players’ beliefs. Stationarity restrictions are considered in Cho’s

(1994) analysis of the Coase’s conjecture. Restrictions related to monotonicity play a

role in the analysis of signaling (Battigalli, 2000) and the analysis of rationalizable

bidding in first price auctions with interdependent values (Battigalli and Siniscalchi,

2001c).

† In a first price auction, it may be common belief that every bid strictly above the

reservation price yields a positive probability of winning the object, this implies that a

rational player whose valuation is above the reservation price would never bid (weakly)

above his valuation or (weakly) below the reservation price (cf. Battigalli and

Siniscalchi, 2001c).

† It may be common belief that each player’s beliefs about the types and strategies of

different opponents satisfy stochastic independence (Battigalli and Siniscalchi, 1999b).

† It may be common belief that each player’s conditional beliefs have countable support

(Watson, 1996; Battigalli, 2000).

† It may be common belief that each player’s first-order beliefs agree with a given

distribution over the set of outcomes Z (Battigalli and Siniscalchi, 2001b).

In general, we assume that, for each state of Nature u, the conditional probability

system of each player i belongs to a given, nonempty subset D i. In order to make sense of

22 Börgers (1991) considers perturbed games with ‘small trembles’ whereby the true trembling probabilities are

unknown, but it is common belief that the actual choice is very likely to coincide with the intended choice. He

stresses the difference between correlated and uncorrelated trembles.
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the solution concepts discussed in the next section it is sufficient (but not necessary) to

assume that the restrictions ðDiÞi[N are ‘common knowledge’ in the following sense: for

every sequence of players and histories (i1,h1,…,il,hl,ilþ1) player i1 would be certain at hl

that … player il would be certain at hl that the first-order CPS of player iþ1 belongs to

Dilþ1 : Weaker sufficient epistemic assumptions are discussed in the next section.

3. Weak and strong D-rationalizability

In this section we define and analyze two nested extensions of the rationalizability

solution concept to dynamic games of incomplete information, which take as given some

exogenous restrictions on players’ beliefs represented by sets of CPSs Di # DBiðS2iÞ; i [
N: Weak rationalizability is an extension of a solution concept put forward and analyzed

by Ben Porath (1997) for games of perfect and complete information.23 Strong

rationalizability is a generalization of the notion of extensive-form rationalizability

proposed by Pearce (1984) and further analyzed by Battigalli (1996, 1997) (see also Reny

(1992)). We focus mainly on two-person games (i.e. N ¼ {1,2}) to avoid discussing the

issue of correlated vs independent beliefs, which would distract the readers’ attention from

more important points. The analysis is extended to n-person games in Section 4. The two

solution concepts are defined by procedures which iteratively eliminate feasible type-

strategy pairs. These procedures coincide on the class of static games. Epistemic

assumptions are crucial for the motivation of these solution concepts, but a formal

epistemic analysis is beyond the scope of this paper and is provided elsewhere.24

Nevertheless, we will be explicit and clear about the epistemic assumptions underlying

each solution concept.

A given state of the world describes the state of Nature (hence each player’s

private information) and the players’ dispositions to act and to believe conditional on

each history, that is, their strategies and their infinite hierarchies of conditional

beliefs. Let D ¼ ðDiÞi[N : Each D-rationalizability solution concept characterizes the

feasible type-strategy realized at states where (a) every player i [ N is sequentially

rational and has first-order beliefs in Di; and (b) the players’ higher order conditional

beliefs satisfy conditions concerning mutual certainty of (a) and/or robustness of

beliefs about (a).

3.1. Weak D-rationalizability

Weak D-rationalizability characterizes the set of feasible type-strategy pairs realized at

states of the world where all the following events are true:25

23 See also Dekel and Fundenberg (1990), Brandenburger (1992), Börgers (1994) and Gul (1996).
24 Ben Porath (1997) analyzes weak rationalizability using finite, non-universal, extensive form type spaces.

Battigalli and Siniscalchi (1999a) analyzes universal and non-universal type spaces for dynamic games of

incomplete information and provides epistemic characterizations of solution concepts. Battigalli and Siniscalchi

(1999b, 2001a) uses an extensive-form, universal (or belief-complete) type space to provide an epistemic

characterization of strong D-rationalizability with correlated and independent beliefs.
25 The conditions are indexed by the assumed order of mutual certainty of rationality.
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(0) every player i has first-order conditional beliefs in Di and is sequentially rational,

(W1) every player i is certain of (0) at the beginning of the game (i.e. conditional on f),

(W2) every player i is certain of (W1) at the beginning of the game,

…

(Wk) every player i is certain of (W(k 2 1)) at the beginning of the game,

….

Definition 3.1. Let Wið0;DÞ ¼ Si; i ¼ 1; 2: Assume that the subsets Wiðk;DÞ; i ¼ 1; 2; have

been defined, k ¼ 0,1,…. Then for each i ¼ 1,2, Wiðk þ 1;DÞ is the set of feasible ðui; siÞ

such that si is sequentially rational for ui with respect to some CPS mi [ Di such that

miðW2iðk;DÞlS2iÞ ¼ 1:26 A feasible pair ðui; siÞ [ Wiðk;DÞ is called weakly ðk;DÞ-

rationalizable. A feasible pair is weakly D-rationalizable if it is weakly ðk;DÞ-

rationalizable for all k ¼ 1,2,…. The set of weakly D-rationalizable pairs for player i is

denoted by Wið1;DÞ.

There is a convenient way to reformulate Definition 3.1. For any subset B2i # S2i; let

Li
DðB2iÞ ¼ {mi [ Di : miðB2ilS2iÞ ¼ 1}:

Note that (a) Li
DðB2iÞ ¼ B whenever B2i is not measurable, (b) operator Li

D is

monotone27 on the Borel sigma-algebra of S2i and is also monotone with respect to D i,

and (c) Wiðk þ 1;DÞ ¼ riðL
i
DðW2iðk;DÞÞÞ:

W1ðk;DÞ £ W2ðk;DÞ is the set of profiles consistent with assumptions (0)–(k 2 1)

above. Note that these assumptions are silent about how the players would change their

beliefs if they observed a history h which they believed impossible at the beginning of the

game, even if h is consistent with rationality or mutual certainty of rationality of any order.

Therefore weak rationalizability satisfies only a very weak form of backward induction

(e.g. in two-stage games with perfect information) and cannot capture any kind of forward

induction reasoning. This is what makes weak rationalizability different from strong

rationalizability.

3.2. Strong D-rationalizability

According to strong rationalizability each player believes that his opponent is rational

as long as this is consistent with his observed behavior. More generally, each player

bestows on his opponent the highest degree of ‘strategic sophistication’ consistent with his

observed behavior (see Remark 1 below). This ‘best rationalization principle’ is a form of

forward induction reasoning; it also induces the backward induction path in games of

perfect and complete information (cf. Battigalli (1996, 1997)). To make the epistemic

assumptions underlying strong rationalizability more transparent recall that a state of the

world describes the players’ dispositions to believe, that is, it describes not only how the

players’ actual beliefs evolve along the actual path, but also the beliefs the players would

26 It goes without saying that whenever we write a condition like miðElS2iðhÞÞ $ a and E is not measurable, the

condition is not satisfied.
27 A set to set operator L is monotone if E # F implies L(E) # L(F).
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have at histories off the actual path. We say that player i strongly believes an event E if i

will or would be certain of E at each history h consistent with E (see Battigalli and

Siniscalchi (2001a) and references therein). Strong D-rationalizability characterizes the

feasible type-strategy pairs realized at states of the world where all the following events

are true:

(0) every player i has first-order conditional beliefs in Di and is sequentially rational,

(S1) every player i strongly believes (0),

(S2) every player i strongly believes (0) & (S1),

…

(Sk) every player i strongly believes (0) & (S2) &…& (S(k 2 1)),

….

Definition 3.2. Let Sið0;DÞ ¼ Si and Fið0;DÞ ¼ Di; i ¼ 1; 2: Suppose that Siðk;DÞ and

Fiðk;DÞ have been defined for each i ¼ 1,2. Then for each i ¼ 1,2,

Fiðk þ 1;DÞ ¼ {mi [ Fiðk;DÞ : ;h [ H;S2iðhÞ> S2iðk;DÞ – B

) miðS2iðk;DÞlS2iðhÞÞ ¼ 1}; Siðk þ 1;DÞ ¼ riðF
iðk;DÞÞ:

A feasible pair ðui; siÞ [ Siðk;DÞ is called strongly ðk;DÞ-rationalizable. A feasible pair is

strongly D-rationalizable if it is strongly ðk;DÞ-rationalizable for all k ¼ 1,2,…. The set of

strongly D-rationalizable pairs for player i is denoted by Sið1;DÞ:

Note that Wið1;DÞ ¼ riðD
iÞ ¼ Sið1;DÞ: We show below that under appropriate

regularity conditions, as the terminology suggests, the set of strongly (k, D)-rationalizable

profiles is contained in the set of weakly (k, D)-rationalizable profiles and that the two sets

coincide in static games (in general, it is sufficient that all the sets Wi(k, D) and Si(k, D)

(i [ N, k ¼ 1,2,…) are nonempty and measurable).

Remark 1. (‘Best rationalization’) The set Fiðn þ 1;DÞ can be characterized as follows:

let kð2i; h; nÞ denote the highest index k # n such that strongly ðk;DÞ-rationalizable

behavior by 2 i is consistent with h [ H;
28 then

Fiðnþ1;DÞ ¼ {mi [Di :;h[H;miðS2iðkð2i;h;nÞ;DÞlS2iðhÞÞ ¼ 1}

¼
\n
k¼0

{mi [Di :;h[H;S2iðhÞ>S2iðk;DÞ–B)miðS2iðk;DÞlS2iðhÞÞ ¼ 1}:

3.3. Examples

In Section 1 we analyzed a duopoly �a la Cournot with one-sided incomplete

information to illustrate the rationalizability procedure for static games without exogenous

restrictions on beliefs. In such a model, the set of rationalizable outcomes is quite large.

28 That is, kð2i; h; nÞ ¼ max{k [ {0;…; n} : S2iðhÞ> S2iðk;DÞ – B}:
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Now we consider two examples where each state of Nature corresponds to a unique

rationalizable outcome.

An exchange game. Two artists meet at a fair in the morning and have to decide whether

to exchange the works of art they are going to produce in the afternoon. The value of a

work of art by individual i is equal to his or her ability ui [ ½0; 1	; which is private

information. Each individual has to choose whether to propose to exchange or not.

Proposals are simultaneous and become binding if and only if both individuals propose. In

order to propose an exchange, an individual has to pay a small transaction cost e [ ð0; 1Þ:

The payoffs are given by Table 1.

We do not assume any exogenous restriction on beliefs.

The rationalizable solution is that, independently of his ability, no individual proposes

to exchange. To see this, first note that a rational individual i whose ability is ui . 1 2 e

will not propose to exchange, because this action is strictly dominated given his type (on

the other hand, p is a best response to belief mi for ui # 1 2 e if mið{ð1; pÞ}Þ ¼ 1Þ: It

follows that a rational individual i whose ability is ui . 1 2 2e and who is certain of the

rationality of individual j will not propose to exchange, because he is certain that j will

propose to exchange only if uj # 1 2 e : More generally, it can be easily shown by

induction that

WiðkÞ ¼ ½0; 1	 £ {n} < {ðui; pÞ : 0 # ui # 1 2 ke}:

Therefore

Wið1Þ ¼ ½0; 1	 £ {n} ¼ WðkÞ; ;k .
1

e
:

A similar result obtains in a variant of this game where the set of types is finite and there

is no transaction cost, provided that we assume the following restrictions on beliefs: each

player i assigns positive probability to the pair ð
�
u; pÞ [ Sj where

�
u is the lowest ability.

Since p is a weakly dominant action for the lowest type, this seems a very weak

restriction. (For an analysis of rationalizable trade in exchange games see Morris and

Skiadas (2000).)

A game of disclosure. Consider the following signaling game:29 the Sender’s type can

be either high (u H) or low (u L). The Sender can either credibly reveal his type or not. This

means that the message space for type u H is A1ðu
HÞ ¼ {H;N} and the message space for

Table 1

An exchange game

(1,u1)\(2, u2) p (propose) n (not)

p (propose) u2 2 e, u1 2 e u1 2 e, u2

n (not) u1, u2 2 e u1, u2

29 A signaling game is a two-stage game with one-sided private information where the informed player (Sender)

moves first and the uniformed player (Receiver) moves second.
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type u L is A1ðu
LÞ ¼ {L;N}; where N is the neutral message meaning ‘no information’ and

H and L have the obvious meaning.

The Receiver’s maximizes his expected payoff by estimating the probability that the

Sender’s type is high: A2ða1Þ ¼ ½2k; 1 þ k	 ðk . 0Þ; u2ðu; a1; a2Þ ¼ 2ðIuH ðuÞ2 a2Þ
2; for

all messages a1 [ {H,L,N}, where IuH is the indicator function for the high type (i.e.

IuH ðuHÞ ¼ 1 and IuH ðuLÞ ¼ 0Þ: The Sender’s utility is increasing in a2, e.g.

u1ðu; a1; a2Þ ¼ vðuÞ þ a2; thus the Sender has an incentive to convince the Receiver

that his type is high.

We assume that the Receiver is ‘mildly skeptical’ in the sense that if he gets the neutral

message N he assigns a positive conditional probability to the low type: D2 ¼ {m [
DB2ðS1Þ : mðu

LlNÞ . 0}; whereas D1 ¼ DB1ðS2Þ:

The essentially unique strongly D-rationalizable outcome of this game is that the

Sender discloses if his type is high and the Receiver infers from the neutral message

that the Sender’s type must be low. To see this, note that mild skepticism and

sequential rationality imply that the Receiver’s response to a1 ¼ N is a2 ¼ s2ðNÞ , 1:

Obviously, sequential rationality also implies s2ðHÞ ¼ 1 and s2ðLÞ ¼ 0: Since the

Sender is rational and certain that the Receiver is rational and mildly skeptical, he

strictly prefers to disclose if his type is high. According to strong rationalizability, we

assume that the Receiver is initially certain of this and maintains this belief conditional

on message N even if he initially assigned probability zero to N. Therefore s2ðNÞ ¼ 0:

Formally, we obtain:

Sð1;DÞ ¼ S1 £ {s2 : 0 # s2ðNÞ , 1; s2ðHÞ ¼ 1; s2ðLÞ ¼ 0};

Sð2;DÞ ¼ {ðu; a1Þ : u ¼ uH ) a1 ¼ H} £ S2ð1;DÞ;

Sð3;DÞ ¼ S1ð2;DÞ £ {sp2} where sp2ðNÞ ¼ sp2ðLÞ ¼ 0; sp2ðHÞ ¼ 1:

(On strong rationalizability and disclosure see Battigalli (2000).)

3.4. Existence and regularity

It is well-known that even for well-behaved dynamic games with a continuum of

actions the strategic-form payoff functions need not be continuous or measurable and

hance the sequential best response correspondences riðui;m
iÞ ði [ NÞ need not be well-

behaved. We first provide simple conditions on the ‘fundamentals’ implying that the

correspondences rið·; ·Þ are nonempty-valued and upper-hemicontinuous. Then we show

that, if the latter properties are satisfied and D (exogenous restrictions on beliefs) is

regular, weak and strong D-rationalizability are well-behaved.

Definition 3.3. A game

G ¼ N; ðQiÞi[N ; ðAiÞi[N ;H
pð·Þ; ðuiÞi[N

� �
is ‘simple’ if Q is compact and either (a) A is finite or (b) A is compact and for some integer

T, (b1) G has T stages (that is, every terminal history h has length ‘ðhÞ ¼ TÞ; (b2) for every

u [ Q and h [ HðuÞ; if ‘ðhÞ , T 2 1 then Aðu; hÞ is finite.
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Clearly, finite games and infinitely repeated games with a finite stage game are simple.

Signaling games with a finite message space are simple if A2 and Q are compact. Signaling

games with a continuum of messages are not simple.

Lemma 3.4. For every simple game S is compact and, for each player i, rið·; ·Þ is an upper-

hemicontinuous, nonempty-valued correspondence.

Even in simple games, the set of (weakly or strongly) D-rationalizable profiles may be

empty because the exogenous restrictions on beliefs represented by D may conflict with

common certainty of rationality (or mutual strong belief in rationality). But we can obtain

a simple existence result and other regularity properties for the case where D only

represents restrictions on the (marginal) initial beliefs about the opponent’s type (existence

results with a more general set of restrictions on beliefs can be obtained for specific

models; see Section 5). For any subset C of a product set X £ Y and for any probability

measure m on C let projXC and margXm respectively denote the projection of C on X and

the marginal of m on X, that is,

projXC ¼ {x [ X : ’ y [ Y ; ðx; yÞ [ C}

ðmargXmÞðEÞ ¼ mð{ðx; yÞ [ C : x [ E}Þ;E # XðmeasurableÞ:

D is regular if, for each player i, D i is nonempty and closed, and there is a set
Q

2i #
DðQ2iÞ such that

Di ¼ mi [ DBiðS2iÞ : margQ2i
mið·lS2iÞ [

Y
2i

n o
:

The following propositions are jointly proved in Appendix A (see Proof of Proposition

8.1):

Proposition 3.5. Suppose that D and D0 are regular, S is compact, rið·; ·Þ is nonempty-

valued and upper-hemicontinuous and Di # ðDiÞ0 for every player i. Then for every player

i and all k ¼ 0; 1;…;1;

(a) the sets Wiðk;DÞ and Li
DðWiðk;DÞÞ of weakly ðk;DÞ-rationalizable pairs and beliefs

are nonempty and compact, projQi
Wiðk;DÞ ¼ Qi;

(b) weak ðk;DÞ-rationalizability implies weak ðk;D0Þ-rationalizability: Wiðk;DÞ #
Wiðk;D

0Þ;

(c) W1ð1;DÞ £ W2ð1;DÞ is the largest measurable subset F1 £ F2 # S such that

F1 £ F2 # r1ðL
1
DðF2ÞÞ £ r2ðL

2
DðF1ÞÞ:

Furthermore,

W1ð1;DÞ £ W2ð1;DÞ ¼ r1ðL
1
DðW2ð1;DÞÞÞ £ r2ðL

2
DðW1ð1;DÞÞÞ:
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Proposition 3.6. Suppose that D is regular, S is compact and ri(·,·) is nonempty-valued

and upper-hemicontinuous for every player i. Then for every player i and all k ¼

0; 1;…;1;

(1) the sets Siðk;DÞ and Fiðk;DÞ of strongly ðk;DÞ-rationalizable pair and beliefs are

nonempty and compact, projQi
Siðk;DÞ ¼ Qi;

(2) strong ðk;DÞ-rationalizability implies weak ðk;DÞ-rationalizability: Siðk;DÞ #
Wiðk;DÞ (the inclusion holds as an equality if the game is static).

Proposition 3.5 (a) (3.6 (1)) says that there is a weakly (strongly) rationalizable strategy

for each payoff-type. (b) says that weak rationalizability is monotone with respect to

exogenous restrictions on beliefs. This does not hold for strong rationalizability. In fact, if

stronger restrictions on beliefs make fewer histories consistent with strongly k-

rationalizable strategies, the k-forward induction criterion applies only to this smaller

set of histories and the set of (k þ 1)-rationalizable profiles need not be smaller. (c) says

the set of weakly rationalizable profiles is the largest set with the ‘best response property.’

As an immediate consequence of Lemma 3.4 and Propositions 3.5 and 3.6 we obtain the

following:

Corollary 3.7. In every simple game, if D is regular then (a), (c) of Proposition 3.5 and

(1), (2) of Proposition 3.6 hold.

3.5. Rationalizability and iterated interim dominance

The set of weakly and strongly rationalizable pairs can be further characterized for

generic finite games in terms of dominance relations. We say that a game has no

relevant tie if the following holds: for each player i and all pairs of outcomes (u,z0),

ðu; z00Þ [ Z; if there are h [ HðuÞ; a0; a00 [ Aðu; hÞ such that a0
i – a00

i ; z0 follows (h,a0)

and z00 follows (h,a00), then ui(u,z0) – ui(u,z00). This means that if player i, immediately

after history h, has deterministic beliefs about the true parameter u and the

continuation of the game, then he cannot be indifferent between any two feasible

actions.

A strategy si [ Si(ui) is weakly dominated30 by mixed strategy mi [ DðSiðuiÞÞ for type

ui on B2i # S2i if

;s2i [ B2i;Uiðui; si;s2iÞ # S
s0

i

miðs
0
iÞUiðui; s

0
i;s2iÞ

and

’s0
2i [ B2i;Uiðui; si;s2iÞ , S

s0i

miðs
0
iÞUiðui; s

0
i;s2iÞ:

30 This is also called ex post dominance, because the dominance relation between si and mi would hold even if

the state of Nature were revealed to player i.
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The definition of strict dominance is analogous (all weak inequalities are replaced by

strict inequalities). For any given rectangular subset B # S let WðBÞðSðBÞÞ denote the set

of ðui; siÞi[N [ S such that, for each i, si is not weakly (strictly) dominated for ui on B2i

and let SWðBÞ ¼ SðBÞ>WðSÞ: The iterated operator SWn is defined in the usual way:

SWnðBÞ ¼ SWðSWn21ðBÞÞ; where SW0ðBÞ ¼ B: A subscript p denotes that we only

consider weak domination by pure strategies. Thus WpðBÞ is the set of profiles ðui; siÞi[N

such that si is not weakly dominated for ui by another pure strategy on B2i, and

SWpðBÞ ¼ SðBÞ>W
p
ðSÞ: Note that S is a monotone operator. Therefore, also SW

and SWp are monotone operators. W(k) and S(k) denote the subsets of weakly and

strongly k-rationalizable profiles, without exogenous restrictions on beliefs. The following

proposition extends to games with incomplete information results proved by Pearce (1984)

and Ben Porath (1997).

Proposition 3.8. (a) (Cf. Pearce, 1984) In every finite and static game,

SðkÞ ¼ WðkÞ ¼ SkðSÞ; k ¼ 1; 2;…:

(b) In every finite game with no relevant ties,

SðkÞ # WðkÞ # SWk
pðSÞ; k ¼ 1; 2;…:

(c) (Cf. Ben Porath, 1997) In every finite game with no relevant ties, perfect information

and private values,

SðkÞ # WðkÞ ¼ SWkðSÞ; k ¼ 1; 2;…:

An exact characterization of strong rationalizability can be obtained using a notion

of iterated conditional dominance for each payoff-type. The characterization result can

be easily adapted from Shimoji and Watson (1998). These characterizations of

rationalizability through iterative dominance procedures can be used to compute the

set of rationalizable strategies solving a sequence of linear programming problems (cf.

Shimoji and Watson (1998), Section 4). The computation algorithm can also

incorporate exogenous restrictions on conditional beliefs (Siniscalchi (1997)).

Finally, we can easily extend known results about rationalizability, best replies to

deterministic beliefs and dominance in infinite static games. These results provide

sufficient conditions implying that the set of strictly dominated actions (for a given type

and domain) coincides with the set of actions that are not a best reply to any deterministic

belief. This implies that rationalizability coincides with iterated strict dominance and can

be computed easily, as in the duopoly example of the introduction. A well-known set of

such conditions goes under the general heading of ‘supermodularity’ (Milgrom and

Roberts (1990)). Here we generalize a perhaps less well-known result due to Moulin

(1984).

In the following we write riðs2iÞ for the set of type-strategy pairs (ui,si) such that si is a

best reply for ui to the deterministic belief assigning probability one to s2i. Similarly,

riðB2iÞ ¼ <s2i[B2i
riðs2iÞ:
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Proposition 3.9. (Cf. Moulin (1984)) Consider a static game with incomplete information.

Suppose that, for each i [ N;Qi # Rmi is a connected compact set, Ai ¼ ½
�
ai; �ai	 # R and

uiðu; ai; a2iÞ is (continuous in all its arguments and)31 strictly quasi-concave in ai. Then,

for every connected product subset B ¼
Q

i[NBi # S

SðBÞ ¼
Y
i[N

riðB2iÞ:

and S(B) is connected. It follows thatY
i[N

riðS2iðk 2 1ÞÞ ¼ WðkÞ ¼ SðkÞ ¼ SkðSÞ; k ¼ 1; 2;…:

4. Generalizations

The solution concepts defined in Section 3 for two-person games with observable

actions can be extended to general n-person games with imperfect information about past

actions. While the introduction of imperfect information is conceptually straightforward,

considering more than two players forces a modeling choice between correlated and

independent belief and poses the problem of providing a satisfactory definition of

independence for conditional probability systems and an appropriate formalization of the

forward induction principle for players with multiple opponents. In this section we briefly

describe how to deal with these problems.

4.1. Imperfectly observed actions

In a game with observed actions the set of partial histories H can be regarded as a

common collection of information sets for all the players. In games with imperfectly and

asymmetrically observed actions each player i has his own collection of information sets

Hi; whereby a typical element h [ Hi now represents a (maximal) set of partial histories

that player i cannot distinguish. Of course, Hi need only contain the information sets

where player i is active. In order to adapt the analysis of the previous section to this

situation it is sufficient to redefine S(h) as the set of feasible profiles consistent with at least

one history contained in h. Perfect recall implies that SðhÞ ¼ SiðhÞ £ S2iðhÞ for each

h [ Hi: The collection Bi of ‘relevant hypotheses’ for player i is then defined as

Bi ¼ {B # S2i : ’h [ Hi;B ¼ S2iðhÞ}

and this determines the space of conditional probability systems DBiðS2iÞ: Given these

modifications, the other formal definitions are virtually unchanged.

4.2. n-Person games and independent beliefs

Extending the previous analysis to n-person games is quite straightforward if it is

assumed that each player’s beliefs concerning the type and strategy of different opponents

may exhibit correlation. Therefore we consider here only the case of independent beliefs.

31 See Assumption 0.
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Recall that in games with observable actions the set S(h) of feasible profiles consistent

with a given history/information set h has a Cartesian structure: SðhÞ ¼
Q

i[NSiðhÞ: The

same is true whenever h is an information set of a game with observable deviators. For the

sake of simplicity, we limit our analysis to this class of games. For any two players i and j

let

Bij ¼ {Bj # Sj : ’h [ Hi;Bj ¼ SjðhÞ}

be the collection of ‘strategic form’ pieces of information about player j that player i might

obtain and let DBij ðSjÞ be the associated set of i’s marginal CPS’s about player j. A CPS

mi [ DBiðS2iÞ is independent if there exists a vector of marginal CPS’s ðmi
jÞj–i [Q

j–iD
Bij ðSjÞ such that, for all h [ Hi; mið·lS2iðhÞÞ is the product measure

obtained from the vector of marginal probability measures ðmi
jð·lSjðhÞÞÞj–i (cf. Rényi

(1955), p 303).

Assuming that the players are rational and have independent conditional beliefs and

that this is common certainty at the beginning of the game, we obtain a notion of weak

rationalizability with independent beliefs. The formal definition is essentially the same as

in Section 2 except that now it has to be assumed that, for each player i, the restricted set of

beliefs D i contains only independent CPS’s.32

Let as now turn to strong rationalizability. Since we assume that players’ conditional

beliefs are independent, we also incorporate in the definition of strong rationalizability a

principle of independent best rationalization: each player i ascribes to every opponent j the

‘highest degree of strategic sophistication’ consistent with j’s observed behavior

independently of any information about other players.33 The formal, inductive definition

of strong rationalizability (without exogenous restrictions on beliefs beyond indepen-

dence) can be given as follows. Let mi
j denote the marginal on Sj of a given independent

CPS m i.

(0) For all i [ N, S0
i ¼ Si and Fið0Þ ¼ {mi [ DBiðS2iÞ : m

i is independent}:

(k þ 1) For all i [ N, Skþ1
i ¼ riðF

iðkÞÞ and

Fiðk þ 1Þ ¼
�
mi [ FiðkÞ : ;h [ Hi;;j – i;SjðhÞ> Sk

j – B ) mi
j


Sk

j lSjðhÞ
�
¼ 1

�
:

5. Applications

The methodology proposed in this paper has been applied to a number of economic

models concerning reputation, disclosure, market signaling and auctions. Here we briefly

report on the results.

32 This notion of rationalizability is used in Battigalli and Watson (1997) and in Siniscalchi’s (1998) analysis of

‘Japanese’ auctions. See the next section.
33 Battigalli and Siniscalchi (1999b) provides a rigorous epistemic axiomatization of the independent best

rationalization principle.
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5.1. Reputation in repeated games

Building on Watson (1993), Battigalli and Watson (1997) and Battigalli (2001) analyze

reputation in repeated games, relying on minimal assumptions about beliefs and mutual

certainty of rationality.

Battigalli and Watson (1997) consider a long-run player facing a sequence of short-run

opponents. It is assumed that the beliefs of the short-run players may be heterogeneous, but

are not too different from each other, and furthermore that they satisfy stochastic

independence across opponents (see Section 4.2) and assign at least e probability to the

long-run player being a commitment type who always plays his stage-game ‘Stackelberg

action.’ These are the exogenous restrictions on beliefs D. It is shown that if (a) the short-

run opponents are rational and (b) have beliefs in D, then the long-run player can make

them choose the best response to the Stackelberg action, simply by playing such action for

a long enough time. If the long-run player is rational, believes in (a) and (b) and is patient,

then his long-run average expected payoff is approximately bounded below by the

Stackelberg payoff. This result can be obtained with two steps of the weak D-

rationalizability procedure.34

Battigalli (2001) proves a similar result for the case of a long-run patient player with a

long-run (impatient) opponent. According to the assumed restrictions D, the impatient

player assigns at least e probability to the patient player being a commitment type that

plays a history-dependent strategy ‘teaching’ to choose the best response to the

Stackelberg action.

5.2. Signaling games

Battigalli (2000) applies strong D-rationalizability to signaling games. The first

application is a model of disclosure generalizing the second example of Section 3 (in

particular, the number of types is finite, but arbitrary). The assumed exogenous restriction

on beliefs is that the Receiver is mildly skeptical, i.e. assigns a positive probability to the

worst type consistent with any given message. Then strong D-rationalizability implies that

the Receiver interprets any given message m as being sent by the worst type consistent

with m and this belief is indeed correct. In other words, the weak restriction of mild

skepticism, when combined with the forward induction logic of strong rationalizability

yields extreme skepticism.

The second application is a version of Spence’s job market signaling model where

productivity depends on ability and education. The assumed exogenous restriction on

beliefs is that the conditional expectation of ability is weakly increasing with observed

education. If high and low types are sufficiently different, strong D-rationalizability

yields the most efficient separating equilibrium outcome. Otherwise, strong D-

rationalizability only yields bounds on the level of education that the high and low

types would choose.

34 As noted in Battigalli and Watson (1997), a similar, but simpler result holds when the sequence of short-run

players is replaced by a long-run, relatively impatient player, provided that the payoffs of the constituent matrix

game satisfy a property called ‘conflicting interests’.
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Battigalli and Siniscalchi (2001b) provide a more abstract result about strong D-

rationalizability in signaling games. Let D(z) represent the restriction that the players

beliefs ‘agree’ with a given outcome distribution z [ DðQ £ A1 £ A2Þ: It is shown that z

is a self-confirming equilibrium distribution satisfying the iterated intuitive criterion

(IIC)35 if and only if the set of D(z)-rationalizable outcomes is not empty. This in turn

yields an epistemic characterization of the IIC via the results of Battigalli and

Siniscalchi (2001a).

5.3. Auctions

Dekel and Wolinsky (2000) analyze first-price, IPV auctions with a discrete set of

possible bids and types. On top of stochastic independence of opponents’ types, they

assume that each player assigns probability at least d to each possible valuation of

each competitor. They prove a limit result: if the number of participants is large

enough D-rationalizability implies that each player submits the highest bid below his

private value.

On the other hand, Battigalli and Siniscalchi (2001c) show that if the set of possible

valuations and bids is continuous (an interval), then the set of rationalizable bids is

quite large even if there are many participants. They assume that players know the

‘true’ distribution of types and that they believe that a strictly positive bid yields a

strictly positive probability of winning (this rules out weakly dominated bids).36 They

show how to compute the upper bound on the set of (D,k)-rationalizable as a function

of a player’s valuation. The upper bound is increasing, concave and strictly above the

(symmetric) equilibrium bidding function. Every bid between zero and this upper

bound is (D,k)-rationalizable. These results seem to be consistent with the experimental

evidence.

Siniscalchi (1998, Ch. 5) analyzes ascending bid (‘Japanese’) auctions with a common

discrete set of valuations and bids. It is well known that the canonical solution of such

auctions is that each participant plays the weakly undominated strategy of ‘staying in’ as

long as the price called by the auctioneer is below his valuation. However, there are

sequential equilibria in weakly dominated strategies where bidders stay in even at prices

above their valuation. Without exogenous restrictions on beliefs, these sequential

equilibria are not ruled out by strong rationalizability. But Siniscalchi shows that,

introducing rather weak exogenous restrictions on beliefs, D-rationalizability yields the

standard solution. In particular, this result holds when D represents the following

assumptions: (i) players’ beliefs about opponents types and strategies satisfy stochastic

independence, (ii) every valuation of every competitor is assigned positive prior

probability, (iii) if, when price v n is called, player i assigns positive conditional probability

to j’s valuation being v n, then i assigns positive probability to player j quitting before a

higher price is called.

35 The original definition and informal motivation of the IIC can be found in Cho and Kreps (1987).
36 Their analysis is extended to auctions with interdependent (affiliated) valuations. The basic insights also apply

to the case of unknown distributions of valuations.
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6. Conclusion

We proposed a methodology to analyze models of strategic interaction where some of

the ‘fundamental’ parameters (preferences and technology) are not common knowledge.

We called ‘payoff-types’ the possible pieces of private information about such

fundamentals.

Our methodology is different from Harsanyi’s (1967–68) analysis of incomplete

information games, but it is consistent with it. In order to apply Harsanyi’s approach, it is

necessary to append to a given model with unknown fundamentals a type space, i.e. a

compact, implicit specification of the set of possible infinite hierarchies of beliefs (beliefs

about the opponents’ payoff-types, beliefs about such beliefs, and so on). We call such

hierarchies of beliefs ‘epistemic types’ and the extended model ‘Bayesian game.’ In an

equilibrium of a Bayesian game, each player best responds to a correct conjecture about

how his opponents would choose, given their payoff þ epistemic types. According to

Harsanyi’s approach we should study the equilibria of the ‘appropriate’ Bayesian

extension of a given model with incomplete information.

But how can we choose the ‘appropriate’ type space? As we show elsewhere,37 if the set

of possible hierarchies of beliefs about payoff-types is unrestricted (i.e. ‘universal’), then

the equilibrium assumption (correct conjectures about opponents’ choice functions) has no

more bite than just assuming common certainty of rationality. On the other hand,

analyzing the equilibria of Bayesian games with restricted, but still large type spaces may

be quite complex. Thus, to obtain sharp results and for tractability reasons, most economic

applications consider very small ‘Micky Mouse’ type spaces. But the epistemic

assumptions implicit in this ‘small-type-space-plus-equilibrium’ approach are often

implausible and/or non-transparent. Therefore we propose to explore the consequences of

alternative assumptions.

We believe that, in principle, the analysis of any model of interactive decisions should

be based on explicit assumptions about beliefs (including assumptions about how beliefs

change) and rationality (how choices are related to beliefs). Behavioral implications

should be derived from such assumptions. The epistemic analysis of games shows that

some interesting constellations of assumptions about rationality and beliefs exactly

characterize corresponding solutions concepts, which can be used as ‘shortcuts’ to obtain

results about specific models. In this paper we take advantage of this work on the epistemic

foundations of game theory and we focus on solution concepts.

Rather than explicitly enrich the given economic model with a type space and

compute Bayesian equilibria, we propose to apply a sort of iterated interim dominance

deletion procedure called ‘D-rationalizability.’ This procedure is parametrized by some

exogenous restrictions on first-order beliefs (beliefs about the payoff-types and/or

strategies of the opponents), represented by some belief set D. In static games, the

procedure corresponds to considering higher and higher degrees of mutual certainty

that (a) players are rational and (b) their beliefs satisfy the restrictions D. The above

mentioned result about Bayesian equilibrium and common certainty of rationality

implies that, without exogenous restrictions, rationalizability characterizes the set of

37 Battigalli and Siniscalchi (2001b).
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all Bayesian equilibrium outcomes. This shows that our approach is fully consistent

with Harsanyi’s one.

Rationalizability can be extended from static to dynamic games in several ways. These

extensions have in common the assumption that players carry out sequential best replies to

their system of conditional beliefs. Assuming initial common certainty of sequential

rationality and of the exogenous restrictions on beliefs we obtain a solution concept called

‘weak D-rationalizability.’ On top of this, we may also want to formalize elements of

strategic reasoning related to the general principle that observed actions are interpreted as

signals about private information and/or strategic intent. Hence we also define a notion of

strong D-rationalizability featuring this forward induction principle.

We provided a unified analysis of weak and strong D-rationalizability in

incomplete information games where the set of payoff-types and actions may be

uncountably infinite and the time horizon may be infinite as well. We obtained

existence and regularity conditions for these solution concepts and we analyzed how

they are related with iterated dominance procedures. For the sake of simplicity, most

of the analysis focused on two-person games with observable actions, but we also

show how to extend the solution concepts when there are several players and actions

are not perfectly observed. We hope that the technical results and examples contained

in the paper, and the brief survey of applications mentioned in Section 5 will

convince the reader that we proposed a viable and interesting methodology for the

analysis of incomplete information games.

Acknowledgements

This paper is a revision of the more theoretical part of ‘Rationalizability in Incomplete

Information Games’. Helpful comments from Patrick Bolton, Giacomo Bonanno, Tilman

Börgers, Françoise Forges, Faruk Gul, Marciano Siniscalchi, Juuso Välimäki, Joel Watson
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Appendix A

A.1. Incomplete information games: feasibility correspondence and topological structure

The sets of feasible actions for a given state of Nature u and (feasible) history h are

derived from the feasibility correspondence Hpð·Þ : Q! 2Ap

as follows:

Aðu; hÞ ¼ {a [ A : ðh; aÞ [ HpðuÞ};

Aiðui; hÞ ¼ {ai [ Ai : ’a2i [ A2i;’u2i [ Q2i; ðai; a2iÞ [ Aððui; u2iÞ; hÞ}:

The feasibility correspondence satisfies the following properties (recall that Ap is the set of

finite or countable infinite sequences of action profiles):
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1. for every h [ Ap and u [ Q, if h [ HpðuÞ; every initial subsequence (prefix) of h

belongs to HpðuÞ; in particular, f [ HpðuÞ for all u [ Q,

2. for every infinite sequence h p [ A 1 and every u [ Q, if for every finite initial

subsequence h of h p, h [ HpðuÞ; then hp [ HpðuÞ;

3. for every u ¼ ðuiÞi[N [ Q; h [ Ap

Aðu; hÞ ¼
Y
i[N

Aiðui; hÞ;

Aðu; hÞ ¼ B if and only if for all i [ N; Aiðui; hÞ ¼ B:

We endow Ap and the set of outcomes Z # Q £ Ap with the following metrics dAp and

dZ : Recall that Qi and Ai are subsets of Rmi and Rni ; respectively (i [ N). Let dk be the

Euclidean metric in R k and m ¼ Si[N mi; n ¼ Si[N ni: Denote by lðhÞ the length of a

history (lðhÞ ¼ 1 if h is an infinite history) and let a t(h) be the action profile at position

t in history h ðt # lðhÞÞ: If lðhÞ # lðh0Þ; then

dAp ðh; h0Þ ¼ S
lðhÞ

t¼1
ð1=2Þtdnða

tðhÞ;atðh0ÞÞ þ S
lðh0Þ

t¼lðhÞþ1
ð1=2Þt

(the second summation is zero if lðhÞ ¼ lðh0ÞÞ

dZððu; hÞ; ðu
0
; h0ÞÞ ¼ dmðu; u

0Þ þ dApðh; h0Þ:

dAp is the natural metric for games with discounting. It can be checked that ðAp; dApÞ and

ðZ; dZÞ are complete, separable, metric spaces.

The sets of strategies and strategy-type pairs are endowed with the ‘discounted’ sup-

metrics dSi
; dSi

and dSj
ði [ N;B – J # N;SJ ¼

Q
i[J SiÞ :

dSi
ðsi; s

0
iÞ ¼ S

1

t¼0
ð1=2Þt sup

h:lðhÞ¼t

dni
ðsiðhÞ; s

0
iðhÞÞ

 !
;

dSi
ððui; siÞ; ðu

0
i; s

0
iÞÞ ¼ dmi

ðui; u
0
iÞ þ dSi

ðsi; s
0
iÞ;

dSJ
ðsJ ;s

0
JÞ ¼ S

i[J
dSi

ðsi;s
0
iÞ:

A.2. Proofs

Proof of Lemma 2.1. Let Si(h) be the set of strategies consistent with history h. Clearly

Si(h) is closed. Since

S
i
ðhÞ ¼ {ðui; siÞ : si [ SiðuiÞ> SiðhÞ};

we only have to show that Si(ui) is upper-hemicontinuous in ui. Suppose that ðuk
i ; s

k
i Þ!

ðui; siÞ and sk
i [ Siðu

k
i Þ for all k. Then for all h0 [ H; sk

i ðh
0Þ! siðh

0Þ and sk
i ðhÞ [ Aiðu

k
i ; h

0Þ

for all k. Since Hpð·Þ is continuous, each Aið·; h
0Þ ðh0 [ HÞ is also continuous. Therefore

for all h0 [ H; siðh
0Þ [ Aiðui; h

0Þ and si [ SiðuiÞ: A
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Proof of Lemma 2.4. For each history ht of length t, ht [ HðuiÞ; define

riðui;m
i
; htÞ ¼ arg sup

si[Siðui;h
tÞ

Uiðui; si;m
ið·lS2iðh

tÞÞ:

It follows from the assumptions on Ui that the expectation Emi ½Uiðui; si; ~s2iÞlS2iðh
tÞ	 is

well defined and upper-semicontinuous in si. Thus, by compactness of Si(ui), ri(ui,m
i,h t) is

a non-empty and compact set. Construct the following decreasing sequence of compact

subsets of Si(ui):

† R0 ¼ riðui;m
i;fÞ – B:

† Pick s0
i [ R0 and let

R1 ¼ R0 >
\

h1[Hðui ;s
0
i
Þ

riðui;m
i
; h1Þ

0
@

1
A:

Clearly R 1 is a compact subset of R 0. By dynamic consistency of expected utility

maximization R 1 is non-empty.

† Assume that ðR0;…;Rt21Þ has been defined and is a decreasing (nested) sequence of

non-empty compact subsets. Pick st21
i [ Rt21 and let

Rt ¼
\t21

k¼0

Rk

 !
>

\
ht[Hðui;s

t21
i

Þ

riðui;m
i
; htÞ

0
@

1
A:

Then again R t is a compact subset of Rt21 and by dynamic consistency of expected utility

maximization R t is non-empty.

Therefore we can construct a decreasing sequence ðRtÞ1t¼0 of non-empty and compact

subsets. By the finite intersection property, the infinite intersection is non-empty; by

construction, it is a subset of the set of sequentially rational strategies for type ui given

CPS mi:

B –
\1
t¼0

Rt # riðui;m
iÞ:

A

Proof of Lemma 3.4. In a simple game Q and A are compact and either A is finite (case

(a)) or H is finite (case (b)). If A is finite, S is a totally bounded, complete metric space.

Therefore S is compact. If H is finite, S is topologically equivalent to a compact subset of

a Euclidean space. In both cases S # Q £ S is compact. By Lemma 2.1 each S(h) is

closed, hence compact.

We consider the rest of the proof for case (b) (A compact, finite horizon, finite sets

of feasible actions through the second-to-last stage). The proof for case (a) is similar.

Since Si(h) is the graph of the correspondence Si(·,h), this correspondence is
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non-empty-compact-valued and upper-hemicontinuous. Now we show that it is also

lower-hemicontinuous. Fix h [ H and suppose that uk
i ! ui and si [ Siðui; hÞ: By

Assumption 0, each Ai(·,h
0), ðh0 [ HÞ is continuous, hence lower-hemicontinuous.

Therefore we can find a sequence of actions ðak
i;h0 Þ

1
k¼1 such that ak

i;h0 ! siðh
0Þ and ak

i;h0 [
Aiðu

k
i ; h

0Þ: Let sk
i ðh

0Þ ¼ ak
i;h0 for all h0 [ H: By construction sk

i [ SiðuiÞ and ðsk
i Þ

1
k¼1

converges pointwise to si. Since H is finite sk
i ! si: If h0 – h is a prefix of h, then by

assumption all Aiðu
k
i ; h

0Þ and Aiðui; h
0Þ are finite. Thus, by continuity of Aið·; h

0Þ;

Aiðu
k
i ; h

0Þ ¼ Aiðui; h
0Þ and sk

i ðh
0Þ ¼ siðh

0Þ for k large. This implies that sk
i [ Siðu

k
i ; hÞ:

Therefore Si(·,h) is lower-hemicontinuous.

The outcome function zp : S!Z is continuous: suppose that ðuk
i ; s

k
i Þi[N converges to

ðui; siÞi[N ; then for k large s k and s induce the same action profile through the second-to-

last stage and in the last stage the action profile induced by s k converges to the action

profile induced by s. Therefore the strategic payoff functions Ui ¼ ui+z
p are also

continuous and (by compactness of S) bounded.

Since Si(·,h) is non-empty-compact-valued and continuous and Ui is continuous and

bounded, the conditional expected payoff Ui ðui; si;m
ið·lS2iðhÞÞ is always well-defined and

continuous in ðui; si;m
iÞ and the correspondence

riðui;m
i
; hÞ ¼ arg max

si[Siðui ;hÞ
Uiðui; si;m

ið·lS2iðhÞÞ

is nonempty-valued (for h [ HðuiÞ) and upper-hemicontinuous in ðui;m
iÞ: We have

shown above that ri(ui,m
i) is non-empty (Lemma 2.4). We show that ri(·,·) is upper-

hemicontinuous. Suppose that ðuk
i ;m

i;k; sk
i Þ! ðui;m

i; siÞ and, for all k, sk
i [ riðu

k
i ;m

i;kÞ:

Since the game is simple, for k large sk
i and si prescribe the same action through the

second-to-last stage, which implies that Hðuk
i ; s

k
i Þ ¼ Hðui; siÞ: This and upper-

hemicontinuity of each correspondence rið·; ·; hÞðh [ HÞ imply that, for each history h [
Hðui; siÞ; si [ riðui;m

i; hÞ: Therefore si [ riðui;m
iÞ: A

The following result summarizes Propositions 3.5 and 3.6.

Proposition 8.1. Suppose that D and D0 are regular, S is compact, ri(·,·) is nonempty-

valued and upper-hemicontinuous and Di # ðDiÞ0 for every player i. Then for every player

i and all k ¼ 0; 1;…;1

(a) the sets Wiðk;DÞ and Siðk;DÞ of weakly and strongly ðk;DÞ-rationalizable profiles are

nonempty and compact with projQi
Wiðk;DÞ ¼ projQi

Siðk;DÞ ¼ Qi; the sets

Li
DðWiðk;DÞÞ and F i(k,D) are non-empty and compact as well;

(b) Siðk;DÞ # Wiðk;DÞ;

(c) Wiðk;DÞ # Wiðk;D
0Þ;

(d) W1ð1;DÞ £ W2ð1;DÞ is the largest measurable subset F1 £ F2 # S such that

F1 £ F2 # r1ðL
1
DðF2ÞÞ £ r2ðL

2
DðF1ÞÞ:
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Furthermore,

W1ð1;DÞ £ W2ð1;DÞ ¼ r1ðL
1
DðW2ð1;DÞÞÞ £ r2ðL

2
DðW1ð1;DÞÞÞ:

Proof. First note that compactness of S and regularity of D imply that each set D i is

compact as well. Then observe that for every measurable subset B – E2i # S2i such that

projQ2i
E2i ¼ Q2i the following holds:

B – {mi [ DBiðS2iÞ : ;h [ H;E2i > S2iðhÞ – B ) miðE2ilS2iðhÞÞ ¼ 1} > Di

# {mi [ DBiðS2iÞ : m
iðE2ilS2iÞ ¼ 1} > Di ¼ Li

DðE2iÞ;

non-emptiness follows from measurability and the fact that, since projQ2i
E2i ¼ Q2i and

D is regular, we are taking the intersection of non-empty sets characterized by logically

independent properties. The inclusion holds because S2iðfÞ ¼ S2i and E2i > S2iðfÞ –
B: The last equality is true by definition. Finally note that (a), (b) and (c) are true by

definition for k ¼ 0. Assume that (a), (b) and (c) hold for all k ¼ 0,…,n.

(a, n þ 1) By the inductive hypothesis, the argument above implies the sets of weakly and

strongly (n,D)-rationalizable beliefs Li
DðW2iðn;DÞÞ and

Fiðn;DÞ ¼
\n
k¼0

{mi [ Di : ;h [ H;S2iðhÞ> S2iðk;DÞ – B

) miðS2iðk;DÞlS2iðhÞÞ ¼ 1}

are non-empty and compact.

Since rið·; ·Þ is a non-empty-valued, upper-hemicontinuous and Qi is closed, each set

riðm
iÞ ¼ <ui[Qi

{ui} £ riðui;m
iÞ is non-empty and closed and correspondence ri(·) is

upper-hemicontinuous. Therefore the sets of weakly and strongly (n þ 1,D)-rationalizable

pairs

riðL
i
DðW2iðn;DÞÞÞ

and

Siðn þ 1;DÞ ¼ riðF
iðn;DÞÞ

are non-empty and compact. Furthermore, non-emptiness of ri(·,·) implies that their

projections on Qi coincide with Qi. This proves that (a) holds for all non-negative integers

k. Clearly, compactness and the projection property hold also for k ¼ 1. Since the

sequences of weakly and strongly (k,D)-rationalizable sets are nested, non-emptiness of

Wið1;DÞ ¼
\
k$0

Wiðk;DÞ

and

Sið1;DÞ ¼
\
k$0

Siðk;DÞ

follows from the finite intersection property of compact sets.
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(b, n þ 1) By the inductive hypothesis S2iðn;DÞ # W2iðn;DÞ and both sets are measurable

and non-empty. Therefore

Li
DðS2iðk;DÞÞ # Li

DðW2iðk;DÞÞ

and

Fiðk;DÞ# {mi [Di :;h [H;S2iðhÞ>S2iðn;DÞ –B)miðS2iðn;DÞlS2iðhÞÞ ¼ 1}

#Li
DðS2iðk;DÞÞ:

Thus we obtain

Siðnþ 1;DÞ ¼ riðF
iðn;DÞÞ# riðL

i
DðS2iðn;DÞÞÞ# riðL

i
DðW2iðn;DÞÞÞ

¼ Wiðnþ 1;DÞ:

Clearly the inclusion holds in the limit as k ! 1.

(c, n þ 1) By the inductive hypothesis and part (a) W2iðn;DÞ # W2iðn;D
0Þ and both sets

are measurable. By monotonicity of operator ri+D
i
D we obtain

Wiðn þ 1;DÞ ¼ riðL
i
DðW2iðn;DÞÞÞ # riðL

i
DðW2iðn;D

0ÞÞÞ # riðL
i
D0 ðW2iðn;D

0ÞÞÞ

¼ Wiðn þ 1;D0Þ:

(d) (The following argument is a simple generalization of the proof of Proposition 3.1 in

Bernheim (1984).) We first show that W1ð1;DÞ £ W2ð1;DÞ contains every F1 £ F2 with

the ‘best-reply property’ (Pearce, 1984). Then we show that also W1ð1;DÞ £ W2ð1;DÞ has

the ‘best reply property’ and hence must be a ‘fixed set.’

By definition F1 £ F2 # W1ð0;DÞ £ W2ð0;DÞ: Suppose that F1 £ F2 # W1ðk;DÞ £

W2ðk;DÞ: By part (a) each set Wiðk;DÞ is measurable. Thus, monotonicity of the operator

pi+LDið·Þ on the Borel sigma algebra of S2i ði ¼ 1; 2Þ implies

F1 £ F2 # r1ðL
1
DðF2ÞÞ £ r2ðL

2
DðF1ÞÞ # r1ðL

1
DðW2ðk;DÞÞÞ £ r2ðL

2
DðW1ðk;DÞÞÞ

¼ W1ðk þ 1;DÞ £ W2ðk þ 1;DÞ:

Clearly the inclusion holds in the limit as k !1:

Now we show that W1ð1;DÞ £ W2ð1;DÞ has the ‘best-reply property’ and is a ‘fixed set.’

By part (a) Wiðk;DÞ is measurable for all k ¼ 0; 1;…;1: Thus monotonicity of pi+L
i
D and

W2ið1;DÞ # W2iðk;DÞðk ¼ 0; 1;…Þ yield

ri+L
i
DðW2ið1;DÞÞ #

\
k$0

ri+L
i
DðW2iðk;DÞÞ ¼

\
k$0

Wiðk þ 1;DÞ ¼ Wið1;DÞ:

Therefore

r1ðL
1
DðW2ð1;DÞÞÞ £ r2ðL

2
DðW1ð1;DÞÞÞ # W1ð1;DÞ £ W2ð1;DÞ:

Now suppose that si [ Wið1;DÞ: Then there exists a sequence of CPSs ðmi;kÞ1k¼0 such that

for all k;mi;k [ Di;mi;kðW2iðk;DÞlS2iÞ ¼ 1 and si [ riðm
i;kÞ: Since DBi ðS2iÞ is compact,

we may assume w.l.o.g. that mi;k ! mi: Since Di is closed, mi [ Di: Furthermore, it must be
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the case that miðW2iðk;DÞlS2iÞ ¼ 1 for all k (otherwise, mi;k could not converge to mi) and

thus (by continuity of the measure mið·; lS2iÞÞ m
iðW2ið1;DÞlS2iÞ ¼ 1: Since ri is upper-

hemicontinuous, si [ riðm
iÞ: This shows that W1ð1;DÞ £ W2ð1;DÞ has the ‘best reply

property’

W1ð1;DÞ £ W2ð1;DÞ # r1ðL
1
DðW2ð1;DÞÞÞ £ r2ðL

2
DðW1ð1;DÞÞÞ:

Hence W1ð1;DÞ £ W2ð1;DÞ is a ‘fixed set.’ A

Remark 2. The the proof of part (b) uses only the fact that the sets of weakly and strongly

ðk;DÞ-rationalizable profiles are measurable and nonempty. The proof of part (c) relies

only on measurability of the sets of weakly ðk;DÞ-rationalizable profiles.

Proof of Proposition 3.8. By Proposition 8.1 (b) we only have to consider the relationship

between weak rationalizability and dominance. Take an arbitrary finite game. If ðui; siÞ [
riðm

iÞ; then si is a best reply to the (prior) belief mið·lS2iÞ for type ui: This implies that si

cannot be strictly dominated for type ui: Thus for every rectangular subset B # S

r1ðL
1ðB2ÞÞ £ r2ðL

2ðB1ÞÞ # SðBÞ:

(a) If the game is static, then it is also true that

SðBÞ # r1ðL
1ðB2ÞÞ £ r2ðL

2ðB1ÞÞ

(the proof can be easily adapted from Pearce, 1984, Lemma 3) and a standard inductive

argument proves (a).

(b) If we assume that the game has no relevant ties, then Wð1Þ # WpðsÞ (the proof can be

adapted from Battigalli (1997, Lemma 3). Thus Wð1Þ # SðSÞ>WpðSÞ ¼ SWpðSÞ:

Suppose that

WðnÞ # SWn
pðSÞ:

Then

Wðnþ1Þ ¼ r1ðL
1ðW2ðnÞÞÞ£r2ðL

2ðW1ðnÞÞÞ#SðSWn
pðSÞÞ>WpðSÞ ¼SWnþ1

p ðSÞ:

This proves statement (b).

(c) In every perfect information game with private values, WpðSÞ ¼ WðSÞ (Battigalli,

1997, Lemma 4, shows this result for games with perfect and complete information, the

proof can be easily adapted to cover the present more general case). Thus, if the game has

no relevant tie, part (b) implies WðkÞ # SWkðSÞ for all k.38 Suppose that

WðnÞ # SWnðSÞ

and let ðu1; s1; u2; s2Þ [ SWnþ1ðSÞ: By the induction hypothesis and the definition of

operator SW; ðu1; s1; u2; s2Þ [ SðSn
fÞ> WðSÞ # Sn

f : Thus for each i, there are n0; n00 [
DðSjÞ such that n0ðW2iðnÞÞ ¼ 1; n00 is strictly positive and si is a best response to n0 and n00

38 Ben Porath (1997, Lemma 2.1) independently proved that, in generic games with perfect (and complete)

information, Wð1Þ , WðSÞ:
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for type ui (Pearce (1984, Lemmas 3 and 4)). Construct mi [ ½DðSÞ	Bi as follows: for all

h [ H;B2i # S2iðhÞ;

miðB2ilS2iðhÞÞ ¼
nðB2iÞ

vðS2iðhÞÞ
;

where v ¼ v0; if v0ðSjðhÞÞ . 0; and v ¼ v00 otherwise. It can be checked that mi is indeed a

CPS ðmi [ DBiðS2iÞÞ;m
iðW2iðnÞlS2iÞ ¼ 1 and ðui; siÞ [ riðm

iÞ: Thus ðui; siÞ [ WiðnÞ: A

Proof of Proposition 3.9. Fix a connected product subset B ¼
Q

i[N Bi # S and a player i.

First note that under the stated assumptions rið·; ·Þ is a continuous function. Therefore, for

each ui; the image of B2i through riðui; ·Þ is a closed connected subset of Ai # R; hence it is

a compact interval, say riðui;B2iÞ ¼ ½
�
bi; �bi	: Clearly, no action in ½

�
bi; �bi	 is strictly

dominated for type ui on B2i: Now we show that every action outside ½
�
bi; �bi	 is strictly

dominated on B2i for type ui:

Suppose that ai . �bi and fix ðu2i; a2iÞ [ B2i arbitrarily. By assumption

uiðui; u2i; riðui; u2i; a2iÞ; a2iÞ . uiðui; u2i; ai; a2iÞ:

Since ui is strictly quasi-concave and �bi ¼ airiðui; u2i; a2iÞ þ ð1 2 aiÞai for some

ai [ ð0; 1	; then

uiðui; u2i; �bi; a2iÞ . uiðui; u2i; ai; a2iÞ:

Therefore �bi strictly dominates ai for type ui on B2i: A similar argument shows that every

action ai ,
�
bi is strictly dominated on B2i by

�
bi (for type ui). This proves that

SðBÞ ¼
Y
i[N

riðB2iÞ:

Furthermore, each subset riðB2iÞ is the graph of the correspondence ui 7! riðui;B2iÞ;

which—by continuity of ri—is upper-hemicontinuous with connected values. Since Qi is

connected, also the graph riðB2iÞ must be connected. Hence SðBÞ is connected.

The second claim of the proposition follows by induction. First recall that

SðkÞ ¼ WðkÞ ¼
Q

i[N riðL
iðS2iðk 2 1ÞÞÞ:39 Then note that by definition, for every

product subset B # S;
Q

i[N riðB2iÞ #
Q

i riðL
iðB2iÞÞ # SðBÞ: By assumption S ¼

Sð0Þ ¼ Wð0Þ is a connected product set. Therefore the previous result impliesY
i[N

riðS2ið0ÞÞ ¼ Sð1Þ ¼ WðlÞ ¼ SðSÞ:

and SðSÞ is connected. Assume by way of induction thatY
i[N

riðS2iðkÞÞ ¼ SðkÞ ¼ Wðk þ 1Þ ¼ SkðSÞ

39 SðkÞ ¼ WðkÞ because the game is static and hence weak and strong rationalizability coincide.
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and SkðSÞ is connected. Then the previous result implies thatY
i[N

riðS2iðk þ 1ÞÞ ¼ Sðk þ 1Þ ¼ Wðk þ 1Þ ¼ SðSkðSÞÞ ¼ Skþ1ðSÞ

and Skþ1ðSÞ is connected. A
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