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Summary

We use a universal, extensive form interactive beliefs system to
provide an epistemic characterization of a weak and a strong
notion of rationalizability with independent beliefs. The weak
solution concept is equivalent to backward induction in generic
perfect information games where no player moves more than once
in any play. The strong solution concept is related to explicability
(Reny, 1992) and is outcome-equivalent to backward induction in
generic games of perfect information.  1999 Academic Press
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1. Introduction

Extensive-form rationalizability (Pearce, 1984; Battigalli, 1996,
1997) attempts to capture the implications of rationality and
common certainty of rationality in extensive games. It incorporates
a powerful, yet quite natural notion of forward induction, known
as the best rationalization principle: the idea that, when faced
with unexpected events, players attempt to explain (‘‘rationalize’’)
what has transpired in a manner which is consistent with
the highest possible degree of strategic sophistication of their
opponents.

Battigalli and Siniscalchi (1997) formalize the best rational-
ization principle in the framework of the extensive-form epistemic
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model developed in Battigalli and Siniscalchi (1998), and show that,
together with the assumption that players choose (weakly) sequen-
tially rational strategies, it completely characterizes extensive-
form rationalizability.

In their setup, a player’s beliefs about her opponents’s strategies
and epistemic types are represented by conditional probability sys-
tems (see Rênyi, 1956; Myerson, 1986). For games with more than
two players, Battigalli and Siniscalchi (1997) allow conditional
beliefs about the opponents to exhibit correlation. Consequently,
the solution concept they characterize is more accurately referred
to as ‘‘correlated extensive-form rationalizability’’.

This paper focuses on the interplay between independence and
rationalizability in extensive games. First, we propose a notion of
epistemic independence, and show that (i) rationality, (ii) epistemic
independence and (iii) common certainty of rationality and
epistemic independence at the beginning of the game, completely
characterize weak rationalizability, a refinement of a solution
concept studied by Ben Porath (1997).†

Second, we formalize a notion of independent best rationalization
and show that, along with epistemic independence and rationality,
it completely characterizes strong rationalizability, a solution
concept first proposed by Battigalli (1996). Interestingly enough,
the algorithmic definition of strong rationalizability was motivated
by examples in which Pearce’s original procedure failed to capture
certain ‘‘intuitive’’ implications of the independence assumption.
Strong rationalizability is also related to Reny’s explicability (see
Reny, 1992).

Our notion of epistemic independence, which we adapt from
Battigalli (1996), formalizes the idea that players should only
revise their beliefs about a particular opponent when they receive
information about him or her. Care must be taken in defining
the relevant product structure on the state space: Subsection 4.1
discusses the details and the relationship with other notions of
independence.

In order to obtain a sound notion of extensive form rational-
izability with independent beliefs, epistemic independence has to
be combined with a modified version of the best rationalization
principle. In fact, Battigalli and Siniscalchi (1997) characterize
a ‘‘collective’’ version of this principle which requires a player’s
revised beliefs to be consistent with the highest degree of strategic
sophistication which can be jointly attributed to all opponents. It
only prescribes a common lower bound on strategic sophistication;
if an unexpected occurrence proves that some opponents are char-
acterized by only ‘‘average’’ strategic sophistication, but does not
falsify the assumption that the remaining opponents are ‘‘highly’’

† Ben Porath (1997) allows for correlated beliefs.
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sophisticated, the observer is assumed to attribute at least an
‘‘average’’ degree of sophistication to all opponents (as opposed to
e.g. ‘‘low’’ sophistication), but is not required to differentiate among
the two groups. In particular, ‘‘hard’’ information concerning the
first group of opponents only may be taken to signal that the
remaining players, too, are only endowed with ‘‘average’’ strategic
sophistication.

But if players’ beliefs about their opponents satisfy the epistemic
independence property, it is more natural to assume that, when
they rationalize observed behavior, players process information
about each one of their opponents separately. Thus, independent
best rationalization naturally complements epistemic indepen-
dence.

The axioms we propose may be informally stated as follows. As
in Battigalli and Siniscalchi (1997), for any event E, we say that
a player strongly believes that E if she is certain that E is true
conditional on any information set which is not inconsistent with E.
(0S) For every player i,

(0S.i) Player i is (weakly) sequentially rational and has
independent conjectures;

(1S) For every player i,
(1S.i) For every opponent j 6D i, player i strongly believes that

(0S.j); . . .
(kS) For every player i,

(kS.i) For every opponent j 6D i, player i strongly believes that
(0S.j) & (1S.j) & . . . & ((k� 1)S.j); . . .

We remark that our formal notion of ‘‘strong belief’’ is slightly
different from the one appearing in Battigalli and Siniscalchi
(1997), although the basic intuition is the same. Also, our axioms
are necessarily ‘‘richer’’ than those proposed in the aforementioned
paper. Consequently, our epistemic model (developed in Section 3)
must also be richer; specifically, we must allow players to form
conjectures conditional on a wider class of hypotheses.

Analogously to Battigalli and Siniscalchi (1997), our results may
also be related to backward induction. For generic perfect infor-
mation games in which each player never moves twice in any
realization path, weak rationalizability selects the (unique) back-
ward induction strategy profile. Similarly, for arbitrary games with
perfect information and generic payoffs, strong rationalizability
is outcome-equivalent to backward induction.† Therefore, our
characterization results provide alternative sufficient epistemic
conditions for the backward induction outcome.

† This does not follow from results in Battigalli and Siniscalchi (1997), because,
strictly speaking, strong rationalizability is not ‘‘stronger’’ than correlated
rationalizability—only ‘‘different’’. See Battigalli (1996) for additional discussion.
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This paper builds on Battigalli and Siniscalchi (1997, 1998). Our
extensive form epistemic model can be regarded as a generalization
of the model used by Ben Porath (1997) to characterize common
certainty of rationality at the beginning of a perfect information
game. Stalnaker (1996a,b) considers a related normal form model,
which can also be used to analyze extensive form reasoning. Unlike
our epistemic model, those of Ben Porath and Stalnaker are not
universal (for more on this comparison see Battigalli & Siniscalchi,
1997, 1998). Stalnaker (1996b) puts forward a notion of ‘‘robust
belief’’ which corresponds to ‘‘strong belief’’ as defined in Battigalli
and Siniscalchi (1997) and briefly discusses the relation between
robust belief in rationality and forward induction. Also, he proposes
a notion of ‘‘epistemic independence’’ which is closely related to the
one developed in Battigalli (1996). Aumann (1995, 1996, 1998) and
Samet (1996) use different epistemic models and provide a different
set of sufficient conditions for the backward induction outcome.
Their results involving the notion of common knowledge rather
than common certainty, (see Fagin et al., 1995; Dekel & Gul, 1997)
do not deal with strategic independence, and do not contain explicit
assumptions concerning how players update their beliefs when
they face unexpected evidence (although Samet comes somewhat
closer to this with his notion of ‘‘hypothetical knowledge’’). Finally,
in the context of a partitional model, Asheim and Dufwemberg
(1996) formalize the notion of ‘‘common certainty of admissibility’’
and thereby characterize an iterated deletion procedure which
captures certain aspects of forward induction.

This paper is organized as follows. Section 2 discusses two exam-
ples which motivate our axiom systems and the solution concepts
they characterize. Section 3 introduces the epistemic model. Weak
and strong rationalizability, as well as the axioms which character-
ize them, are defined in Section 4, which contains the main results.
Comments on explicability and results concerning backward induc-
tion are collected in Section 5. All proofs are in the Appendix.

2. Motivating examples

As was anticipated in the introduction, the assumption that players
choose their strategies independently suggests two related but
distinct assumptions for extensive-game analysis.

The first pertains to players’ beliefs in the course of the game.
Quite naturally, in light of the assumption of causal independence
between the strategies of different players, it seems interesting to
explore the further assumption that players’ conjectures exhibit
some form of epistemic (or stochastic) independence. We would like
to consider a restriction that in games of perfect information (like
the examples below) has the following flavor: a player will not revise
her beliefs about an opponent until she observes an action taken
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by that particular opponent. Observations about other opponents’
choices should be irrelevant.†

Subsection 4.1 introduces the formal and general notion of
(epistemic) independence we adopt in this paper; the following
example illustrates the basic intuition.

1 A 2 t 3 a
0,2,0

D b d

1,0,0 0,1,0 0,0,1

Notice that ‘‘D’’ is strictly dominant for player 1; also, ‘‘d’’ is
conditionally strictly dominant for player 3. Hence, if player 2 is
certain (at the beginning of the game) that 1 and 3 are sequentially
rational, he should expect them to choose ‘‘D’’ and ‘‘d’’, respectively.

But what if player 2’s node is actually reached? Player 2 cannot
continue to believe that player 1 is rational: he has just received
evidence to the contrary. If player 2 entertains the hypothesis that
players 1 and 3 might be coordinating their strategies (e.g. if he
believes that player 3 is really an ‘‘agent’’ of player 1) then he might
be justified in expecting player 3 to choose ‘‘a’’ at the last node.
Hence, in the absence of any independence assumption, we can
justify player 2’s choice of ‘‘t’’. Correlated EFR captures precisely
this type of reasoning.

Once we require that players’ beliefs be stochastically indepen-
dent, predictions are narrowed down to a single strategy profile:
player 2, upon observing 1’s choice of ‘‘A’’, is not allowed to revise
his initial beliefs about player 3. Thus, expecting ‘‘d’’ at the last
node, he does well to choose ‘‘b’’.

Notice that, in order to reach this conclusion, we only need to
assume that players are sequentially rational, have independent
conjectures and are certain that this is the case at the beginning
of the game: this is of course the type of restrictions characterizing
weak rationalizability.

A slightly more complicated example illustrates the interac-
tion between epistemic independence and the best rationalization
principle.

1 A′2 23 3a′ A″a′
0,2,0

D′ D″d′ d″

1,0,0 0,−1,0 0,0,1 0,1,0 0,0,2

S

C

† As Stalnaker (1996b) forcefully argues, causal independence does not entail
epistemic independence.
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It will be convenient to briefly describe the axioms proposed by
Battigalli and Siniscalchi (1997) for comparison purposes. Let .0/ D
‘‘Every player is (weakly) sequentially rational’’; then, for k > 0, let
.k/ D ‘‘Every player strongly believes that .0/&.1/& . . .&.k� 1/’’.
We may also consider a solution concept which is somehow halfway
between extensive-form rationalizability and strong rationalizabil-
ity; for this hybrid concept, (0I) D .0S/ D ‘‘Every player is (weakly)
sequentially rational and has epistemically independent beliefs’’
and, for k > 0, (kI) is defined analogously to (k).† Finally, weak
rationalizability is characterized by the axioms (0W) D (0S), and
for k > 0, .kW/ D ‘‘Everybody is certain that (.k� 1/W) at the
beginning of the game’’.

Let us now proceed with the analysis of the game. Observe first
that player 1, if rational, will never play ‘‘C’’; similarly, choosing
‘‘d0’’ is conditionally strictly dominated for player 2, and player 3
would choose ‘‘D00’’ after ‘‘A0’’. Any remaining strategy of players 2
and 3 may be justified by some independent system of conditional
beliefs over the strategy profiles of the respective opponents.

Hence, axioms (0) and (0W) D (0I) D (0S) identify the same set
of strategy profiles. It is easy to see that, if we add axiom (1) to
axiom (0), we do not obtain any further restrictions: as soon as
player 2’s first node is reached, the assumption that every player
is rational is clearly falsified, so players 2 and 3 may update
their beliefs arbitrarily. Hence, any rational strategy for these
players survives the second (and therefore any successive) round
of inductive reasoning.

Let us consider adding axiom (1W) to (0W) D (0I) D (0S). Player 2
assigns probability zero to player 3’s irrational strategy ‘‘A0A00’’ at
the beginning of the game and epistemic independence implies
that he continues to do so at his first node. However, the axioms
do not pin down the conditional probability assigned by player 2 to
‘‘A0A00’’ at his second node.

Specifically, suppose that player 2 initially was certain that
player 3 would choose ‘‘D0’’. Upon reaching his second node,
player 2 must conclude that his initial conjecture was wrong,
and is therefore forced to form new beliefs. This clearly does not
violate stochastic independence, as new information on player 3
has indeed been obtained. Moreover, since we are imposing
rationality restrictions only on ex-ante beliefs, player 2’s beliefs
at his second node may be arbitrarily specified—which again
allows one to justify any one of his rational strategies. It is easy to
see that all of player 3’s rational strategies may still be justified;
hence, axiom (1W), too, imposes no further restrictions: weak and
correlated rationalizability yield the same solution in this example.

† Recall that axioms (kS) (k D 0, 1, . . .) are stated in the Introduction.
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Next, consider adding axiom (1I) instead of (1W). Again, player 2
assigns probability zero to ‘‘A0A00’’ at his first node. But the key
observation is that, even under this stronger axiom, player 2’s
updated beliefs at his second node are still unrestricted.

Again, suppose that his initial conjecture assigned marginal
probability 1 to player 3’s strategy ‘‘D0’’. This assumption is falsified
at player 2’s second node, so stochastic independence has no bite.
Axiom (1I) requires player 2 to ‘‘strongly believe’’—believe when-
ever possible —that every player is rational and has independent
beliefs. While it is possible for player 2 to continue to believe that
player 3 is rational (and has independent beliefs), he now is certain
that player 1 is not rational. But this means that it is not possible
for player 2 to believe that everybody is rational (and has indepen-
dent beliefs), so in fact axiom (1I) has no bite. Thus, the three sets
of axioms considered above induce the same solution in this game.

The example illustrates that we need to complement the
epistemic independence assumption with an additional restriction
on belief revision. The intuitive notion we would like to capture is
the following: each player separately assesses the degree of strategic
sophistication of every one of her opponents. By contrast, correlated
rationalizability reflects the assumption that players assess the
joint degree of strategic sophistication of their opponents, viewed
as a group; more specifically, players attribute to each one of their
opponents (at least) the degree of strategic sophistication of the
‘‘least sophisticated’’ among them.

In the current example, axiom (1S.2) restricts player 2’s beliefs
at his second node: he must necessarily expect player 3 to follow
‘‘A0’’ with ‘‘D00’’, because ‘‘A0A00’’ is her only strategy which reaches
player 2’s second node and is consistent with axiom (0S.3). This
is true even if axiom (0S.1) clearly cannot hold if the node under
consideration is reached.

It is now easy to see that axiom (2S.3) implies that player 3
will anticipate this, and hence choose ‘‘D0’’ at her first node.
Strong rationalizability thus yields more stringent restrictions
than the other solution concepts considered here (although, in this
particular example, it selects the same outcome).

3. Game-theoretic setup and epistemic model

3.1. EXTENSIVE-FORM GAMES

For simplicity we consider finite extensive games with complete
(but possibly imperfect) information, perfect recall and no chance
moves. We use the following notation:

i 2 N D f1, . . . ,ng, players;
h 2 Hi, information sets for player i;
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si 2 Si, pure strategies for player i;
S D∏n

iD1 Si, S�i D
∏

j 6Di Sj;
Ui : S! R, strategic-form payoff function for player i;
s 2 S.h/, strategy-profiles reaching h 2 ⋃i2IHi;
Hi.si/ D fh 2 Hi : 9s�i 2 S�i such that .si, s�i/ 2 S.h/g collects all
information sets owned by player i which strategy si 2 Si does
not prevent from being reached.

By perfect recall, for each player i and each information set
h 2 Hi, S.h/ D Si.h/ð S�i.h/, where Si.h/ and S�i.h/ are the
projections of S.h/ on Si and S�i respectively.

Our notation is consistent with the possibility that some moves
are simultaneous and that some information sets may be owned by
several players, a possibility which is allowed by some extensive
form representations of dynamic games (e.g. Osborne & Rubinstein,
1994, Ch. 6). For example, in multi-stage games with observable
actions we would have Hi D H for all players i, where H is
the set of partial histories of action profiles. In this particular
case each h 2 H represents a common observation by all the
players.†

3.2. EPISTEMIC MODEL

3.2.1. Conditional probability systems

Consider a collection of Polish (complete, separable, metrizable)
spaces fY1, . . . ,Yng. We interpret yi 2 Yi as an unobservable (and
payoff irrelevant) parameter representing the conditional beliefs
of player i. The Cartesian product

∏n
iD1 Si ð Yi is also Polish (we

endow each Si with the discrete topology and
∏n

iD1 Si ð Yi with
the product topology). Let S D 2Snf;g denote the collection of all
the non-empty subsets of S. Fix a non-empty collection B � S of
‘‘relevant hypotheses’’ about s 2 S. Then we obtain a corresponding
collection,

C.B/ D
{

C �
n∏

iD1

Si ð Yi : 9B 2 B, C D f.si, ti/i2N : .s1, . . . , sn/ 2 Bg
}

of ‘‘relevant hypotheses’’ about .si, yi/i2N 2
∏n

iD1 Si ð Yi. Let A be
the Borel s-algebra on

∏n
iD1 Si ð Yi. Clearly C.B/ ² A. A conditional

probability system (or CPS) on .
∏n

iD1 Si ð Yi,A,B/ is a map,

m.ÐjÐ/ : Að C.B/! [0,1]

† Battigalli and Siniscalchi (1998) analyze multistage games with observed
actions and incomplete information.
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satisfying the following axioms:

AXIOM 1: For all B 2 C.B/, m.ÐjB/ is a probability measure on
.
∏n

iD1 Si ð Yi,A/.
AXIOM 2: For all B 2 C.B/, m.BjB/ D 1.
AXIOM 3: For all A 2 A, B,C 2 C.B/, A ² B ² C) m.AjB/m.BjC/ D

m.AjC/.
The set of probability measures on a measure space .Z,A/ is

denoted by .Z/; the set of conditional probability systems on
.
∏n

iD1 Si ð Yi,A,B/ can be regarded as a subset of [.
∏n

iD1 Si ð Yi/]B
.the set of mappings from B to .

∏n
iD1 SiðYi// and it is denoted by

B.
∏n

iD1 Si ð Yi/. (B.S/ is similarly defined.) Accordingly, we
often write m D .m.ÐjBð Y//B2B 2 B.

∏n
iD1 SiðYi/. The topology on∏n

iD1 Si ð Yi and A, the corresponding Borel s-algebra, are usu-
ally understood and need not be explicit in our notation. Thus
we simply refer to ‘‘conditional probability system (or CPS) on
.
∏n

iD1 Si ð Yi,B/’’. It is also understood that .
∏n

iD1 Si ð Yi/ is
endowed with the topology of weak convergence of measures
and [.

∏n
iD1 Si ð Yi/]B is endowed with the product topology.

Thus .
∏n

iD1 Si ð Yi/ and [.
∏n

iD1 Si ð Yi/]B (by countability of
B) are Polish spaces. Since B.

∏n
iD1 Si ð Yi/ is a closed sub-

set of [.
∏n

iD1 Si ð Yi/]B, also B.
∏n

iD1 Si ð Yi/ is a Polish space
.endowed with the relative topology inherited from [.

∏n
iD1 Si ð

Yi/]B/.

3.2.2. Universal type space

For any measurable product space X ð Y and any probability
measure m 2 .X ð Y/ let mrgXm 2 .X/ denote the marginal of
m on X. A universal type space on .Si,Bi/i2N is given by a tuple
.Ti, gi/i2N whereby, for every player i 2 N, Ti is a Polish space, the
function

gi D .gi,B/B2Bi : Ti ! Bi

(
n∏

iD1

Si ð Ti

)

satisfies

8B 2 Bi,8ti 2 Ti, gi,B.ti/
({
.s0j, t

0
j/j2N : t0i D ti

}) D 1

and the corresponding function gi defined by

ti 7�!
(
mrgS1ðT1ðÐÐÐðSiðÐÐÐðSnðTn

gi,B.ti/
)

B2Bi

is a homeomorphism between Ti and Bi.S1 ð T1 ð Ð Ð Ð ð Si ð Ð Ð Ð ð
Sn ð Tn/. We shall denote the Borel s-algebra on

∏
i2N.Si ð Ti/ by E.
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Universal type spaces of this sort are explicitly constructed and
analyzed by Battigalli and Siniscalchi (1998) to which we refer
for details.† An element ti 2 Ti represents a possible epistemic
type for player i. The equation above is an introspection property
essentially saying that a player knows his own type.

REMARK 1: For all i 2 N, ti 2 Ti, p 2 [0,1], B 2 Bi and measurable
subsets E �∏n

iD1 Si ð Yi, if

gi,B.ti/.E/ ½ p,

then, for all C 2 Bi,

gi,C.ti/
({
.s0j, t

0
j/j2N : gi,B.t0i/.E/ ½ p

}) D 1.

Note that, in general, distinct players may have different
collections of relevant hypotheses. In fact, the most natural
collection for player i is the one representing his information
sets:

BHi D fB � S : 9h 2 Hi,B D S.h/g .
However, in this paper we will assume that players regard any
non-empty subset of S (that is, any event regarding the players’
dispositions to act, but not their epistemic states) as a relevant
conditioning hypothesis: that is, we take Bi D S for all i 2 N.
Of course, this implies that type spaces are (almost entirely)
symmetric.‡

An epistemic type corresponds to an infinite hierarchy of
conditional beliefs. In fact, for every i 2 N and ti 2 Ti, we can
derive the marginal CPS j1

i .ti/ D .mrgSgi,B.ti//B2Bi , that is, the
first order conditional beliefs of type ti. The maps j1

j : Tj ! Bj.S/
(j 2 N) can be used to derive the second order CPS j2

i .ti/ implicit
in ti: for each measurable set A1 �∏j2N Sj ðBj.S/ and relevant
hypothesis B 2 Bi,

j2
i,B.ti/.A1/ D gi,B.ti/

(f.s0j, t0j/ : [s0j,j
1
j .t
0
j/]j2N 2 A1g) ;

then let j2
i .ti/ D .j2

i,B.ti//B2Bi . Similarly, using the maps j1
j and

j2
j : T! Bj.

∏
k2N[Sk ðBk.S/]/ (j 2 N) we can derive the third

† Battigalli and Siniscalchi (1998) consider symmetric type spaces for two-
person dynamic games and do not explicitly represent a player’s conditional
beliefs about his own conditional beliefs, but the appropriate modifications to
their analysis to fit the present framework are straightforward.

‡ Even in this ‘‘almost symmetric’’ case, the sets of types and belief functions of
distinct players are formally different, because they satisfy different introspection
properties.
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order CPS j3.ti/ implicit in type ti: for each measurable set

A2 �
∏
j2N

Sj ðBj.S/ðBj

(∏
k2N

Sk ðBk.S/

)
,

and relevant hypothesis B 2 Bi,

j3
i,B.ti/.A2/ D gi,B.ti/

(f.s0j, t0j/ : [s0j,j
1
j .t
0
j/,j

2.t0j/]j2N 2 A2) ;

then let j3
i .ti/ D .j3

i,B.ti//B2Bi . In general, we can derive an
infinite hierarchy of CPSs ji.ti/ D j1

i .ti/,j2
i .ti/, . . .with an inductive

procedure. Furthermore, for each type ti the corresponding infinite
hierarchy of CPSs ji.ti/ satisfies a natural coherency condition; let
Xk be the space over which .kC 1/-order beliefs are defined (thus,
X0 D S, X1 D∏j2N Sj ðBj.S/, . . .): then, for all k D 1,2, . . ., B 2 Bi,

mrgXk�1jkC1
i,B .ti/ D jk

i,B.ti/.

Since this holds for every type of every player, every type of every
player is certain conditional on every relevant hypothesis that
everybody’s type satisfies the coherency condition, every type of
every player is certain, conditional on every relevant hypothesis,
of the latter fact and so on. The same holds for the introspection
property relative to beliefs of any order.

We call the type space .Ti, gi/i2N universal because it can be
shown that, since each associated function gi is a homeomorphism,
each Ti ‘‘contains’’ every infinite hierarchy of CPSs satisfying
conditional common certainty of coherency and introspection. This
means that focusing on such a type space we are not implicitly
introducing extraneous assumptions about players’ conditional
beliefs of any order. As argued in Battigalli and Siniscalchi
(1997), this is crucial if we are to provide a transparent epistemic
characterization of extensive form solution concepts involving some
form of forward induction.

4. Epistemic independence and rationalizability

In this section we define and characterize a weak and a strong
notion of extensive form rationalizability with independent beliefs.
The weak notion of rationalizability is a refinement of a solution
concept proposed by Ben Porath (1997) to characterize common
certainty of rationality in extensive form games. The strong notion
of rationalizability has been put forward by Battigalli (1996) to
amend a flaw in Pearce’s notion of extensive form rationalizability
(see Pearce, 1994) and is related to an iterative deletion procedure
proposed by Reny (1992) to define explicable equilibrium, a
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refinement of the Nash equilibrium concept. The relationship
between each of these solution concepts and backward induction is
noted below. The notion of independence used here is related to, but
weaker than Kreps and Wilson’s (1982) consistency of assessments
and has been given a decision theoretic axiomatization by Battigalli
and Veronesi (1996). The phrase ‘‘epistemic independence’’ is
borrowed from Stalnaker (1996b) who uses it to indicate a very
similar property.

Recall that we assume here that, for each player i, the collection
of relevant hypotheses coincides with the whole set of non-empty
subsets of S, or—in our notation—Bi D S for all i 2 N. This
simplifies our notation and allows a transparent definition of the
independence property for general games.†

To make our formulation simpler, the following notation will
be convenient. A first order CPS for an arbitrary player i is
typically denoted by di, that is, di 2 S.S/. For every epistemic
type ti 2 Ti and hypothesis B 2 S, di,B.ti/ denotes the marginal of
gi,B.ti/ on S. Clearly, di.t/ � .di,B.t//B2S D j1

i .ti/ is a (complete) first
order CPS on S. For any non-empty group of players J ² N,‡ EJ
denotes the Borel s-algebra on

∏
j2J Sj ð Tj with typical elements

AJ,BJ, . . . . The collection of all non-empty subsets of SJ D
∏

j2J Sj

is denoted SJ D 2SJnf;g and CJ.SJ/ denotes the collection of
‘‘cylinders’’ in EJ with base SJ. For any product space

∏n
iD1 Xi, for

all ; 6D J ² N, AJ �
∏

j2J Xj, BNnJ �
∏

k2NnJ Xk, we abuse notation
slightly and write

AJ ð BJnK D
{
.xi/i2N : .xj/j2J 2 AJ, .xk/k2NnJ 2 BNnJ

}
.

Again with an abuse of notation, we do not distinguish between
singletons and their unique element whenever the meaning is
clear from the context. For any CPS mi 2 S.

∏n
jD1 Sj ð Tj/ and

; 6D J ² N, the marginal of mi on
∏

j2J Sj ð Tj is the function
miJ.ÐjÐ/ : EJ ð CJ.SJ/! [0,1] defined by the following equalities:
for all AJ 2 EJ, BJ 2 CJ.SJ/,

miJ.AJjBJ/ D mi

(
AJ ð

( ∏
k2NnJ

Sk ð Tk

)∖
BJ ð

( ∏
k2NnJ

Sk ð Tk

))
.

It is easily checked that miJ is a CPS on .
∏

j2J Sj ð Tj,SJ/. An
analogous (and simpler) definition holds for the marginal diJ of a
first order CPS di 2 S.S/.

† For games with observable deviators (which include games with observable
actions), we can provide a more natural and parsimonious formulation whereby
each Bi D BHi .

‡ We use the symbol ² to denote strict inclusion.
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4.1. EPISTEMIC INDEPENDENCE

A CPS mi 2 S.
∏n

jD1 Sj ð Tj/ (and the corresponding type ti D
.gi/�1.mi/) satisfies the epistemic independence property if the
marginal conditional beliefs about any group of players J are
unaffected by information exclusively concerning the complemen-
tary group NnJ, that is, for all ; 6D J ² N, AJ 2 EJ, BJ 2 CJ.SJ/,
CNnJ 2 CNnJ.SNnJ/,

mi.AJ ð CNnJjBJ ð CNnJ/ D miJ.AJjBJ/.

An analogous definition holds for first order conditional systems
d 2 S.S/. Let IS.

∏n
jD1 Sj ð Tj/ and IS.S/ be the sets of CPSs

(on .
∏n

jD1 Sj ð Tj,S/ and .S,S/ respectively) satisfying the epis-
temic independence condition. For brevity, we simply call such
conditional systems independent.

REMARK 2: For all i 2 N, ti 2 Ti, if gi.ti/ is independent, then di.ti/
(the first order CPS of ti) is also independent. We show in the
Appendix (see Lemma 2) that a sort of ‘‘converse’’ is also true:
if a given first order CPS di is independent, then there exists an
independent type ti such that di D di.ti/.

4.2. WEAK AND STRONG RATIONALIZABILITY WITH INDEPENDENT
BELIEFS

The basic building block of the following solution concepts is the
notion of weak sequential rationality. This is a best response
property which applies to plans of action† as well as strategies (see
e.g. Reny, 1992). We adopt the specific formalization proposed in
Battigalli and Siniscalchi (1998) (see their Definition 5.1):

DEFINITION 1: Fix a first order CPS υi 2 S(S). A strategy si 2 Si
is a weakly sequential best reply to υi if, for every h 2 Hi(si) and
every s0i 2 Si(h)

(1) υi(fsig ð S�i(h)jS(h)) D 1,
(2)

∑
s�i2S�i

[Ui(si, s�i)�Ui(s0i, s�i)]υi[f(si, s�i)gjS(h)] ½ 0.

We refer the interested reader to Battigalli & Siniscalchi (1998)
for details on the features of this definition. Here we simply point
out that part 1 essentially means that a rational player is certain

† Intuitively, a plan of action for player i is silent about which actions would
be taken by i if i did not follow that plan. Formally, a plan of action is a class of
realization-equivalent strategies. In generic extensive games, a plan of action is
a strategy of the reduced normal form.
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of her strategy (hence of her future contingent choices) as long as
she knows that she has not deviated from it. If di is independent,
as assumed below, then the relevant conditional beliefs about i’s
opponents are given by di,�i (the marginal of di on S�i) and we
require that si be a best response to di,�i.ÐjS�i.h// at each relevant
information set h 2 Hi.si/.

Observe also that, by part 1 of the definition, a weakly sequential
best reply to a first-order belief is unique, if it exists at all. This
makes it possible to define a function ri : S.S/! Si [ f;g assigning
to each di 2 S.S/ the unique weakly sequential best reply si or
the symbol ;, as the case may be. Also, for every epistemic type
ti 2 Ti, we let ri.t/ D ri[di.ti/] denote the ‘‘best reply’’ to the first
order beliefs of type ti.

We are now ready to define the weak and strong rationalizability
procedure.

DEFINITION 2: (cf. Ben Porath, 1997) For every i 2 N, let W0
i D Si.

For every k > 0, i 2 N and si 2 Si, say that si 2 Sk
i if (and only if)

there exists an independent CPS υi 2 IS(S) such that:

(1) si D ri(υi),
(2) υi(

∏
j2N Wk�1

j jS) D 1.

Clearly, WkC1
i � Wk

i for all i and k. A strategy si for player i is
weakly rationalizable if si 2

⋂
k>0 Wk

i .

DEFINITION 3: (cf. Battigalli, 1996) For every i 2 N, let S0
i D Si.

For every k > 0, i 2 N and si 2 Si, say that si 2 Sk
i if there exists an

independent CPS υi 2 IS(S) such that:

(1) si D ri(υi),
(2) For every j 6D i and sj, s0j 2 Sj: if sj 2 Sm

j n Sm0
j , s0j 2 Sm0

j and
k� 1 ½ m0 > m, then υij(s0jjsj, s0j) D 1.

Note that, by condition (2) of Definition 3, SkC1
i � Sk

i for all
i and k. A strategy si for player i is strongly rationalizable if
si 2

⋂
k>0 Sk

i .
Battigalli (1996) shows that the set of strongly rationalizable

strategies is non-empty. The following shows that our terminology
is consistent and implies that the set of weakly rationalizable
strategies is also non-empty.

PROPOSITION 1: Strong rationalizability implies weak rationaliz-
ability, that is, for all i 2 N, k D 1,2, . . ., Sk

i � Wk
i .
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4.3. EPISTEMIC CHARACTERIZATION

In our epistemic model, the set of states of the world is the
product space

∏n
iD1.Si ð Ti/. An event is a measurable subset

E �∏n
iD1.Si ð Ti/.

However, we will often be interested in events which concern a
given player j exclusively. In keeping with our notation, Ej denotes
the Borel s-algebra on Sj ð Tj. For any E 2 Ej, let

[E]j D f.sj, s�j, tj, t�j/ : .sj, tj/ 2 Eg
That is, [E]j is the cylinder in

∏
i2N.Si ð Ti/ with base E � Sj ð Tj.

We shall say that E corresponds to the event [E]j, which concerns
player j only.

Thus the subsets

Rj D
{
.sj, tj/ : sj D rj.tj/

}
and

Ij D
{
.sj, tj/ : gj.tj/ 2 IS

(
n∏

iD1

Si ð Ti

)}
respectively correspond to the events ‘‘player j is rational’’ and
‘‘player j has independent beliefs’’. R D∏n

iD1 Ri and I D∏n
iD1 Ii are

the events ‘‘everyone is rational’’ and ‘‘everyone has independent
beliefs’’.†

4.3.1. Weak rationalizability

We say that an epistemic type tj is certain of event E if the prior
belief of ti assigns probability 1 to E, that is, gj,S.tj/.E/ D 1. Let

bj.E/ D
{
.sj, tj/ : gj,S.tj/.E/ D 1

}
be the subset corresponding to the event ‘‘player j is certain of
E’’; then

b.E/ D
n∏

iD1

bi.E/

is the event ‘‘everybody is certain of E’’. b has all the standard
properties of a common belief operator‡, but of course it does

† Observe that these events could also be written as R D ⋂i2N[Ri]i and
I D ⋂i2N[Ii]i respectively, but the notation used in the text is somewhat more
suggestive.

‡ That is, consistency [b(;) D ;], logical omniscience [b(
∏n

iD1 Si ð Ti) D∏n
iD1 Si ð Ti], conjunctiveness [b(E) \ b(F) ² b(E \ F)] and monotonicity [E �

F) b(E) � b(F)].
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not satisfy the truth axiom: b.E/ � E does not necessarily hold.
Iterations of b are defined in the usual way and denote mutual
certainty of degree k. Let b0.E/ D E by convention. Then for all
k D 1,2 . . .,

bk.E/ D b.bk�1.E//.

Thus, the event ‘‘it is the case that E and there is common certainty
of E’’ is

E \
⋂

k½1

bk.E/

 D ⋂
k½0

bk.E/.

PROPOSITION 2: For all strategy profiles s D (si)i2N 2 S, the follow-
ing statements hold:

(1) For all k D 0,1, . . ., s 2∏n
iD1 WkC1

i if and only if there exists
a profile of epistemic types (ti)i2N such that (si, ti)i2N 2⋂k

mD0 ˇ
m(I \R).

(2) s 2∏n
iD1(

⋂
k½1 Wk

i ) if and only if there is a profile of epistemic
types (ti)i2N such that (si, ti)i2N 2

⋂
k½0 ˇ

k(I \ R).

4.3.2. Strong rationalizability

We now move on to strong rationalizability. The following definition
introduces the first key ingredient in our axiomatization. We
formalize the idea that a player i may formulate a conjecture
about a particular opponent j, and for every hypothesis concerning
j only and consistent with such conjecture she may be unwilling to
revise it.

Recall that Sj D 2Sj n f;g, which we view as the counterpart to Ej
in Sj.

DEFINITION 4: For any pair of players i, j 2 N, type ti 2 Ti and
measurable subset Ej � Sj ð Tj, we say that type ti strongly believes
Ej if for all Bj 2 Sj,

Ej \ (Bj ð Tj) 6D ; ) gi,BjðS�j (ti)([Ej]j) D 1.

Let bŁij.E/ 2 Ei correspond to the event that player i strongly
believes Ej 2 Ej; formally,

bŁij.Ej/ :D{.si, ti/ : 8Bj 2 Sj,Ej \ .BjðTj/ 6D ;)gi,BjðS�j.ti/.[Ej]j/D1
}

The second ingredient in our axiomatization is the independent
best rationalization principle. The idea (which will be made explicit
in Remark 3 below) is that, at each point in the game, players
bestow the highest possible degree of strategic sophistication upon
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each one of their opponents independently. That is, for all i and j
(j 6D i), player i strongly believes that j is rational, and for all i, j
and k (j 6D i, k 6D j), i strongly believes that j strongly believes that
k is rational, etc.

We formalize the best rationalization principle as follows. Given
any collection .Ej/j2N 2 E1 ð E2 ð . . .ð En, for every i 2 N, let

g0
i [.Ej/j2N] D Ei;

then, for l > 0, let

gl
i[.Ej/j2N] D gl�1

i [.Ej/j2N] \
⋂
j 6Di

bŁij
(
gl�1

j [.Ek/k2N]
)

Clearly, gl
i[.Ej/j2N] 2 Ei for every i 2 N (so the above definition

is indeed meaningful). Also, the sets gl
i../ form a monotonically

decreasing sequence.
The following remark further clarifies the nature of our

assumptions. It also justifies the informal statement of the axioms
given in the Introduction.

REMARK 3: For every l ½ 0 and i 2 N,

gl
i..Ej/j2N/ D Ei \

l�1⋂
mD0

⋂
j 6Di

bŁij.g
m
j ..Ek/k2N/.

We can finally state the characterization result:

PROPOSITION 3: For all strategy profiles s D (si)i2N 2 S the follow-
ing statements hold:

(1) For all k D 0,1, . . ., s 2∏n
iD1 SkC1

i if and only if there exists a pro-
file of epistemic types (ti)i2N such that (si, ti)i2N 2

∏n
iD1 


k
i [(Rj \

Ij)j2N].
(2) s 2∏n

iD1(
⋂

k½1 Sk
i ) if and only if there is a profile of epistemic

types (ti)i2N such that (si, ti)i2N 2
∏n

iD1
⋂

k½0 

k
i [(Rj \ Ij)j2N].

5. Relationship with other solution concepts

5.1. EXPLICABILITY

As we have mentioned above, strong rationalizability and explica-
bility (Reny, 1992) are similarly motivated and formally compa-
rable. This is apparent if one compares our Definition 3 with the
iterative procedure defined by Reny (1992, p. 639).
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Analogously to strong rationalizability, Reny’s procedure iden-
tifies a partition of each player’s strategy space whose elements
are ordered according to their degree of strategic sophistication
(or ‘‘explicability’’). A set of ‘‘beliefs’’ (see below) is associated with
each element of the partition; beliefs associated with the set of
‘‘k-th order explicable’’ strategies satisfy a restriction analogous to
condition (2) in Definition 3. Finally, strategies are kC 1-th order
explicable if they are weakly sequential best replies relative to
beliefs consistent with k-th order explicability.

However, explicability and strong rationalizability are not equiv-
alent.

First, Reny models beliefs by means of consistent assessments,
as in Kreps and Wilson (1982). As is well known, this entails
a strong notion of independence—stronger than our epistemic
independence condition. However, for games with observable
deviators this difference disappears (see e.g. Battigalli, 1996 and
references therein).

The second difference is more subtle, but substantive and not
easily circumvented. Given a family of behavioral strategy profiles,
Reny deems a strategy a best reply relative to that family if it
can be rationalized by any element in the convex hull of that
set.

Our setup cannot accommodate such an assumption in a natural
way. Indeed, we are suspicious about its legitimacy.† Note that
Selten (1975) explicitly avoids taking pointwise convex combina-
tions of behavioral strategies by defining a notion of behavioral
strategy mixtures, whereby different behavioral strategies may be
selected before the game begins according to a random mechanism
and conditional probabilities of actions are then derived via Bayes
rule. For example, move probabilities at information sets which
can be reached by only one of the behavioral strategies, among
which the mechanism choises are determined by that strategy
only. It should be clear that defining beliefs as CPS’s on the set
of pure strategy profiles, as we do, allows for behavioral strategy
mixtures.

5.2. BACKWARD INDUCTION

We now turn to the relationship between each of the solution
concepts characterized in the previous section and backward

† Suppose that in a two-person, two-stage game player 1 has only two rational
(pure) plans of action: L followed by L or R followed by R. Clearly, if player 2
strongly believes that player 1 is rational, he should expect in the second stage
the same action observed in the first. But taking pointwise convex combinations of
rational behavioral strategies, one typically obtains non-degenerate expectations
in the second stage.
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induction. In particularly simple games, weak rationalizability
is sufficient to yield the backward induction solution:

PROPOSITION 4: Suppose that the given game has perfect informa-
tion, no player moves more than once in any path and there are no
ties between payoffs at terminal nodes. Then, for all i 2 N, there is
a unique weakly rationalizable strategy si and (si)i2N is the unique
subgame-perfect equilibrium.

Hence, within this class of games, we can provide relatively weak
epistemic conditions for subgame perfection:

COROLLARY 1: Suppose the given game satisfies the assumptions of
Proposition 4. If (si, ti)i2N 2

⋂
k½0 ˇ

k(I \R) then (si)i2N is the unique
subgame-perfect equilibrium.

Next, we consider strong rationalizability in perfect information
games with arbitrary structure; we maintain the assumption that
payoffs are generic. The following result parallels a property of
explicable equilibria (Reny, 1992) and is proved in an entirely
similar fashion.†

However, observe that, as discussed above, explicability and
strong rationalizability entail different assumptions on beliefs
(even in perfect information games), so one cannot simply invoke
Reny’s results.

PROPOSITION 5: Suppose that the given game has perfect informa-
tion and there are no ties between payoffs at terminal nodes. Then
all strategy profiles (si)i2N 2

∏
i2N
⋂

k½0 Sk
i induce the same path,

which coincides with the unique subgame-perfect equilibrium path.

Sufficient epistemic conditions for backward induction may then
be easily given:

COROLLARY 2: Suppose that the given game satisfies the assump-
tions of Proposition 4. If (si, ti)i2N 2

∏
i2N(

⋂
k½0 


k
i ((Rj \ Ij)j2N)), then

the strategy profile (si)i2N induces the same path as the unique
subgame-perfect equilibrium.

We caution the reader that the result only guarantees that the
backward induction outcome will obtain. The supporting beliefs
may well differ from those prescribed by subgame perfection: for
an example, see Battigalli and Siniscalchi (1997), Section 4.2.

† The (rather lengthy) argument is similar to Reny’s proof of Proposition 3 in
Reny (1992). While there are technical differences, the key ideas are essentially
the same. The proof is available from the authors upon request.
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6. Appendix

The following preliminary result is required in the proofs of
Propositions 1 and 3; it may also be of independent interest.

LEMMA 1: Fix an independent CPS υi 2 I(S), a player j 2 N and
a decreasing sequence (Ak

j )K
kD0 of subsets of Sj such that A0

j D Sj
(assume K > 0). The following propositions are equivalent:

(1) For every sj, s0j 2 Sj: if sj 2 Am
j n Am0

j , s0j 2 Am0
j and K ½ m0 > m,

then υij(s0jjfsj, s0jg) D 1.
(2) For every Bj,B0j 2 Sj: if Bj � Am

j n Am0
j , B0j � Am0

j and K ½ m0 > m,
then υij(B0jjBj [ B0j) D 1.

(3) For every Bj � Sj and mD0,1,. . .,K, Am
j \ Bj 6D ;)υij

(Am
j jBj)D1.

PROOF: .2/) .1/ is obvious. For the converse, assume that (1)
holds. Then (2) holds if Bj,B0j are singletons. By induction on
the cardinality of these sets, consider first dij.BjjBj [ B0j [ bj/ with
bj 2 Am

j n Am0
j and bj /2 Bj.† Then, by Bayes’ rule (Axiom 3) and the

inductive hypothesis,

dij.B0jjBj [ bj [ B0j/ D dij.B0jjBj [ B0j/dij.Bj [ B0jjBj [ bj [ B0j/

D dij.Bj [ B0jjBj [ bj [ B0j/

so dij.BjjBj [ bj [ B0j/ D 0 by additivity. Similarly, dij.bjjBj [ bj [
B0j/ D 0, so dij.B0JjBJ [ bj [ B0j/ D 1. Next, if b0j 2 Am0

j and b0j /2 B0j,
by Bayes’ rule and the inductive hypothesis,

dij.B0jjBj [ B0j [ b0j/ D dij.B0jjBj [ B0j/dij.Bj [ B0jjBj [ B0j [ b0j/

D dij.Bj [ B0jjBj [ B0j [ b0j/

so dij.BjjBj [ B0j [ b0j/ D 0 by additivity and dij.B0j [ b0jjBj [ B0j [ b0j/ D
1 as needed.

For .2/) .3/, let Qm D maxfm 2 .0, . . . ,K/ : Bj \ Am
j 6D ;g. Since

the sets Am
j are nested, it is enough to show that dij.Bj \ A Qmj jBj/ D 1.

But this follows immediately from (2) by noting the decomposition

† Recall that we do not distinguish between a singleton and its unique element
whenever the meaning is clear from the context.
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Bj D .Bj \ A Qmj / [ .Bj n A Qmj / and observing that Bj n A Qmj ² Am
j for

some m < Qm.
Finally, to show .3/) .2/, let sj, s0j be as in the statement

of the lemma and define Bj D fsj, s0jg. Then (3) implies that
1 D dij.Am0

j jBj/ D dij.Am0
j \ BjjBj/ D dij.s0jjfsj, s0jg/.

PROOF OF PROPOSITION 1: The statement holds by definition for
k D 0. Assume now that it is true for k D 0,1, . . . ,m. Fix a strategy
si 2 SmC1

i and an independent CPS di satisfying conditions (1)
and (2) of Definition 2. By Lemma 1, we conclude that, for
every j 6D i, 0 � k � m and Bj 2 Sj, Bj \ Sk

j 6D ; ) dij.Sk
j jBj/ D 1.

Since the induction hypothesis implies that Sm
j �Wm

j , and clearly
Sj \ Sm

j 6D ;, we conclude that dij.Wm
j jSj/ ½ dij.Sm

j jSj/ D 1. Since
di satisfies the independence property, di.

∏
j2N Wm

j jS/ D 1: hence
si 2 WmC1

i , as required.

The next ancillary result extends Lemma 5.1 in Battigalli and
Siniscalchi (1997).

LEMMA 2: Fix a player i 2 N and for every opponent j 6D i a function
�j : Sj! Tj. Then for every independent first order CPS υi 2 IS(S)
there is a unique type ti 2 Ti such that gi(ti) 2 IS(

∏n
jD1 Sj ð Tj)

and, for all B 2 S, gi,B(ti) has finite support and satisfies:

8s 2 S, gi,B(ti)((si, ti), (sj, �j(sj))j 6Di) D υi(sjB).

PROOF: The existence and uniqueness of a type ti satisfying the
equalities above (so that di D di.ti/) is proved in the cited source (the
assumption that the associated function gi is a homeomorphism
is crucial). We only have to show that the type satisfies epistemic
independence.

For any J � N and EJ 2 EJ, let ES
J be the subset of SJ

corresponding to EJ given the functions tj (j 2 J), that is,

ES
J D

{
sJ 2 SJ : [sj, tj.sj/]j2J 2 EJ

}
.

Note that, since each function tj only depends on sj, for any pair
of subsets EJ 2 EJ, FNnJ 2 ENnJ, .EJ ð FNnJ/S D ES

J ð FS
J . Now let

ti.si/ � ti and mi D gi.ti/ for notational convenience. Fix ; 6D J ² N,
AJ 2 EJ, BJ 2 CJ.SJ/, CNnJ 2 CNnJ.SNnJ/. Then the relation between
ti and di and independence of di imply

mi.AJ ð CNnJjBJ ð CNnJ/ D di

(
.AJ ð CNnJ/Sj.BJ ð CNnJ/S

)
D

di

(
AS

J ð CS
NnJjBS

J ð CS
NnJ
)
D di

(
AS

J ð SNnJjBS
J ð SNnJ

)
D
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mi

AJ ð
 ∏

k2NnJ
Sk ð Tk

 jBJ ð
 ∏

k2NnJ
Sk ð Tk

 D miJ.AJjBJ/.

Therefore mi is independent.

PROOF OF PROPOSITION 2: (1) We proceed by induction on k. At
each step k, the proof of the ‘‘if’’ part of the statement is relatively
straightforward; for the ‘‘only if’’ part, we show how to construct,
for each si 2WkC1

i , the type corresponding to si mentioned in
the statement. This type is denoted tk

i .si/. For brevity, we write
Wk D∏n

jD1 Wk
j . For every player j 2 N fix an arbitrary function

tj : Sj! Tj.
(1.0) Suppose that .sj, tj/j2N 2 I \ R. Then for each i 2 N, si 2

ri.di.ti// and di.ti/ is independent, because gi.ti/ is independent.
Therefore, s 2 W1.

Fix a player i and a strategy si 2W1
i . By Definition 2 there is a

corresponding CPS d0
i .si/ 2 IS.S/ such that si D ri.d0

i .si//. Given
the functions tj.Ð/ (j 6D i), by Lemma 2 there is a corresponding
type t0

i .si/ such that gi.t0
i .si// is independent, d0

i .si/ D di.t0
i .si// and,

therefore, si D ri.ti/. For si 2 SinW1
i , let t0

i .si/ D ti.si/. This way we
construct n functions t0

j .Ð/ : Sj ! Tj (j 2 N) such that, for all s 2 S,

s 2W1 ) [sj, t0
j .sj/]j2N 2 I \R D b0.I \R/.

(1.k) Suppose, by way of induction, that the ‘‘if and only if’’
statement is true for k� 1 and that we have constructed n functions
tk�1
j .Ð/ : Sj! Tj such that, for all s 2 S,

s 2 Wk ) [sj, tk�1
j .sj/]j2N 2

k�1⋂
mD0

bm.I \R/.

Suppose that .sj, tj/j2N 2
⋂k

mD0 b
m.I \R/. Then for each i, si 2

ri.di.ti//, di.ti/ is independent and gi,S.ti/[
⋂k�1

mD0 b
m.I \ R/] D 1. By

the inductive hypothesis Wk is the projection of
⋂k�1

mD0 b
m.I \ R/ on

S. Thus, the latter equality implies that di.ti/.WkjS/ D 1. Therefore,
s 2WkC1.

Fix i 2 N and si 2 WkC1
i . By Definition 2 there is a corresponding

CPS dk
i .si/ 2 IS.S/ such that si D ri.dk

i .si// and dk
i .si/.WkjS/ D 1.

Given the functions tk�1
j .Ð/ (j 6D i), let tk

i .si/ 2 Ti be the independent
type uniquely associated to dk

i .si/ as in Lemma 2. This way we
construct n functions tk

j .Ð/ : Sj ! Tj (j 2 N). We must show that, for
all s 2 S,



270 P. BATTIGALLI AND M. SINISCALCHI

s 2 WkC1 ) [sj, tk
j .sj/]j2N 2

k⋂
mD0

bm.I \ R/,

or equivalently

s 2 WkC1 ) [sj, tk
j .sj/]j2N 2 bm.I \ R/,m D 0, . . . ,k.

The inductive thesis (2) follows from the construction of the tk
j .Ð/

(j 2 N) functions, the inductive hypothesis (1) and the introspection
property. We provide a complete proof using a ‘‘subinductive’’
argument within this inductive step. For m D 0, (2) is clearly true.

Now suppose that (2) is true for m � k� 1. We must show
that s 2WkC1 implies .sj, tk

j .sj// 2 bmC1.I \R/. Notice that, for each
i 2 N,

bmC1
i .I \ R/ D bi[bm

i .I \ R/ð
∏
j 6Di

bm
j .I \R/]

That is, for each player i, the inductive step entails both beliefs
about herself and beliefs about her opponents. The former must be
handled separately when m D 0.

Thus, fix i and si 2WkC1
i . If m D 0, in order to show that (2)

holds for mC 1 D 1 we invoke the assumption that every player
is certain of her own type, and that every rational player is also
certain of her strategy (see (1) in Definition 1) to conclude that:

[si, tk
i .si/] 2 bi[.Ii \Ri]i/

If 1 � m � k� 1, by the ‘‘subinductive’’ hypothesis gi,S[tk
i .si/]

.bm�1.I \ R// D 1. Therefore, the introspection property (see
remark 1) implies that tk

i .si/ is certain of being certain of
bm�1.I \ R/, that is,

gi,S[tk
i .si/]

(
[bi.b

m�1.I \R//]i
) D 1.

Notice that the introspection property concerns beliefs, and
therefore does not entail any relevant restrictions when m D 0.

As for i’s beliefs about the opponents, there is no need
to distinguish cases. We have to show that for all j 6D i,
gi,S.tk

i .si//.[bj.bm�1.I \R//]j/ D 1. But this follows from the con-
struction and the inductive hypothesis (2):

gi,S.tk
i .si//

(
[bj.b

m�1.I \ R//]j
) D

dk
ij.si/

({
sj 2 Wk

j : gj,S

[
tk�1
j .sj/.b

m�1.I \R//
]
D 1jSj

}) D 1.

Therefore, gi,S[tk
i .si/][bm.I \ R/] D 1 as desired. Since this is true

for all i 2 N and si 2 WkC1
i , then s 2 WkC1 implies [si, tk

i .si/]i2N 2
bmC1.I \ S/.
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(2) The ‘‘if’’ part follows immediately from (1). For the ‘‘only if’’
part note that since S is finite and WkC1 �Wk for all k D 0,1, . . .,
there must be an integer K such that WK D ⋂k½0 Wk DWKCm for
all m D 1,2, . . .. Construct functions tK

j .Ð/ : Sj ! Tj (j 2 N) as in the
proof of part (1). Then the same argument as above shows that for
all s 2 WK and k D 0,1, . . ., .sj, tK

j .sj// 2 bk.I \ R/.

PROOF OF PROPOSITION 3: the following result implies part (1)
immediately: For all, k ½ 0,

(a1) there are 2n functions dk
i : Si ! IS..Sj/j2N/ and tk

i : Si ! Ti,
i 2 N, such that, for all s 2 S and i 2 N, dk

i .si/ D di.tk
i .si//,

gi.tk
i .si// 2 IS.

∏n
jD1 Sj ð Tj/ and:

(i) if k ½ 1, then for all m D 0, . . . ,k� 1 and i 2 N, si 2
Sm

i n SmC1
i implies dm

i .si/ D dk
i .si/ and tm

i .si/ D tk
i .si/,

(ii) if k ½ 1, then for all i 2 N, si 2 SkC1
i , j 6D i and

sj, s0j 2 Sj: if sj 2 Sm
j n Sm0

j , s0j 2 Sm0
j and k ½ m0 > m, then

dk
ij.si/.s0jjfsj, s0jg/ D 1.

(iii) if, for all i 2 N, si 2 SkC1
i , then [si, tk

i .si/] 2 gk
i [.Rj \ Ij/j2N]

for all i 2 N.

(a2) for all states .sj, tj/j2N, if .sj, tj/ 2 gk
i [.Rj \ Ij/j2N] for all i 2 N

then si 2 SkC1
i for all i 2 N.

PROOF: (k D 0) Fix i 2 N. For si 2 Si n S1
i , choose d0

i .si/ 2 IS.S/
arbitrarily; for si 2 S1

i , choose any element of r�1
i .si/ which satisfies

the independence condition (one must exist by the definition of S1
i ).

By Lemma 2, an appropriate t0
i .si/ can be found for every si 2 Si.

Now the first two items in (a1) do not apply, while the third holds
by construction. Finally, (a2) is obvious once one notices that, for
any CPS mi 2 IS.

∏n
jD1 Sj ð Tj/, one may obtain an independent

CPS di 2 I.S/ by setting di.AjB/ D mi[C.A/jC.B/] for every A � S
and B 2 S (see Remark 2).

(k D l) Suppose the statement above holds for k D 0, . . . , l� 1.
.a1.l/ For each i 2 N and si 2 Si n SlC1

i , let dl
i.si/ D dl�1

i .si/ and
tl
i.si/ D tl�1

i .si/. Thus, the first claim in (a1) will hold regardless of
how we complete the specification of dl

i and tl
i on SlC1

i .
By the definition, for each si 2 SlC1

i we can find an independent
CPS dl

i.si/ on .Sj/j2N such that si D ri[dl
i.si/] and the second condition

in (a1) is satisfied. Lemma 2 then yields a type tl
i.si/ such

that:

8s0 2 S,B 2 S, gi,B[tl
i.si/]

(
[s0i, ti, [tl�1

j .s0j/]j 6Di]
)
D dl

i.si/.s0jB/
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and

gi.tl
i.si// 2 IS

 n∏
jD1

Sj ð Tj

 .
Hence, [si, tl

i.si/] 2 Ri \ Ii for each i 2 N. By Remark 3, to
conclude the proof of the third point of (a1), we need to show
that, for each i 2 N, m D 0, . . . ,k� 1 D l� 1 and j 6D i, one has
.si, tl

i.si// 2 bŁij.g
m
j ..Rz \ Iz/z2N//.

Thus fix i 2 N. Suppose that, for some m 2 f0, . . . , l� 1g and j 6D i,
gm

j ..Rz \ Iz/z2N/ \ .Bj ð Tj/ 6D ; for some Bj 2 Sj. By the induction
hypothesis, this implies that SmC1

j \ Bj 6D ;.
Lemma 1 now implies that dl

ij.si/.SmC1
j jBj/ D 1. Also, observe

that, for all j 2 N, z D m, . . . , l� 2 and s0j 2 SzC1
j n SzC2

j , the induc-
tion hypothesis implies that†

[s0j, t
l�1
j .s0j/] D [s0j, t

z
j .s
0
j/] 2 gz

j [.Rw \ Iw/w2N] � gm
j [.Rw \ Iw/w2N]

and, for s0j 2 Sl
j,

[s0j, t
l�1
j .s0j// 2 gl�1

j [.Rw \ Iw/w2N] � gm
j [.Rw \ Iw/w2N]

Hence, for all s0j 2 SmC1
j ,

[s0j, t
l�1
j .s0j/] 2 gm

j [.Rw \ Iw/w2N].

By construction (and using independence),

gi,BjðS�j[t
l
i.si/]

(
[f.s0j, tl�1

j .s0j//g]j

)
D dl

ij.si/.s0jjBj/.

But then

gi,BjðS�j[t
l
i.si/]

(
[gm

j ..Rw \ Iw/w2N/]j
)

D gi,BjðS�j[t
l
i.si/]

(
gm

j [.Rw \ Iw/w2N]ð
∏
w6Dj

.Sw ð Tw/

)

½
∑

s0j2SmC1
j

gi,BjðS�j[t
l
i.si/]

(
f.s0j, tl�1

j .s0j//g ð
∏
w6Dj

.Sw ð Tw/

)
D

∑
s0j2SmC1

j

dl
ij.si/.s0jjBj/ D dl

ij.S
mC1
j jBj/ D 1

as required. This completes the proof of (a1).

† The proof is as follows: by the induction hypothesis, for any z 2 fm, . . . , l� 2g,
and for any s 2 S such that, for all j 2 N, sj 2 SzC1

j , we have [s, tz
j (sj)] 2

gz
j [(Rw \ Iw)w2N]. Now (again invoking the induction hypothesis) by construction

tl�1
j (s0j) D tzC1

j (s0j) if s0j is eliminated at round mC 1.
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(a2.l). Suppose that .si, ti/ 2 gl
i[.Rj \ Ij/j2N] for all i 2 N. By

monotonicity, .si, ti/ 2 g0
i ..Rj \ Ij/j2N/ D Ri \ Ii, so (by the argument

given in (a2.0)) for each i 2 N there exists an independent first-
order CPS dl

i D di.ti/ 2 I.
∏

j2N Sj/ such that si D ri.dl
i/. We must

show that dl
i satisfies condition (2) of Definition 3.

We use Lemma 1. Consider any j 6D i and Bj 2 Sj. Fix m 2
f0, . . . , l� 1g, and suppose that Bj \ SmC1

j 6D ;. The induction
hypothesis implies that SmC1

j is the projection of gm
j ../ on

Sj, so .Bj ð Tj/ \ gm
j ..Rw \ Iw/w2N/ 6D ;. By monotonicity, .si, ti/ 2

gm
j ..Rw \ Iw/w2N/, which implies that;

gi,BjðS�j.ti/.[gm
j ..Rw \ Iw/w2N//]j/ D 1

so that, again by the induction hypothesis,

dl
ij.S

mC1
j jBj/ D [mrgSj

gi,BjðS�j.ti/].pSjg
m
j ..Rw \ Iw/w2N/// D 1

as needed; pSj denotes projection on Sj. Since obviously dl
ij.S

0
j jBj/ D

dl
ij.SjjBj/ D 1, this completes the proof of the inductive step.

Part (2) follows once one notices that the sets gl
i../ are closed

for every i 2 N and l ½ 0, that they form a nested sequence for
each i 2 N, and that each Si ð Ti is compact. This ensures that the
infinite intersections appearing in the statement are non-empty.
For details see the appendix of Battigalli and Siniscalchi (1997).

PROOF OF PROPOSITION 4: Let Xk denote the set of decision nodes x
such that the longest path from x to a terminal node following x has
k edges, and let i.x/ denote the player moving at x. Finally, let sŁ be
the unique subgame perfect equilibrium. We show by induction on
k that if x 2 Xk and si.x/ 2Wk

i.x/, then si.x/.x/ D sŁi.x/.x/. The statement
is clearly true for k D 1. Suppose it is true for k D 1, . . . ,m.
Let x 2 XmC1, i.x/ D i, si 2WmC1

i . Then there is an independent
di 2 IS.S/ such that si 2 ri.di/ and—for each j—dij.Wm

j jSj/ D 1.
Let J be the set of players moving at nodes following x. By perfect
information S.x/ D∏j2N Sj.x/. Since no player moves more than
once, for all j 2 J [ fig, Sj.x/ D Sj. Therefore dij[Wm

j jSj.x/] D 1 for
all j 2 J. Hence the inductive hypothesis implies that di[ÐjS.x/]
assigns positive probability only to strategy profiles choosing the
subgame perfect action at each node following x. By assumption, x
is consistent with si, which must be a best response to di,�i[ÐjS.x/]
at x. Since there are no relevant ties and i expects the subgame
perfect path after each action, si must select the subgame perfect
action sŁi .x/.
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