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Rationalization and Incomplete Information

Pierpaolo Battigalli and Marciano Siniscalchi

Abstract

We analyze a family of extensive-form solution procedures for games with incomplete
information that do not require the specification of an epistemic type space a la Harsanyi,
but can accommodate a (commonly known) collection of explicit restrictions D on first-
order beliefs. For any fixed D we obtain a solution called D-rationalizability.

In static games, D-rationalizability characterizes the set of outcomes (combinations of
payoff types and strategies) that may occur in any Bayesian equilibrium model consistent
with D; these are precisely the outcomes consistent with common certainty of rationality
and of the restrictions D. Hence, our approach to the analysis of incomplete-information
games is consistent with Harsanyi’s, and it may be viewed as capturing the robust impli-
cations of Bayesian equilibrium analysis.

In dynamic games, D-rationalizability yields a forward-induction refinement of this set
of Bayesian equilibrium outcomes. Focusing on the restriction that first-order beliefs be
consistent with a given distribution on terminal nodes, we obtain a refinement of self-
confirming equilibrium. In signalling games, this refinement coincides with the Iterated
Intuitive Criterion.

KEYWORDS: Incomplete Information, Rationalizability, Bayesian Equilibrium, Self-
Confirming Equilibrium, Iterated Intuitive Criterion



1 Introduction

In his seminal contribution, Harsanyi (1967-68) noted that a direct approach to the analysis of
games with incomplete information requires modeling each player’s entire hierarchy of beliefs: that
is, her beliefs about players’ payoffs, her beliefs about her opponents’ beliefs concerning payoffs,
and so on.

Harsanyi proposed to avoid the complexity inherent in this direct approach by introducing
the notion of type space. The number and variety of path-breaking developments in information
economics over the past thirty years demonstrate how effective Harsanyi’s suggestion is.

This paper proposes an alternative approach to the analysis of incomplete-information games
that (i) is fully consistent with Harsanyi’s, (ii) reflects robustness to alternative specifications of
the type space consistent with a given incomplete-information environment, and (iii) applies to
both static and dynamic games. The basic analytical tool is ∆-rationalizability, an extensive form
iterative procedure that extends Pearce’s (1984) rationalizability concept to games with incomplete
information. The procedure embodies a form of forward-induction reasoning, and can accommodate
explicit restrictions on first-order beliefs (informally) assumed to be common knowledge. The
symbol ∆ denotes the set of first-order beliefs satisfying the assumed restrictions; each specification
of ∆ yields a corresponding solution set.

Our main results may be summarized as follows:

• In static games, that is, one-stage games with simultaneous moves, an outcome (combination
of payoff types and actions) is ∆-rationalizable if and only if it can be realized in a Bayesian
equilibrium consistent with the restrictions ∆. In light of this result, we suggest that ∆-
rationalizability implements robust Bayesian equilibrium analysis.

• Fix a distribution ζ over outcomes (terminal nodes) in a dynamic game, and assume that ∆
reflects the assumption that players’ initial beliefs are consistent with ζ. Then, if the set of
∆-rationalizable strategies is nonempty, ζ is a self-confirming equilibrium distribution.

• In particular, for signalling games, if ζ and ∆ are as above, then the set of ∆-rationalizable
strategies is nonempty if and only if ζ is a self-confirming equilibrium distribution that passes
the Iterated Intuitive Criterion of Cho and Kreps (1987).

In Harsanyi’s approach, every element of the type space (Harsanyi type henceforth) comprises
both a specification of a player’s private payoff-relevant information (e.g. a signal, valuation, cost,
ability, etc.; payoff type henceforth) and an additional parameter (epistemic type) that determines
that player’s hierarchical beliefs as follows. For every player i = 1, ...n, one specifies a map pi

associating with each Harsanyi type for Player i a probability distribution over opponents’ types.
Then, assuming that the maps p1, ..., pn are common knowledge among all players, one can retrieve
the entire hierarchy of beliefs associated with any Harsanyi type.

This formal construct provides an implicit, but elegant and compact representation of hier-
archical beliefs; moreover, it makes it possible to apply standard game-theoretic techniques to
incomplete-information games, leading to the notion of Bayesian Nash equilibrium. Furthermore,
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the Harsanyi approach does not per se entail any loss of generality relative to the direct, explicit
modeling of hierarchical beliefs. Specifically, the results of Mertens and Zamir (1985) imply that
any (coherent) hierarchy of beliefs about payoff types may be represented as an element of an
appropriate Harsanyi type space.

But, whereas the formalism of Harsanyi type spaces is not inherently restrictive, specific in-
stances of type spaces may (and typically do) entail restrictions on the players’ reasoning processes.
In fact, it may be argued that this is often the case in economic applications. In particular, in the
vast majority of applications we are aware of, there is a one-to-one correspondence between payoff
types and Harsanyi types. This places significant restrictions on the players’ mutual beliefs.

For instance, it implies that the entire hierarchy of beliefs of an uniformed player (a player
with no private information) is common knowledge. Similarly, in the context of Bayesian Nash
equilibrium, it implies that the choice that a player would make conditional on his private infor-
mation is commonly known. Loosely speaking, under this “textbook” assumption, there is little
genuine strategic uncertainty. Recent experimental evidence that highlights deviations from “stan-
dard” predictions of information economics (e.g. Kagel, 1995, in the context of auctions) may be
interpreted as suggesting that, on the contrary, strategic uncertainty often influences the choices of
rational agents.

More generally, whenever one employs a “small” type space in the analysis of a game with
incomplete information, one necessarily introduces some implicit restrictions on the players’ hier-
archical beliefs. Such restrictions may be subtle and hard to fully characterize (see e.g. Bergemann
and Morris, 2002, and references therein), especially in the context of extensive games (Battigalli
and Siniscalchi, 2002).

As noted above, the Harsanyi approach provides a rich and expressive language to formalize
assumptions about players’ mutual beliefs in static (i.e. simultaneous-moves) games; however, it
offers little guidance as to how to model belief revision in dynamic games.

Perhaps partly as a consequence, while there exists a commonly accepted “canonical” notion of
Bayesian Nash equilibrium, there seems to be no agreement in the literature (and among textbook
authors) on a single notion of “perfect Bayesian equilibrium” for dynamic games with incomplete
information. Several alternative definitions of the latter concept have been proposed, each encoding
different assumptions about players’ beliefs following surprise events.1

Moreover, assumptions about players’ inferences concerning their opponents’ payoff types have
long been recognized to be crucial in applications (beginning with Spence’s seminal analysis of job-
market signalling). In particular, forward-induction reasoning often plays a key role. The Harsanyi
approach does not per se provide the tools required to model this (or any alternative) form of
reasoning. Again, the proliferation of “refinements” of the Bayesian equilibrium concept (e.g. for
signalling games) might be seen as partly originating from this.

The approach proposed in this paper addresses these concerns. As noted above, the basic
analytical tool is ∆-rationalizability. The “∆” in “∆-rationalizable” indicates a given set of explicit

1In this respect, the notion of sequential equilibrium (Kreps and Wilson, 1982) can be viewed as encoding one
specific assumption of this sort.
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restrictions that rationalizing beliefs are required to satisfy at each step of the procedure. Interesting
or appropriate restrictions arise naturally in many applications; we indicate other restrictions of a
more general nature below.

We shall now briefly comment on key features of our approach, and discuss our main results.

Consistency with the Harsanyi approach. Extending a result due to Brandenburger and Dekel
(1987), we show that, in static games, ∆-rationalizability exactly characterizes the set of outcomes
(combinations of payoff types and actions) that may occur in any Bayesian Nash equilibrium con-
sistent with the restrictions ∆.

We suggest the following interpretation. Suppose a modeler is interested in analyzing a static
incomplete-information game under the restrictions ∆ and the assumption that beliefs about oppo-
nents’ choice functions mapping types to strategies are correct, as in a Bayesian Nash equilibrium,
but without constraining the set of possible epistemic types. The modeler can attempt to char-
acterize all Bayesian Nash equilibrium outcomes of the game, for all possible specifications of the
type space. But our results indicate that simply applying the ∆-rationalizability procedure yields
the same set of outcomes. Thus, our approach may be viewed as a tractable way to implement
robust Bayesian Nash analysis.

For dynamic games, ∆-rationalizability may instead be viewed as providing a forward-induction
refinement of the set of Bayesian Nash equilibrium outcomes.

No unintended, implicit restrictions on hierarchical beliefs. In static games, ∆-rationalizability
is an extension of Bernheim and Pearce’s notion that deals with incomplete information and ac-
commodates explicit restrictions on beliefs. Tan and Werlang’s (1988) epistemic characterization
of rationalizability can be easily adapted to the solution concept we employ.

In dynamic games, ∆-rationalizability can be provided an epistemic characterization, via minor
modifications to the arguments in Battigalli and Siniscalchi (2002); some details are provided in
Section 3.1. In particular, ∆-rationalizability incorporates a forward-induction criterion, the best-
rationalization principle (Battigalli, 1996).

Thus, for both static and dynamic games, the precise behavioral and epistemic underpinnings
of the procedure can be made explicit. On the other hand, ∆-rationalizability is an algorithm
that operates on payoff type–strategy pairs; since one does not need to specify a type space in
order to apply it (as is instead the case for Bayesian Nash equilibrium), one never runs the risk of
introducing unintended restrictions on hierarchical beliefs.

Universal Type Space. As an alternative to the approach advocated in this paper, a modeler
interested in carrying out robust Bayesian Nash equilibrium analysis of specific economic models
might consider embedding the set Θ of payoff types in the universal type space, formed by taking
the ‘union’ of all Harsanyi type spaces based on Θ (see Footnote 33 for details). Clearly, this
approach would also avoid unintended restrictions on beliefs due to the adoption of “small” type
spaces. But, while this is a theoretical possibility, we are unaware of successful direct applications
of this approach. Indeed, the very richness of universal type spaces is likely to pose an obstacle.

On the other hand, our results imply that, in static games, our approach is equivalent to the
one just described: in such games, an outcome is ∆-rationalizable if and only if it is realizable in a
Bayesian equilibrium model featuring the “∆-universal” type space, i.e. the union of all Harsanyi
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type spaces based on Θ and consistent with the restrictions ∆. Furthermore, for dynamic games,
the characterization of ∆-rationalizability mentioned above can be carried out in the context of a
∆-universal epistemic type space.

Thus, our approach avoids both the issues arising from the adoption of “small” type spaces,
and the complexity inherent in dealing with the universal type space directly.

Correct Predictions. As was noted above, explicit restrictions on first-order beliefs may arise
naturally in specific applications. We also consider a general (i.e., not application-specific) form of
“correctness” restriction on beliefs, in the spirit of equilibrium analysis. To motivate it, consider the
following learning environment. For each player-role, there is a large population of individuals who
are drawn and matched at random to play with individuals from other populations. Populations
are heterogeneous with respect to payoff types and beliefs.

Let ζ denote the statistical distribution of combinations of payoff types and terminal histories
resulting from the many games played, and suppose the statistic ζ becomes public. Players’ beliefs
are stable if they are consistent with the distribution ζ; that is, if every player’s conditional beliefs
concerning opponents’ types and actions at histories that occur with positive ζ-probability coincide
with the corresponding conditional frequencies derived from ζ.

We analyze the implications of the assumption that players’ first-order beliefs are stable in this
sense, and its interaction with the forward-induction logic of ∆-rationalizability; here, ∆ represents
the assumption that players’ beliefs are consistent with a given distribution ζ. We refer to this
variant of the solution concept as ζ-rationalizability.

Self-Confirming Equilibrium and ζ-Rationalizability.2 We show that a given “feasible” dis-
tribution ζ is a self-confirming equilibrium (SCE) distribution if and only if there is a Bayesian
equilibrium model consistent with ζ. Since ζ-rationalizability refines the set of Bayesian equilib-
rium outcomes (see the discussion above), it follows that if the set of ζ-rationalizable outcomes is
nonempty, then ζ is a SCE distribution.

The latter result indicates that, in general dynamic games with incomplete information, ζ-
rationalizability yields a (forward induction) refinement of the SCE concept.

We also observe that ζ-rationalizability can be used as a refinement criterion applicable to any
equilibrium concept stronger than SCE: a given equilibrium profile satisfies the criterion if and only
if the induced distribution ζ yields a non-empty ζ-rationalizable set.

Iterated Intuitive Criterion. Our last result relates the above mentioned refinement to the
Iterated Intuitive Criterion of Cho and Kreps (1987) for signalling games. More precisely, we show
that, for any feasible distribution ζ on the terminal nodes of a signalling game, ζ is a SCE satisfying
the Iterated Intuitive Criterion if and only if the set of ζ-rationalizable outcomes is non-empty. (Of
course, the “only if” part of the proposition holds for any stronger equilibrium concept, such as,
e.g., the sequential equilibrium.)

2On self-confirming equilibria see Fudenberg and Levine (1993) and references therein. We consider self-confirming
equilibria with unitary beliefs of the game where each payoff type corresponds to a distinct player. Self-confirming
equilibrium is also called “conjectural equilibrium” (Battigalli, 1987, Battigalli and Guaitoli, 1997) or “subjective
equilibrium” (Kalai and Lehrer, 1993, 1995).
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The rest of the paper is organized as follows. Section 2 contains the game-theoretic set up.
In Section 3 we define ∆-rationalizability and provide an epistemic interpretation, relying on our
previous work. We also illustrate the solution procedure with some examples. Section 4 relates
∆-rationalizability to Bayesian and self-confirming equilibrium. Section 5 focuses on signaling
games and relates ∆-rationalizability to the Iterated Intuitive Criterion. Section 6 discusses some
extensions, applications and related papers. The Appendix contains the less instructive proofs and
some ancillary results.

2 Game-Theoretic Framework

2.1 Games of Incomplete Information with Observable Actions

To simplify the exposition we limit our analysis to two-person, finite, multistage games with observ-
able actions. This also allows us to use a notation that clearly separates between private information
about payoff functions and information about past moves acquired as the play unfolds.3

A two-person game of incomplete information with observable actions is a structure

Γ =
〈
Θ1,Θ2, A1, A2,H, u1, u2

〉
given by the following elements:4

• For each i ∈ {1, 2}, Θi is a finite set of possible payoff-types (or simply types) for player i,
and Ai is a finite set of possible actions for player i. The opponent of player i is denoted −i.

• H ⊆ {φ} ∪
(⋃

k≥1(A1 ×A2)k
)

is finite a set of feasible histories (finite sequences of action

pairs) including the empty history φ. Let A(h) =
{
a ∈ A : (h, a) ∈ H

}
denote the set of

feasible action pairs given history h; H is such that, for every h ∈ H, every prefix (initial
subsequence) of h belongs to H and A(h) is a Cartesian product: that is, A(h) = A1(h) ×
A2(h), where Ai(h) is the projection of A(h) on Ai. Z = {h ∈ H : A(h) = ∅} denotes the set
of terminal histories and H = H\Z denotes the set of non-terminal histories.

• For each i ∈ {1, 2}, ui : Θ1 ×Θ2 × Z → R is the payoff function for player i (R denotes the
set of real numbers).

Parameter θi represents player i’s private information about the rules of the game. Note that
ui may depend on the payoff type of the opponent of Player i (this is the case, for example, if i’s
opponent has private information about the way actions affect i’s payoff). Therefore we do not
assume private values. On the other hand, we assume for simplicity that constraints on choices
are type-independent, which is why we refer to θi as the “payoff-type” of player i. The “state of
Nature” θ = (θ1, θ2) completely specifies the unknown parameters of the game and the players’

3The analysis can be extended to general information structures with perfect recall. See the Discussion section.
4See Fudenberg and Tirole (1991, pp 331-332) and Osborne and Rubinstein (1994, pp 231-232).
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interactive knowledge about them. Non-terminal histories become common knowledge as soon as
they occur. The structure Γ is common knowledge.5

The notion of multistage game with observable actions is general enough to cover static games,
repeated games, and games with sequential moves as special cases. A game is static if it has only
one stage, which by definition has simultaneous moves (formally, H = {φ}, A(φ) = A1 × A2). A
game Γ has sequential (or non-simultaneous) moves if for every non-terminal history h there is only
one player i, called the active player, with more than one feasible action. Games with sequential
moves are easily represented by means of game trees and information sets: the set of nodes is Θ×H,
the “prefix of” binary relation on H yields a corresponding partial order on Θ ×H, making it an
arborescence. Information sets for player i have the following form:

I(θi, h) = {(θi, θ
′
−i, h) : θ′−i ∈ Θ−i},

where i is active at h.
Note that the structure Γ does not specify players’ beliefs about the state of Nature θ. Therefore,

the above definition is different from the standard notion of a Bayesian game. As mentioned in the
Introduction, in order to provide a general (albeit implicit) representation of players’ beliefs about
the state of Nature and of their hierarchies of beliefs, we embed each set Θi in a possibly richer set
Ti of “Harsanyi-types” and specify belief functions pi : Ti → ∆(T−i). For more on this see Section
4.1.

2.2 Strategic Representation

Although this paper analyzes an extensive-form solution concept, it is sometimes analytically con-
venient to employ a strategic representation of the payoff functions and of the information that
transpires as the play unfolds.

A strategy for player i is a function si : H → Ai such that si(h) ∈ Ai(h) for all h ∈ H. The
set of strategies for player i is denoted Si and S = S1 × S2 is the set of strategy pairs. Each
pair of strategies s = (s1, s2) induces a terminal history z = O(s). Given the outcome function
O : S → Z, we can define strategic-form payoff functions Ui(θi, si, θ−i, s−i) = ui(θ1, θ2, O(s1, s2)),
i = 1, 2. Furthermore, for each history h ∈ H we can define the set of strategies consistent with h:

S(h) = {s ∈ S : h is a prefix of O(s)}.

Clearly, S(φ) = S and S(h) = S1(h) × S2(h) for each h, where Si(h) is the set of si which do not
prevent h from being reached. Θ−i × S−i(h) is the strategic representation of the information of
player i about his opponent if h occurs. Note that if h′ is a prefix of h′′ then S(h′) ⊇ S(h′′).

5For a generalization to n-person games with possibly infinite horizon, infinite action spaces and type-dependent
feasibility constraints, see Battigalli (1999). Chance moves and residual uncertainty about the environment can be
modeled by having a pseudo-player c with a constant payoff function. The “type” θc of this pseudo-player represents
the residual uncertainty about the state of Nature which would remain after pooling the private information of the
real players.
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2.3 Conditional Beliefs and Explicit Restrictions

Players’ beliefs in multistage games can be represented as systems of conditional probabilities; for
each history h ∈ H, player i has a conditional belief µi(·|h) about the types and strategies of his
opponent, the conditional beliefs at distinct histories are related to each other via Bayes’ rule:

Definition 2.1 (cf. Rényi (1956)) A conditional probability system (or CPS) for player i is a
collection of conditional beliefs µi = (µi(·|h))h∈H ∈

∏
h∈H ∆(Θ−i × S−i(h)) such that for all θ−i ∈

Θ−i, s−i ∈ S−i, h′, h′′ ∈ H, if h′ is a prefix of h′′ (i.e. S−i(h′′) ⊆ S−i(h′)) then

µi(θ−i, s−i|h′) = µi(θ−i, s−i|h′′)

 ∑
θ−i∈Θ−i,s−i∈S−i(h′′)

µi(θ−i, s−i|h′)

 . (1)

The set of CPSs for player i is denoted by ∆H(Θ−i × S−i).

Note that an element of ∆H(Θ−i × S−i) only describes the first-order conditional beliefs of
player i. To keep the presentation relatively simple, only such beliefs are explicit in the formal
analysis of this paper. However, we shall often refer informally to higher-order beliefs.6

A player’s beliefs may be assumed to satisfy some restrictions that are not implied by assump-
tions concerning belief in rationality, or beliefs about such beliefs. Such restrictions may be related
to some structural properties of the game model at hand. Our approach accommodates both (i)
restrictions on beliefs about payoff types, and (ii) restrictions on beliefs about (payoff types and)
behavior. To represent such restrictions we assume that the conditional probability system of
payoff-type θi of player i belongs to a given, nonempty subset ∆θi ⊆ ∆H(Θ−i×S−i). Furthermore,
our solution concept relies (implicitly) on cross-restrictions on higher-order beliefs about rational-
ity and the restrictions ∆: see Subsection 3.1 for details. We let ∆i =

(
∆θi

)
θi∈Θi

denote the
(type-dependent) restrictions for Player i.

The following are examples of restrictions of the first kind:

• Player i believes that each type of the opponent has strictly positive probability.

• It is common knowledge that the set of possible states of nature is Θ̂ ⊂ Θ1×Θ2; ∆θi is the set
of CPSs that assign probability zero to the opponent’s types inconsistent with θi (formally,
let Θ̂−i(θi) = {θ−i : (θi, θ−i) ∈ Θ̂}, then ∆θi = {µi : ∀h ∈ H, suppµi(·|h) ⊆ Θ̂−i(θi)× S−i}).

• The initial beliefs of each type of i about −i’s type are derived from a given prior ρi ∈ ∆(Θ)
(this is a type-dependent restriction, unless ρi is a product measure). The assumption of a
common prior on Θ is a special case.

The following are examples of restrictions of the second kind:

• The likelihood of a high-ability worker conditional on education is weakly increasing with
education.

6Infinite hierachies of CPSs are formally analyzed in Battigalli and Siniscalchi (1999).
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• In a symmetric first-price auction, there is common certainty that any bid above the lowest
valuation wins the object with positive probability.

• Suppose that the individuals playing in the roles 1 and 2 are repeatedly drawn at random
from large heterogenous populations and matched to play according to the rules of Γ, a large
number of Γ-games has been played and public statistics show that the distribution of types
and outcomes is ζ ∈ ∆(Θ× Z). Then it may be reasonable to assume that the initial beliefs
of each player about his opponent are consistent with ζ. We elaborate on this restriction in
Section 4.3.

While we allow for explicit restrictions on first-order beliefs concerning payoff types and/or
behavior, we do not consider direct restrictions on behavior, or about higher-order beliefs. At the
expense of notational complexity, our approach could be modified to allow for such restrictions.

2.4 Sequential Rationality

A strategy ŝi is sequentially rational for a player of type θ̂i with conditional beliefs µi if it maximizes
the conditional expected utility of θ̂i at every history h consistent with ŝi. Note that this a notion
of rationality for plans of actions7 rather than strategies (see, for example, Reny (1992)). Given a
CPS µi, a non-terminal history h, a type θi and a strategy si consistent with h (si ∈ Si(h)) let

Ui

(
θi, si, µ

i(·|h)
)

=
∑

θ−i∈Θ−i,s−i∈S−i(h)

U(θi, si, θ−i, s−i)µi (θ−i, s−i|h)

denote the expected payoff for type θi from playing si given h.

Definition 2.2 A strategy ŝi (i = 1, 2, ...) is sequentially rational for type θ̂i with respect to
beliefs µi ∈ ∆H(Θ−i × S−i), written ŝi ∈ ri(θ̂i, µ

i), if for all h ∈ H such that ŝi ∈ Si(h) and all
si ∈ Si(h)

Ui

(
θ̂i, ŝi, µ

i(·|h)
)
≥ Ui

(
θ̂i, si, µ

i(·|h)
)

.

It can be shown by a standard dynamic programming argument that the set of maximizers
ri(θ̂i, µ

i) is non-empty for every pair (θ̂i, µ
i).

3 ∆-Rationalizability

This section introduces our main analytical tool, ∆-rationalizability. We discuss its relationship
with other notions of rationalizability. We then establish a simple existence result, as well as certain
useful properties of the procedure; finally, we present three examples.

7Formally, a plan of action is a maximal set of strategies consistent with the same histories and prescribing the
same actions at such histories.
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3.1 Solution Procedure and Interpretation

Fix the belief restrictions ∆ =
(
∆1,∆2

)
(∆i ⊆ [∆H(Θ−i × S−i(h))]Θi). The solution procedure we

define below iteratively eliminates pairs (θi, si) for each player i.

Definition 3.1 Consider the following procedure.

(Step 0) For every i = 1, 2, let Σ0
i,∆ = Θi × Si.

(Step n > 0) For every i = 1, 2, and for every (θi, si) ∈ Θi × Si, let (θi, si) ∈ Σn
i,∆ if and only if

(θi, si) ∈ Σn−1
i,∆ and there exists a CPS µi ∈ ∆θi such that

1. si ∈ ri(θi, µ
i);

2. for all h ∈ H, if Σn−1
−i,∆ ∩ [Θ−i × S−i(h)] 6= ∅, then µi(Σn−1

−i,∆|h) = 1.

Finally, let Σ∞
i,∆ =

⋂
n≥0 Σn

i,∆. We say that strategy si is ∆-rationalizable [(∆, n)-rationalizable]
for type θi if (θi, si) ∈ Σ∞

i,∆ [(θi, si) ∈ Σn
i,∆].

The procedure just defined modifies extensive-form rationalizability (Pearce, 1984) in two ways.
First, the original definition (as applied to the extensive-form representation of Γ) assumes that
players’ beliefs about their opponents’ types are consistent with a common prior on the set of
states of nature; we only assume that players’ beliefs about the opponent’s types belong to a given
subset of CPSs. Second, we allow for explicit restrictions on players’ beliefs about their opponents’
behavior.

Thus, if Γ has complete information and there are no restrictions on beliefs [i.e. for each
player i, Θi = {θ0

i }, and ∆i = ∆H({θ0
−i} × S−i)], then Σ∞

i,∆ = {θ0
i } × S∞i , where S∞i is the set

of extensive-form rationalizable strategies of player i. Similarly, if Γ has incomplete information
and ∆ represents the assumption that initial beliefs about the opponent’s type are derived from a
given prior distribution ρ ∈ ∆(Θ), ∆-rationalizability is equivalent to the application of Pearce’s
procedure to the extensive-form representation of Γ with a common prior ρ.8

Shimoji and Watson (1998) show that Pearce’s solution procedure can characterized as the
iterated removal of strategies that are conditionally dominated at some information set. By a
straightforward extension of their result, one can show that, if no explicit restrictions on beliefs are
imposed,9 the procedure of Definition 3.1 corresponds to the iterated removal of pairs (θi, si) such
that si is conditionally dominated for type θi at some history h.10

As a special case, consider a static game and suppose that there are no explicit restrictions
on beliefs. Then, by a straightforward extension of known results, one can show that the our

8In Section 6 we briefly discuss how to extend the notion of ∆-rationalizability to games with more than two
players. Here we only note that the extension would differ from Pearce’s definition even in the above mentioned
cases, due to different assumptions about belief revision with multiple opponents. For more on this see Battigalli
(1996).

9That is, ∆θi = ∆(Θ−i × S−i) for every i and θi.
10Formally, (θi, si) is deleted at step n if and only if there exist a history h ∈ H and a mixed strategy µi ∈ ∆(Si)

with Suppµi ⊆ {s′i ∈ Si(h) : (θi, s
′
i) ∈ Σn−1

i } such that Ui(θi, si, θ−i, s−i) < Ui(θi, µi, θ−i, s−i) for all (θ−i, s−i) ∈
[Θ−i × S−i(h)] ∩ Σn−1

−i , where Σn−1
i is the set of pairs that survived through step n− 1.
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notion of rationalizability coincides with the iterated removal of pairs (θi, ai) such that ai is strictly
dominated for type θi by some mixed action αi ∈ ∆(Ai); in particular, if the game has complete
information, we obtain the standard notion of rationalizability. Finally, suppose that there is only
one rationalizable action bi(θi) for each type θi. Then, for each state of nature θ, b(θ) must be
the unique rationalizable profile – hence the unique Nash equilibrium – of the normal-form game
G(θ) = 〈A1, A2, u1(θ, ·), u2(θ, ·)〉. Thus, in this particular case, the behavioral profile b must be an
ex-post equilibrium of the incomplete information game.11

We emphasize that the procedure in Definition 3.1 incorporates a forward-induction criterion,
and therefore it typically refines other versions of the rationalizability solution concept proposed
for extensive-form games (for more on this, see the discussion in Section 6).

An exact epistemic characterization of ∆-rationalizability can be provided within the framework
of universal12 type spaces for dynamic games. Here we only present an informal description.13

Let us say that player i strongly believes event E if he is initially certain of E and would also
be certain of E conditional on every history h whose occurrence does not contradict E . There is
mutual strong belief in E if each payer strongly believes E . For any given ∆ = (∆1,∆2), consider
the following set of assumptions:

A0: every player i is rational and her beliefs satisfy the set of restrictions ∆i,
A1: there is mutual strong belief in A0,
A2: there is mutual strong belief in A0 ∩ A1,
...
An+1: there is mutual strong belief in A0 ∩ A1 ∩ ... ∩ An,
...

It can be shown that, in a universal type space, an arbitrarily given profile of payoff types and
strategies ((θ1, s1), (θ2, s2)) is consistent with the set of assumptions

⋂
n≥0An [or A0∩A1∩ ...∩An]

if and only if si is ∆-rationalizable [or (∆, n+1)-rationalizable] for type θi, i = 1, 2. Furthermore, it
can be shown that a profile of payoff types and strategies is jointly consistent with the assumption
that the restrictions ∆ are “common knowledge”14 and the set of assumptions

⋂
n≥0An if and only

if it each strategy in the profile is ∆-rationalizable for the corresponding payoff type.
11Possibly for this reason, some authors call this solution concept ex-post rationalizability and refer to related

notions of dominance as ex-post dominance (e.g., Bergemann and Morris, 2002). We do not adopt this terminology,
because it is suggestive of a different concept, namely the rationalizability correspondence defined on the class of
complete-information games {G(θ); θ ∈ Θ}. The graph of this correspondence is contained in the rationalizable set
Σ∞ and the inclusion may be strict.

12Or, more generally, “belief-complete”: see Battigalli and Siniscalchi (2002).
13We label assumptions A0, A1, A2, ..., where An refers to beliefs of order n. For a formal characterization result

see Battigalli and Siniscalchi (2002), where these assumptions are formally represented as subsets of a space of states
of the world. Aj ∩ Ak informally denotes the conjunction of assumptions labeled Aj and Ak.

14More precisely, say that the restrictions ∆ are “common knowledge” if, for each i = 1, 2, (1) i would believe
[µ−i ∈ ∆−i] at each h ∈ H, (2) −i would believe (1) at each h ∈ H, ... , (2k+1) i would believe (2k) at each h ∈ H,
(2k+2) −i would believe (2k+1) at each h ∈ H, and so on.
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This characterization indicates that ∆-rationalizability relies on specific assumptions about
belief revision: a player initially believes that her opponent’s behavior is consistent with the set
of assumptions

⋂
n≥0An, and continues to believe that this is the case as long as the opponent’s

observed actions are indeed consistent with
⋂

n≥0An. In the event that an action inconsistent with⋂
n≥0An is observed, she “falls back” on the most restrictive set of assumptions A0 ∩A1 ∩ ...∩Ak

consistent with the observed actions of the opponent. For example, suppose that Player i observes
a history h consistent with Player −i being rational and holding beliefs in ∆−i; also suppose that
h could not occur if, in addition to being rational and holding beliefs in ∆−i, Player −i strongly
believed that Player i is herself rational and holds beliefs in ∆i. Then the assumptions above imply
that Player i must believe at h that Player −i is rational and holds beliefs in ∆−i. In a sense, it
is assumed that a player always tries to rationalize the observed actions of her opponent ascribing
to her the highest “degree of strategic sophistication” consistent with such actions. Thus, these
assumptions reflect a specific form of forward-induction reasoning.

In general, the restrictions on beliefs represented by ∆ may be inconsistent with some of the
assumptions A1, A2, ...An, ... . In this case the set of ∆-rationalizable strategies is empty. On the
other hand, the finiteness assumption yields a simple existence result:15

Remark 3.2 Suppose that, for each i = 1, 2, ∆i only represents restrictions on i’s beliefs about the
payoff type of his opponent (i.e., for each θi there is a non-empty subset Pθi ⊆ ∆(Θ−i) such that
∆θi = {µi : margΘ−iµ

i(·|φ) ∈ Pθi}). Then, for each player i and every θi, the set of ∆-rationalizable
strategies for type θi is non-empty (∀i, projΘiΣ

∞
i,∆ = Θi).

We also report here two remarks that will be useful later.

Remark 3.3 The sequence {Σn
1,∆ × Σn

2,∆}n>0 is weakly decreasing and such that Σk
1,∆ × Σk

2,∆ =
Σk+1

1,∆ × Σk+1
2,∆ implies Σk

1,∆ × Σk
2,∆ = Σn

1,∆ × Σn
2,∆ for all n ≥ k. Since Θ× S is finite, there is some

N such that ΣN
1,∆ × ΣN

2,∆ = Σn
1,∆ × Σn

2,∆ for all n ≥ N . Therefore, for each i and (θi, si) ∈ Σ∞
i,∆

there is some µi ∈ ∆θi , such that µi(Σ∞
−i,∆|φ) = 1 and si ∈ ri(θi, µ

i).

Remark 3.4 Suppose that restriction ∆i implies that player i initially assigns positive probability
to each payoff-type of the opponent (∀θi,∀µi ∈ ∆θi , ∀θ−i ∈ Θ−i, µi({θ−i} × S−i|φ) > 0). Then,
if there is a ∆-rationalizable pair for player i, there must be a ∆-rationalizable strategy for each
payoff-type θ−i of player −i (Σ∞

i,∆ 6= ∅ ⇒projΘ−iΣ
∞
−i,∆ = Θ−i).

Proof. Any (θi, si) ∈ Σ∞
i,∆ is such that si is a sequential best reply to some belief µi ∈

∆θi such that µi(Σ∞
−i,∆|φ) = 1 (see Remark 3.3). Fix an arbitrary θ−i ∈ Θ−i; by assumption

µi({θ−i}×S−i|φ) > 0. Therefore µi(Σ∞
−i,∆ ∩ ({θ−i}×S−i)|φ) > 0. This implies that there must be

some s−i such that (θ−i, s−i) ∈ Σ∞
−i,∆.

A note on terminology. Whenever we assume no explicit restrictions on beliefs, we omit the
symbol ∆.

15In Section 5 we obtain necessary and sufficient conditions for existence of ∆-rationalizable strategies in signaling
games when beliefs are assumed to be consistent with a given distribution ζ ∈ ∆(Θ× Z).
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3.2 Examples

We present three examples illustrating the solution procedure. The first one exhibits a sort of
no-rationalizable-trade result.16 Here, explicit restrictions on beliefs do not play any role. In the
second example, the efficient allocation of an object is implemented in ∆-rationalizable strategies
with a two-stage mechanism. The (type-dependent) restrictions reflect the assumption that it is
common knowledge between the agents who values the object the most.17 In the third example,
we apply ∆-rationalizability to the well-known Beer-Quiche game, assuming that beliefs agree with
the outcome distribution ζ induced by the (Quiche,Quiche) pooling equilibrium (which does not
satisfy the Intuitive Criterion). It turns out that the set of ζ-rationalizable strategies in this case
is empty.

3.2.1 Co-authorship

Player 1 is an author who must decide whether to carry out a project alone or propose joint work
to another author, Player 2. Player 2 can either accept or reject and then carry out her own
project alone. We let θi denote the ability of author i and we assume Θi = {θ1, ..., θK}, with
0 < θ1 < θ2 < ... < θK . In order to prepare a proposal some paperwork is needed and this has
a small cost of ε for Player 1 (0 < ε < 1). The proposal per se does not reveal any information
because it takes the same form independently of the ability of Player 1.18 Joint work yields a
fixed surplus δ. Let YES (NO) denote the strategy of accepting (rejecting) if Author 1 proposes.
Payoffs are determined by the following table.

at (θ1, θ2) NO YES
ALONE θ1, θ2 θ1, θ2

PROPOSE (θ1 − ε), θ2

(
θ1+θ2+δ

2 − ε
)

, θ1+θ2+δ
2

We do not assume any restriction on beliefs; however, we make the following assumptions about
the parameters of the game:

(1) Author 1 has no incentive to propose a project if he is certain that Author 2 has the same
quality as himself or lower:

θ + θ + δ

2
− ε < θ (i.e. δ < 2ε)

(2) Author 2 has no incentive to accept a proposal if she is certain that Author 1 has lower
quality than herself:

θk + θk−1 + δ

2
< θk (i.e. δ < θk − θk−1) for all k = 2, ...,K

16On rationalizable trade see Morris and Skiadas (2000). Our example also bears some resemblance to models of
disclosure. See Okuno-Fujiwara et al. (1990), Battigalli (1999, Section 5.2) and references therein.

17Cf. Perry and Reny (1999).
18Hence the game fits our simplifying assumption that the set of feasible actions is type-independent.
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We say that joint work is rationalizable if (θ1,PROPOSE; θ2,YES) is rationalizable for some
θ1, θ2 ∈ {θ1, ..., θK}. We then have the following

Result: Under the above assumptions, joint work is not rationalizable.

Proof. Define Θn
1 = {θ : (θ, PROPOSE) ∈ Σn

1}, Θn
2 = {θ : (θ,YES) ∈ Σn

2}. We first prove the
following claim: for every n ≥ 1, either Θn+1

1 ∩ Θn+1
2 = ∅ or max Θn+1

1 < max Θn
2 ≤ max Θn−1

1

(since Θi is finite, max Θ`
i is well defined if and only if Θ`

i 6= ∅).
Suppose that Θn+1

1 ∩ Θn+1
2 6= ∅. Then Θn−1

i ⊇ Θn
i ⊇ Θn+1

i 6= ∅. Since Θn−1
1 6= ∅, YES is n-

rationalizable for θ2 only if YES is a best response for θ2 to PROPOSE given a belief concentrated
on Θn−1

1 . By Assumption (2), the latter holds only if θ2 ≤ max Θn−1
1 . Thus maxΘn

2 ≤ max Θn−1
1 .

PROPOSE is (n + 1)-rationalizable for θ1 only if it is a best response for θ1 to a belief con-
centrated on Σn

2 = {(θ2, s2) : s2 = YES ⇒ θ2 ∈ Θn
2}. By assumption (1), the latter holds only if

θ1 < max Θn
2 . Thus maxΘn+1

1 < max Θn
2 ≤ max Θn−1

1 , and the claim is proved.
To complete the analysis of the game, note that, since the game is finite, there exists N ≥ 0

such that Θn
i = ΘN

i for all n ≥ N . The claim (with n = N + 1) implies that ΘN
1 ∩ ΘN

2 = ∅
(otherwise max ΘN+2

1 < max ΘN+1
2 ≤ max ΘN

1 , which contradicts the choice of N). Suppose that
both sets ΘN

i are non-empty, and let θ̄i = maxΘN
i for i = 1, 2; then either θ̄1 < θ̄2 or θ̄1 > θ̄2. If

θ̄1 < θ̄2, then Assumption (2) implies that (θ̄2,YES) is not rationalizable; if instead θ̄1 > θ̄2, then
Assumption (1) implies that (θ̄1,PROPOSE) is not rationalizable. Thus, in either case, we obtain
a contradiction; hence, one of the sets ΘN

i is empty, i.e., joint work is not rationalizable.

3.2.2 King Solomon’s Dilemma with Incomplete Information

Consider the following situation. A planner wishes to allocate an object to one of two agents, at
zero cost to them. Agent i’s value for the object is denoted by θi, and is private information to
her. One of the agents has strictly higher valuation, and furthermore each agent knows whether
she is the high-valuation agent, but the planner does not. All this is commonly known among the
agents and the planner. In order to allocate the object to the right agent, the latter must design a
mechanism that does not rely on the identity of the agents.

We model the situation as seen by the agents. Let Θ1 = {2, 3} and Θ2 = {1, 2}, and consider
the following restrictions on beliefs:

1. ∆12 = {µ1 : µ1({1} × S2|φ) = 1} and ∆13 = {µ1 : ∀θ2, µ1({θ2} × S2|φ) > 0};

2. ∆21 = {µ2 : ∀θ1, µ2({θ1} × S1|φ) > 0} and ∆22 = {µ2 : µ2({3} × S1|φ) = 1}.

Thus, Agent 1 is w.l.o.g. the high-valuation agent. Type 2 of Agent 1 and type 1 of Agent 2
are uncertain about the other agent’s type; the only restriction on their beliefs is that they assign
positive probability to either type of their opponent. On the other hand, the above restrictions
reflect the assumption that type 2 of Agent 2 “knows” that she is the low-valuation agent, and is
therefore certain that Agent 1’s type equals 3. Similarly, type 2 of Agent 1 “knows” that she is the
high-valuation agent, and is therefore certain that Agent 2’s type equals 1.
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Out In1 In2 In3

Out
0 0
0 0

0 1
0 2

0 1
0 2

0 1
0 2

In1
2 0
3 0

1
4 − e −e
1
2 − e 1

4 − e
−e −1− e
−e −e

−e −2− e
−e −1− e

In2
2 0
3 0

−e −e
1− e −e

−e −1
4 − e

1
4 − e −e

−e −2− e
−e −1− e

In3
2 0
3 0

−1− e −e
−e −e

−1− e −e
−e −e

−1
4 − e −1

2 − e
−e −1

4 − e

Table 1: King Solomon’s Dilemma

The planner utilizes a first-price auction preceded by an opt-in stage. Specifically, the mech-
anism works as follows. At time 0, agents simultaneously decide whether or not to participate in
the auction; if only one does, the object is awarded to that agent, at no cost to her, and if none
does, the object remains in the hands of the planner. If both agents choose to participate, an entry
fee e ∈ (0, 1

4) is levied, and agents participate in a first-price, sealed-bid auction. To simplify the
analysis, assume that the set of possible bids is {1, 2, 3}, reflecting the valuations of the agents;
also, in the case of a tie, each agent receives the object with probability 1

4 (so the object is not
awarded with probability 1

2).
The set of actions is thus A = {In,Out,1,2,3}, and the set of non-terminal histories is H =

{φ, (In,In)}; the strategy set for each agent i = 1, 2 is Si = {Outn : n = 1...3} ∪ {Inn : n = 1...3}.
Table 1 indicates the reduced-form payoffs to both agents, where “Out” denotes the equivalence

class of strategies {Outn : n = 1...3}. Corresponding to each strategy profile, we provide a 2x2
matrix that indicates the payoff to, in counterclockwise order starting from the top left cell: Type
2 of Agent 1, Type 3 of Agent 1, Type 2 of Agent 2, and Type 1 of Agent 2.

We now analyze the mechanism using ∆-rationalizability; at each step, we indicate which strate-
gies can be eliminated.

Step 1. We can eliminate the strategy In3 for both types of Agent 2, because it is not sequen-
tially rational: the strategy In2 does strictly better conditional upon participating in the auction
(henceforth: “at the auction stage”), regardless of Agent 1’s bid. Moreover, In3 is also conditionally
dominated at the auction stage for type 2 of Agent 1. It can be verified that all other strategies
are (∆, 1)-rationalizable for each type.

Step 2. Since In1 and In2 are (∆, 1)-rationalizable for Agent 2, whereas In3 is not, (∆, 2)-
rationalizability requires that Agent 1’s justifying beliefs µ1 satisfy in particular µ1(Θ2×{In3}|(In)) =
0. Given this restriction, In2 is the unique conditional best response for type 3 at the auction stage,
so we can eliminate In1 and In3 for this type. Furthermore, In2 strictly dominates Out for the
same type. As a result, the only (∆, 2)-rationalizable strategy for Agent 1’s type 3 is In2. There
are no further eliminations; in particular, note that Out is rationalized for type 2 of Agent 1 by the
belief that both types of Agent 2 play In2.

Step 3. Consider Agent 2’s type 2 first. This type is certain (at φ) that Agent 1’s type is 3,
and we have just argued that the latter has a unique (∆, 2)-rationalizable strategy, namely In2.
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Arguing as above, Agent 2’s beliefs must satisfy µ2({(3,In2)}|φ) = 1, and the unique best response
to this belief is Out. Now consider Agent 2’s type 1. Out is rationalizable for this type as well, as is
In1;19 however, since we have eliminated In3 for both types of Agent 1, In2 is no longer justifiable.
Thus, the only (∆, 3)-rationalizable strategies for Agent 2’s type 1 are Out and In1.

Steps 4 and 5. We have already established that In2 is the unique ∆-rationalizable strategy for
Agent 1’s type 3, so turn to type 2. This type of Agent 1 is certain that Agent 2’s type is 1, and we
have just seen that this type can only play Out or In1. Relative to these two strategies of Agent
2, Out is strictly dominated by In1 for Agent 1’s type 2. Furthermore, since this agent’s beliefs
must satisfy µ1({(1,In1)}|(In)) = 1, In1 is strictly better than In2 in the auction. Therefore, the
unique (∆, 4)-rationalizable strategy for Agent 1’s type 2 is In1. It is then clear that Agent 2’s only
(∆, 5)-rationalizable strategy is Out.

Thus, both types of the low-valuation agent choose not to participate in the auction, so that,
by participating, the high-valuation agent secures the object at zero cost.

3.2.3 Beer-Quiche Revisited

The game depicted in Figure 1 corresponds to the well-known Beer-Quiche example used by Cho and
Kreps (1987) to motivate the “Intuitive Criterion”, perhaps the best-known equilibrium refinement
for signalling games. Cho and Kreps analyze a standard extensive form game with a common prior;
in their example, the probabilities of the surly and wimpish types θs and θw of the sender are 0.9
and 0.1 respectively. They show that only the equilibrium in which each type chooses B satisfies
the Intuitive Criterion.

dθw

{.1}

� BtHHH
HHY F0,1

���
��� N2,0

-Q t���
��*F 1,1

HHH
HHjN 3,0

dθs

{.9}

� BtHH
HHHY F1,0

�
����� N3,1

-Q t��
���*F 0,0

H
HHHHjN 2,1

Figure 1: Beer-Quiche

Here we obtain an analogous result with ∆-rationalizability; specifically, we consider the re-
striction that that players’ initial beliefs are consistent with the distribution over terminal nodes

19In particular, for In1, a belief consistent with (∆, 2)-rationalizability is given by µ2({(2,Out)}|φ) = .99 = 1 −
µ2({(3,In2)}|φ) and µ2({(3,In2)}|(In)) = 1
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induced by the “bad” equilibrium in which both types choose Q. We show that, for this specifica-
tion of ∆, the set of ∆-rationalizable profiles is empty. This suggests that the “bad” equilibrium
is inconsistent with the forward-induction logic embodied in ∆-rationalizability, and indicates that
the latter may be viewed as a refinement of equilibria in extensive games. Section 5 develops this
observation.

To clarify our notation, Θ1 = {θs, θw}, whereas Θ2 is a singleton and will be omitted for
simplicity; S1 = {B,Q}; and S2 = {FF, FN, NF,NN}, where FF is the strategy “Fight if Beer,
Fight if Quiche”, FN is “Fight if Beer, do Not fight if Quiche”, and similarly for NF and NN .
The set of non-terminal histories is H = {φ, (B), (Q)}.

Formally, let
∆θ1 = {µ1 : µ1({s2 : s2(Q) = N}|φ) = 1}, θ1 = θs, θw

and
∆2 = {µ2 : µ2({(θs, Q)}|φ) = 0.9 = 1− µ2({(θw, Q)}|φ)}.

It is easy to check that (∆, 1)-rationalizability imposes no restriction on type θs’s behavior;
however, type θw strictly prefers Q to B, given that Q is his favorite breakfast and ensures that no
Fight will ensue. As for Player 2, note that Bayes’ rule implies that µ2({(θs, Q)}|(Q)) = 0.9, so it
is sequentially rational for 2 to choose N after Q; however, no restrictions are placed on 2’s choice
after B. To summarize, Σ1

1,∆ = {(θs, B), (θs, Q), (θw, Q)} and Σ1
2,∆ = {FN,NN}.

In Step 2, nothing further is eliminated for Player 1, so Σ2
1,∆ = Σ1

1,∆. However, Player 2 will
now choose N after B as well, because, if his beliefs are consistent with (∆, 1)-rationalizability,
upon observing B, he must conclude that Player 1’s type is θs; formally, since Σ1

1,∆ ∩ [Θ1×{B}] =
{(θs, B)}, Player 2’s beliefs must satisfy µ2({(θs, B)}|φ) = 1. This may be viewed as a forward-
induction restriction on (off-equilibrium) beliefs. To summarize, Σ2

2,∆ = {NN}.
Now (∆, 3)-rationalizability clearly implies that each type of Player 1 will have his favorite

breakfast, as no Fight will ensue in any case: thus, Σ3
1,∆ = {(θs, B), (θw, Q)}. Nothing changes as

far as 2 is concerned: Σ3
2,∆ = Σ2

2,∆.
Finally, we reach a contradiction in Step 4. According to the definition of (∆, 4)-rationalizability,

µ2(Σ3
1,∆|φ) = 1; this implies that, in particular, µ2({(θs, Q)}|φ) = 0. But this belief is not an

element of ∆2, because the restrictions for Player 2 require that µ2({(θs, Q)}|φ) = 0.9. It follows
that Σ4

2,∆ = ∅, and thus also Σk
i,∆ = ∅ for all k ≥ 5 and i = 1, 2.

Thus, the assumption that players expect the “bad” equilibrium outcome to obtain is inconsis-
tent with the logic of ∆-rationalizability.

4 Rationalization and Equilibrium

This section relates our approach to the analysis of incomplete-information games to equilib-
rium analysis. As noted in the Introduction, we show that our approach is fully consistent with
Harsanyi’s, and may in fact be interpreted as a way to identify the robust implications of standard
Bayesian equilibrium analysis.

To elaborate, recall that a type in the sense of Harsanyi encodes a player’s private information
about the external state of Nature (the unknown parameters of the game) and also his epistemic
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type, i.e., his infinite hierarchy of beliefs about the state of Nature and the beliefs of others. In the
standard model of a Bayesian game, these hierarchies of beliefs are derived from a common prior,20

but this need not be the case in general. We now show that, if the set of epistemic types is not
restricted, in every static (simultaneous-moves) game of incomplete information, ∆-rationalizability
exactly characterizes the set of outcomes realized in some Bayesian equilibrium consistent with
restrictions ∆. This equivalence result can be extended to dynamic games by considering weak
versions of the rationalizability solution concept and the perfect Bayesian equilibrium concept (for
more on this, see the Discussion section).

On the other hand, in dynamic games, ∆-rationalizability refines the set of Bayesian equilibrium
outcomes. The main reason is that ∆-rationalizability includes a forward-induction principle which
is absent from the Bayesian equilibrium concept.

We will further analyze the relationship between ∆-rationalizability and equilibrium refinements
in Section 5. As a preliminary step, we present here a result that has some independent interest.
We consider a situation where each player’s initial beliefs about his opponent are consistent with
some statistical distribution ζ ∈ ∆(Θ × Z). We show that there is a Bayesian equilibrium where
players’ beliefs are consistent with ζ if and only if ζ is a self-confirming equilibrium distribution of
the extensive form game with prior margΘζ and player set Θ1 ∪Θ2.21

A consequence of our results is that ∆-rationalizability can be regarded as a forward-induction
refinement of self-confirming equilibrium.

4.1 Bayesian Models and Equilibria

Let us fix an incomplete-information game

Γ =
〈
Θ1,Θ2, A1, A2,H, u1, u2

〉
.

As noted in Section 2.1, unlike the standard notion of a Bayesian game, the incomplete-information
game Γ does not specify players’ beliefs about the state of Nature θ, about each other’s beliefs, etc.
In order to provide a general representation of players’ beliefs, we explicitly introduce epistemic
types; a “Harsanyi type” ti for Player i is then modeled as a pair consisting as a payoff type θi

and an epistemic type ei. The following definition provides the details, and also indicates the
appropriate notion of Bayesian Nash equilibrium.

Definition 4.1 A (finite) Bayesian model of Γ is a tuple

M =
〈
Γ, (Ei, Ti, pi, bi)i∈{1,2}

〉
such that, for each player i = 1, 2: (1) Ei is a finite set, (2) Ti ⊆ Θi×Ei is such that projΘi

Ti = Θi,

(3) pi : Ti → ∆(T−i), and (4) bi : Ti → Si. We let pti
i ∈ ∆(T−i) denote the belief of ti.

20We mean a common prior on the set of states of the world, where a state of the world comprises a state of Nature
and an epistemic state (hence an implicit hierarchy of beliefs) for each player.

21What makes the result non-obvious is that we consider self-confirming equilibria with “unitary beliefs,” whereby
each strategy played with positive probability by θi is justified by the same belief µθi ∈ ∆(Θ−i × S−i).
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M is an equilibrium model if, for each player i,

∀(θi, ei) ∈ Ti, bi(θi, ei) ∈ arg max
si∈Si

∑
(θ−i,e−i)∈T−i

p
(θi,ei)
i (θ−i, e−i)Ui(θi, si, θ−i, b−i(θ−i, e−i)).

M is consistent with the restrictions ∆ = (∆1,∆2) if for each player i ∈ {1, 2} and type ti =
(θi, ei) ∈ Ti there is a CPS µti ∈ ∆θi such that, for all (θ−i, s−i),∑

e−i:b−i(θ−i,e−i)=s−i

pti
i (θ−i, e−i) = µti(θ−i, s−i|φ)

We say that a pair (θi, si) is realizable in the Bayesian model M if there is an epistemic type ei in
M such that si = bi(θi, ei).

In other words, we obtain a Bayesian model of Γ by embedding Θ in a type space à la
Harsanyi (parts (1)-(3)) and then appending to it a behavioral profile (part 4)). The mappings
pi : Ti → ∆(T−i) implicitly determine the hierarchy of beliefs corresponding to each Harsanyi type.
The behavioral profile b specifies a strategy for each Harsanyi type. The belief and behavioral map-
pings (pi, bi)i∈{1,2} implicitly determine the hierarchy of beliefs about payoff-types and strategies
corresponding to each Harsanyi type. The sub-structure BGΓ =

〈
Γ, (Ei, Ti, pi)i∈{1,2}

〉
is a Bayesian

game based on Γ.22 An equilibrium model of Γ is given by a Bayesian game BGΓ and a Bayesian
equilibrium of BGΓ.

4.2 Rationalizability and Bayesian Equilibrium

The relationship between ∆-rationalizability and Bayesian equilibrium is characterized in the fol-
lowing two propositions.

Proposition 4.2 Fix a static (simultaneous-moves) game Γ and restrictions ∆. If a pair (θi, ai) is
realizable in a Bayesian equilibrium model of Γ consistent with ∆, then ai is ∆-rationalizable for
type θi.

Proof. Let M =
〈
Γ, (Ei, Ti, pi, bi)i∈{1,2}

〉
be a Bayesian equilibrium model of Γ consistent with

∆ and let Σ∗
i be the set of realizable pairs for player i; that is,

Σ∗
i = {(θi, ai) : ∃ei, ai = bi(θi, ei)}.

We will prove that Σ∗
i ⊆ Σn

i,∆ for all i = 1,2, n = 1, 2, ... . For every Harsanyi type ti ∈ Ti define
the corresponding belief µti ∈ ∆(Θ−i ×A−i) as follows:

µti(θ−i, a−i) =
∑

e−i:a−i=b−i(θ−i,e−i)

pti
i (θ−i, e−i)

22In the standard extensive-form representation of BGΓ, for each i there is a “prior” p0
i ∈ ∆(T1 × T2) such that

pti
i (t−i) = p0

i (t−i|ti). We refrain from using priors because they are formally unnecessary and may obscure the
incomplete-information interpretation of the mathematical structure.
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Since M is a Bayesian equilibrium model consistent with ∆, for every ti = (θi, ei) ∈ Ti, µti ∈ ∆θi ,
and for every (θi, ai) ∈ Σ∗

i there is some ei such that ai = bi(θi, ei) ∈ ri(θi, µ
(θi,ei)). Therefore,

Σ∗
i ⊆ Σ1

i,∆, i = 1, 2.

Suppose by way of induction that
Σ∗

j ⊆ Σn
j,∆, j = 1, 2.

Let (θi, ai) ∈ Σ∗
i and fix ei such that ai = bi(θi, ei). Then ai ∈ ri(θi, µ

(θi,ei)), where µ(θi,ei) ∈ ∆i(θi).
By definition µ(θi,ei)(Σ∗

−i) = 1. By the inductive assumption, Σ∗
−i ⊆ Σn

−i,∆; thus, µ(θi,ei)(Σn
−i,∆) = 1.

We conclude that (θi, ai) ∈ Σn+1
i,∆ .

Proposition 4.3 Fix a game Γ and restrictions ∆. Suppose that, for every player i and every
payoff type θi, there is a strategy si that is ∆-rationalizable for θi (∀i, projΘi

Σ∞
i,∆ = Θi). Then

there is a Bayesian equilibrium model M of Γ consistent with ∆ such that, for any arbitrary pair
(θi, si), si is ∆-rationalizable for θi if and only if (θi, si) is realizable in M.

Proof of Proposition 4.3. By assumption, projΘi
Σ∞

i,∆ = Θi. By finiteness of Γ, there is
some N ≥ 0 such that Σ∞

i,∆ = Σn
i,∆ for all n ≥ N , i = 1, 2 (see Remark 3.3). Therefore, for every

θi ∈ Θi there is a strategy si and a CPS µ(θi,si) ∈ ∆θi such that µ(θi,si)(Σ∞
−i,∆|φ) = 1, (θi, si) ∈ Σ∞

i,∆

and si ∈ ri(θi, µ
(θi,si)). Let

• Ei = Si, Ti = Σ∞
i,∆ ⊆ Θi × Ei,

• pti
i (θ−i, s−i) = µti(θ−i, s−i|φ) for all ti ∈ Ti and (θ−i, s−i) ∈ T−i.

• bi(θi, si) = si for all (θi, si) ∈ Ti.

This defines a Bayesian model M =
〈
Γ, (Ei, Ti, pi, bi)i∈{1,2}

〉
such that

Ti = Σ∞
i,∆ = {(θi, si) : ∃ei, si = bi(θi, ei)};

therefore, si is ∆-rationalizable for θi if and only if (θi, si) is realizable in M. By construction, M is
an equilibrium model consistent with the restrictions ∆. [To see this more explicitly, note that, for
each i and ti = (θi, si) ∈ Ti = Σ∞

i,∆, we have µti ∈ ∆θi , µti(T−i|φ) = 1, pti
i (θ−i, s−i) = µti(θ−i, s−i|φ)

for all (θ−i, s−i) ∈ T−i. Therefore M is consistent with ∆. Furthermore, si ∈ ri(θi, µ
ti) and

s−i = b−i(θ−i, s−i) for all (θ−i, s−i) ∈ T−i. Since a sequential best reply must also be an ex-ante
best reply, we have

bi(ti) = si ∈ arg max
s′i

∑
(θ−i,s−i)∈T−i

pti
i (θ−i, s−i)Ui(θi, s

′
i, θ−i, b−i(θ−i, s−i)),

showing that M is an equilibrium model.]

Thus, as anticipated in the Introduction, Propositions 4.2 and 4.3 jointly imply that, in static
games, ∆-rationalizability exactly characterizes the set of Bayesian equilibrium outcomes consistent
with restrictions ∆.
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We emphasize that the Bayesian equilibrium model constructed in the proof of Proposition
4.3 (i) does not necessarily admit a common prior on the set T of profiles of Harsanyi types, and
(ii) allows for the possibility that two distinct Harsanyi types of a player have the same payoff
component and hold the same hierarchy of beliefs about Θ, but play different strategies. Both
aspects deserve further comment; for simplicity, assume there are no explicit restrictions ∆.

To fix ideas, consider the special case of games with complete information (for which Θ is a
singleton). For such games, by definition, a Bayesian equilibrium model featuring a common prior
on the set T of (payoff-irrelevant) types is a correlated equilibrium (see Aumann, 1987). Since there
exist complete-information games in which certain actions are rationalizable, but never played in
any correlated equilibrium, it follows that the result of Proposition 4.3 does not hold if one restricts
attention to common-prior type spaces.

Also, for complete-information games, there exists only one (degenerate) hierarchy of beliefs
on Θ. Thus, a Bayesian equilibrium model such that players who have the same type and hold
the same hierarchical beliefs about Θ also play the same strategy is simply a pure-strategy Nash
equilibrium. Thus, for complete-information games, the result of Proposition 4.3 clearly does not
hold under the additional assumption just mentioned.

For games with incomplete information, we offer the following observations. Regarding common
priors, the restrictions ∆ may be chosen so as to reflect the assumption that a common prior on Θ,
the set of payoff-relevant type profiles, is exogenously given—as is often stipulated in applications.
Thus, our results do accommodate this possibility. We remark that the existence of a common
prior on T is neither necessary nor sufficient for the existence of a common prior on Θ. Further
comments and references on this issue may be found in the Discussion section.

Next, say that a Bayesian model exhibits indirect payoff-relevance if distinct Harsanyi types
correspond to distinct hierarchies of beliefs about payoff types. In view of our focus on the robust
implications of Bayesian equilibrium analysis, we are unconvinced that one should restrict attention
to Bayesian models with this property.23 Indeed, we are not aware of any application in which
indirect payoff-relevance is explicitly invoked. However, it may be interesting to ascertain whether
our equivalence result can be strengthened so as to incorporate this restriction.

We conjecture that, if Θ is not a singleton, then Proposition 4.3 remains true under the indirect
payoff-relevance restriction. We are able to prove a somewhat simpler result, that implies that the
conjecture is correct for ‘almost all’ static games with two-sided incomplete information.

To clarify our terminology, fix (Θi, Ai)i∈{1,2}; then a static game Γ is parametrized by the payoff
functions and can be regarded as a point in RΘ×A × RΘ×A. We say that a statement holds for
almost all static games if, for each Θ × A the set of static games with domain Θ× A for which it
does not hold is nowhere dense (i.e., its closure has empty interior).

Proposition 4.4 For almost all static games with at least two payoff types for each player, there
is a Bayesian equilibrium model M such that (1) distinct Harsanyi types have distinct first-order

beliefs about the opponent’s payoff type [t′i 6= t′′i ⇒margΘ−ip
t′i
i 6=margΘ−ip

t′′i
i ] and (2) an arbitrary

pair (θi, ai) is rationalizable if and only if it is realizable in M.

23Our comments on universal type spaces are also pertinent to this issue: interested readers are referred to the
Discussion section.
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Propositions 4.2 and 4.4 imply that, in almost all static games with two-sided incomplete
information, the set of rationalizable outcomes coincides with the set of outcomes realizable in
Bayesian equilibrium models that exhibit indirect payoff-relevance.

We remark that Proposition 4.4 can be extended to dynamic games, adopting the appropriate
notion of genericity.

4.3 Self-Confirming and Bayesian Equilibrium

We now relate ∆-rationalizability to an extensive-form equilibrium concept, namely self-confirming
equilibrium (cf. Fudenberg and Levine (1993)). We do so indirectly, by establishing a form of
outcome equivalence between self-confirming and Bayesian equilibrium that may be of independent
interest.

4.3.1 Agreement of Beliefs with an Outcome Distribution

Loosely speaking, in a self-confirming equilibrium each player best-responds to her beliefs, and
such beliefs are confirmed by whatever evidence she can get about the private information and
behavior of her opponents. Specifically, we consider a situation where this evidence is given by
reliable statistics about the frequencies of occurrence of combinations of payoff types and terminal
histories.

Thus, in order to define self-confirming equilibrium, we need to formalize the assumption that
a player’s beliefs about her opponent agree with an outcome distribution ζ ∈ ∆(Θ× Z).

The intuition behind this notion of agreement is as follows. The probability distribution ζ
encodes information about payoff types and choices made by both players at certain histories. On
the other hand, a belief µi ∈ ∆(Θ−i×S−i) held by Player i (at the beginning of the game) encodes
information about the payoff type and choices made by Player −i only. However, if ζ reflects the
assumptions that (i) payoff types are independent, and (ii) action choices at each non-terminal
history are stochastically independent, then information about Player −i at a given non-terminal
history can be retrieved from ζ by conditioning. If this is the case, it is meaningful to require
agreement between the conditional probabilities derived from ζ and µi at every non-terminal history
reached with positive ζ-probability. This is precisely the notion of agreement we adopt.

It is convenient to introduce additional terminology and notation. First, in the spirit of equi-
librium analysis, we shall often refer to a probability distribution µi ∈ ∆(Θi × Si) either as a
distributional strategy for Player i (see Milgrom and Weber, 1985), or as a belief held by Player −i
about Player i.

Second, an outcome distribution ζ will be deemed feasible if margΘζ is strictly positive and ζ
is generated by a product of distributional strategies (µ1 × µ2) ∈ ∆((θ1 × S1) × (Θ2 × S2)). This
captures assumptions (i) and (ii) in the preceding paragraph. In the Beer-Quiche example, the
distribution ζ = 9

10 [(θs, Q,N)]+ 1
10 [(θw, Q,N)] is feasible because it is generated by any product of

distributional strategies µ1 × µ2 with µ1 = 9
10 [(θs, Q)] + 1

10 [(θw, Q)] and µ2 ∈ ∆({FN,NN}).
Third, we define the probability of non-terminal histories, as well as other related probabilities.
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Denote by � (≺) the (asymmetric) “prefix of” relation on H and let

ζ(h) =
∑

θ,z:h≺z

ζ(θ, z), ζ(θi, h) =
∑

θ′,z:θ′i=θi,h≺z

ζ(θ′, z), ζ(θi, h, a−i) =
∑

z:∃ai∈Ai(h),(h,ai,a−i)�z

ζ(θi, z).

Finally, we define the collection of strategies of Player i that are consistent with history h and
choose a specific action ai ∈ Ai(h) at h:

∀h ∈ H, ai ∈ Ai(h) : Si(h, ai) = {si ∈ Si(h) : si(h) = ai}.

We can now formalize the notion of agreement with an outcome distribution ζ.

Definition 4.5 A distributional strategy (or belief) µ−i ∈ ∆(Θ−i×S−i) agrees with ζ (is consistent
with ζ) if for all h ∈ H, θ−i ∈ Θ−i, a−i ∈ A−i(h),

ζ(h) > 0 ⇒
µ−i({θ−i} × S−i(h, a−i))

µ−i(Θ−i × S−i(h))
=

ζ(θ−i, h, a−i)
ζ(h)

. (2)

A Bayesian model M of Γ is consistent with an outcome distribution ζ ∈ ∆(Θ×Z) if it is consistent
with the following restrictions:

∆θi = {µi ∈ ∆H(Θ−i × S−i) : µi(·|φ) agrees with ζ}, i = 1, 2, θi ∈ Θi .

Thus, a Bayesian model M is consistent with ζ if, for i = 1, 2, the distributional strategy for
Player −i derived from each belief pti in M agrees with ζ.

The following remark clarifies the implications of the notion of agreement.

Remark 4.6 Let µ−i ∈ ∆(Θ−i × S−i) be a distributional strategy that agrees with a given ζ ∈
∆(Θ× Z). Then:
(1) margΘ−i

µ−i = margΘ−i
ζ;

(2) for all h ∈ H, θ−i ∈ Θ−i, a−i ∈ A−i(h): ζ(θ−i, h) > 0 ⇒ µ−i({θ−i}×S−i(h,a−i))

µ−i({θ−i}×S−i(h)) = ζ(θ−i,h,a−i)
ζ(θ−i,h) .

4.3.2 Characterization of Self-Confirming Equilibrium Outcomes

Self-confirming equilibrium can now be defined.

Definition 4.7 A feasible distribution ζ ∈ ∆(Θ×Z) is a self-confirming equilibrium (SCE) if there
are distributional strategies µi ∈ ∆(Θi×Si) and (µθi)θi∈Θi

∈ [∆(Θ−i×S−i)]Θi , i = 1, 2, such that,
for each player i,
(1) ∀θi, si, if µi(θi, si) > 0 then

si ∈ arg max
s′i

∑
θ−i,s−i

Ui(θi, θ−i, s
′
i, s−i)µθi(θ−i, s−i);

(2) ∀θi, µθi agrees with ζ;
(3) µi is agrees with ζ.
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Condition (1) of this definition deserves further comment. Note that every strategy played
with positive µi-probability by type θi is rationalized using the same belief µθi

−i, as if we were
checking whether type θi plays a randomized best response.24 A more congenial interpretation of
the randomness of behavior is to assume that the game Γ is played by individuals drawn at random
from large heterogeneous populations (one for each player role), and that different individuals with
the same payoff type (preferences and/or abilities) may play different strategies. According to this
interpretation, the probability µi(θi, si)/ζ(θi) represents the relative frequency of strategy si in the
sub-population of individuals whose payoff type is θi.

This interpretation would call for a weakening of Condition (1) whereby different strategies may
be justified by possibly different beliefs, as in a Bayesian equilibrium.25 However, the following
proposition (the main result of this subsection) shows that, even with the stronger definition of
SCE given above, if a Bayesian equilibrium is consistent with ζ, then ζ is an SCE distribution. It
turns out that the converse is also true.26

Proposition 4.8 ζ ∈ ∆(Θ×Z) is an SCE distribution if and only if there is a Bayesian equilibrium
model consistent with ζ.

Sketch of proof. (If) Fix a Bayesian equilibrium model M. From the beliefs of each Harsanyi
type ti we obtain a corresponding distributional strategy for Player −i. If M is consistent with ζ
then any product of such distributional strategies for i and −i induces distribution ζ on Θ × Z.
The key observation is that any pair (θi, si) with positive probability according to some opponent’s
type t−i is such that si is a (ex ante) best response for θi to beliefs that agree with ζ. Fix two pairs
(θi, si) and (θi, s

′
i). Since the beliefs justifying si and s′i both agree with ζ, it can be shown that

the belief justifying si also justifies s′i. Therefore we can recover from M an array of distributional
strategies supporting ζ as an SCE distribution.

(Only if). Given an array of distributional strategies (µi, µ
θi
i )i=1,2,θi∈Θi

supporting ζ as an SCE,
construct a Bayesian model M by setting Ei = Si, Ti =

⋃
θ−i∈Θ−i

suppµθ−i ⊂ Θi×Si, p
(θi,si)
i = µθi .

One can then show that conditions (1)-(3) of Definition 4.7 imply that M is an equilibrium model
consistent with ζ. �

4.3.3 Comments

The “if ” result, together with Proposition 4.3, clarifies the relationship between self-confirming
equilibrium and ∆-rationalizability. Specifically, it implies that ∆-rationalizability yields a forward-
induction refinement of self-confirming equilibrium.27 We show in Section 5 that, in signaling games,
this refinement corresponds to the Iterated Intuitive Criterion.

The “only if” result crucially relies on the assumption that beliefs agree with the “true” dis-
tribution on Θ × Z. With coarser feedback about the outcome of the interaction (corresponding

24This corresponds to the definition of self-confirming equilibrium with “unitary beliefs” of Fudenberg and Levine
(1993), as applied to the extensive form representation where the player set is Θ1 ∪Θ2.

25This corresponds to the definition of a “type heterogeneous SCE” in Dekel et al. (2003).
26The converse extends to incomplete information games similar results due to Battigalli (1987), Fudenberg and

Levine (1993) and Kalai and Lehrer (1993).
27Reny (1992) puts forward a similar refinement of Nash equilibrium.
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to weaker definitions of SCE), the result may fail. For example, in some contexts it is plausible to
assume that only the distribution of actions (terminal histories) can be observed ex post. It can
be shown that in this case the “only if” part of Proposition 4.8 fails (see Example 3 in Dekel et
al., 2003). Here we consider a different case. Suppose that individuals can observe ex post the
distribution of payoffs (e.g. because there are public statistics on income distribution), but not the
actual distribution ζ ∈ (Θ × Z) that generates it. Then the definition of SCE must be modified
as follows: ζ is a SCE ∗ distribution if it is generated by a pair of distributional strategies such
that each type chooses a best response to some belief that “agrees” with the distribution of payoffs
generated from ζ. The following example shows that there are SCE∗ distributions ζ for which there
is no Bayesian equilibrium model consitent with ζ.

Consider the incomplete information game given by the following matrices, where Player 1
chooses the row and Player 2 has private information:

θ′2 ` r

u 2,2 2,1
d 0,1 4,0

θ′′2 ` r

u 2,1 2,2
d 0,0 4,1

Let ζ(θ′2, u, `) = 1
3 and ζ(θ′′2, u, r) = 2

3 . Then ζ is a SCE∗ distribution that generates a distribution on
payoffs concentrated on (2, 2). In particular, distribution ζ obtains if each type of Player 2 chooses
its dominating action and Player 1 best responds to a belief µ1 such that µ1(θ′2, `) > 1

2 , µ1(θ′′2, r) =
1 − µ1(θ′2, `). Such belief does not agree with ζ but it agrees with the observed distribution of
payoffs. Note that, in every Bayesian equilibrium model where Player 1 assigns probability 2

3 to
θ′′2, Player 1 chooses d. Therefore there is no Bayesian equilibrium model consistent with ζ.28

5 Rationalization and the Iterated Intuitive Criterion

We now focus on the implications of ∆-rationalizability for signalling games. We first provide an
alternative characterization of the procedure for this class of games. The main result of this section
then states that ∆-rationalizability characterizes self-confirming equilibrium outcomes consistent
with the Iterated Intuitive Criterion of Cho and Kreps (1987). The Beer-Quiche example of Section
3 illustrates this result.

Recall that a signalling game is a two-person, two stage game with sequential moves and un-
certainty about the payoff-type of Player 1, where Player 1 (the Sender) is active at the first stage
and Player 2 (the Receiver) is active at the second stage. Our definition of game with incomplete
information already implies that the set of feasible actions of the Sender is the same for each payoff-

28Note that there must be some Bayesian equilibrium model where Player 1 plays u, θ′2 plays ` and θ′′2 plays r,
because this profile is rationalizable (with no restrictions on beliefs; see Proposition 4.3). We only claim that any
such model cannot be consistent with the given distribution ζ. There are examples of self-confirming distributions
that violate common belief in rationality and hence are inconsistent with any Bayesian equilibrium model. Example
3 in Dekel et al. (2003) is a case in point. The working paper version of the present article contained another example
of this sort.
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Object Notation Remarks

Payoff-Types for Player 1 θ ∈ Θ = Θ1

Actions
m ∈ M = A1,

a ∈ A = A2

S1 = M

S2 = AM

Partial histories H = {φ} ∪M

Outcome distribution ζ ∈ ∆(Θ×M ×A)

Table 2: Notation for Signalling Games

type. We also assume that the set of feasible actions for the Receiver is independent of the signal.29

Table 2 summarizes our notation for signalling games.
The actions of the Sender will be referred to as messages or signals; those of the Receiver will

also be called responses.
For any given outcome distribution ζ ∈ ∆(Θ×M ×A) we denote the marginal and conditional

probabilities derived from ζ as follows: ζ(θ), ζ(m), ζ(m,a), ζ(m|θ), ζ(m,a|θ), ζ(θ|m), ζ(a|m). Note
that, if ζ feasible, ζ(m|θ) and ζ(m,a|θ) are always well-defined, because ζ(θ) > 0 for all θ.

∆-rationalizability admits a simplified characterization in signalling games. Fix an outcome
distribution ζ. Denote by Σk

1,ζ and Sk
2,ζ , k = 0, 1, . . . , the sets of type-message pairs and strategies

obtained from step k of the procedure specified in Definition 3.1, when first order beliefs are assumed
to agree with ζ, i.e. assuming the restrictions30

∆1 =
{
µ1 ∈ ∆(S2) : ∀m,∀a, ζ(m) > 0 ⇒ µ1({s2 : s2(m) = a}) = ζ(a|m)

}
,

∆2 =
{
µ2 ∈ ∆H(Σ1) : ∀(θ, m), µ2(θ, m|φ) = ζ(θ, m)

}
.

For notational simplicity, we refer to this procedure as ζ-rationalizability. Now consider the fol-
lowing iterative definition, which, loosely speaking, identifies types that may send a given message,
and actions that may be played in response to a given message. For every m ∈ M , let Θ0(m; ζ) = Θ
and A0(m; ζ) = A; then, for k > 0, let

Θk(m; ζ) =

{
θ ∈ Θk−1(m; ζ) : ∃π2 ∈ [∆(A)]M s.t.

∀m′,∀a, ζ(m′) > 0 ⇒ π2(a|m′) = ζ(a|m′)

∀m′, π2(A
k−1(m′; ζ)|m′) = 1

m ∈ arg maxm′
∑

a u1(θ, m′, a)π2(a|m′)

}

and

Ak(m; ζ) =

{
a ∈ Ak−1(m; ζ) : ∃νm ∈ ∆(Θ) s.t.

Θk−1(m; ζ) 6= ∅ ⇒ νm(Θk−1(m; ζ)) = 1;
ζ(m) > 0 ⇒ ∀θ, νm(θ) = ζ(θ|m);
a ∈ arg maxa′

∑
θ u2(θ, m, a′)νm(θ)

}
.

We then have:

29Removing these assumptions is straightforward but implies a more complex notation.
30Since the restrictions for the Sender are type-indepedent, we omit θ from the notation. Note also that ∆H(S2)

is isomorphic to ∆(S2) because in a signaling game S2(h) = S2 for all h ∈ H.
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Lemma 5.1 For all k ≥ 0, θ, m and s2,
(i) (θ, m) ∈ Σk

1,ζ if and only if θ ∈ Θk(m; ζ)
(ii) s2 ∈ Sk

2,ζ if and only if, for all m′, s2(m′) ∈ Ak(m′; ζ).

Cho and Kreps (1987) put forward the Iterated Intuitive Criterion (IIC) as a test for sequential
equilibria, but the same criterion can be naturally and more generally be applied to self-confirming
equilibria (cf. Kohlberg, 1990, p. 23, footnote 17). We now provide the details.

For any outcome distribution ζ, we let

uζ
1(θ) =

∑
m,a

ζ(m,a|θ)u1(θ, m, a)

denote the expected payoff for type θ. For any subset of types ∅ 6= Θ ⊆ Θ and message m,

BR2(Θ,m) =
⋃

ν∈∆(Θ)

{
arg max

a∈A

∑
θ

ν(θ)u2(θ, m, a)

}

denotes the set of best responses to beliefs concentrated on Θ given message m.
Let IA0(m; ζ) = A and IΘ0(m; ζ) = Θ and, for all n = 0, 1, 2, ... define

IAn+1(m; ζ) =
{

BR2(IΘn(m; ζ),m), if IΘn(m; ζ) 6= ∅
IAn(m; ζ), if IΘn(m; ζ) = ∅. ,

IΘn+1(m; ζ) =
{

θ ∈ IΘn(m; ζ) : uζ
1(θ) ≤ max

a∈IAn(m;ζ)
u1(θ, m, a)

}
.

We then have:

Definition 5.2 A SCE outcome distribution ζ satisfies the IIC if and only if, for every message
m ∈ M with ζ(m) = 0 and every payoff-type θ ∈ Θ, there exists an action a ∈

⋂
n>0 IAn(m; ζ)

such that u1(θ, m, a) ≤ uζ
1(θ).

31

Proposition 5.3 ζ is an SCE outcome distribution satisfying the IIC if and only if there is a ζ-
rationalizable strategy for the Receiver and a ζ-rationalizable message for each type θ of the Sender
(S∞2,ζ 6= ∅ and projΘΣ∞

1,ζ = Θ).32

Proof. We provide only a sketch here. A complete proof can be found in the Appendix.
31In the Appendix we show that the definition in the text is equivalent to the original one due to Cho and Kreps

(1987).
32Furthermore, one can show that ζ is a SCE outcome distribution satisfying the (non iterated) Intuitive Criterion

if and only if Σ4
1,ζ × S4

2,ζ 6= ∅.
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(If) If S∞2,ζ 6= ∅ and projΘΣ∞
1,ζ = Θ, the hypothesis of Proposition 4.3 is satisfied; hence there

is a Bayesian equilibrium consistent with ζ. By Proposition 4.8, ζ must be an SCE distribution.
Furthermore, if ζ(θ, m∗) > 0, there is a ζ-rationalizable belief of the Receiver assigning positive
prior probability to (θ, m∗), which means that m∗ must be a ζ-rationalizable message for type θ,
or (by Lemma 5.1) θ ∈

⋂
k Θk(m∗; ζ).

One of the main steps of the proof consists in showing that if θ ∈
⋂

k Θk(m∗; ζ) for each pair
(θ, m∗) with ζ(θ, m∗) > 0, then for every off-the-ζ-path message m and every step k, Θk(m; ζ) =
IΘk(m; ζ) and Ak(m; ζ) = IAk(m; ζ). This in turn implies that for every off-the-ζ-path message
m and type θ there is an action a ∈

⋂
k IAk(m; ζ) such that uζ

1(θ) ≥ u1(θ, m, a), i.e. ζ satisfies the
IIC.

(Only if) If ζ is an SCE satisfying the IIC, then it can be shown that, as above, for every
off-the-ζ-path message m and every step k, Θk(m; ζ) = IΘk(m; ζ) and Ak(m; ζ) = IAk(m; ζ);
furthermore,

⋂
k>0 IAk(m; ζ) 6= ∅ (see Definition 5.2). Therefore there is some ζ-rationalizable

response to every message m off the ζ-path. On the other hand, the ζ-rationalizable responses to
any message m∗ on the ζ-path are simply the best responses to belief ζ(·|m) ∈ ∆(Θ). Since there
is a ζ-rationalizable response for every message, S∞2,ζ is not empty. By Remark 3.4, this implies
projΘΣ∞

1,ζ = Θ.

6 Discussion

In this section we jointly discuss the related literature and some extensions and applications of the
basic framework.

Common Priors. As we observed in Section 4.1, the notion of ∆-rationalizability is consistent
with, but does not necessarily reflect the assumption that the players’ hierarchical beliefs about
each other’s payoff types and strategies are generated by a common prior on some set T of Harsanyi
types. We have also noted that, on the other hand, our approach may incorporate the assumption
of a common prior on the set Θ of payoff-relevant types.

Recall that, in Harsanyi’s approach, a type represents a player’s hierarchical beliefs about Θ
(and, for a given equilibrium profile b, her hierachical beliefs about choices as well). Thus, in a
genuine incomplete-information setting, the common-prior assumption should be evaluated on the
basis of its implications for the players’ hierarchical beliefs. Recent work by Bonanno and Nehring
(1999), Samet (1999a,b), and Feinberg (2000) clarifies that assuming the existence of a common
prior on T is equivalent to imposing a rather strong restriction on mutual beliefs: in particular,
players cannot “agree to disagree” on the probability of events related to payoff types.

Unless this sort of assumption arises naturally in a specific application, if one is interested in the
robust implications of Bayesian equilibrium analysis, it seems appropriate not to insist on requiring
that the common-prior assumption be satisfied.

Further discussion of these issues may be found in Aumann (1998), Gul (1998), Morris (1995),
and Bergemann and Morris (2002).

Universal Type Space and Spaces of Hierarchical Beliefs. In order to simplify the discussion,
assume that the explicit restrictions ∆ concern the players’ beliefs about payoff types. Our approach
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is then equivalent to carrying out standard Bayesian equilibrium analysis in the context of the ∆-
universal type space, formed by taking the ‘union’ of all Harsanyi type spaces based on Θ and
consistent with ∆.33 More precisely, an immediate consequence of Propositions 4.2 and 4.3 is that,
in static games, every ∆-rationalizable outcome is realizable in an equilibrium of the Bayesian game
with the ∆-universal type space.

Also, Mertens and Zamir (1985) and Brandenburger and Dekel (1993) provide constructive
characterizations of the type space consisting of all coherent hierarchies of beliefs on a given set
X. We note that, if X = Θ, the resulting type space is smaller than the universal type space
described above. Furthermore, carrying out Bayesian equilibrium analysis of a specific situation
by embedding Θ in the Mertens-Zamir / Brandenburger-Dekel type space incorporates the indirect
payoff-relevance restriction that player types who share the same payoff component and hierarchy
of beliefs on Θ play the same strategy; see the discussion following Proposition 4.3. In other words,
this alternative approach reflects a weaker notion of robustness than the one we adopt. See also
the discussion in Bergemann and Morris (2002, subsection 2.1.2).

n players
The main issue in this more general case is whether we should assume that a player regards

the types and (strategic) choices of distinct opponents as stochastically independent. If not, the
extension of the solution concept and results is straightforward. If instead independence is assumed,
subtle issues arise pertaining to players’ beliefs after unexpected events. In order to fully reflect the
implications of stochastic independence, marginal beliefs about the types and strategies of distinct
opponents should be updated independently of one another; joint (conditional) beliefs should then
be derived as product measures. This can be added as an explicit restriction of beliefs. But then it
also makes sense to assume that the observed behavior of opponent j is rationalized independently
of the behavior of opponent k. Thus, if k’s behavior is clearly irrational, but j’s behavior is not, i
should keep believing that j is rational. We refer the reader to Battigalli (1996, 1999) and references
therein for details.

Infinite games and more general information structures
For the sake of simplicity, we have restricted our attention to finite games with observable

actions. Battigalli (1999) provides an analysis of ∆-rationalizability in games with possibly infinite
type and action spaces, and shows how to extend the analysis to games with perfect recall.

These extensions affect some of our results. Propositions 4.2 and 4.3 continue to hold as stated,
whereas the genericity qualification in Proposition 4.4 relies on finiteness. We conjecture that
Proposition 4.8 holds for all games with perfect recall and can also be extended to sufficiently
regular infinite games. Similarly, we conjecture that Proposition 5.3 can be extended to sufficiently
regular infinite signaling games.

33Fix a collection of type spaces based on Θ and consistent with ∆, {T k = (T k
i , pk

i )i∈{1,2}, k ∈ K}, where K is
some index set. It may be assumed without loss of generality that the sets T k

i (k ∈ K) are disjoint. The union of the
T k’s is the type space T = (

⋃
k∈K Ti, pi)i∈{1,2} where pi is obtained from the belief functions pk

i in the obvious way

[for all k ∈ K, ti ∈ T k
i , F−i ⊂ T−i, pti

i (F−i) = pk,ti
i (F−i ∩ T k

−i)]. For more general restrictions ∆ concerning beliefs
about both strategies and types, type spaces based on Θ× S must be considered.
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Weak rationalizability and perfect Bayesian equilibrium
We have focused on a notion of rationalizability for dynamic games whereby players try to

rationalize the observed behavior of the opponent. Alternatively, one may wish to analyze a weaker
notion of extensive form rationalizability that does not satisfy this forward-induction requirement,
but instead only reflects the assumption that there is common certainty of sequential rationality
at the beginning of the game. We refer the reader to Ben Porath (1997), Battigalli and Sinis-
calchi (1999) and Battigalli (1999) for the epistemic and procedural characterizations of this “weak
(extensive form) rationalizability” solution concept. Weak rationalizability can be related to a
version of the Bayesian equilibrium concept whereby players are assumed to carry out sequential
best responses to their beliefs. We call such equilibria “weakly perfect Bayesian”. Battigalli (1999,
Proposition 3.10) provides a generalization of Propositions 4.2 and 4.3 stating that an outcome is
realizable in a weakly perfect Bayesian equilibrium consistent with ∆ if and only if it is weakly
∆-rationalizable. On the other hand, the analog of Proposition 4.8 (“only if”) does not hold: a
self-confirming equilibrium distribution ζ need not be consistent with any weakly perfect Bayesian
equilibrium, because it may be supported by beliefs whereby players ascribe to their opponents ir-
rational behavior at unreached histories. In other words, an SCE distribution ζ may be inconsistent
with the assumption of initial common certainty of sequential rationality.34

Other definitions of self-confirming equilibrium
Recall that it is possible to interpret the incomplete-information model as a grand game with

random matching of players drawn from heterogeneous populations, assuming that the distribution
of outcomes (types and terminal histories) is observed ex post. Our definition of self-confirming
equilibrium is motivated by this interpretation; in particular, an SCE is supposed to represent a
stable distribution in such an environment. Different interpretations call for different definitions. As
we mentioned, relaxing the assumptions about information feedback one obtains weaker definitions
of SCE; as a result, the “only if” part of Proposition 4.8 is lost. Definitions of SCE related to
different environments can be found in Battigalli (1987), Fudenberg and Levine (1993), Kalai and
Lehrer (1993, 1995), Battigalli and Guaitoli (1997) and Dekel et al. (2003). The latter paper
considers a class of environments where the state of nature is drawn at random at each repetition
of the game according to an objective distribution ρ ∈ ∆(Θ); they show that it is very difficult
to find information structures that allow the players to learn to play a given Bayesian equilibrium
with incorrect beliefs about the state of nature. The reason is quite simple: if the information
feedback is too poor they need not come to have correct conjectures about the opponents, if it is
too rich they need not hold on to their (incorrect) beliefs about the state of nature.35

Iterated Intuitive Criterion
34By the above mentioned equivalence result, ζ is an SCE distribution consistent with common certainty of (agree-

ment with ζ and) sequential rationality if and only if there is some weakly perfect Bayesian equilibrium model
consistent with ζ. For related definitions of rationalizable SCE see Rubinstein and Wolinsky (1994) (static games)
and in particular Dekel et al. (1999).

35For an environment where the state of nature θ is determined once and for all and the same players interact
repeatedly, Battigalli and Guaitoli (1997) put forward a notion of “conjectural equilibrium” at a given state θ. Dekel
et al. (2003) also briefly consider this case.
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Our analysis of the IIC is inspired by the work of Sobel et al. (1990). In particular, Proposition
5.3 is somewhat similar to their Proposition 2, which relates the IIC to extensive-form rationalizabil-
ity in an auxiliary game where the messages on the equilibrium path are coalesced into a fictitious
message mζ that yields the equilibrium payoff uζ

1(θ) to each incarnation θ of the Sender. Our result
relies instead on the procedure in Definition 3.1; here the restrictions on first-order beliefs ∆i are
chosen to reflect the assumption that Player i’s prior beliefs “agree” with the outcome distribution
ζ. But the similarities with Sobel et al. (1990) allow us to adapt some of their arguments in order
to prove Lemma 5.1 and Proposition 5.3. Christian Ewerhart (private communication) provided a
related characterization of the Intuitive Criterion.

Applications of ∆-rationalizability
Battigalli (1999) provides applications of ∆-rationalizability to models of disclosure, job mar-

ket signaling and reputation. The latter application uses the “weak” version of the concept (see
comment above) and relies on previous work by Watson (1993) and Battigalli and Watson (1997).
Battigalli and Siniscalchi (2003) and Dekel and Wolinsky (2003) apply ∆-rationalizability to the
analysis of first price auctions. ∆-rationalizability can be used to replicate Perry and Reny’s “Gen-
eral Solution to King Solomon’s Dilemma” (1999). Our second example in Section 3.2 is inspired
by their work.

Morris and Skiadas (2000) provide necessary and sufficient conditions for rationalizable trade
among two players. Once a small trading cost is introduced, their analysis may be interpreted as
an application of ∆-rationalizability.36

Finally, Bergemann and Morris (2002) analyze robust mechanism design under incomplete in-
formation. In order to formalize the notion of robustness, they consider various specifications of the
agents’ type spaces, including the universal space formed by taking the union of all Harsanyi type
spaces. Thus, while their paper and ours focus on different issues and adopt different approaches
and techniques, they share a common motivation. Furthermore, while most of their analysis in-
volves equilibrium notions, some of their results can be interpreted as pertaining to ∆-rationalizable
(truthful) implementation.37

7 Colophon

Part of this paper is a revision of Battigalli (1999), an unpublished manuscript. All the additional
material has been jointly developed by Pierpaolo Battigalli and Marciano Siniscalchi. Part of the
material concerning the Iterated Intuitive Criterion was originally contained in the working paper
version of Battigalli and Siniscalchi (2002). We thank Adam Brandenburger, Drew Fudenberg,

36Formally, fix nonempty sets Θ̂−i(θi) ⊂ Θ−i for i = 1, 2 and θi ∈ Θi; then ∆θi = {µi : suppµi = Θ̂−i(θi)× S−i}.
Morris and Skiadas actually, specify a prior pi on Θ for each player i, but they observe that their proof only relies
on whether or not certain pairs of types are in the support of the prior.

37For instance, one such result states that a social choice correspondence is (truthfully) implementable in an
equilibrium of the Bayesian model with the universal type space if and only if it is (truthfully) implementable in
rationalizable strategies. This can be seen as a consequence of our Propositions 4.2 and 4.3 (and also of Proposition
3.10 in Battigalli (1999)). We observe that Bergemann and Morris employ a different terminology than we do: see
Footnote 11.
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8 Appendix

8.1 Proof of Proposition 4.4

We show that, for almost all games, the justifying beliefs µ(θi,ai) in the proof of Proposition 4.3 can
be chosen so as to ensure that margΘ−i

µ(θi,ai) 6= margΘ−i
µ(θ′i,a

′
i) whenever (θi, ai) 6= (θ′i, a

′
i). The

Bayesian model constructed in that proof will then satisfy the appropriate restriction on first-order
beliefs about Θ.

Throughout this proof, we indicate the best-response correspondence and the set of rational-
izable choices for player i in the game u ∈ RΘ×A × RΘ×A by ri(·, ·, u) and Σ∞

i (u) respectively.
By standard arguments ri(θi, µ, u) is upper-hemicontinuous in (µ, u) (of course, the finite set Ai is
endowed with the discrete topology).

Say that a game u ∈ RΘ×A×RΘ×A satisfies the strict best-response property (SBRP) iff, for all i
and (θi, ai) ∈ Σ∞

i (u), there exists µ ∈ ∆(Θ−i×A−i) such that µ(Σ∞
−i(u)) = 1 and ri(θi, µ, u) = {ai}.

We claim that the set NSBR ⊆ RΘ×A ×RΘ×A of games that do not satisfy SBRP is nowhere
dense. To see this, first note that NSBR can be decomposed as follows: let C denote the collection
of all subsets Σ = Σ1 × Σ2 with Σi ⊆ Θi ×Ai, projΘi

Σi = Θi for i = 1, 2 (see Remark 3.2); then

NSBR =
⋃
Σ∈C

⋃
i=1,2

⋃
(θi,ai)∈Σi

{u : Σ∞(u) = Σ,∀µ ∈ ∆(Σ−i), ri(θi, µ, u) 6= {ai}} .

Let
NSBR(Σ, θi, ai) ≡ {u : Σ∞(u) = Σ,∀µ ∈ ∆(Σ−i), ri(θi, µ, u) 6= {ai}} ;

then
NSBR(Σ, θi, ai) ⊆ NS (Σ, θi, ai) ∩ BR(Σ, θi, ai),

where

NS (Σ, θi, ai) = {u : ∀µ ∈ ∆(Σ−i), ∃aµ
i ∈ ri(θi, µ, u)\{ai}} ,

BR(Σ, θi, ai) = {u : ∃ν ∈ ∆(Σ−i), ai ∈ ri(θi, ν, u)} .

We claim that NS (Σ, θi, ai) ∩ BR(Σ, θi, ai) is a closed set with empty interior.
To see that this set is closed consider a sequence {un}n≥1 ⊆ NS (Σ, θi, ai)∩BR(Σ, θi, ai) such that

un → u. Then for all µ ∈ ∆(Σ−i) and all n there are aµ,n
i 6= ai and νn such that aµ,n

i ∈ ri(θi, µ, un)
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and ai ∈ ri(θi, ν
n, un). By compactness of Ai×∆(Σ−i) we may as well assume that, for all µ there

is (aµ
i , ν) ∈ Ai×∆(Σ−i) such that (aµ,n

i , νn) → (aµ
i , ν) for some (aµ

i , ν) ∈ Ai×∆(Σ−i), which in turn
implies that aµ,n

i = aµ
i for n large enough; hence aµ

i 6= ai. By upper-hemicontinuity of ri(θi, ·, ·),
aµ

i ∈ ri(θi, µ, u) and ai ∈ ri(θi, ν, u). Therefore u ∈ NS (Σ, θi, ai) ∩ BR(Σ, θi, ai).
NS (Σ, θi, ai)∩BR(Σ, θi, ai) has empty interior if for every u ∈ NS (Σ, θi, ai)∩BR(Σ, θi, ai) and

every ε > 0, there is at least one game u′ /∈ NS (Σ, θi, ai) ∩ BR(Σ, θi, ai) such that ‖u− u′‖ < ε,
where ‖·‖ is the sup-norm. Fix u ∈ NS (Σ, θi, ai) ∩ BR(Σ, θi, ai), ε > 0 and define v as follows:

u′−i = u−i

u′i(θ
′
i, a

′
i, θ−i, a−i) =

{
ui(θ′i, a

′
i, θ−i, a−i), if (θ′i, a

′
i) 6= (θi, ai)

ui(θ′i, a
′
i, θ−i, a−i) + ε

2 , if (θ′i, a
′
i) = (θi, ai)

By definition there is some ν ∈ ∆(Σ−i) such that ai ∈ ri(θi, ν, u). By construction ‖u− u′‖ < ε
and {ai} = ri(θi, ν, u′). Therefore u′ has the required property.

Thus, each set NSBR(Σ, θi, ai) is contained in a closed set with empty interior, hence it is
nowhere dense. This implies that the finite union NSBR =

⋃
Σ∈C

⋃
i=1,2

⋃
(θi,ai)∈Σi

NSBR(Σ, θi, ai)
is nowhere dense as required.

The proof will be completed by showing that, for any game u that satisfies the strict best-
response property, justifying beliefs can be chosen as indicated above. Enumerate the rationalizable
action-type pairs of Player i: thus, Σ∞

i = {(θk
i , a

k
i ) : k = 1, ...,Ki}, for some Ki ≥ 1. Now argue by

induction.
For k = 1, choose a belief µ1 ∈ ∆(Θ−i×A−i) such that a1

i ∈ ri(θ1
i , µ

1) and µ1(Σ∞
−i) = 1. For k >

1, pick an arbitrary belief µ such that ri(θk
i , µ) = {ak

i } and µ(Σ∞
−i) = 1. If margΘ−i

µj 6= margΘ−i
µ

for all j = 1, ..., k − 1, then let µk+1 = µ; otherwise, µ can be slightly perturbed so as to obtain a
belief µk+1 with all required properties. To see this, pick some (θ−i, a−i) such that µ(θ−i, a−i) > 0.
By assumption there is another payoff type θ′−i 6= θ−i; furthermore, there is at least one a′−i such
that (θ′−i, a

′
−i) ∈ Σ∞

−i (see Remark 3.2). For any ε ∈ (0, µ(θ−i, a−i)), let µε be the belief which
coincide with µ except that µε(θ−i, a−i) = µ(θ−i, a−i) − ε, µε(θ

′
−i, a

′
−i) = µ(θ′−i, a

′
−i) + ε. Note

that µε ∈ ∆(Σ∞
−i) and margΘ−i

µ 6= margΘ−i
µε. Since ai is a strict best response to µ for type

θi, there is some ε > 0 such that for all ε ∈ (0, ε), ai ∈ ri(θi, µε). Clearly ε can be chosen so that
margΘ−i

µj 6= margΘ−i
µε for all j = 1, ..., k − 1.�

8.2 Proof of Proposition 4.8 (Self-Confirming and Bayesian Equilibrium)

(If) Fix a Bayesian equilibrium model

M =
〈
Γ, (Ei, Ti, pi, bi)i∈{1,2}

〉
consistent with the feasible distribution ζ, and an arbitrary Harsanyi type t−i ∈ T−i. Let µi be the
distributional strategy obtained from pt−i :

∀θi,∀si, µi(θi, si) =
∑

ei:bi(θi,ei)=si

pt−i(θi, ei).
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For any θi, pick si and ei such that µi(θi, si) > 0 and bi(θi, ei) = si (such si and ei must exist
because ζ assigns positive marginal probability to every payoff type and M is consistent with ζ).
Let µθi be the distributional strategy of −i obtained from p(θi,ei):

∀θ−i,∀s−i, µθi(θ−i, s−i) =
∑

e−i:b−i(θ−i,e−i)=s−i

p(θi,ei)(θ−i, e−i)

We claim that the collection of probability measures thus constructed satisfies conditions (1)-(3) of
Definition 4.7 and hence ζ is an SCE distribution.

First note that, by construction and consistency of M with ζ, distribution ζ ∈ ∆(Θ1×Θ2×Z)
is induced by any product measure of the form (µi × µθi) ∈ ∆((Θi × Si) × (Θ−i × S−i)), i = 1, 2,
θi ∈ Θi. This yields conditions (2) and (3). We must now show that (1) also holds. Notice that
Definition 4.7 requires that, for each type θi, every strategy si such that µi(θi, si) > 0 be a best
response to the belief µθi ∈ ∆(Θ−i × S−i): the same belief about the opponent must rationalize
every strategy that receives positive weight. But µθi is constructed starting with a fixed strategy
s̄i such that µi(θi, si) > 0, so we must show that µθi also rationalizes any arbitrary si such that
µi(θi, si) > 0.

To this end, recall that, by construction, bi(θi, ei) = si. Also, consider an arbitrary si ∈ Si and
recall that, by construction, µi(θi, si) > 0 implies that there is some ei with bi(θi, ei) = si. The
Bayesian equilibrium conditions for Harsanyi types (θi, ei) and (θi, ei) ensure that∑

θ−i,e−i

Ui(θi, θ−i, si, b−i(θ−i, e−i))p(θi,ei)(θ−i, e−i) (3)

≥
∑

θ−i,e−i

Ui(θi, θ−i, si, b−i(θ−i, e−i))p(θi,ei)(θ−i, e−i),

∀s′i,
∑

θ−i,e−i

Ui(θi, θ−i, s
′
i, b−i(θ−i, e−i))p(θi,ei)(θ−i, e−i) (4)

≤
∑

θ−i,e−i

Ui(θi, θ−i, si, b−i(θ−i, e−i))p(θi,ei)(θ−i, e−i).

Since µθi is derived from p(θi,ei) we have

∀s′i,
∑

θ−i,e−i

Ui(θi, θ−i, s
′
i, b−i(θ−i, e−i))p(θi,ei)(θ−i, e−i) (5)

=
∑

θ−i,s−i

Ui(θi, θ−i, s
′
i, θ−i, s−i)µi

θi(θ−i, s−i)

Claim: Consistency of M with ζ implies that the expected utility from playing si (resp. si) is the
same for Harsanyi types (θi, ei) and (θi, ei):∑

θ−i,e−i

Ui(θi, θ−i, si, b−i(θ−i, e−i))p(θi,ei)(θ−i, e−i) (6)

=
∑

θ−i,e−i

Ui(θi, θ−i, si, b−i(θ−i, e−i))p(θi,ei)(θ−i, e−i)
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∑
θ−i,e−i

Ui(θi, θ−i, si, b−i(θ−i, e−i))p(θi,ei)(θ−i, e−i) (7)

=
∑

θ−i,e−i

Ui(θi, θ−i, si, b−i(θ−i, e−i))p(θi,ei)(θ−i, e−i)

Proof of the claim. For every h such that p
(θi,ei)
i ({t−i : b−i(t−i) ∈ S−i(h)}) > 0 and action pair

a = (a1, a2) ∈ A(h) define

Pr[a|h, θ−i; θi, ei, si] =

 0, if si(h) 6= ai,
p
(θi,ei)
i ({(θ−i,e−i):b−i(θ−i,e−i)∈S−i(h,a−i)})
p
(θi,ei)
i ({(θ−i,e−i):b−i(θ−i,e−i)∈S−i(h)})

, if si(h) = ai.

Then the probability of (θ−i, a
1, ..., aK) induced by strategy si given belief p

(θi,ei)
i is

Pr[θ−i, a
1, ..., aK |θi, ei, si]

=

∑
e−i

p(θi,ei)(θ−i, e−i)

 Pr[a1|φ, θ−i; θi, ei, si]
K∏

k=2

Pr[ak|(a1, ..., ak−1)θ−i; θi, ei, si].

By consistency of M with the feasible distribution ζ, we have∑
e−i

p(θi,ei)(θ−i, e−i)

 = ζ(θ−i)

Pr[a|h, θ−i; θi, ei, si] = ζ(θ−i, h, a−i)/ζ(θ−i, h), if ζ(θ−i, h) > 0,

[si ∈ Si(h) and p
(θi,ei)
i ({(θ−i, e−i) : b−i(θ−i, e−i) ∈ S−i(h)}) > 0] ⇒ ζ(θ−i, h) > 0

[to obtain the latter implication, assume that the antecedent in brackets holds and note that (a)
µi(θi, si) > 0, hence µi(Θi×Si(h)) > 0, (b) µθi({θ−i}×S−i(h)) = p

(θi,ei)
i ({(θ−i, e−i) : b−i(θ−i, e−i) ∈ S−i(h)}) >

0, (c) ζ(θ−i, h) = µi(Θi × Si(h)) × µθi({θ−i} × S−i(h))]. Analogous equations hold for Harsanyi
type (θi, ei). Therefore

∀z ∈ Z, Pr[θ−i, z|θi, ei, si] = Pr[θ−i, z|θi, ei, si].

Since ∑
θ−i,e−i

Ui(θi, θ−i, si, b−i(θ−i, e−i))p(θi,ei)(θ−i, e−i) =
∑
θ−i,z

ui(θi, θ−i, z) Pr[θ−i, z|θi, ei, si],

∑
θ−i,e−i

Ui(θi, θ−i, si, b−i(θ−i, e−i))p(θi,ei)(θ−i, e−i) =
∑
θ−i,z

ui(θi, θ−i, z) Pr[θ−i, z|θi, ei, si],

we obtain eq. (7). Eq. (6) follows from a similar argument. �
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The inequalities and equalities (3), (4), (5), (6) and (7) imply that si is a best reply for θi to
µθi : ∑

θ−i,s−i

Ui(θi, θ−i, si, s−i)µθi(θ−i, s−i)
(5)
=

∑
θ−i,e−i

Ui(θi, θ−i, si, b−i(θ−i, e−i))p(θi,ei)(θ−i, e−i)
(7)
=

∑
θ−i,e−i

Ui(θi, θ−i, si, b−i(θ−i, e−i))p(θi,ei)(θ−i, e−i)
(3)

≥

∑
θ−i,e−i

Ui(θi, θ−i, si, b−i(θ−i, e−i))p(θi,ei)(θ−i, e−i)
(6)
=

∑
θ−i,e−i

Ui(θi, θ−i, si, b−i(θ−i, e−i))p(θi,ei)(θ−i, e−i)
(4)

≥

∑
θ−i,e−i

Ui(θi, θ−i, s
′
i, b−i(θ−i, e−i))p(θi,ei)(θ−i, e−i)

(5)
=

∑
θ−i,s−i

Ui(θi, θ−i, s
′
i, s−i)µθi(θ−i, s−i).

(Only if) Let ζ be an SCE distribution and let (µi, (µθi)θi∈Θi
)i=1,2 satisfy conditions (1)-(3)

of Definition 4.7. Define M as follows:

• Ei = Si,

• Ti =
⋃

θ−i∈Θ−i
suppµθ−i ,

• ∀(θi, si, θ−i, s−i) ∈ Ti × T−i, bi(θi, si) = si, p(θi,si)(θ−i, s−i) = µθi(θ−i, s−i).

First note that the definition of Ti implies projΘi
Ti = Θi, because the distributional strategies

µθ−i (θ−i ∈ Θ−i) agree with ζ and ζ(θi) > 0 for every θi. Therefore M is indeed a Bayesian model
of Γ. We claim that M is an equilibrium model consistent with ζ. Consistency of M with ζ is
implied by conditions (2) and (3) of Definition 4.7. Now we prove that consistency of M with ζ
and condition (1) imply that for every (θi, si) ∈ Ti, si is a (possibly non-sequential) best response
for θi given belief p(θi,si).

Fix (θi, si) ∈ Ti. Then (θi, si) ∈ suppµθ−i for some θ−i. Let πi(·|θi, ·) ∈ [∆(Ai(h))]H be the
behavioral strategy for θi derived from µi and µθi as follows:

πi(ai|θi, h) =
{

µi({θi} × Si(h, ai))/µi({θi} × Si(h)), if µi({θi} × Si(h))µ−i(S−i(h)) > 0
1/|Ai(h)|, otherwise.

By construction, behavioral strategy πi(·|θi, ·) and the mixed strategy µi(·|θi) derived from µi

yield the same expected utility for θi against belief µθi , as they both induce the distribution
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ζ(·|θi) ∈ ∆(Θ−i × Z). By condition (1) µi(·|θi) is a mixed best response for θi to belief µθi .
Therefore πi(·|θi, ·) is a locally randomized best response. This means that every pure strategy in
the support of πi(·|θi, ·) is also a best response, where the support is defined as follows:38

suppπi(·|θi, ·) =

{
s′i :

∏
h∈H

πi(s′i(h)|θi, h) > 0

}
.

Since µi and µθi agree with ζ, µi({θi} × Si(h))µ−i(S−i(h)) = ζ(θi, h). Since also µθ−i agrees with
ζ, ζ(θi, h) > 0 implies ζ(θi, h, si(h)) > 0 (recall that µθ−i(θi, si) > 0). Therefore

ζ(θi, h) > 0 ⇒ πi(si(h)|θi, h) =
ζ(θi, h, si(h))

ζ(θi, h)
> 0,

ζ(θi, h) = 0 ⇒ πi(si(h)|θi, h) = 1/|Ai(h)| > 0,

which means that si ∈ suppπi(·|θi, ·) and si must be a best response to µθi for type θi. By
construction, µθi = p(θi,si). �

8.3 ζ-Rationalizability and Iterated Intuitive Criterion

We collect here the proofs of results contained in Section 5 5 and of some ancillary statements.
We start with the characterization of ζ-rationalizability in signaling games. Next we show that our
definition of the IIC is equivalent to the original definition of Cho and Kreps (1987). Finally we
provide a complete proof of the main proposition relating ζ-rationalizability to the IIC.

To simplify the notation we omit from proofs the reference to outcome distribution ζ, whenever
this causes no misunderstanding. However, we keep reference to ζ in statements like definitions,
remarks and claims.

8.3.1 Proof of Lemma 5.1 (ζ-rationalizability in Signaling Games)

The claim of the Lemma is trivially true for k = 0. Suppose it is true for some k ≥ 0.
(i) Pick (θ, m) ∈ Σk+1

1 ; then (θ, m) ∈ Σk
1, so that by the induction hypothesis θ ∈ Θk(m);

moreover, there exists µ ∈ ∆1 such that µ(Sk
2 ) = 1 and m ∈ r1(θ, µ). Since ∆1 is the set of beliefs

about the receiver that agree with ζ, the behavioral representation πµ
2 of µ satisfies πµ

2 (a|m′) =
ζ(a|m′) for all a and m′ such that ζ(m′) > 0: moreover, πµ

2 (Ak(m′)|m′) = µ({s2 : s2(m′) ∈
Ak(m′)}) = µ(Sk

2 ) = 1, where the second equality follows from the induction hypothesis. Finally,
m ∈ arg maxm′

∑
a u1(θ, m′, a)πµ

2 (a|m′); thus, θ ∈ Θk+1(m).
Conversely, pick m ∈ M and θ ∈ Θk+1(m); then θ ∈ Θk(m) and the induction hypothesis

implies that (θ, m) ∈ Σk
1. Moreover, there exists a behavioral strategy π2 ∈ [∆(A)]M whose mixed

representation µπ2 satisfies µπ2 ∈ ∆1 (by the first condition in the definition of Θk+1(m)) and

µπ2(Sk
2 ) = µπ2({s2 : ∀m′, s2(m′) ∈ Ak(m′)})

=
∑

(a(m′))m′∈M :∀m′,a(m′)∈Ak(m′)

∏
m′

π2(a(m′)|m′) = 1,

38This is the support of the mixed strategy derived from πi(·, |θi, ·), which may well be different from µi(·|θi).
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where the first equality follows from the induction hypothesis and the second follows from the
second condition in the definition of Θk+1(m). Finally, m ∈ r1(θ, µπ2) because m is a best response
to π2 for θ (third condition in the definition of Θk+1(m)). Thus, (θ, m) ∈ Σk+1

1 as required.
(ii) Similarly, pick s2 ∈ Sk+1

2 ; then s2 ∈ Sk
2 , so by the induction hypothesis s2(m) ∈ Ak(m) for

all m ∈ M ; moreover, for every m ∈ M , there exists µ ∈ ∆2 ⊂ ∆H(Θ×M) such that s2 ∈ r2(µ) and
Σk

1 ∩ (Θ× {m}) 6= ∅ ⇒ µ(Σk
1|m) = 1. But, again by the induction hypothesis, Σk

1 ∩ (Θ× {m}) 6= ∅
iff Θk(m) 6= ∅. Hence, Θk(m) 6= ∅ implies µ(Θk(m) × {m}|m) = 1, and the belief νµ,m ∈ ∆(Θ)
defined by νµ,m(θ) = µ((θ, m)|m) satisfies the requirements in the definition of Ak+1(m): thus,
s2(m) ∈ Ak+1(m).

Conversely, suppose that s2(m) ∈ Ak+1(m) for all m ∈ M (so in particular Ak+1(m) 6= ∅).
By definition Ak+1(m) ⊆ Ak(m); therefore s2(m) ∈ Ak(m) for all m. Thus, by the induction
hypothesis, s2 ∈ Sk

2 . For each m, let νm be the belief satisfying the requirements in the definition
of s2(m) ∈ Ak+1(m). Now define a CPS µ ∈ ∆H(Θ×M) by µ((θ, m)|φ) = ζ(θ, m), µ((θ, m)|m) =
ζ(θ|m) for every m ∈ M with ζ(m) > 0, and µ((θ, m)|m) = νm(θ) for every m ∈ M with ζ(m) = 0.
Then µ ∈ ∆2 and s2 ∈ r2(µ). Moreover, for every m ∈ M , Θk(m) 6= ∅ ⇔ [Σk

1 ∩ (Θ × {m}) ⇒
νm(Θk(m)) = 1]. By the induction hypothesis, νm(Θk(m)) = 1 implies µ(Σk

1|m) = 1. Therefore
µ(Σk

1|φ) = 1 and Σk
1 ∩ (Θ× {m}) ⇒ µ(Σk

1|m) = 1 We conclude that s2 ∈ Sk+1
2 . �

8.3.2 Definitions of the Iterated Intuitive Criterion

For the reader’s convenience we include the definition of the Iterated Intuititve Criterion39 due to
Cho and Kreps (1987) and we also repeat here the alternative procedure used in the definition of
the main text.

Definition 8.1 (Cho-Kreps) Fix a (self-confirming) equilibrium distribution ζ ∈ ∆(Θ× Z) and

a message m ∈ M such that ζ(m) = 0. Let A
−1(m, ζ) = A, Θ0(m; ζ) = Θ. For all k = 0, 1, 2, ...

define

A
2k+1(m; ζ) =

{
BR2(Θ

2k(m; ζ),m), if Θ2k(m; ζ) 6= ∅
A

2k−1(m; ζ), if Θ2k(m; ζ) = ∅.
,

Θ2(k+1)(m; ζ) =
{

θ ∈ Θ2k(m; ζ) : uζ
1(θ) ≤ max

a∈A
2k+1

(m;ζ)
u1(θ, m, a)

}
.

Distribution ζ satisfies the Iterated Intuitive Criterion (IIC) if and only if, for every message m ∈ M

with ζ(m) = 0 and every payoff-type θ ∈ Θ, there exists an action a ∈
⋂

k>0 A
2k+1(m; ζ) such that

u1(θ, m, a) ≤ uζ
1(θ).

Definition 8.2 (Alternative procedure) Let IA0(m; ζ) = A and IΘ0(m; ζ) = Θ and, for all
n = 0, 1, 2, ... define

IAn+1(m; ζ) =
{

BR2(IΘn(m; ζ),m), if IΘn(m; ζ) 6= ∅
IAn(m; ζ), if IΘn(m; ζ) = ∅. ,

IΘn+1(m; ζ) =
{

θ ∈ IΘn(m; ζ) : uζ
1(θ) ≤ maxa∈IAn(m;ζ) u1(θ, m, a)

}
.

39Cf. Fudenberg and Tirole (1991, Definition 11.5). We number superscripts in a different way: in odd steps
(n = 2k + 1) we eliminate actions of the Receivers, in even steps (n = 2k) we eliminate payoff types of the Sender.
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The following is easily shown by induction:

Remark 8.3 Fix a SCE outcome distribution ζ and message m with ζ(m) = 0.

(a) Θ2(k+1)(m; ζ) ⊆ Θ2k(m; ζ), A
2k+1(m; ζ) ⊆ A

2k−1(m; ζ), IΘk+1(m; ζ) ⊆ IΘk(m; ζ), IAk+1(m; ζ) ⊆
IAk(m; ζ).
(b) If the Receiver has no conditionally dominated action, that is, BR2(Θ,m) = A, then Θ2k(m; ζ) =
IΘ2k(m; ζ) and A

2k+1(m; ζ) = IA2k+1(m, ζ) for all k = 0, 1, 2, ... .

The next remark shows that the two procedures defined above are closely related also in sig-
nalling games with conditionally dominated actions.

Remark 8.4 Fix a SCE outcome distribution ζ and message m with ζ(m) = 0. For all k =
0, 1, 2, ..., Θ2k(m; ζ) = IΘ2k(m; ζ), and if Θ2k(m; ζ) 6= ∅ then A

2k+1(m, ζ) = IA2k+1(m; ζ).

Proof of Remark 8.4. The statement is trivially true for k = 0. Suppose it is true for a given
k. We have to consider two cases.

(i) If Θ2k(m) 6= ∅, then by definition and the inductive hypothesis

A
2k+1(m) = BR2(IΘ2k(m),m) = IA2k+1(m);

hence

Θ2k+2(m) =
{

θ ∈ IΘ2k(m) : uζ
1(θ) ≤ max

a∈IA2k+1(m)
u1(θ, m, a)

}
.

Since IA2k+1(m) ⊆ IA2k(m), we have

max
a∈IA2k+1(m;ζ)

u1(θ, m, a) ≤ max
a∈IA2k(m)

u1(θ, m, a).

The equality and inequality above yield Θ2k+2(m) ⊆ IΘ2k+1(m). By inspection of the definition of
IΘ2k+2(m), we obtain Θ2k+2(m) = IΘ2k+2(m).

(ii) If Θ2k(m) = ∅, then by definition and the inductive hypothesis

IΘ2k+2(m) = IΘ2k+1(m) = ∅ = Θ2k+2(m).

This concludes the proof of the remark.

Proposition 8.5 An (SCE) outcome distribution ζ satisfies the IIC according to Definition 8.1 if
and only if it satisfies the IIC according to Definition 5.2

Proof. First note that, since the defined sequences of subsets are weakly decreasing, by finite-
ness there exists some K such that A

2K+1(m) =
⋂

k>0 A
2k+1(m), IA2K+1(m) =

⋂
n>0 IAn(m).
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Suppose that ζ does not satisfy Definition 8.1 (Cho-Kreps). Then there is some (θ, m) such
that ζ(m) = 0 and

uζ
1(θ) < min

a∈A
2K+1

(m)

u1(θ, m, a).

Taking into account that A
2K+1(m) ⊆ A

2k+1(m) for all k, the inequality above implies

∀k ≥ 0, uζ
1(θ) ≤ max

a∈A
2k+1

(m)

u1(θ, m, a).

which in turn implies θ ∈ Θ2K(m). [This is proved by induction: θ ∈ Θ0(m); suppose that θ ∈
Θ2k(m), then uζ

1(θ) ≤ max
a∈A

2k+1
(m)

u1(θ, m, a) implies that θ ∈ Θ2k+2(m).] Thus, by Remark

8.4, A
2K+1(m) = IA2K+1(m) and uζ

1(θ) < mina∈IA2K+1(m) u1(θ, m, a), that is, there is no action
a ∈

⋂
n>0 IAn(m) such that u1(θ, m, a) ≤ uζ

1(θ). Hnece ζ does not satisfy our Definition 5.2.
The converse is proved by a similar argument. If ζ does not satisfy our modified criterion, there

is some (θ, m) such that ζ(m) = 0 and

uζ
1(θ) < min

a∈IA2K+1(m)
u1(θ, m, a).

The above inequality implies θ ∈ IΘ2k(m). By Remark 8.4 we obtain IA2K+1(m) = A
2K+1(m)

and u1(θ) < min
a∈A

2K+1
(m)

u1(θ, m, a). Therefore ζ does not satisfy the IIC.

8.3.3 Proof of Proposition 5.3

We prove the proposition through a sequence of claims. The first one is a corollary of Propositions
4.3 and 4.8:

Claim 1. If S∞2,ζ 6= ∅ and projΘΣ∞
1,ζ = Θ, then ζ is an SCE distribution.

Claim 2. If S∞2,ζ 6= ∅, then ∀θ,∀m∗, ζ(θ, m∗) > 0 ⇒ θ ∈
⋂

k Θk(m∗; ζ).
Proof of Claim 2. Suppose that ζ(θ, m∗) > 0 and pick any s2 ∈ S∞2 . This strategy is a

sequential best reply to some CPS µ2 such that µ2(Σ∞
1,ζ |φ) = 1 and µ2(θ, m∗|φ) = ζ(θ, m∗) > 0.

Therefore (θ, m∗) ∈ Σ∞
1 . By Lemma 5.1, this implies θ ∈

⋂
k Θk(m∗). �

Claim 3. Suppose that ∀m∗, ζ(θ, m∗) > 0 ⇒ θ ∈
⋂

k Θk(m∗; ζ). Then, for every message m
with ζ(m) = 0,

∀k ≥ 0, Θk(m; ζ) = IΘk(m; ζ) and Ak(m; ζ) = IAk(m; ζ). (8)

Proof of Claim 3. Eq. (8) holds trivially for k = 0. Suppose it holds for some k.
Pick θ ∈ Θk+1(m). From the definition of Θk+1(m), we must have

∑
a u1(θ, m, a)π2(a|m) ≥

uζ
1(θ) and 1 = π2(Ak(m)|m), for some π2 ∈ [∆(A)]M ; hence, there must be an action a ∈ Ak(m) =

IAk(m) such that u1(θ, m, a) ≥ uζ
1(θ), and therefore θ ∈ IΘk+1(m).

Conversely, pick θ ∈ IΘk+1(m). Then there exists am ∈ IAk(m) = Ak(m) such that u1(θ, m, am) ≥
uζ

1(θ). Fix any message m∗ such that ζ(θ, m∗) > 0 (such a message exists because ζ(θ) > 0). By
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assumption, θ ∈ Θk+1(m∗). Therefore there is some π∗2 that agrees with ζ and for every message
m′ satisfies

π∗2(A
k(m′)|m′) = 1 and uζ

1(θ) =
∑

a

u1(θ, m∗, a)π∗2(a|m∗) ≥
∑

a

u1(θ, m′, a)π∗2(a|m′).

Define π2 as follows: (i) π2(am|m) = 1, (ii) ∀m′ 6= m, π2(·|m′) = π∗2(·|m′). By construction, π2

satisfies the three requirements for θ ∈ Θk+1(m). In particular, m is a best response to π2 for type
θ because

∀m′ 6= m, u1(θ, m, am) ≥ uζ
1(θ) ≥

∑
a

u1(θ, m′, a)π2(a|m′). (9)

To show that Ak+1(m) = IAk+1(m) we consider two cases. (1) If Θk(m) 6= ∅, then

Ak+1(m) = BR(Θk(m),m) = BR(IΘk(m),m).

(2) If Θk(m) = ∅, then Ak+1(m) = Ak(m), and IΘk(m) = ∅ (inductive hypothesis) which implies
IAk+1(m) = IAk(m). Since Ak(m) = IAk(m) (inductive hypothesis), we obtain Ak+1(m) =
IAk+1(m). �

Claim 4. If ζ is an SCE distribution satisfying the IIC then, for every message m with
ζ(m) = 0, eq. (8) holds, and furthermore

∀k,∀m′, ζ(m′) > 0 ⇒ Ak(m′, ζ) = arg max
a

∑
θ

u2(θ, m′, a)ζ(θ|m) 6= ∅. (10)

Proof of Claim 4. Let ζ be an SCE distribution satisfying the IIC. By definition,

∀m′,∀a′, ζ(m′, a′) > 0 ⇒ a′ ∈ arg max
a

∑
θ

u2(θ, m′, a)ζ(θ|m); (11)

furthermore, for every message m′ off the equilibrium path and every type θ there is an action
a(θ, m′) ∈

⋂
k IAk(m′) such that uζ

1(θ) ≥ u1(θ, m′, a(θ, m′)). Fix m with ζ(m) = 0 and assume, by
way of induction, that eq. (8) holds for some k.

As in the proof of Claim 3, it can be shown that Θk+1(m) ⊆ IΘk+1(m). Conversely, let
θ ∈ IΘk+1(m). Then there exists am ∈ IAk(m) = Ak(m) such that u1(θ, m, am) ≥ uζ

1(θ). Define
π2 as follows: (i) π2(am|m) = 1, ∀m′ 6= m, ζ(m′) = 0 ⇒ π2(a(θ, m′)|m′) = 1, (ii) ζ(m′) >
0 ⇒ ∀a, π2(a|m′) = ζ(a|m′). Conjecture π2 agrees with ζ and message m is a best response
to π2 for type θ because eq. (9) in the proof of Claim 3 holds. For every m′ with ζ(m′) = 0,
π2(Ak(m′)|m′) = π2(IAk(m′)|m′) = 1. For every m′ with ζ(m′) > 0, eq. (11) and the inductive
hypothesis imply π2(Ak(m′)|m′) = 1. Therefore, π2 satisfies all the conditions for θ ∈ Θk+1(m).

The proof of Ak+1(m) = IAk+1(m) is the same as for Claim 3. We only have to show that
eq. (10) holds for k + 1; in particular, it is sufficient to show that θ ∈ Θk(m′) for every for
every pair (θ, m′) with ζ(θ, m′) > 0. Pick such a pair (θ, m′) (hence, m′ 6= m) and define a
corresponding conjecture π′2 as follows: (i) π′2(a(θ, m)|m) = 1, (ii) π′2(·|m′′) = π2(·|m′′) for m′′ 6= m.
By construction, π′2 agrees with ζ and m′ is a best reply to π′2 for type θ. As for conjecture
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π2, eq. (11) and the inductive hypothesis imply that π′2(A
k(m′′)|m′′) = 1 for all m′′. Thus

θ ∈ Θk+1(m′) ⊆ Θk(m′). �

The proof of the proposition follows quite easily from these claims. Suppose that S∞2 6= ∅ and
projΘΣ∞

1 = Θ. Then ζ is an SCE distribution (Claim 1), ∀θ,∀m∗, ζ(θ, m∗) > 0 ⇒ θ ∈
⋂

k Θk(m∗)
(Claim 2) and eq. (8) holds for every m with ζ(m) = 0 (Claim 3). By finiteness, there is some K
such that ΘK(m′) =

⋂
k Θk(m′) and AK(m′) =

⋂
k Ak(m′) for all m′. For any θ, there is some m∗

with ζ(θ, m∗) > 0. Then θ ∈ ΘK(m∗) and m∗ is best reply for θ to a conjecture π∗2 that agrees
with ζ and satisfies π∗2(

⋂
k IAk(m′)|m′) = π∗2(

⋂
k Ak(m′)|m′) = 1 for all m′. This implies that for

every m with ζ(m) = 0 there is an action a ∈
⋂

k IAk(m) such that u1(θ, m, a) ≤ uζ
1(θ). Hence ζ

satisfies the IIC.
Now suppose that ζ is an SCE distribution satisfying the IIC. Then eq. (11) holds (Claim 4)

and
⋂

k Ak(m′) 6= ∅ for all m′ with ζ(m′) > 0. Furthermore,
⋂

k Ak(m) 6= ∅ for all m with ζ(m) = 0.
Thus, Lemma 5.1 implies S∞2 6= ∅, which in turn implies projΘΣ∞

1 = Θ (Remark 3.4). �
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