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We argue that a notion of constrained time consistency is appropriate to
evaluate the interim incentives to deviate from a plan in a decision problem with
imperfect recall. Under perfect recall, constrained time consistency is equivalent to
the standard notion of time consistency. It turns out that a behavioral strategy b is
constrained time consistent if and only if every realization equivalent strategy b9 is
a modified multiselves equilibrium and this implies that every optimal strategy is
constrained time consistent. Furthermore, every constrained time consistent strat-
egy is equivalent to a modified multiselves sequential equilibrium. Journal of
Economic Literature Classification Numbers: C72, D81. Q 1997 Academic Press

1. INTRODUCTION

Ž .A player in an extensive game possibly against nature has perfect recall
if he or she can always remember all the information previously acquired

Ž .and all her past choices Kuhn, 1953 . In their seminal book on game
theory Von Neumann and Morgenstern allowed for the possibility of
imperfect recall in an extensive game, arguing that strategic situations
involving teams of imperfectly communicating individuals with identical
interests are best modeled by regarding the team as a single forgetful
player. They illustrated this point with Bridge, describing the elaborate
system of conventional signals between, say, North and South as part of

Žan overall strategy of the team NS Von Neumann and Morgenstern, 1944,
.pp. 52]53 . Yet, most of the theory of extensive games relies on the

Ž .assumption of perfect recall, especially after Selten’s 1975 article on
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FIGURE 1

perfect Nash equilibria, as perfect recall is regarded as a rationality
assumption.1

Not surprisingly, the recent research on bounded rationality has
prompted some effort to analyze games and decision problems with
imperfect recall. In a recent, thought-provoking paper, Piccione and Ru-

Ž . Ž .binstein 1997 henceforth P & R discuss some ambiguities in interpreta-
tion and paradoxes which arise when the perfect recall assumption is
dropped. As a logical first step, they focus on one-person extensive games,
i.e., dynamic decision problems.

One of their points is that, although the decision maker’s preferences
Ž .over outcomes do not change as the problem unfolds unlike Strotz, 1956 ,

an ex ante optimal plan need not be time consistent. Consider the decision
Žproblem depicted in Fig. 1 two nodes in the same information set are

. 2 Ž .enclosed in an ellipse . The decision maker by convention, a female can
Ž .either terminate the game immediately T and get 3 utils or play a game

Ž .of chance G . If she chooses G she gets 2 utils. Then, after having

1 Ž .Selten 1975, p. 27 wrote: ‘‘Since game theory is concerned with the behavior of
absolutely rational decision makers whose capabilities of reasoning and memorizing are
unlimited, a game, where the players are individuals rather than teams, must have perfect
recall.’’

2 This is a modification of Example 2 in P & R.
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Ž .observed the outcome of a random move l or r , she can either stop
Ž .Exit or go Down. If she goes down she can get a high reward or lose the
2 utils, but she forgets the outcome of the random move, which is crucial

Ž .to determine the value of the reward 5 or 6 and whether Left or Right is
the high-reward action. The optimal plan is to play the subgame and

Ž . Ž . Ž .choose E after l information set d , D after r d , and R after D d .1 2 3
This yields 4 utils in expectation. According to P & R, who simply extend
‘‘as is’’ the standard definition of time consistency given for situations with

Ž .perfect recall, the optimal plan actually, every plan in this example is not
time consistent: at noderinformation set d the decision maker would1
reassess her plan and decide to go Down and Left.

We find it hard to make sense of this conclusion. How can the decision
maker at information set d plan to change her behavior at d where a1 3
deviation from the original plan cannot be observed? It is plausible to
suppose that if a decision maker does not observe any deviation from the
original plan, she believes that no deviation has occurred. Indeed this
seems to be part of the notion of having a plan. If the decision maker at d3
thinks that no deviation has occurred, the best response is R. Thus a
successful deviation at d is possible only if the decision maker can find a1
way to change her future beliefs at an information set which is consistent
with the original plan. But such a possibility should be explicitly modeled
and the decision problem would be different.

This seems even more compelling when the decision maker is a team.
Suppose that Player II has the move at d and Player I at the other3
decision nodes. There is no reason for Player I to deviate from the optimal
plan at d as she has no way to ‘‘signal’’ that the outcome is l. On the1
contrary, Down would be interpreted by Player II as a signal that the
outcome is r.

In this paper we try to analyze the interim incentives of a decision maker
Ž .in a one-person, finite extensive game with possibly imperfect recall. In

Section 2 the formal set up is introduced. Section 3 puts forward a notion
of constrained time consistency which is shown to be equivalent to the usual
definition of time consistency in decision problems with perfect recall. The
modified definition simply assumes that, when reassessing her plan at an
information set X, the decision maker expects to behave as prescribed by
the original plan s at all the information sets which can follow X and are

Ž .consistent with s reachable with positive probability if s is implemented .
It turns out, perhaps not surprisingly, that every optimal plan is time

Žconsistent in this sense. But the converse is not true for example, the
.inefficient plan G.D.E.L. is constrained time consistent .

Section 4 considers modified multiselves equilibria and sequential ratio-
nality. In decision problems without absentmindedness}that is, if no
information set contains two nodes on the same path}a modified multi-
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selves equilibrium is simply a Nash equilibrium of the agent form, and a
modified multiselves sequential equilibrium is a sequential equilibrium of
the agent form. The adjective ‘‘modified’’ refers to a particular way to
define the conditional expected value of one-shot deviations at information

Žsets which exhibit absentmindedness see, e.g., Section 7 of P & R and
Ž ..Aumann et al. 1997 . It turns out that a behavioral strategy b is

constrained time consistent if and only if every realization equivalent
strategy b9 is a modified multiselves equilibrium. Furthermore, it is shown
that every constrained time consistent strategy is equivalent to a modified
multiselves sequential equilibrium. It is argued that constrained time
consistency may be interpreted as a forward induction refinement of
multiselves sequential equilibrium outcomes. An appendix contains some
of the proofs and related results.

2. MAIN CONCEPTS

We consider dynamic decision problems representable as finite one-per-
son games in extensive form. This section collects definitions and notation
about some concepts used in the literature on extensive games.

2.1. Decision Problems in Extensï e Form

It is convenient here to follow P & R and adopt the formal definition
Ž .given in Osborne and Rubinstein’s 1994 textbook. The definition is given

below for completeness, but the reader should consult the textbook above
for further details and comments.

Ž .A decision problem or one-person game is a five-tuple G s
² :H, u, C, r, II , where

v ŽH is a finite set of sequences of elements of some set A interpre-
.ted as histories or feasible sequences of actions including the empty

3 Ž .sequence f and such that every prefix initial subhistory of an element
of H is also in H.

}We write h9 $ h0 to denote that h9 is a prefix of h0. We say that
Ž . Ž .h9 strictly precedes h0 or h0 follows h9 , written h9 $ h0, if h9 is a prefix

Ž .of h0 different from h0 itself. Thus $ is the asymmetric part of $ . The
Ž .pair H, $ can be regarded as a tree with root f. This interpretation is

used in the diagrammatic representation of a decision problem.

3 A prefix of a sequence h is a subsequence given by any number of leading elements in h.
The empty sequence f and h itself are prefixes of h.
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� Ž . 4}Z [ h g H: ;a g A, h, a f H is the set of terminal histories
Ž . � 4and, for X ; H, Z X [ z g Z: 'h g X, h $ z is the set of terminal

Ž .histories weakly following some history in X.
Ž . � Ž . 4}For each h g H _ Z, A h [ a g A: h, a g H is the set of

actions available at h.

v Ž .u: Z ª R is the payoff VNM utility function.
v C ; H _ Z corresponds to the set of chance moves.
v Ž Ž ..r g P D A h assigns the probabilities of chance actions andhg C

is assumed strictly positive.
v Ž . ŽII is a partition of the set H _ C j Z the histories after which

.the decision maker chooses an action into information sets. Generic
elements of II will be denoted by X and Y. It is assumed that the decision
maker always knows her available actions: for all X g II, all h9, h0 g X,
Ž . Ž .A h9 s A h0 . The set of available actions at information set X is

Ž .denoted A X . Information sets are represented diagrammatically by
enclosing the nodesrhistories in the same information set in an ellipse.

2.2. Imperfect Recall and Absentmindedness

The experience of the decision maker at a history h is the sequence of
the decision maker’s information sets and actions along history h.4 A
decision problem G exhibits perfect recall if the decision maker has the
same experience at all histories in the same information set and imperfect
recall otherwise.

P & R say that a decision problem G exhibits absentmindedness if there
is an information set X g II containing two histories h9 and h0 such that
h9 precedes h0. P & R analyze absentmindedness as a special case of

Ž .imperfect recall. Other authors e.g., Kuhn, 1953; Selten, 1975 exclude
this case from the definition of an extensive game. When an information
set X exhibits absentmindedness it is not obvious how to define updated
probabilities and the expected value of one-shot deviations conditional on
X. P & R consider different definitions. Here we adopt the one which we
find most compelling. But since we do not focus on the specific problems

4 Ž . Ž .Let ex h denote the experience at h; ex h can be defined by induction on the length of
h:

Ž .}ex f s f, if f g C;
Ž . Ž .}ex f s X , if f g X g II;
Ž . Ž . Ž .}ex h, a s ex h , if h, h, a g C j Z;
Ž . Ž Ž . . Ž . Ž .}ex h, a s ex h , a , if h g H _ C j Z , h, a g C j Z;
Ž . Ž Ž . . Ž .}ex h, a s ex h , X , if h g C, h, a g X g II;
Ž . Ž Ž . . Ž .}ex h, a s ex h , a, X , if h g H _ C j Z, h, a g X g II.

Ž Ž . .The information set containing h is included in ex h as a matter of convention.
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Ž .due to absentmindedness, we refer to P & R, Aumann et al. 1997 , Dekel
Ž . Ž .and Gul 1996 , and Gilboa 1997 for a thorough discussion. Otherwise,

the reader may simply assume that the decision problems analyzed here do
not exhibit absentmindedness.5

2.3. Strategies, Plans, and Beliefs

Ž .A pure strategy is a function s which assigns an available action to
each information set. A beha¨ioral strategy is a function b which assigns a
probability measure on available actions for each information set. It is
convenient to regard pure and behavioral strategies as elements of the

Ž . Ž Ž ..Cartesian sets S [ P A X and B [ P D A X , respectively.X g II X g II

Pure strategies are identified with the corresponding degenerate behav-
ioral strategies whenever convenient. In probabilistic computations, it is

Ž .understood that the probability assigned by b to a g A X is the probabil-
ity that a is chosen conditional on any h g X. This conditional probability

Ž .is denoted by b a ¬ X .
The probability of history h0 conditional on h9 given b is denoted by
Ž . 6 Ž .p h0 ¬ h9; b . Thus p h ¬ f ; b is the prior probability of history h given

b. Let

p X ¬ f ; b [ p h ¬ f ; b .Ž . Ž .Ý
hgX

Ž .In decision problems without absentmindedness p X ¬ f ; b is simply the
Žprior probability of reaching information set X. More generally, p X ¬

.f ; b ) 0 if and only if strategy b does not prevent X from being
reached. We say that an information set is rele¨ant for b , or b-relevant, if
Ž .p X ¬ f ; b ) 0.
Two behavioral strategies b9 and b0 are equï alent, written b9 ( b0, if

Žthey induce the same prior probability for every history or, equivalently,
.for every terminal history . A necessary and sufficient condition for b9 (

b0 is that b9 and b0 induce the same class of relevant information sets
Žand prescribe the same behavior at such relevant information sets see,

.e.g., Kuhn, 1953 . The equivalence class containing strategy b is denoted
w xby b .

5 Ž .An earlier version of this paper Battigalli, 1995 considered only decision problems
without absentmindedness.

6 Ž . Ž . Ž .Formally, p h0 ¬ h9; b s 1 if h9 s h0; p h0 ¬ h9; b s 0 if h0 does not weakly follow
Ž .h9; for h9 $ h0 s h, a :

ŽŽ . . Ž . Ž .}p h, a ¬ h9; b s p h ¬ h9; b b a ¬ X , if h g X g II;
ŽŽ . . Ž . Ž .}p h, a ¬ h9; b s p h ¬ h9; b r a ¬ h , if h g C.
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Ž .A strategy b * is ex ante optimal if it maximizes the expected utility

E u ¬ f ; b [ p z ¬ f ; b u z .Ž . Ž . Ž .Ý
zgZ

The notion of behavioral strategy may have two sorts of redundancies:
Ž .i if there is no absentmindedness, the expected utility induced by b is

Ž .multilinear in the probabilities b a ¬ X and the decision maker has no
Ž . Ž .incentive to randomize her choices; ii a strategy b pure or randomized

may prescribe behavior at information sets that b itself prevents from
being reached and this behavior cannot affect the outcome. We will use
the word ‘‘plan’’ to refer to instructions given by a strategy at the relevant
information sets. A plan corresponds to an equivalence class of strategies
w xb . If there is no absentmindedness, nothing is lost by assuming that a

w xstrategy b corresponds to a ‘‘pure plan of action’’ b ; that is, b is
deterministic at the b-relevant information sets. The value of b at irrele-

Ž .vant unreachable information sets may be interpreted as the decision
maker’s expectation about her own future behavior if she deviates from

Ž .the plan cf. Rubinstein, 1991 . Even if b prescribes deterministic choices
at the relevant information sets, it is conceivable that the decision maker is
uncertain about her own reaction to a deviation and this uncertainty may
be relevant for the analysis of a decision problem with imperfect recall
Ž .see Section 4 . If there is absentmindedness, the expected utility induced
by b need not be multilinear and there may be ex ante incentives to

Ž .randomize see, e.g., Section 4 of P & R .
A system of beliefs represents the decision maker’s conditional probabil-

ities over past histories at each information set. Formally, a system of
Ž .beliefs is a collection of probability measures m g M [ P D X .X g II

Ž .m h ¬ X denotes the probability of history h conditional on information
Ž . Ž .set X. An assessment is a pair m, b g M = B . We say that an

Ž . Žassessment m, b is weakly consistent or that m is weakly consistent with
.b if, for all X g II, h g X,

m h ¬ X p X ¬ f ; b s p h ¬ f ; b . 2.1Ž . Ž . Ž . Ž .

Ž .If there is no absentmindedness, Eq. 2.1 simply says that m is derived
Ž .from b and the chance probabilities , according to the usual updating

rule at each relevant information set.7 The implicit assumption is that the
decision maker believes that she has followed her plan of action if no

Ž . Ž .deviation is observed. P & R Section 5 and Aumann et al. 1997 motivate
Ž .Eq. 2.1 for decision problems with absentmindedness.

7 Ž . Ž .P & R say that when 2.1 is satisfied m is ‘‘consistent’’ with b. Kreps and Wilson 1982
Ž .call ‘‘consistency’’ a much stronger condition. Here we follow Myerson’s 1991 terminology.
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3. CONSTRAINED TIME CONSISTENCY

Ž .A strategy or plan of action b is time consistent if there is no
information set X relevant for b such that the decision maker has an
incentive to deviate from b at X following a different ‘‘subplan’’ b9. For a

Ž .given assessment m, b let

E u ¬ X ; m , b [ m h ¬ X p z ¬ h; b u z .Ž . Ž . Ž . Ž .Ý Ý
hgX zgZ

In decision problems with perfect recall, the notion of time consistency can
be unambiguously formalized using the following definition.

DEFINITION 3.1. A behavior strategy b is time consistent if there is a
system of beliefs m weakly consistent with b such that for all information
sets X g II relevant for b

;b9 g B , E u ¬ X ; m , b G E u ¬ X ; m , b9 . 3.1Ž . Ž . Ž .

Ž Ž .Note that, by Eq. 2.1 , the quantification ‘‘there exists m weakly
consistent with b ’’ can be replaced by ‘‘for all m weakly consistent with

Ž . .b ,’’ since m ?¬ X is uniquely determined by b at each X relevant for b. It
is well known that in decision problems with perfect recall, a strategy is
optimal if and only if it is time consistent.

Consider for simplicity the case in which the decision maker does not
Žactually randomize; that is, b is equivalent to a pure strategy see discus-

.sion in Section 2.3 . The reason why this definition of time consistency is
unambiguous under perfect recall is that, if b is time inconsistent, then
there is an information set X where the decision maker can improve her
conditional expected payoff simply by choosing an action a* different from
the one designated by b and by planning to behave differently at informa-

Ž .tion sets that are irrelevant for b i.e., unreachable under b because they
follow the deviation a* and the decision maker remembers this deviation.
In other words, the decision maker has to consider only the alternative
plans which behave as b at all information sets relevant for b except X.
This suggests an alternative notion of time consistency. In order to present
it, we first have to define the conditional value of a one-shot deviation. Let

E u ¬ X , a; m , b [ m h ¬ X p z ¬ h , a ; b u zŽ . Ž . Ž . Ž .Ž .Ý Ý
hgX zgZ

Ž .be the conditional expected value of an action a g A X at X given b.
Note that if X exhibits absentmindedness and contains two histories h and

Ž .h9 ' h, a , the decision maker is assuming that if she were at h and chose
Ž .a, the probability of choosing some action a9 after h9 would be b a9 ¬ X .
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This particular definition of the conditional expected value of a one-shot
deviation is put forward and discussed with some skepticism by P & R
Ž . Ž . Ž .Section 7 . Aumann et al. 1997 and Dekel and Gul 1996 forcefully

Ž .defend it. They argue that the pure or mixed actions taken by the
decision maker at h and h9 should be the same in equilibrium. But when
the decision maker contemplates a deviation at X, conditional on any

Ž .h g X, she should take as given the mixed action controlled by her ‘‘twin
Ž .selves’’ at other histories in X following h. Gilboa 1997 reaches similar

conclusions, arguing that one should look for symmetric solutions of
modified decision problems where the original information sets featuring
absentmindedness are replaced by corresponding collections of ‘‘crossing
information’’ sets. We do not have anything to add to this discussion.
Although we do not claim that different approaches cannot be fruitful, we

Ž .find the above definition of E u ¬ X, a; m, b consistent with the standard
way to model deviations in game theory and we use it in the following
analysis.

DEFINITION 3.2. A behavior strategy b is constrained time consistent if
there is a system of beliefs m weakly consistent with b such that, for all
X g II relevant for b there is no alternative strategy b9 which coincides
with b at all b-relevant information sets except X, chooses some action

Ž .a g A X with probability one, and yields a higher expected utility condi-
tional on X. Equivalently, b is constrained time consistent if it satisfies

Ž .;X g II, ;a g A X , ;b9 g B,

p X ¬ f ; b ) 0 & b9 ( bŽ . Ž .Ž .
« E u ¬ X ; m , b G E u ¬ X , a; m , b9 . 3.2Ž . Ž . Ž .

Remark 1. The notions of optimality, time consistency, and constrained
time consistency are properties of plans of actions: if a strategy is optimal
Ž .time consistent, constrained time consistent , then every equivalent strat-

Ž .egy is optimal time consistent, constrained time consistent .

Proof. If b9 ( b , b and b9 induce the same prior probabilities, the
same transition probabilities conditional on positive probability histories,
the same class of relevant information sets, and the same conditional
probabilities at relevant information sets. B

PROPOSITION 3.3. Suppose that G exhibits perfect recall. Then a strategy b
is time consistent if and only if it is constrained time consistent.

COROLLARY 3.4. In decision problems with perfect recall, a strategy is
optimal if and only if it is constrained time consistent.
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PROPOSITION 3.5. E¨ery optimal strategy is constrained time consistent.

Propositions 3.3 and 3.5 are proved in Section 4 where constrained time
consistency is related to multiselves equilibria.

The example depicted in Fig. 1 shows that the equivalence stated in
Proposition 3.3 and the converse of Proposition 3.5 do not hold in decision
problems with imperfect recall: the optimal plan G.E.D.R. is not time
consistent and the constrained time consistent plan G.D.E.L. is not
optimal.

In that first example the decision maker forgets something she knew
Ž .before. P & R Proposition 2 show that if the decision maker always

remembers what she knew about chance moves, but possibly forgets her
own choices, a strategy is time consistent if and only if it is optimal. The
simple example depicted in Fig. 2 shows that a constrained time consistent

Ž .plan L9L0 in Fig. 2 may be time inconsistent and suboptimal even in this
restricted class of decision problems.

Now the question is: Which characterization of time consistency is
appropriate for decision problems with imperfect recall? Of course, the
answer depends on how we interpret the situation formally represented by
a decision problem in extensive form. If we think that at the ex ante stage
the decision maker devises a plan suggesting what to do and what to expect
in every possible contingency, then the notion of constrained time consis-

Ž .tency seems more appropriate. A plan in particular, an optimal plan
works not only as a ‘‘book of instructions,’’ but also as a device to
coordinate the decision maker’s conditional expectations at different infor-

w xmation sets. This is the reason why, at b -relevant information sets,
conditional beliefs about past moves are determined by the ex ante chosen

w x w xplan b . Similarly, the decision maker should expect to follow b at
w xfuture b -relevant information sets. On the other hand, expectations

w xabout future moves are not determined for b -irrelevant information sets

FIGURE 2
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and the decision maker may at least hope to be able to signal to her
w x‘‘future selves’’ that a new plan b9 is in place by causing such informa-

tion sets to be reached. The possibility to signal strategic intent is further
discussed in the next section, which relates constrained time consistency to
multiselves equilibria.

4. MULTISELVES EQUILIBRIA AND SEQUENTIAL
RATIONALITY

Ž .An assessment m, b is sequentially rational if b maximizes the condi-
Ž .tional expected utility E u ¬ X ; m, ? at each information set X. In decision

problems with perfect recall a strategy b is optimal if and only if there is
Ž . Žan assessment m9, b9 satisfying ‘‘full consistency’’ a strengthening of
.weak consistency and sequential rationality, whereby b9 is equivalent to

b. Furthermore, a necessary and sufficient condition for sequential ratio-
nality of a consistent assessment is the ‘‘no single improvement’’ property:

Ž .for every information set X and every action a g A X with positive
Žconditional probability, a must be a best response conditional on X see,

Ž ..e.g., Hendon et al. 1996 . This means that to analyze sequential rational-
ity we can regard the decision maker as a team of a II different agents,8 or
‘‘selves,’’ controlling the choices at different information sets.

These equivalence properties do not hold in decision problems with
imperfect recall: time inconsistent optimal strategies cannot be equivalent

Ž .to sequentially rational assessments see Fig. 1 and strategies satisfying
Žthe ‘‘no single improvement’’ property need not be optimal see Figs. 1, 2,

.and 3 . However, we may still use ‘‘no single improvement’’ as a test for
sequential rationality. Furthermore, it turns out that the multiselves ap-
proach can be used to characterize constrained time consistency.

We consider a notion of sequential equilibrium which strengthens a
Ž .multiselves equilibrium concept proposed by P & R Section 7 .

Ž .DEFINITION 4.1. A weakly consistent assessment m, b is a modified
multisel̈ es equilibrium9 if for all b-relevant information sets X,

;a, a9 g A X , b a ¬ X ) 0 « E u ¬ X , a; m , bŽ . Ž . Ž .
4.1Ž .

G E u ¬ X , a9; m , b .Ž .

Ž .An assessment m, b is fully consistent if there exists a sequence of
ŽŽ ..strictly positive weakly consistent assessments m , b such thatk k k G1

8
aF denotes the cardinality of a finite set F.

9 P & R use the phrase ‘‘modified multiselves consistent.’’
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Ž . Ž . Ž .lim m , b s m, b . A fully consistent assessment m, b is a modi-k ª` k k
Ž .fied multisel̈ es sequential equilibrium if 4.1 holds for all information

sets X.

ŽThe adjective ‘‘modified’’ refers to the particular definition of E u ¬
.X, a; m, b given in the previous section, which yields a modified version of

the ‘‘no single improvement’’ property in games with absentmindedness.
Note that the ‘‘no single improvement property’’ holds only at rele¨ant
information sets in the definition of a modified multiselves equilibrium.

Ž .Let AA G be the agent form of a finite extensive game G}that is, the
a II-person extensive game derived from G assigning a separate player with
payoff function u to each information set. It is easy to see that if there is
no absentmindedness:

Ž .i the set of modified multiselves equilibria of G corresponds to the
Ž .set of Nash equilibria of AA G ;

Ž .ii the set of modified multiselves sequential equilibria of G coin-
Ž .cides with the set of sequential equilibria of AA G .

Ž . Ž . Ž .Aumann et al. 1997 , Dekel and Gul 1996 , and Gilboa 1997 defend
the multiselves equilibrium approach to decision problems, but they do not
distinguish between sequential and nonsequential equilibria as they focus
on the ‘‘absentminded driver’’ example by P & R featuring only one
information set.10 However, even in decision problems with perfect infor-
mation, if there are potentially irrelevant information sets, Nash equilibria
of the agent form may correspond to completely irrational plans for the
decision maker, as choices ‘‘on the equilibrium path’’ may be induced by

Žthe expectation of irrational choices ‘‘off the equilibrium path’’ it is easy
.to find numerical examples . This is the reason why we consider the

stronger sequential equilibrium concept.
The requirement of full consistency ensures that an assessment satisfies

Bayes rule everywhere, while the weak consistency property only requires
that Bayes rule is satisfied on the equilibrium path. But full consistency
also incorporates the much stronger assumption that every unexpected
event is interpreted as the result of a sequence of independent mistakes
Ž .cf. Selten, 1975; Kreps and Wilson, 1982 . Another implicit assumption of
the multiselves sequential equilibrium concept is that the decision maker is
able to anticipate her own conditional expectations for every contingency
and all the ‘‘selves’’ have common expectations. These assumptions may be
too strong for decision problems with imperfect recall and are relaxed

Ž .elsewhere see Battigalli, 1995 .

10 Note that in any decision problem where all the information sets are b-relevant for all b
Ž .such as the ‘‘absentminded driver’’ problem in P & R a strategy is constrained time

Ž .consistent if and only if it is a modified multiselves sequential equilibrium.
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We have emphasized that constrained time consistency is a property of
Žplans whereas the multiselves equilibrium concepts apply to strategies or

.strategy profiles of the agent form and do not distinguish between the
Ž .decision problem G and the multiplayer game of common interest AA G .

However, the multiselves equilibrium concept can be used to clarify the
notion of constrained time consistency and its relation to optimality.

Ž . Ž .PROPOSITION 4.2. i P & R If a strategy b is optimal, then for e¨ery
Ž .system of beliefs m weakly consistent with b , m, b is a modified multisel̈ es

equilibrium.
Ž .ii A strategy b is constrained time consistent if and only if for e¨ery m

Ž .weakly consistent with b and e¨ery b9 equï alent to b the assessment m, b9
is a modified multisel̈ es equilibrium.

Ž .Proof. i This is Proposition 3 in P & R.
Ž . Ž .ii First realize that it follows from the definitions of E u ¬ X ; m, b
Ž .and E u ¬ X, a; m, b that

E u ¬ X ; m , b s b a ¬ X E u ¬ X , a; m , b .Ž . Ž . Ž .Ý
Ž .agA X

Ž .Therefore if b is either constrained time consistent or part of a modified
multiselves equilibrium for each b-relevant X and each action a such that
Ž . Ž . Ž .b a ¬ X ) 0, E u ¬ X ; m, b s E u ¬ X, a; m, b . It follows that each con-

Ž .strained time consistent strategy is part of a modified multiselves equilib-
rium.
Ž . Ž .Only if Suppose that m, b is weakly consistent and b9 is equivalent

Ž .to b. Then m, b9 is weakly consistent. If b is constrained time consis-
tent, then also b9 is constrained time consistent and}by the argument

Ž .above} m, b9 must be a modified multiselves equilibrium.
Ž .If Suppose that, for each m weakly consistent with b and every b9

Ž .equivalent to b , m, b9 is a modified multiselves equilibrium. Then for
Ž .each b9-relevant information set X, each action a g A X such that

Ž . Ž .b9 a ¬ X ) 0 and each b g A X

E u ¬ X ; m , b9 s E u ¬ X , a; m , b9 G E u ¬ X , b; m , b9 .Ž . Ž . Ž .

Since b9 is equivalent to b , this implies that for all b-relevant X and all
Ž .b g A X

E u ¬ X ; m , b s E u ¬ X ; m , b9 G E u ¬ X , b; m , b9 .Ž . Ž . Ž .

Ž .Thus 3.2 is satisfied and b is constrained time consistent. B
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Proof of Proposition 3.5. We must show that optimality implies con-
Ž .strained time consistency. By Proposition 4.2 i every optimal strategy b is

part of a modified multiselves equilibrium. Since every b9 equivalent to b
Ž . Ž .is optimal as well, Proposition 4.2 i , ii imply that b must be constrained

time consistent. B
Ž .Constrained time consistent strategies or plans pass the multiselves

sequential equilibrium test in the following sense.

PROPOSITION 4.3. For e¨ery constrained time consistent beha¨ioral strat-
Ž .egy b there is a modified multisel̈ es sequential equilibrium m9, b9 such that

b9 is equï alent to b.

Proof. See the Appendix. B

Proof of Proposition 3.3. We must show that in decision problems with
perfect recall constrained time consistency is equivalent to time consis-
tency. Time consistency trivially implies constrained time consistency. To
prove the converse, consider that a constrained time consistent strategy b
is equivalent to some b9 which is part of a modified multiselves sequential

Ž .equilibrium Proposition 4.3 . If the decision problem has perfect recall, b9
must be optimal and time consistent. Therefore, also b must be time
consistent. B

Note that Proposition 4.3 along with 3.5 provides a stronger statement
Ž .than 4.2 i : not only optimal strategies are modified multiselves equilibria;

they also induce modified multiselves sequential equilibrium outcomes.
Optimal strategies satisfy even stronger properties. For example, it is
shown in the Appendix that for every optimal strategy b there is a

Ž .modified multiselves sequential equilibrium m9, b9 with b9 ( b , which
satisfies optimality in every subform.11

We have just shown that constrained time consistency is a refinement of
multiselves sequential equilibrium outcomes. The parametrized example

Ž .depicted in Fig. 3 with x F 9 shows that the refinement can be strict and
12 Ž .has a ‘‘forward induction’’ flavor. Strategy profile Tc is a multiselves

Ž .sequential equilibrium. In this equilibrium the first agent at d is afraid1
Ž .that the second agent at d would be uncertain about the actual2

deviation from T. But T is not a constrained time consistent plan. Suppose
that, for some unexplained reason, plan T is chosen ex ante. According to
constrained time consistency, since d is inconsistent with T , the first2
agent is confident of being able to signal to the second agent that T has

11 ŽA subform is a sort of subgame with possibly multiple initial nodes see Kreps and
.Wilson, 1982 .

12 ŽNote that most forward induction refinements are applied to equilibrium outcomes see,
.e.g., Kohlberg and Mertens, 1986, and Kohlberg, 1989 .
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FIGURE 3

been replaced by a better plan, such as Rr.13 Is this confidence justified? It
is certainly more plausible to assume that the second agent is able to
correctly interpret the fact that T has not been chosen when both agents
are different ‘‘selves’’ of the same decision maker rather than distinct
individuals. But the plausibility of this forward induction argument also
depends on the precise payoffs.

If x - 8, L is a strictly dominated action and any forward induction
refinement would yield Rr as the unique solution independently of the
interpretation of Fig. 3 as a decision problem or a two-player game with
common interests. For 8 - x - 9 we might have less confidence in the
ability of the first agent to signal her strategic intent. Yet Rr is the unique
optimal plan and this may make it salient. In the knife-edge case x s 9,
the interpretation of Fig. 3 as a decision problem or a two-player game
should affect our intuition about the solution. In this case Ll and Rr are

Ž .equivalent strategies profiles and Tc seems a plausible equilibrium of the
two-player game, but somewhat less so for the one-person decision prob-
lem.

Note that this analysis rests on the informal assumption that the
decision maker remembers the ex ante chosen plan, which is used as a
reference point in order to coordinate expectations at different relevant
information sets and to interpret information about past actions. We argue

Ž .elsewhere Battigalli, 1995 that if we drop this assumption, a different
Ž .approach related to extensive form rationalizability Pearce, 1984 is more

appropriate and in the knife-edge case above we should not exclude
plan T.

13 Ž .More generally, one can show the following: Suppose that i if the decision maker is at
Ž � 4 . Ž .the root of the decision tree, she knows it that is, f g II ; ii the decision maker has the

possibility to terminate the game immediately, say choosing action T. Then a plan prescribing
T is constrained time consistent if and only if it is optimal.
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5. CONCLUSION

We have analyzed the concepts of time consistency and sequential
rationality for dynamic decision problems with imperfect recall. Under the
assumption of perfect recall, there is an essentially unique appropriate
formalization of these concepts, and optimality is equivalent to time
consistency and realization equivalent to sequential rationality. But in
decision problems with imperfect recall it is not obvious how these dy-
namic properties should be formalized. We have argued that a notion of
constrained time consistency of plans is appropriate in this more general
case: if the decision maker decides at the outset to follow a plan s and
then evaluates the expected utility of a deviation from s at an information

Ž .set X consistent with s , she expects to behave as prescribed by s at each
future information set Y consistent with the original plan s because at
such information sets she cannot remember whether she has deviated to a
new plan.

Under perfect recall, constrained time consistency coincides with the
standard notion of time consistency and, hence, with optimality. In gen-
eral, optimality, constrained time consistency, sequential rationality, and
multiselves equilibria are related as follows:

Ž .a Every optimal behavioral strategy is constrained time consistent.

Ž .b A behavioral strategy is constrained time consistent if and only if
every equivalent strategy is a modified multiselves equilibrium.

Ž .c Every constrained time consistent behavioral strategy is equivalent
to some modified multiselves sequential equilibrium.

Ž . Ž .Simple examples show that the converses of a and c do not hold.
The analysis can be extended to multiperson games, considering Nash

Ž .equilibria in behavioral strategies , instead of optimal strategies and
taking as fixed the opponents’ strategies when checking for constrained
time consistency of a player’s strategy in a given profile. The definitions of
multiselves equilibria are extended in an obvious way to multiperson
games. Since for each player i and each fixed profile of opponents’
strategies one can define an associated decision problem for i, one can use
some of the decision theoretic arguments of this paper to show that

Ž .a9 Every Nash equilibrium in behavioral strategies is constrained
time consistent.

Ž .b9 A constrained time consistent profile of behavioral strategies is a
modified multiselves equilibrium.
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APPENDIX

For any e ) 0, let B denote the set of behavioral strategies whiche

assign probability at least e to every action. B is compact and is note

Ž . Ž Ž ..y1empty if e g 0, e , where e s max aA X .G G X g II

Ž .DEFINITION 6.1. Fix e ) 0. A weakly consistent assessment m, b is
an e-modified multiselves equilibrium if b g B and for all informatione

sets X

;a, a9 g A X , b a ¬ X ) e « E u ¬ X , a; m , bŽ . Ž . Ž .
G E u ¬ X , a9; m , b .Ž .

Ž . Ž .By continuity of E u ¬ X, a; m, b in m, b , a limit of e-modified multi-
selves equilibria as e o 0 is a modified sequential equilibrium. e-modified
equilibria are considered here for technical reasons. In games without
absentmindedness a limit of e-modified multiselves equilibria of G as

Ž . Že o 0 is a trembling hand perfect Nash equilibrium of AA G cf. Selten,
.1975; Harsanyi and Selten, 1988, pp. 63]64 .

We say that a strategy b is e-constrained optimal if it maximizes the ex
ante expected utility in the restricted set B . For any strictly positivee

Žbehavioral strategy b , m denotes the unique system of beliefs weakly andb

.fully consistent with b.

Ž . Ž .LEMMA 6.2. i If b is e-constrained optimal, then m , b is an e-mod-b

ified equilibrium.
Ž . Ž .ii For e¨ery e g 0, e , there exists an e-modified multisel̈ es equilib-G

Ž Ž . .rium thus modified multisel̈ es sequential equilibria always exist .

Ž .Proof. i The same argument as in the proof of Proposition 3 in P & R
can be applied here.

Ž .ii An e-constrained optimal strategy b exists by nonemptiness and
Ž . Ž .compactness of B and continuity of expected utility. By i , m , b is ane b

e-modified multiselves equilibrium.14 B
Ž . Ž .Proof of Proposition 4.3. Fix a sequence e in 0, e , wherek k G1 G

Ž .lim e s 0. For each k, consider the modified game G b , e derivedk ª` k k

14 The different definitions of multiselves equilibrium are extended to finite multiperson
games in a straightforward way. Modified multiselves equilibria always exist, but a different,

Ž .fixed-point argument has to be used. In fact, it is true that a e-constrained Nash equilibrium
Ž .in behavioral strategies of the agent form of a multiperson game is a e -modified multiselves

equilibrium; but simple numerical examples show that the agent form may not have Nash
equilibria in behavioral strategies due to the nonconcavity of the ex anto expected utility of
absentminded agents.
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from G as follows: each personal move corresponding to a b-relevant
information set X is replaced by a chance move with probabilities

r a ¬ h s e ;h g X , if b a ¬ X s 0,Ž . Ž .k k

r a ¬ h s b a ¬ X y c b , X e ;h g X , if b a ¬ X ) 0,Ž . Ž . Ž . Ž .k k

Ž . w Ž . Ž Ž < ..x Ž Ž < ..where c b , X s aA X y aSupp b ? X raSupp b ? X . For each
Ž . Žk choose an e-modified multiselves equilibrium s of G b , e Lemmak k

Ž .. Ž .6.2 ii and let m , b be the corresponding assessment}that is, b sk k k
Ž . Ž .s , r and m s m . Let m9, b9 be a cluster point of the sequencek k k b k
Ž . Ž .m ,b . Clearly m9, b9 is fully consistent. For each b-relevant informa-k k

Ž . Ž .tion set X, lim b ?¬ X s b ?¬ X . Thus b9 ( b. By a standard conti-k ª` k
Ž .nuity argument, the multiselves sequential rationality property 4.1 is

satisfied at each b-irrelevant information set. Finally, constrained time
Ž .consistency of b implies that m, b9 is a modified multiselves equilibrium

Ž Ž .. Ž .Proposition 4.2 ii . Therefore 4.1 is satisfied also at the relevant infor-
mation sets. B

ˆA subset of histories H corresponds to a subform if it is closed under
ˆsuccession and preserves information sets}that is, for all h g H, X g II,

ˆ ˆ ˆh $ h9 implies h9 g H, and X l H / B implies X ; H. The set of initial
ˆ ˆ ˆ�histories of a subform induced by H is W [ h g H ¬ ;h9 g H, h9 $ h «

ˆ ˆ4 Ž .h9 f H . Given some probability measure r g D W , one can define aˆ
ˆŽ .corresponding game G r .ˆ

Ž .DEFINITION 6.3 Kreps and Wilson, 1982 . A behavioral strategy b is
ˆ ˆŽ .extended subgame perfect if there exists a mapping H ¬ r g D W whichˆ

ˆassigns to each H corresponding to a subform a probability measure on
ˆŽ . Ž .initial histories such that a for every H inducing a subform , b induces a

ˆ ˆ ˆŽ . Ž . Ž .Nash equilibrium of G r ; b for every pair H9, H0 inducing subforms ,ˆ
ˆ ˆ Ž . Ž .if H9 ; H0 and Ý r9 h9 Ý p h0 ¬ h9; b ) 0, then r0 is de-ˆ ˆˆ ˆh9g W 9 h0 g W 0

Ž .rived from r9 and b via Bayes’ rule. See Kreps and Wilson, 1982, p. 877.ˆ
PROPOSITION 6.4. A beha¨ioral strategy b is optimal if and only if there is

Ž .a modified multisel̈ es equilibrium m9, b9 such that b9 is extended subgame
perfect and is equï alent to b.

Ž .Proof. Construct a sequence of perturbed games G b , e as in thek
proof above and for each k choose an e -constrained optimal strategy sk k

Ž . Ž .of G b , e . By Lemma 6.2 i s is also an e-modified multiselves equilib-k k
Ž . Ž .rium of G b , e . Let m9, b9 be a cluster point of the correspondingk

Ž .sequence of assessments m , b . We have already shown in the proofk k
Ž .above that b9 is equivalent to b and m9, b9 is a modified multiselves

sequential equilibrium. To show that b9 is extended subgame perfect, for
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ˆeach set of initial histories W of a subform, let r be obtained as the limitˆ
Ž . w Ž .xy1possibly along a subsequence of the probabilities Ý p h ¬ f ; b ?ˆh9g W k
Ž . Ž .p h ¬ f ; b cf. Kreps and Wilson, 1982, p. 877 . Bk

The proof above suggests that we can formulate a generalized notion of
sequential rationality as the limit of e-constrained optimality and show
that an optimal strategy is always equivalent to a sequentially rational one
Ž .cf. Kreps and Wilson, 1982, Proposition 6 .
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