
File: 642J 225201 . By:CV . Date:14:05:97 . Time:11:50 LOP8M. V8.0. Page 01:01
Codes: 4349 Signs: 2595 . Length: 50 pic 3 pts, 212 mm

Journal of Economic Theory � ET2252

journal of economic theory 74, 40�61 (1997)

On Rationalizability in Extensive Games

Pierpaolo Battigalli*

Department of Economics, Princeton University,
Princeton, New Jersey 08544-1021

Received May 2, 1991; revised July 26, 1996

This paper analyzes Pearce's notion of extensive form rationalizability (EFR).
Although EFR was originally defined as a reduction procedure, this paper shows
that it can be characterized in terms of restrictions on players' updating systems.
These restrictions correspond to a common hierarchy of nested hypotheses. Next
the relationship of EFR to more familiar reduction procedures is examined. In
generic games of perfect information, EFR is realization-equivalent to iterated weak
dominance and backward induction. Equivalence with iterated weak dominance is
complete in the subset of games with ``iterated perfect information.'' Journal of
Economic Literature Classification Number: C72. � 1997 Academic Press

1. INTRODUCTION

In the last few years the Nash equilibrium concept and its most popular
refinements1 (in particular sequential and perfect equilibria) have been
seriously criticized along two very different but complementary lines.

On one hand, Bernheim and Pearce have convincingly argued that if a
game is played ``one-shot'' and without preplay communication, there is no
a priori reason to expect that players will be able to predict opponents'
behavior. Therefore there is no reason to expect a Nash equilibrium out-
come. But this does not mean that strategic rationality cannot be properly
formalized. Bernheim and Pearce defined the concept of rationalizability in
order to characterize those strategy profiles that could conceivably be played
when (a) there is complete information concerning the game to be played, (b)
each player maximizes her expected payoff, given some conjecture on her
opponents' behavior, (c) it is common knowledge that (a) and (b) hold. In
two-person finite normal-form games, rationalizability is equivalent to
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iterated deletion of strictly dominated strategies. In every normal-form
game the set of Nash equilibria is included in the set of rationalizable
strategies (see Bernheim [3] and Pearce [19]).

On the other hand, there are many extensive games in which sequential,
perfect (and also proper) equilibria are not restrictive enough, because they
fail to eliminate intuitively incredible threats, or promises. The criteria used
to judge such strategies as incredible attempt to formalize the so-called
forward induction principle: a player should use all information she acquired
about her opponents' past behavior in order to improve her prediction of
their future, simultaneous, and past (unobserved) behavior, relying on the
assumption that they are rational.

Forward induction criteria are usually embedded in refinements of the
Nash equilibrium concept which restrict beliefs off-the-equilibrium-path.
One way to do it is to check whether a given ``obvious way to play the
game,'' or ``candidate solution,'' is stable against deviations, given that such
deviations are interpreted as conscious signals. Note that the interpretation
depends on the candidate solution which is being tested.2 If the candidate
solution fails the test, it should not be considered an obvious way to play
the game, and this may undermine the interpretation of deviations which
caused the solution to fail the test. Another approach is to interpret devia-
tions as the result of a mistaken theory: the deviator is supposed to believe
in a ``wrong equilibrium.'' But Bernheim's and Pearce's critique applies
even more forcefully to these situations: why should one restrict attention
to alternative hypotheses given by Nash equilibria, when something unpre-
dictable has happened? and why should the deviator and not the observer
be wrong? However, in many interesting cases it is possible to provide very
compelling forward induction arguments, which neither depend on a
candidate solution, nor rely on equilibrium assumptions (see, e.g., Pearce
[19] and Hammond [11]). Therefore, it would be interesting to obtain
these restrictions, as well as more conventional backward induction
arguments, as the by-product of a formal, non-equilibrium theory of
strategic rationality in extensive games. This is exactly what Pearce tried to
accomplish with his notion of extensive-form rationalizability (EFR).
According to EFR, it is common knowledge that no player, at an informa-
tion set h, would choose an action which is not optimal with respect to any
``rational'' conjecture consistent with h.

Pearce's solution is quite successful in formalizing many intuitive forward
and backward induction arguments, which have been used to solve interesting
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2 This is made transparent in Sobel et al. [27] where forward induction equilibria of signal-
ing games are characterized by applying extensive form rationalizability to a modified game
where the proposed equilibrium path is replaced with a message yielding the proposed-equi-
librium expected payoffs.
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games. The theory's unintuitive predictions (such as the lack of any
cooperation in the finitely repeated Prisoner Dilemma or of reputation
effects in Selten's [26] Chainstore game) coincide with those of more con-
ventional equilibrium theories, suggesting that it would be instructive to
understand why EFR fails to match our intuition. Moreover, EFR sub-
sumes normal-form rationalizability, since they coincide for simultaneous
games. However, EFR has not received as much attention as normal-form
rationalizability.3 There are at least two reasons for this neglect. One is
simply that Pearce's definition of EFR is quite difficult to understand and
tricky to handle in formal analysis. The other is that EFR has been
seriously criticized for being inadequate in dealing with ``counterfactuals''
(e.g., Reny [20] and Basu [1]). Many games possess information sets that
cannot be reached by rationalizable strategies, yet the players are assumed
to optimize against ``rational'' conjectures also at these information sets.
Hence it seems that the theory assumes that ``rationality'' is common
knowledge at ``irrational'' information sets. This sounds like a contradic-
tion! Note that the more conventional notion of subgame perfection has
been similarly criticized (see, e.g., Rosenthal [23]). In fact it has been
noted that EFR tends to be equivalent to subgame perfection in games
which can be solved by backward induction.

The aim of this paper is to provide additional insights about EFR,
attempting to overcome the two drawbacks mentioned above and compar-
ing EFR with more conventional solution concepts. Section 2 briefly
describes the game-theoretic set-up. Section 3 provides an alternative
characterization of EFR, originally defined as an iterative reduction proce-
dure on the strategies. This new definition is easier to understand and can
be consistently interpreted as a theory of strategic rationality. Such a theory
has to assume (1) that players are rational and endowed with a hierarchy
of hypotheses, and (2) that this is common knowledge (or, more precisely,
``common belief '') at the beginning of the game. Therefore, one has to
assume both ``more'' and ``less'' than common knowledge of rationality to
obtain EFR: ``more,'' because there must be a hierarchy of hypotheses, and
``less,'' because the theory is not necessarily common knowledge at each
information set. Section 4 analyzes the relationship between EFR, iterated
weak dominance and subgame perfection. It is shown that in generic games
with ``iterated perfect information,'' EFR is equivalent to the former and
realization-equivalent to the latter. A realization-equivalence result also
holds for general perfect information games. This illustrates the similarity
between rationalizability and backward induction.
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3 Most recent textbooks of game theory (e.g., [9, 18, 25]) devote a chapter or a section to
normal-form rationalizability, but extensive-form rationalizability is not discussed.
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2. THE GAME-THEORETIC SET-UP

The analysis is restricted to finite extensive games with perfect recall and
without chance moves. Since the formal description of an extensive game is
by now standard (see, e.g., Kuhn [14] or van Damme [7]), only the
necessary symbols with very terse explanations are given below.

Notation Terminology

I the set of players
&i=I"[i] the opponents of player i

Xi the set of decision nodes of i
Hi the collection of information sets of i (a partition of Xi)

S=Si_S&i the set of (pure) strategy profiles
Z the set of terminal nodes

ui: Z � R player i 's utility function
`: S � Z the outcome function: `(s) is the terminal node induced

by the strategy profile s
Ui=ui b ` player i 's normal-form utility function

By perfect recall, a given player's information sets can be partially
ordered without ambiguities according to the precedence relation between
the respective nodes. Let g, h # Hi; g comes before h (or h follows g) if and
only if every node of h follows a node of g.

In the following analysis there is no need to assume that players actually
choose mixed strategies. Mixed strategies are interpreted as beliefs. Let
2(Y) denote the space of probability measures on a given set Y. A mixed
strategy ci # 2(Si) represents a probabilistic conjecture concerning player i.
The letter ``c'' is used to stress this interpretation. A conjecture of player i
is a probability measure c&i # 2(S&i). If i regards her opponents' strategies
as independent random elements, then her conjecture space is restricted to
the set of uncorrelated conjectures4

2*(S&i) :={c&i # 2(S&i) | _(c j) j{i # \_
j{i

2(S j)+ , \s&i # S&i, c&i(s&i)

= `
j{i

c j(s j)= .
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4 The justifications for having uncorrelated conjectures at unreached information sets are
discussed critically in Kreps and Ramey [13] and Fudenberg et al. [8]. Battigalli [2] shows
that having an uncorrelated conjecture at each information set does not properly formalize the
above mentioned notion of stochastic independence in the context of extensive games.
Lemma 1 in the Appendix shows that the difference between correlated and uncorrelated con-
jectures is immaterial is games with perfect information.
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Player i 's expected payoff given (si, c&i) is denoted by Ui(si, c&i).
A conjecture c&i reaches an information set h # Hi if there are a strategy

si and a profile s&i in the support of c&i, such that the path induced by
(si, s&i) reaches h. This means that conjecture c&i is not falsified if h is
reached. Similarly si reaches h if there is an s&i such that the path induced
by (si, s&i) reaches h. One may check that the probability of reaching
an information set h # Hi given (si, c&i) is positive if and only if both si

and c&i reach h. A set B&i�S&i reaches h if there is a profile s&i # B&i

reaching h.

3. CHARACTERIZATION AND INTERPRETATION OF
EXTENSIVE FORM RATIONALIZABILITY

Pearce's original definition of EFR may be difficult to understand, not
only because it is quite complex, but also because it is not completely clear
how to interpret it. Moreover, according to some critics, the informal
theory which EFR is supposed to represent is contradictory (see Reny [20]
and Binmore [5]).

Consider the game of Fig. 1. EFR implies that player 1 chooses A. In
fact, A strictly dominates R and at information set h player 2 should
believe that 1 has played L, otherwise 1 would be irrational, an instance of
forward induction. But this induces 2 to play l at h, which in turn induces
1 to choose A. Therefore h is inconsistent with common knowledge of
rationality. Why should 2 believe at h that 1 is not irrational? Might not
player 1 recognize that she may be able to trick player 2 into playing r, just
by pretending to be irrational? If she does, she may hope to grab 82, her
best payoff, playing L.

These problems concerning counterfactuals and the strategic manipula-
tion of beliefs are important. EFR, like most extensive game theories,

Fig. 1. A game in extensive form.
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ignores or, at best, ``sterilizes'' them. But this does not mean that EFR is
inherently contradictory. Note that game 11 has been solved by a reduction
procedure, which progressively eliminates strategies. In the alternative
characterization of EFR given in this section there is no iterated deletion
of strategies. Only players' beliefs are restricted. Since conjectures in an
extensive game may be falsified and then have to be replaced, EFR restric-
tions will not concern isolated conjectures, but updating systems of conjec-
tures. Such restrictions will be modeled as a hierarchy of hypotheses, ruling
out strategic manipulation. It will be shown that this hierarchy corresponds
to the sequence of strategy sets given by Pearce's iterative deletion proce-
dure. For example, in game 11 , it is plausible to assume that player 2 at
h believes that player 1 does not choose strictly dominated strategies
because this belief is a minimal rationality hypothesis consistent with infor-
mation h. According to EFR, player 1 believes that player 2 would hold
this minimal hypothesis if h were reached.

The building block of the analysis is a theory of ``naive'' individual
rationality, which does not take into account truly strategic considerations.
An individually rational player i maximizes her expected payoff at each
information set h reached by the play, given her conjecture at h, c&i(h),
where c&i(h) reaches h. But this is not enough. It is necessary to assume
that she has a consistent pattern of expectations. She should not change her
conjecture unless the play reaches an information set which falsifies it. If i 's
pattern of expectations fails to meet this consistency condition, she may
change her plan of action without a good reason, actually implementing a
strictly dominated strategy.

Definition 1. A consistent updating system for player i is a mapping
c&i( } ): Hi � 2(S&i) such that for all information sets g, h # Hi:

(i) c&i(h) reaches h,

(ii) if g comes before h and c&i( g) reaches h, then c&i( g)=c&i(h).

A consistent updating system for player i is uncorrelated if its range is
included in 2*(S&i).

Consistency of the updating system requires that the conjecture at h is
consistent with h being reached and that no conjecture is abandoned unless
falsified. That is, players update according to Bayes rule whenever possible.

A strategy is individually rational if it is a weakly sequential best response
to some consistent updating system. The phrase ``weakly sequential'' is used
because, unlike much of the refinement literature, here it is not required
that a strategy specifies behavior at information sets that can not be
reached by that strategy. (For more on this see Rubinstein [24] and Reny
[21].) According to the following definition, R(1) is the set of individually

45EXTENSIVE FORM RATIONALIZABILITY
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rational strategy profiles. Higher degrees of strategic rationality are con-
structed recursively.

Definition 2. Let Rc(0) :=S. Then Rc(n) (n�1) is inductively defined
as follows: for all i # I, si # Ri

c(n) if there exists a consistent updating system
c&i( } ) such that

(a) for all h # Hi and all k # [0, ..., n&1], if R&i
c (k) reaches h, then

c&i(h) # 2(R&i
c (k)),

(b) for all h # Hi, if si reaches h, then si is a best response to c&i(h)
at h, that is,

for all ti # Si, U i(si, c&i(h))�U i(si�t i
h , c&i(h)),

where si�t i
h is the strategy which results from si when behavior at h and its

followers in Hi is specified by ti.
The subscript c in Ri

c(n) is mnemonic for ``correlation.'' R(n) is defined
in the same way with the additional condition that c&i( } ) must be
uncorrelated.

Remark 1. [R(n); n�0] is a weakly decreasing sequence, i.e.,
R(n+1)�R(n) for all n. Since S is finite, the sequence converges in finitely
many steps. The limit set is given by the first integer N such that
R(N)=R(N+1). The same holds for Rc( } ).

Definition 2 and Remark 1 can be interpreted as follows. Consider the
limit set R(N). The sequence R&i(0), R&i(1), ..., R&i(N) represents a
hierarchy of increasingly strong hypotheses about the behavior of player i 's
opponents. When player i implements a strategy si # Ri(N), she always
holds the strongest hypothesis which is consistent with her information and
optimizes accordingly. At the beginning of the game, it is a common belief
that all players update and behave in this way. A similar iterative proce-
dure is incorporated in Reny's [21] notion of ``explicability.'' Yet he offers
no explicit characterization of Pearce's notion of EFR.5

Let P(n) denote the set of pure strategies which survive the nth iteration
of Pearce's procedure.

Definition 3. Let Pc(0) := S. Then Pc(n) (n�1) is inductively defined
as follows: for all i # I, si # Pi

c(n) if

(a) si # Pi
c(n&1),

(b) there exists a consistent updating system c&i( } ) such that for all
h # Hi, if si and P&i

c (n&1) reach h then

46 PIERPAOLO BATTIGALLI

5 It can be shown that Reny's [21] (weakest) procedure corresponds to EFR in two-player
games, but not in n-player games.
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(b$) c&i(h) # 2(P&i
c (n&1)),

(b") for all ti # Pi
c(n&1), U i(si, c&i(h))�U i(si�t i

h , c&i(h)).6

P(n) is defined in the same way with the additional condition that c&i( } )
must be uncorrelated. The set of rationalizable (correlated-rationalizable)
strategy profiles is �n>0 P(n) (�n>0 Pc(n)).

There are two differences between Definition 2 and 3: (i) all strategies in
Si are candidates for Ri(n), while only strategies in Pi(n&1) are candidates
for Pi(n), thus maximization is performed over a smaller domain of
``competitors'' in Definition 3; (ii) maximization is performed for a smaller
class of information sets in Definition 3.

These differences depend on R(n) being determined by restrictions on
players' updating systems and P(n) by a reduction procedure. Nevertheless,
Theorem 1 shows that the two definitions are equivalent.

Theorem 1. For all n�0, R(n)=P(n) and Rc(n)=Pc(n).

Proof. See the Appendix.

Corollary 1. Let N(Nc) be the smallest integer such that R(N)=
R(N+1) (Rc(Nc)=(Rc(Nc+1)). Then R(N)=�n>0 P(n){< (Rc(Nc)=
�n>0 Pc(n){<).

Proof. This follows by inspection of Definition 3 and Theorem 1. At
each step it is possible to find a consistent updating system c&i( } ) which
meets condition (b$) for all h reached by P(n&1). In addition, a strategy
si satisfying (b") can be found by dynamic programming, relying on con-
sistency of c&i( } ) and finiteness of Si. K

4. RATIONALIZABILITY, ITERATED DOMINANCE, AND
BACKWARD INDUCTION

This section explores the differences and similarities between EFR,
iterative deletion of weakly dominated strategies and subgame perfection
(with the associated backward induction procedure) in games of perfect
information. It is shown that in generic perfect information games these
solution concepts are realization-equivalent and that EFR is completely
equivalent to iterated weak dominance on a subset of such games. Before
stating the main results it is useful to discuss some examples.

47EXTENSIVE FORM RATIONALIZABILITY

6 Condition (b") differs slightly from the original definition in Pearce [19], as Pearce
considers h-replacements si�ti

n # Pi
c(n&1). The present definition simplifies the analysis and yet

captures the spirit of the original one. It is shown in the working paper version of this paper
that the difference is immaterial.
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Fig. 2. A perfect information game with relevant ties.

On the Relevance of Ties between Payoffs at Terminal Nodes

The ``genericity'' property used here says that no player with deter-
ministic conditional expectations is ever indifferent between two actions.
Formally, an extensive game is without relevant ties if for all z$, z" # Z, all
i # I, if z${z" and i is the player moving at the last common predecessor
of z$ and z",7 then ui(z$){ui(z").

The proof of the following remark is left to the reader.

Remark 2. An extensive game (without chance moves) has no relevant
ties if and only if whenever a player can affect the outcome (given the
opponents' strategies) she also affects her own payoff; that is, for all
i # I, all si, ti # Si, all s&i # S&i, `(si, s&i){`(ti, s&i) implies U i(si, s&i){
Ui(ti, s&i).

The example depicted in Fig. 2 illustrates the meaning and the role of
relevant ties. In game 12 there are exactly two relevant ties, which make
player 2 always indifferent between ``left'' and ``right.'' EFR and iterated
weak dominance have no bite in this game, whereas the equilibrium condi-
tion rules out the pair of strategies (R, ll $). This is true independent of
the value of the parameter u and u=1 does not increase the number of
relevant ties relative to the case where u is not equal to 1. Note however
that the value of u may be relevant with respect to other solution concepts
not discussed here: for example, if u<1, player 2 could credibly announce
that she is going to play r after L to induce player 1 to choose R.

Backward Iterated Dominance and EFR

For all games where the backward induction procedure can be unam-
biguously used to compute the set of subgame perfect equilibria, in

48 PIERPAOLO BATTIGALLI

7 The last common predecessor of two nodes t$ and t" in a tree is the maximal element of
the set [x | x<t$ and x<t"], where < is the precedence relation.
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particular for all games without relevant ties, it is possible to define a
corresponding order of (non-maximal) elimination of weakly dominated
strategies according to the following rule: if backward induction deletes
action a at node x, delete all the strategies reaching x and choosing a (see,
e.g., Osborne and Rubinstein [25, Sec. 6.6]). EFR and the maximal
iterated deletion of weakly dominated strategies are best compared with
this elimination procedure, which may be called backward iterated
dominance.

According to Theorem 1, whenever backward iterated dominance and
EFR correspond to the same order of elimination , the subgame perfect
strategies at unreached decision nodes can be interpreted as rationalizable
updated expectations. This kind of equivalence does not hold in the games
without relevant ties discussed below. But Theorem 4 will show that all the
considered solution procedures eventually select the subgame perfect ter-
minal node.

In game 13 (see [21, Fig. 3]) backward iterated dominance eliminates
a$a", A$A", a$d" and A$D" in the given order and the unique subgame per-
fect equilibrium is (D$D", d $d"). EFR coincides with maximal iterated weak
dominance and eliminates [A$D", a$a"], [A$A", d $d", d $a"] in the given
order. The rationalizable solution is (D$ . , a$d"), yielding the same outcome,
but prescribing a different strategy for player 2 and different beliefs for both
players. Indeed, according to EFR, if player 2 were reached she would
assume that player 1 is carrying out the ``less irrational'' strategy consistent
with A$, that is the undominated strategy A$A". This yields choice a$.

Iterated Weak Dominance and Iterated Perfect Information

There are two definitions of iterated weak dominance (as well as two
definitions of iterated strict dominance). Although they are not equivalent,
both are widely used in the literature.

Fix two non-empty subsets Bi�Si and B&i�S&i. A mixed strategy
+i # 2(Si) dominates $i # 2(Si) on B&i if for all s&i # B&i, U i(+i, s&i)�
Ui($i, s&i) and for some t&i # B&i the inequality is strict. A pure strategy
si # Bi is inferior in Bi_B&i if there exists a mixed strategy +i # 2(Bi) which

Fig. 3. A perfect information game without relevant ties where the unique subgame
perfect strategy for player 2 is not rationalizable. (Irrelevant payoffs are replaced by *.)

49EXTENSIVE FORM RATIONALIZABILITY
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dominates si on B&i. A strategy si # Bi is dominated in Bi_B&i if there
exists a pure strategy ti # Bi which dominates si. A strategy si # Bi is
redundant on Bi_B&i if there exists ti # Bi such that for all j # I, all
s&i # B&i, U j(si, s&i)=U j(ti, s&i). Player i is redundant on Bi_B&i if every
si # Bi is redundant on Bi_B&i.

The sets W(n) and Wp(n) of iteratively non-inferior and iteratively
undominated strategies are inductively defined as follows: W(0) :=
S=: Wp(0); W(n+1) is the set of profiles of strategies which are not
inferior in W(n); Wp(n+1) is the set of profiles of strategies which are not
dominated in Wp(n). (W is mnemonic for weak dominance and subscript
p is mnemonic for domination by a pure strategy.)

The W( } ) procedure informally relies on the assumption that players'
attitudes toward risk are common knowledge.8 On the other hand the
Wp( } ) procedure only requires common knowledge of players' ordinal
preferences over outcomes.9 It is proved in the Appendix (Lemma 4) that
in every game of perfect information a strategy is inferior if and only if it
is weakly dominated. This does not seem surprising, since intuition
suggests that attitudes toward risk should not be relevant in games of per-
fect information. However this equivalence does not generally hold for
iterations of the two dominance procedures beyond the first step. This is
shown by an example due to Faruk Gul and Phil Reny (private com-
munication).10

In game 14 (Fig. 4), player 1's strategy IN .L$L" is dominated by OUT
and the only undominated strategy for player 3 is r$r". No other strategy
is either dominated or inferior on S. Therefore, in the residual game, player
2's strategy out is dominated by mixed strategy 1�2[a]+1�2[b], although
it is dominated neither by a nor by b (out is also iteratively undominated).
This can happen because the residual normal form game obtained after
deleting all the dominated strategies does not correspond to any game of
perfect information: while both actions L$ and L" can be chosen when a
profile of undominated strategies is implemented, strategy IN .L$L" does
not belong to the residual normal form.

Fix an extensive form with perfect information E and for every exten-
sive game 1(u)=(E, u) (u # RZ_I is the vector of payoff functions) let
[Wp(n, u)] be the iterated dominance procedure on 1(u). For every n�0,

50 PIERPAOLO BATTIGALLI

8 Stahl [28] offers a Bayesian characterization of the W( } ) procedure (see also [2]).
9 EFR can be modified to incorporate the assumption that only ordinal preferences over

outcomes are common knowledge. Then a result due to Bo� rgers [6, Lemma] can be used to
show that, in games without relevant ties, the modified EFR is equivalent to the Wp

procedure.
10 This example also shows that Lemma 4 and Theorem 2 of a previous version of this

paper are wrong. I am grateful to Faruk Gul and Phil Reny for pointing out this serious mis-
take.
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Fig. 4. A perfect information game without relevant ties where iterated deletion of inferior
strategies does not coincide with iterated deletion of dominated strategies.

let 1(n, u) be the perfect information game obtained by restricting 1(u) to
the set of nodes which are reached by some strategy profile in Wp(n, u)
(that is the set of terminal nodes `(Wp(n, u)) and all the predecessors of
these terminal nodes). Extensive form E has iterated perfect information if
for every payoff vector u=(ui) i # I and every n�0, the normal form of
1(n, u) is equivalent to (I, W(n), (ui b `) i # I) up to relabeling and deletion of
redundant strategies and players.11 It is easy to check that, for game 14 ,
1(1) does not have the same reduced normal form as (I, W(1), (ui b `) i # I).

Note that, unlike the other games considered so far, the extensive form
of 14 does not satisfy the following property:

(IPI) for every player i # I and every pair of nodes x$, x" # X i on distinct
paths, at least one of the following conditions holds:

(a) x$ and x" have no common predecessor which is also a decision
node of player i (i.e., X i & [w | w<x$ and w<x"]=<);

(b) the last common predecessor of x$ and x" is a decision node of
player i ;

(c) all the non terminal successors of either x$ or x" are decision
nodes of player i.
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11 This is essentially the same as saying that 1(n, u) and (I, Wp(n), (` b ui)) have the same
pure strategy reduced normal form (see Thompson [29]).
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Several interesting examples in the literature satisfy (IPI): all the ``Cen-
tipede-like'' games, all the games whereby no player moves more than once
in any path (cf. Bonanno's [5]), and some simple extensive forms discussed
in the literature on subgame perfect implementation (e.g., Moore and
Repullo [16, pp. 1119�1197]). It turns out that (IPI) characterizes iterated
perfect information.

Theorem 2. If an extensive form E with perfect information satisfies
(IPI), then it has iterated perfect information.12

Proof. See the Appendix.

Equivalence Results

Theorem 3. For every game 1=(E, u) without relevant ties, if E has
iterated perfect information, then iterated deletion of inferior strategies,
iterated deletion of dominated strategies, uncorrelated and correlated
rationalizability coincide, i.e., for all n�0, W(n)=Wp(n)=P(n)=Pc(n).

The proof is in the Appendix, where it is shown how the theorem can be
extended to games with chance moves. The proof also makes clear that
correlated rationalizability and iterated dominance coincide step by step in
all games without relevant ties such that W(n)=Wp(n) for all n. Since the
iterated dominance procedure Wp( } ) (without chance moves) only depends
on ordinal preferences over terminal nodes, this shows that in all such
games knowledge of players' attitudes toward risk does not play any role
in the EFR solution and in the reasoning processes represented by EFR.
Theorem 3 also shows that in games with iterated perfect information the
EFR solution can be computed considering the reduced game trees 1(n)
obtained by inductively deleting the nodes which are inconsistent with step
n&1 (game 14 shows that this is not true in games without iterated perfect
information).

Theorem 3 can be used to provide a simple proof of the similarity between
EFR and subgame-perfection in generic games with iterated perfect infor-
mation. This is a consequence of the well known fact that in generic games
of perfect information iterated dominance is outcome-equivalent to back-
ward induction (Moulin [17] and Gretlein [10] proved this result for
games where each player has a strict preference order over consequences,
which are a function of the terminal node; for games without relevant ties
one can use Marx and Swinkels' [15] result on order independence of
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IPI, there is some u (actually an open set of payoff vectors) such that (E, u) does not have
iterated perfect information.
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iterative dominance). This outcome-equivalence result can be extended to
generic games of perfect information.

Theorem 4 (cf. Reny [21, Proposition 3]). In every perfect information
game without relevant ties, all the profiles of un�correlated rationalizable
strategies, iteratively undominated strategies and iteratively non inferior
strategies yield the same terminal node as the unique subgame perfect equi-
librium.

Proof. See the Appendix.13

Theorems 2, 3, and 4 simplify the computation of EFR outcomes as well
as establishing a Bayesian foundation for the subgame-perfect outcome in
generic games of perfect information.

APPENDIX

Proof of Theorem 1

The proof for the case of uncorrelated conjectures is given, the proof for
the other case is virtually identical.

By inspection of Definitions 2 and 3 R(0)=P(0). Assume that R(n&1)=
P(n&1).

Let si # Ri(n). Since Ri(n&1)=P(n&1) (induction hypothesis) and
R(n)�R(n&1), si # Pi(n&1). Thus condition (a) in Definition 3 is met. By
Definition 2 and the induction hypothesis, there exists an uncorrelated con-
sistent updating system c&i( } ) such that for all h # Hi reached by si:

(;$) if P&i(n & 1) reaches h, then c&i(h) # 2*(P&i(n & 1)) =
2*(R&i(n&1)),

(;") si is a best response at h to c&i(h).

(;$) and (;") imply (b$) and (b") in Definition 3. Hence si # Pi(n).
Let si # Pi(n). Since Pi(n&1)=Ri(n&1) (induction hypothesis) and

P(n)�P(n&1), si # Ri(n&1). Therefore there are two uncorrelated con-
sistent updating systems c&i

n&1( } ) and c&i
n ( } ) such that for all h # Hi:
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13 Following Reny [21], the proof uses some properties of Kohlberg and Mertens' [2]
``fully stable sets.'' Unfortunately, I am not aware of more intuitive proofs of this result. Alter-
natively, one can show that a generalization of the property mentioned in Remark 3 for the
set of mixed strategies holds generically and then apply results about order independence of
iterative dominance procedures (see Marx and Swinkels [15]). But the set of payoffs for
which this extension holds does not satisfy nice structural properties such as no relevant ties.
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(n&1) if si reaches h, then si is a best response at h to c&i
n&1(h), and

for all k=0, ..., n&2, if R&i(k) reaches h, then c&i
n&1(h) # 2*(R&i(k)) (see

Definition 2 for si # Ri(n&1));

(n) if R&i(n&1) and si reach h, then c&i
n (h) # 2*(R&i(n&1)) and for

all ti # Ri(n&1), U i(si, c&i
n (h))�U i(si�ti

h , c&i
n (h)) (see Definition 3 for

si # Pi(n), use the induction hypothesis, and recall that si�th denotes the
strategy that selects the actions given by ti at information set h and its
followers, and the actions given by si otherwise).

It may be assumed without loss of generality that c&i
n (h) #

2*(R&i(n&1)) for all h reached by R&i(n&1), even if h is not reached
by si. Now define c&i( } ) as follows:

c&i(h)={c&i
n (h),

c&i
n&1(h),

if R&i(n&1) reaches h
otherwise.

It is easy to check that c&i( } ) satisfies conditions (i) and (ii) of Definition 1.
Hence c&i( } ) is a well-defined consistent updating system. By construction,
for all k=0, ..., n&1, if R&i(k) reaches h, then c&i(h) # 2*(R&i(k)).

Since c&i( } ) meets the conditions stated in Definition 2 (a), si # Ri(n) if
si is a weakly sequential best response to c&i( } ). By (n) and (n&1), this is
not true only if there exists an information set h # Hi reached by si and
R&i(n&1), and a strategy ti which does not belong to Ri(n&1) such that
si�t i

h is better than si against c&i(h). In this case si would be only a con-
strained best response to c&i(h) at h and no unconstrained best response
would belong to Ri(n&1). Therefore it is sufficient to show that the
following is true:

Claim. There exists a strategy ti # Ri(n&1) such that for all h # Hi

reached by si, si�ti
h is a best response to c&i(h) at h.

Proof of the Claim (Sketch). Exploit the arborescence structure and
finiteness of Hi and construct ti by dynamic programming given the
probabilities implied by c&i( } ) (as i has perfect recall and c&i( } ) is consis-
tent, (Hi, c&i( } )) corresponds to a decision tree for i). For all h # H i (in
particular, all the information sets for player i reached either by ti or by si)
the continuation strategy ti

h is a best response against c&i(h). Thus
ti # Ri(n)�Ri(n&1) and si�t i

h is a best response to c&i(h) at h for all h # H i

reached by si. K

Proof of Theorem 2

Consider a perfect information game 1 with extensive form E satisfying
(IPI). Let [Wp(n)] be the dominance procedure on 1. Consider the
residual tree (X(n) _ Z(n), <) of nodes reached by strategy profiles in
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W(n) (that is, Z(n) :=`(Wp(n)) and X(n) is the set of predecessors of Z(n))
and let 1(n) be the corresponding residual game tree with strategy sets
(Si(n)). It must be shown that the residual game tree 1(n) has the same
reduced normal form as the residual strategic game (Wp(n), (ui b `)).

Note that each strategy ŝi # W i
p(n) of the residual strategic game

corresponds to a function from X i to the set of actions, whereas each strategy
si # Si(n) of the residual game tree is a function with domain X i(n) :=
Xi & X(n), the residual set of i 's decision nodes. (If X i(n)=<, then player i
is necessarily redundant in the residual strategic game and can be ignored.)
It is sufficient to prove that for each si # Si(n) there is some ŝ i # W i

p(n) such
that si is the restriction of ŝi on X i(n). The proof is constructive. Let v1 , v2 , ...
be nodes in X i without predecessors in X i. It is shown that for each vk there
is some n-undominated strategy ŝ i

k # W i
p(n) which coincides with si on the

intersection between X i(n) and the subtree with root vk (if vk # X i(n)). Then
ŝi is obtained as the strategy which coincides with ŝ i

k on the subtree with root
vk for each k=1, 2, ... . The reader can verify that ŝi # Wi

p(n).
Recall the property IPI states that for each pair of decision nodes of

player i on distinct paths at least one out three conditions (a), (b) or (c)
holds. But to convey more easily the intuition of the proof, the special case
in which condition (a) of IPI always holds is considered first. In this case
Xi can be partitioned in m subsets X i

1 , ..., X i
m such that each X i

k is totally
ordered (i.e., contained in a single path). Let v1 , ..., vm be the least elements
of these m subsets. Since the residual set X(n) is a tree and for this par-
ticular player i X i(n){<, for at least one k, vk # X i(n). Assume w.l.o.g. that
v1 , ..., vl # X i(n), l�m. Obviously every node v1 , ..., vl is reached by any
strategy of player i in the reduced game tree 1(n).

Fix one such strategy si # Si(n). For each k=1, ..., l there is a terminal
node in the residual game tree which follows vk and is reached by si. Let
zk # Z(n) denote this node. By definition there must be an n-undominated
profile (ti

k , t&i
k ) # Wp(n) reaching zk . By construction, t i

k # W i
p(n) reaches

the same nodes as si on the reduced subtree with root vk and takes the
same actions at such nodes. Therefore there is a realization equivalent
strategy ŝ i

k # W i
p(n) which coincides with si on the subtree with root vk . The

desired n-undominated strategy ŝi # W i
p(n) is thus obtained as follows:

ŝi(x)=ŝ i
k(x) for x # X i

k , otherwise ŝi(x)=ti(x), where ti # W i
p(n) is some

n-undominated strategy.
This construction can be extended to the general case where either (a) or

(b) or (c) hold. Consider the set X i(n, si) of decision nodes for player i in
the residual game tree which are reached by si and are followed by some
opponents' decision nodes, that is, X i(n, si) :=[x # X i(n) | (si reaches x)
and (_y # X&i, x< y)]. Let [x1 , ..., xl] be the set of maximal elements of
Xi(n, si) (with respect to the precedence relation <). For each k=1, ..., l,
let vk be the least element of [x # X i(n) | x�xk].

55EXTENSIVE FORM RATIONALIZABILITY



File: 642J 225217 . By:CV . Date:14:05:97 . Time:11:50 LOP8M. V8.0. Page 01:01
Codes: 3264 Signs: 2430 . Length: 45 pic 0 pts, 190 mm

Claim. If j{k, vj and vk are distinct nodes on distinct paths.

Proof of the Claim. By definition of [x1 , ..., xl], xj and xk ( j{k) are
nodes on distinct paths such that (b) and (c) of (IPI) do not hold. There-
fore (a) must hold, and this implies that vj and vk are distinct nodes on
distinct paths. The fact that (c) does not hold is obvious. By way of contra-
diction, assume that (b) holds; i.e., the last common predecessor of xj and
xk is a node x # X i. Let aj # A(x) and ak # A(x) be the actions preceding xj

and xk , respectively. Clearly, aj{ak , x # X i(n), and si is defined at x. Since
si reaches xj and xk , aj=si(x)=ak , which contradicts aj{ak .

Note that��by definition of the residual game tree and Si(n)��starting at
every node x # X i(n) reached by si which is not followed by opponents'
decision nodes, si must choose an optimal sequence of actions. Taking this
into account, for each k=1, ..., l, one can repeat essentially the same con-
struction as above and find some ŝ i

k # W i
p(n) choosing the same action as

si at every node x # X i(n) such that vk�x. The desired strategy ŝ i # W i
p(n)

is then obtained as follows: ŝi(x)= ŝ i
k(x) for x # X i, vk�x, k=1, ..., l;

ŝi(x)=si(x) for x # X i(n)"(�k=l
k=1 [ y | vk�y]); otherwise ŝi(x)=ti(x),

where ti # W i
p(n) is some n-undominated strategy. K

Proof of Theorem 3

Lemma 1. In every game of perfect information correlated and
uncorrelated EFR coincide, i.e., for all n, Pc(n)=P(n).

Proof. By definition, P(0)=S=Pc(0). Assume that P(n)=Pc(n). By
inspection of Definition 3, P(n+1)�Pc(n+1). Assume that si is a best
response at h against a correlated conjecture c&i # 2(P&i(n)) reaching h.
Now coalesce i 's opponents into a unique player (&i). By perfect informa-
tion, (&i) has perfect recall. Therefore there exists a behavioral strategy
?&i which is realization-equivalent to c&i (Kuhn [14, Theorem 4]). ?&i

may be partitioned into its single player components: ?&i=(? j) j{i and
each ? j is realization-equivalent to a mixed strategy + j # 2(P j(n)). Let +&i

be the product measure obtained by (+ j) j{i . Then si is a best response at
h against the uncorrelated conjecture +&i # 2*(P&i(n)) reaching h. Hence
Pc(n+1)�P(n+1). K

Let 2o(Y) denote the set of full-support probability measures on Y.

Result 1. si is inferior in Bi_B&i if and only if, for all +&i # 2o(B&i),
there exists ti # Bi such that U i(ti, +&i)>U i(si, +&i). (See, e.g., Pearce [19,
Lemma 4].)

Lemma 2. If si is not inferior in Pc(n), then si # Pc(n+1).
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Proof. If si is not inferior in Pc(n), then by Result 1, si is a best response
to some full-support conjecture +&i # 2o(P&i

c (n)). Since +&i and P&i
c (n)

reach the same information sets, there exists a consistent updating system
c&i( } ) such that c&i(h)=+&i for all h # Hi reached by P&i

c (n), and si must
be a best response at h to c&i(h) for all such h. Therefore si # Pi

c(n+1). K

Lemma 3. In every game without relevant ties, if si # Pi
c(n+1) then si is

not dominated in Pc(n).

Proof. Assume si is dominated by ti on P&i
c (n); i.e.,

\s&i # P&i
c (n), U i(si, s&i)�U i(ti, s&i) (1)

_t&i # P&i
c (n), U i(si, t&i)<U i(ti, t&i). (2)

By (2) there must be an information set h # Hi reached by si, ti and
P&i

c (n) such that si and ti prescribe different actions at h; otherwise si and
ti would be payoff-equivalent on P&i

c (n) (Kuhn [14, Theorem 1]). Then for
every s&i reaching h, `(si, s&i){`(ti, s&i). By Remark 2, since there are no
relevant ties,

Ui(si, s&i)=ui[`(si, s&i)]{ui[`(ti, s&i)]=U i(ti, s&i). (3)

By (1) and (3), for all s&i # P&i
c (n) reaching h U i(si, s&i)<U i(ti, s&i).

Therefore si cannot be a best response at h against any conjecture
c&i # 2(P&i

c (n)) reaching h and it does not belong to P&i
c (n+1). K

Note that here, it is crucial that there are no chance moves, thus allow-
ing us to write the outcome function ` as a deterministic function, which
is essential to derive (3). However, Remark 2 suggests how to extend the
result to games with chance moves. Let `( } | s) # 2(Z) be the outcome dis-
tribution induced by a strategy profile s and let us say that a game is
without relevant ties if, for all i # I, si, ti # Si, s&i # S&i, `( } | si, s&i){
`( } | ti, s&i) implies U i(s){U i(t). Then Lemma 3 still holds.

Lemma 4. In every game of perfect information inferior strategies and
dominated strategies coincide, i.e., W(1)=Wp(1).

Proof. It is trivially true that W(1)�Wp(1). Therefore it is sufficient to
prove that S"W(1)�S"Wp(1).

Let si # Si be dominated by some mixed strategy +i # 2(Si). By perfect
information, the conjectures in 2(S&i) are realization-equivalent to some
behavioral profiles in 6&i (cf., Proof of Lemma 1). Let 6&i(k) be the com-
pact set of the behavioral profiles assigning to each action a probability of
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at least 1�k. 6&i(k) is nonempty if the integer k is large enough. Consider
the following programs:

max
ti # Si

[ max
?& i # 6& i(k)

[U i(ti, ?&i)&U i(si, ?&i)]] (4)

min
?& i # 6& i(k)

[max
ti # Si

[U i(ti, ?&i)&U i(si, ?&i)]. (5)

By perfect information, dynamic programming can be used to solve (4)
and (5), showing that they are equivalent programs (attach to each ter-
minal node z=`(ti, t&i) the payoff [ui(z)&ui[`(si, t&i)]] and work back-
wards). Let [(ri

k , ?&i
k )] be a sequence of solutions and fix a cluster point

(ri, ?&i). By a standard continuity argument, (ri, ?&i) is also a solution of
the programs obtained by (4) and (5) replacing 6&i(k) with 6&i. Since Si

is a finite set and the second term of the objective function is independent
of ti, ri must also be a best reply to some strictly positive profiles ?&i

k ,
corresponding to an equivalent conjecture in 2o(S&i). By Result 1,
ri # Wi(1). By assumption, si � W i(1). Therefore:

_s&i # S&i, U i(ri, s&i){U i(si, s&i). (6)

The min-max inequalities and the fact that +i dominates si yield:

\t&i # S&i, U i(ri, t&i)&U i(si, t&i)�U i(ri, ?&i)&U i(si, ?&i)

�U i(+i, ?&i)&U i(si, ?&i)�0. (7)

By (6) and (7), ri dominates si. K

Proof of Theorem 3. By definition, W(0)=Pc(0)=P(0)=Wp(0)=S.
Assume that W(n)=Pc(n)=P(n)=Wp(n). Then Lemmas 1, 2, and 3 yield
W(n+1)�Pc(n+1)=P(n+1)�Wp(n+1). Since the extensive form has
iterated perfect information, there is a perfect information game 1 (n) with
the same reduced normal form as (I, W(n), (U i)). Applying Lemma 4 to
1(n), one obtains W(n+1)=Wp(n+1). Therefore W(n+1)=Pc(n+1)=
P(n+1)=Wp(n+1). K

Proof of Theorem 4

Lemma 5. In every game of perfect information without relevant ties the
sets `(��

n=0 W(n)), `(��
n=0 Wp(n)), `(��

n=0 Pc(n)) are singletons.

Proof. Assume that for some n, *`(S(n))>1, where S(n)=W(n) or
S(n)=Wp(n) or S(n)=Pc(n) and *Y is the cardinality of set Y. It will be
shown that S(n+1)/S(n) (strict containment). Since S is finite and
��

n=0 S(n) is not empty, this implies that `(��
n=0 S(n)) must be a singleton.
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Let X� (n) :=[x # X | *(Z(x) & `(S(n))>1]. By assumption X� (n) is not
empty (it includes the root). Let x # X i be a maximal element of X� (n) (with
respect to the precedence relation) and let z$ and z" be distinct terminal
successors of x in `(S(n)), i.e., Z(x) & `(S(n))$[z$, z"], z${z". Since x is
maximal in X� (n), x must be the last common predecessor of z$ and z" and
we may assume w.l.o.g. that ui(z$)<ui(z") (there is no relevant tie). Let
s$ # Si(n) reach z$ and s" # Si(n) reach z". Clearly both s$ and s" reach x.
Modify s" so that it coincides with s$ outside the subgame with root x,
obtaining s$�sx". Then s$ is weakly dominated by s$�s" on Si_S&i(n).
Indeed, for all si not reaching x, `(s$, s&i)=`(s$�sx", s&i); for all s&i # S&i(n)
reaching x, since x is maximal in X� (n) it must be the case that

ui[`(s$, s&i)]=ui(z$)<ui(z")=ui[`(s$�sx", s&i)].

Note that the dominating strategy s$�s"x might be outside Si(n). Therefore
one cannot immediately conclude that s$ # Si(n)"Si(n+1) for [S(k)]=
[W(k)] or [S(k)]=[Wp(k)]. But it is well known that in every finite
game if a strategy si is dominated (hence also inferior) on Si_W&i

p (n) (or
Si_W&i(n)), then it is also dominated on Wp(n) (or inferior on W(n))
(see, e.g., Stahl [28] or Hammond [11]). Analogously, Theorem 1 implies
that s$ # Pi

c(n)"Pi
c(n+1)=Ri

n(n)"Ri
c(n+1), because s$ is not a best reply at

x against any conjecture c&i # 2(P&i
c (n)) reaching x. Thus, if `(S(n)) has at

least two elements, S(n+1)/S(n). K

Lemma 6. In every game of perfect information without relevant ties
every mixed equilibrium in the same connected component of Nash equilibria
induces the same degenerate probability distribution on terminal nodes.

Proof. It is sufficient to show that every Nash equilibrium induces a
unique terminal node. Let _ be a Nash equilibrium of a game with perfect
information and suppose that *`(Supp(_))�2. It will be shown that the
game has a relevant tie. Choose x, z$, z", a$ and a" as in the proof of
Lemma 5. That is, x is a maximal element of the non-empty set X� (_) :=
[x # X | *(Z(x) & `(Supp(_))>1], z$, z" # `(Supp(_)) are two distinct ter-
minal followers of x (which is their last common predecessor) following
actions a$ and a", respectively. Let x be a node of player i. As [x] is an
information set on the equilibrium path and the continuations after a$ and
a" are deterministic (by maximality of x in X� (_)), the equilibrium indif-
ference condition implies that ui(z$)=ui(z"). Thus the game has a relevant
tie. K

Proof of Theorem 4. The proof relies on some results about Kohlberg
and Mertens' ``full stability'' [12, p. 1024].
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Result 2. Every fully stable set F of a ( finite normal form) game G
contains a fully stable set of the game G$ obtained from G by deletion of a
set of pure strategies weakly dominated by mixed strategies for a set of
players. (This is a generalization of [12, Proposition 2], which follows from
an analogous proof.)

Result 3. Every game has a fully stable set contained in a single con-
nected component of Nash equilibria. (See [12, pp. 1022�1024].)

Result 4. Every fully stable set contains a proper equilibrium, which
induces the same distribution over terminal nodes as some subgame perfect
equilibrium. (See [12, Propositions 0 and 5].)

Consider a perfect information game without relevant ties. Then Lemmas
1, 2, and 5 and Result 2 imply that [P(n)], [Pc(n)], [Wp(n)], and [W(n)]
are iterative dominance procedures selecting a terminal node consistent
with some fully stable set F. Lemma 6 and Results 3 and 4 imply that there
is a unique fully stable set F* such that every (mixed) equilibrium _ # F
induces the unique backward induction outcome z*. K
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