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cjection of or as a support for the shirking model may be simply rejecting or sup-
sorting some of the assumptions defining the economic environment where the

nodel is cast.
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3SISTE UN TRADE OFF TRA LIVELLO DI SUPERVISIONE E
REMUNERAZIONI?

Lo scopo di questa nota & di mostrare che le implicazioni generate da modelli
standard di salari efficienti sulla relazione tra supervisione e remunerazioni sono
wolto sensibili alle assunzioni sullo scenario economico che sta dietro a tali mo-
lelli. La nota presenta una versione del modello di salari efficienti in cui la rela-
rione tra supervisione ¢ remunerazioni & positiva, La conseguenza principale ri-
sarda Uinterpretazione dell’evidenza empirica esistente come rifiuto o meno dei
modelli di salari efficienti.
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1. Egquilibrium and Learning in Economic Theory(*)

According to the broad approach called ‘‘methodological in-
dividualism”, economic phenomena should be explained as (possibly
unintended) results of the intentional and goal-directed actions of interac-
ting individuals. Most formal economic models, however, conform to the
narrower neoclassical approach whereby each agent is supposed to choose
an optimal solution of a well-defined maximum problem, and analysis focuses
almost esclusively on equilibria, i.e. on situations where such choices are
mutually “‘consistent’”’, In game theoretic, or strategic models, mutual
consistency is embodied in the notion of Nash equilibrium: each agent
chooses a strategy which is a best response to his opponents’ strategies.
This means that each agent has a correct conjecture about his opponents’
behavior.

Reccived May 1992.

(*) We would like to thank Marco Li Calzi for helpful comments and valuable editorial
work. The financial support of Universitd L. Bocconi is gratefully acknowledged.
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We take for granted that the notion of equilibrium is a powerful
organizing concept and that equilibrium analysis imposes a healthy
methodological discipline. But this does not seem to be enough to justify
such a concern with equilibrium. We would like equilibrium analysis to
be relevant for the prediction and explanation of economic phenomena.
Why should it be so? At the risk of oversimplifying, we consider two pro-
visional answers: (i) an equilibrium is a solution of a grand multi-agent deci-
sion problem: since the economic agents are rational, they choose their own
component in such a solution; (ii) an equilibrium is a steady state of an
adjustment process involving tacit andfor explicit learning: no disequilibrium
state can persist,

The first answer may be reasonable when applied to situations with
few agents who know each other very well. But it strains our credulity when
applied to complex environments such as a whole economic system. This
leads us to the second answer and to the following gencral notion of
equilibrium proposed by Hahn (1973): at any time, an agent holds a theory
that includes his conditional predictions concerning the way the economy
will develop and the consequences of his own actions. The agent is assumed
to abandon this theory if it is sufficiently and systematically falsified.
The agent also has a policy, i.e. a plan which specifies his actions condi-
tional on whatever information the agent believes he may possibly receive.
An cconomy is in equilibrium when it generates messages which do not
cause the agents to change the theories they hold or the policies they pur-
sue (Hahn 1973, p. 38)(}).

Hence the learning process interpretation entails a change in the no-
tion of equilibrium itself. In particular, we must allow for agents with
possibly incorrect conjectures, as long as these conjectures are not con-
tradicted by evidence. We must therefore focus our attention on the obser-

rational possibilities of the agents. This equilibrium notion is called con-
jectural equilibrium (°}: it will play an important role in this survey as a uni-
fying concept.

The first systematic attempt to pursue a learning-process approach to
equilibrium is contained in the literature on learning in rational expecta-
tions models (sce e.g. Blume, Bray and Easley 1982, Bray and Kreps 1987
and Bray 1990). The learning process consists of a sequence of temporary
equilibria. The agents try to estimate the true equilibrium relationship be-
tween exogenous and endogenous variables, using the observed realizations.
Since agents update their estimates, the temporary equilibrium relation-

() This equilibrium concept has been anticipated by Hayek (1937). See Lictlechild
(1982) for mare on the comparison between Hayek and Hahn.

() Hahn used this terminology some years later, applying his equilibrium concept in
order to obtain non-Walrasian equilibria (sce [ahn 1978 and 1977).
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ship between exogenous and endogenous variables changes over time.
Therefore “‘learning affects what is to be learned"". In most learning models
the agents use statistical procedures (e.g. ordinary least squares) which would
be correct in a stationary environment, but since the environment of each
single agent is made nonstationary by the economy-wide learning, the learn-
ing procedures are mis-specified. In some other models, however, learning
is modeled as a fully rational process, and the resulting sequence of temporary
equilibria is just a grand rational expectations intertemporal equilibrium
of a dynamic modecl with incomplete information.

This literature has some limitations imposed by the parametric nature
of the models analyzed (*): (i) since the model does not specify what hap-
pens when demand is different from supply, the analyst is bound to con-
sider sequences of temporary equilibria, i.e. ‘static equilibrium must be
assumed within a single period; and (ii), the analysis can only cover learn-
ing in ‘‘competitive’ situations, where no single agent can affect the observ-
ed aggregate outcome. On the contrary, strategic models do not suffer from
these limitations: they specify a well-defined outcome for every array of
choices (thus allowing for disequilibrium situations within a period) and
are sufficiently flexible to be applied to virtually all economic situations.
Indeed, in the past decade we have witnessed an impressive diffusion of
the language, concepts, and techniques of noncooperative game theory in
almost all fields of economics. Therefore, the recent developement of
literature on learning in strategic models is not surprising.

Our primary concern is to provide a fairly rigorous account of this
literature within acommon framework which facilitates comparisons between
different contributions and stresses their implicit assumptions and limits.

We propose a broad classification of game theoretic learning models
and we choose a few contributions which we regard as representative. These
contributions are discussed in some detail: we present the most important
results (often in a simplified version) and a few simple proofs. Our choice
of the material presented reflects the aforementioned methodological ap-
proach. We apologize for the many valuable contributions we have been
forced to exclude. The reader is urged to consult Eichberger's survey
(Eichberger 1990) which provides a different perspective and a different
selection of contributions.

For readers who are less conversant with noncooperative game theory,
we have included a short and necessarily incomplete introduction to the
subject, which is specially tailored to the needs of the survey. But we also
advise these readers to see the brilliant and insightful publication by Kreps

(1990), which includes a final chapter on learning.

() The Walrasian competitive economy with prices detcrmined by equality of de-
mand and supply is a paradigmatic example of a parametric :.._On_n_. See Battigalli (1988)
on the notion of equilibrium in parametric and game-theoretic models.
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2. Equilibrium and Solution Concepts in Noncooperative Game Theory:
A Short Introduction

In this section we introduce the game theoretic language and concepts
to be used in the survey. Readers already familiar with the theory of
noncooperative games may skip subsections 2.1-2.3(%). Subsection 2.3
states the fundamental problem: how can we justify the basic equilibrium
concept of noncooperative game theory? In subsection 2.4 we introduce
appropriate game theorcetic formalizations of the *conjectural equilibrium®
concept.

2.1, How Strategic Interaction is Modeled: The Notion of a Game

We consider a sct (1, 2, ..., #] of interacting agents, or players, and,

possibly, a random device called Nature denoted by 0. For many purposes

the random device 0 can be regarded as a player and we refer to the set
I'= 0.1, ..., #) as the players’ set. Whenever we make no reference to
Nature, we mean that cither there is no randomness or that randomness
is immaterial {or the sake of the argument. Without loss of generality we
assume that choices are sequential. The key feature of strategic interac-
tion is that any sequence of players’ choices (possibly including random
choices by Nature) determines an economic or social outcome z€Z and each
player i#0 ranks different probability distributions over the set Z of possible
outcomes according to the expected value of a utility function #;; Z—R.
Therefore the welfare of cach agent depends on other agents’ actions as
well as his own.

The *'rules of the game”” — which may be physical and/or institutional
— specily which sequences of actions can occur and the amount of infor-
mation a player has when he is given the move. Whenever a choice is ran-
domly selected by Nature, the rules specify the “‘objective’” probability
of cach possible choice. A mathematically rigorous definition of the rules
of the game is beyond the scope of the present paper, Here we only discuss
an example in order to give the necessary intuition, introducing notation
and graphic conventions to be used later. This example will be used repeated-
ly in the following subsections.

ExamrLE 1. Player 2 is a seller who owns an object having no per-
sonal value. He meets one out of two possible buyers: player 1, who values
the object at one dollar, and player 3, who values the object at three dollars.
Nature sclects one of the buyers at random. The ‘‘objective’” probability
of player 1 being chosen is mq. This selection is not observed by the scller,
Once a buyer has been selected seller and buyer bargain as follows: the

(} A few up-to-date textbooks on game theory have been recently published. The

muost recent ones are Binmore (1992) (sce the learning section), Fudenberg and Tirole (1991)
and Myerson (1991),
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seller proposes either a low price P. = 0.9 or a high price Py = :2:9.
Then the buyer either accepts (Y) or (N) rejects this proposal. The utility
of an agent is given by his or her final wealth.
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Figure a. - An extensive game

This game is represented in Figure a by means of a tree. Each path
of the tree is a possible sequence of random choices and actions. Without
loss of generality we can identify outcomes and terminal nodes. To cach
terminal node z is assigned a vector of utility numbers (2:(2), #.(z), #,(2)).
Nonterminal nodes, or decision nodes, correspond to actual decision situa-
tions. The tree representation implies that each (decision or terminal) node
corresponds to a unique sequence of intentional and/or random choices.
The state of information 4 of a player when he has to choose an action
(i.e. his subjective decision situation) is given by the set of decision nodes
that the player cannot distinguish, and is called information set. In the figure
such decision nodes are connected by a dotted line. Since the seller does
not know which buyer he is facing, his information state corresponds to
the set b = [by, by]. The set of possible actions when the state of infor-
mation is # is denoted A(h). In the figure A(B) = [P, Pu), Allx]) =

P T T
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fone, three). Every other decision node x corresponds to an information
singleton [x] with A({x]) = [V, N}.

The detailed mathematical description of the rules of the game is call-
ed extensive form. 1f we add to this description the specification of the
players’ preferences, i.c. their utility functions, we obtain an extensive game.
A given extensive game is denoted by I'. We assume herealter that I' is
a finite game, i.e. its tree contains a finite number of nodes.

We might imagine that a player makes all decisions in advance taking
into account all possible contingencies, i.e. that he chooses a plan of ac-
tion or strategy. Let H, be player i's collection of information sets. Then
a strategy for i can be represented as a function

s, H, — AE’J” A(h), such that s:(h) € Ah)
which assigns a possible action 5:(h) to each information set 4. The set of
player i's strategies is denoted §;. § is the Cartesian product of the sets
of strategies. We interpret a strategy of the random device as a “‘state of
Nature". If the state of Nature is s, and players’ actions are given by a
strategic profile (s;, ..., 5), an outcome 7z = {(so, 5y, ..., 5.) occurs. We
therefore have a well-defined outcome function { : §—Z mapping strategic
profiles into outcomes. If we fix only the strategies of the nonrandom
players, we obtain a probability distribution over outcomes denoted
P{-] 51, ..., s.). It is worth noting that the outcome function is not one
to one unless each player takes his action without knowing anything about
previous choices (including Nature’s choices)(°). In this latter case it is as
if all choices were simultaneous. We therefore say that an extensive game
with a one to one outcome function is a simultaneous game.

[t is often assumed that players can choose random devices which either
implement strategies or select actions with given probabilities. Mathematical-
ly, this amounts to enlarging player i's stratcgy space to the set of distribu-
tions A(S,) or to the set 11 of arrays of probability distributions n, =
(n(h) € A (A()). b € 1) (A(-) denotes the space of distributions on some
set), A distribution ¢; € A (8) is called mixed strategy and an array of
distributions n, € [1; is called behavior strategy. Of course, Nature's
behavior strategy, o is fixed by the rules of the game. Mixed and
behavior strategies of player 7 also have alternative and related interpreta-
tions. They may represent probabilistic beliefs about 7 of some other player
7. We may also think that the actual player i is drawn at random from a
large population of agents, that each agent deterministically plays a given
5,, and that g; is the statistical distribution of strategies in the population.
In this case a belief about player i would be a probability distribution g
on the space of distributions A(S), as if 7 actually chose a mixed strategy.

(1) The reader may casily check this point using example 1.
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Fix the strategy s, of cach nonrandom player j except player i. Such
a strategic profile is denoted s_.. Then a mixed (behavior) strategy 4. ()
induces a probability distribution P(-lg., s-) (P(:|n;, s~.)) over the out-
come space Z. A fundamental result due to Kuhn (1953) states the following:

PROPOSITION 1: Assume that the extensive form is such that player i in
every decision situation remembers what be knew and what he did in the
preceding decision situations (if any). Then there is no relevant difference be-
tween choosing mixed strategies and choosing bebavior strategies, because for
ecach q; there is a corresponding T such that for all s_,

P(-] gi. =) = P(-| mi. s2d)

and vice versa.

When the assumption of the thecorem holds, we say that player i has
perfect recall. We tacitly assume that each player has perfect recall, whenever
we do not say otherwise.

We now define a mathematically useful ‘“summary’ of an extensive
game. Note that for each player i a profile of strategies s = (51, ... 5.) in-
duces an expected utility Ui(s) by the formula

Uls) = Y, Pl uf2)

r€l

Assume that each player i chooses in advance a strategy s;, which is
automatically implemented by a mechanical device or by obedient subor-
dinates. This choice cannot be observed by the other players. Such a situa-
tion corresponds to a simultaneous game denoted by G = (i, ..., 5., Un,
U.) and is called the normal form of the original extensive game. Clearly
the normal form G provides less information on the structure of strategic
interaction than the original extensive game T, unless T is a simultancous
game. We identify a simultaneous game I' with its normal form G.

2.2.  Rationality, Common Knowledge of Rationality, and their Implications

Up to this point we did not assume anything about the players except
that they have perfect recall and well defined preference orderings. If we
want to get some observable implications from the theory, however, we
must make some assumptions about the players’ behavior. In this section
we analyze the consequences of the assumptions that (i) the players are
rational and well informed, and (ii) that this is common knowledge ().

(6) The assumption of common knowledge of the game and of players’ rationality has
been formally defined in a few papers (e.g. Tan and Werlang 1987). The notion of com-
mon knowledge of an event has been mathematically defined in several ways since the seminal
paper of Aumann (1976) (sec Binmorc and Brandeburger 1988).
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We say that an event E is common knowledge if each player knows
E. cach player knows that each player knows E, each player knows... We
say that 1" is a gane with complete information if it is common knowledge
that the true structure of strategic interaction is given by I itself.

Let us consider a two-player simultancous game with complete infor-
mation G = (5., 5,, Uy, U,). If a Bayesian-rational player i has a subjec-
tive belicf g € A(S)("), he plays a strategy which maximizes his subjec-
tive expected utility

U,(S,, g:‘) = Z [I, (Sn S,') g; (5,‘)

nes,

We say that such a strategy is justified by the belief. A strategy is (strictly)
dominated or irrational if it cannot be justified by any belief.

Let J(5;) be the set of undominated strategies of player i. More
generally, for each subset T; of strategies of player j, J,(T;) is the subset
of strategies of 7 justified by some belief with support included in T,. Let
J(T' x T.) be the Cartesian product of these sets. If each player i knows
that the opponent plays a strategy in T;, then the original game can be
replaced by a restricted game with strategy space J(T\ x T3), because if
player j knows that i is rational, he assigns zero probability to the set of
dominated strategies of /. The function T—J(T) has an obvious, but im-
portant. monotonicity property: if T shrinks, its image J(T) also shrinks
(or it remains the same), because fewer strategies can be justified by fewer
beliefs. Such monotone set-to-set functions are called justification operators
(Milgrom .and Roberts 1991). The definition of the relevant justification
operator for a given game depends on the assumed form of the players’
beliefs. For example, if players’ beliefs were deterministic the relevant
justification operator would be different from J. Here we focus on operator
J because it is appropriate for Bayesian rationality, but sometimes it is useful
to take an unspecified justification operator as primitive.

If each player knows that the opponent is rational, the original strategy
space § can be replaced by J(5) and only strategy pairs in J(J(5)) can be
rationally chosen. Let J* denote the &* iteration of operator |, i.c. JHT)
= JU*UT)). The present discussion suggests that if rationality is com-
mon knowledge the players choose a pair of strategies in J¥(S), where K
is the smallest positive integer such that J£1(S) = J&(S). (Note that, by
monotonicity of J, J**'(§) € J*(5); i.e. these sets (weakly) shrink as & in-
creases). Since S is [inite the integer K is well defined. Such strategies are

(M A belicf can alsa be modeled as a distribution on the set of the opponent's mixed
strategies, but the difference is immaterial in this context (see Pearce 1984).
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called rationalizable or iteratively undominated(®). A game is dominance
solvable if it has a unique rationalizable outcome.

Let R* be the set of rationalizable strategies. Does common knowledge
of rationality imply something more than a play in R*? Without additional
assumptions, it does not. One way to consider this point is the following:
if cach player knows that his opponent only plays rationalizable strategies,
the actual play must be in the set J(R*), but R* = J(R*), i.e. R*is a fixed
point of the operator J. It is also casy to show that R* is the largest fixed
point of J: assume that a subset T of § is also a fixed point of J; then J(T)
= T € §: recursively applying monotonicity, we get J{T) = T € JF (8)
for all £. Therefore T & R*.

The rationalizability epproach can easily be extended to n-players
simultaneous games, but its extension to nonsimultaneous games is prob-
lematic. However, there are many extensive games which can be casily solved
by exploiting the additional information on the structure of interaction
provided by the extensive form. For example, it is trivial to work out the
rational strategics of the buyers in the game of Figure a: player 1 only accepts
the low price and player 3 accepts both prices. Knowing this, the seller
will propose a low price if the probability m, is large and a high price if
T, is small. But it can be easily checked that the following profile is
rationalizable in the normal form for every value of m,: both buyers ac-
cept only the low price Py, and the seller proposes Pp.. This shows that we
can refine some normal-form results using the extensive form.

2.3.  Nash Equilibrium: Justifications and Problems

Consider a game with normal form G and assume that there is com-
plete information. 1t may be the case that there is an “‘obvious way™ to
play the game G. For example, G could be dominance solvable, or it could
be the normal form of the extensive game in Figure a, which has a trivial
solution. Situations of a different kind will be discussed later. But how
can we characterize such an obvious way to play the game? Since it is ob-
vious, each player can figure out how his opponents play, and since he is
rational his strategy must be justified by his belief. Therefore we have the
following necessary condition: (s, ..., 5,) is an obvious way to play G on-
ly if s; maximizes U(-, s_,) for each i = 1, ..., # (equivalently 5 € J({s}).
A profile of strategies with this property is called a Nash equilibrium. This

{8) When there are three or morc players, we can define two plausible justification
operators. 1 we exclude correlated beliefs about the opponents, we get rationalizable
strategies; il we allow for correlated beliefs we get iteratively undominated or correlated
rationalizable strutegies (see e.g. Bernheim 1986). Tan and Werlang (1987) formally show
that (correlated) rutionalizability is equivalent to common knowledge of rationality. In this

survey we ignore the issue of corrclation, Hence we do not distinguish between iterated
dominance and rationalizability.
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n_a::m:..o: is easily extended to the case where the players can choose mixed
strategies or behavior strategies. A Nash equilibrium in mixed or behavior
strategics may also be interpreted as an “obvious belief about the play of
G . For example, consider a two-player game and let such a belief be given
E the product of the distributions ¢, and ¢2. Since the beliel is obvious
it must be shared by the players. But cach player # knows that the oEuo..
nent i plays rationally. Therefore each strategy in the support of g;, the
vm.rnm of player i, must be justified by ¢;, the belief of player ;. Omx:?
this no_.z::o: holds if and only if (¢,, ¢,) is a Nash cquilibrium in mixed
strategies. This implies that if ¢ is a Nash equilibrium in mixed strategies
then Supplg) © J(Supp(q)). .
H.n is easy to prove that (the support of) every Nash equilibrium is
contained in the rationalizable set R*: if 5 is a Nash equilibrium. then
(5 < J(s1). by the monotonicity of ], J([5}) < J(5). Applying Eo:o&:mn:
repeatedly we get ’

€ J0) € PUD S .. € (B € FS)

for w: k. Hence {s] € R*. (A similar proof holds for the support of a Nash
equilibrium in mixed strategies.) It is a quite obvious consequence of this
fact that if a game is dominance solvable, the rationalizable profile 5 is also
the unique Nash equilibrium.

In most applications of noncooperative game theory it is assumed that
a Nash equilibrium is played. How can we justify such an assumption?
“Classical” justifications typically rely on complete information and com-
mon knowledge of rationality. It is assumed that the game is played exact-
Iy once (situations of repeated interaction should be appropriately mod-
eled as a grand extensive game) and the players have enough knowledge
and ability 10 analyze the game in a rational manner, simulating their
opponents’ reasoning. The outcome of such an analysis should be a com-
monly held “‘obvious” belicf about the play, i.e. a Nash equilibrium. This
approach is sometimes called eductive (see Binmore 1987).

. Note however that complete information and common knowledge of
rationality may be insufficent to justify the playing of a Nash cquilibrium,
What about simultaneous games which are not dominance solvable? Some
m:;ro; argue that eductive analysis leads to playing a Nash equilibrium
if the equilibrium is unigue (more generally if the equilibria are ex-
n.ru:mmmzmv (). We might accept this position for the sake of the discus-
sion. But then what about the case of multiple (nonexchangeable) equilibria?
In some cases the multiplicity problem can be solved by eliminating “‘im-
plausible” equilibria. Take the seller/buyers example. We know that it has

A; Kat P.TO and Ta ._,L: : yw: nrov an interesting 4 apitsticate or :.—__V‘_:C:
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a unique (and trivial) solution, which is of course a Nash equilibrium. But
there are other equilibria. We have already mentioned one of them: both
buyers accept only the low price and the seller proposes the low price. This
equilibrium relics on an implicit ‘noncredible threat™ of the buyer with
a high reservation price. But a rational and completely informed seller would
not believe such a threat. Examples of this sort have prompted an cffort
to provide refinements of the Nash equilibrium concept (see van Damme 1991).
However the multiplicity problem has not been solved for general games
by the literature on refinements ().

In some contexts it is reasonable to assume that there is a “preplay
communication” stage, in which completely informed players may reach
an agreement about their behavior in the game, but the agreement cannot
be enforced (otherwise we would be in the domain of cooperative game
theory). Therefore each player trusts the other players and plays as prescribed
only if the agrecd-upon mode of behavior is a *“plausible”” Nash equilibrium.

Eductive analysis andfor preplay communication may lead to play a
Nash equilibrium when there is complete information. But in many ap-
plications of game theory the complete information assumption (which im-
plies the knowledge of the opponents’ preferences) is clearly unrealistic.
Is there any role for Nash equilibrium analysis in such situations? Harsanyi
(1967) proposed a theory which answers this question in the affirmative.
Let B: be the space of possible vectors of player #'s characteristics. Such
vectors are called #ypes. For example, B; could be the space of possible
utility functions of player i. The Cartesian product of these spaces is B
and B_; is the space of types of players different from i. Each player
knows his own type, but possibly ignores those of the opponents. The belief
of player i about his opponents’ types may depend on his own type ¢ and
is denoted B:(-. £) € A(B_). Assume now that the beliefs of the different
players are consistent, i.e. there is a common prior € A(B) such that each
B(-, ) is the marginal distribution on B_; conditional on # derived from
B. According to Harsanyi’s theory such a situation is strategically equivalent
to a game of complete information where the types are selected at random
with an “objective’” distribution m, = B, and each player learns his own
type and implements a strategy. The Nash equilibria of this enlarged game
are called Bayesian. For example, the game of Figure a can be interpreted
as a game of incomplete information where the buyer has two possible reser-
vation values and the seller does not know the truc one.

(19) Some authors have proposed eductive theories, selecting a (mixed) Nash
equilibrium for each finite game (the most noteworthy attempt can be found in Harsanyi
and Selten 1988). Such theories are not widely accepted in the profession. However, note
that Harsanyi and Selten’s concept of “'risk dominance’” can be justified by some learning
processes (see, for example, Hendan et al. 1991, Myerson 1991 (section 3.7), Kandori et

al. 1991 and Young 1992).
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2.4, Conjectural Lquilibria of Noncooperative Games

Befor i
e e moving on to the evolutive (and hence dynamic) analysis of
mw s we propose a static equilibrium concept, which is meant to repre
: . - - s M 1 )
sen the mﬂm:o:.wam states of plausible learning processes. Our definition
s a game theoretic formalization of Hahn' i jec
z ahn's notio : ilibri
e on of conjectural equilibrium
y nmwww_na.onw_::ﬂs _nxﬁo:m.:.n game T is played repeatedly. At the end
riod each player i gets a message in &’
. . a m; = W(2) in i’'s m
o e  cach v g ; essage space
sommoan__:nm_” H_S:Z:v or perlectly reveals the play (terminal node) of that
. Such messages are used to update " beli :
. . ate players’ beliefs about their
hanents g s 84 i ; s
i 13" behavior. We say that there is perfect monitoring if each E@M_.

(11} It is comparabl i :
e to the intr inty i
model. oduction of uncertainty in the general equilibrium

12y T o
c:nmwu_v_,. %qoﬁ“..MnMMmM of our knowledge the concepts and results of this subsection were
L w: ._o._. non-anonymous games in Battigalli (1987) (sce also Battigalli and
Gl 1988 A.H,nwc.m_v uW Q_g:.nmvﬂm and results have been independently proposed by wcvrz_n&
I AAR >. Kalai and Lehrer (1991b), Fudenberg and Levine (1990) and Fud ,70 .
ps ). A different but related approach is contained in Kancko (1987) >_a._”___mm

mteresting no ..Z:m? equ _._: m concept _n—w::ﬂ on learning s —:C<:_OA_ —; ﬁw_:unx._ ._:h_
Matsui :Gw:
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i exactly observes all the actually chosen actions, i.e. if each . is the iden-
tity function on Z. Assume also that the players behave myopically, i.e.
they try to maximize their current or short-run expected utility given their
updated beliefs (in Section 3 we discuss a varicty of assumptions implying
myopic behavior). We may assume without loss of generality that the players
know the extensive form of T’ (except possibly ) and their own utility
functions.

We consider two kinds of environments:

(i) the actual set of agents coincides with the player sct I and they
meet in each period. This is the non-anonymous case.

(i) for each player index 7 there is a population of agents with the
eristics, but possibly different beliefs (possibly due to different
t meets other (7 — 1) agents, each one drawn at ran-
1 the identity of the opponents is either
acquires any information about matches

same charact
experiences); each agen
dom from a different populatiort
unknown or ignored. No player
which he did not participate in. This is the anonymous casc.

Let P(mis:, g-) be the subjective probability of receiving message 7
as assessed by player i when he has a belicf g and plays s:. Analogously
P(mtlsy, ... 52) is the objective probability of m, when the profile (51, ...
5,) is played. Such probabilities can be derived using the outcome func-
tion { and the message function .. In the non-anonymous casc a belief
can be appropriately modeled as a probability distribution on the opponents’
strategies, where the “opponents’’ include Nature, if 7o is unknown. We
say that a profile of strategies (51, -, Sx) is a non-anonymous confectural
equilibrium of T il for each player i we can ind a belief g_, € A(S—) such that

(a) g_, justifies s, and

(b) Plmils:, =) = PQnsi, ... 52 for all m; € M:(V).

Condition (a) says that player i maximizes the expected payoff of the
current period, but we will see that this can be consistent with long-run
maximization. Condition (b) says that the observed long-run frequencies
of messages should not induce 7 to change his belief and choice (cfr. the
informal definition of a conjectural equilibrium in Section 1). Notice that
when chance moves are absent the outcome of a strategic profile (si. ...
5,) is deterministic. Ilence condition (b) can be restated as follows: b

Plsi, oy 5] 500 220 = 1

Clearly cvery Nash profile s is a conjectural equilibrium justified by
correct beliefs, but if the players just learn from the observed messages
we should not a priori expect them to hold correct beliefs. It is interesting
to note, however, that there is a class of games where Nash and conjec-
tural equilibria yield the same outcomcs.

p———

(%) Rubinstein and Wolinsky (1990) define a movrmw:nnag version of this concept,
the rationalizable conjectural equilibrium, which is appropriate under complete informa-
tion and common knowledge of rationality.
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Player | >
A Player 2 .

Player 3

R L R

(3:0:0)  (0;3;0) (3;0;0) (0; 3: 0)

Figure b. - A game in extensive form

PROPOSITION 2: Assume that T has two players and either there is
random move or T is known. Assume also that there is perfect recall aMM
.u@\w& monitoring. Then each conjectural equilibrium of U is realizati
equivalent to a Nash equilibrium in mixed or bebavior strategies e

The proof of this result is quite simple. Let (s, 55) be a conj
nm.:;_vjz_d‘mcvvozmm by beliefs (g}, g). By _unnmoQAnn.nM_v_ EMQMM w_mnwﬁn,ﬂ.m
g is realization equivalent to a behavior strategy n, of Emwan 7. Since each
player perfectly observes the outcome. he observes the un:ﬁ.u:m un:_wm
nro.maz by player j, i.e. the actions sclected by s at the information m.ﬁm
of j _Anm.n.rmm by the play. Therefore condition (b) implies that n; assi
w.novmg_:..w one to such actions. The value of m; at “‘unreached”” m‘:mOnMH
ﬂwo: sets does not affect the expected utility of j. Hence Us;, gf) = Uyn,
&) = Ufn,. n.), c“,rmna the last equality holds because m\.\. m«m .Ssrnumom
Mﬁwﬁ_:ﬁ._nﬂ” to 7. .Hr.n: condition (a) implies that n; is justified by m. It
:EMM\MHM &MMH HQ.M_U. :.L is a W/?mr equilibrium in behavior strategies inducing
th ?,.. e stribution on Z (the same outcome if there is no random choice)

. The proof shows that the result can be extended to s#-player games
i:r. Mo unknown: for example when the beliefs of any two players mmvocﬁ
a &:m opponent (possibly Nature) coincide (™). If this is not wro case
.nos_nnEE_ equilibrium may induce a non-Nash outcome. This is E:&. n. M
in the following example (cfr. Fudenberg and Kreps H.wmmv o

. ._Wx.\»zgm 2: In the game of Figure b, (A, a) is part of a conjectural
n%._ Mﬁ rium ,i.._w_)m player 1 has a correct belief about player 2 and assigns
a high probability to R, player 2 has a correct belief about player 1 and

14 i i ;
(1) g.n will see in Section 4.1 that the equiv
repeated, simultaneous games.

alence result can also be extended to
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assigns a high probability to L (player 3’s utility and beliefs are irrelevant
in this example, he might be Nature). No common belief about player 3
justifies (A, a) and the corresponding outcome is not a Nash equilibrium
outcome (we will elaborate on this example later).

Even in games where conjectural equilibria are realization equivalent
to Nash equilibria the conjectural equilibrium concept may be relevant.
For example, an “‘implausible’”’ Nash equilibrium outcome supported by
an “noncredible threat”” may be interpreted as a conjectural equilibrium
in which the threat is erroncously believed (presumably because of in-
complete information), but it would not be carried out.

In the anonymous case a belief can be appropriately modeled as a prob-
ability distribution on the space of statistical distributions of strategies in
the opponents' populations. An anonynious conjectural equilibrium is a profile
of distributions (gy, ..., ¢») such that for each player/population i and each
strategy s in the support of ¢; there is a belief g_; € A[A(S_)] such that
properties (a) and (b) (with P(:[s; s—) replaced by P(-]s;, 4-1)) hold.

Note that different strategies of the same player/population in the sup-
port of the equilibrium distribution can be justified by different beliefs,
because they are chosen by different agents. Fudenberg and Levine (1990)
consider the special case of perfect monitoring of the outcome and show
that, even in two-player games, there are anonymous conjectural equilibria
which are not equivalent to Nash equilibria.

We will see in the following sections that we can reasonably expect
that a learning process converges to a conjectural equilibrium (if it con-
verges at all). But we have shown that even in the favorable case of perfect
monitoring of the outcome a conjectural equilibrium need not be equivalent
to a Nash equilibrium. If the observation of the outcome is imperfect a
conjectural equilibrium can even be outside the rationalizable set as is shown
in the game of Figure c. The strategy b is dominated by a. Hence the game
is dominance solvable and the only rationalizable strategies are B and a.
However the profile of strategies (A, a) is a conjectural equilibrium when
the players, at the end of the game, observe only their own payoft.

a b
A (24) ] (%3)
B|(34)](1;3)
Figure c. - A simultancous game
N C
N | (5 5) | (0; 6)
Cl(6:0)] (1)

Figure d. - A prisoners’ dilemma game
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3. Repeated Games and Learning

3.1, How to Model Repeated Strategic Interaction

Since learning arises in the context of repeated interaction we should
consider how traditional game theory analyzes such situations. Imagine that
a game with normal form G = (§), ..., 5., U,, ..., U.) and no chance moves,
called component game, is played repeatedly over time. The resulting se-
quence of component games is itself a game which is called repeated game.

To characterize repeated games we need two elements. First of all,
it is necessary to specify the information that the players receive at the
end of the component game. In fact, when the players can observe the out-
comes of past component games, repeated games are a more complex
strategic situation than the simple sequence of component games.

To grasp this aspect consider, for example, the prisoner’s dilemma game
in Figure d, where the players can cither confess (C) or not confess (N).
In the infinitely repeated prisoners’ dilemma, if the players do not observe
anything at the end of each component game, their repeated game strategies,
called superstrategies, are simply infinite sequences of Cs and Ns (open loop
superstrategies). If, on the contrary, they can observe, at least partially, the
past history of the game, they can play superstrategies which can be much
more complicated (closed loop superstrategies). An example is the trigger
strategy “‘do not confess on the first iteration and continue to refuse to

confess if both have also refused to confess in the past, but revert to con-
fession after the first defection and keep confessing afterwards’'.

Recall that the signal function for player i in extensive games is p;:
Z—M,, where Z is the set of terminal nodes of the component game. Us-
ing the outcome function § we can obtain the signal function in strategic
form w,(s) = pAG(s)). This function associates cach profile of strategies with
the message reccived by player i at the end of the component game. Let
it = (Y.lsw), ..., W.ise_n)) be player i's observation up to time ¢ and M! the
space of all possible messages up to £. A (pure) superstrategy for player i is
given by 1, = (0, 7. ...) where rig € S, and 1, MI—S.. Let R, be the set
of players i's superstrategies. Similarly, a behavior superstrategy for player
i is given by an array 1, = (%0, M, ...) such that 7, € A(S) and m.:
M= ACS).

A second element we need, in order to define a repeated game, is the
way players evaluate their payoffs arising in diffcrent time periods. Let
3, € (0. 1] be player 's discount factor. Assume that the profile of
superstrategies r = (ry, ..., r.) is played and let m! be player j's resulting
observations up to time ¢ (i.e. 72, = W(rua ..., fao), 7f = (2}, Wilron(m)),
cv P (). Then player #'s repeated game utility is:
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L) =Uflre) + i 8 U, (ry ().

tel

For simplicity's sake we assume that the discount factor is the same fqr
each player, that is 8, = 8. A repeated game with imperfect monitoring is
. [ M
thus given by RG = (S, ..., Sa, Uy, ..o, U, Wi W ). |
Both the definition of Nash equilibrium and that of conjectura
equilibrium given in section 3 can be naturally extended to the rc!)e'afed
game RG. A profile of superstrategies (r, ..., r,) (an analogue dc.f!mt‘lon
can be given in terms of behavior superstrategies) is a Nash equilibrium
if, for cach player, r, is a long-run best reply to r_;, that is, for each player
#'s superstrategy 1/

L(r, r-) = L(r/, r-).

The profile of superstrategies (r1, ..., .) is.a (non:anonymous)(“’) con-
jectural equilibrium if, for each player i, there is a belief g_; € A(R_) over
his opponents’ superstrategies such that: 5

a) g_. justifies r,, with respect to the repeated game utlll'ty; .

b) for each player i the messages observed are consistent wnb his con-
ditional subjective probability, given his strategy and his belief. Since there
are no chance moves this means that, for each time ¢ and sequence of
messages 7! induced by n, .... r., P, g-) =.l.‘ ' o

Repeated games are characterized by a multlphc'lty of Ngs'h cguﬂlbna
even when the underlying component game has a unique equxllbrlum.. F?r
example, for sufficiently high values of 8, a pair o'f. trigger strategies in
the infinitely repeated prisoners'dilemma is an cqtflllbrlum that supports
the ““cooperative’ outcome (N, N). This outcome is doomcd_to fmlurf: in
the one-shot version of the game, because C is a strictly dommn'm action.

Furthermore, many more outcomes can be sustained as cquihbrl'a.‘ The
folk theorem shows that any outcome that yields cach player an individual
component game payoff greater than the minimax (?f .hlS payoffs, can be
sustained in a noncooperative equilibrium of the infinitely repeated game
with no discounting.

i i dard non-anonymous repeated

(1) Note that RG can be interpreted cither as a standa y
game or as an anonymous repeated game where at the beginning of e'ach period each agent
is selected at random from a large population of individuals characterized by (5, Ui, wi, 6).

(16) We define only a non-anonymous repeated game conif:clural equlllbnun; beca\}sc,
as we will see, in the case of anonymous repeated games learning converges to the conjec-
tural equilibria of the component game.
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3.2, A Classification of Game Theoretic Learning Models

~ ltisclear from the preceding discussion that the reasoning of the players
in a repeated game could be extremely complex. In order to limit this com-
plc..\'i(y somechow, learning is often associated with some kind of bounded
f'mmnnli(y or incomplete information that results in myopic behavior; that
is, 111a:\cin1ization of current period utility. In order to explain how myopic
behavior emerges. we single out four features characterizing learning models
and use a simple model of recursive dynamic programming to show ho“;
their combination can result in myopic behavior. Two of these features
ﬂrc"‘ psychological " and concern players’ preferences and beliefs. The re-
maming two, which are “‘structural”’, regard the structure of the repeated
strategic intcraction.

o Thc.first psychological feature is highlighted in the literature on learn-
ing in rational expectations equilibrium models discussed in Section 1. As
we said, one of its powerful insights can be summarized by the statement
that “learning affects what is to be learned”’. This insight can be transferred
from t}_le compcetitive environment of rational expectations models to the
strategic environment of game theory. Here, the role that it plays is even
greater because, as we know from the previous section, in a repcated game
nonstationarity arises not only because players observe past play before
they decide their behavior, but also because they can influence their
opponents’ behavior through reputational or retaliation effects,

Thus. we can assume that either players are sophisticated (") (that s,
they recognize the effects of learning) or they are naive, A sophisticated
p{nyer thinks that his opponents play closed loop superstrategies, and thus
his belief about his opponents’ play is given by a probability distribution
on the set of his opponents’ closed loop superstrategies. A naive player thinks
on the contrary, that the other players’ behavior is not influenced by past’
hl.Sl()l'y of the play, including his own past strategics. Hence he neither
tries to influence the strategies of the other players in the future nor does
h.e realize that his opponents’ behavior is nonstationary. A naive player
simply thinks that the others play open loop strategies and his belief is
represented by a probability distribution over the set of his opponents’
pure or mixed strategies of the component pame,

.A general example of naive learning is stationary Bayesian learning ac-
cording to which the players analyze past observations as if their opponents’
play were governed by a fixed. albeit unknown, probability distribution.
Other naive learning algorithms are the Cournot dynamics, whereby each
player chooses a best reply given the assumption that the others will choose

their last period strategy, and the fictitious play dynamics, proposed by
(") The use of the term “sophisticated”" is si hily differe i
literature (Milgrom and Roberts 1991). ptl different from that found in the
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Brown (1951), under which agents play a best reply to the cmpirical fre-
quencies of their opponents’ past strategies('*).

A second “psychological’” feature that characterizes learning models
is the discount factor that the players use to evaluate future payoffs(*).
We can either have players with mryopic preferences or players with foresighted
preferences. Players have myopic preferences when they are so impatient
that they discount the future by a factor & so small that long-run max-
imization is equivalent to a sequence of short-run maximizations. The ex-
tremce case of myopic preferences is represented by a discount factor 8 equal
to zero.

The “structural” features of learning models regard the observation
structure available to the players at the end of the component game and
the definition of the player set. As regards the observation structure the
important distinction to be made is based on its manipulability. Player i
has a manipulable observation structure when what he observes depends
on his past actions. Formally let S_(m,, 5) = [s_ € S_ily,(s;, s_) = m)
be the set of possible strategies of player i's opponents when player i has
chosen strategy s; and observes message 7. For each player #'s strategy s,
the collection of such sets

‘{’_,(s;) = [S__,(I”i, S:): m; € /M,}

is a partition of S_; representing the possible observations of player i
about his opponents’ strategies; that is, player i's observation structure.
This structure is manipulable if it depends on player #'s strategy, that is
if for some s/ and §; € §;, W_(5.") = \V_(5).

For example, the game of Figure b has a manipulable observation struc-
ture. Assume that players have perfect monitoring of the outcome. If player
1 plays A and player 2 plays 4, no information about player 3's strategy
accrues to 1 and 2 because player 3's information set is not reached. To
obtain evidence about player 3’s strategy either D or d should be chosen.

Note that when the game is nonsimultancous, as in Figure b, perfect
monitoring of outcomes does not involve perfect observation of the op-
poncents’ component game strategies and there is at least onc player with
a manipulable observation structure.

Active experimentation is a possible consequence of manipulability.

(18) For a summary of convergence results see Moulin (1986, ch. 6) as regards Cour-
not dynamics, and Fudenberg and Kreps (1991) for fictitious play. As for the latter, an
example of cycling for two-player games with three strategies is Shapley (1964). Note that
originally fictitious play was not interpreted as a learning process but as a way to compute

Nash equilibria.

(1) To a certain extent the discount factor can be regarded as structural since it
depends not only on the players’ characteristics but also on the length of the periods.
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In fact, the players could have an incentive to experiment in o:der to get
more precise information about their opponents’ behavior; namely, they
can rationally sacrifice some expected payoffs in the current period to ac-
quire more information and so, hopefully, higher payoffs in the future.

In the literature on learning in games it is usually assumed that players
have perfect monitoring of the component game outcome. This assump-
tion rules out the manipulability of the observation structure in simultaneous
games. Note, however, that this is a strong requirement in many strategic
situations of economic interest. The game of Figure ¢, for example, shows
that if the players observe only their own payoff and they cannot observe
their opponents’ payol[s realization (an assumption which is not implausi-
ble) they need not have perfect monitoring of the actions of the game, cven
if there is common knowledge of the utility functions. If player 1 plays
A, his payolt is 2, regardless of player 2's action. So player 1 does not know
whether @ or b was played. As we will see, many common convergence results
would not held with imperfect monitoring of past outcomes.

The last structural feature concerns the player set. We know that it
can either be interpreted as a fixed set of individuals or as a set of roles.
In the latter case players are drawn at random from different populations
and do not know the identity of their opponents. For this reason this case
is called anonymouns. The main effect of anonymity in a repeated game is
that it rules out the incentive to affect the opponents’ future behavior,
because the probability of meeting again players already met in the past
is negligible if the populations are large(®).

The role played by these four elements in the determination of players’
behavior can be made clear by representing the decision problem of cach
player with a simple recursive dynamic programming model. Suppose that
sach player updates his belief about his opponents’ current behavior ac-
cording to an updating rule v, : $ x M; x A~ A, where A_; is an ap-
propriately chosen subset of A[A(S_)]. This means that the current belief
is a sufficient statistic of past information. Such an updating rule can be
derived via Bayes' rule by using appropriate statistical models. The cur-
rent belief is denoted by g_, and the updated belief is g_(-|s.. S..(m,, s))
= Y.s, m, g.). With this notation we stress the dependence of the up-
dated belief on the indirect observation about opponents’ behavior induced
by the signal #2, when s, is played. At the beginning of a period, the future
updated belief of player 7 when he is going to play s; is a random distribu-
tion, because the signal has not yet been observed. This random distribu-
tion is denoted g_(-[s, W_(s5)).

) \We arce assuming that no agent has any information about the games in which
10t play. Thercfore, if the probability of meeting the same opponents in the future
ble, the probability of affecting their behavior is also negligible,
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¢ or the game is anonymous (with
does not depend on the m.:.wﬁ argu-
strategy §,. Since a nonmanipulable
(s) is independent of s, we can con-
s nonmanipulable and learning
ayer i's random updated belief

Note that if either player i is npaiv
large populations), the updating rule v,
ment;: that is, it is independent of the
observation structure implies that ..Tl. .
clude that, overall, when the information i
is either naive or the game is anonymous, pl
does not depend on his own strategy s .

Using the techniques of recursive programming,
function Vi: A_,—R as follows:

we can define a value

Vig_) = max,e (Uls, g-) + 8 E_[Vig_{-ls, Y-}

. licf
where E,_, denotes the expected value with respect to the current belic

8-

TABLE 1. - A classification table
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T'hen a strategy 5" is dynamically optimal given i's current belief

g if
Uds/, 820 + & E [Vilg.{-[s", 'W_(s" )1 = Vig_).

A look at the value function clarifies how the combination of the four
features introduced above can result in myopic behavior. It is clear that
player /s behavior is myopic when 8 = 0(?). But it is also myopic when
player ’s random belief g_i(-|s;, W.i(s)) does not depend on s, ecither
directly or indirectly; that is, when the observation structure is non-
manipulable and learning is either naive or the game is anonymous. In this
case the expression that has to be maximized with respect to player i's
strategy is given by the sum of two terms: the current utility and a con-
stant term.

The consequences, in terms of behavior, of the four aspects listed so
far are summarized in Table 1.

4. Sophisticated Leaming in Non-Anonymous Repeated Games

In this section we consider models of sophisticated learning. The key
assumption here is that players recognize that their opponents’ choices are
influenced by past history. Despite this common feature, sophisticated learn-
ing models encompass fairly different forms of learning ranging from
equilibrium to disequilibrium learning.

4.1.  Foresighted Preferences: Kalai and Lebrer's Model

. Kalai and Lehrer (1991a) consider an infinitely repeated »-person
simultancous game with a finite set of strategics where each player has
foresighted preferences.

. Monitoring of the outcome is perfect. Therefore, since the game is
simultancous, the message at time ¢ is given by the profile of strategies
of the component game played at ¢, denoted by s = (5.4, ..., Soi). A
history of ‘the Play up to £is ' = (5w, ..., sw) € 8. Let H=Ugz, § be the
set of all histories. A pure (closed-loop) superstrategy for player / is given
by r: H-S..

Players are sophisticated, i.e. each player thinks that the other players
play closed loop superstrategics. Then, at the beginning of the play, each
player's belief is given by a probability distribution over the set of his op-
ponents closed loop pure superstrategies. We assume that beliefs satisfy
independence across players, therefore they can be represented as a pro-
file of mixed superstrategies (one for each opponent).

(1) Actuadly it is sufficient chat 8 be smaller that the ratio of the smallest expected

shf)yl-run loss deriving (rom the choice of a strategy that does not maximize the current
utility and the largest expected long-run gain derived from such choice.
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For simplicity’s sake we present Kalai and Lehrer’s model assuming
that players have belicfs with finite support and that they choose pure
superstrategies. This last assumption implies that a profile of superstrategies
r=(r, ..., r) corresponds to a single infinite history of play s=.

Suppose that players' beliefs arc compatible with the superstrategy pro-
file . By this we mean that they assign positive probability to 5=, the real
history of play generated by r(?3). This assumption implies that players
never observe something they thought impossible, and thus permits Baye-
sian updating of belicfs, but it also places restrictions on unobservable events.
Consider, for example, the repcated prisoners’ dilemma of Figure d. Sup-
pose that player 1 always plays N and player 2 thinks that, in each compo-
nent game, player 1 randomizes with probabilities 1/2 on C and 1/2 on
N. Then there is no finite history of the play that contradicts player 2's
belief but the latter is not compatible with player 1's strategy, as it assigns
probability zero to the infinite sequence N, N, N. ...

Compatibility, however, is weaker than the requirement that players’
belicfs contain a ‘‘grain of truth"’; that is, assign positive probability to
the superstrategies actually played by the opponents. Consider once again
the prisoners’ dilemma and suppose that each player plays his trigger
strategy. Then the only infinite history with positive probability is the se-
quence (N, N, ...). Hence player 1’s belief that assigns probability one to
the event that player 2 plays “‘tit for tat’’; that is, he plays cooperative
in the first iteration and afterwards mimics his opponent’s past action, is
compatible with the actual play but does not contain a ‘grain of truth’.
The following result holds:

PROPOSITION 3: If the profile of superstrategies f actually played is com-
patible with the players' beliefs, under Bayesian updating there is a finite time
T after which players can anticipate the future play correctly.

Let G_, be the support of player i's (initial) belief. If two profiles of
superstrategies r and 7 determine the same play we write P() = P(A. The
set G_; can be partitioned in two subsets G =[roe G PG, ) =
P, #-)) and G_, = [r_. € G_;: PG, r-) # P(£, f_). A superscript ¢ in-
dicates that the same scts are defined for the updated belief at date ¢. By
the compatibility assumption, G_, is not empty. Consider now G_.. Each
profile of superstrategics of player i's opponents r—_; € G_,, combined with
player i’s superstrategy #, determines a history different from what player
i actually observes. Then, after the first period ¢ in which the play path

(22) If, as in Kalai and Lehrer’s model, players are allowed to choose behavior super-
strategies, the play results in a probability distribution over the set H. In this case private
belicfs are compatible with the strategics if the “objective” probability distribution in-
duced by the strategies is absolutely continuous with respect to the subjective distributions

induced by the beliefs.
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generated by 7 is different from that of (£, r_), r.; would be assigned
probability zero and thus removed from the updated support G£,. Since

G, is [inite we can conclude that there is a finite time T; after which G-,
is empty. Therefore, after T, G*, = G_; and even if player /7 does not
know the superstrategies actually played by his opponents, he exactly
forccasts the future play of the game on the play path. Choose T to be
the largest T,. As stated by the theorem above, after T, even if the
players’ beliefs are not fully correct, they cannot be contradicted by the
actual play.

The proof makes clear that the result depends, neither on the assump-
tion of perfect monitoring nor on optimizing behavior hypothescs. These
assumptions, however, play an important role in the next proposition.

Indeed, optimizing behavior implies that, after T, the play converges
to a conjectural cquilibrium (). Consider player #'s belief; since it is given
by a profile of mixed superstrategies, in games of perfect recall, by Kuhn's
theorem (see Section 2.1), we can consider its equivalent profile of behavior
superstrategies, denoted g_. Let (rfs) denote player i's superstrategy
played, according to #, in the subgame starting after history s. Then,
after T. each player / plays a best reply #|s* to his belief g_s* and (r)s",
g-|s) results in the same play of the profile of superstrategies actually
played.

In the spirit of the equivalence result between conjectural equilibria
and Nash equilibria of Section 2.4 Kalai and Lehrer prove that:

PROPOSITION 4: For ecach conjectural equilibrium there is a Nash
equilibrium which induces the same history. Hence, after time T, the play con-
verges to a Nash equilibrium bistory.

In order to prove proposition 4 let » = (r,, ..., r,} be a conjectural
cquilibrium supported by beliefs (g, ..., g_.) and consider the following
behavior superstrategies. On the play path, that is, along the history
generated by profile r, play according to . Out of the play path distinguish
two cases. If only one player, say j, has deviated from r, each player other
than j plays a local mixed strategy according to j's belicf g_;. If more than
one player have deviated play arbitrarily (since Nash equilibrium is not con-
cerned with multiple defections). This profile of behavior superstrategies
is a Nash equilibrium that results in the same outcome as conjectural
equilibrium ».

The propositions above regard a very specific case (finite support beliefs
and deterministic play) and are thus only intended to illustrate Kalai and
Lehrer’s approach. Kalai and Lehrer extend these propositions to the case

(29 Or a private beliefs equilibrium, as Kalai and Lehrer called it.
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of general beliefs and behavior superstrategies and show that after a finite
time beliefs are accurate only up to a small error term € and play only ap-
proximates that induced by a Nash g-equilibrium.

Note that Kalai and Lehrer’s model does not necessarily encompass
equilibrium dynamics. Indeed the sequence of component game outcomes
before T is not necessarily part of any equilibrium path of the repeated
game. This is perhaps the most important difference with respect to the
model described in the next section which provides an example of learn-
ing in equilibrium (*).

4.2.  Myopic Preferences: Jordan’s Model

Jordan (1991) studics a repeated simultancous game G = (5. ..., S:,,
U., ..., U.) with incomplete information in which the players know their
own payoff function but not the payoff functions of their opponents. The
issue of incomplete information, in contrast with many altetnativ'e learn-
ing models including that of Kalai and Lehrer, is tackled assummg'that
players have a common prior on the space of possible szyoff functions,
as in Harsanyi’s standard theory of incomplete information games.

Let us suppose that payoff functions are normalized to the unit ball
in RS and let B = (U: € R¥: [Z.s U? (5)]¥2 < 1) be the space of payoff
functions(¥). A comnon prior satisfying independence across players is a
product measure B =P, x...x B, on the space of players’ types B” such
that, for each player i. B; is a Borel probability distribution on B.

It is assumed that players have perfect monitoring of the outcome of
the stage game and that they have myopic preferences.

To describe the evolution of the system under learning Jordan defines
a Bayesian Strategy Process (BSP). If X is a discrete set and ¢ a B(?rel prob-
ability distribution on X x Y, let ¢(x) for x € X denote the marginal prob-
ability @({x] x Y). As before s, denotes the profile of component game
strategies played at time ¢ and ' the history of the play up to 4.

A BSP for the prior B is a joint probability measure ¢ on the space
B x $= of payoff functions and histories of the play such that:

a) the marginal distribution on B agrees with B;

b) if @ assigns positive probability to s, then for cach profile of
strategies 5= (5, ..., 5.) € 5, (sls) = @ lsi]s) ... @.(s:ls);

¢) for each player #, each # and each triple (U:; &, 5) in the support
of @, s; maximizes L,_, U(-, s—) ®_{s_Js) on §;.

{29 Another process of learning in equilibrium is provided by Crawford and Haller’s
{1990) analysis of repeated coordination games.

(33) This assumption is necessary to prove convergence. To see how the normaliza-
tion can be done without affecting the strategic situation see Jordan’s example, p. 64.
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In order to understand the definition of BSP it is uscful to see how
such a process can be built iteratively. Suppose that, at the initial stage,
the players play a Bayesian Nash Equilibrium determined by the prior 8
(sce Section 3.3). Let s be the stratepies observed by the players at the
end ol the first iteration. Suppose alsa that, in case of multiple Bayesian
Nash Equilibria, there is a selection mechanism which couples each #-tuple
of payolf functions with an equilibrium strategic profile, Then in the follow-
ing period player i knows that, for each of his opponents j#:, the payoff
function U, belongs to the set of payoff functions of player j associated
through the selection mechanism, with strategy sq, and accordingly .5..
datces his prior using Bayes' rule. Given the updated priors, a new Baye-
sian Nash Equilibrium is determined, and the process is repeated. Hence
a BSP is an example of learning in equilibrium as in each iteration players
play a Bayesian Nash equilibrium (%¢).

In cach round the players can derive the updated probability ¢(-|s")
they assign to the next period strategy profiles s, y conditional on history
s', from the updated beliefs and the sclection mechanism. Let (Ui be the
“true”’ vector of payoff functions. A strong condition on the learning proc-
ess requires that, in the long run, players get their beliefs on their opponents’
strategies right. Under such a condition the sequence of probability distribu-
tions [@(-]s)}>0 converges to the set N E((U)ew) S A(S) of Nash
equilibria of the one-shot game. Formally, define a distance on the set A(S)
of mixed strategies such that, given ¢, ¢° € A(S), |lg—¢'|| = max
flg(s) —q’(s)] : s € §]. Given aset A C A(S) let |l|g—A|| = inf {|lg—¢"]|
: g’ € Al. Jordan proves that:

ﬁ._::vom_dcz 5: For any BSP nonconvergence occurs only on a set of
payoff functions and histories of play with ¢-probability zero, that is:

O((Udex, 57 = lim JloC-Is) = N E(U)ed] = 0} = 1.

oo

If, moreover, the priors are sufficiently uniforn(¥) convergence occurs for
every vector of payoff functions.

. Notice that this form of learning is different from the one described
in W:_E and Lehrer’s model. Indced here learning involves fully correct
beliefs (with respect to the “‘objective” common prior B) about the op-

) Compare BSP with Kalai and Lehrer's model which deals with learning in disc-
quilibrivm. A classical example of learning in equilibrium for rational expectations equilibrium
models is Bray and Kreps (1987).

1°7) To avoid technicalities we refer to Jordan's definition 3.4.
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ponents’ strategies: when learning is over, if the preferences are myopic,
we obtain a sequence of one-shot equilibria and, since monitoring of the
strategies is perfect, the players have correct beliefs. In Kalai and Lehrer's
model, on the contrary, after learning beliefs are correct only on the path
of play because closed loop superstrategies cannot be perfectly monitored.

5. Models of Naive Learning

In this section we discuss some learning models in which players do
not fully take into account the effects of learning on opponents’ behavior,
i.c. players are characterized by naive learning processes. An extreme form
of “'naiveté’ is to believe that the opponents’ behavior is governed by a
fixed, albeit unknown, objective probability distribution, but we allow for
more general processes. The common feature of all these processes is that
each player believes that the future behavior of his opponents is not af-
fected by his own current actions(?®). This is justified by some form of
bounded rationality or by anonymity.

5.1.  Non-Anonymous Repeated Games with Myopic Bebavior

In non-anonymous repeated games the current action of a player af-
fects his opponents’ information, and hence his opponents’ future actions.
However, limited information andfor limited cognitive and computational
abilities can prevent the players from taking this effect into account. In
this case they use naive learning procedures. If their observation structures
are not manipulable, the induced behavior is myopic. Otherwise there is
room for experimentation (provided that the players are sufficiently pa-
tient). But even in this case we can invoke some sort of bounded rationali-
ty in order to justify heuristic procedures, in which the players are largely
guided by short run considerations and occasionally make experiments.

5.1.1.  Milgrom and Roberts' General Learning Processes

Learning is a highly situation-dependent creative process. Thus only
a general formulation of learning behavior can encompass the variety of
learning strategies that “intelligent’” people can possibly use. For this reason
Milgrom and Roberts (1991) choose not to specify a single, detailed descrip-
tion of a learning rule, and instead focus on some general propertics that
plausible learning processes should have.

(28) Milgrom and Roberts (1991) is a noteworthy exception, because they analyze both
naive and sophisticated processes.
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The analysis is set in the framework of a class of non-anonymous and
simultancous repeated games with perfect monitoring. Two general prop-
erties which the sequence of plays over time {s,) must satisfy are iden-
tified. They lead respectively to adaptive and sophisticated learning. Players
use adaptive learning when they mostly learn from past observations while
sophisticated learning allows them to make full use of both past informa-
tion and knowledge of the game and of players' rationality through educ-
tive reasoning (*"). Here we will focus on adaptive learning which (implicit-
ly) assumes myopic behavior.

The basic analytical tool is the justification operator. Recall that a
justification operator is a monotone correspondence from the power set
of the strategy space into itself. Since behavior is myopic, the appropriate
operator is the best response correspondence | defined in Section 2.2.

A history of plays [s.) is consistent with adaptive learning if and only
if the players eventually choose only strategics that are justified by beliefs
that assigns near-zero probability to opponents’ strategies that have not
been played for a sufficiently long time. That is, any “initial”" history of
plays is eventually inconsequential in playcrs’ models of how others act.
Formally, [s,]) must be such that for all dates f. there exists a date 7 such
that for all t=7 sy € J({su : tsk<t]).

Note that typical naive learning processes, such as stationary Baye-
sian learning, fictitious play or Cournot dynamics, induce histories which
arc consistent with adaptive learning. But the same is true of some extremely
sophisticated learning processes such as the hyperrational Bayesian stochastic
processes analyzed by Jordan.

The relevance of Milgrom and Roberts’ analytical categories is made
apparent by three important results. The first limits the scope of positive
equilibrium convergence.

We say that the play path [su} converges to a distribution ¢ € A(S) if
the empirical frequencies generated by {sa] approach ¢ and there is a date
T after which no profile outside the support of ¢ is played(*).

PROPOSITION 6: If the play path [s.} converges to a Nash equilibrium
in mixed strategies, then the sequence is consistent with adaptive learning. If
a sequence [su) converges to a point s and it is consistent with adaptive learn-
ing, then 5 is a Nash equilibrium.

In order to prove proposition 6 assume that [s,)) converges to a Nash
cquilibrium in mixed strategies ¢. Then there is a date T such that for all

(#%) See Gul (1991) for a similar approach.

(30 As we are assuming that the component game is finite this is the appropriate
definition. The analysis and the results can be extended to compict-continuous games.,

| 6
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! f i is finite, for all such # there is
(=T, [sw: k=t} = Supplg). Since ,w.N.SES is finite,
a _N:nn_ M_a.n 7 such that for all =7, [sw : t<k<t] = Supplq). By the

choice of T and the best reply property of Nash equilibria it follows that

for all t=F s € Supplq) S ] Supplq)) = Jlsw : t<k<t)), ie. s is con-
sistent with adaptive learning. Now assume that {50} converges to 4 ?om
file of strategies 5. Then for all ¢ _M:mn n:ocm_g. Su_= S nmo nﬁmwm_mmﬂcoq“
with adaptive learning, it follows thats€ ] de._ ic.5isa Nash equilibr c:w
The previous proposition states that an:_Eu.:cB noacmnmn:n_m res
cannot be obtained with a broader class of _n.m:::.m Eoma_.m .&E: t .mwﬁn:-
compassed by consistency with adaptive _as:::w.. m._:na positive equili :“wﬂ
convergence results can be proved for very sophisticated _nﬂ.E:m.Eoan e ,
as in Jordan's model, we Mnn Mrmﬁ.wcnw processes generate istories of play
i onsistent with adaptive learning. o

ér_nmwnnnnmnnno:m result provides an a<o_::<m mo::&u.zo: of _.u:.o:m__uug__.
ty (iterated dominance), a concept which is essentially eductive.

PROPOSITION 7: If [sw) is conmsistent with adaptive leamning, N\.uw: n.\um
players eventually play only rationalizable strategies, i.e. for every grw% in-
teger m there exists a date t., after which (i.e. for all t=1t) sy € J7 (5).

The proof is quite simple. We can state by definition that P(§) =S.
Hence the inductive proposition is trivially true for 7 = 0. Now assume
that for all £2 4., sw € J"(5). By compatibility with adaptive learning, we
know that there must be a date 4., such that for all t=tn.1, 50 € J{[sw
: t,<k<1t}). By the induction hypothesis, [sw : t.sk<t) € J(S): _w< nr_n_
monotonicity of J, J([s @ tn<k<t] € J(7(S)) = ua._g. Hence for a
{241, 50 € J7*'(S) and the theorem follows by _m&:n:mc. o

A corollary of these results is that if a game is mo_.d_:m:nn-mo_,s_ nm
a history of plays {sw} is no:mmmﬂ:ﬁ ém_ﬁﬁ adaptive learning if and only i
i to the unique Nash equilibrium.
¢ no_uﬂ,”m mmwvo of vnovom:mos 7 is somehow limited. Indeed, mm.vuv\omm were
drawn at random, the expected number of dominated strategies would ap-
proach zero as the number of players and the n:B._uQ.om strategies get _u.nmm—..
Therefore for generic large games, adaptive learning 5.6__2. no mmmﬁ:.n:o_-.a.
However, Milgrom and Roberts (1990) m_..oi that Bz.o:m__uug_:wm_av ics
surprisingly strong restrictions on adaptive processes in the class of games
with strategic complementarities (*!). . L

Assume for simplicity that the strategy scts are compact GRMM» s in
R and that each player has a well-defined best response function(®?). We

(1) Sec also Krishna (1991).

(%2) This means that for cach strategic profile s_; there is one and only one strategy
s; which maximizes Ui(-, s_).
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say that a game displays strategic complementarities if the best response func-
tions are upward-sloping, i.e. the marginal return of increasing one’s strategy
rises when the opponents’ strategies increase, This class of games is im-
portant in many cconomic applications. Examples are the stability problem
in the Arrow-Debren model when the “‘gross substitutes” condition is
satisticd, and Cournot and Bertrand competition, under some regularity
conditions on the demand and cost functions. Milgrom and Roberts (1990)
prove that:

PROPOSITION 8: Inn games with strategic complementarities the (inf and
sup) bounds on players' joint behavior implied by iterated dominance and pure
Nash equilibria coincide. Inn particular, when there is a unique pure Nash
equilibrium the sequence of strategic profiles converges to this equilibrinm if
and only if it is consistent with adaptive learning.

The result is indeed a generalization of the standard result on stabili-
ty for the Cournot dynamics illustrated in Figure ¢, where R, and R, are
the reaction functions for firm 1 and 2, respectively (the picture may repre-
sent a Bertrand duopoly with differentiated products). Figure e shows that
with the same reaction functions the iteration of the dominance operator
also converges to the unique Nash equilibrium. If [p;, Pi] is the set of
possible strategies (prices) for firm 1, then the set of possible best reply

Firm 2

R,

P,

R,

r

P2

7 7

no n P P, Py Firm 1

Figure ¢. - A Bertrand duopoly with differentiated produets
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for firm 2 is [p, P2). Thus firm 1 can consider only its best reply set [py,
P{] and so on, until convergence to the unique Nash equilibrium (pf, p7)
is obtained.

The definition of consistency with adaptive learning can be casily ex-
tended to general games with imperfect monitoring of the strategies. Prop-
osition 6 can be adapted to this more general context, by replacing Nash
equilibrium with conjectural equilibrium. Proposition 7, however, crucial-
ly depends on the assumption of perfect monitoring of the strategies. This
is made apparent by the example of Figure ¢ where player 1 only observes
his own realized payoff. In this case a history of plays, though consistent
with adaptive learning (in a properly defined sense), may converge to the
non-rationalizable conjectural equilibrium (4, 4). Furthermore, in this more
general framework, the assumption of myopic behavior must rely on myopic
preferences, since otherwise there are incentives for active learning. The
latter is the main theme of the next two sections.

5.1.2.  Fudenberg and Kreps' Model: Boundedly Rational Players and
Experimentation

In a forthcoming monograph Fudenberg and Kreps (1988) (*) present
a theory of learning in extensive non-anonymous games(*) which has a
distinguishing feature. In almost any model of learning the first step is the
description of a rational or reasonable learning behavior. The outcomes
yielded by this behavior are then analyzed. Fudenberg and Kreps’ model
follows the opposite route since the specification of.learning behavior is
driven by the desire to sustain the Nash equilibrium concept and its
refinements. As the assumptions about this behavior have unappealing
aspects, doubts are cast on the relevance of the Nash equilibrium itself.

A formal presentation of Fudenberg and Kreps’ model is beyond the
scope of this survey, in light of the preliminary nature of their results. We
therefore only describe, mainly by means of examples, a few insights which
are highlighted in their paper about the problems implied by convergence
to Nash equilibrium.

Nash equilibrium requires that players hold correct beliefs about the
strategies played by their opponents. Thus, if we want to justify it, our

() Differcnt versions of the monograph are available. We refer to A Theory of Learn-
ing, Experimentation and Equilibrium in Games, Draft 0.11, July 1988, Note that in the
most recent version of the monograph, Leamning and Equilibrium in Games, Partial Draft
0.62, August 1991, which is substantially different from Draft 0.11, attention is focused
on simultaneous games and fictitious play while the theory of learning in extensive games
we present here is not touched upon.

(" They consider a subclass of extensive games, i.c. games where, in any possible
play, no player can ever be called upon to move twice.
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main concern is to provide a theory of how and when correct beliefs might
emerge. We know that the repetition of the game by itself might not be
enough for players to understand how the opponents play at unreached
information sets, even if the outcome is observed. (Recall the gamc of Figure
b and what we said about manipulability.) Thus, if we want to avoid get-
ting stuck in a non-Nash outcome, we need a theory explaining how players
can receive evidence of what happens off the path of play.

The theory provided by Fudenberg and Kreps is that players are uncer-
tain about their belicfs and that they cxperiment to sce whether they are
correct. Moreover players are boundedly rational. Hence they are not able
to work out a grand dynamic strategy to experiment optimally. They simply
choose, most of the time, strategies which are optimal in the short run and
they occasionally try other strategies. Occasional experiments, however,
must be frequent enough to enable players to accumulate sufficient evidence
about opponents’ behavior.

The first assumption of Fudenberg and Kreps’ model responds to this
criterion. Roughly, it says that experiments are such that for each infor-
mation set that occurs infinitely often, each action is played infinitely often.

Note that this assumption is stronger than it seems. Indeed, for it to be
satisfied it is not enough that a player plans to experiment infinitely often:
he must actually do so. To grasp this point consider the game of Figure f. Sup-
pose that at time # player 1 assigns probability less than 1/2 to the event
that player 2 plays A. Then his optimal strategy is D. Suppose also that
he experiments action A with probability 1/2. This experimentation rate
tends to zero but it does not vanish too quickly (£2.,1/¢ is divergent).
Therefore player 1's action A is chosen an infinite number of times and
player 2's information set occurs infinitely often. However, if player 2 ex-
periments likewise, although he plans to experiment infinitely often, her
strategy A is chosen only a finite number of times (£%.,1/# is finite) (7).

Player 1 A Player 2 A Player 3
F
(1; 0; 0) (0; 15 0)

Figure £. - A game in extensive form

0(2; 2; 0)
D

(2:0; 1)

09 In game of perfect information, as in the game of Figure [, the first assumption
implies that cach information set is reached infinitely often. This is not true in general;
sce for example Figure 1.3 in Fudenberg and Kreps (1988).
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Besides being boundedly rational, players are naive: it is assumed that
at information sets that occur infinitely often they asymptotically form their
conjectures on their opponents’ behavior on the basis of a simple count
of how often the various actions have been played in the past, assuming
that the opponents’ strategies are independently implemented. Such a
behavior is a sort of asymptotical fictitious play. Note that this statistical
procedure would be reasonable if the sequence of observations at an infor-
mation set were exchangeable but, in this model, players’ behavior may
be highly nonstationary (°¢).

The last assumption about players is that they are asymptotically almost
certain to play actions that almost maximize their expected short run payoffs,
given their conjectures. Optimization is almost certain because there is always
a small probability of non-optimal actions as experimentation persists in
the long run. .

Note that in order to conform to this last assumption the experimen-
tation rate must vanish with time, because the probability of short-run non-
optimal behavior must be asymptotically very low. We can then conclude
that the rate of experimentation involved by the behavior assumptions given
is of a very special kind. The number of experiments must decrease over
time because it is assumed that asymptotically players almost always choose
optimal strategies. However it must not decrease too quickly, or else enough
evidence would not be collected about opponents’ behavior.

Given the persistence of experimentation in the long run, we cannot
demand that play approaches some definite stationary mixed strategy in
this model. Indeed, given that the players are experimenting, there is always
a small chance that the behavior will take away from any point. For this
reason the definition of stable and unstable strategies is given in terms of
high probability.

A profile of strategies ¢ € A(S) is locally stable with respect to players’
behavior if there exists a partial history of outcomes such that, with con-
ditional probability close to onc, the outcome distribution induced by such
behavior converges to the outcome distribution associated with .

A profile of strategies ¢ € A(S) is locally unstable with respect to players’
behavior if, with probability one, the outcome distribution induced by such
behavior eventually stays outside a neighborhood of the outcome distribu-
tion associated with ¢.

Fudenberg and Kreps(1988) prove that a non-Nash outcome is locally
unstable with respect to all behaviors satisfying the previous assumptions

(%) It is difficult to say how players behave when evidence clearly rejects the
hypothesis of stationary and independently chosen strategies even if it seems natural to
assume that they abandon it. For this reason Fudenberg and Kreps consider only histories
of play that pass a consistency test.
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and a Nash equilibrium outcome is locally stable for some behavior that
satisfics the previous assumptions.

The second part of the above result does not give any idea of the range
of behaviors that make a particular Nash equilibrium stable. Even if no
general results are given by Fudenberg and Kreps, the sketch of the proof
suggests that behavior must be carefully tailored for each particular Nash
cquilibrium.

An interesting line of research departing from Fudenberg and Kreps’
model is what they call a complete theory; that is, a theory which, by
im‘[?osing conditions on the likelihood of various experiments, leads to
different sorts of equilibrium refinements. In a complete theory, then,
experimentation plays a fundamental role. However, until it is not en-
dogenously derived, as in this model, it is open to the criticism of being
ad /).oc. Endogenous experimentation is the focus of the model of the next
section,

5.2.  Anonymous Repeated Games

In anonymous repeated games with large populations of agents for each
player/role, the current choice of a single agent almost surely does not affect
his future opponents’ behavior. Therefore the agent correctly neglects this
effect and behaves myopically, unless there is room for active learning. It
is still generally true that *‘learning affects what is to be learned”’, making
the statistical distribution of strategies in the population nonstationary.
B.ut we focus on learning procedures that would be correct only in a sta-
tionary environment.

5.2.1.  The Model of Fudenberg and Levine: Steady State Learning and
Optimal Experimentation

Fudenberg and Levine (1990) present a model of learning in finite
extensive games in which cach player knows the extensive form and his
own payoff function, but possibly ignores his opponents’ payoff functions.

The game is anonymous: thus, for cach playet/role we can consider
the corresponding population. It is assumed that each population consists
of a continuum of agents with total mass one composed as follows: each
agent lives T periods, in each period 1/T new agents enter into each popula-
tion and 1/T agents of age T exit. Thus each population is stationary and
there are 1/T agents in each generation. There is a double infinite sequence
of periods ..., =1, 0, 1, .... In every period each agent is randomly and
independently matched with one agent from each of the opponents’ popula-
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tion. From the assumptions above the probability of meeting a player of
age ¢t is 1/T.
In the first part of their paper Fudenberg and Levine define an

equilibrium concept relevant in this context of anonymous learning, called

self-confirming equilibrium. This notion corresponds to that of anonymous
conjectural equilibrium defined in Section 2.4 when the players observe
the outcome of the component games in which they have played. The defini-
tion is repeated here for convenience in a somewhat different form.

A profile of distributions (¢, ..., ¢.) is a self-confirming equilibritm
il for each player i and cach strategy s in the support of g; there exists
a belief g_; € A(S_)) (possibly depending on s;) such that

(a) g_; justifies s;,

(b) for cach opponent j and cach information set 5 € F,, if b is reach-
ed with positive probability according to the profile (s, ¢-), then the sub-
jective belief (s, g_)) assigns to each action a € A(h) the ‘correct’ condi-
tional probability, i.e. the same conditional probability that can be derived
by (5. g-).

A self-confirming equilibrium does not necessarily correspond to a Nash
equilibrium (recall the game of Figure b). However, because of the
manipulability of the observation structure, there are incentives for active
learning. Are these incentives strong enough to rule out non-Nash outcomes?

The answer provided by Fudenberg and Levine in the second part of
their paper refers to a particular setting, since they focus on the case of
a steady state population. In this case stationary Bayesian learning is a correct
procedure of statistical inference and the optimal rate of experimentation
can be endogenously determined by dynamically optimal superstrategies.
No convergence explanation is offered for the steady state assumption but
we argue that this approach is both analytically convenient and
methodologically defensible. Indeed, from an analytical point of view the
correctness of the agents’ procedures makes it possible to apply the power-
ful limit theorems of mathematical statistics. On the other hand, from a
methodological standpoint, the encompassing of the steady states of some
appropriate dynamic system can be regarded as a minimum requirement
for the relevance of a static equilibrium concept.

Suppose that each agent believes that he faces a time invariant distribu-
tion of opponents’ strategies (this turns out to be true in a steady statc),
but he is not sure about the true distribution. At the beginning of each
period his (updated) belief is represented by a strictly positive density func-
tion on the space x;.;A(S). Assume also that each agent belonging to
population 7 is born with the same prior g2.

Let 3. denote player i's personal history including his past strategies
and the terminal nodes reached in the games he has played. Let Y, be the
set of all such histories. The state of the system at the beginning of each
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period is given by a vector 8 = (8, ..., 0.) €A(Y)) x...x A(Y,), which
specifies the fractions of each population / in each experience category ;.

Assume that the behavior of all i-agents is described by the same
superstrategy , : Yi—S.. Then one can compute an associated function
§—/0] describing the dynamic behavior of the system: f0).(y) is the frac-
tion of population 7 in the experience category y: if the previous state was
0 given that the agents’ behavior is governed by the rules i, ..., r. A
steady state of the system is a state 0 such that 8 = f[6], i.e. it is a fixed
point of . Since f is a polynomial function from a compact and convex
sct into itself, a steady state exists for every n-tuple of rules. Clearly in
a steady state the fractions of each population playing cach strategy (as
determined by 0 and the rules r) are also stationary.

Assume that cach agent maximizes the expected present value of his
payoffs given his initial belief g2;, denoted E ZX, &' #(zw), with & € [0,
1). This is a well-defined dynamic programming problem, with at least one
deterministic solution .. Fudenberg and Levine study the limit properties
of steady states associated with dynamically optimal rules as the parameters
T (life span) andfor & (discount rate) increase to infinity and one respec-
tively. They prove that:

PROPOSITION 9: For fixed full-support priors g% and 8 <1 each limit
point ® of the associated sequence of steady states as T—> o corresponds to a
self-confirming equilibrium g°.

Note that here we do not have *‘convergence in real time” as in the
previous models. In the steady state “‘convergence in real time™ has already
done its job and the theorem only characterizes the limit properties of a
scquence of dynamic models indexed by T, the length of agents’ life span.

The proof of proposition 9 is based on the idea that long-lived agents
will eventually stop experimenting and they will play to maximize their
current expected payoff, because the option value, or the expected future
gain associated with experimentation, becomes too small. Therefore con-
dition (a) in the definition of a sclf-confirming equilibrium holds in the
limit. Furthermore the agents’ beliefs about opponents’ actions actually
chosen (hence observed) almost certainly become approximately correct.
Since all the actions on the limit path are chosen many times, condition
{b) also holds in the limit.

Note. however, that it may well be the case that players stop experiment-
ing too soon and do not accumulate enough evidence about opponents’
behavior off the limit path. Therefore the limit point need not correspond
to a Nash equilibrium. This is the multi-agent analogue of the observation
that in a two-armed bandit problem an impatient agent can repeatedly choose
the wrong arm. (Sce, for example, Rothschild 1974).
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Will the experimentation rates of long-lived and extremely patient
players be high enough so as to approximate a Nash equilibrium? The follow-
ing proposition provides a partially affirmative answer:

PROPOSITION 10: For fixed priors go., there is a function 1(-) such
that if 8,1 and Tn=T(8,) (roughly speaking, this mcans that the lifetimes
go to infinity more quickly than the discount factor tends to 1), every limit
point © of the associated sequence of steady states corresponds to a Nash
equilibrium g°.

The answer provided here is only partial for two reasons: (i) it con-
siders a quite special double limit, and (ii) it does not say anything about
the plausibility of the limit equilibrium. It is worth noting that, at least
in simple games such as that of Figure a, the limit equilibrium is the plausible
one (*”). But general results of this sort have not yet been proved.

5.2.2.  Canning's Model: An Anonymous Repeated Game with Noise

Canning (1989)(®) has developed a theory of learning and
equilibrium for simultaneous games with anonymous interaction.

The basic model is quite simple. There are two N-agent populations.
In every period each agent is randomly paired with an agent from the other
population to play a finite two-person(*”) simultancous game G = (1, 5.
U,, Uy). It is assumed that each agent knows both strategy sets and his
payoff function but not the payoff function of his opponent. Each agent
has perfect monitoring of the strategy played by his current opponent;
however, he does not obscrve the strategies played by the other agents in
his opponents’ populations. If we assume that the agents have bounded
memory of length T, each agent’s experience can be described by a history
of length T given by the T-uple of strategies played by the opponents in
the previous T stages. A state of the system, denoted by x € X, is described
by an array, formed by Tx N x 2 clements, that contains a history of T
clements for each agent in each population. Note that, because of the
assumptions of finite populations and bounded memory, there is a finite
set of states.

At the end of each period, each agent can die with probability a.
Whenever an agent dies, he is replaced by a new agent with a null history.

(47 The assumption of a strictly positive prior rules out weakly-dominated strategies

and it is easy to check that the implausible equilibria of the aforementioned games display
weakly-dominated strategies.

(") The paper has been subsequently divided in two parts, Canning (19904) and
(1990b).

(39) The gencralization to n-person games is straightforward.
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At cvery stage cach agent plays a pure stralegy, arbitrarily selected
[rom the best reply correspondence, given his beliefs, Canning assumes that
the agents’ beliefs are given by the empirical distribution of past observa-
tions. Then he considers a sort of fictitious play where, however, the com-
putation of the frequencies is limited to the last T periods. Whenever an
agent has observed nothing yet, his belief is given by a uniform probabili-
ty distribution over his opponent’s strategies.

Note that since the players are naive empiricists with non-manipulable
observation structures their myopic behavior is justificd independently of
their intertemporal preferences.

Let w, € A(X) be the probability distribution over states at time ¢.
The elements listed so far, given by the matching rule for the players, the
best reply mappings, the rule for belief updating and the probability of
death, completely determine a Markov operator P : @,~®,,, through
which a probability measure over states at time # induces another probability
measure over states at time £+ 1.

Note that, whatever the state of the system, there is a positive prob-
ability o® that all agents die and hence the state is reached where all
{newborn) agents have null history. By standard theorems of probability
theory, this is sufficient to obtain the following:

PrOPOSITION 11: There exists a unique probability distribution w* such
that Pw* = w*. Furthermore, the proportion of time that the system is in state
x converges with probability one to w*(x) for any initial state.

This proposition contrasts sharply with the nonconvergence results
of the literature on fictitious play (see e.g. Shapley 1964). The intuitive
reason of this dramatic change is that the introduction in a deterministic
dynamic system of a history-independent random term (death and replace-
ment in our case) yields a stochastic dynamic system with better convergence
properties(*). To grasp this intuition consider the following example.

An agent characterized by infinite horizon and no discounting has to
cut a tree and sell it ac some date £ = 0,1,2, ... In each period the tree grows
by one unit. At each date ¢ the agent has to decide whether to cut or not,
given the state of the system, i.e. the size of the trec 5. Clearly the agent
has no incentive to cut the tree and we obtain a divergent determistic
dynamic system 5., = 5.+ 1. Now assume that at each date the agent cuts
the tree (or, alternatively, the tree falls) with a very small probability p> 0.
Take an arbitrary probability distribution , over the possible sizes s =
0,1,2, ... at date ¢ and compute ... Clearly ,.,(0) = p and @,, (k) =
(k= 1) (1= p) (the probability of being in state k£~ 1 at ¢ times the prob-

(19) See Canning (1990b). Kandori et al. (1991} and Young (1992) also rely on this.
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ability of not being cut at period ¢). By induction we get the unique sta-
tionary distribution w*(£) = p(1 - p)*, which is also the long-run distribu-
tion of sizes.

The sccond part of Canning’s paper focuses on the definition of a social
cquilibrium and the relation between this notion and Nash equilibrium.

Let gi(x} € A(S) be the empirical distribution of strategies in popula-
tion 7 given state x: gi(x) is simply a mixed strategy that represents the
average behavior of population 7, given that cach agent chooses a (purc)
best reply to the empirical frequencies determined by x (or a best reply
to the uniform distribution, if he is newly born). Define its expected value
with respect to @ € A(X) as follows:

glw) : = ‘E‘q,‘(x) o(x).

Then a social equilibrium of the system is defined as the mixed strategy
pair

g@*) = (g (©%). 7: {@©¥)).
By the previous results it follows that:

PROPOSITION 12: A social equilibrium exists and is unique for every
a>0. Furthermore the time average of the pair of mixed strategies (gi(x.),
qalx)) actually played at tme t converges to the social equilibrium.

As the time average of the strategics played converges it seems
reasonable that the players learn the social equilibrium if given enough time;
that is, if they have a low probability of death and a long memory. However
as T gets large and a small, the convergence speed slows down because
the longer the life and the memory, the greater the probability of meeting
the same oppenents and hence the correlation between players’ belief. Thus
to obtain convergence it is necessary to limit somehow this correlation by
increasing the number of agents in each population.

On the basis of a sligthly modified version of his model(*!) Canning
shows that:

PROPOSITION 13: [n the case of an iufinite number of agents, for a suf-
Siciently small and T sufficiently large, an equilibrium distribution of histories
yields a mixed strategy pair which is close to a Nash equilibrinm of the game
G. Moreover, the result also holds for large (but finite) N.

(1) He supposes that in each round only two players, instead of the entire popula.

tion, are called to play and every matching is assigned equal probability by the matching
rule. Moreover time is assumed to be continuous.
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Proposition 13 resembles Fudenberg and Levine’s proposition 10. In
both cases convergence to equilibrium is obtained when the life span goes
to infinity and the presence of newborn agents — that is, agents that take
history-independent actions — helps stabilize the system and avoid the kind
of cycling characteristic of Shapley’s example. Here, however, there is no
room for experimentation, because G is a simultaneous game and there
is perfect monitoring of the strategies played. In this case, self-confirming
cquilibria coincide with Nash equilibria and there is no nced to consider
extremely “patient” players, in order to achieve convergence to Nash
equilibria.
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Summary JEL C72, C73, D83

LEARNING AND CONVERGENCE TO EQUILIBRIUM IN
REPEATED STRATEGIC INTERACTIONS: AN INTRODUC.
TORY SURVEY

In recent years, there has been increasing interest in the hypothesis that an
appropriate concept of equilibrium might be obtained as the result of a learning
process in game theory. We propose a classification of this literature based on
four features of the players’ psychology and the structure of the game together
with an annotated review of some contributions. We provide an introduction to
the relevant concepts of game theory, and learning results are often given in
simplificd versions to facilitate the comparison between different approaches. The
conjectural equilibrinm notion, [irst proposed by Hahn, emerges as a unifying
concept.
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Riassunto JEL C72, C73, D83

APPRENDIMENTO E CONVERGENZA ALL’EQUILIBRIO IN
SITUAZIONI DI INTERAZIONE STRATEGICA RIPETUTA:
UNA RASSEGNA INTRODUTTIVA

L'ipotesi che individui razionali possano convergere ad un equilibrio come
risultato di un processo di apprendimento & stata un'idea centrale in teoria dei
giochi negli ultimi anni. Qui proponiamo una classificazione di questa letteratura
basata su quattro caratteristiche della psicologia dei giocatori e della struttura dei
giochi. Dopo aver introdotto una facile “‘guida” dei concetti di teoria dei giochi
rilevanti, presentiamo una selezione di alcuni fra i contributi pid significativi, spesso
presentando i risultati in maniera semplificata per facilitare i confronti fra i diver-
si approcci. L'eguilibrio congetturale, inizialmente proposto da Hahn, risulta esse-
re un concetto organizzatore di tutta la letteratura.
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