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1. INTRODUCTION

Forward-induction reasoning2 is motivated by the assumption that unan-

2 To the best of our knowledge the earliest example of forward-induction reasoning is due to
Elon Kohlberg. See Van Damme [33] and Kohlberg [21] for excellent surveys and references
on forward-induction equilibria. Non-equilibrium solution concepts featuring forward induction
are put forward and/or analyzed by Asheim and Dufwenberg [1], Battigalli [4, 5], Pearce
[25], and Reny [27].

ticipated strategic events, including deviations from a putative equilibrium
path, result from purposeful choices. Thus, if a player observes an unex-
pected move, she should revise her beliefs so as to reflect its likely purpose.

However, in order to divine the purpose of unexpected moves, a player
must formulate assumptions about her opponents’ rationality and strategic
reasoning. This paper focuses on these assumptions and emphasizes their
rôle in guiding the players’ belief revision process, and hence their behavior
(cf. Stalnaker [31, 32]). In particular, we adopt a model of interactive
conditional beliefs based on Battigalli and Siniscalchi [7] and propose a
formal analysis of forward-induction reasoning whose centerpiece is the
notion of ‘‘strong belief.’’

We say that a player strongly believes event E if she believes that E is
true at the beginning of the game, and continues to do so as long as E is not
falsified by the evidence.3 In other words, E serves as a ‘‘working hypoth-

3 In a different formal setting, Stalnaker [32] independently introduced the notion of ‘‘ro-
bust belief,’’ which captures a similar intuition.

esis.’’
The notion of strong belief allows us to provide a unified epistemic

analysis of different versions of forward induction, listed below in an order
that, loosely speaking, reflects the complexity of the corresponding
assumptions about beliefs:

• In its simplest form, forward-induction reasoning involves the
assumption that, upon observing an unexpected (but undominated) move
of her opponent, a player maintains the ‘‘working hypothesis’’ that the
latter is rational (for example, see [24], pp. 110–111). Strong belief in the
rationality of opponents captures precisely this type of argument.

• In the context of signalling games, we show that strong belief in
rationality and in a candidate equilibrium path justifies the deletion of
equilibrium-dominated messages for each sender type. This leads to an
epistemic characterization of the intuitive criterion of Cho and Kreps [15].

• Extensive-form rationalizability (Battigalli [4, 5], Pearce [25]) is
based on the informal assumption that a player interprets unexpected
moves of her opponents in a manner consistent with the highest possible
‘‘degree of strategic sophistication.’’ Using the notion of strong belief, we
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formalize this assumption in the context of our epistemic model, and
obtain an epistemic characterization of extensive-form rationalizability.

Since extensive-form rationalizability induces the backward-induction
outcome in generic perfect-information games (cf. [5] and [27]), our
analysis additionally provides sufficient epistemic conditions for backward
induction.

The above results are meant to illustrate ‘‘typical’’ applications of strong
belief to the analysis of forward-induction reasoning. Thus, we have
restricted our attention to (relatively) well-known solution concepts and
examples. However, as we suggest in Section 6, different assumptions
involving rationality and strong belief may be used to obtain characteriza-
tions of other known extensive-form solution concepts that embody
notions of forward induction—as well as to derive new solution concepts
which may be more germane to specific applications.

On a similar note, we do not wish to suggest that any of the solution
concepts analyzed in this paper should be regarded as embodying the
‘‘right’’ notion of forward induction. Rather, we suggest that the notion of
strong belief allows to uncover and make explicit certain assumptions
about the belief revision processes associated with different versions of
forward-induction reasoning.

Finally, normal-form solution concepts such as strategic stability (cf.
Kohlberg and Mertens [22]) and iterated weak dominance also typically
select outcomes consistent with versions of forward-induction reasoning.
When this is the case, normal-form analysis may be viewed as providing
an alternative rationale for ‘‘forward induction outcomes.’’ However,
normal-form analysis is unlikely to shed light on the aspect of forward
induction reasoning we emphasize, namely the players’ belief revision
process.

Following Battigalli and Siniscalchi [7], in the model of interactive
beliefs adopted here, a state comprises a specification of the strategy and
epistemic type of each player. Every epistemic type corresponds to a condi-
tional probability system over opponents’ strategies and types—hence,
implicitly, to an infinite hierarchy of conditional beliefs on opponents’
actions and conditional beliefs.

As we argue in Section 3, the analysis of the behavioral implications of
forward induction is considerably simplified by focusing on belief-complete
models. Loosely speaking, in such models, every conceivable hierarchy of
conditional beliefs a player may hold about her opponents is represented
by an epistemic type.

We have already mentioned some of the key references on forward
induction. Further comments on the related literature are deferred to the
discussion section.
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The remainder of the paper is organized as follows. The framework is
introduced in Section 2. Section 3 provides the formal definition of strong
belief and illustrates its features by means of an example. Section 4 pro-
vides a characterization of extensive-form rationalizability. Section 5 con-
tains our characterization of the intuitive criterion. Section 6 discusses
some modelling choices and possible extensions of the analysis, and com-
ments on the related literature. All proofs are contained in the Appendix.

2. THE FRAMEWORK

This section introduces most of the required game-theoretic notation,
and summarizes the features of type spaces that will be relevant to our
analysis. Further details may be found in Battigalli and Siniscalchi [7].

2.1. Multistage Games

We focus on dynamic, finite games, and allow for the possibility that
payoff functions may not be commonly known. This may reflect imperfect
knowledge of the opponents’ preferences, or of the link between actions
and payoff-relevant consequences. Therefore, in general we allow for
incomplete information.

In order to keep notation at a minimum, our analysis shall deal with
multistage games with observable actions,4 although our framework and

4 For a complete definition see Fudenberg and Tirole [18], §3.3, §8.2.3 or Osborne and
Rubinstein [24], §6.3.2, §12.3 (note that [24] uses ‘‘perfect information’’ to refer to all games
with observable actions, including those featuring simultaneous moves).

techniques can be adapted to deal with general extensive-form games (see
Section 6 for further details).

We shall be interested in the following primitive objects: a set I=
{1, ..., |I|} of players, a finite collection H of (non-terminal) histories,5

5 Histories are sequences of consecutive action profiles.

including the empty history f, a finite collection of terminal histories Z,
and, for each player i ¥ I, a finite collection Gi of payoff types and a payoff
function ui:Z×GQ R, where G=G1× · · · ×GI. Each element hi ¥ Gi
represents Player i’s private information about the unknown payoff-rele-
vant aspects of the game. If the set G contains only one element, we say
that the game has complete information.

As the game progresses, each player is informed of the history that has
just occurred. However, a player is never informed of her opponents’
payoff types. The set of feasible actions for Player i may depend on pre-
vious history, but not on his private information hi, and it is denoted Ai(h).
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Player i is active at h ¥H if Ai(h) contains more than one element. There
are simultaneous moves at h if at least two players are active at h. If there is
only one active player at each h ¥H, we say that the game has perfect
information.

Moreover, we shall make use of certain derived objects. First, for every
i ¥ I, we shall denote by Si the set of strategies available to Player i (where
a strategy is defined as a function si:HQ1h ¥H Ai(h) such that
si(h) ¥ Ai(h) for all h).6 In keeping with standard game-theoretic notation,

6 A strategy of player i at an hypothetical stage of the game where she does not yet know
her payoff type would be a map with domain Gi×H. Here, however, we are not assuming
that such an ‘‘ex ante stage’’ exists. Therefore, we take the point of view of a player who
knows her payoff type. This simplifies the analysis and emphasizes the incomplete-information
interpretation of our framework.

we let S=< i ¥ I Si and S−i=< j ] i Sj.
For any h ¥H 2Z, S(h) denotes the set of strategy profiles which

induce history h; its projections on Si and S−i are denoted by Si(h) and
S−i(h), respectively. The correspondence S( · ) provides a convenient stra-
tegic-form representation of the information structure.

We denote by Si=Si×Gi the set of strategy-payoff type pairs for Player
i and let S=< i ¥ I Si and S−i=< j ] i Si.

Using this notation, we can define a strategic-form payoff function
Ui: Si×S−i Q R in the usual way: for all z ¥Z, (si, hi) ¥ Si and
(s−i, h−i) ¥ S−i, if (si, s−i) ¥ S(z), then Ui(si, hi, s−i, h−i)=ui(z, (hj)j ¥ I).

Finally, for every strategy si, we let H(si)={h ¥H : si ¥ Si(h)} denote
the collection of histories consistent with si.

Note that the structure (H,Z, I, (Gi, ui)i ¥ I) is not a game with incom-
plete information in the sense of Harsanyi [20], because it contains no
description of the possible interactive beliefs about payoff types. Such
description will be provided in the following subsections within a richer
framework encompassing interactive beliefs conditional on (non-terminal)
histories.

2.2. Conditional Beliefs and Type Spaces

As the game progresses, players update and/or revise their conjectures in
light of newly acquired information. In order to account for this process,
we represent beliefs by means of conditional probability systems (see Rênyi
[28]).

Fix a player i ¥ I. For a given measure space (Xi, Xi), consider a non-
empty collection Bi ıXi of events such that ” ¨Bi. The interpretation is
that Player i is uncertain about the ‘‘true’’ element x ¥Xi, and Bi is a
collection of observable events—or ‘‘relevant hypotheses’’—concerning x.
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Definition 1. A conditional probability system (or CPS) on (Xi, Xi, Bi)
is a mapping m( · | · ): Xi×Bi Q [0, 1] such that, for all B, C ¥Bi and
A ¥Xi, (1) m(B | B)=1, (2) m( · | B) is a probability measure on (Xi, Xi),
and (3) A ı B ı C implies m(A | B) m(B | C)=m(A | C).

We assume that Xi is a topological space, and it is understood that Xi is
the Borel sigma-algebra on Xi. Therefore we often omit to mention Xi
explicitly and we refer only to Xi and Bi. The set of probability measures
on Xi is denoted by D(Xi). The set of conditional probability systems on
(Xi, Bi) can be regarded as a subset of [D(Xi)]Bi and is denoted by
DBi(Xi). D(Xi) is endowed with the topology of weak convergence of mea-
sures and [D(Xi)]Bi is endowed with the product topology.

Throughout this paper, we shall be interested solely in ‘‘relevant
hypotheses’’ corresponding to the event that a certain partial history has
occurred. Thus, Player i’s first-order (conditional) beliefs about her oppo-
nents’ behavior and payoff types may be represented by taking Xi=S−i
and Bi={B ı S−i : B=S−i(h)×G−i for some h ¥H}. We denote the
collection of CPSs on (S−i, Bi) thus defined by DH(S−i). Since S−i and H

are finite, DH(S−i) is easily seen to be a closed subset of Euclidean
|H| · |S−i |-dimensional space.

To represent Player i’s higher-order beliefs, we introduce the notion of an
extensive-form type space. The conditional beliefs of each player j are
parametrized by her epistemic type tj ¥ Tj, where Tj is a compact topological
space. A state of the world is an array w=(wj)j ¥ I=(sj, hj, tj)j ¥ I of
strategies, payoff types and epistemic types. We consider a set of
‘‘possible worlds’’ W=< j ¥ I Wj ı< j ¥ I (Sj×Tj), where every combination
(sj, hj)j ¥ I ¥ S occurs at some state. Player i has conditional beliefs about
the strategies, payoff types and epistemic types of her opponents. Therefore
the structure (Xi, Bi) is specified as follows: Xi=< j ] i Wj=W−i and

Bi={B ¥Xi : B={(s−i, h−i, t−i) ¥ W−i : s−i ¥ S−i(h)} for some h ¥H}.

The set of CPSs on (W−i, Bi) will be denoted by DH(W−i).

Definition 2 (cf. Ben Porath [9]). A type space on (H, S( · ), G, I) is a
tuple T=(H, S( · ), G, I, (Wi, Ti, gi)i ¥ I) such that, for every i ¥ I, Ti is a
compact topological space and

1. Wi is a closed subset of Si×Ti such that projSi Wi=Si;
2. gi=(gi, h)h ¥H: Ti Q DH(W−i) is a continuous mapping.7

7 It would make sense to assume that gi is injective, but this is immaterial for our argu-
ments. Continuity of the mapping gi means that the index set Ti inherits the topological struc-
ture of the beliefs set DH(W−i). For more on this see [23] and [7].
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For any i ¥ I, gi, h(ti) denotes the beliefs of epistemic type ti conditional
on h.8

8 Once we have specified a type space T, we may derive a Bayesian game à la Harsanyi by
taking, for each epistemic type ti, the the initial marginal beliefs over G−i×T−i. Of course,
Harsanyi-consistency (i.e., the possibility to derive beliefs at each state from a common prior)
is satisfied only in special cases.

Thus, at any ‘‘possible world’’ w=(si, hi, ti)i ¥ I ¥ W, we specify each
player i’s dispositions to act (her strategy si) and dispositions to believe (her
system of conditional probabilities gi(ti)=(gi, h(ti))h ¥H), together with her
payoff type. These dispositions also include what a player would do and
think at histories that are inconsistent with w (history h is inconsistent with,
or counterfactual at, w=(s, h, t) if s ¨ S(h)).9 We call ‘‘event’’ any Borel

9 We comment on the role of actions at certain counterfactual histories before Definition 4.

subset of W.
Notably absent in our definition of a type space is the description of the

beliefs of a player about herself. We omit such beliefs because the epistemic
assumptions appearing in our results only involve beliefs about the oppo-
nents. Thus, beliefs about oneself do not play an explicit role. But our
analysis is consistent with the standard assumption that a player knows her
beliefs and assigns probability one to the strategy she intends to carry out.

Type spaces encode a collection of infinite hierarchies of CPSs for each
player. It is natural to ask whether there exists a type space which encodes
all ‘‘conceivable’’ hierarchical beliefs. Mertens and Zamir [23] and Bran-
denburger and Dekel [12] answered this question in the affirmative when
beliefs are represented by probability measures on a compact or Polish
space; Battigalli and Siniscalchi [7] provide a counterpart of these results
in the present ‘‘dynamic’’ setting where beliefs are represented by CPSs.

Consider the following definition.

Definition 3. A belief-complete type space on (H, S( · ), G, I) is a type
space T=(H, S( · ), G, I, (Wi, Ti, gi)i ¥ I) such that, for every i ¥ I,
Wi=Si×Ti and the function gi maps Ti onto DH(< j ] i Sj×Tj).10

10 We use ‘‘complete’’ in the same sense as Brandenburger [11], who shows (in a different
framework) that a (belief-) complete, filter-theoretic type space does not exists (see also [13]).
Of course, this notion of completeness is not to be confused with the topological one.

It is shown in [7] that a belief-complete type space may always be con-
structed (for finite games and also for ‘‘well-behaved’’ infinite games) by
taking the sets of epistemic types to be the collection of all possible
hierarchies of conditional probability systems that satisfy certain intuitive
coherency conditions. Also, every type space may be viewed as a belief-
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closed subspace of the space of infinite hierarchies of conditional beliefs.11

11 [7] uses a slightly different definition of type space. But all the arguments in [7] can be
easily adapted to the present framework.

Finally, since we assume that the set of external states S is finite and hence
compact, the sets Ti (i ¥ I) of epistemic types in the belief-complete type
space thus constructed are compact topological spaces, as assumed in our
definition.

2.3. Sequential Rationality

Our basic behavioral assumption is that each Player i chooses and carries
out a strategy si ¥ Si that is optimal, given her payoff type hi and her
beliefs, conditional upon any history consistent with si. This does not
impose restrictions on the actions specified at histories that cannot obtain if
Player i follows the strategy si. Thus, we use a sequential best response
property which applies to plans of action12 as well as strategies (see, for

12 Intuitively, a plan of action for player i is silent about which actions would be taken by i
if i did not follow that plan. Formally, a plan of action is a class of realization-equivalent
strategies. In generic extensive games, a plan of action is a strategy of the reduced normal
form.

example, [29] and [27]).13

13 Hence, our analysis could be carried out in a more parsimonious (but less conventional)
formal setup, wherein each player’s behavior at a state is described by a plan of action.

Definition 4. Fix a CPS mi ¥ DH(S−i). A strategy si ¥ Si is a sequential
best reply to mi for payoff type hi ¥ Gi if and only if, for every h ¥H(si)
and every s −i ¥ Si(h),

C
(s−i, h−i) ¥ S−i

[Ui(si, hi, s−i, h−i)−Ui(s
−

i, hi, s−i, h−i)]

×mi({(s−i, h−i)} | S−i(h)×G−i) \ 0

For any CPS mi ¥ DH(S−i), let ri(mi) denote the set of pairs (si, hi) ¥ Si
such that si is a sequential best reply to mi for hi.

It can be shown by standard arguments that (a) for all (hi, mi) the set of
sequential best replies to mi for hi is nonempty (i.e., projGi ri(mi)=Gi for all
mi) and (b) ri is an upper-hemicontinuous correspondence.

It is convenient to introduce the following additional notation. Fix a
type space T. For every player i ¥ I, let fi=(fi, h)h ¥H: Ti Q [D(S−i)]H

denote her first-order belief mapping; that is, for all ti ¥ Ti and h ¥H,

fi, h(ti)=margS−i gi, h(ti).

It is easy to see that fi(ti) ¥ DH(S−i) for every ti ¥ Ti; also, fi is continuous.
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We say that Player i is rational at a state w in T if and only if

w ¥ Ri={(s, h, t) ¥ W : (si, hi) ¥ ri(fi(ti))}

(Note that Ri is closed because the correspondence ri p fi is upper hemi-
continuous. Hence Ri is an event.) We shall also refer to the events
R=4i ¥ I Ri (‘‘every player is rational’’) and R−i=4j ] i Rj (‘‘every oppo-
nent of Player i is rational’’).

2.4. Conditional Belief Operators

The next building block is the epistemic notion of (conditional) probabil-
ity-one belief, or (conditional) certainty. Recall that an epistemic type
encodes the beliefs a player would hold, should any one of the possible
histories occur. This allows us to formalize statements such as, ‘‘Player i
would be certain that Player j is rational, were she to observe history h.’’

Let Ai denote the sigma-algebra of events E ı W such that E=
W−i×projWi E. Ai is the collection of events concerning Player i. The
collection of events concerning the opponents of Player i, A−i, is similarly
defined.

The conditional (probability-one) belief operator for player i ¥ I given
history h ¥H is a map Bi, h:A−i QAi defined by14

14 For any E ¥A−i, Bi, h(E) is closed, hence measurable; this follows from the continuity of
gi, h, via an application of the portmanteau theorem. Clearly, Bi, h(E) ¥Ai.

-E ¥A−i, Bi, h(E)={(s, h, t) ¥ W : gi, h(ti)(projW−i E)=1}.

For any E ¥A−i, Bi, h(E) corresponds to the statement ‘‘Player i would
be certain that her opponents’ strategies, payoff and epistemic types are
consistent with E, were she to observe history h.’’

For each player i and history h ¥H, the operator Bi, h:A−i QAi satisfies
the standard properties15 of falsifiable beliefs (see, for example, Chapter 3

15 It is easy to extend the definition of Bi, h to all Borel subsets of W in a manner consistent
with all properties of falsifiable beliefs: see, e.g., [7]. However, this extension requires addi-
tional notation, and is irrelevant for our analysis.

of Fagin et al. [16]); in particular, it satisfies

• Conjunction: For all events E, F ¥A−i, Bi, h(E 5 F)=Bi, h(E) 5
Bi, h(F);

• Monotonicity: For all events E, F ¥A−i: E ı F implies Bi, h(E) ı
Bi, h(F).

Finally, we shall often be interested in formalizing assumptions such as
‘‘Every player believes that her opponents are rational.’’ In order to
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simplify notation, we introduce an auxiliary ‘‘mutual belief’’ operator. For
any Borel subset E ı W such that E=< i ¥ I projWi E, and for any history
h ¥H, let

Bh(E)=3
i ¥ I

Bi, h(Wi×projW−i E).

For instance, if I={1, 2} and E=R, then R=R1 5 R2 and Ri=
W−i×projWi R for i ¥ I; thus, Bh(R)=B1, h(R2) 5 B2, h(R1).

3. STRONG BELIEF

With the basic framework and notation in place, we now turn to the
main focus of this paper, the notion of strong belief. This section provides
the basic definition, and illustrates the key features of strong beliefs by
means of a simple example. Finally, it draws a first connection with
forward-induction reasoning.

3.1. Definition

We say that Player i strongly believes that an event E ]” is true (i.e.,
adopts E as a ‘‘working hypothesis’’) if and only if she is certain of E at all
histories consistent with E.16 Formally, for any type space T, define the

16 An analogous notion (called ‘‘absolutely robust belief’’) was independently put forth by
Stalnaker [32].

operator SBi:A−i QAi by SBi(”)=” and

SBi(E)= 3
h ¥H : E 5 [h] ]”

Bi, h(E)

for all events E ¥A−i 0{”}, where [h] :=< j ¥ I Sj(h)×Gj×Tj is the event
‘‘history h occurs.’’17

17 For any partial description p of the world, such as a history, a strategy, a player’s beliefs,
we let [p] denote the set of states of the world satisfying p.

As in Section 2.4, it is convenient to define an auxiliary ‘‘mutual strong
belief’’ operator. For any Borel subset E ı W such that E=< i ¥ I projWi E,
and for any history h ¥H, let

SB(E)=3
i ¥ I

SBi(Wi×projW−i E).

As in the case of conditional belief, if I={1, 2} and E=R, then
SB(R)=SB1(R2) 5 SB2(R1).
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FIG. 1. The battle of the sexes with an outside option.

3.2. Belief and Strong Belief

The features of strong beliefs are best illustrated by means of a compari-
son with conditional beliefs. Note first that SBi(E) ı Bi, f(E) for all
E ¥A−i; that is, strong belief implies initial certainty. More generally,
SBi(E) ı Bi, h(E) for all E ¥A−i and h ¥H such that [h] 5 E ]”.

Unlike conditional belief, strong belief does not satisfy conjunction and
monotonicity. To illustrate this point (as well as others later on), we refer
to a well-known game-theoretic example: the Battle of the Sexes with an
outside option. The game is depicted in Fig. 1.

Table 1 describes a type space for the game under consideration; we shall
denote it by T. Since there is complete information (each set Gi is a single-
ton), we simply omit payoff types.

The table specifies the sets T1={t
1
1, t

2
1} and T2={t

1
2, t

2
2, t

3
2} of epistemic

types, the sets W1, W2 and W=W1×W2, and the maps gi: Ti Q DH(W−i), as
required by our definitions. Note that projS W=S. It will be notationally
convenient to denote pairs wi=(si, ti) by wnii , where ni is the correspond-
ing line number in the relevant table; thus, w51=(In T, t21).

TABLE 1

The Type Space T

n1 w1 g1, f(t1) g1, (In)(t1) n2 w2 g2, f(t2) g2, (In)(t2)

1 (In B, t11) 0,1,0 0,1,0 1 (L, t12) 0,1,0,0,0 0,1,0,0,0
2 (In T, t11) 0,1,0 0,1,0 2 (R, t22) 0,0,1,0,0 1,0,0,0,0
3 (Out B, t11) 0,1,0 0,1,0 3 (L, t32) 0,0,0,0,1 0,0,0,0,1
4 (Out T, t11) 0,1,0 0,1,0
5 (In T, t21) 0,0,1 0,0,1
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We keep using square brackets to denote events corresponding to his-
tories or strategies. For example, in type space T, the event ‘‘Player 1
chooses Out at f’’ is [Out]={w31, w

4
1}×W2. Also, the notation [si=si]

corresponds to the event that Player i adopts strategy si; for instance, the
event ‘‘Player 2 would choose R if the subgame were reached’’ is
[s2=R]=W1×{w

2
2}.

Player 2 might entertain one or both of the following initial hypotheses,
corresponding to events in T:

• ‘‘Player 1 is rational’’: R1={w
3
1, w

4
1, w

5
1}×W2.

• ‘‘Player 1 initially believes that Player 2 would play R after observ-
ing In’’: B1, f([s2=R])=(W1 0{w

5
1})×W2.

The two hypotheses jointly imply that Player 1 chooses Out:

R1 5 B1, f([s2=R])={w31, w
4
1}×W2=[Out]=W0[In].

However, R1 and B1, f([s2=R]) are individually consistent with Player 1
choosing In: R1 5 [In]={w51}×W2 ]” and B1, f([s2=R]) 5 [In]=
{w11, w

2
1}×W2 ]”. Therefore SB2(R1)ı B2, (In)(R1) and SB2(B1, f([s2=R]))

ı B2, (In)(B1, f([s2=R])).
It follows that Player 2 cannot strongly believe R1 and strongly believe

B1, f([s2=R]) in the same state, or else she would hold contradictory
beliefs after In:

SB2(R1) 5 SB2(B1, f([s2=R])) ı B2, (In)([Out])=”.

On the other hand, Player 2 can strongly believe the joint hypothesis
R1 5 B1, f([s2=R]). In particular, at w22 Player 2 initially believes
R1 5 B1, f([s2=R]) and would give up his belief in Player 1’s rationality
after In:

SB2(R1 5 B1, f([s2=R]))=W1×{w
2
2} ]”.

This shows that SB2 does not satisfy conjuction. A similar argument shows
that strong belief does not satisfy monotonicity: for instance, R1 5
B1, f([s2=R]) ı R1, but SB2(R1 5 B1, f([s2=R])) ¼ SB2(R1)=W1×{w

3
2}.

3.3. Strong Belief and Forward Induction

Affinities between intuitions about forward induction and the notion of
strong belief emerge clearly in the analysis of the Battle of the Sexes with
an outside option.
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The usual ‘‘forward-induction analysis’’ of this game runs as follows.
Observe first that the strategy profile (Out B, R) is a subgame-perfect equi-
librium. It is sustained by Player 2’s implicit threat to play R in the simul-
taneous-moves subgame, were Player 1 to deviate and choose In at the
initial history.

According to forward-induction reasoning, this threat is not credible:
InB is strictly dominated for Player 1, so if in the subgame Player 2 believes
that Player 1 is rational, he should not expect her to follow In with R. On
the other hand, the subgame-perfect equilibrium (In T, L) passes the
forward-induction test.

The key step in this argument is the italicized statement about Player 2’s
beliefs. First note that at state (w31, w

2
2), which corresponds to the subgame-

perfect equilibrium (Out B, R), the players are rational and there is initial
common certainty of the opponent’s rationality, that is,

(w31, w
2
2) ¥ Ri 5 Bi, f(R−i) 5 Bi, f(B−i, f(Ri)) 5 Bi, f(B−i, f(Bi, f(R−i))) 5 · · ·

for i=1, 2.

But, as noted above, (w31, w
2
2) ¨ B2, (In)(R1).

On the other hand, forward-induction reasoning suggests that Player 2’s
conditional beliefs following the unexpected move In should still be consis-
tent with Player 1’s rationality. To capture this intuition, assume that
Player 2 strongly believes in Player 1’s rationality; this leads to an epistemic
characterization of the forward-induction solution. Note that SB2(R1)=
W1×{w

3
2} and R2=W; thus,

R1 5 R2 5 SB2(R1)={(w
n1
1 , w

3
2) : n1=3, 4, 5}

If we now add the further assumption that Player 1 is initially certain that
Player 2 is rational and strongly believes that Player 1 is rational, we obtain

R1 5 R2 5 SB2(R1) 5 B1, f(R2 5 SB2(R1))={(w
5
1, w

3
2)};

i.e., we identify the strategy profile (In T, L).

3.4. The Pitfalls of Incomplete Type Spaces

We wish to point out an important consequence of the fact that strong
belief fails monotonicity and conjunction: analyzing an extensive-form game
in the framework of an incomplete type space introduces implicit and poten-
tially undesirable restrictions on forward-induction reasoning.

Consider for instance the game in Fig. 1, together with the type space T −

described in Table II.
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TABLE II

The Type Space T −

n1 w1 g1, f(t1) g1, (In)(t1) n2 w2 g2, f(t2) g2, (In)(t2)

1 (In B, t11) 0,1 0,1 1 (L, t12) 0,1,0,0 0,1,0,0
2 (In T, t11) 0,1 0,1 2 (R, t22) 0,0,1,0 1,0,0,0
3 (Out B, t11) 0,1 0,1
4 (Out T, t11) 0,1 0,1

T − is a belief-closed subspace of T. Indeed W − … W and every state
w ¥ W − corresponds to the same profile of strategies and hierarchies of CPSs
in T and T −. To emphasize that events and belief operators are defined
within the latter type space, we write R −i, SB −i( · ) and so forth.

The type space T − incorporates the assumption that Player 1, if rational,
never chooses In, and that Player 2 strongly believes this. W − incorporates
other restrictions as well: for instance, at any state w − ¥ W − there is common
certainty conditional on both f and (In) that either Player 1 is rational or
she chooses In.

Intuitively, these assumptions break the forward-induction argument: if
Player 2 observes that the simultaneous-moves game is reached, he must
conclude that Player 1 is irrational, and hence may be planning to choose
B. But then Player 2 may rationally respond with R.

Formally, observe first that R −1={w
3
1, w

4
1}×W

−

2. Next, note that
SB −2(R

−

1)=W
−

1×{w
2
2}: since there is no state in the type space T − consistent

both with Player 1’s rationality and with the event that the subgame is
reached, the assumption that Player 2 strongly believes that Player 1 is
rational puts no constraint on Player 2’s beliefs after (In). On the other
hand, Player 2 must initially believe that Player 1 is rational, which singles
out type t22. It is then easy to see that

R −1 5 R −2 5 SB −2(R
−

1) 5 B −1, f(R
−

2 5 SB −2(R
−

1))={(w
3
1, w

2
2), (w

4
1, w

2
2)},

where both (w31, w
2
2) and (w41, w

2
2) yield outcome Out: by restricting the

type space, we make Out consistent with forward induction!
To relate this to the properties of strong belief, note that R −1=R1 5 W −;

therefore

SB −2(R
−

1)=SB2(R1 5 W −)=W1×{w22} ] SB2(R1) 5 SB2(W −)=”

(a failure of conjunction) and

R −1 5 SB −2(R
−

1)=(R1 5 W −) 5 SB2(R1 5 W −) ł R1 5 SB2(R1)

(a failure of monotonicity).
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In general, our epistemic assumptions reflecting forward-induction rea-
soning interact with the restrictions on beliefs implicit in the belief-incom-
plete type space T −. The violations of conjunction and monotonicity
exhibited here mirror this interaction.

The type space T − is not ‘‘rich enough’’ to capture the intuitive
forward-induction argument in this example. In general, we need to ensure
that our epistemic analysis of forward induction is not biased by extra-
neous (and perhaps non-transparent) restrictions on the players’ hierarchi-
cal beliefs. Since any belief-incomplete type space incorporates such
restrictions, adopting a belief-complete type space is the simplest way to
avoid potential biases.18

18 For more on this see Section 6.

4. ITERATED STRONG BELIEFS AND RATIONALIZABILITY

We now turn to the implications of iterated strong beliefs about the
players’ rationality. The main result of this section is an epistemic charac-
terization of extensive-form rationalizability. We also present related
results on backward induction and the relationship between extensive-form
rationalizability and common certainty of rationality at a given history.

Throughout this section, we adopt a standard notation for the n-fold
composition of operators. Fix a map O:AQA; then, for any event
E ¥A, let O0(E)=E and, for n \ 1, let On(E)=O(On−1(E)). We begin
with a caveat on the subtle issues one has to deal with when defining itera-
tions involving the strong belief operator.

4.1. A Caveat on Iterated Strong Beliefs

The epistemic analysis of static games with complete information shows
that a strategy profile s survives n+1 steps of iterated (maximal) deletion
of dominated strategies if and only if it is consistent with mutual certainty
of rationality of order n, i.e., if and only if there exists a profile of epistemic
types t (in some type space) such that (s, t) ¥4n

m=0 Bm(R), where B is the
mutual certainty operator. Similar results involving mutual belief in ratio-
nality at a specific history can be proved for dynamic games with complete
or incomplete information (see [9] and [7]).

A formal analogy with such results might suggest considering assump-
tions of the form 4n

m=0 SBm(R). However, consider the event

3
2

m=0
SBm(R)=3

i ¥ I

1Ri 5 SBi(R−i) 5 SBi 13
j ] i

SBj(R−j)22 .
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FIG. 2. A perfect-information game (Reny [27]).

The key observation is that, although the events SB(R), SB(SB(R)) and
SB(R 5 SB(R)) are nonempty in any belief-complete model, it may
still be the case that SB(R) 5 SB(SB(R))=”. Thus, one may have
42
m=0 SBm(R)=”. This is an instance of the general observation that the

strong belief operator need not satisfy the conjunction property (see
Section 3).

The game in Fig. 2 offers an example. It can be checked that (in a belief-
complete model) projS R=(S1 0{A1D2})×(S2 0{a1a2}) and projS R5 SB(R)
={D1D2, D1A2}×{a1d2}.19 Although history (A1) is consistent with R1

19 Formally, both equalities follow from Proposition 6. The intuition is that A1D2 is strictly
dominated for Player 1, and a1a2 is not sequentially rational; the further assumption that
players strongly believe that these strategies will not be chosen eliminates A1A2, d1d2 and d1a2.

and with the assumption SB1(R2) (which, by itself, has no behavioral
implications), it is clearly inconsistent with R1 5 SB1(R2); thus, Player 2
cannot assign probability one to both R1 and SB1(R2) conditional upon
observing A1, which implies that SB(R) 5 SB(SB(R))=”.

4.2. Strong Belief and the Best-Rationalization Principle

The best-rationalization principle (Battigalli [4]) requires that players’
beliefs conditional upon observing a history h ¥H be consistent with the
highest degree of ‘‘strategic sophistication’’ of their opponents.

Our analysis clarifies what is meant by ‘‘strategic sophistication’’ in
terms of interactive beliefs. Moreover, it illustrates how iterated strong
beliefs may be employed to formulate assumptions about the players’ belief
revision policy—in this case, to ensure that they attribute the highest degree
of strategic sophistication to their opponents at each history.

We introduce an auxiliary operator that allows us to express complex
events concerning interactive strong beliefs in a compact way. Define

CSB(E)=E 5 SB(E)
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for any event E ı W such that E=< i ¥ I projWi E. Thus, CSB(E) is the set
of states where each player i strongly believes E−i, and such beliefs happen
to be correct. Hence the notation CSB. Also let CSB.(E)=4n \ 0 CSBn(E).

Note that operator CSB inherits the non-monotonicity of the strong belief
operator. However, since CSB satisfies the Truth axiom (CSB(E) ı E), the
iterations of CSB give rise to a weakly decreasing sequence of events. There-
fore 4n

m=0 CSBm(E) ]” whenever CSBm(E) ]” for each m=0, ..., n, and
the difficulties described in Section 4.1 do not arise.

For every n \ 0, we associate the event CSBn(R) with n-th order strategic
sophistication:

A minimally sophisticated player is simply rational: CSB0(R)=R.
A first-order strategically sophisticated player is rational, and also main-

tains whenever possible the hypothesis that her opponents are rational:
CSB1(R)=R 5 SB(R).

More interestingly, a second-order strategically sophisticated player is
rational, and maintains the hypothesis that her opponents are first-order
strategically sophisticated until the latter is contradicted by the evidence.
However, when this happens, she switches to the assumption that her oppo-
nents are simply rational, and maintains this hypothesis until it, too, is con-
tradicted. Formally, this corresponds to the event

CSB2(R)=R 5 SB(R) 5 SB(CSB1(R))

=3
i ¥ I
Ri 5 SBi(R−i) 5 SBi 1R−i 5 3

j ] i
SBj(R−j)2 .

In the game of Fig. 2, at any state w ¥ CSB2(R) Player 2 believes at the
initial node that Player 1 is rational and that Player 1 strongly believes that
her opponent is rational. However, as soon as Player 2 observes A1, he
abandons the assumption SB1(R2) but retains the assumption R1.

More generally, for every n \ 0,

CSBn(R)=R 5 3
n−1

m=0
SB(CSBm(R)); also,

CSB.(R)=R 5 3
n \ 0

SB(CSBn(R))

which may now be seen to capture the intuition behind the best-ratio-
nalization principle.

The main result of this section states that rationality and the best-ratio-
nalization principle completely characterize extensive-form rationalizability
(Pearce [25] and Battigalli [5]). The following is an extension of this solu-
tion procedure to the present incomplete-information framework.
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Definition 5. Consider the following procedure.

(Step 0) For every i ¥ I, let S0i=Si. Also, let S0−i=< j ] i S
0
i and

S0=< i ¥ I S
0
i .

(Step n > 0) For every i ¥ I, and for every si ¥ Si and hi ¥ Gi, let
(si, hi) ¥ S

n
i if and only if (si, hi) ¥ S

n−1
i and there exists a CPS m ¥ DH(S−i)

such that

1. (si, hi) ¥ ri(m);
2. -h ¥H, ifSn−1−i 5 [S−i(h)×G−i] ]”, thenm(Sn−1−i | S−i(h)×G−i)

=1.

Also let Sn−i=< j ] i S
n
i and Sn=< i ¥ I S

n
i .

Finally, let S.=4k \ 0 Sn. The profiles of strategies and payoff types in
S. are said to be extensive-form rationalizable.

In the Battle of the Sexes with an outside option S.=S3={(InT, L)},
while in the game of Fig. 2, S.=S2={D1D2, D1A2}×{a1d2}.

Proposition 6. For any belief-complete type space, (i) Sn+1=
projS CSB

n(R) for all n \ 0, and (ii) S.=projS CSB.(R).

We emphasize that Proposition 6 should not be viewed as providing
unqualified support to extensive-form rationalizability. Rather, it is
intended to clarify the epistemic assumptions underlying this solution
concept, and hence enable potential users to judge whether or not these
assumptions are appropriate, or plausible, in a specific situation.

To illustrate this point, consider the game form in Fig. 2, and replace the
payoff vectors (3, 0), (1, 2), (2, 1), (0, 3), and (4, 0) with (1, 0), (0, 2), (3, 1),
(2, 4), and (5, 3) respectively; the resulting game is a four-legged Centipede
(cf. [24], pp. 106–7). The extensive-form rationalizability solution
S4={D1D2, D1A2}×{d1d2, d1a2} is obtained in four steps, and corre-
sponds to the backward-induction solution in terms of outcome and con-
ditional first-order beliefs. Proposition 6 implies that (s1, s2) ¥ S4 if and
only if there are epistemic types t1 and t2 such that, for i=1, 2

(si, ti) ¥ projWiCSB3(R)

=Ri 5 SBi(R−i)

5 SBi(R−i 5 SB−i(Ri))

5 SBi(R−i 5 SB−i(Ri) 5 SB−i(Ri 5 SB−i(Ri))).

The events R1, R1 5 SB1(R2) and R1 5 SB1(R2) 5 SB1(R2 5 SB2(R1)) cor-
respond to increasing degrees of strategic sophistication of Player 1. The
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first entails no restrictions on the latter’s behavior; the second rules out the
strategy A1A2, because R2 rules out a1a2; finally, the third forces the choice
of D1 at the initial node, because R2 5 SB2(R1) rules out a1d2.

Now take the point of view of Player 2. At the initial node, he attributes
the highest degree of strategic sophistication to Player 1, and expects her to
choose D1. If, however, Player 1 were to choose A1 at the initial node,
Player 2 would attribute her the second-highest degree of strategic sophis-
tication, in accordance with the best-rationalization principle. This implies
that Player 2 would expect Player 1 to choose D2 at the third node; hence,
Player 2 would best-respond by choosing d1. Anticipating this, Player 1 will
choose D1 at the initial node.

The example illustrates how iterations of the CSB operator formalize the
best-rationalization principle. However, it also illustrates that the latter
embodies rather strong assumptions about the players’ belief-revision
policies.

We can also clarify the connection between extensive-form rationaliza-
bility and common certainty of rationality at a given history h: if a history
h is consistent with extensive-form rationalizability, then it is also consis-
tent with rationality and common certainty of rationality.

Proposition 7. For all histories h ¥H, in any belief-complete type
space, S. 5 [S(h)×G] ]” implies [h] 5 4n \ 0 Bnh(R) ]”.

Note that Proposition 7 only provides a sufficient condition. Reny [26]
provides an example where a non-extensive-form-rationalizable history is
consistent with common certainty of rationality.

4.2.1. Strong Belief and Backward Induction. Battigalli [5] shows that,
in generic games with perfect and complete information, extensive-form
rationalizability is outcome-equivalent to backward induction (for a related
result, see Reny [27]). Note that, since S is finite and Sn+1 ı Sn, there is
some N \ 0 such that S.=SN. Hence, Proposition 6 also provides a set of
sufficient epistemic conditions for the backward-induction outcome:

Proposition 8. Suppose the game under consideration has complete and
perfect information and no player is indifferent among payoffs at different
terminal nodes. Then there exists an integer N \ 0 such that for any belief-
complete type space, any strategy profile s ¥ projS CSBN(R) induces the
unique backward-induction outcome.

Our results provide an explicit set of assumptions about the players’
beliefs revision processes leading to backward-induction play. But it should
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TABLE III

Notation for Signaling Games

Object Notation Remarks

Payoff-types for player 1 h ¥ G=G1

Actions, behavioral strategies
m ¥M=A1, p1( · ) ¥ [D(M)]G

a ¥ A=A2, p2( · | · ) ¥ [D(A)]M
S1=M, S1=M×G
S2=S2=AM

Histories H={f} 2M
Player 2’s prior about h p0 ¥ D

0(G) p0(h) > 0 for all h ¥ G.
Player 2’s belief system n( · | · ) ¥ [D(G)]M

Outcome or outcome distribution z ¥ D(G×M×A)

be noted that these assumptions do not imply that a player at a non-ratio-
nalizable history/node would play and/or expect the backward-induction
continuation. Indeed, in certain games this is actually inconsistent with the
forward-induction logic of the best-rationalization principle (cf. Reny
[27]). For example, in the game of Fig. 2, backward-induction reasoning
implies that Player 2, upon being reached, should expect Player 1 to choose
D2 at her next node; as we noted above, our assumptions instead imply
that Player 2 rules out D2, because A1D2 is strictly dominated by D1D2 for
Player 1, whereas A1A2 may at least be justified by the ‘‘unsophisticated’’
belief that Player 2 will irrationally play a1a2.

5. STRONG BELIEF AND THE INTUITIVE CRITERION

The strong belief operator may also be used to analyze equilibrium
refinements motivated by forward-induction considerations. As an
example, in this section we provide an epistemic characterization of the
Intuitive Criterion (Cho and Kreps [15]).

Consider a (finite) signaling game: Player 1 (the Sender) is active at the
first stage and Player 2 (the Receiver) is active at the second stage; the
payoff type of Player 1 is unknown, while the payoff type of Player 2 is
known, thus, we may write G1=G. For the sake of simplicity, we assume
that the set of feasible actions of the Sender does not depend on her payoff-
type and that the set of feasible actions for the Receiver does not depend
on the Sender’s action.20 Table III summarizes our notation for signaling

20 The first assumption is already part of the (relatively) general framework adopted here.
Removing these assumptions is straightforward but requires a more complex notation.

games.
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The actions of the Sender will be referred to as messages or signals; those
of the Receiver will also be called responses.

In this framework, an external state is given by a tuple s=(m, h, s2) ¥
M×G×AM and a state of the world is a tuple (s, t1, t2) where t1 and t2
are—respectively—the epistemic types of the Sender and Receiver in a
(belief-complete) type space based on S=S1×S2 and H. We say that
outcome z is p0-feasible if there is a behavioral profile (p1, p2) such that
(p0, p1, p2) generates z. With a slight abuse of notation we denote the
marginal and conditional probabilities derived from z as follows: z(h),
z(m), z(m, a), z(m | h), z(m, a | h), z(h | m), z(a | m). Note that if z is
p0-feasible z(m | h) and z(m, a | h) are always well defined, because
z(h)=p0(h) > 0 for all h; moreover, z(a | m, h)=z(a | m).

Definition 9. A p0-feasible outcome z is a self-confirming-equilibrium
outcome if there is a |G|-tuple of behavioral strategies (ph2)h ¥ G (where
ph2 ¥ [D(A)]

M) such that, for all h ¥ G, m ¥M, a ¥ A,

(1) if z(m|h) > 0, then m ¥ arg maxm − ; a − p
h
2(a

− | m −) u1(h, m −, a −),
(2) if z(m, a) > 0, then a ¥ arg maxa − ; h

− z(h − | m) u2(h −, m, a −),
(3) if z(m) > 0, then ph2(a | m)=z(a | m).

Our definition of self-confirming-equilibrium outcome agrees with the
definition of self-confirming equilibrium with unitary beliefs put forward
by Fudenberg and Levine [17], if each incarnation h of the Sender is
regarded as an individual player selected by chance with probability p0(h).
The behavioral strategy ph2 is to be interpreted as a conjecture of incarna-
tion h of the Sender about the Receiver. Clearly, every sequential-equilib-
rium outcome is also a self-confirming-equilibrium outcome. But the con-
verse does not hold, because in a self-confirming-equilibrium outcome the
(randomized) choices of different types may be justified by different
conjectures about Player 2, and actions following off-equilibrium messages
need not be optimal. Cho and Kreps [15] put forward the Intuitive Cri-
terion as a test for sequential-equilibrium outcomes, but clearly the same
criterion can be naturally be applied to self-confirming-equilibrium out-
comes (cf. Kohlberg [21], p. 23, Footnote 17).

For any p0-feasible outcome z, we let uz1(h)=;m, a z(m, a | h) u1(h, m, a)
denote the expected payoff for type h. For any subset of types ” ] G − ı G

and message m, BR2(G −, m) is the set of best responses to beliefs concen-
trated on G − given message m. Consider the following procedure.

Definition 10 [Intuitive Criterion]. Fix a self-confirming-equilibrium
outcome z and a message m ¥M such that z(m)=0. Let
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Ḡ(m; z)={h ¥ G : uz1(h) > max
a ¥ BR2(G, m)

u1(h, m, a)}

A(m; z)=˛BR2(G0 Ḡ(m; z), m) Ḡ(m; z) ]”
BR2(G, m) Ḡ(m; z)=”

Outcome z satisfies the Intuitive Criterion (IC) if and only if, for every
message m ¥M with z(m)=0 and every payoff-type h ¥ G, there exists an
action a ¥ A(m; z) such that u1(h, m, a) [ u

z
1(h).

Informally, a candidate outcome fails the Intuitive Criterion if a Sender’s
type may deviate to an off-equilibrium message and expect to obtain a
higher payoff than she receives according to z, provided that the Receiver
applies forward induction whenever he observes an unexpected message
(cf. [15]).

Our objective is to clarify the epistemic assumptions leading to this
criterion. Cho and Kreps [15] argue that

‘‘the Intuitive Criterion relies heavily on the common knowledge of the fixed can-
didate equilibrium outcome and, in particular, attaches a very specific meaning
(a conscious attempt to break that equilibrium) to defections from the supposed
equilibrium.’’

Thus, the equilibrium path plays a different role than the specification of
off-equilibrium-path behavior and beliefs. To anticipate, our characteriza-
tion states that outcome z satisfies the Intuitive Criterion if and only if the
assumption that the Receiver’s beliefs ‘‘agree’’ with z is consistent with
certain assumptions involving initial belief and strong belief.

Say that Player i’s beliefs agree with outcome z at state (si, ti, w−i) if
fi, f(ti) (the initial first-order beliefs of ti) yields the same (conditional)
probabilities as z. In particular, the event ‘‘the Sender’s beliefs agree with
z’’ is

[z]1={(s1, t1, w2) ¥ W :

-m ¥ M, -a ¥ A, z(m) > 0S f1, f(t1)({s2 : s2(m)=a})=z(a | m)}.

Similarly, the event ‘‘the Receiver’s beliefs agree with z’’ is

[z]2={(w1, s2, t2) ¥ W : -(h, m) ¥ S1, f2, f(t2)({(h, m)})=z(h, m)}.

Part (1) of the following proposition is a preliminary step of some
independent interest, similar in spirit to Theorem A in Aumann and
Brandenburger [3].

Part (2) provides two alternative (but closely related) characterizations of
the Intuitive Criterion.
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Define the following events:

ICz1 — R1 5 [z]1 5 B1, f(R2)

ICz2 — R2 5 [z]2 5 SB2(IC
z
1)

ICz — R1 5 [z]1 5 B1, f(IC
z
2)

Proposition 11. Fix a p0-feasible outcome z.

(1) If 4i=1, 2 [z]i 5 Bi, f(R−i 5 [z]−i) ]” in some type space, then z
is a self-confirming-equilibrium outcome.

(2) The following statements about outcome z are equivalent:

(a) For any belief-complete type space, {(h, m): z(h, m) > 0} ı
projh×M ICz;

(b) For any belief-complete type space, [z]2 5 B2, f(ICz) ]”;
(c) z is a self-confirming-equilibrium outcome satisfying the Intuitive

Criterion.

We provide some intuition for the characterization of the Intuitive Cri-
terion via the event ICz. First, strong belief in the event ICz1=R1 5 [z]1 5
B1, f(R2) captures the forward-induction assumption that, upon observing an
off-equilibrium message m ¥M, the Receiver’s beliefs are concentrated on
types for which m is not equilibrium-dominated, given that the Sender does
not expect the Receiver to choose conditionally dominated actions. Second,
at each state w ¥ ICz, the Sender is rational, and her initial beliefs agree with
z; moreover, she expects the Receiver to play a best response to a belief con-
sistent with equilibrium domination if she chooses to ‘‘deviate’’ from z. Then
characterization (2.a) follows: z passes the Intuitive Criterion if and only if,
for every (h, m) with z(h, m) > 0, there exists a state w ¥ ICz in which the
Sender’s type is h and she sends message m. (2.b) is essentially a restatement
of (2.a) in terms of the initial beliefs of the Receiver.

6. DISCUSSION

6.1. Extensions

6.1.1. More General Information Structures and Characterizations

In order to focus on the properties and applications of strong belief, we
have confined our analysis of extensive-form rationalizability to the simpli-
fied setting of games with observable actions. However, Proposition 6
immediately extends to general extensive games. Moreover, the result can be
generalized in order to incorporate ‘‘exogenous restrictions’’ on players’ first-
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order beliefs in the sense that, for any event F about the players’ first-order
beliefs, one can obtain the behavioral implications of the epistemic
assumptions CSBn(R 5 F) (n=1, 2, ...) with a modification of the exten-
sive-form rationalizability procedure. We refer the interested reader to the
working-paper version of this article [6] and to [8].

6.1.2. Other Results on Refinements
Similarly, the techniques employed in our analysis of the Intuitive Cri-

terion may be adapted to study other refinements for signalling games. For
example, equilibrium dominance is characterized as follows. Let EDz2 —
R2 5 [z]2 5 SB2(R1 5 [z]1) and EDz=R1 5 [z]1 5 B1, f(ED

z
2). Then z is a

self-confirming equilibrium outcome satisfying the test of equilibrium
dominance if and only if {(h, m): z(h, m) > 0} ı projh×M EDz, and the
latter holds if and only if [z]2 5 B2, f(EDz) ]”.

In [8], we build on a generalization of our Proposition 6 to provide an
epistemic characterization of the Iterated Intuitive Criterion. We conjecture
that other forward-induction refinements for signalling games and more
general incomplete incomplete information games may also be analyzed
using a combination of the techniques presented in Sections 4 and 5.

6.1.3. Beliefs about Oneself
In the analysis of static games, it is standard to assume that a player

knows her epistemic type and strategy (of course, in an incomplete infor-
mation setting she also knows her payoff type). We could adapt this
assumption to our analysis of dynamic games in several ways. In [6] and
[7] we assume that players know their epistemic types and, if rational, they
assign probability one to their plan of action at each history consistent with
it. Versions of our results can be proved for these extended epistemic
models.

6.2. Related Literature

6.2.1. Extensive–Form Type Spaces
Finite (hence incomplete) extensive-form type spaces are introduced in

Ben Porath [9] to characterize common certainty of rationality at the
beginning of a perfect-information game. Battigalli and Siniscalchi [7]
provide a general analysis of (finite and infinite) type spaces for extensive-
form games and show the existence of a belief-complete type space, a
building block of our analysis.

6.2.2. Belief Revision
Belief revision (mostly in a single-person setting) has been studied exten-

sively in the philosophy literature. See, e.g., Gärdenfors [19] and references
therein.
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In that literature, the following alternative framework for belief revision
is often employed. First, one fixes a logically closed set of propositions,
called a belief set, that an individual accepts as true. Then, for each propo-
sition that the individual may subsequently learn to be true, one considers a
corresponding logically closed belief set, representing the individual’s new
epistemic state. Belief revision is defined via axioms relating prior and pos-
terior belief sets.

A similar construction and a characterization of strong belief in terms of
belief sets can be carried out in the present setting, with the proviso that
each player can only learn about the occurrence of a history h ¥H.

6.2.3. Belief Revision in Games and Forward Induction

Our paper is related to work by Stalnaker and Board. Stalnaker [31]
puts forward a normal-form, finite epistemic model, which can also be used
to analyze extensive-form reasoning. This model is used by Stalnaker [32]
to provide a brief discussion of forward induction and by Board [10] to
characterize some extensive-form solution concepts, including extensive-
form rationalizability. Some comments on the relationship between our
work and Stalnaker’s are warranted.

From a substantive viewpoint, Stalnaker [32] independently proposes a
notion of ‘‘absolutely robust belief’’ that is analogous to our strong belief.
He employs this notion to sketch a characterization of the following pro-
cedure: perform two rounds of elimination of weakly dominated strategies,
followed by iterated strict dominance. In some simple games (such as the
one we analyze in Section 3), this procedure singles out the forward-induc-
tion outcome.

Our analysis employs the notion of strong belief to analyze different
solution concepts, i.e., extensive-form rationalizability and the Intuitive
Criterion.21 In this respect, Stalnaker’s [32] result complements ours.

21 Stalnaker’s iterative procedure is clearly unrelated to the Intuitive Criterion. It also differs
from extensive-form rationalizability: for instance, the latter selects the forward-induction
outcome in the game Burning Money, whereas Stalnaker’s procedure does not. Also observe
that, in a large class of games, extensive-form rationalizability is equivalent to iterated weak
dominance (Battigalli [5]).

As our analysis indicates, extensive-form rationalizability is based on the assumption that,
at any history, a player’s beliefs about her opponents are consistent with the highest degree of
strategic sophistication compatible with observed game play. Stalnaker’s procedure is based on
the simpler assumption that players believe that their opponents are rational, whenever this is
compatible with observed game play.

The notion of ‘‘degrees of strategic sophistication’’ does not play any rôle in Stalnaker’s
analysis. On the other hand, it is central to our characterization of extensive-form ratio-
nalizability. Section 4.1 indicates that formalizing this notion requires some care.
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From a technical standpoint, the main difference between our type
spaces and Stalnaker’s epistemic model is that, for each state, our model
specifies beliefs conditional on observable events only, while Stalnaker’s
model specifies beliefs conditional on every event, including unobservable
events concerning the beliefs of the players. This prevents the construction
of belief-complete models by standard methods.22 Stalnaker and Board are

22 We are not aware of any proof of existence of belief-complete models à la Stalnaker.

thus forced to qualify their characterization results with the proviso that
the incomplete model at hand is ‘‘sufficiently rich’’ to allow for forward-
induction reasoning in the game under consideration (see the discussion in
Section 3.4). This is made precise by Board [10]. However, this notion of
‘‘richness’’ depends crucially on the payoffs of the game, as well as on the
specific solution concept one wishes to characterize. Finally, characterizing
the notion of richness in any given context is somewhat cumbersome.
Adopting belief-complete type spaces makes it possible to avoid these
complications altogether.

6.2.4. Normal-Form Solution Concepts and Forward-Induction Outcomes

The present paper focuses on explicit forward-induction reasoning in
extensive games. However, forward-induction strategies are also selected by
appropriate normal-form solution concepts. Epistemic characterizations of
two such solution concepts are discussed below.

It is well-known that iterated weak dominance supports forward-induc-
tion outcomes in several games (see, e.g., [24], Section 6.6). Brandenburger
and Keisler [14] provide an epistemic characterization of this solution
concept. In their model, players’ types correspond to lexicographic
sequences (a generalization of lexicographic probability systems that allows
for an uncountable state space) over the set of opponents’ strategies and
types. We note that, as in our paper, a crucial ingredient in the analysis is
the existence of belief-complete type spaces of this nature, which Branden-
burger and Keisler also establish.

In the context of a finite, normal-form epistemic model, Asheim and
Dufwenberg [1] propose a notion of ‘‘full admissible consistency’’ of a
player’s preferences with the game being played and with the preferences of
his opponent. Correspondingly, they define a solution concept, ‘‘full per-
missibility,’’ which selects the forward-induction outcome in games such as
the Battle of the Sexes with an outside option. Their main result shows that
common ‘‘certain belief’’ of full admissible consistency characterizes fully
permissible sets of strategies. The authors provide a thorough discussion of
the differences and similarities between standard forward-induction argu-
ments and full permissibility, as well as between the latter and iterated
weak dominance: see [1], Section 5.1.
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6.2.5. Backward Induction

Aumann [2] originated a literature where partitional epistemic models
are used to provide sufficient conditions for the backward-induction strat-
egies, or path, in generic perfect-information games (see Section 6 in [7]
for a discussion of this literature). We emphasize that, as was noted in Sec-
tion 4, Proposition 8 only provides sufficient conditions for the backward-
induction path.

6.2.6. (Iterated) Intuitive Criteron

Sobel et al. ([30], Proposition 2) relate the iterated intuitive criterion
(IIC) to extensive-form rationalizability in a modified signalling game.
Thus, their result concerns the equivalence of certain iterative deletion
procedures. The epistemic characterization of the IIC we provide in [8]
partially builds on their work. Christian Ewerhart (private communication)
also provides a non-epistemic analysis of the Intuitive Criterion, whereby
players’ ‘‘assumptions’’ about each other are represented by sets of strategy
profiles. The suggested interpretation of these ‘‘assumptions’’ is reminiscent
of the events appearing in Proposition 11.

APPENDIX: PROOFS

Lemma 12. Fix a map y−i: S−i Q T−i. Also, fix a first-order CPS
d ¥ DH(S−i). Then there exists an epistemic type ti ¥ Ti such that, for each
h ¥H, gi, h(ti) has finite support and

gi, h(ti)((s−i, y−i(s−i)))=d(s−i |S−i(h))

for all s−i ¥ S−i.

Proof. Define a candidate CPS m on S−i×T−i by setting

m({(s−i, y−i(s−i))} |S−i(h)×T−i)=d(s−i |S−i(h))

for every h ¥H, and extending the assignments by additivity. Properties (1)
and (2) in Definition 1 follow immediately from the observation that the
map s−i W (s−i, y−i(s−i)) yields an embedding of 1h ¥H supp[d( · |S−i(h))]
ı S−i (a finite set) in S−i×T−i, so that, for every h ¥H, m( · |S−i(h)×T−i)
is indeed a probability measure on S−i×T−i. By the same argument, m must
also satisfy Property (3), i.e., it must be a CPS; of course, each
m( · |S−i(h)×T−i) has finite support by construction. Since gi is onto, there
exists a type ti ¥ Ti such that gi(ti)=m. By construction, ti satisfies the
property stated in the Lemma. L
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Lemma 13. For every i ¥ I and n \ 0, Sn+1i ]”; furthermore si ¥ S
n+1
i

if and only if there exists a CPS d ¥ DH(S−i) such that si ¥ ri(d) and

-m=0, ..., n−1, -h ¥H : Sm+1−i 5 S−i(h) ]”S d(Sm+1−i |S−i(h))=1 (1)

Proof. Omitted (for a similar result see [5], Theorem 1 and
Corollary 1).

Proof of Proposition 6. (i) We proceed by induction. Part of the argu-
ment consists in showing that, for every n \ 0 and i ¥ I, we can associate to
each si an epistemic type ti=y

n+1
i (si) in such a way that (si, y

n+1
i (si))i ¥ I

¥ CSBn(R) whenever (si)i ¥ I ¥ Sn+1.

(Step 0.) Fix (s, t) ¥ CSB0(R)=R. Then by definition si ¥ ri(fi(ti)) for
every i ¥ I, which implies that s ¥ S1.

Conversely, for each i ¥ I and si ¥ Si, pick y0i (si) ¥ Ti arbitrarily. Now
fix s ¥ S1, and for each player i ¥ I, let d ¥ DH(S−i) be such that si ¥ ri(d).
Now Lemma 12 yields a type y1i (si) ¥ Ti such that gi, h(y

1
i (si))({(s

−

j, y
0
j (sj))j] i})

=d(s −−i |S−i(h)) for every s −−i ¥ S−i, and hence fi(y
1
i (si))=d. Thus,

(si, y
1
i (si))i ¥ I ¥ R.

Finally, for each i ¥ I, we complete the definition of the function y1i ( · )
by letting y1i (si)=y

0
i (si) for si ¥ Si 0S

1
i .

(Step n > 0.) Now assume that Part (i) has been shown to hold for
m=0, ..., n−1, and that, for each such m, we have defined functions
ym+1i : Si Q Ti such that (si, y

m+1
i (si))i ¥ I ¥ CSBm(R) whenever s ¥ Sm+1.

Finally, let the functions y0i ( · ) be defined as above. We will prove that (a)
(s, t) ¥ CSBn(R) implies s ¥ Sn+1 and (b) we can construct functions
yn+1i : Si Q Ti such that (si, y

n+1
i (si))i ¥ I ¥ CSBn(R) whenever s ¥ Sn+1.

Note that, for every n \ 1,

CSBn(R)=R 53
i ¥ I

3 3
n−1

m=0
SBi(Wi×[projW−i CSBm(R)])4 . (2)

Also note that, for any i ¥ I, h ¥H and event E such that
E=Wi×projW−i E (that is, E ¥A−i),

E 5 (S(h)×T) ]”Z [projS−i E] 5 S−i(h) ]”. (3)

(a) Now consider (s, t) ¥ CSBn(R) and fix i ¥ I. Let d= fi(ti) be the
first-order belief of type ti. Equation (2) yields si ¥ ri(d). By the induction
hypothesis, projS−i CSBm(R)=Sm+1−i for every m=0, ..., n−1. Thus, (3)
implies that, for every m=0, ..., n−1 and h ¥H, Sm+1−i 5 S−i(h)=
[projS−i CSBm(R)] 5 S−i(h) ]” if and only if [Wi×projW−i CSBm(R)]
5 (S(h)×T) ]”. The definition of strong belief and (2) imply that,
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whenever the latter condition is satisfied, gi, h(ti)(projW−i CSBm(R))=
d(Sm+1−i |S−i(h))=1. Therefore d satisfies (1), and Lemma 13 implies that
si ¥ S

n+1
i .

(b) Define

m−i(s
−

−i)=max{m=0, ..., n : s −−i ¥ S
m
−i}

for every i ¥ I and s −−i ¥ S−i (recall that S0−i=S−i, so m−i( · ) is well-
defined). Now consider s ¥ Sn+1 and fix a player i ¥ I. By Lemma 13, we
can find a CPS d ¥ DH(S−i) satisfying (1). By (3) and the induction
hypothesis, for h ¥H and m=0, ..., n−1, [Wi×projW−i CSBm(R)] 5
(S(h)×T) ]” if and only if Sm+1−i 5 S−i(h) ]”. Moreover, by (1), if the
latter inequality holds, then d(Sm+1−i |S−i(h))=1.

Define y−i: S−i Q T−i by letting

y−i(s
−

−i)=(y
m−i(s

−

−i)
j (s −j))j ] i -s

−

−i ¥ S−i;

Lemma 12 now yields a type yn+1i (si) ¥ Ti such that

gi, h(y
n+1
i (si))({(s

−

j, y
m−i(s

−

−i)
j (s −j))j ] i})=d(s

−

−i |S−i(h))

for all h ¥H and s −−i ¥ S−i. Now note that, for m=0, ..., n−1,

s −−i ¥ S
m+1
−i S (s −j, y

m−i(s
−

−i)
j (s −j))j ] i ¥ projW−i CSBm(R)

because, (1) m−i(s
−

−i) \ m+1 if s −−i ¥ S
m+1
−i ; (2) if m−i(s

−

−i) \ 1 then, by the
induction hypothesis,

(s −j, y
m−i(s

−

j)
j (s −j))j ] i ¥ projW−i CSBm−i(s

−

−i)−1(R);

and finally (3) the sets {CSBm(R)}m \ 0 are monotonically decreasing. But
then

gi, h(y
n+1
i (si))(projW−i CSBm(R))=1

for anym=0...n−1 and h ¥H such that [Wi×projW−i CSBm(R)]5 (S(h)×T)
]”, because, by the preceding argument, supp d( · |S−i(h)) ı S

m+1
−i at any

such history.
Moreover, by construction fi(y

n+1
i (si))=d, so si ¥ ri(fi(y

n+1
i (si))).

Repeating the argument for every i ¥ I yields a profile of types
(yn+1i (si))i ¥ I which, by (2), satisfies (si, y

n+1
i (si))i ¥ I ¥ CSBn(R). This shows

how to define the functions yn+1i on Sn+1i . To complete the induction step,
for each i ¥ I we now extend yn+1i to the whole Si by letting
yn+1i (s

−

i)=y
n
i (s

−

i) for every s −i ¥ Si 0S
n+1
i . This conludes the proof of

part (i).
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(ii) By Lemma 13, Sn ]” for every n \ 0. Thus, Part (i) implies that
CSBn(R) ]” for every n \ 0. Then CSB.(R) is nonempty, because T is
compact by assumption and the nested, nonempty closed sets
{CSBn(R)}n \ 0 form a family with the finite intersection property.

Now suppose (s, t) ¥ CSB.(R). Since, by Part (i), Sn+1=projS CSBn(R)
for any n \ 0, we conclude that s ¥ Sn for every n \ 1; so s ¥4n \ 1 Sn
=S.. Hence projS CSB.(R) ı S..

Next, let N be the smallest integer such that SN=S. (which must exist
because S is finite). Pick any s ¥ SN=S. and consider the sequence of
sets M(m, s)=CSB(N−1)+m(R) 5 ({s}×T), m \ 0 (let M(0, s)={s}×T if
N=0). Each set M(m, s) is nonempty and closed; also, the sequence of
sets M(m, s) is decreasing, and hence has the finite intersection property.
Then there is some profile of epistemic types t such that (s, t) ¥
4m \ 0 M(m, s) ı CSB.(R). It follows that S. ı projS CSB.(R). L

Proof of Proposition 7. We claim that, for all n \ 0 and h ¥H,
S. 5 S(h) ]” implies CSBn(R) ı Bnh(R); the assertion of the Proposition
then follows immediately.

By definition, CSB0(R)=B0h(R)=R, so the claim is true for n=0.
Assume it is true for some n \ 0. Recall that CSBn+1(R)=CSBn(R) 5
SB(CSBn(R)). Suppose that S. 5 S(h) ]”. By Proposition 6, this implies
CSBn(R) 5 [h] ]”. Then, by definition of strong belief, SB(CSBn(R)) ı
Bh(CSBn(R)). By the induction hypothesis, CSBn(R) ı Bnh(R). By mono-
tonicity of Bh, Bh(CSBn(R)) ı Bh(B

n
h(R))=Bn+1h (R). Therefore, we

conclude that S. 5 S(h) ]” implies CSBn+1(R) ı SB(CSBn(R)) ı
Bh(CSBn(R)) ı Bn+1h (R). L

Proof of Proposition 11.
Preliminaries. Note first that we can identify D(S2) with DH(S2), because
S2(m)=S2(f)=S2 for all m. To simplify the notation, for any CPS n ¥
DH(S1), we write n(h, m)=n((h, m) |S1) and n(h | m)=n((h, m) |G×{m}).
Let m ¥ D(S2), n ¥ DH(S1), p2 ¥ [D(A)]M, z ¥ D(G×M×A).

We say that: (i) m agrees with z if -m, -a, z(m) > 0 implies
z(a | m)=m({s2: s2(m)=a}); (ii) n agrees with z if -h, -m, n(h, m)=
z(h, m); (iii) p2 agrees with z if -m, -a, z(m) > 0 implies p(a | m)=z(a | m);
(iv) m is the mixed representation of p2, and p2 is the behavioral representa-
tion of m, if -s2, m(s2)=<m ¥M p2(s2(m) | m); (v) m is a best reply for h to
p2, written (h, m) ¥ r1(p2), if (h, m) ¥ r1(m) and m is the mixed representa-
tion of p2.

We often need to associate an epistemic type to every payoff type-
message pair or, respectively, strategy. When this is the case, we denote the
epistemic type by y1(h, m) and y2(s2) (cf. Lemma 12).
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We prove (2) first. The argument involves six claims. For some of them
we only sketch the proof.

Claim 1. For every s2 ¥ S2, there exists t2 ¥ T2 such that (s2, t2) ¥
projW2 R2 if and only if s2(m) ¥ BR2(G, m) for all m ¥M.

Proof (sketch). It is easily checked that ,n ¥ DH(S1) such that s2 ¥ r2(n)
if and only if -m, s2(m) ¥ BR2(G, m). By Lemma 12, completeness of the
type space implies the claim. L

Recall that ICz1 — R1 5 [z]1 5 B1, f(R2).

Claim 2. For every (h, m) ¥ S1, there exists t1 ¥ T1 such that (h, m, t1) ¥
projW1 IC

z
1 if and only if there exists p

h, m
2 ¥ [D(A)]M such that m is a best

reply for h to ph, m2 , p
h, m
2 agrees with z and

-a ¥ A, -m − ¥M, ph, m2 (a | m
−) > 0S a ¥ BR2(G, m −). (4)

Proof. Fix (h, m) ¥ S1 and suppose there exists t1 as above. Let ph, m2 be
the behavioral representation of f1, f(t1). Then (h, m) ¥ r1(p

h, m
2 ) and ph, m2

agrees with z. To see that Eq. (4) is also satisfied, observe first that
ph, m2 (a | m

−) > 0 implies that, for some s2 ¥ supp f1, f(t1), s2(m −)=a. By
assumption, supp f1, f(t1) ı projS2 R2, so there is some t2 such that
(s2, t2) ¥ projW2 R2; by Claim 1, this implies a ¥ BR2(G, m −).

Conversely, suppose that (h, m) ¥ r1(p
h, m
2 ), p

h, m
2 agrees with z and (4)

holds. Let m ¥ D(S2) be the mixed representation of ph, m2 . Then
(h, m) ¥ r1(m) and m agrees with z. Moreover, for every s2 ¥ S2 such that
m(s2) > 0, and for every m − ¥M, s2(m −) ¥ BR2(G, m −); thus, by Claim 1,
there exists an epistemic type y2(s2) such that (s2, y2(s2)) ¥ projW2 R2. By
Lemma 12, there exists an epistemic type t1 ¥ T1 such that

-s2 ¥ supp m, g1, f(t1)({(s2, y2(s2))})=m(s2).

Thus, g1, f(t1)(projW2 R2)=1 and therefore (h, m, t1) ¥ projW1 IC
z
1. L

Claim 3a. [z]2 5 B2, f(ICz1) ]” implies that z satisfies

-h, -m, z(h, m) > 0S C
a ¥ A
u1(h, m, a) z(a | m)=u

z
1(h) (5)

-h, -m, z(h, m)=0, z(m) > 0S uz1(h) \ C
a ¥ A
u1(h, m, a) z(a | m) (6)

-m, z(m)=0S -h, ,a ¥ BR2(G, m) : u1(h, m, a) [ u
z
1(h) (7)

-m, -a, z(m, a) > 02 a ¥ BR2(G, m) (8)
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Proof. The assumption clearly implies {(h, m): z(h, m) > 0} … projS1 R1
5 [z]1 5 B1, f(R2). Thus, for any (h, m) ¥ S1 with z(h, m) > 0, there exists
an epistemic type y1(h, m) ¥ T1 such that (h, m, y1(h, m)) ¥ R1 5 [z]1 5
B1, f(R2), and hence, by Claim 2, a corresponding behavioral strategy ph, m2
that agrees with z, and satisfies (h, m) ¥ r1(p

h, m
2 ) and (4).

To see that (5) holds, consider h, m, m− with z(h, m) > 0 and z(h, m−) > 0
and the corresponding behavioral strategies ph, m2 , ph, m

−

2 . Since (h, m) ¥ r1(p
h, m
2 )

and (h, m−) ¥ r1(p
h, m−

2 ), ;a u1(h, m, a) p
h, m
2 (a | m)\;a u1(h, m−, a) p

h, m
2 (a | m

−)
and ;a u1(h, m−, a) p

h, m−

2 (a | m
−)\;a u1(h, m, a) p

h, m−

2 (a | m). By agreement of
ph, m2 and ph, m

−

2 with z this implies ;a u1(h, m, a) z(a | m)=;a u1(h, m−, a)
×z(a | m−). Since uz1(h)=;m: z(h, m) > 0 z(m | h);a u1(h, m, a) z(a | m), we
obtain (5).

To see that (6) and (7) hold, consider h, m, m − such that z(h, m −) > 0 and
z(h, m)=0. Then (5) and (h, m −) ¥ r1(p

h, m −

2 ) imply; a u1(h, m −, a) p
h, m −

2 (a | m
−)

=uz1(h) \; a u1(h, m, a) p
h, m −

2 (a | m). If z(m) > 0, then (6) follows from
agreement of ph, m

−

2 with z. If z(m)=0, then (4) (swapping the roles of
m and m −) and (h, m −) ¥ r1(p

h, mŒ
2 ) imply that there must be a ¥

supp ph, m
−

2 ( · | m) … BR2(G, m) such that u1(h, m, a) [ u
z
1(h), as claimed

in (6).
To see that (8) holds, note that the assumption implies
[z]1 5 B1, f(R2)) ]”. L

Recall that ICz2 — R2 5 [z]2 5 SB2(IC
z
1).

Claim 3b. For every s2 ¥ S2, there exists t2 ¥ T2 such that (s2, t2) ¥
projW2 IC

z
2 if and only if Eqs. (5), (6), (7), and (8) hold and, moreover, there

exists n ¥ DH(S1) such that s2 ¥ r2(n), n agrees with z and

-m ¥M, (z(m)=0, Ḡ(m; z) ] G)S n(Ḡ(m; z) | m)=0. (9)

Proof. (Only if). Fix s2 ¥ S2. If t2 ¥ T2 as above can be found, then in
particular [z2] 5 B2, f(IC

z
1) ]”, so Claim 3a implies that (5), (6), (7), and

(8) hold. Let n=f2(t2). Then s2 ¥ r2(n) and n agrees with z. To show that
(9) also holds, consider m ¥M such that z(m)=0 and Ḡ(m; z) ] G. We
prove that n(Ḡ(m; z) | m)=0.

First, we claim that g2, m(t2)(projW1 R1 5 [z]1 5 B1, f(R2))=1. To see
this, note that, since Ḡ(m; z) ] G, there exists hg ¥ G and ag ¥ BR2(G, m)
such that u1(hg, m, ag) \ u

z
1(h

g). Construct a behavioral strategy ph
g, m
2 as

follows: (i) ph
g, m
2 agrees with z; (ii) for all m − ¥M such that z(m −)=0 and

m − ] m, let ph
g, m
2 (a(hg, m −) | m −)=1, where a(hg, m −) is as in Eq. (7); and

finally let ph
g, m
2 (ag | m)=1. By construction, (hg, m) ¥ r1(p

h
g, m
2 ) and ph

g, m
2

satisfies (4). Thus, by Claim 2, there exists t1 ¥ T1 such that (hg, m, t1) ¥
projW1 R1 5 [z]1 5 B1, f(R2). Hence, R1 5 [z]1 5 B1, f(R2) 5 [m] ]”. Since
(s2, t2) ¥ projW2 SB2(R1 5 [z]1 5 B1, f(R2)), the claim follows.
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Now let h be such that f2, m(t2)(h, m)=n(h | m) > 0. By the previous
result, there exists t1 ¥ T1 such that (h, m, t1) ¥ projW1 R1 5 [z]1 5 B1, f(R2).
Let ph, m2 be the behavioral representation of f1, f(t1). Then ph, m2 agrees with
z, (h, m) ¥ r1(p

h, m
2 ), (4) holds (see Claim 2) and ; a ¥ A u1(h, m, a) p

h, m
2 (a | m)

\ uz1(h) (by (5)). Thus, h ¨ Ḡ(m; z) and Eq. (9) must hold.
(If). Suppose that n ¥ DH(S1) agrees with z, s2 ¥ r2(n) and Eq. (5), (6),

(7), (8), and (9) are satisfied. For all (h, m) such that z(h, m) > 0, let ph, m2
the behavioral strategy that agrees with z and satisfies ph, m2 (a(h, m

−) | m −)
=1 for all m − with z(m −)=0, where the action a(h, m −) is as in Eq. (7).

Equations (5), (6), and (7) ensure that (h, m) ¥ r1(p
h, m
2 ). Moreover, ph, m2

satisfies Eq. (4), so by Claim 2 we can find an epistemic type y1(h, m) ¥ T1
such that (h, m, y1(h, m)) ¥ projW1 IC

z
1. Thus, any pair in the support of

n( · |S1) can be matched with a suitable epistemic type. Hence, by Bayes’
Rule, the same is true of points (h, m) in the support of n( · | m) for all
messages m with z(m) > 0.

Next, we consider pairs (h, m) such that n(h | m) > 0 and z(m)=0. If
Ḡ(m; z)=G, choose an epistemic type y1(h, m) arbitrarily. Otherwise, by
Eq. 9 and the definition of Ḡ(m; z), there exists ag ¥ BR2(G, m) such that
uz1(h) [ u1(h, m, a

g). Let ph, m2 be the behavioral strategy that agrees with z
and satisfies ph, m2 (a

g | m)=1 and ph, m2 (a(h, m
−) | m −)=1 for all m − ] m with

z(m −)=0. Again, (h, m) ¥ r1(p
h, m
2 ) and Eq. (4) holds, so Claim 2 yields an

epistemic type y1(h, m) such that (h, m, y1(h, m)) ¥ projW1 IC
z
1.

By Lemma 12, there exists t2 ¥ T2 such that, for all (h, m) ¥ S1 and
h ¥H={”} 2M,

g2, f(t2)({(h, m, y1(h, m))})=n(h, m),

g2, f(t2)({(h, m, t1(h, m))})=n(h | m).

Since f2(t2)=n, (s2, t2) ¥ projW2 R2 5 [z]2; the above construction also
ensures that g2, f(t2)(projW1 IC

z
1)=1, and similarly g2, m(t2)(projW1 IC

z
1)=1

for all m ¥M with z(m) > 0.
Now consider m ¥M such that z(m)=0 and ICz1 5 [m] ]”. Then, by

Claim 2, for some h ¥ G and ph, m2 , (h, m) ¥ r1(p
h, m
2 ), p

h, m
2 agrees with z and

(4) holds. Therefore, since z(m)=0, there must exist ag ¥ BR2(G, m) such
that uz1(h) [ u1(h, m, a

g); thus, h ¨ Ḡ(m; z). The preceding construction
now ensures that g2, m(t2)(projW1 IC

z
1)=1, as needed. L

Recall that ICz — R1 5 [z]1 5 B1, f(IC
z
2).

Claim 4. {(h, m): z(h, m) > 0} … projS1 IC
z if and only if z is a self-

confirming equilibrium that satisfies the Intuitive Criterion.

(Only if). The assumption implies that ICz ]”; hence, ICz2 ]” and
[z]2 5 B2, f(IC

z
1) ]”. Claim 3a then implies that Eqs. (5) and (6) hold.
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Moreover, for every (h, m) with z(h, m) > 0, there exists an epistemic
type y1(h, m) ¥ T1 such that (h, m, y1(h, m)) ¥ projW1 IC

z=R1 5 [z]1 5
B1, f(IC

z
2). For any such pair (h, m), let ph, m2 be the behavioral representa-

tion of f1, f(y1(h, m)); then ph, m2 agrees with z, and m is a best reply for h to
ph, m2 . In particular, for all mŒ with z(mŒ)=0, there exists an action a(mŒ, h)
such that ph, m2 (a(mŒ, h) | mŒ) > 0 and uz1(h) \ u1(h, mŒ, a(mŒ, h)). Further-
more, we claim that (a) for all mŒ ¥M such that z(mŒ)=0, a(mŒ, h) ¥
A(z; mŒ); and (b) for all (mŒ, a) ¥M×A such that z(mŒ, aŒ) > 0,
a ¥ arg maxaŒ ; hŒ z(hŒ | mŒ) u2(hŒ, mŒ, a).

To see this, note first that, for all (mŒ, a) ¥M×A, ph, m2 (a | mŒ) > 0 and
g1, f(y1(h, m))(projW2 IC

z
2)=1 imply that there exists s2 ¥ supp f1, f(y1(h, m))

and t2 ¥ T2 such that s2(mŒ)=a and (s2, t2) ¥ IC
z
2. Claim 3b then implies

that, for some CPS n ¥ DH(S1) that agrees with z, s2 ¥ r2(n) and Eq. (9)
holds. Thus, in particular, s2(mŒ) ¥ arg maxa ; hŒ n(hŒ | mŒ) u2(hŒ, mŒ, a).
If z(mŒ)=0, Eq. (9) implies that n(Ḡ(mŒ; z) | mŒ)=0 whenever
Ḡ(mŒ; z) ] G, so (a) holds. If z(mŒ, a) > 0, then (b) follows because n agrees
with z.

To see that z is a self-confirming equilibrium, for every h ¥ G, let ph2 be a
behavioral strategy that agrees with z and such that ph2(a(m, h) | m)=1 for
all m ¥M with z(m)=0. By the preceding observations, the profile {ph2}h ¥ G
satisfies Conditions (1) and (3) in Definition 9. Moreover, (b) above shows
that Condition (2) is also satisfied.

Finally, for all m, h with z(h, m)=0, (a) above shows that the actions
a(m, h) satisfy Definition 10, so z passes the Intuitive Criterion.

(If). Suppose now z is a self-confirming equilibrium that passes the
Intuitive Criterion. By Definition 10, for every h ¥ G and m ¥M with
z(m)=0, there exists a(h, m) ¥ A(m; z) such that uz1(h) \ u1(h, m, a(h, m)),
and a belief nh, m ¥ D(G) such that a(h, m) ¥ arg maxa ;h

− u2(h −, m, a) nh, m(h −),
and nh, m(Ḡ(m; z))=0 if Ḡ(m; z) ] G.

Fix h ¥ G and define a behavioral strategy ph2 as follows: ph2 agrees with
z, and ph2(a(h, m) | m)=1 for all m ¥M with z(m)=0. Observe that, by the
choice of actions a(h, · ) and Conditions (1) and (3) in Definition 9,
z(h, m) > 0 implies (h, m) ¥ r1(p

h
2).

Correspondingly, define a belief system nh as follows: nh agrees with z,
and nh(h − | m)=nh, m(h −) for all m ¥M with z(m)=0.

By construction, nh satisfies Eq. (9). Moreover, let mh be the mixed
representation of ph2 ; for every strategy s2 ¥ supp mh, Condition (2) in Defi-
nition 9 and the choice of nh, m for z(m)=0 ensure that s2 ¥ r2(nh). Finally,
Condition (2) also implies that z satisfies Eq. (8), and Conditions (1) and
(3) imply that it satisfies Eqs. (5), (6), and (7) as well. Therefore, by
Claim 3b, for every s2 ¥ supp mh there exists yh2(s2) ¥ T2 such that
(s2, y

h
2(s2)) ¥ projW2 IC

z
2.
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By Lemma 12, there exists t1 such that

-s2 ¥ S2, g1, f(t1)({(s2, y
h
2(s2))})=m

h(s2);

therefore, z(h, m) > 0 implies that (h, m, t1) ¥ projW1IC
z. L

Claim 5. {(h, m) : z(h, m) > 0} … projS1 IC
z if and only if [z]2 5

B2, f(ICz) ]”.

The proof is straightforward, and is therefore omitted.
To prove Part (1), note first that, if [z]2 5 B2, f(R1 5 [z]1) ]”, the

proof of Claim 3a shows that Eqs. (5) and (6) hold, whereas Eq. (7) is
replaced by the weaker condition z(m)=0S -h, ,a(m, h) ¥ A : u1(h, m, a)
[ uz1(h). This implies that it is possible to define a tuple of behavioral
strategies {ph2} as in the ‘‘only if ’’ part of the proof of Claim 4, so that
Conditions (1) and (3) of Definition 9 hold.

Also, the proof of Claim 3b shows that, if (s2, t2) ¥ projW2 R2 5 [z]2, then
there exists a CPS n that agrees with z and such that s2 ¥ r2(n). Then, as in
the proof of the ‘‘only if’’ part of Claim 4, t1 ¥ projT1[z]1 5 B1, f(R2 5 [z]2)
implies that, whenever z(m, a) > 0, there exists s2 ¥ supp f1, f(t1) such that
s2(m)=a ¥ arg maxaŒ ; h z(h | m) u2(h, m, aŒ). Hence, Condition (2) also
holds, and the proof of Proposition 11 is complete. L
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