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1. Introduction.

An algorithmic solution (AS) of a game is a step By step or iterative procedure yielding one outcome
or a set of possible outcomes. I say that the game possesses a strong solution in the former case
and a weak solution in the latter (fhe possibility that the algorithm produces no solution at all
will also be considered). Such an algorithm is meant to represent a chain of deductions from the
basic assumption that each player is rational and rationality is common knowledge or at least shared
knowledge of a sufficiently high degree. The main difference between AS; and equilibrium concepts
such as Nash or correlated equilibria is that an AS shows how a player reaches the conclusion that
she should not play “irrational” strategies. Moreover no condition of the sort “objective probability
= subjective probability” is assumed to hold, though it may be the result of the algorithm (for this
reason such solutions are sometimes called ex ante equilibria).

“Classic” game theory considers only one algorithm to solve extensive games: the so called backward
induction algorithm (BI) originally proposed by Zermelo [1912] to prove the existence of a solution
for the game of chess. Roughly speaking it works in the following way: whoever plays last can
easily find out the optimal action, provided that he knows enough about previous moves. Assuming
rationality, the second to last can therefore predict the actions of those who follow her and, with

the same proviso as before, she can choose the best action accordingly. Thus, the third to last can

predict the actions of those who follow him... Even this rough description should make clear that
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at least two problems arise:

i) it may be that a player does not know enough about the previous play, as is normally the case

in games of imperfect information;

ii) consider a position that can be reached only if someone plays irrationally: why should a
player in that position assume that the followers will play rationally? But if this player’s faith
in rationality could be shaken, one of those who precede him might try to mislead him, by
playing “irrationally”, hoping to induce a more favourable outcome. This is the problem of

counterfactuals and strategic manipulation of beliefs. -

A numi)et of algorithmic solutions of games has been recently proposed in the literature. While
the theory seems quite settled as far as normal form games are concérned, it is less developed and
more controversial when it deals with extensive games. To my knowledge, the only algorithm which
can be applied to all finite extensive games, exploiting all the additional information that is not
contained in the normal form, is still Pearce’s eztensive form rationalizability (EFR). But it turns
out that EFR is a generalization of BI and therefore is subject to thé objection that it does not deal
adequately with the counterfactuals problem.

In this paper I propose a systematic approach to ASs for finite extensive games. I argue that the
theory must explicitly state assumptions about how a player would update her beliefs if she faced
an unexpected event. In section 2, I discuss this point through a number of examples and state the
informal assumptions which are to be embedded in any AS or only in some ASs. In section 3, I
formally define a generic AS and then present four specific algorithms, djstinguishgd through two
dichotomic criteria according to the different assumptions about updating processés embedded in
the algorithms. When the updating process satisfies a particﬁla.r hierarchy of beliefs, an irreversible
algorithm is obtained; otherwise the algorithm is reversible. An irreversible algorithm yields always
at least a weak solution, while reversible algorithms are able to represent the paradoxes generated
by counterfak:tuals and therefore may yield no definite solution. The second demarcation criterion
depends on whether or not beliefs about different opponents are treated independently when unex-
pected events occur. In the affirmative case, the AS is characterized by independent updating. A
reversible algorithm may be used to check the robustness (with respect to coﬁnterfactuals) of the

corresponding irreversible algorithm. In section 4 I show that the irreversible algorithm without in-
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dependent updating is equivalent to EFR, while the reversible algorithm with independent updating
is quite similar in its performance to a solution concept proposed by Bonanno [1989], being indeed
equivalent, for games of perfect information in which any player plays no more than once. The last

section contains some concluding remarks.
2. Examples and informal assumptions.

Extensive games are worth studing only if strategic decision making is analyzed as an on-going
process. Though players may choose a strategy at the beginning of the game, they actually tmplement
it by choosing an action whenever they are called to play. Such choices might be different from those

prescribed by the initially chosen strategy.

ASSUMPTION 1 (INTERIM RATIONALITY). Whenever a player is called to play, she is
endowed with a conjecture (a probability assessment, which trasforms the game in a one-person deci-
sion tree), consistent with her current information, and she chooses an action mazimizing ezpected
utility according to this conjecture and her plan for the future.

Assumption 1 seems to bea minimal rationality requirement and in very simple gaxﬁes it eliminates
non-creadible threats. However it allows the possibility of an individual playing a strictly dominated
strategy. This may happen when a player changes her conjecture “without a good reason”. In game

Ty player 1 has to guess the choice of 2. Assume that her conjecture is P(I|R;) < 1/2 at the initial

node and P(1|R1) > 3/4 at information set h. Then 1 actually plays — though she does not choose

at the beginning of the game — R; L, a strictly dominated strategy.
In order to make interim rationality stronger than ez ante rationality a sort of intertemporal con-

sistency assumption is necessary.
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Figure 1.
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ASSUMPTION 2 (INTERTEMPORAL CONSISTENCY). No player changes her conjec-
ture unless she observes a zero probability event.

Assumption 2 is still not enough to take full advantage of the knowledge of the extensive game.
Consider game I'z. It is usually claimed that (L, ) is the unique solution of this game, though one
may easily check that (A4, r) is a proper, perfect and sequential equilibrium. The argument runs as

follows:
(i) R is not played because it is strictly dominated;

(ii) if 2 observes h, he deduces that L has been played and he chooses ! (this is an instance of

forward induction),
(iii) 1 predicts that 2 would play [, therefore she chooses L.

'All the algorithms that I am going to define select (L, I) as the unique solution of I'z, but it should
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Figure 2.

be clear that more than common knowledge of rationality is at work. First of all the “trembling

hand” story must be ruled out:

ASSUMPTION 3 (DELIBERATE CHOICES). Any possibility of mistakes is fully repre-
sented by the extensive form of the game via chance moves. Hence choices are always deliberate.

The most iﬁlportant point is that 2 must believe that 1 is rational even if 2 was sure of A and
observes h, i.e. I —or — R. The reason is that P(A) = 1 is an arbitrary conjecture, because it can
not be deduced from the hypotheses of the model. Therefore 2 is not allowed to reject the model

when this initial conjecture is falsified.

ASSUMPTION 4 (UPDATING OF ARBITRARY CONJECTURES). If a player knows

the predictions of the model, she continues to believe them correct until they are falsified.
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Now modify I'; interchanging player 1’s payoffs corresponding to ! with those corresponding to r.
At first one may think that the only change is in step (iii): (iii") 1 predicts that 2 would play I

therefore she chooses A. Is this the end of the story? Perhaps not.
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According to this solution & is an impossible event and assumption 4 leaves player 2 free to reject
the model if & is ()bserved. h falsifies: “everybody is rational” & “everybody believes that everybody
is rational” & “everybody belicves that everybody believes that everybody is rational”.

Moreover, if 2 observing h reached the conclusion that 1 is irrational, 1 could get his best payoff
playing L. The solution is not common knowledge at every information set, so that the problem of
counterfactuals and strategic manipulation of beliefs may arise. The most sensible way to rule out

this possibility is to assume the following:

ASSIjMPTION 5 (HIERARCHIES OF BELIEFS). Each player has a sufficiently fine hi-
erarchy of beliefs corresponding to implications of the model with increasing predictive power and she
always holds the highest belief compatible with her current information. |

One may think that assumption 5 is quite ad hoc. In game I'; player 2, observing A, should think
that pjayer 1 is rational, but she (i.e. 1) does not believe that 2 at h would believe that she is
rational. More complex games need much more complex hierarchies of beliefs. But there are games
in which a different and i)erhaps less ad hoc assumption does the same job. Consider game T'y4.

If it is assumed that la = 1b, then the situation is similar to that of 'z and assumptioﬁ 5 is needed

in order to solve the game. But if 1a and 1b are two different players (with the same payoffs) the

following assumption is enough:

ASSUMPTION 6 (INDEPENDENT UPDATING). Each player updates conjectures and

beliefs concerning different opponents independently of one another, whenever it is clear which op-
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Figure 4.

ponent did not conform to the player’s ezpectations.

Let us see how this applies to Ty, 'If node z were reached player 2 would have to modify his belief
about la in a way that justified ‘L,,, but his belief about 15 should be unaffected, therefore he should
still predict that, since 15 is rational, if ¢ were reached, L, would be played. la anticipates this and

therefore she has no hope to mislead 2. In all this discussion two hypotheses were implicit: complete

information and common knowledge. They are stated now for completeness.

ASSUMPTION 7 (HARD CORE COMPLETE INFORMATION). Fach player knows
the game at each of her information sets.

This assumption is very strong. It states that the knowledge of the entire game is never touched by
falsification, i.e. it is in the hard core of the structure of beliefs of any player. But one may object
that such a role should be played by common knowledge of rationality, so that if current information
falsifies the assumption that an opponent is rational, given the initial belief about the extensive
game, it is this latter belief that should be modified. I think that this objection is reasonable when
patently irrational choiches are observed (e.g. strictly dominated actions), but it loses a good deal
of its strength in more interesting cases, e.g. when it is observed that player j chose an action
which could be justified only if she does not know that her opponents are rational. In any case,
to some extent, assumption 7 could also be weakened to become the assumption that each player
knows the game before it begins and she knows at least the extensive form and her own payoffs
at each information set. This is enough to justify the algorithm which I call “implementability”
(see Battigalli [1988] and definition 3 of this paper), since this algorithm allows a player to hold a

completely arbitrary conjecture, if her prior belief is inconsistent with her current information.

ASSUMPTION 8 (COMMON KNOWLEDGE). Assumptions 1, 2, 3, 4 (and/or 5 dnd/or




6) and 7 are common knowledge among the players at the beginning of the game.

Note that common knowledge at each information set is not required, otherwise a contradiction
would arise for a large class of games, i.e. those games for which the theory predicts that at
least one information set will not be reached. Reny [1987] expands on this point, showing how it
constitutes a weakeness of such extensive form solution concepts as BI and Pearce’s EFR. Then he
develops a theory of conjectures formation, which is common knowledge at every information set,
due tov the fact that the theory does not assume anything about strategic choices. Here I take the
alternative route of a theory of conjectures formation and strategic choice, which is not necessarily
common knowledge at each information set. In my opinion the most important problem of extensive
form solution concepts is the possibility of strategic manipulation of beliefs. Absence of common
knowledge of the theory at some information set is a necessary but not sufficient condition for such
a problem to arise. To see this more clearly consider game I's. Common knowledge of assumptions

1 and 7 at the beginning of the play is sufficient to yield the only sensible solution of this game, i.e.

Figure 5.

(R, 7). The theory is not common knowledge at node z, but this is immaterial, since player 2 does
not need to know the theory in order to choose the optimal action. A similar route is also taken
by Basu [1988]. Essentially he assumes the following: Let information set {z} (in a game of perfect
information) be reached only if all the players j € J deviate form the rationalizable path. Then it
is common knowledge that all the players i not in J are rational, while those in J are unpredictable,
i.e. they could play any of _their sfrategies. Unpredictability ;)f players in J could induce someone to
deviate form rationalizability in the subgame starting from z; this in turﬁ could give to some j‘ eJ
the incentive to deviate form EFR so that z is reached. This is, again, strategic manipulation of
beliefs. Though outcomes of this kind could hardly be regaded as part of a weak solution set, one

can reasonably argue that they are possible. One may object, however, that if such outcomes are
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possible, each player could think that they do not violate the rationality principle a;nd it is not clear
why, if = occurred, players in J should be regarded as unpredictable. As I will argue later, when
the possibility of strategic manuipulation makes the set of possible outcomes larger than the set of

EFR-outcomes, it is more sensible to say that the game has no solution.

3. Four algorithms to solve extensive games.

I assume that the reader is familiar with the formalism of extensive games. Here I use the notation
of Kreps and Wilson [1982], which is quite well-known. The only difference is that I do not assume
that chance moves occur only at the beginning of the game.

An extensive form is a structure (T, <;¢;H; 4; p) where:

- (T, <) is a finite topological tree with a set of terminal nodes Z, a set of decision nodes X = T\Z
- and a distinguished root w; S(x) denotes the set of immediate successors of z and Z(x) the set

of terminal successor of z; S(h) = UxenS(x) and Z(h) = UxenZ(x)-

— ¢ : X — N is the players’ function inducing the players’ partition (e(x) is the blaye_r who moves
at x); let [¢(X)] = n + 1, then without loss of generality ¢X) = {0,1,...n}, where 0 is the

chance player; I = {1,2,...,n} is the personal players set.

— H ¢ 2X is the information partition, a refinement of the players’ partition over X\ H0). I
write ¢(h) for the individual who is called to play at information set h € H and —:(h) to denote

the set of her opponents. H is such that x,t € h € H = §(x) = 5(t).

— A:H — 27 is a correspondence, which assigns to each information set H the set of available

actions A(h)C A. By convention, b’ # h = A(h')N A(h) = 0.

- p: §(:"1(0)) — (0,1] is the probability assignement for chance moves: Vx € 17H0) Yiesw)
p(t) = 1.

We obtain an n-person eztensive game, denoted by I, by adding to an extensive form an n-tuple of
Von Neumann-Morgenstern utility indexes u = (u?,u?,.. ), d i Z - R

I assume, as usual, that each player is able to recall all her past actions and information:

ASSUMPTION G1. T is a game with perfect recall.
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G1 implies that the partial order relation < induces a corresponding order over each player i’s
collection of information sets H'; moreover for h, h' € H' h < I/ & Z(h') C Z(h).

I also make a technical assumption: each player i has a unique “first” information set hi:

ASSUMPTION G2. VieI3hi€H :Vhe H\{hi}hi <h.

G2 makes the assumptions of “intertemporal consistency” and “interim rationality” sufficient for

“ex ante rationality”: an individual has to play a strategy which is a best response to her “first” -

conjecture. I claim that G2 is completely innocuous.
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Figure 6.

Whenever a game does not satisfies G2, we can modify it by addition of some “dummy” information
sets; the resulting game will be strategically equivalent to the former (see figure 6).

Note that I'g is a game with chance moves. In such games assumption G2 eliminates the possibility
that a conjecture depends on the state of nature. Otherwise, it may happen that an EFR-strategy is
strictly dominated (see Battigalli [1988], p 720). It is proved in the appendix that in games without
chance moves and in games with perfect information G2 is not at all restrictive. ’

A strategy of player i is a contingent plan o' : Hi — A, where Vh € Hi oi(h) € A(h). T denotes
i’s strategy set. Let J C I, then ¢ = (s7);c; and £7 = [Ties (té,ke the natural order for such
[J] — tuples and Cartesian products). I will.often drop the superscript J, when J=I. Here I do not
assume that players can choose mixed strategies. If I did, the difference would be immaterial. An
expected utility maximizer chooses a mixed strategy only if all the pure strategies in its support
yield the same expected utility and I do not need the mixed extension to get existence of “ex post
rational” equilibria. |

In this context, mixed strategy profiles are interpreted as conjectures. Let A(Y) denote the set of
probability measures over Y. An element ¢ € A(ZY) is a conjecture about player i. Here I‘:;dopt

the classical interpretation that (1) any event, which could be used to correlate the actions of two
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different players, is adequately represented in the extensive form, and (2) this is common knowledge.
Therefore each player should regard the strategies played by two different opponents as stochastically
independent events. This seems to be the relevant interpretation, for éxa.mple, if one wants to analyze
the credibility properties of a correlated equilibrium implemented as a Nash equilibrium of a suitable
extensive game. With this in mind, it makes sense to represent a conjecture about a group of players
J Clasal|J|—tuple ! = (cf)jes € [Tjes A(Z7). When JNK = 0, T write (c’,cX) = (iesuk-
When J = I\{i} I write ¢’ = ¢;, or d = ¢}, il i = ¢(h). ¢c; is a complete conjecture of player i and C;
is the space of such conjectures.

A conjecture ¢! induces a probability measure P(;c!) € A(Z) in the usual way (see e.g. Kuhn
[1953]). As a function, P(.;cl) is extended to 2T via the identity P(h;cl) = P(Z(h);c),h € T. With
an innocuous abuse of notation a strategy o* is identified with the corresponding measure cf, where
ci(a') = 1. Therefore P(.;¢;,0') is the subjective probability measure of player i, when she plans to
play o* and has a conjecture c;.

Let § # J C I. ¢/ reaches h CT if and only if there exists a complementary conjecture ¢!\ such that
P(h;cJ ,c\V ) > 0. By convention, c? does not reach any h CT. Let J # § # K. Note that “c? reaches
h and ¢X reaches h” is a necessary but not sufficient condition for “cIUK reaches h”. A J-strategy
profile o reaches k if and only if the corresponding degenerate conjecture does. T|h denotes the set
of J-strategy profiles reaching h.

It is now possible to produce a formal restatement of assumptions 1, 2, 4, 5, 6 (assumptions 3 and 7

_ are interpretative and cannot be formalized in this context, while assumption 8 — common knowledge

~ is represented through the use of iterative procedures).

DEFINITION 1. Let ¢; € C; reach h € Hi. Then o' is a best response to c; ath if and only if

ae Argmax Z P(z;¢;0)ul(z)
o€Xih 2€Z(h)

REMARK 1. By perfect recall (G1), there is a unique sequence of i’s actions and information sets
leading to h € H; therefore all the strategies in I|h coincide at any h’<h. Moreover the constraint
z € Z(h) implies that choices at information sets not following h are irrelevant. Thus ¢* maximizes
i’s expected utility conditional on h among all the modifications of o which are still possible at h

(Pearce [1984] call them h-replacements for o).
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DEFINITION 2. An updating process is a collection of conjectures, one for each information set,
{cn;h € H} C UierCi, such that Vh € I ¢, € C,(y,) and ¢, reaches h. U/ denotes the set of updating
processes.

To be precise, an element of I/ is an n-tuple of different updating processes, since a priori no
consistency condition between {cy;h € H') and {e;,;h € H3) (i#j) is required. I use one mathematical

object instead of n just to simplify notation.

REMARK 2. The formal restatement of assumption 1 (interim.rationa.lity) is:

3{cn;h € H} € U : Yh € H 1(h) actually chooses a = o*(*)(h), where 0*(#) is a best response to cj at
h.

This is a rationality condition about aclions; the updating process has to satisfy the intertemporal

consistency condition to get rationality of strategies.

U1 (Intertemporal consistency). {c;;h € H} is such that
Vh',h” € H(u(b') = ’L(h”)&h' < h"&ejpreaches h”) = o = ¢y

REMARXK 3. Ul is strictly related with Bayesian updating. U1l and interim rationality imply that

agents behave as if they maximized conditional expected utility and updated probabilities via Bayes

rule whenever possible (see also the appendix and Battigalli [1988]). From now on B’ = Iies B’is
a subset of 7 and is to be interpreted as a prior belief about the group of players J C I: “no player
j € J will play a strategy outside B7”. Assumption 4 (updating of arbitrary conjectures) is formalized
as a family of axioms indexed by prior beliefs. Let Supp(c’) = {7 € B[ [y ¢/(a?) > 0} be the set

J is consistent with

of J-strategy proﬁles‘ having positive probability according to ¢/. A conjecture ¢
belief B if and only if Supp(c’) C B; it is arbitrary w.r.t. BY when the inclusion is strict. In all
the algorithms conéidered here it is essential that a player may hold arbitrary conjectures. When
a belief is not a singleton, a player. is free to hold any conjecture consistent with it. Moreover a
conjecture may be arbitrary at step t of a reasoning process, but not at step t+k. If non-arbitrariness
were imposed at each step, a contradiction could arise: i does not play o' because o7 has a positive
probability, but j does not play ¢/ because o is not played (see Pearce [1982]). Axiom U2 says

that if player ¢ observes an event which falsifies her (arbitrary) conjecture, but not her belief, she

continues to hold her belief.
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U2(B) (Updating of arbitrary conjectures). Given BC X, {ci;h € H} is such that Yh € H (B~«M)n
=4®[h) # @ = Supp(cp) € BN,

Since the meaning of this formulation is “if the players have beliefs B, then ...”, Ui(.) - where
beliefs are not fixed — is informally called axiom form.

A proper k-hierarchy of beliefs is a sequence {B(v)}4Zk, where B(k) C B(k—1) C ... C B(1) C
B(0) = T, but in the following formalization I just need B(0) = £. Let uf denote the highest index

v for which belief B—®)(v) in a k-hierarchy is compatible with information h:
pf = max{v € {0,1...k}|(B~*®(v) n £~M|n) £ 9}

Then assumption 5 is restated as follows.

U3’ (B(0),...,B(k)) (Hierarchies of beliefs). Given B(0),...B(k), {cy;h € H} is such that Vh € H

Supp(cn) C B=M) ().

REMARK 4. U3’(.) makes sense for any sequence of subsets of ¥ with ¥ as an element. But if the
sequence is a proper hierarchy, U3(B(0), ...B(k-1),B(k)) = U3(B(0), ...B(k-1)), since B(k)CB(k-1).
Moreover U3(B(0), ...B(k)) = U2(B(k)), since (B‘M(k) € Z“™|h) # ¢ = pk = k. By induction,
U3(B(0) ...B(k)) = U2(B(0)) & ... & U2(B(k)).

But also the reverse implication holds true. Therefore U3(B(0)...B(k)) < U2(B(0)) & ... &
U2(B(k)) whenever B(k) C B(k—1) € ... C B(0). I will show in Lemma 1 that hierarchies of

beliefs are proper by construction. This justifies the following alternative formulation.

U3 (B(0), ..., B(k)) (Hierarchies of beliefs).
Given B(0),...B(k),{cn;h € H} is such that U2(B(0))&...&U2(B(k)) holds.

Independent updating (assumption 6) concerns both conjectures and beliefs, therefore it is formalized
as a stronger version of Ul, U2(.) and U3(.). From now on a star (*) denotes the fact that
independent updating is at work. P(h) denotes the collection of partitions of the set —¢(h) of

opponents of the player moving at h.

U1* (Intertemporal consistency with independent updating). {cy;h € H} is such that Vh',h” €
HV{J,K} € P(') («(b') = o(b”)&h’ < h”&c], reaches h” &cK does not reach h”) = ¢, = cf.
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U2*(B) (Indépendent updating of arbitrary conjectures). Given B C X,{cn;h € H} is such that
¥h € HV{J,K} € P(h) (B' N Z'|h # 0B n Z¥|h = §) = Supp(cn) € B.

To keep the formulation of U3* simple, 1 rely again on remark 4.

U3*(B(0)...B(k)) (Hierarchies of beliefs with independent updating).
Given B(0),...B(k), {cn; h € H} is such that U2* (B(0)) & ... & U2” (B(k)) holds.

REMARK 5. Ul = U1,U2%(B) = U2(B), and U3*(B(0)...B(k)) = U3(B(0)...B(k)) (just
take K = 0 and note that c® does not reach any h in H and Z%h = ).

Note that independent updating requires the proviso that it is possible to identify an “innocent”
component of a conjecture or a belief. Thus, the fact that the J-component is compatible with
current information is not enough, since the same may be true of the complementary K-component.
This happéns in game I'z, where the’independent updating hypothesis is useless. In this game
player 2 and 3 have to guess the past choice of 1. Player 2 has also to guess which action will be
chosen by 3. Player 3 observes whether 1 and 2 “agreed” (L,/ or R,r)or “disagréed” (L,r or R,I).
L is strictly dominated; thus, by forward induction, 3 should play always right (r,"); by forward
and backward induction 2 should play r. Therefore the “natural” solution of the model yields a
conjecture (belief) (R, ) for 3. But a typicai counterfactual problem arises: 2 may deviate in order
to signal “irrationality” of player 1, inducing 3 to play /. He may hope to obtain this result because
3 cannot identify who deviated from the proposed solution. Of course, a proper hierarchy of beliefs

eliminates the problem, but independent updating does not help.
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Figure 7.
One may also wonder whether U1*, combined with U2(.), is enough to represent what is meant here
by “independent updating”. The following example shows that this is not the case.

By forward and bakward induction, one obtains the proposed solution (belief) {L, R} X {r} x {r,7'}.
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Figure 8.

Again a counterfactual problem arises. A very sensible conjecture to hold at the dummy information
set hj = {w} is (L, 7). With this initial conjecture, U1* is useless at h; since both components of the
conjecture are falsified. Therefore, if R is played — as allowed by the proposed solution - there is room
for strategic manipulation of beliefs. 2 could play ! hoping to mislead 3, signaling that he believes
that 1 made an irrational move; if 3 believes this signal (actually a “lie”), [ is her best response. But
if U2* is common knowledge, all this cannot happen. At h, 3 would only change her belief about
2, adopting a conjecture which assigned positive probability to (R,!) and zero probability to M, so
that the best response would still be r.

I now describe a generic algorithm to solve extensive games. Let U be a set of axioms and axiom
forms about updating processes (for example U = {U1,U2(.)}). A U-é.lgorithm is given by the

following steps:

— first step: let B({cn;h € H}) be the set of strategy profiles o such that Vh € H o*® ¢ ™| h =
o™ best reply to cy at h; then find the set of strategy profiles E(l) = {o € Z|3u € U such

that any axiom in U holds and ¢ € B(u)};

~ inductive step: let Z(v)(v = 0,1,...k) be given; set B(v) = Z(v)(v = 0,1...k) and find the
set B(k+1) = {0 € £|3u € U such that any axiom in U holds and any axiom form in U holds
at B(k) or (B(0),B(1),...B(k)) (according to which expression applies) and ¢ € B(u)}.

The proviso g“t) € ZM|h (i.e. o*(") reaches h) is important in the definition of B(u). If a strategy
o' is regarded as a contingent plan; it is never necessary to consider those contingecies which are
excluded by o* itself (remember that choices are assumed to be deliberate). If the updating process u

satisfies intertemporal consistency (U1), o € B(u) is necessary and sufficient for interim rationality.




This follows inductively by the equality

Z P(z;ch,ai)ui(z)= Z P(z;ch,ai)ui(z)+ Z P(z;ch,aj)ui(z),

2€Z(h) z€Z(h)\Z(k) z€Z(h)

where h,h € H', h< h; ¢y and ¢, are drawn form . This also shows that B(u) # 0 if u satisfies Ul.

A similar equality shows that, by G2, if o € B(u), each o is a best response to some conjecture ¢;:

ZP(z;c;,ai)ui(z)z > P(z;ci,0)ui(z) + D P(z; i, )u'(2)-

2€7 | 2€Z\Z(h}) z€Z(h})

Let ¢; be i’s conjecture at hi and note that the first element on the RHS depends only on ¢;. Two

strategies are structurally equivalent if and only if they reach the same collection of ipformation sets

and coincide on it (see Kuhn [1953] def 5). One can easily check that this restatement of interim

rationality does not distinguish between structurally equivalent strategies. Note that, at each step,

the space of eligible strategies is always . Therefore it may happen that (k + 1) is not a subset

of B(k). ¥ B(k+1) € Z(k)(k = 1,2,3,.. ) is not a theorem, I say that the algorithm is reversible;

otherwise it is irreversible. If an U-algorithm is irreversible, then Mi>1 (k) is a U-solution (a strong

solution when the solution set is a singleton).

One may argue that an algorithm must always induce some sort of solution, for example limsup k—oo

% (k). However I feel that an instance of B(k + 1)\E(k) # ¢ would undermine the reasoning that

the algorithm should represent. After all £(k) is a conditional prediction at step k about strategies

(“no player would play a strategy outside Z(k), if given the opportunity”) and the prediction of the

- following step should not be weaker (sec also the discussion of game ['g). Of course many algorithms
by the following

may be defined by different choices of U, but I argue that a natural choice is given

table:
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independent updating

no yes
U1, U2() | UT%, U2°()
hierarchy no IMP *.IMP
of (2(k)) (z*(k))
U1, U3(.) | U1, U3*(.)
beliefs  yes | EFR *EFR '
(R(k)) (R*(k))

" Table 1

In fact, it does not seem reasonable to assume independent updating only for conjectures or only
for beliefs, while -as will be shown- the assumption of a hierarchy of beliefs characterizes irreversible
algorithms. Since the {U1,U2(.)}-algorithm is essentially the same as in Battigalli [1988], I retain
the same name: implementability (IMP). A k-implementable strategy is a contingent plan, which
could actually be implemented by a player endowed with a (k-1)-prior belief. I will show that the
{U1,U3(.)}-algorithm is equivalent to Pearce’s rationalizability (EFR) and again I retain the same
name. *—irﬁplementability (*-IMP) and *-rationalizability (*-EFR) are the companion algorithms
with independent updating.

1t should be clear by now that, though table 1 may seem reminiscent of an axiomatic approach, it
is not possible to say a priori which algorithm is stronger, because fche use of axiom forms, whose
argument is determined by the previous step, prevents the application of the implications of remarks

4 and 5. The four algorithms are formally defined as follows:

DEFINITION 3. The k-implementable strategy set (k) is iteratively defined as follows:
%(0) = %,
B(k) = {0 € £|Ju € U : UL and U2(X(k-1)) hold and o € B(u)}.

The k-*-implementable set L*(k) is defined in the same way, except that U1 is replaced by Ul* and

U2(2(k-1)) by U2¥(Z*(k-1)). The k-rationalizable set R(k) is defined as follows:

R(O) =1,
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R(K) = {0 € £|3u €U : U1 and U(R(0), R(1), .. R(k — 1)) hold and o € B(u)}
R= ﬂkle(k) is the rationalizable set.

The k-*-rationalizable set is defined in the same way, except that U1 is replaced by Ul* and

U3(R*(0)...R*(k-1)) by U3*(R (0)...R (k-1)). B* = M1 R*(k) is the *_rationalizable set.

REMARK 6. These four algorithms coincide for one-person games (where they select the set of ex
ante rational strategies) and simultaneous games (where they coincide with normal form rationaliz-
ability). Implementability (rationalizability) coincides with *_ implementability (*-rationalizability)
for two-person games. Moreover by remark 4 and 5, R(1) = B(1), R*(1) = =*(1), ¥*(1) €
%(1), R*(1) C R(1). The following lemma shows that rationalizability and *-rationalizability are

irreversible and that they select a solution in a finite number of steps.

LEMMA 1. Vk € A R(k + 1) C R(E)&R*(k + 1) € R*(k). Moreover 3K, K* € V: k 2 K =
Rk)=R#0,k>K = R*(k) = R* and R (R*) has the best response property, ie. Vie I ol €

Ri = (3¢ € Ci: Supp(ci) C R-i&o is a best response to ¢;)-

Proof. The proof is carried out for rationalizability only, since the case of *_rationalizability is
almost identical. R(1) C R(0) is trivially true. By induction, let R(k) CR(k-1)C...CR(0). If
o € R(k + 1) then Ju € U such that Ul, U3(R(0), ... R(k)) hold and ¢ € B(u); but u also satisfies
U3(R(0),. .. R(k-1)), then o € R(k). For the sccond part just note that it is always possible to find an

updating process u satisfying Ul and U3(R(0). .. R(k-1)) because the hierarchy of beliefs is proper,

as it is proved above. Intertemporal consistency implies that B(u) # 0. Therefore Yk € N 0 # R(k).

Definition 3 implies that R(k-1)=R(k)=>R(k)=R(k+1). Since the sequence is decreasing and X is
finite, for some K R(K)=R(K+1). For the best response property take a suitable u = {cs;h € H}
with o € B(u). If b = h is reachable by some profile in R, set ¢, = ¢;; otherwise c; is arbitrary

provided that Supp(c;) € R, This completes the proof. O

Though my approach is not axiomatic, [ am able to obtain one important relationship between algo-
rithms: whenever a reversible algorithm selects a weak solution, it coincides with the corresponding

irreversible algorithm.
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THEOREM 1. (Vk € N Z(k+ 1) C 5(k)) & (VI € N Z(I) = R(l)). The same holds true for
*_implementability and *-rationalizability.

Proof. (=) Let {Z(k)}& be decrcasing. By induction, let X(k)=R(k), k = 0,1...,I1-1. If 0 €
R(1), then Ju € U such that ¢ € B(u) and UL, U3(R(0),...R(I-1)) hold. Then U2(R(I-1)) holds.
U2(Z(l — 1)) is the same as U2(R(I — 1)); thus o € E(I). If o € E(I), by assumption o € Nk=LB(k).
Then one can find ! updating processes u°...u""1 such that ¢ € B(u*) and U1, U2(Z(k)) hold
(k=0,...1—1). Let H(k) be the collection of information sets h reached by some conjecture consistent
with belief 4")(k), or equivalently H(k)={h € H[Z-“M(k)n®W|h # 0} (k = 0,...1-1).
Since {2(k)}5! is decreasing, also {H(k)}§™" is decreasing. Now define Ht(k) = H(k)\H(k + 1)
for k=0,...! — 2, and H*(l - 1)=H(!{ — 1). {H*(k)} is such that Uk=l=1H+(k) = H and either
H*(s) N H*(t) = 0 or Ht(s) = H*(t). Another property of {H*(k)} is that if b, h € Hi, h < ,
h € H¥(s) and h € H*(¢) (with H+(s) n I*(t) = @), then no conjecture consistent with £i(s)
may reach h and s>t. In fact, h contains more information than h and it falsifies the higher level
belief, which has a higher predictive power. Now construct a new upvdating process u = {cp;h € H}
as follows: if h €H*(k), then ¢, = cf‘k ) € u*. By the inductive hypothesis, u* satisfies U2(R(K)).
Hence, by definition of {H* (k)}, c; is consistent with the highest belief compatible with h, i.e.
RM)(y!~1). Therefore u satisfies U3(R(0),...R({ — 1)). By the properties of {H*(k)} (see above) |
the only instances in which Ul applies are those with h, h € H ”'k(s) for some s. Then ¢, and ¢, are
drawn from the same updating process u°, which satisfies Ul. Therefore (¢(h)=u(h) € I& h< h&ey,
reaches h) = ¢, = ¢4, i.e. u satisfies also Ul. Moreover, by construction, u is such that o € B (w).
Thus o € R(I). This completes the proof of the implication “=>". (<) This implication follows

immediately by lemma 1. The proof for the case of independent updating is almost identical. [J

REMARK 7. One may easily check that £(2) € (1) € X(0). Then the proof of theorem 1

shows that (k) = R(k), k=0,1,2. The same holds true for the case of independent updating.

The meaning of theorem 1 is that implementability may be used to check the robustness of ra-
tionalizability with respect to problems due to counterfactuals. One may object, however, that
%(k) € X(k — 1) is only a sufficient condition for such robustness. After all, only predictions about
the outcome should matter. Let Z(k) be the set of terminal nodes reached by some o € X(k). It

may happen that E(k) is not included in B(k-1), but Z(k)CZ(k-1). The follwing example, due to
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Van Damme, shows that, though this objection is reasonable, one should be suspicious whenever

X(k) is not included in X(k-1).
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Figure 9.

T’y is a version of the battle of the sexes, in which player 1 may signal her conjecture, and hence her
choice between left and right, by throwing away two “utils” (T). In fact, this is rational only if she
expects that I’ would be played with sufficiently high probability. Taking this into account, it is easy

to understand the following steps (note that structurally equivalent strategies are not distinguished):
2 (1)=R(1)= {TL',DL,DR} x {Il',Iv',rl',rr'}
% (2)=R(2)= {TL', DL, DR} x {Il', l"}
2 (3)=R(3)= {T'L',DL} x {u",ﬂ'}
T (49)=R(4)= {TL', DL} x {'}
T (5)=R(5)= {DL} x {lI'} = R(k)=R(5), k>5.

In words, the mere opportunity to signal her intention by throwing away two utils is enough for 1 to

get the preferred equilibrium in each subgame. Then there is no reason to throw away two utils. Note,

however, that information set {y} is a counterfactual at this point. According to implementability,

2 is free to hold any conjecture consistent with {y}. Thus, Z2(6) = {II',ir'}. But Z(6)=Z(5),
because there is no incentive for strategic manipulation of beliefs by 1. In my opinion, one should be
uneasy with the solution provided by rationalizability. This solution concept implicitly argues that
(DL, ") should be played because if {y} is reached, since 2 believes 1 rational, 2 expects L’. But
the solution implies that if {y} is reached, 1 is “irrational”! Of course, a suitable hierarchy of beliefs
solves the problem, but the point is that there is a problem to be solved. Theorem 1 shows that

irreversible algorithms (rationalizability) are stronger than reversible ones (implementability). This
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is not surprising, since they rely on stronger hypotheses about updating processes. But one must be
careful with such inferences, because my approach is not really axiomatic. This is well-illustrated
by the hypothesis of independent updating. Intuition suggests that an algorithm which relies on

independent updating should be stronger than a corresponding algorithm which does not.
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Figure 10.

This intuition is illustrated by game I'jo. Letters in brackets denote the transition probability
assigned to‘ a particular action by a conjecture of player 1. It is rational for 1 to play R only if
w — her initial conjecture - yields p>0, q>2/3. Now assume that 1 expects r with probability 1

(cw =(1,q)). If U1 holds; but U1* does not hold and 2 plays [, 1 may change her entire conjecture.
Her new conjecture could be c¢;=(p,q), where p<1 and q<1/2. Therefore the choice L' is justified
by rationalizability. Player 3 needs to know wether 1 played left (L or L) or right (R or R'), but
rationalizability does not provide any help. Player 2 is sure to get 1 if he plays r, but he mlght try
to make 1 play L', by playing l. If succesful, he would get 2. This exaplains why:

Y(k) = R(k) = {L,RR'R",RL'R”} x {l,7} x {{, r}, k> 1.
Now assume that U1* holds. Then ¢, = (p,q) must be such that p<1 and q>2/3 if 1 chose R, and
only the choice R’ is justified at {t}. Therefore

(1) =R*(1) = {L,RR'R*} x {I,r} x {I,7}

Z*(2)=R*(2) = {L,RR'R’} x {r} x {r}

Z*3)=R*(3) = {RR'R"} x {r} x {r}
But the intuition according to which *-algorithms are stronger is not correct in terms. of strategies.
Consider game I'y1. In this game player 2 is just a sort of unpredictable dummy. Player 1 rationally
chooses R only if p>0 and ¢>1/2 according to c,,. If Ul* holds q>1/2 also at x. Hence only L and
RR'R” may be justified. Assume that player 3 has a prior belief B'={L, RR'R”} about player 1;

if hpa were reached, this belief would be falsified and 3’s conjecture at hzps would be unrestricted.
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This conjecture might assign a positive probabilty to A ' or M”, two strictly dominated actions, and
both !’ and ' may be justified. This shows that

Z* k) =R*(k) = {L,RR'R"} x {l,r} x {rr/,7l'}, k> 1
But if U1* does not hold, while U1 holds, L' (not L”) may be justified. In this case hzs is consistent
with player 1 rational and 3 has no reason to assign a positive probability to M’ or M” at hrps. On
the contrary, she should be sure to be at node t, corresponding to R,!,L’. This explains why

Z1)=R(1) = {L,RR’R”,RL’R”‘} x {l,7} x {ro',rl'}

%(2) = R(2) = {L,RR'R",RL'R”} x {l,7} x {rr'}.
Note that R3(k) is strictly included in R*3(k) for k> 2. This happens because *-rationalizability
is “too strong” in the first step. But note also that the *-rationalizable set of outcomes is étrictly
included in the rationalizable set. In fact, *-rationalizability may be weaker only at unreached
information sets. Though I strongly suspect that this result is general, I have not yet been able to

prove it.
4. Rationalizability and Backward Induction.

In this section I prove the equivalence between the characterization of extensive form-rationalizability
(EFR) given in definition 3 and Pearce’s definition. Then I will present some results about the
relationships between algorithmic solutions and backward induction. I give here for completeness
the relevant part of Pearce’s definition of EFR (see Pearce [1984] def.9) with only some changes
in notation and a completely innocuous modification. Pearce assumes that players may use mixed

strategies. As ususal, I identify pure strategies with the corresponding degenerate measures. Let
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Mi(0)=A(E*) be i’s mixed strategy set at step 0. Assume that M(t — 1) = [T;er M} (t — 1) is defined.
Then Hi(o, t) is the collection of i’s information sets which are consistent with step (t — 1) and are

reached by o*, or Hi(o!,t) = {h € H'|3¢; € [Jj Mi(t — 1) : (ci, 03) reaches h}

REMARK 8. Let H(t — 1) be the collection of information sets reached by some conjecture
consistent with step (t — 1) of rationalizability as defined in def. 3 (see the proof of theorem 1)
and let CH(Y) denote the convex hull of Y. If {¢; € Gi|Supp(c;) € R7I(t - 1)} = [ CH(Mi(t —
1)), then Hi(t — 1) n {h € H|(¢' € Zi|h)} = Ii(d', 1).

Let Rp(t) denote the set of t-rationalizable pure strategies according to Pearce’s definition. Rp(t)
is defined as follows:

o' € Rb(t) if and only if ¢ € Rb(t — 1) and I{cy;h € H'(0',)} such that
(iii) (h,h” € Hi(d',t)&h’ < h”&cpe reaches h”) = oy = ¢y,
(iv) Vh € Hi(o',t) cy reaches h

(v) cn € [T CH(M(t — 1))

(vi) Vh € Hi(o%,t) o' is a best response to ¢, among all h-replacements for ot in RL(t—1) ((iii)-(vi)

above correspond (iii)-(vi) in Pearce’s definition).

Note that, at each step, additional restrictions are placed on conjectures and actions only at infor-
mation sets that can be reached by strategy profiles which were not previously eliminated. Moreover
(vi) requires utility maximization over a restricted set included in Rp(t — 1) and it is stipulated by
definition that Rp(t) € Rp(t — 1). By contrast, definition 3 requires utility maximization at each
information set h reached by o* and all strategies reaching h are eligeble, not only those in Rp(t—1).

Nonetheless theorem 2 states that these two definitions are equivalent.

THEOREM 2. Vte N R(t) = Rp(t).

Proof. By definition Rp(0)=R(0). By induction, assume Rp(k)=R(k) for k = 0,1...(t = 1). Let
o €R(t), then 0 € R(t — 1) = Rp(t — 1) by lemma 1. Since M(t — 1) has the pure strategy
property (a mixed strategy c/ belongs to Mi(t — 1) only if all the pure strategies in its support
belong to Mi(t — 1), see Pearce [1984]), the proviso of remark 8 holds true, i.e. {¢; € C;|Supp(c;) C
Rt - 1)} = [Ls CH(Mi(t — 1)), because ij(t — 1) is the set of extreme points of Mi(t — 1).
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Then Hi(o',t) = H(t — 1) N {h € Hi|(¢" € Li|h)}. Take u = {cn;h € H} € U such that ¢ € B(u)

and U1, U3(R(0)...R(t — 1)) hold.  Then (iii)-(vi) are certainly satisfied for all ¢ € I (for (vi) see
remark 1). Let 0 € Rp(t). First I show that the restriction in maximization (vi) is not binding.
Let ¢* be a best response to ¢, € jy CH(Mi(t — 1)) among all h-replacements for o* € Rh(t — 1).
Let o* be a best response to c; among all h-replacements for o*. Then ¢* and o* yield the same
expected utility (given c;). Assume not, i.e. o* is strictly better than o' as a response to c;. Then
o* ¢ Rp(t—1). But Ik € {1,...t — 2} : 0* € Rp(k) (recall R5(0)=X). Since M(t — 1) C M(k),cy, €
[1;, CH(Mi(k)). Thus o* € Rb(k + 1). The same argument may be repeated, if necessary, to show
o* € Rb(t — 1), a contradiction. Since Rp(k) C Rp(k-1), o € NE=tRp(k). Taking this into account,
together with the previous argument, remark 1 and 6, it is possible to find t updating processes
uk = {cg‘);h € H},k=0,...(t — 1), such that UL,U2(R(k)) hold and o € B(u). Now construct the

desired updating process u as in the proof of theorem 1, to show that o €R(t). O

Theorem 2 provides an alternative characterization of Pearce’s EFR, showing that it is possible to
defend it, at least to some extent, from the critique by Reny of being contradictory for those games
in which some information sets are not reached by the solution set R. Of course, EFR is “contra-
dictory” if it is interpreted as an algorithm which requires common knowledge of the theory at each
information set. But this “contradiction” is eliminated if EFR is interpreted as an algorithm which
assumes co‘mmon knowledge at ’the beginning of the game of a theory specifying a hierarchy of beliefs.
Theorem 2 allows me to state a proposition, already proven elsewere, rélating rationalizability {((*-)
EFR as defined in def. 3) to backward induction (BI). Let TR(TR*) be the set of (*-) rationalizable

nodes (TR = {t € T|3o € R : o reaches t}, T** is analogous).

PROPOSITION 1. IfT is a game of perfect information with a unique subgame-perfect equilib-

rium o, then the equilibrium outcome and the (*-) rationalizable outcome coincide, i.e. o reaches

teTwteTh (o reaches t € T « t € T™). This may be slightly generalized as follows: let

I'; be a perfect information subgame with root z of an extensive game I' and assume that I'; has
a unique subgame-perfect equilibrium, then cither 2 € T\T® or the subgame-perfect path and the
EFR path coincide on I';; the same holds true for *-EFR. (Battigalli [1988] provides a proof for the
case of EFR in perfect information games with one-to-one payoff functions, which works as well for

proposition 1).
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Proposition 1 provides a foundation for the principle of BI, but at a price: one has to assume the
existence of a proper and sophisticated hicrarchy of beliefs. One may wonder how far one can go
without them. An easy answer is that any Bl-solvable game in which the solutioﬂ reaches each
information set (or at least any information set & at which ¢(h) does not have a strictly dominant
strategy) may be solved by a reversible algorithm (implementabilty). The following theorem extends
the class of solvable games. From now on I drop assumption G2, since theorem A1l (see the appendix)
shows that it is not necessary in games with perfect information. Following Bonanno [1989] I call
non-recursive those games in which no player (except possibly the chance player) moves more than

once in a play: Vi € {1,...,n} h,h € H' = Z(h) N Z(h) = 0.

THEOREM 3. Let I be a non-recursive game of perfect information with a unique subgame-

perfect equilibrium, 0*. Then Vt € A/ £*(¢ + 1) C £*(t) and N1 Z*(t) = R* = {o*}.

Proof. Assume that x € X (¢(x) # 0 is always implicit in this proof) is not reached by any strategy
profile in Z*~42)(t). Let J = {j € [|Jy > x : j = «(y)} be the set of players following «(x) and
K = —ux)\J. By perfect information, only conjectures about j € J are relevant for expected
utility maximization conditional on x. By assumption, players in J have not yet played when x is
reached, then £*J(t) is comsistent with x and X*X(t) is not. The same is true of some conjecture
(¢?, K)e £*=“x)(t). Therefore Ul* and U2*(Z*)(t)) apply and «(x) has a conjecture (2, cX) such
that ¢J € £*J(t) and the fact that £*(t) is not consistent with x is not relevant. This shows that
*(t 4+ 1) C £*(t). Then, by theorem 1, £*(t) = R*(t) and Ne>1Z*(t) = R*. Let X(1) = {x €
X|S(x) C 7}, X(k) = {x € X\U=5"1X(s)IS(x) C ZU =K1 X(s)}. Note that, by non-recursivity,

s=1 s=1

‘ any strategy o' reaches all the information sets in 1. Therefore implementability requires expected

utility maximization at each h € M. Let o € R*. Takez € X (1). Clearly o € X*(1) and, by
uniqueness of the subgame perfect equilibrium (SPE), o*®(x) = o*®)(x), since both coincide with
the unique optimal action (if the optimal action were not unique, there would exist at least two SPEs,
a contradiction). By induction, assume that o) (y) = ¢*™(y) for y € UKZ{X(k) and any o* € R*.
Take x € X(t 4+ 1). By lemma 1, 3K : £*(K) = £*(K + 1) = R*. Since falsification plays no role (see
above), a+4#)(x) must be a best response at x to some conjecture ¢’ with Supp(c’) € Z(K) = R™.
But ¢’ must be equivalent to o* for all nodes following x, by the induction hypothesis. Thus, since

the SPE is unique, ot“®)(x) = o*¥). Since {X(t)}¢»1 is a partition of X, the proof is complete. O
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A concequence of theorem 3 is that *-implementability is quite similar, with respect to its per-
formance, to a solution concept proposed by Bonanno [1989]. Bonanno uses a logic approach and
defines a local strategy o*™(h) = a as a material implication: “if h, then o”. Therefore ¢“™(h) = &
may be a false proposition only if the solution implies that h occurs. This is quite different from the
solution concepts considered here, since they implicitely model a local strategy as a counterfactual
statement, which may be “false” even if the information set is not reached. A second difference is
that Bonanno’s solution either yields a unique outcome or does not exist. Finally, Bonanno does not
assume anything about the preference order over lotteries and many games with chance moves or
imperfect information cannot be solved for this reason. Nonetheless, there are important similarities
with *-implementability. First, if a game is not solvable by *-IMP, Bonanno’s solution does not
exist due to counterfactuals. For example, games I's and T'y (if regarded as a two-person game) are
not solvable (see Bonanno [1989], fig. 4 and 5), essentially for the same reason for which *-IMP
does not provide a solution.‘ Second, Bonanno’s solution selects the backward induction outcome
for all one-person and generic non-recursive games of perfect information without chance moves. By

remark 6 and theorem 3 the two solution concepts are realization-equivalent for such games.
5. Concluding remarks.

In this paper I have defined four algorithmic solution concepts: EFR, IMP, *-EFR and *IMP.
EFR is shown to be equivalent to Pearce’s notion of extensive form-rationalizability, while IMP was
proposed in Battigalli [1988] as an algorithm to refine game tl{eoretic equilibrium concepts. My
characterization of EFR provides a partial defense against the critique of Reny that, if the solution
excludes some information sets, it is contradictory. I argue that EFR should be interpréfed as a
solution concept which assumes common knowledge of the theory at the beginning of the game.
This theory include a method to construct a hierarchy of beliefs, which places suitable constraints
on the process of conjecture formation for any play of the game. Theorem 1 shows that whenever
IMP provides a solution, this is the rationalizable set and the counterfactuals problem d(;es not arise.
The last two solution concepts are new. They are based on the assumption that a player updates her
conjectures and beliefs about different opponets independently of one another whenever her current
information makes it possible (independent updating). Unfortunately I have not yet been able to

characterize the relationships with the first two solution concepts, except that there are games in
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which they are not stronger (in terms of strategies) and that *-IMP (*-EFR) is stronger than IMP
(EFR) in all perfect information, non-recursive games with a unique subgame-perfect equilibrium,
where it selects the backward induction strategy profile (Theorem 3). This also shows that *-IMP
turns out to be quite similar to a logic solution concept proposed by Bonanno. Proposition 1 and
Theorem 3 provide some foundation for the principle of ba,ckward‘induction, showing that it relies

either on a proper hierarchy of beliefs or on the principle of independent updating.

APPENDIX: initial conjectures.

Assumption G2 was included in section 2 in order to obtain ex ante rationality from interim ratio-
nality and intertemporal consistency, without directly assuming that players have initial conjectures
at the beginning of the game. This allows a more direct comparison with Pearce’s approach, but
restricts the class of games to which the analysis applies. Note that no definition in this paper needs
assumption G2 in order to make sense, and G2 is never used in the proof of a theorem, except the
last part of Lemma 1 on the best response property of the rationalizable set. In this appendix I show
that assumption G2 is innocuous, except ppssibly for some games with chance moves and imperfect

information (e.g. signaling games).

THEOREM Al. Let I be a game of perfect information and/or a game without chance moves,
then for any updating process u = {c\;h € H} € U satisfying Ul there exists an n-tuple of conjec-

tures (c1,...ca) € [Tier Gi such that

o € B(u) = Vi € I ¢ is a best response to ¢;.

Before proving theorem Al some additional notation is necessary:
- H™' = H\H: collection of information sets of players different from i;
- A = {a € Ala € A(h),h € H™i}: action set for players different from i.

— A[h] = {a € A=®|3h ¢ H*M3(x,t) € h x h:x < t&a € A(h)}: set of actions “following” h
for players different from ¢(h); let ¢; reach h € Hi, then ¢; yields 2 unique ppda,ted probability
assignment

plxsh,¢) = [P(h;c;,o‘i)]"lP(x, ¢,0'), X € h,o' € Tih
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(note that by perfect recall (G1), the RIS is independent of o);

- ¢; also yields a transition probability assignement
7r(.;ci)>: A7 5 0,1],Yh e H™ Z m(a,¢) =1
a€A(h)

(see Kuhn [1953]).

Player ¢ at h needs only u(.; h, ¢;) and 7(.; ¢;) |A[h],the restriction of 7(.;¢;) on A[h], to compute
expected utility conditional on h. Formally, let ¢; and c! be two conjectures of ¢ reaching h, if
#(-ihyci) = p(h,¢f) and 7(;c)[A[L] = x(.;c})|A[h], then there exists a constant K(h, c;, c’;)>0
such that |

Vz € Z(h) P(z; i, 0') = K(h, ¢i, c])P(z; ¢, 0*)

Proof of theorem Al.

(i) (No chance moves). For any i €I let h},‘,...hiok(i) € H be her initial information sets, i.e. infor-
mation sets without predecessors in H'. If k(¢)=1 (i.e. G2 holds for ) set c;=c;, where h=hil. If

k()>1 let c; be such that
L ]Ph;ci,0)=1
[2 ] Vo' € Bk Vz € Z(h) P(h;ch,0")P(2; ¢, 0') = P(z;cs,0%).

[1] is possible because any edge leading to h cox-ljesponds to a personal choice and its transition
probability may assume the extreme values zero and one. Since h=hj is neither a predecessor nor
a successor of hif (k#1), Z(h)NZ(hif)= 0 and [1] imply P(hi¥;c;,0') = 0 for k#1. Since the two
measures are proportional over Z(h), for all h € II' reached by c; o' is a best response to c;, at h if

and only if it is a best response to ¢; at h (recall that, by U1, ¢, = c;, for all these information sets).

(ii) (Perfect information). I use the same symbol to denote a decision node and the corresponding

information set. Call xi! .. .sz(i) “initial” nodes of player i € L. If k(¢)>1, choose c; so that
[8 Ir(a; ) = w(a; cxoik), if a € AlxF], k = 1...k(i).

3] is possible because, by perfect information and notational convention, A[xik] NAR] =@ fork £1.
Perfect information also trivially implies that p(sihyc) = p(sh,cp) for all he HY reached by c;.

Hence for all these information sets ¢; and ¢, induce proportional measures over Z(h) and o' is a
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best response to ¢y, at h if and only if it is a best response to ¢; at h. Repeat the same operation of

(i) or (ii) (as applicable) for all i € 1. Then straightforward dynamic programming shows that

o € B(u) = Vi € &' is a best response to c;.
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