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Abstract

An n-person dynamic game has observable devialors if each player at each move is
given n separate pieces of informatjon respectively concerning her own past behavior
and that of her n — 1 opponents. This paper defines and characterizes the observ-
able deviators property for extensive form games with incomplete information and
illustrates how this property can be used to simplify game theoretic analysis. In
particular, it is proved that sequential equilibria can be characterized by simple and
transparent restrictions on players’ assessments.

Introduction

Consider a dynamic Cournot oligopoly game such that each firm has (possibly)
private information about its own technology and in each period chooses output
and effort in research and development (R&D). Suppose that the output choices
are observed at the beginning of the following period. We may also assume that
some firms have “spies” reporting information about the technology and R&D
efforts of some opponents, but in general such reports are either incomplete
or available for only a subset of competitors. This is an extensive form game
with incomplete and imperfect (not even almost perfect) information. Yet the
information structure is simple enough that different solution concepts turn out
to be equivalent. What makes the information structure relatively simple is the
following feature: at any poini of the game the total information of a player
about her opponents’ iypes and strategic behavior is derived from separate pieces
of “marginal” information about each one of them. This would not be the case
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if, for example, only the past market prices were observed, as this would provide
information about the competitors’ total output which cannot be decomposed
into information about each single competitor’s output.

When the information structure has the above stated property we say that the
game exhibits “observable deviators”. More formally, a game has observable
deviators if for each information set h the set of profiles of type—strategy pairs
(one pair for each player) jointly consistent with A is a Cartesian product of
the sets of each player’s type—strategy pairs individually consistent with k. The
reason for the “observable deviators” terminology is more easily understood in
the complete information case. Suppose that some strategy profile s is expected,
say by player i, but this player gets the move at an information set A which
is inconsistent with s. Then, if the stated property holds, player i can use the
information contained in A to identify which opponents must have deviated
from s. Note that both characterizations of the property make clear that every
two—person game with perfect recall has observable deviators.

The above definition of the observable deviators property uses a mixture of pri-
mitive extensive form concepts (information sets) and derived concepts (stra-
tegies). Although this definition turns out to be useful for the analysis of some
solution concepts, a more direct characterization in terms of primitive extensive
form concepts is desirable. This paper provides such a characterization for
general extensive form games with incomplete information and then proceeds
to give sharper characterizations of a stronger property: observable deviators
in the agent form.

One advantage of considering such somewhat simplified information structures
is that it is possible to obtain equivalence results about game theoretic concepts
which differ in more general environments, thus sharpening our understanding
of the theory and simplifying the analysis.

Battigalli (1996b) shows that in (finite) complete information games with ob-
servable deviators an intuitive and transparent stochastic independence prop-
erty completely characterizes Kreps and Wilson’s (1982) notion of “full consis-
tency” of assessments.

Even simpler and weaker properties characterize full consistency in multistage
games with observable deviators in the agent form. These results concern the
properties of players’ conditional beliefs in games and can be used to charac-
terize both solution concepts assuming common beliefs, (such as Kreps and
Wilson’s (1982) sequential equilibrium) and solution concepts that allow for
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heterogeneous beliefs (such as some notions of extensive form rationalizabil-
ity!).

In the present paper these equivalence results are extended to games with
incomplete information. Furthermore, it is shown that, in multistage games
with observable deviators in the agent form, a rather weak property of con-
ditional beliefs called “general reasonableness” (Fudenberg and Tirole (1991))
is sufficient (if coupled with sequential rationality) to characterize sequential
equilibrium outcomes.

Unlike Kreps and Wilson's (1982) notion of full consistency, the properties of
conditional beliefs used in this paper can be easily formulated for infinite games.
Thus the above mentioned equivalence results suggest possible extensions of
solution concepts for finite games, such as sequential equilibrium, to infinite
games. For this reason we consider infinite games in general and then restrict
our attention to finite games when we characterize full consistency.

Related Literature. The observable deviators property has been defined inde-
pendently by Fudenberg and Levine (1993) and Battigalli (1994). The latter
paper compares different ways to model players’ conditional expectations in ex-
tensive games, viz. Pearce’s (1984) systems of conjectures and Myerson’s (1986)
conditional probability systems. Fudenberg and Levine (1993) use the observ-
able deviators property to characterize self confirming equilibria. In particular,
their results imply that, in games with observable deviators, self confirming
equilibria with independent, unitary beliefs® are outcome equivalent to Nash
equilibria.

Fudenberg and Tirole (1991) provide a quite simple and intuitive characteriza-
tion of sequential equilibria of multistage games of incomplete information with
observed actions, which are a special case of the incomplete information games
with observable deviators analyzed here. By considering a less general case,
they are able to state a weaker and simpler sufficient condition for consistency

'Sec e.g. Pearce (1984) and the modified solution proposed by Battigalli (1996a). Reny
(1982) proposes an iterative removal procedure to define the notion of “explicable equilib-
rium.” Using the results of the present paper one can show that in games with observable
deviators the strategies that survive this deletion procedure are exactly those which are ra-
tionalizable in the sense of Battigalli (1996a).

2 A self confirming equilibrium is a vector o of mixed strategies such that, for each player
i, each pure strategy s; with positive probability is a best response to some probabilistic belief
b'(s;) about the opponents, and the probability distribution on terminal nodes induced by
s; and b"(.v.') coincides with the distribution induced by s; and o_;. Beliefs are independent
if they are given by a product measure and are unitary if b*(s;) = b' is independent of s;, so
that also o, is a best response to b'.
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than the one given here. They also consider general (finite) extensive games
and put forward the “general reasonableness” notion mention above. But they
do not provide a characterization result for games with (partially) unobserved
actions.?

Battigalli (1996b) analyzes sequential equilibria and weaker notions of perfect
Bayesian equilibrium in finite games of complete information without chance
moves. As we mentioned above, some equivalence results are derived for games

with observable deviators. The present paper is a continuation and extension
of Battigalli (1996b).

Kohlberg and Reny (1992) give a complete characterization of Kreps and Wil-
son’s full consistency and show that the stochastic independence condition put
forward by Battigalli (1994,1996b) is only necessary, not sufficient, for full con-
sistency in more general games. Swinkels (1993) provides additional insight oz
Kohlberg and Reny'’s characterization.

1 Observable Deviators in Extensive Form
Games with Incomplete Information

In Section 1.1, we introduce a formal description of extensive form games with
incomplete information, which extends the formulation given in Kreps and
Wilson (1982). The readers already familiar with the latter can skip Section 1.1
and refer to the Appendix, Section A.1, which contains a list with the notation
and corresponding terminology. Note that some symbols are new and some
differ from Kreps and Wilson (1982) because we consider a more general and
more structured class of games.* In Section 1.2, we characterize the observable
deviators property and the stronger property “observable deviators in the agent
form.”.

3They claim that general reasonableness is necessary and sufficient for consistency, but
Battigalli (1996b) shows that this is claim is incorrect even in the restricted class of multistage
games with observable deviators in the agent form. For more on this see Battigalli (1996b,
Section §) and Section 2.2 of the present paper.

*Kreps and Wilson consider finite games of imperfect information with a random move
selecting the initial node, which may be interpreted as a state of the world in a game with
incomplete information, or a complete strategy of the chance player in a game with complete
information. Here we consider a slightly more general forrmlation. We do not assume in
general that the game is finite. We distinguish between ordinary chance moves, which may
take place at any point of the game, and the initial move by Nature choosing the state of
the world. Furthermore, in our framework the state of the world is explicitly represented as
a vector of types.
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1.1 Extensive Form Games with Incomplete

Information

An n-person ezlensive game with incomplete information is a tuple

F'=(0,X,<;1:H; A a;p,70; u)

with the following elements:

(i)© =@, x...x 0, and (X, <) is an arborescence with initial nodes § =
(8,,....8,) € ©; x ... x O, C X and precedence relation <C X x X. <
denotes the reflexive closure of <, thatis, z < yifandonlyifz <yorz =y.
[(z) denotes the set of immediale successors of node z. Z denotes the set of
complete paths and Z* the set of terminal nodes. Whenever every complete path
is finite and no confusion may arise, we write Z° = Z, identifying a complete
path with its terminal node. X\Z" is the set of decision (or chance) nodes.
Z(z) (2°(z)) denotes the set of complete paths (terminal nodes) containing
(following) a given node z. For any given set of nodes Y C X, Z(Y) :=
User 2(2) (2°(¥) = Usey 2°(2))-

An initial node § € © represents a state of the world and §; € ©; is the
type (private information) of player i (see (iii) below). A (complete) path
corresponds to a pair given by a state of the world and a (complete) history of
choices in the game. We say that a game I' has complete information if © is
a singleton. For any node y € X, J(y) denotes the unique initial node 8 € ©
such that § < y and J;(y) is the j** component of J(y).

(ii) Let 7:={0,1,...,n} and N = {1,...,n} denote respectively the players
set and the personal players sel. Index 0 denotes the chance player. For many
purposes there will be no need to distinguish between chance and personal
players. « : X\Z" — I is the players function and X; := ¢~1(i) is the set
of i's decision nodes (chance nodes if i = 0). We will often refer to groups
of players J C I. For example, X; := UJ.E_,Xj denotes the set of decision
(or chance) nodes of players in J. For any vector of elements (vo,v1, .oy Un)
we write vy = (v;)ies. Singletons are identified with their unique element
whenever convenient. The complement of J in I is denoted —J.

(iii) H is the information partition, i.e. a partition of X\ Z* such that the play-
ers function ¢ is H-measurable. H; denotes the induced partition of X;, that
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is, the collection of player i's information sets. H(z) denotes the information
set containing node z.5

Since 8; represents i's private information, we assume that at each information
set h € H; (i € N), player i knows the element 6; of 8, i.e. if z’,z" € h € H;,
then I’,‘(.‘t') = l’;(.‘t.‘”).

(iv) A is the set of actions; the actions function a : X\© — A specifies the last
action a = a(t) taken to reach node t.® For each h € H, A(h) ((A(z)) denotes
the set of feasible action at information set h (node z). The immediate successor
of node zfollowing action a is denoted by [(z,a). Thus for all z € X\Z"M,
a(f(z,)) = a.

We assume that the tuple (0, X, <;¢; H; A, ) satisfies the perfect recall pro-
perty.”

It will be convenient to have a specific notation for the initial action (or set
of actions) leading from a node (or set of nodes) to a successor (or a set of
successors) of that node. For all h € H, y € X, a € A(h), we write a = a(h —
y) if and only if there is one (and, by perfect recall, only one) node z € h such
that f(z,a) <y . Forallze X, Y C X, Az —~Y):={a € A(z) |y €
Y:[(z,a) < y} denotes the set of initial actions which may lead from node z to
some node in Y.

(v) p € A(©) is a probability measure on ©. We assume that there are inde-
pendent types — that is, p is the product of n probability measures p; € A(©;),
t=1,...,n8 ngis a function which assigns a probability measure o(- | h) €
A(A(R)) to each information set h € Hp of the chance player. We assume that
p and each mo(- | h), h € Hy, have full support.

(vi) u = (uy, ..., un) is n-tuple of payoff functions u; : Z — R.

SH is such that if H(z') = H(z") , then there is a bijection between [(z') and f(z").

8and is such that for each £ € X\Z*,a is one to one on f(z) and a(f(z')) = a(f(z")) if
H(z') = H(z").

7See Kreps and Wilson (1982) for a precise definition using this notation. Note that they
assume for notational convenience that A(h') N A(h") = @ whenever A'#A".

8Myerson (1991, Chapter 1) shows that, as long as no property of the payoff functions is
assumed (as is the case in this paper), there is no loss of generality in assuming independent
types.
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Types, Strategies, and Probabilities

A strategy for player i is a function s; : H; — A such that s;(h) € A(h) for
all h € H;. A complete siralegy profile s is an element of the Cartesian set
S:=S8p xSy X...xS,. A complete strategy profile induces a complete history
(feasible sequence of actions) of the game; a pair (6,s) € © x S induces a
complete path ¢(8,s).°

For the purposes of this paper it is often more convenient to represent (8, s) as
the (2n + 2)-tuple

(60,50:61,515.--30n.50) € (©p X Sp) X (B x §1) x ... x (On x S),

where f is a fictitious type which belongs to the singleton @ := {6p}. For
notational convenience we write S; := (O; x S;) and S := x;¢rS;. In general, a
given player i’s payoff is affected by the private information and the behavior
of each opponent j. Thus the set of type-strategy pairs S; captures well the
relevant uncertainty about opponent j. When considering a group of players
J, we sometime abuse notation writing (8;,s5) € Sy, (8,5) € S; x S—;. An
element of & is called a J-profile.

A strategy s; is consistent with node y, written s; € S;(y) if for all nodes r € X;
before y, s; selects the action on the path to y. Formally, S;(y) = {si € S |
Vz € Xi,(z <y) e [si(H(2)) = a(H(z) — y)]}. A J-profile (6;,55) € Ss is
consistent with a node y, written (87,55) € S;(y), if for all j € J, 8; = 9;(y)
and s; € Sj(y) (where by convention Jg(y) = 6o for all y). A J-profile (8;,5,)
is consistent with a sel of nodes Y, if it is consistent with some node in Y,
ie. if (0s,51) € S1(Y) := Uyey Ss(v). The subscript J is omitted if J = I.
Clearly S(y) is the set of type-strategy profiles inducing a path through y. It
follows immediately from the definitions that, for each node y and each J C I,
Ss(y) = xj¢sS5;(y). But in general the set of profiles consistent with a set of
nodes is not Cartesian: S;(Y) C x;¢s5;(Y).

An important implication of the perfect recall assumption is that for all players
i € I, information sets h € H; and nodes z € h, Si(z) = S;i(h). In fact, at
each node z € h player i knows her type 8; = J;(z) and the sequence of player
i's information sets and actions on the path to z is the same for every z € h.

9¢(8, 5) is defined by induction: the first element is §; given the k** element z, the (k+1)**
element is 2’ = f(z,3,(7){H(z)))-
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This implies that S(h) = U, enlSi(z) x S-i(z)] = Si(h) x S-i(h). Therefore,
we obtain the following:

Remark 1. In two—person games with perfect recall and without chance
moves (and in one-person games with chance moves) each set of type—strategy
profiles consistent with an information set h is Cartesian.

A mized straiegy for player i is a probability measure on the set S; of player
i’s pure strategies. But for the purposes of this paper it is more convenient to
consider a different concept. A distributional strategy for player i is a probability
measure o; € A(S;) on the set S; = ©; x S; of player i’s type-strategy pairs.!®

A distributional strategy o; is feasible given the probability measure on types
pi, written o; € A(Si;pi), if ¢i(Oi x S5;) = pi(©;) for all (measurable) subsets
©; C ©;. Clearly, distributional strategies coincide with mixed strategies in
games of complete information. A behavioral strategy for player i is a collection
of probability measures m; = (mi(- | A))nen, € Nii=xnen, A(A(R)). Note that
the behavioral strategy of the chance player is part of the description of the
game. The set of behavioral strategy profiles containing the exogenously given
behavioral strategy mg of the chance player is denoted by II := {=g} x II; x
cee X nn .

A system of beliefs is a collection of probability measures g = (u(- | h))ney €
M := xpegA(h). An assessmentis a pair (g, 7) € M x I

Consider a vector A of distributional (or behavioral) strategies. Assuming that
the type-strategy pairs of different players (or the actions at different informa-
tion sets) are chosen independently, one can compute the probability PXy) of
reaching a node y given A.!!

Consider, for simplicity, a finite game. There is a canonical way to derive a
distributional strategy &;(m;) from a behavioral strategy =; and to derive 3
behavioral strategy f:(c;) from a distributional strategy o::

8i(m:)(6:,5:) = pi(8:) T] milsi(h) | B);

heH;

10This is not exactly Milgrom and Weber's (1985) definition, because in their framework
pure strategies in S; are not type—contingent.
11These probabilities are computed in a straightforward way: P7(y) = n-el oi(Si{y))

PT(8) = p(8),if y = f(z,2), P"(y) = P™(2) - 7,(s)(a | H(z)).
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Bi(ei)(a | b) = 6i(Si([(z,a)))/0i(5i(2)), if 0i(Si(z)) > 0,z € h € Hi,a € A(h)

(by perfect recall and knowledge of i’s type Si(z) and S;(f(z,a)) are inde-
pendent of z € h; Bi(0;) is arbitrary if 0;(Si(z)) = 0). Given 7 = (m)ies
and 0 = (o:)ier, let 8(m) = (8i(m:))ier and B(e) = (Bi(ci))ies. It can be
checked that these transformations preserve the probability of reaching any
given node:!?

Yy € X, P*(y) = P*")(y) and P?(y) = PP")(y).

1.2 Games with Observable Deviators

Intuitively, a game has observable deviators if each player at each information
set is given n separate pieces of information concerning the type and behavior
of each opponent (including the chance player). Since the uncertainty of player
i about player j is represented by the set S;, it is natural to consider the
“strategic information” about j conveyed by information set h € H;, that
is Sj(h). If the information that i gets at h is given by (information about
herself and) n separate pieces of information about the opponents, it must
be the case that S_;(h) = x;j»:S;j(h). Otherwise, S_;i(h) C x;2;S;(h) and i
has joint information about her opponents which cannot be obtained from the
information concerning each one of them separately. We know that by perfect
recall (and knowledge of type) S(h) = S;(h) x S_;(h), h € H;. Therefore we
have the following definition:

Definition 1. A game of incomplete information has observable deviators

ift3

Vh e H, S(h) = So(h) x Si(h) % ... x Sa(h).

12This is a version Kuhn's (1953) theorem on the equivalence between mixed and behavior
strategies in perfect recall games. Since every player knows her type, we can interpret a
distributional strategy as a mixed strategy of a fictitious player with perfect recall choosing
(8:,s:) € Si.

13This property was called “strategic decomposability of information™ in the worling paper
version of Battigalli (1994).
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Note that every game with two players and no chance moves has observable
deviators (see Remark 1).

Remark 2. Let § be a subset of any Cartesian product S = Sy x ... x S,.
Then § = §p x...x S, ifandonlyifforalli=0,1,...,n,8§ =& xS_; (where
S: and S_; are the projections of S on S; and S_; respectively). Therefore a
game has observable deviators if and only if

Vi€ I,Vh € H,S(h) = S:(h) x S_i(h).

The terminology “observable deviators” is due to the following characterization
(cf. Fudenberg and Levine (1993)). Consider, just for simplicity, a complete
information game and suppose that the players are expected to play according
to a strategy profile s, but then player i deviates to a different strategy s!
thus inducing a path through an information set h, which would not have been
reached otherwise. Whoever gets the information corresponding to A realizes
that someone has deviated from s, but does not necessarily know who. However,
if the game has observable deviators, it is possible to identify player i as the
deviator. Consider the following property:!4

(FL) Viel,V(8,s)e S V(b,s)eS;, V6 s')eS; YheH,
if(8],si:0_;,s_;) € S(h) and (8, s) ¢ S(h),
then (6;,5:;82;,5";) € S(h).

Proposition 1. A game of incomplete information has observable deviators
if and only if property (FL) holds.

Proof. (Only if) Suppose that (6},si;0_;,5_;) € S(h) and (8,s) ¢ S(h).
Then (0_;,s_;) € S_i(h). If the game has observable deviators, S(h) = &;(h) x
S_i(h) and (8;,5::6-;,5-;) ¢ S(h) implies that (6;,s;) ¢ S;(h). This in turn
implies that (8;,s:;8";,5";) ¢ Si(h) x S_i(h) = S(h).

(If) Suppose that the game does not have observable deviators. By Remark
2, there are some i € I and A € H such that S(h) C Si(h) x S_;(h). Pick
(8,5) € (Si(h) x S_:(h))\S(h). Since (8,s) € Si(h) x S—i(h), there are (8’,s!

1Y

14FL stands for Fudenberg and Levine, since this is (the extension to incomplete informa-
tion games of) the “observable deviators” property in their {1993) paper.
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and (02;,s";) such that (6;,s:;6_;,s_;) € S(h) and (6}, s};0-;,s-:) € S(h).
Thus property (FL) does not hold. m}

Definition 1 and property (FL) provide a characterization of the observable
deviators property in terms of strategies and information sets. These “strategic
form/extensive form” characterizations turn out to be useful in game theoretic
analysis, but “observable deviators” clearly is a property of the information
structure. Therefore it is conceptually desirable to characterize the property
exclusively in terms the primitive elements of the extensive form.!3

Consider the following story. At the beginning of the game each player i says
that her type is 8;. Given the stale 6 resulting from these reports a “planner” or
“mediator” recommends that everybody acts so as to reach some node t coming
after 6. Then someone (the “planner” or one of the players) gets hard evidence
that at least one player has not been honest, because the play has reached a
set of nodes A (for example an information set) which is not intersected by any
path through t (formally Z(y) N Z(h) = @). Who is to blame? The following
definition provides a sufficient condition to conclude that at least one player in
a given group J has either lied or deviated from the proposed course of action.

Definition 2. Lett€ X, hC X,J C I. Group J is an observed liar/deviator
with respect to t given evidence h, if for ally € h, either ¥;(y) # 9;(t) (some-
one in J must have lied about her type) or there are ',y € X; such thatt' <1,
vV <y H(t')= H(Y') and a(H(Y') — y) # o(H(t') — t) (someone in J must
have devialed from the the action she was supposed to choose in order 1o reach

t).

Continuing with the above scenario, suppose that group —i is not an observed
liar/deviator with respect to t given h. Then it may be the case that player i
with a unilaterally dishonest behavior caused A to be reached instead of ¢. So
she is a suspect unilateral liar/deviator with respect to ¢ given h. The observ-
able deviators property can be characterized as follows: whenever player i is a
suspect unilateral liar/deviator, then she actually is an observed liar/deviator.

(OD)Vt € X,Vh € H, Vi € 1,if Z(t)N Z(h) = @ and group —i is not an
observed liar/deviator with respect to t given evidence h, then player i is an
observed liar/deviator with respect to t given evidence h.

!5 There are game theoretic solution concepts which are stated in terms of paths and do
not mention strategies at all (sec e.g. Greenberg (1990) and Bonanno (1992)).
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Note that we could have stated a similar, stronger property which holds for all
groups J C I and not only for single players i € I, but it turns out that such
a property is equivalent to (OD).

Proposition 2. A game of incomplete information has observable deviators

if and only if property (OD) holds.

Proof. (If) Suppose that the game does not have observable deviators. Then,
by Remark 2, there are there are i € I, h € H, such that S(h) # S;(h) x S_;(h).
Since it is always the case that S(h) C Si(h) x S-i(h), there must be some
(8,5) € (Si(h) x S=i(h))\S(h). Since (6,s) ¢ S(h), there is some t on the
path {(8,s) such that Z(t) N Z(h) = @. We show that neither —i nor i are
observed liar/deviators with respect to t given h and therefore (OD) fails. By
choice of ¢,(8s,s;) € Ss(t) for all J C I (in particular J = {,—i). Since
(8-i,5-:) € S—i(h), there is some y € h such that (§_;,5_;) € S-i(y). Group
—i cannot be an observed liar because (6_;,s-;) € S_;(y) N S_i(t) implies
¥_i(t) = 6_; = 9-;(y). Now suppose that there are t',y’ € X_; such that
<ty <zand H(t') = H(¥'). Then (-;,5-:) € S_i(y) NS—i(t) implies
a(H(Y') — y) = sy gy (H(Y)) = sy (H(t")) = a(H(t') = y). Thus —i cannot
be an observed deviator.

Since (8;.5:) € Si(h), there is some w € h such that (6;,s;) € Si(w). Thus
(6,5:) € Si(w) N Si(t). An argument similar to the one above shows that i
cannot be an observed liar/deviator.

(Only if) Suppose that (OD) does not hold, viz. therearei€ I, h€ H ,t € X
such that Z(t) N Z(h) = @ and neither group —i nor player i are observed
deviators with respect to t given evidence h. Since —i is not an observed
deviator, there is y € h such that

(a) 9_i(y) = 9-i(t) and whenever y' < y, ' < t and H(t') = H(y'), then
a(H(y') —y) = a(H{@') —1).

Take a profile (8_;, 5—;) such that

(b) 6_i = 9-i(y),
(c) for all y' € X_;, if ¥’ <y, then s,y \(H(y")) = a(H(Y) — v),
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(d) for all ' € X_;, if t' <t and there is no y' < y with H(y') = H(t'), then
s.uy(H(t')) = a(H(t') —1).

(clearly such a profile exists). Then (a), (b), (c) and (d) imply that (6_;,s_;) €
S-{v)NS_i(t).

With a similar argument one can show that, since i is not an observed deviator,
then there must be some w € & and (6;,s;) € S;(w) N S;(t). Thus (6:,s:) €
Si(w) C Si(h), (6-i,5-:) € S-i(y) C S-i(h) and (,s) € S(t). Since (4,s) €
S(t) and Z(t)N Z(h) = @, (8,5) ¢ S(h). Thus (6, s) € (Si(h) x S_;(A))\S(h)
and the game does not have observable deviators. a

An interesting class of games with observable deviators is given by multistage
games with possibly incomplete information and observed actions (modulo es-
sentially simultaneous moves). More generally it is sufficient that at each stage
7 each moving player i has a separate information partition HJ; over the previ-
ous stage actions of each opponent j. Figure 1 shows some examples of extensive
forms with and without observable devialors. Nodes in the same information
set are joined by a dashed line. The indexes i, j, k represent players. As long as
perfect recall is satisfied, different indexes do not necessarily represent different
players. Extensive form (a) has observable deviators. Also extensive form (b)
- the only one with incomplete information - has observable deviators. But
note that the corresponding extensive form with imperfect (not incomplete)
information in which there is a unique initial node where the chance player
chooses 8’ or §” does not have observable deviators. Finally, extensive form (c)
has observable deviators if and only if i = j.

Extensive forms (b) and (c) do not satisfy the following strengthening of the
observable deviator property. Given an extensive form game T', let A(T) denote
the agent form of T, viz. the extensive game obtained by assigning to each
information set A € H; of each player i in I a separate player (i, h) - also called
agent - with payoff function u;.!®

For each h € H, let Si* denote the set of strategies of player/agent (i, h)
in A(T'). A game T has observable deviators in the agent form if A(T) has
observable deviators, viz. for all A" € H, SA(h')=xaen S (h'). Clearly neither
(b) nor (c) in Figure 1 have observable deviators in the agent form. In general,
no game of incomplete information where the actions of a privately informed
player are (partially) observed can have observable deviators in the agent form.

6 The normal form of A(T) is Selten's (1975) ajent normal form.
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Figure 1 Three extensive forms.

This is a consequence of the following proposition, which characterizes games
with observable deviators in the agent form. Recall that A(z) is the set of
feasible actions at z and A(z — h) C A(z) is the subset of actions which may
lead to h from z.

Proposition 3. A game has observable deviators in the agent form if and
only if the following property holds:
(ODAF) for all h € H,z,y € h,z’ < z, if A(z' — h) C A(z') (C means
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“strict inclusion”), then there is one (and only one) node ¥ < y such that
H(z'y = H(y') and A(z' — h) = A(y' — h).

Proof. See the Appendix. s

The characterization of games with observable deviators in the agent form
is simplified for multistage games. Formally, an extensive form game has a
multistage structure if for every information set A € H and every pair of nodes
z,y € h, the number of predecessors of z and y is the same (this is the class
of extensive form games analyzed by Von Neumann and Morgenstern (1944)).
A stage is a maximal set of nodes with the same number of predecessors. A
superscript is used to denote the number of predecessors of a given node or
information set, i.e. z* (A*¥) is a node (information set) with k predecessors.
Note that all the extensive forms in Figure 1 except (c) have a multistage
structure.!?

The following corollary is an immediate consequence of Proposition 3.

Corollary 1. A multistage game has observable deviators in the agent form if
and only if for all stages k > 0, > k, information sets h® and nodes z¢, y* € kY,
zt <zt yF <yt either

H(z*) = H(y*) and A(z* — h%) = A(y* — RY),

or

Azt — hY) = A(z?) and A(y* — R%) = A(yY).

Y Extensive form (c) in Figure 1 can be transfamed into a multistage one by adding a
dummy node with only one feasible action for player i or j between the initial node and
the left node of player k. Often such “irrelevant transformations” can turn a non multistage
game into a multistage one.
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2 Sequential Equilibria in Games with
Observable Deviators

In this section we consider different properties for systems of conditional prob-
abilities and equilibrium assessments in extensive games and we show that they
are equivalent for the class games with observable deviators. Section 2.1 consid-
ers general systems of conditional probabilities on possibly uncountable spaces
and introduces a stochastic independence property. In Section 2.2 we focus on
finite extensive games with observable deviators and incomplete information.
We show that for such games stochastic independence and full consistency are
equivalent. Then we provide a simpler characterization of full consistency and
sequential equilibria for the subset of games with observable deviators in the
agent form. While it is not clear how to define the full consistency property for
general infinite games, the characterizing properties discussed here are easily
defined in the more general case.

2.1 Stochastic Independence for Systems of
Conditional Probabilities

Consider a set S, a sigma-algebra A of subsets of S and a collection of subsets
B C A which does not contain the empty set and is closed under finite union.
We interpret S as a set of elementary events or states, .4 as the collection of
relevant events and B as a collection of “hypotheses” or possible observations
about the state. For example, if S is finite or countable, we may have A =
25 the power set of S and B = 25\{@}. In game theoretic analysis the set
of states may be the set of J-profiles of types and strategies S; (J C I),
the collection of hypotheses may be the algebra generated by {S;(h), h € H}
(possible observations for some players), or by {S;(z),z € X} (the possible
observations of a completely and perfectly informed “referee”), or the power
set of S; (minus {@}). A pethaps more appealing modeling choice is to have Z
(the set of complete paths) as the set of elementary events. Whenever a sigma-
algebra A on § is understood, A(S) denotes the set of probability measures on
S with domain A.

A conditional probability system (or simply “conditional system™) on (S, A, B) is

a collection of conditional probability measures {¢(- | B)} ge s jointly satisfying
Bayes rule, or — more precisely - a function o(- | ) : A x B — R such that

(i) Y(E,B) € Ax B, if BC E then o(E | B) = 1,
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(ii) VB € B, o(- | B) € A(S),

(iii) V(E,F.B) € Ax Ax B, if FAB € B then o(ENF | B) = o(E |
FOB)o(F | B).

(Note that (i) and (iii) imply ¢(£ | B) = ¢(EN B | B)) A conditional proba-
bility system is complefe if it is defined for the triple (S,25,25\{9}). In this
case condition (iil) can be replaced by

(ii') VE,F, B € 25 x (2°\{0}) x (2°\{0}) ,if EC F C B then o(E | B) =
o(E | F)o(F | B).

The set of complete conditional probability systems on S is denoted by A*(S).!

In Section 2.2 we will focus on complete conditional probability systems over
finite spaces. In this case A™(S) can be regarded as a subset of a Euclidean
space endowed with the usual metric of pointwise convergence, and it is easy
to see that A*(S) is a compact set.

For § finite, let A°(S) denote the set of strictly positive probability measures on
S and similarly let A*°(S) denote the set of strictly positive conditional systems
on S. There is an obvious bijection between A*°(S§) and A°(S): A**(S)d o —
o(- | S) € A°(S) and A°(S) 3 o — (o(E | B))e.acs,px@ € A°°(S), where
o(E|B)=e¢(EnNB)/e(B). B

Result 1. (Myerson (1986)) Let S be finite. Then A*(S) is the closure of
AT(S).

Now assume that (S, .4, B) (finite or infinite) is a product of (n + 1) spaces
(Si A, B;) in the sense that: S = 8o x §; x ... x S,, A is the product sigma-
algebra obtained from (A4;);cs and B contains all the products Byx By x...x B,
(Bi € B;). We also assume that S; € B; for alli € I = {0,1,...,n}. For any
J C I (with at least two elements), let .4, denote the product sigma algebra
obtained from (A;j)jes and let By := {Bs € A; | Bs x S; € B}. For any
conditional system o on (S, A, B) we can define a marginal conditional sysiem
agyon (S5, A;,B;) (@ #J CI) as follows:

8 Rényi (1955) analyzes general conditional prebability spaces, viz. four-tuples (S, A, B, o)
whereby o satisfies (i),(ii) and (iii). Myerson (1986) independently used the concept of a
complete conditional probability system (on a finite space) in the context of game theoretic
analysis.



74 CHAPTER 3

VE; € A; VB, €Bs,0,(E; | By)=0(E; xS_; ] B, xS_7y)

We are interested in conditional systems satisfying a stochastic independence
condition which extends the usual product property of probability measures.
In the game theoretic analysis this property reflects the assumption that the
types and strategic choices of different players are stochastically independent.

Definition 3. A conditional system o satisfies the stochastic independence
property if for all partitions {Jo,Jy,...,Jk} of I, all (E;,,E;,,...,E;.) €
XkAjl and all (BJO,BJ“...,BJ,\.) (3 XkBJk,lg

o(xiEy, | xeBu,) = [[ ks (Es, | Bu,).

Remark 3. If o satisfies the stochastic independence property then the
following property holds:

(SI) for every bipartition J C I, all (4;,B;) € Ay x By, C_;,D_; € B_j x
B_y;,

U‘(AJ X C_,] I Bj X C_.J) = O'(AJ X D._J |BJ X D-J).

If 7 is a complete conditional system, then (SI) is not only necessary, but also
sufficient for stochastic independence, as one can verify applying Bayes rule
(iii") and (SI) iteratively.?0

The meaning of (SI) is that the marginal conditional probabilities about group
J are independent of information exclusively concerning the complementary
group —J.

Consider again complete conditional systems on finite spaces. Given S =
Sg x 81 X ...x S, let IA"(S) denote the set of conditional systems with the
independence property. Clearly IA*(S) is a compact subset of A*(S).

19This is a strengthening of Renyi’s notion of product of conditional probability spaces.
20See Battigalli (1996b). Battigalli and Veronesi (1996) provide a decision theoretic ax-
jiomatization of {SI) for complete conditional systems on finite spaces.
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It is easily checked that JA*(Sp x 81 X ... X Sp) NA*°(So x §) X ... x S,)
is exactly the set of conditional systems derived from strictly positive product
distributions. Let ¥(So x 81 X ... x S,) denote the closure of this set. Note
that also ¥(Sp x &) x ... x S,) is a compact set. The conditional systems in
U(So x Sy % ... x Sp) are called fully consistent (cf. Kreps and Wilson (1982),
McLennan (1989a,b), Myerson (1991)). Since JA*(So X Sy X ... X S,) is closed,
we have: ¥(Sp x §; X ... x Sp) C TA"(Sp x &) x ... x S,), i.e. every fully
consistent conditional system satisfies the stochastic independence property. It
can be shown that the converse does not hold.

2.2 Sequential Equilibria in Finite Games with

Observable Deviators

In this section we provide characterizations of the sequential equilibrium con-
cept for finite extensive games of incomplete information with observable devi-
ators.

Recall that an assessment is a pair (4, #) € M xII, where p is a system of beliefs
and r is a profile of behavioral strategies. An assessment (u, ) is sequentially
rational if for every personal player i € N and every information set h € H;, =,
maximizes i's conditional expected payoff given u(- | h) and 7_;. An assessment
(1, 7) is fully consistent if there exists a sequence of strictly positive assessments
{(#*,7¥)} C M x 11 converging to (x,7)?! and such that u* is derived from *
(and p) via Bayes rule.??

A fully consistent and sequentially rational assessment is called sequential equi-
librium (Kreps and Wilson (1982)).

Since assessments are lists of conditional probabilities of actions and nodes,
they can be derived from richer conditional systems on S or Z. An assessment
is a parsimonious description of players’ expectations, since it lists just the
necessary elements appearing in the sequential rationality condition. But the
analysis of richer systems of conditional probabilities allows the formulation of
“reasonable” restrictions on assessments.

?iRecall that the behavioral strategy of the chance player =g is given (I =
{=o}x M) x...xT,) and strictly positive. Thus = = =, all k.
22 Since x* is strictly positive, for every information set h, we can set u*(z | h) =

P (2, en P (0))-
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An extended assessment is a triple (A, u, #) whereby A is a conditional system
and (p, 7) is derived from A. In the spirit of traditional equilibrium analysis
we assume here that an extended assessment describes the players’ common
conditional expectations or reflects the point of view of an outside observer. But
most of our analysis can also be applied to solution concepts with heterogeneous
conditional expectations. We analyze extended assessments (A, p, 7) whereby
A is either a conditional system on S or a conditional system on Z.23

In both cases we require that A is consistent with the prior p on ©. Let A*(S;p)
(A*(Z;p)) be the set of conditional systems ¢ on § = @ x S (v on Z) such
that for all 8 € ©, o({6} x 5| © x S) = p(8) (v(Z(8) | Z) = p(6)).

Definition 4. A strategic extended assessment is a triple (o, pu, 7) € A*(S:p)

x M x II such that

Vh € HVz € hpu(z|h)
Vh € H ,Vz € h,Va€ A(h),7(a | k)

o(S(z) | S(h)) (2.1)
o(S([(z,a) | 8(z))  (2.2)

A tree—extended assessment is a triple (v, p,7) € A*(Z;p) x M x II such that

Vh € HVz € h, p(z | h)
Vh € H,Vz € h.Va € A(h),7(a | h)

v(Z(z) | Z(h)) (2.3)
wZ([(z.0))| 2(2)). (24)

It can be shown that if (o, u, 7) is a strategic extended assessment and v(Z(Y) |
Z(W)) =a(S(Y) | S(W)) for all Y,W C X, then (v,p,7) is a tree-extended
assessment. Equations (2.2) and (2.4) say that the given conditional system
o or v is consistent with a unique profile of behavioral strategies, because the
conditional probability of an action a at a node z in an information set h
is independent of the particular node z selected in h. In games of imperfect
information this condition can be violated by some conditional systems ¢ €
A*(S;p) and v € A*(Z; p). Thus we are actually considering a restricted set of
conditional systems. However, every conditional system ¢ € A*(S;p) with the

23Since we are now analyzing finite games, with an abuse of notation we can identify
complete paths and terminal nodes.
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stochastic independence property (and consistent with the given probabilities
of chance moves wp) satisfies (2.2) for some 7 € [1.24

Note that if (o,4, ) is strictly positive, (2.1) and (2.2) are satisfied if and
only if the profile of distributional strategies (o;(- | 8i))ies is derived from
7((oi(- | Si))ier = 6(x)) if and only if x is derived from the profile of distribu-
tional strategies (7 = B((o:(- | S:))ies)) (note that we are implicitly using the
independent types assumption). This fact can be used to prove the following
result.

Result 2. An assessment (g4, 7) is fully consistent if and only if there exists a
fully consistent conditional system o € W(So xSy X ... x S,) such that (o, g, )
is a strategic extended assessment.

This result and the fact that fully consistent conditional systems necessarily
satisfy the stochastic independence property yield the following corollary:

Corollary 2.  An assessment (u, ) is fully eonsistent only if it is part of a
strategic eztended assessment (0,1, 7) where o has the independence property.

The converse of Corollary 2 does not hold for general extensive games (see
Kohlberg and Reny, (1992)), but it holds for games with observable deviators,
as the following proposition shows.

Proposition 4. In every game of incomplele information with independent
types and observable deviators an assessment (y, @) is fully consistent if and
only if it is part of a strategic exiended assessment (o, u, 7) such that ¢ has the
stochastic independence property (cf. Battigalli (1996b, Proposition 3.1)).

Proof. (Only if) The “only if” part is Corollary 2.

(If) Assume that (o,u, ) is a strategic extended assessment such that o €
IA*(S). Each marginal conditional system o; is the limit of a sequence of

M¥i¢ 1,Yh € H,,Vz € h,¥a € A(h),S_i(J(7.0)) = S5_i(z) and, by perfect recall, §;(z) =
Si(h),Si(f{z,a)) = Si(h,a), where Si(h,a) := {(8i,3:) € Si(h) | s:(h) = a}. By stochastic
independence, o(S(f(zx,a)) | $(z)) = o(S5:(f(z,0)) X S-i(z) | Si(z) x S_i(z)) = a:(S:(h,a) |
Si(h)).

In)l)hc context of complete information games, Battigalli (1996b) gives a less restrictive def-
inition of strategic extended assessments, but the difference is immaterial when the stochastic
independence property is satisfied
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conditional systems {c¥}$°> where each o} is generated by a strictly positive
distributional strategy of(- | ©; x 5;). Let &* be the conditional system derived
from the strictly positive product measure x;¢70%(- | S;). Note that &* € ¥(S).
By compactness, {5*}3 has a cluster point & € ¥(S). By construction, ¢ and
& have the same marginals o; and induce the same 7. Since ¢ is consistent
with the prior p on © so is . By the assumption of observable deviators, for
allh € H,z € h,5(h) = §(h) x ... x S,(h). Hence stochastic independence
yields

Jj=n
u(z | h) = o(S(2) | S(h)) = [] o;(S;i(=) | S;(h)) = 6(S(z) | S(h)).
j=0

Thus (, p,7) is a strategic extended assessment and full consistency of ¢ im-
plies full consistency of (u, 7). 0

We now consider conditional systems on the set Z of terminal nodes (or com-
plete paths ) instead of the set S of strategy profiles. The advantage of this
approach is that the involved events are observable (at least in principle), while
subsets of S do not zlways correspond to observable events.

Definition 5. (cf. Fudenberg and Tirole (1991)). A tree-eztended assessment
(v, 7, ) is generally teasonable if

Vh € HYa€ A(h),Vz,y € h: (25)
v(Z2(J(z.a)IZ2({/(z,a), (v, 0)})) = v(Z(2)|Z({z, ¥})). '

Equation (2.5) says that, according to v, the choice of player ¢(h) at h € H
cannot affect the relative probabilities of the events “z is reached” and “y is
reached”, because (h) cannot distinguish z from y. (Equality (2.5) is implied
by (2.3) and (2.4) if #(a | &) > 0 and p(z | k) + p(y | h) > 0.) It can be shown
that this pattern of conditional probabilities on nodes and actions is implied
by the independence property of conditional systems on types-strategies (cf.
Battigalli (1996b, Proposition 5.2)).

It has been conjectured that a generally reasonable extended assessment con-
tains a fully consistent assessment.?® This would imply that the sequential

25See Fudenberg and Levine (1981, Proposition 6.1).
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equilibrium concept is characterized by sequential rationality and general rea-
sonableness. But Battigalli (1996b) shows that general reasonableness is strictly
weaker than stochastic independence even in the restricted class of multistage
games with observable deviators in the agent form, where stochastic indepen-
dence is equivalent to full consistency (by Proposition 4 full consistency is
equivalent to stochastic independence in all games with observable deviators
). To see that general reasonableness is weaker than stochastic independence
we can consider the extensive form depicted in Figure 1 (a). It is possible to
construct a generally reasonable extended assessment such that the probabil-
ity of actions L and a is one and player k’s conditional belief about player j's
choice (£ or r) depends on player i’s observed choice (L or R). To rule out this
possibility Battigalli (1996b) considers the following additional property:

Vh € H,Vz,y € h,¥a,b€ A(h):
v(Z([(z,0)) | Z({/(z,a),[(z,8)})) = »(Z(J(y,a)) | Z({f(y,a),f(y.b)}z%- )
4

(2.4’) is a completion of (2.4) in the following sense: if (v,u,7) is a tree-
extended assessment satisfyicg (2.4"), for each h, v uniquely induces a whole
conditional system (- | -;h) € A*(A(h)) with prior a(- | h) instead of the
simple probability measure x(- | h). The conditional system =(- | -; h) is derived
from the “binary” conditional probabilities

w(a|{a,0};8) = v(2(J(z,0) | Z({/(z.0). [(z,b)})

where z € A can be arbitrarily chosen. A (generally reasonable) tree-extended
assessment (v, 4, 7) can fail to satisfy (2.4") if w(a | h) = 0 = =(b | h) as
in the example mentioned above. It can be shown that if (v, pu, ) is derived
from a strategic extended assessment satisfying stochastic independence, then
also (2.4) is satisfied (see Battigalli (1996b, Proposition 5.2")). The following

Proposition yields a characterization of sequential equilibria in terms of tree-
extended assessments:

Proposition 5. (Battigalli (1996b, Proposition 5.8)) In every multi-stage

game with observable deviators in the agent form the following statements are
tquivalent:
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(1) (1, =) is part of a tree-eztended assessment (v, p, ™) satisfying (2.4°) and
(2.5),

(i) (u,x) is part of a strategic eztended assessment (o, p, %) such that o satis-
fies the stochastic independence property,

(iii) (s, 7) is fully consistent.

We have already mentioned that (2.4’) is necessary to obtain the equivalence
of (i) with (ii) and (iii). Building on the example mentioned above, one can
also show that there are generally reasonable and sequentially rational extended
assessments (v, u, ) which do not satisfy (2.4") and are such that the behavioral
strategies profile 7 is not part of any sequential equilibrium. However, it turns
out that in multi-stage games with observable deviators in the agent form,
general reasonableness and sequential rationality are sufficient to characterize
sequential equilibrium oulcomes. That is:

Proposition 6. For every mullistage game with observable deviators in the
agent form, every generally reasonable and sequentially rational exiended as-
sessment (U, 1, ) induces the same probabilily measure over terminal nodes as
some sequential equilibrium (u™, 7).

Here we prove this claim for games with the extensive form depicted in Figure
1 (a) (independently of payoffs). This gives a hint about the general proof
contained in the appendix. Fix a sequentially rational and generally reasonable
extended assessment (D, i, 7). First note that we may assume without loss of
generality that condition (2.4’) holds at every information set except {z,y},
because (¥, i, %) satisfies (2.4). We consider two cases:

(i) either #(a) < lor 0 < #(Z(z) | Z({z.¥y]})) < 1,
(ii) #(a) =1 and »(2(z) | Z({z,y})) € {0,1}.

In case (i), (2.4) implies (2.4’) and, by Proposition 5 (j,#%) is a sequential
equilibrium. This is easily checked if #(A”) < 1.If0 < ¥(Z(z) | Z({z,y})) < L.
apply the following result: :

Remark 4. For every v € A®(2Z), if (2.5) holds, then for all h € H,z,y €
h,e,be A(h), if0 < v(Z(z)| Z({z,y})) < 1 then



Games with Observeble Deviators 81

v(Z([(z.0)) | Z({(2,0), [(z,0)})) = (2(J(v,0)) | Z({/(y.a), [(y,})})).

In case (ii), without loss of generality assume 9(Z(z) | Z({z,y})) = 1. Then
for every action a by player i or j the probability of reaching player k’s right
information set given (fi,«/a) is zero. Thus we can modify the belief and the
local strategy of & after R’ without affecting the incentives of { and j. The
outcome—equivalent sequential equilibrium (u*, 7"} is obtained assigning to the
right information set of player k the same belief (and corresponding best reply)
of the left information set.

3 Conclusions

In this paper we have provided some characterizations of the observable de-
viators property for extensive form games with incomplete information. By
considering this somewhat restricted class of games it is possible to simplify
the game theoretic analysis and improve our understanding of some solution
concepts.

We focused our attention on Kreps and Wilson's (1982) sequential equilibrium
concept, providing alternative characterizations which emphasize the structural
properties of beliefs. In particular, we have shown that every generally reason-
able and sequentially rational assessment is outcome equivalent to a sequential
equilibrium assessment.

While the original definition of sequential equilibrium can only be applied to
finite games and a few special infinite games, the alternative characterizing
properties can be easily extended to general, infinite extensive form games.
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Appendix

A.1 Notation on Extensive Form Games with

Incomplete Information

Notation Terminology

(X, =) arborescence

z <y eitherz <yorz=y

6=(0,,...0,)EQR =0, x...x0, types vectors,initial nodes

I(y) (J: X — 0) initial predec. of node y

[(z) immed.successors of node z

pEZ complete paths

Z(Y), (Y CX) complete paths through Y

€2 terminal nodes

t: X\2" = {0,1,...,n} player function (0 =chance)

he H, (he H;) information sets (for 1)

H(z) inf. set containing node z

a € A(z) (or A(h)) actions at z (or k)

[(z,qa) immed.succ. of z after a

alh—y) (h€ H) first action from h to y

Az =Y)={a€A(z) |y €Y : [(z,a) <y} actionsfromze X
toYCX

Z(z,A)={z € 2(z)|Fa€ A: [(z,a) <z} term. succ.of actions
a € A fromz

PEAO),p=p1 X...X pn product prior on types

79 € (Xnen, A(A(R))) prob. of chance moves

Si=0; x5 i's type-strategy pairs

St ={(a if h):a€ A(R)}(he€ H;) strategies of agent (i, h)

7€l = xXpen A(A(R)) behavioral profiles

P (y|z), (rell) prob. of reaching y

from z given n

pEM = xpenA(h), (p.7)eMxI beliefs, assessments

o(- |y e A(S),v(-|-) € A (2) cond.prob.syst. on S, Z
E

zk, ht stage k nodes, inform. sets
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A.2 Proof of Proposition 3

\We must show that a game has observable deviators in the agent form if and
only if the following property holds:

(ODAF) for all h € H,z,y € h,z' < z,if A(z' — h) C A(z') (C means
“strict inclusion™), then there is one (and only one) node y' < y such that
H(z') = H(y') and A(z' — h) = A(y' — h).

(If) Assume that (ODAF) holds. Take an information set h. Then each 57 (h)
(h # g € H) is given by one of the following expressions:

(i) If we can find ' € g and z € h such that 2’ < z and A(z' — k) C A(z'),
then S7(h) = {aif g | a € A(z' — h)}, because in this case (ODAF) implies
that each path reaching h intersects g at some node y' and and agent (i(g),9)
can prevent h from being reached if and only if he chooses a € A(g)\A(y' —
h) = A(gN\A(z" — g);

(ii) Otherwise, either information set g¢ is not intersected by any path reaching
h, or it is intersected but no action at g can prevent h from being reached,
because - by (ODAF) - for all ' € g, A(z') = A(z' — h).

Consider a strategy profile s = (a, if g)gepn € (xyGHS;‘(h)). We have to show
that for each initial predecessor 8 of h, the induced path ¢(8,s) intersects h.
Let ¢(8.s) = (§ = zo,z1,...) be the induced path (thus 41 = f(zi,an(:,)))-
We show that for each k, if there is an £ € h such that z; < z, then there is
y € h such that z;4y < y. Since either h C © or 8 = z is a predecessor of A,
this implies the thesis.

Let zi < z € h. Then - by (i) or (ii) - (ag(z,) if H(z1)) € SH(z,)(h) implies
ag(z,) € A(ze — h). Hence there is y € h such that ziy1 = [(zr.ag(z,)) X y-

(Only if) Assume that (ODAF) does not hold. Then there are two possible
(non mutually exclusive) cases.

(i) There are an information set h with two distinct nodes z,y € h and a node
z' < z such that A(z' — k) C A(z') and for every v’ < y, H(¥') # H(z').
Consider an agent form strategy profile (5'; )sex inducing a path through node
y. Since the induced path does not intersect H(z'), we may assume without
loss of generality that s;}(:,) prescribes an action a” € A(z')\A(z' — A) if
H(z') is reached. Now consider a profile (1;);¢x inducing a path through
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z. Clearly (s)')gen € S(h) and  (t)');en € S(h), thus (sj}(,,),t'_‘ﬂ(:,)) €
Sticen(h) x SfH(:,)(h). 1.3ut STy 2 nen) € SA(h), because the induced
path reaches =’ where choice a* prevents h from being reached.

(ii) There are an information set h with two distinct nodes z,y € h and nodes
' < z,¥ < y such that H(y') = H(z'), A(z' — k) C A(2'), and A(z' —
h) # A(y' — h). We may assume without loss of generality that there is
an action a* € A(y' — h)\A(z' — h) (if, for every choice of z, 2, y, ¥,
A(y — h)\A(z' — h) were empty, then h would satisfy condition (ODAF})).
Let w € h be a node satisfying f(y’,a") < w. Consider an agent form strategy
profile (s;‘ )ge H inducing a path through w € A and a profile (t;‘ )ger inducing
a path through z. Clearly  (sf)jen € SA(h) and  (t))gen € SA(h),
thus (s;}(,,),tfﬂ(,,)) € S;‘,(,,)(h) X Sfﬁ(z,)(h). But (s;}(,,),tf”(z,)) g SA(h),
because the induced path reaches z’ where choice a* prevents h from being
reached.

We have shown that in both cases we can find two information sets h and ¢
such that SA(h) C SgA(h) X ng(h). Therefore deviators are not observable in
the agent form if (ODAF) does not hold.

A.3 Proof of Proposition 6

We have to prove that in every multistage game with observable deviators in
the agent form every sequentially rational and generally reasonable extended
assessment (¥, i, #) induces the same probability distribution on terminal nodes
as some sequential equilibrium (u*,7*).

The proof is in three parts. In part I we define and characterize the class
H(u, ) of information sets which are relevant in order to check the equilibrium
outcome conditions for a given assessment (g, 7). In part IT we construct a fully
consistent assessment (u*, 7°) such that # and n° coincide on H (4, 7). Since
H(j1,7) is a superset of the information sets reached with positive probability
by # and #*, % and #* induce the same probability distribution on the set of
terminal nodes Z. In part III we show that j and p° coincide on H (i, %) =
H(u®, ") and (u*,7") is a sequential equilibrium.

L. (Definition and characlerization of (u,)-relevant information sets.) For
any given assessment (u, ) let P#*(h | h') denote the conditional probability
of reaching h from an information set A’ € H. From the point of view of an
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agent A’ who is trying to maximize his conditional expected utility given (g, 7),
the only relevant components of (u,7) are u(- | A’) and the local (randomized)
strategies (- | k) at those information sets h which can be reached with positive
conditional probability choosing some action a € A(h’). This motivates the
following definition.

Definition A.1. An information set h is a (u,n)-follower of A’ if there is
an action a € A(h') such that P#*/%(h | k') > 0, where n/a is the behavioral
profile obtained from m replacing (- | h') witha. An information seth is (u,7)-
relevant, written h € H(u, ), if there are information sets hg,..., hy,... kg
such that hg € ©,hy = h and hyyy 15 a (u, x)~follower of hy, £=10,...,L - 1.

For example, consider an assessment (u, 7} for the extensive form depicted in
Figure 1 (a) whereby the probability of L and a is one: the information sets
of players 7, j and the left information set of player k are (u, 7)-relevant, while
the right information set of j is not (u, )-relevant. This means that we can
modify (4, =) on the latter informaticn set leaving the best response conditions
at the other information sets unaltered.

Clearly, every information set h reached from an initial node with positive
x-probability is (u, 7)-relevant.

We use a superscript such as ¢, t, T to denote the stage containing a node, ac-
tion, or information set. A path from 4” to h7+! is a sequence (z°,a?, ...,z a",
...,zT aT zT+) of nodes and actions such that z% € h?, zT+! g RT+
'+ = [(z',a'), for all t = ¥,...,T. Equivalently, the sequence is such that
? € h?, ' = f(zt,a"), a' € A(z' = AT+ forallt = 9,...,T.

Remark A.1. AT+l is a (u, n)-follower of h?, ¥ < T, if and only if there is
apath (z?,a%,...,2% a",..., 27, a7, 27*!) from h? to hT+! such that p(z? |
h*) > 0,7(a' | H(z")) > 0 and H(z') is a (u, v)—follower of A? for all t =
J+1,...,T. This is made apparent by the following equation

Pp,r/a'(hT+l |h0) -

= ¥ u@ ) 3 P (T | [(z°,a%))

zteh sTHIEATH! f(r?,8?)<cTH
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All the following claims hold for multi-stage games with observable deviators
in the agent form.

Claim A.1. Let (z",a"’,...,:‘,a',...,::T,aT,zT‘“) be a path from k* ¢ H
to hT+! € H(9 < T) and consider a new path (w?,¢?, ..., v’ ¢, ... v, T
wT+1) with the following properties:

'

(i) w® € h?,c® € A(w® — ATHY),
(i) Ve € (9+1,...,T), H(w') = H(z') = ¢' = a".

Then wT*! € AT+,

Proof. We show by induction that ¢' € A(w' — AT+!) fort = 9,...T.
This implies that w7*! € hT*+'and ¢’ € A(w? — AT+!) by (i). Assume that
¢” € A(w — ATH) for r = ¥,...,t — 1. Then w' and z' are predecessor of
hT+1 and Corollary 1 implies that either

(a) H(w') = H(z') and A(w' — hT+!) = A(z! — AT+, or
(b) H(w') # H(z') and A(w' — AT*!) = A(w').

In case (a), (ii) implies ¢! = a' and we obtain ¢! = a' € A(z' — ATH!) =
A(w' — RT*1). In case (b) it is trivially true that ¢' € A(w' — AT*!). This
concludes the proof of Claim A.l. o

For any non terminal node z and subset of actions AC Az), let Z(z, A) be the
set of terminal nodes following r after some action a € A. (Clearly Z(z, A(z)) =
Z(z).) Thus »(Z(f(z,a)) | Z(z, A)) gives the conditional probability of a given
A evaluated at node z.

Claim A.2. If AT+ is a(p, 7)-follower of h? (9 < T), then there is a path
(w?, ¢, ..., wt e, wl T wl+Y) from h? to AT+! such that p(w® | A?) >
0, (Z(J(w?,¢%)) | Z(w’, A(w? — AT*1))) > 0 and =(c' | H(w')) > 0 for all
t=9+1,...,T.

Proof. Take a path (z°,a%,...,2%,a, ..., 27, a7, zT+!) from h” to AT*! as
in Remark A.1 and construct a new path (w?,¢?, ..., w' ¢, ..., w7, T, w+!)
as follows:
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wd :Id,

¢’ € A(z® — ATHY),
WZ([(°,c)) | 2(z°, A(z® = KT+)) > 0;
forallt=9+1,...,T,
H(w')=H(z') = c'=d
(thusx(c" | H(w')) = =(a* | H(z")) > 0),

otherwise choose any ¢'such that =(c' | H(w')) > 0.

Note that (w’,¢?,...,w',c' ..., wT T, wT*)satisfies (i) and (ii) of Claim
A.l. Therefore wT*! € AT+! and all the desired properties are satisfied. This
concludes the proof of Claim A.2. o

Claim A.3. Assume that (v,p, =) is generally reasonable and AT+! {5 ¢
(u, 7)~follower of h® (9 < T). Let (v°,8°,... 4", ¥, . yT, b7 yT+1Y be a path
from h® to AT+'. Then p(yT+! | hT+1) > 0 only if u(y? | R%) > 0, PT(yT+! |
[(¥°,8%) > 0 and (Z(J(y°,8)) | 2(y°, A(y° — AT+1))) > 0. Furthermore,
if Z(AT+Y) C Z(h?), then p(yT+! | AT+1) > 0 if and only if p(y° | %) > 0,
P [0 6) > 0 and w(Z([(s", 1)) | Z(4°, A — KTH))) > 0

Proof. Take a path (w’,c?,...,wT, e, wT*!) from A° to AT*! as in Claim
A.2. We first show that p(y7+! | AT+') > 0 implies p(y® | h’) > 0 and
P (yT+ | J(¥°,b%)) > 0. Construct a new path (z?,a%, ..., 2" o, .., T,
aT, 2T+1) as follows (see Figure 2):

forallt=9+1,...,T,

H(z')=H(w') = da'=¢
(thusm(a' [ H(z')) = =(c'| H(w')) > 0),
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otherwise choose any a' such that x(a* | H(w')) > 0.

| stage 9 +1

stage T

] stage T+1

yT+ 1 wT+ 1

Figure2 A fragment of a multistage extensive form with observable deviators
in the agent form.

Since y’,uw’ € h%and yT+!, wT+! € KT+ the construction and Corollary 1
yield

e’ =b’ ¢ A(y" — hT‘H) = A(w" — hT'H) = A(z" — hT‘H).

Thus Claim A.1 implies z7*+! € AT+, By construction, p(z? | A*) > 0 and
P*(zT+ [ [(z%,8%)) > 0. (2.5) and p(z® | A?) > 0 yield

v(Z(J(°0) 1 Z({1(=°,0°), (y°,8°))) =

zt’ ¢
= W(2(z%) | 2({=° ¥*))) = #(‘{‘(—y'%—)

Therefore we obtain



Games with Observable Deviators 89

( ( T+l) | Z({IT"'I T+1}))
(Z(IT'H |Zq T+l T+l‘}

P | (v B NUZU ) | 2" 80), J(?. 80
PT(zT+ f(2® b"))v(Z(I(r S 2({1(°0), 15, 8)))
PRy | 1y 00y | h?)

Pr(TH | [(°,8°)u(=’ | h%)

(A.1)

As z € hT*'and p(z? | h?) > 0, (A.1) implies that p(yT*' | AT*+!) > 0 only if
#(y’ | h%) > 0and PT(yT*' [ [(y°,6%)) > 0.

Now we show that p(yT+! | AT+!) > 0 1mphes v(Z(f(y°,5%) | Z2(y°, A(y® —

AT+1))) > 0. Construct a path (v?,d’, ..., v7,dT, vT+1) as follows (see Figure
2):
o=y

foralli=v+1,..., T,

Hu)Y=HWw') = d=¢
(thus n(d' | H(¥')) = a(c'| H(w")) > 0),
otherwise choose any d* such that =(d* | H(v')) > 0.
By construction P*(vT+! | f(v?,d?)) = P*(vT*! | [(y?,¢%)) > 0. By Claim

AL, o7+ € AT+, Since p(y® | %) > 0 and p(w’® | A%) > 0, 0 < ¥(Z(¥°) |
Z({y’,uv’})) < 1, Thus Remark 4 yields

V(Z(f(y','b"’)) I Z(y",A(h" —_ hT+l))) —
=v(Z(f(w’,8°)) | Z(w’ A(R® — hT+1Y)))

and
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Since PT(1T+! | [(¥°.¢?)) > 0, (A.1") shows that u(y’ | h?) > 0 implies
w(Z(TH) [ Z({w*,vTH1})) > 0.

Assume that Z(hT+!) C Z(h?), i.e. every node in hT*! is preceded by some
node in A°. Let wT+! be any node such that p(wT+! [ AT+!) > 0. By the
“only if” part of the proof we know that the path (@?,&%,..., 07 &7, uT+)
from k? to KT*! has the same properties of path (w?,¢?,...,uT,cT, wl*l)
stated in Claim A.2 and we may assume without loss of generality that they
are the same path. Thus p(wT+' | hT+1) > 0. Now assume that p(y’ | h?) > 0,
Pr(yTH | [(v°,8°)) > 0 and w(Z(J(y",")) | Z(y°, A(y* — AT*1))) > 0. We
have shown that p(y® | A?) > 0 implies »(Z(vT+!) | Z({wT*',vT*'})) >
0, therefore p(vT+' | AT*) > 0. Thus p(y™*! | AT*!) > 0 if and only
if w(ZTHY) | Z({yT,0THY)) > 0. But (A1) shows that v(Z(yT+) |
2Z({yTH, 6 TH))) > 0 if and only if (Z(f(y*,5)) | Z(y", A(R® — AT*1))) >
0 and P*(y7*+! | f(y°,8%)) > O. Therefore, if Z(hT+Y) € Z(h?), then
[(e® | h?) > 0.1(2(J(¥° 1)) | Z(v°, A(h® — AT*1))) >0 and  P*(y7+'|
[(y° b)) > 0] implies u(yT+! | AT*') > 0. This concludes the proof of Claim
Al D

Let h be a (u, 7)-relevant information set (h € H(p, 7)). By definition there is
some chain (hq, ..., he,...,hr) of information sets such that hg C O, hey1is a
(u, v)~follower of hy (£ =10,...,L—1)and hy = h. We say (ho,.... he,... . hL)
is a (g, 7)-chain for h. A (p,w)-chain for h is minimal if there is no stri-
ctly shorter subchain which is also a (g, 7)-chain for h. In other words,
(ho,-.., he,. .., hr)is a minimal (g, 7)-chain for h=hgifforallk=0,...,L-
2.allf=k+2,...,L, hyis net a (g, x)-follower of hy.

The followings are obvious consequences of these definitions:

s if (ho,...,he,..., hL) is a (minimal) (u, 7)—chain for Az, then (ho, ..., he)
is a (minimal) (g, 7)~chain for h,

" for every (p,)-relevant information set there is at least one minimal
(p, m)-chain.

Claim A.4. Let h be a (g, 7)-relevant information set and let (ho, ...,
he, ..., hy) be a minimal (4, w)-chain for h, then Z(heyy) C Z(hy) for £ =
0.....L — 1. Therefore for every (p,m)-relevant h there is a (y, 7)-chain
(hov... hp_1, hy = h) such that Z(h) € Z(hr-1) (i.e. every mode in h is
o follower of some node in hy.y).
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Proof. . We prove the claim by induction on the length L + 1 of the minimal
(p, 7)—chains (ho,..., ks, ..., hr). The claim is trivially true for the minimal
chain of length 1. Assume it is true for all minimal chains of length L > 1 or
less. Let (ho,...,h¢,... hp_1, k) be a (u, x)—chain for hy = AT+ such that
(ho,.... he,...,hp_y) is minimal for hp_; = AT+!. We show that if Z(AT+*)
is not included in Z(hT+!) then (ho,...,hs,...,hr) is not minimal for AT+,
This implies the thesis.

If Z(AT**) is not included in Z(AT+'), there are T + 1-stage predecessors
of AT+t in different information sets and Corollary 1 implies that A(zT+! —
AT+E)y = A(zT+1) for each z7+! before hT+%. Then Claim A.2 implies that
there is a path (y7 *1,...,yT+*) from hT+! to AT+* such that p(yT+! | AT+1) >
0 and P*(yT+* | yT*1) > 0. Let hy_» = h®. Since (ho,... he,.... hp_y) is
minimal for hz_; = AT+, the induction hypothesis implies that Z(hT+!) C
Z(h?). Therefore there is a path (y?, b7, ..., y7, b7, yT*!) from some node
v € h? to yT+ € AT Since p(y™+' | AT+1) > 0, Claim A.3 implies
that p(y? | A?) > 0 and P*(y"+! | f(y%,5%)) > 0. Therefore (y°, 4%, ...,
yT+L, b7+ 0 yT+E) is a path from Y = h;_; to AT+t = R, such that
p(y® | A?) > Oand P*(yT+ | [(y®,b?)) > 0, which implies that hy is a (u, 7)-
follower of hp_2 and (ho,...,he,..., k) is not minimal for Ay = AT+, This
concludes the proof of Claim A 4. O

II. (Construction of an equivalent assessment.) Let (¥, 2, 7) be a sequentially
rational and generally reascnable extended assessment of the extensive game I’
and consider the agent form of I'. For each h € H (i, #) modify u; s on Z(h)
(ui,n = u;, h € H;) to obtain a payoff function ©;  such that all actions (local
strategies) a with #(a | k) > 0 are payoff equivalent for agent (i,h) and all
actions b with #(b | h) = 0 are strictly dominated conditional on h. Let [
denote the resulting modified game.

Now we construct a sequential equilibrium (p*,7") of ['. Let {i*} be a se-
quence of strictly positive probability measures (corresponding to conditional
systems) converging to &. Define a corresponding sequence of perturbed games
I'* with mixed strategy spaces restricted as follows (x(- | k) denotes a generic
randomized strategy of agent («(h), k) in T't):

For all h € H(i, %), fix some £, € h with g(Z, | k) > 0,. Then, for all
a,b € A(h), #(a | h) > 0 implies [x(a | h) > #(a | ) — 1/k], and #(b | h) =
0 implies [x(b | h) > P*(Z(J(24,)))/7*(Z(24))] (note that #(bJk) = O
implies limi_c D¥(Z(f(24,0)))/P*(Z(f(£4))) = 0, because #(b | h) =
B(Z([(En.8)) | 5(2(En))
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For all h @ H(ji, ), for all a € A(h), n(a | &) > 1/k.

Let (¥, p°, ") be a cluster point of a sequence {(v*, u*, 7%)}, whereby n* is a
constrained equilibrium of I'* and (v*, u*) is derived from the strictly positive
profile #*. By construction, (u*, x*) is fully consistent and (v*,p",%") is gen-
erally reasonable. It is trivially true by construction that # and »* coincide on
the (i, #)-relevant information sets:

Vh € H(i, #),Va' € A(h),#(d' | k) = =" (a’ | h). (A.2)

The construction also implies that

Yh e H(g, %),¥a',a" € A(h): \
im 7fk GI ﬂ'k au — . i/ (Z(f(é'l)u'))) (A.3)
kl_m[ (@' | h)/="(a" | h)] klf_n;‘o PE(Z([(in,a")).

((A.3) is obvious if either w(a’ | h) > 0or x{a”| h) > 0; if for some b € h,#(b |
h) = 0, then b is dominated in I' and, in every constrained equilibrium r*

7 (b ] h) = [H(2(J (20, 8)))/* (2(2n))))-

Remark 4 and (A.3) yield

Vh € H(js, #),YA € 240N\(Q},Va € A, Vz € h:
Az | h) > 0=>v"(Z([(z,0)) | 2(z,4)) =

_ v PH2U(GER) i
- kl.l_.n; ‘A’E(Z(I(J-:A,A))) - U(Z(f('tra)) I Z( ;A)).

(A.4)

OI. ((u°,=") is a sequential equilibrium.) It is easy to see that (u*, %) is a
sequential equilibrium of the modified game I'. We must show that (u*,x")
is also a sequential equilibrium of the original game I'. For all non relevant
h (h ¢ H(@, %)), the local mixed strategy °(- | k) is a best reply to (u*,7")
conditional on h even in the original game T, because agent h has the same
payoffs in both games I' and I'. We must show that for all (4, #)-relevant
information sets h (h € H(j, 7)), n°(- | h) (= &(- | k), see (A.2)) is a local best
reply to (u*, 7*) even in the original game I'. Since the best reply conditions
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for agent h depend only on u*(- | h) and #°(- | g) with g (u*, 7" )—follower of h,
it is sufficient to show that H(a,#) = H(u", %) and p"(- | h) = a(- | h).

We show by induction on the stages that for all {—stage information sets A*, ' €
H(a, %) if and only if A* € H(u",n"), and h* € H(j, %) implies p*(- | k*) =
A(- [ AY).

The statement is trivially true for the O—stage information sets h° C . As-
sume that the statement is true for all the stages t = 0,...T and consider an
information set AT+!,

Let AT+ € H(j,#) and let (A, ... A", AT*) be a (i1, #)-chain for AT+!. By
Remark A.1 there is a path (z%,a%,...,2" d% ..., 2T, a7, z7*) from h? to
hT+1 such that j(z* | %) > 0, #(a' | H(z')) > 0 and H(z') € H(i,%) for
t=9+1,....T (H(z") is a (3, #)-follower of h? € H(i,#)). The induction
hypothesis and (A.2) imply that a(- | A?) = p*(- | h®), #(- | H(z")) = =°(- |
H(z')) and H(z') € H(p",7") for t = 9,...,T. Therefore Remark A.1 yields
AT+l € H(p®, 7). If AT+ € H(p*,7*) a symmetric argument yields hT+! ¢
H(j, 7). Therefore hT+! € H(j1,#) if and only if AT+! € H(u", n").

We must show that AT*! € H(a, ) implies p*(- | AT+!) = (- | AT*!). Let
hT+! € H(i,#). By Claim A.4 there is a (i, #)~chain (A% ..., k" AT+}) for
hT+! such that every node of hT+! follows some node of h? (i.e. Z(hT+!)C
Z(h®})). Then Corollary 1 implies that for all y? € h?, A(y® — AT+ =
A(h® — AT*1). Furthermore, Claim A.3 holds in the “if and only if” ver-
sion. We first show that p*(- | A7+!) and (- | h7+!) have the same support.
Let (y%,87,...,¢% 0t ... ,y7,b7 yT+1) be a path from h? to AT+!. By Claim
A3, w (™ | ATHY > 0if and only if [u(y? | A%) > 0,07 (Z(J(¥°.4°)) |
Z(y?, A(R? — hT+1))) > 0 and n*(b' | H(y")) >Ofort =9 +1,...,T]. Note
that H(y') € H(p*,7") for t = ¥,...,T. By the induction hypothesis, (A.2),
(A.4) and Claim A3, p*(y"*' | AT*!) > 0 if and only if  [a(y® | A?) =
(LB > 0, 62 8) | Z(, AR — KTH)) = o+ (2(J(s?,6) |
Z(°, A(R® — KT+1)) > 0 and #(b* | H(y')) = = (5 | H(y")) > 0 for
t=9+1,...,T)if and only if g(yT+! | AT+!) > 0.

Now it is sufficient to show that, for all paths (z¢, a?, ..., 2!, o, ..., 27,

aT, zT+Y), (y2, 6%, ..., o, b, ..o, yT, 0T, yT+1) from A? to AT+! such that
ﬂ(yT+1 | hT+1) > 0 and ﬂ(rT“ I hT+l) >0,

y'(yT'H [hT'“) iz(yT“ lhT+l)
w ETHRTH) = QT [RTH)
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But this follows immediately from the induction hypothesis, (A.2), (A.4) and
the following equations, which hold for (v, u,7) € {(9, 4, %), (v",u", 7*)}:

T T e _ VT 1 Z2({2TH, Y)Y
p(yT+1 Ih +1)//"(: + |h + )_ u(Z(yT“) | Z({zT'H,yT-bl -

_ B A2 0%)) | Z(v" AGR® — hTHONPT(yTH | (0, %))
uz’ [RWZ(( ) | Z2(6° AGR® — AT P (2T | [y, %))
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