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Abstract

We analyze the consequences of strategically sophisticated bidding without assuming equilibrium
behavior. In particular, we characterize interim rationalizable bids in symmetric first-price auctions
with interdependent values and affiliated signals. We show that (1) every nonzero bid below the
equilibrium is rationalizable, (2) some bids above the equilibrium are rationalizable, (3) the upper
bound on rationalizable bids of a given player is a nondecreasing function of her signal. In the
special case of independent signals and quasi-linear valuation functions, (i) the least upper bound
on rationalizable bids is concave; hence (i) rationalizability implies substantial proportional shading
for high valuations, but is consistent with negligible proportional shading for low valuations. We
argue that our theoretical analysis may shed some light on experimental findings about deviations
from the risk-neutral Nash equilibrium.
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1. Introduction

The analysis of simultaneous bidding games generally builds upon the notion of
(Bayesian) Nash equilibrium. Implicit in the latter solution concept are the assumptions
that players are rational and haldrrect beliefs about the play of their opponents.

This paper represents a first step toward the analysis of simultaneous bidding
games under the assumption that bidders’ beliefssmategically sophisticated, but not
necessarily correct; the rationality hypothesis is maintained.

Strategic sophistication is defined as the conjunction of the following assumptions about
beliefs:

(1) Bidders expect positive bids to win with positive probability;
(2) Bidders are certain that their opponents are rational and certain of (1);
(3) Bidders are certain that their opponents are certain of (2); and so on.

We focus on first-price sealed-bid auctions with private or interdependent valuations
and independent or correlated signals, and adopt the notion of (interim) rationalizability to
capture strategic sophistication.

Our approach is motivated by the following considerations. In our opinion, the
equilibrium assumption that beliefs are correct should be justified in terms of more
fundamental hypotheses about the bidders’ belief formation process. In particular, one may
attempt to find a justification based on either introspection or learning sp#agic context
of auction games.

This paper provides an analysis based on beliefs that are strategically sophisticated,
and hence consistent with a careful introspective analysis of the game. We show that, in
first-price auctions, although strategic sophistication has nontrivial implications for bidding
behavior, it is consistent with a wide range of nonequilibrium beliefs. Thus, introspection
alone does not provide a justification for equilibrium analysis.

One may then argue that, even if bidders initially hold heterogeneous nonequilibrium
beliefs, a learning process should nevertheless lead to an equilibritiis argument,
however, is subject to important qualifications. First, it applies only to situations where
bidders repeatedly play similar auction games with different competitors (a fixed set of
bidders could give rise to collusion). Second, whether convergence to an equilibrium occurs
at all, as well as the speed of convergence, crucially depend on how much feedback each
player obtains about the decision rules adopted by his competitors in previous plays. In
auctions games, this feedback is typically very poor: only the actual bids, and not the
private information that induced such bids, can typically be obsefved.

Therefore, we find no compelling reasons to expect approximate equilibrium behavior
in the short run. Not surprisingly, experimental evidence shows significant and persistent
deviations from the risk-neutral Nash equilibrium in first-price auctions (cf. Kagel, 1995).

1 On learning in games see, for example, Fudenberg and Levine (1998).
2 |n a Dutch auction, whose reduced normal form is like a first-price auction, only the winning bid is observed.
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These considerations suggest that it may be interesting to ascertain the extent to which
the predictions of “textbook” auction theory (cf. Milgrom and Weber, 1982; Myerson,
1981; Riley and Samuelson, 1981; Vickrey, 1961) are dependent on the assumption that
bidders’ beliefs are correct.

Our analysis addresses this issue. We findbichshading (bidding below the expected
value of the good conditional on private information) is a robust phenomenon in first-price
auctions. In settings with common values, shading is a consequence of rational reaction to
the winner’s curse, which is not present in private values settings. However, we also find
substantial shading in settings with private values. Moreover, our results are qualitatively
consistent with the empirical finding (cf. Kagel and Roth, 1992) that higher types tend to
shade proportionally more than lower types.

On the other hand, the equilibrium assumption appears to be cruciakfemue
equivalence in auctions with independent private values (and risk neutral bidders). In
particular, our analysis of first-price auctions shows that

(i) for every type, every positive bid below the corresponding equilibrium bid is
rationalizable, and
(i) for almost every type, the highest rationalizable bid is above the equilibrium bid.

Note that our assumptions about beliefs and behavior imply that players do not
use weakly dominated bids. In a second-price auction with private values, analogous
assumptions imply that each player bids its valuation, as in the dominant-strategy
equilibrium. Therefore, in light of the standard (i.e., equilibrium) revenue equivalence
results, we conclude that the expected revenue of a seller with rationalizable beliefs in
a second-price auction may be lower or higher than the rationalizable expected revenue in
a first-price auction.

A further motivation for our work does not directly apply to this paper, but rather to
the general approach we are attempting to develop. In recent years, many novel auction
designs have been implemented in practice. When faced with such “novelties,” bidders
cannot be expected to have learned to play equilibrium strategies—even if, say, they may
be reasonably expected to have learned the shape of each other’s valuation functions, each
other’s signal distribution, and so on.

In such situations, we find the case for an analysis based on strategic sophistication alone
particularly compelling. We hope that the methodology of this paper can be extended to
more complex bidding games.

This paper employs an interim notion of rationality: different types of the same
player are allowed to hold different beliefs about the bidding behavior of his opponents.
Correspondingly, our results characterize interim rationalizability.

The latter solution concept involves the iterative deletion, for each possible type, of
bids that cannot be justified by beliefs consistent with progressively higher degrees of
strategic sophistication. A direct application of this procedure to bidding games would be
analytically cumbersome and numerically intractable.

Our main technical contribution is to provide a more efficient implementation of interim
rationalizability in the setting under consideration. The methodology we propose entails
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constructing bounds on the set of rational(izable) bids for a given type (valuation, signal)
then proving that every bid within these bounds is rational(izable).

The remainder of the paper is organized as follows. Section 2 illustrates the steps of our
analysis, as well as the main ideas, by means of an example. Section 3 introduces our basic
characterization result for symmetric auctions with interdependent values and affiliated
signals. This result is used in Section 4 to obtain an iterative characterization of interim
rationalizable bids in auctions. Section 5 discusses the relationship with experimental
evidence and some extensions of our results. Appendix A contains some proofs and
ancillary results.

2. Anillustration: the two-bidder uniform IPV case

In order to develop the main ideas, we consider the following simple setting: two bidders
(denoted = 1, 2) participate in the auction; each bidder’s valuation is fully determined by
an independent drag from the uniform distribution o0, 1]. We reserve boldface letters
for random variables, and italics for their realizations. Bidders are risk-neutral: thus, if
bidderi wins the object for a priceZ$when her valuation is; = s;, her payoff equals
Si — b.

A bidding function is a may: [0, 1] - R;. Recall that, in this setting, there exists a
unigue, symmetric Bayesian Nash equilibrium, characterized by the bidding function

beq(si) = %Si . (1)

To simplify the exposition, throughout this section we assume that a bidder’s conjecture
about her opponent’s behavior may be represented by a continuous, inctdzsditigg
function (these restrictions are relaxed in the main text). In light of our distributional
assumptions, the expected payoff to biddevhen her type is;, her conjecture i},

and she bidé € [b;(0), b; (1)]is

7 (b, si;0)) = (si — )b} (b). (2)

The first objective of this paper is to characterize bids that survive finitely many steps
of interim rationalizability, under the additional assumption that (it is common belief that)
bidders expect positive bids to win with positive probability. The set of bids for tyffeat
survivek steps of the procedure is denoted®ys;; k).

In the present setting, it turns out that interim rationality, with the additional assumption
just indicated, eliminates all weakly dominated bids: thus, if bid&esignal iss; > 0, she
may only place bids in the intervéD, s;). A bidder with signak; = 0 will only bid 0.

This is the first step of the procedure, i.e., the characterization of the set of interim
1-rationalizable bids for each bidder: we may wiRés;; 1) = (0, s;) for s; € (0, 1] and
R(0; 1) = {0}.

3 Our techniques also provide upper bounds on the set-afite rationalizable bids, although these bounds
may not be tight. See Section 5 for a brief discussion of ex-ante and interim rationalizability.

4 Throughout the paper we call a functiénincreasing if x’ > x” implies h(x’) > h(x"), and we callh
nondecreasing if x’ > x” implies 2 (x") > h(x").
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The inductive step entails characterizing the $ets ; k) for eachs; € [0, 1] andk > 1;
by definition, these are the collections of bids that are best responses for bitloler
conjectures consistent with the following assumptions:

(1) positive bids win with positive probability; and
(2) foralls;, bidder;’s types; places bids drawn from the sRi(s;; k — 1).

The inductive step can be understood by focusing on the characterization of the sets
R(si; 2), s; > 0. Note that, fork = 2, (2) actually implies (1); moreover, if biddeis
beliefs about bidde)j are represented by the bidding functibp, (2) requires that, for
(almost) alls; < [0, 1],

O0< bj(Sj)<Sj. (3)

That is, biddet’s belief (for any given signal) must be a positive function below the least
upper bound(s;; 1) =s; 5 It is plausible to conjecture that the s@®ss;; 2) will also

be intervals of the forng0, B(s;; 2)). Our task is then talerive a new least upper bound

B(-; 2) fromthe preceding one, i.e., B(-; 1). If successful, this approach generalizes to all
finite iterations.

We now verify that this conjecture is correct, and derive the new least upper bound.
Specifically, we first show that the “old” least upper bound may be used to construct an
upper bound on the set of interim 2-rationalizable bids; then, we show that this upper bound
is tight, i.e., that every positive bid below this new upper bound is interim 2-rationalizable.

The first key step is to note that the “old” least upper bold; 1), viewed as a
conjecture that bidder holds about biddey, is “ more pessimistic” than any conjecture
b; that satisfies Eq. (3).

More precisely, suppose that biddés type iss; > 0, and consider any bibl € (0, s;).
Sinceb < s;, bidderi strictly prefers to win the object than to lose it. Thus, a conjecture is
“more pessimistic” than another if it implies a lower probability of winning, i.e., of placing
the highest bid. In particular, ib; satisfies Eq. (3)B(s;; 1) < b implies b;(s;) < b,
but the converse is false. Thus,[8r B(s;; 1) < b] < P1isj: bj(s;) < b], and hence
w(b,si; B(-; 1) <m(b,s;;bj) forall b e (0,s;).

We will be interested in the maximum expected payoff that bidd=an secure, given
the conjectur@(-; 1):

N

K
“(sisB(3 D) = i —b)Prs;: B(sj; D) <b|= i—b)-b=—.
7*(si; B(-3 1) rg1§)><(s b)Pils;: B(sj; 1) < b] rg1§)><(s by-b=
The unique maximizer is /2.
On the other hand, notice that, for any conjectoyeand bidb € (0, s;), 7 (b, s;; b;) <
S,'—b.

50ra probability distribution over such functions (see Section 3).
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Fig. 1. The bidding functionyb* (L) and the corresponding payoff function for biddgR).

The above observations allow us to place an upper bound on the set of interim 2-
rationalizable bids. Suppose tltais such that; —b < w*(s;; B(-; 1)) = n(s—zf, si; B(-; 1)).
Consider any conjectut®; that satisfies Eq. (3): then

m(b,si;bj) <si—b <n<s—2i,s,'; B(; 1)) gn(s—zi,s,'; b.,').

Hence,b cannot be a best reply to a conjecture that satisfies Eq. (3). In other words, the
quantitys; — 7*(s;; B(-; D) =s; — si2/4 is an upper bound on the s&{s;; 2).

We now prove that this upper bound is tight by exhibiting, for any &ic (0, s; —
s?/4), a conjecturel’” that satisfies Eq. (3) and such tibétis a best reply t@?’.

The construction is illustrated in the left panel of Fig. 1. The p&irg chosen so that
B(s; 1) =b* — 4. Fors; € [0, 5], the bidding functiorg”” approximates the bouri-; 1)
from below?® Fors; > 5, the functiong”” is defined as the line segment joining the points
(5,9” (5)) and(1, b*). Note that Eqg. (3) is satisfied for almost &)| as required.

The corresponding payoff function is shown in the right panel of Fig. 1. Notice that, for
b € [0, b*— 8], by constructionr (b, s;: B(-: 1)) ~ (b, si; ¢°*); moreoverz (b*, s;; ¢ ) =
s; —b*. Thus, sincé* < s; — 7*(s;; B(-; 1)), we have

w(b* si;0" ) =si —b* > 7 (si;B(; D) = 7 (b, si; BC; D)~ w (b, si; o).

Hence p* is strictly more profitable than any bide [0, b* — §]. Furthermore§ is chosen
S0 as to ensure that(b, s;; gb*) is increasing on the intervéb™* — §, b*], as shown in the
figure. Since clearly bids abovw& are strictly worse thah*, it follows thatb™* is a strict
best reply to the conjecture g””.

We conclude that the function — s; — 7*(s;; B(-; 1) =s; — si2/4 provides thdeast
upper bound on the se®(s;; 2); we shall denote it bB(-; 2). The argument above shows
thatR(s;; 2) isan interval ‘with interior (0, B(s;; 2)).

The preceding construction did not rely on the specific functional form of the “old”
least upper bounB(- ; 1), but only on some of its features—specifically, monotonicity and

6 For instance, leg”” (sj) =sYB(sj; 1) for a close to 1.
7 We call “interval” any convex subset ¢, 1].
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Fig. 2. The two-bidder uniform IPV model: bounds.

positivity. Thus, the construction can be repeated starting from the bound just derived, i.e.,
B(-; 2), to conclude that the least upper bolBd; 3) on the sefR(-; 3) is given by

B(si; 3) =si — % (si: B(-; 2).

More generally, determining the maximum payoff against a given least upper bound
B(-; k — 1) is sufficient to pin down the least upper bouBd ; k) on the set ofk-
rationalizable bids. The s&(s;; k) is an interval with interioK0, B(s;; k)).

Thus, the methodology we propose is particularly amenable to numerical computation.
Figure 2 shows the first four bounds for the model under consideration; further bounds are
not shown because they do not differ significantly frBin; 4).8

It can be easily proved by induction thBts;; k) < B(s;; k — 1). Therefore the limit
B(s;; 00) = limy_  B(s;; k) is well defined. In Section 4 we prove that the set of interim
rationalizable bids for type is an interval with interiox0, B(s;; c0)).

To further illustrate our techniques, we sketch an argument showing that, as suggested
by Fig. 2, there are rationalizable bidsictly above the Nash equilibrium for almost
every type. First note thdi®d(s;) = s;/2 must be rationalizable for type because the
bidding functionb®¥is a best reply to itself. TherefoBs;; co) > b®(s;). Since the set of
rationalizable bids fos; is an interval with interio 0, B(s;; 00)), every bid in the interval
(0,b®(s;)) is rationalizable. This implies that all the best replies to conjectbfesuch
that 0< b;(s;) < b®(s;) (for aimost alls;) are rationalizable. The least upper bound on

8 Details and code are available from the authors upon request.
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such best replies can be derived frbf¥, regarded as a least upper bound on conjectures,
using our method:

2
b"®W(si) = si — " (si; BN =i — s—é

It is easily verified thab™"(s;) > b®9(s;) for all s; € (0, 1). ThereforeB(s;; oo) > b®4(s;)

for almost alls;. In Section 4 we show that this is a general result.

In this example, the least upper bouBds;; 2) = s; — si2/4 is a nondecreasing and
concave function of;; also, it lies very close to the 48ine near the origin. This is not
specific to the case= 2, or indeed to this particular example: our results in Section 4 show
that, in all symmetric auctions with independent private values as well as in “generalized
wallet games” (cf. Klemperer, 1998), each bouBd; k) computed as indicated above
has these properties, for &ll= 2, ..., co. Therefore, rationalizability implies substantial
proportional shading (bidding below the valuation) for high types, but is consistent with
negligible proportional shading for low types.

3. Characterizing best responses

Consider the following game with asymmetric information representing a single-object,
first-price auction with (possibly) interdependent values and risk-neutral bidders. There
aren players, or bidders. Each biddérobserves a random signal with realizations
in the compact intervab; = [0, 1]. Signals are distributed according to the joint c.d.f.
F:S— [0,1], whereS =[]7_; S;. We shall often refer to signals &gpes.

After observing her signal, each player chooses abbiel 0. The object is assigned
to one of the high bidders, breaking ties at random. The winner pays her bid, losers do
not pay anything. Biddet's value for the object is given by a function (random variable)
V.S —R.

3.1. Notation

Randomvariables and beliefs. From the point of view of a bidder, her competitors’ bids
are random variables. We useldface letters to denote random variables. A function
(random variableb; : [0, 1] — R, can be interpreted as a conjecture of playabout the
bidding behavior of playej—a description of how playef would bid for any possible
signal (or type)s; 2 To allow for the possibility that a player is uncertain about the
bidding behavior of her competitors, we model beliefs as probability distributions over
(n — D-tuples of bidding functions (random variables). L8t denote thejth copy of

the set of bounded functions with domdin 1] and rangeR., interpreted as the set of
conjectures about. The set of possible conjectures for biddexbout her competitors is
B_;i= ]'[#i B;. A belief for playeri is a probability measure ofi_;, that is, an element

9 We neechot interpretb ; as a bidding strategy chosex-ante.
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w of the setA(B_;).1% 11 With a slight abuse of notation we identify a beljefassigning
probability one to dupleb_; € B_; with b_; itself. As a matter of terminology, we refer to
elementd_; € B_; asconjectures. Thus, in our setting conjectures are degenerate beliefs.

Inequalities. Inequalities between random variables are interpreted as pointwise inequal-
ities which hold almost everywhere. For examge,< B; if and only if the set ofs;

such thatb;(s;) > B;(s;) has (Lebesgue) measure zero. Similarly, inequalities between
tuples of random variables are interpreted as coordinate-wise inequdities: B_; if

and only ifb; < B; for all j # i. Degenerate random variables and collections of identical
degenerate random variables are represented by the corresponding real numbers.

Conditional expectations and probabilities. The expected value of a random variable
x:S — R conditional on realization; is denoted Ex | s;] and the expected value a&f
conditional ons; and eventC_; C S_; is denoted Ex | s;, C_;]. For example,

Elv; | si,b; <b]= / Vi(si, s—i) dF_jji(s—; | 57)
[b_; <b]
is the expected valuation for biddeconditional on the signal and the event thas the
high bid.
A similar notation is used for conditional probabilities: the probability of event C
S_; givens; andC_; C S_; isdenoted RA_; | s;, C—;], andC_; is omitted if C_; = S_;.
For example,

Prib_; <b|sil= / dF_;ji(s—; | i)
[b_;<b]

is the conditional probability thdt is the high bid given conjectute._;.
We shall only need to consider beliefs assigning zero probability to ties. Given such
a beliefiu € A(B—;), the expected payoff of biddingconditional on signat; is

(b, 555 1) = / E[V; — b | 51, b_; < b]Pb_; < b | s:]u(db_s).
B_;
Let

¥ (s ) = supm (b, si; ).
530

Bid b is a best response to belieffor types; if (b, s;; n) = 7*(si; ).

10 Our results do not depend on the choice of a specific sigma-algebra of measurable suBsetd\e only
require that singletons are measurable, so that degenerate beliefs belbfig tg).

11 Note that we allow forcorrelated choices of bidding functions, and hence spurious correlation among
opponents’ bids. However, the formulation in the text does entail a mild restriction: plapemot believe that
player j’s bid is a function of the valuation of competitbr
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3.2. Assumptions

We assume that the environment is symmetric (cf. (Milgrom and Weber, 1982)). More
precisely:

Assumption 1. The cumulative distributiorF is symmetric: that is, for any permutation
{r(D),....,7(m)}of(1,...,n},andforany € [0, 11", F(s1, ..., $x) = F(Sz(1), - - -» Sz(n))-

Assumption 2. The valuation functions are symmetric: that is, there exists a function
v:[0, 1] x [0, 1]"~1 — R such that:

(i) Foreverysy € [0, 1], s_1 € [0, 1]"~1, and permutatiofr (2), ..., w(n)} of {2, ..., n},
V(s1,5-1) = V(s1, (Sz(j)) j#1)-
(iiy Foreveryi e N, ands = (s;, s—;) € S, Vi (s) =V(s;, 5_;).

For example, in an auction witprivate values, v(s1,s_1) = s1. In an auction with
pure common valuesi(s1, ..., s,) is the expected value of the object conditional on the
realization(sy, ..., Su).

In the following, we shall drop player indices whenever no confusion can arise.

Assumption 3. The cumulative distribution functiof' is differentiable, with continuous
density f bounded away from zero.

Assumption 4. The functionv:[0, 1] x [O, 1”1 — R is continuous, increasing in
the first argument, and nondecreasing in all the other arguments. Moreover, it satisfies
v(0,0,...,00=012

As a consequence of Assumption 4, the expected valuation conditional on a player’s
signal is positive:

Remark 1. For each player and each signaj} > 0,

Elv; | si] > 0. (4)

We also assume thaignals are affiliated. As is well known from Milgrom and
Weber (1982) (MW henceforth), this is equivalent to the supermodularity of Idepr
any pair of vectors(x,y) € R"xR" let x v y andx A y denote the componentwise
maximum and minimum, respectively, i.e.,v y = (max(x1, y1), ..., max(x,, y,)) and
x Ay =(min(x1, y1), ..., MiN(x,, y,)).

12 The assumption thav; (0, ..., 0) = 0 is made for expositional simplicity only. It ensures that, in the
symmetric equilibrium constructed in Theorem 14 of (Milgrom and Weber, 1982), positive bids win with positive
probability; thus, equilibrium bidding functions are admissible conjectures. Our analysis goes through unchanged
if one instead assumes thatis nonnegative, and players only expect bids ahgv®, .. ., 0) to win with positive
probability (so that, again, equilibrium bidding functions are admissible conjectures).
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Assumption 5. For all s, s" € S,
FsVs)f(sns') = f(s)f(s). (5)

Clearly, statistical independence is a special case of affiliation. Two key properties of
affiliated random variables will be employed here:

Result 1 (cf. MW, Theorem 4). For every nonempfyC N, and for everyk C N disjoint
from J, the random variableis; } ;< ; are affiliated conditional upon the realizations of the
(possibly empty) collection of random variables} ek -

Result 2 (MW, Theorem 5). For every random varialie S — R, if H is nondecreasing
in each argument, then the conditional expectation function

h(x1, y1, ... Xn, yn) =EH [ x1 <y <y, o0, X0 <8 <y

is nondecreasing in each argument.
3.3. Upper bounds on best responses

It is often noted that a player bidding close to her expected valuafign k] is subject
to thewinner’'s curse, because she is not taking into account the fact that, if she wins
the object, it must be the case the competitors have observed low signals. This adverse-
selection argument relies on the assumption that playeinks that her competitors are
usingincreasing bidding functions. To see this, note that if biddelnas conjecturd_;
andb_; is increasing (in each component), then the expected valuatiaditional on
(the signal andjhe event of winning the object is E[v; | s;, b—_; < b] < E[V; | s;], where the
inequality is strictin nondegenerate cases. However, if the conjdetylie not increasing,
then it may be the case thafVi | s;, b—; < b] > E[v; | 5;], and the best responseltq;
may lie above Bv; | 5;].

We find it interesting to carry out our analysis of strategically sophisticated bidding
focusing on beliefs for which the adverse-selection argument mentioned above is valid;
therefore, we mainly restrict our attention to beliefs that assign positive weight only
to increasing bidding function's. Also, we shall show that above-equilibrium bids are
interim rationalizable for almost all bidder types; in light of the preceding discussion, this
conclusion would be uninteresting if we allowed for nonmonotonic beliefs.

Formally, letM ; denote the set of monotone increasing bidding functions for player
and letM_; = ]_[#,. M. Then, in our analysis of auctions with interdependent values,
we consider beliefg € A(M_;). In the special case of private values we consider more
general beliefs.

In the same spirit, we wish to avoid the possibility that a player may bid either zero or
above her conditional valuation only because she is certain that she is not going to get the
object. Therefore we assume that a player believes that every positive bid yields a positive

13 Including nondecreasing bidding functions with flat segments in the support of beliefs involves technical
complications that are dealt with in (Battigalli and Siniscalchi, 2000).
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probability of winning the object. Formally, the set of biddér beliefs we restrict our
attention to is

AT (B-) = {u € A(B_): Vb >0, / Prib_; <b|s;lu(db_;) > 0},

—i

wheres; on the right-hand side is arbitrat§.We record two immediate consequences of
these restrictions on beliefs.

Remark 2. For any signak; and conjecturé_; € M_;, the functionb — 7 (b, s;; b_;) is
continuous, and there exigi$ € R such thatr (b*, s;; b_;) = 7*(s;; b—;).

Proof. See Lemma 14 in Appendix A.O

Remark 3. Fix s; > 0 andpu € A(M_;) N AT(B_;). Thenz*(s;; u) > 0. Moreover,
neitherb = 0 nor anyb > E[v; | s;] are maximizers.

Proof. By Assumption 4y; (s;,0,...,0) > v;(0,...,0) = 0. Letd’ = 2v;(s;,0,...,0) >
0; then //vt,,- Pib_; < b | silu(db_;) > 0, sow(,s;; u) > 0. On the other hand,

(0, s;; ) =0. Also, by Result 2,
m(b,si;b_i) = (ELvi | si,b_; <b]l—b)Pb_; <b|s;]
< (ELvi | si] —b)Piib_; <b|s5]1<0
forallb_; e M_; andb > E[v; | s;]. Thus,w (b, s;; u) <O forallb > E[v; |s;]. O

LetB_; ={B, B, ...} be an arbitrary (symmetric) upper bound on the bids of plager
competitors. The main result of this section characterizes the set of interim best replies to
“monotonic” beliefs assigning probability one to bids below this upper bound. The set of
such beliefs is

ATM_i;Bo) ={pn e AM_) N ATB_): u({b_i: b_i <B_;})=1}.

For the special case of private values, where adverse-selection considerations play no role,
we are able to characterize best responses to arbitrary beliefs below the upper bound, i.e.,
beliefs in the set

AT(B_iB) = {pe AYB_): u(iboi: by <B}) =1},

Theorem 6. Let B: [0, 1] — R, be a nondecreasing function such that B > 0, and define
B_; ={B,B,...}. For every bid b* > 0 and signal s; € [0, 1],

(1) ifELv; | si] = b* <infca+m_;:B_,) 7 (si: ), then b* isnot a best reply to any belief
we AT(M_;; By) for s;;

14 By Assumption 3, for every;, the conditional density’_;|; (- | 5;) is bounded away from zero; hence the
expression on the right-hand side is independent .of
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(2) it ELv; | si] = b* > inf ca+ (A ,:8_,) T (si5 w), then b* is a strict best reply to some
belief u e AT(M_;; B_;) for s;;
(3) furthermore,

inf ¥ (si; )
neAt(M_i;B_y) i

= sup{(Elv; | si, B_j <b]—b)P{B_; <b]|s]
b>0

+max{0, (E[v; | s/, B™*=0b] — b) P{B"™=0b | s5;]}}

and the supremumis attained;
(4) if the auction game has private values

inf (s p) =" (s;; Boy) = inf i (si ).
e At M B (sis m) (si i) eAt(BiB_y) (sis )

Therefore parts (1) and (2) hold with AT (M _;; B_;) replaced by A*(B_;; B_;).

Note that, by (3) above and Remark 2Bifs increasing, then

inf 75 (si5 w) =¥ (si3 B=y)
UEAT(M_i:By)

as in the case of private values. Note also that the given bBupdan be chosen so high
that

inf ¥ (si; u) =0.
UEAT(M_i;By)

Therefore, in view of Remark 3, we obtain:

Corollary 7. The set of best replies for s; > 0 to beliefs in AT(M_;) is the interval
(0, ELv; | si D).

Theorem 6 shows that for every (common) least upper b&iri@, 1] — R on the
bids of the opponents we can derive a least upper bound on the interim best replies of
playeri. We denote by® the new upper bound, that is,
Vsi €[0,1],  ¢°(si) =Elv; | si]— inf  7*(si3 ),
neAT(M_i;By)
whereB_; = {B, B, ...}. The following proposition lists some useful properties of the

mape¢, under additional restrictions on the bouBdhat will be satisfied in our application
to rationalizability.

Proposition 8. For every continuous, increasing function B such that B > 0, the function
¢® satisfies the following properties:

(1) 0< ¢B(s;) <Elv; | s;] for all s; € (0,1]. If B(O) > E[v; | s =0], E[v; | § =0] =
#B(0).
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(2) For every s; > 0 and b* € argmaxom (b, s;; B_;), b* < #B(s;)) < B(1) (where
B_; ={B,B,...}). Furthermore, if B(1) ¢ argmax>qn (b, s;; B_;), both inequalities
aredtrict.

(3) ¢B iscontinuous.

(4) Either ¢B isincreasing or there existsa signal s& such that ¢B isincreasing on [0, sB)
and ¢B(s;) = B(1) for all s; € [sB, 1].

Proof. (1) As noted above, iB is increasingg®(s;) = E[v; | si] — n*(s;; B_;). This
immediately implies thap®(s;) < E[v; | s;] for all s;. Moreover, consider a signgl > 0
and the bid functiogy defined by

Vsj e [0, 1], g(sj) = S.,'B(Sj).

SinceB is continuous, so ig), andg(0) = 0. Thus,g_; € AT(M_;; B_;). Moreover,
by Remark 2, there exists* € Ry such thatr (b*, s;; 9—;) = 7*(s;; 0—;); by Remark 3,
b* > 0; by (1) in Theorem 6, this implies thaf (s;) > b* > 0.

Finally, assume thaB(0) > E[v; | s = 0]. Note that, for allb € R, 7 (b,0; B_;) <
(Elv; | s =0] — b)PHB_; < b|s =0] by Result 2. Now, either PB_; <b|s =0]=0,
orb > B(0) > E[v; | s = 0]. Thereforer (b, 0; B_;) < 0 for all b, which implies¢®(0) =
Elvi|s =0]-7*(0; B_;) =E[v; | 5 =0].

(2) Letb* e argmax>om (b, si; B_;), wheres; > 0. If b* = B(1), thenz*(s;; B_;) =
E[v; | si] — B(1) and the result is obvious. Bb* < B(1), then P[B_; < b* | 5;] < 1.
Therefore (using Result 2 again)

¥ (si; Bij) = E[v; — b* | si, B_i <b*]IPAB_; <b*|si] <E[v; |si] —b*.

Henceb* < E[V; | 5] — m*(si: B_i) = ¢B(si).

Finally, note that ifB(1) ¢ argmax>om (b, s;; B_;) thenm*(s;; B_;) > w(B(1), s;;
B_i) =E[V; | s;] — B(1). ThusB(1) > E[V; | 5;] — 7*(si: B_;) = ¢B(s0).

The proof of (3) and (4) may be found in Appendix AO

4. Rationalizablebids

The standard definition of (interim) rationalizability captures the implications of the
assumption that bidders are (interim) rational, and there is common certainty of this fact.
We analyze a strengthening of this definition because we also assume that bidders’ beliefs
satisfy some restrictions, and there is common certainty of this fact too (see, e.g., Battigalli,
1999).

4.1. Definitions

Let A; € A(B_;) be a restricted set of beliefs and lét= (A4, ..., A,). In particular,
we shall consider the cas®; = A(M_;) N AT(B_;) in the next subsection, and; =
AT (B_;) in the following one. We provide a definition of interim-rationalizability that
captures the implications of the assumption that:
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(a) the bidders are expected payoff maximizers,

(b) foreachbidder=1,...,n,i’'s beliefs belongta; (but different bidders and different
types of the same bidder may have different beliefs), and

(c) there is common certainty of (a) and (b).

Some additional notation is required. First, fix a plajea set of beliefsA? C A(B_;)
and a type;. We let

pi(si, AY) =1{b>0: 3 € Af, w(b, si; p) =7"(si; )}

i
denote the set of bids rationalized for typéy beliefs inAY. Observe thap; is monotone
inits second argument: thatid; € A7 impliesp; (s;, A}) S p; (si, AY). Next, fix a(n — 1)-
tupleC_; = (C;) =i, where eaclf; is a correspondence (multi-valued function) fréin
to R, . SinceC_; may be interpreted as a subsefhf; it makes sense to write

ACC—) ={ne AB=): u({b—i: Vj#i, ¥s; €[0,1], bj(s;) €Cj(sj)}) =1}.
The main definitions can now be provided.

Definition 9. An n-tuple of correspondencésy, . . ., C,) has theA-best response property
if Ci(sj) S pj(sj,A;NAC-))forall j=1,...,n,s5;€S;.

Definition 10. Foralli =1,...,n,s; € [0,1] andk =1, 2,...let R{(s;; 0) = R4,
RA(sis k) = pi(si, A N ARE, (- k — D))).

Abid b* isinterim (A, k)-rationalizablefor types* of bidder: if b* € RI.A (sf, k). Abid b*
is interim A-rationalizablefor types’ of bidderi if there is am-tuple of correspondences
(C1,...,Cp) with the A-best response property such thatk C; (s7).

Observe that interimA-rationalizability is defined via a best-response property,
independently of the sets 6f\, k) -rationalizable bids (cf. Osborne and Rubinstein, 1994,
Definition 55.1). However, we will show below that the set of intednrationalizable bids
for types; can indeed be obtained as the limit of the set§fk)-rationalizable bids as
k — 0015

The following remarks are easily derived from Definition 10.

Remark 4. The set ofA-rationalizable bids for type; is included inRiA (s;, k) for all
k=12,....

Proof. Let (C1,...,C;) be ann-tuple of correspondences with th&-best-response
property. Trivially,C;(s;) € pj(sj, 4; N A(C-) SRy = RiA(s,'; 0) for all j ands;.
Suppose tha; (s;) € Rf(sj; k—1) forall j ands;. ThenA(C_;) € A(RA,(-; k — 1)).

15 |n games with compact action spaces and continuous payoffs, this result follows from standard arguments:
see Bernheim (1984, Proposition 3.2) and the generalization in Battigalli (1999, Proposition 3). But Lipman
(1994) shows by example that the result does not hold in general discontinuous games. Hence, a direct proof is
required in the present context. We thank an anonymous referee for pointing this out.
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By the best-response property and monotonicity,@§;, -) we obtainC; (s;) € p; (s;, A; N
AC—)) S pi(si, AiNAR_;i (-, k = 1)) =Ri(si, k).
ThereforeC; (s;) € R; (s, k) for all i, s; andk, which implies the thesis. O

Remark 5. Let (bj",...,b;" be a Bayesian Nash equilibrium such thsf € A,
i =1,...,n. Then, for alli ands;, the equilibrium bidb;"(s;) is interim A-rationalizable
for types;.

Proof. Since b*? € A; and (bj%...,by%h is an equilibrium,bSs;) € pi(si, A; N
A({b%))). Therefore(b$?, ..., by (regarded as an-tuple of correspondences) has the
A-best-response propertyr

4.2. Rationalizable bidding with monotonic beliefs

We now return to the auction setting of Section 3 anddet= A1 (B_;) N A(M_))
(i=1,...,n). To simplify the notation, we omit the superscriptfrom the set of interim
A-rationalizable strategies.

We shall provide a full characterization of the set of inte¢itn k) and A-rationalizable
bids momentarily. However, a direct application of Theorem 6 and Definition 10 is suffi-
cient to compare the predictions of equilibrium analysis and intetinationalizability.

From now on, we leb®9denote the symmetric equilibrium bidding function of Milgrom
and Weber (1982, Theorem 14). Our assumptions are sufficient to guarantee its existence;
moreoverp®¥ is increasing and satisfis$9(0) = 0. Thereforeb® € A;. By Remark 5,
b®(s;) is A-rationalizable for typs;.

Our first result shows that, for every typee (0, 1), all bids below the equilibrium, as
well as a nonempty interval of bids above it, are interinrationalizable.

Recall that, for any increasing bould ¢B(s;) = E[v; | s;i] — 7*(s;; B_;) is the new
bound on best replies obtained by a given upper bdind beliefs.

Proposition 11. The function ¢°** isincreasing, and satisfies:

(1) ¢°(1) =b%4(1).
(2) b®(s;) < dP*(si) < beA(1) for all s; € (0, 1).
(3) Every bid b € (0, $**'(s)) isinterim A-rationalizablefor s;, for all s; € (0, 1].

Proof. By the equilibrium conditiom®9(s;) € argmax>om (b, s;; b®%). Therefore, Propo-
sition 8, (2) implies thab®d(s;) < #?*'(s;) < b®%1), where the inequalities are strict for
si € (0, 1), and hold as equalities if = 1. This proves (1) and (2). Proposition 8 (4) im-
plies thatg?™ is increasing.

(3) To prove that every bid in the intervéd, ¢**'(s;)) is interim A-rationalizable for
si, we show that the-tuple of correspondences; > (O, q&beq(sj)))’}:1 (slightly modified
for the extreme values = 0, 1) has the best-response property:
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o fors; € (0,1), letC;(s;) = (0, $°*'(s;)), andC; (s;) = (0, be9(s )1;
o fors; =0, letC;(0) = {0} U (0, **'(0)) andC; (0) = {0};
e fors; =1,letC;(1) =C;(1) = (0, p*™(1)] = (0, beI1)].

By (1) and (2)C_;(s;) € C—;(s;) for all j ands;. Thus,A(C_;) € A(C-) for all j,
sothatp;(s;: A; NAQC_) S pj(sj: AjNAC-})).

Now Theorem 6 implies that, for ajl ands, €(0,D),C(sj) Spjsj, AN A(C ,))
and also that0, ¢?™(s;)) € p;(s;: A; N A(C_))) for s; =0, 1.0 Moreover srncebﬁ

Aj, by the equilibrium condition, also € p;(0; A; N A(C i) and¢P*(1) = b®(1) €
pi(L;A;N A(C —j))- Thus,Cj(s;) € pj(sj; A; N A(C ;) for s; = 0,1 as well. Since
pj(sj; A. N A(C_,)) C pj (s,, Aj N AC-))), the collection(Cy, ...,Cy,) has the best-
response property.O

We now turn to the characterization of interirationalizability. For every signal
€ [0, 1], let

B(si; D) =ELv; | sil,

B(si; k+1) =E[v; | si] — inf T (sispw), k=1
HEAT(M_i:B_;(-:k))
Since infiea+(M_:B (k) T (sis m) = 0, we haveB(-; 1) > B(-; 2); by induction, if
B(-; k—1) > B(-; k) forsomek > 1,

A+(M—i§ B i(;k— 1)) 2 A+(M—i§ B_i(; k)),
so that, for every; € [0, 1],

inf ¥ (sis ) < inf T (sis 1),
UEAT(M_i;B_;i(-:k—1)) HEAT(M_i;B_i(-3k))
and henceB(-; k) > B(-; k 4+ 1) for all k. Thus, the sequencB(-; k)}x>1 is weakly
decreasing pointwise, and we can defBig;; co) = limy_ o B(s;; k) for all s;. The main
result of this section can now be stated.

Theorem 12. (1) For all k =1,2,...ands; € (0, 1], R;(s;; k) isan interval with interior
(0, B(s;; k)); the upper bound B(-; k) isincreasing, continuous, and satisfies B(- ; k) > 0.

(2) For all s; € (0, 1], the set of interim A-rationalizable bidsisan interval with interior
(0, B(s;; 00)); the upper bound B(- ; 00)) is nondecreasing and satisfies B(- ; oo) > 0.

Proof. (1) The statement is true far= 1 by Remark 3 and Assumption'4 Suppose it is
true for somek > 1. Then Theorem 6 implies th&(s;; k + 1) is an interval with interior
(O, E[v; | si]1 — TL’*(S,'; B_i(-;k))=(0,B(s;; k+ 1)) forall s; € (0, 1].

By the inductive hypothesiB(-; k) is a continuous, increasing function such that
B(-; k) > 0. Thus, Proposition 8, (1) and (3), immediately implies Bt k + 1) = B

16 The latter inclusion may hold vacuously for =0, if ¢° 0 =
17 Continuity of the map; — E[v; | s;] follows by Dominated Convergence



P. Battigalli, M. Sniscalchi / Games and Economic Behavior 45 (2003) 38-72 55

is continuous and such thBt- ; k + 1) > 0. Moreover, Proposition 8(4) implies that either
B(-; k + 1) is increasing, or there is somé& < 1 such thaB(s; k + 1) = B(1; k) for all

s € [s¥,1]. By way of contradiction, suppose thB(-; k + 1) is not increasing. Then,
B(s: k + 1) = B(1, k) > B(s: k) for somes € (s¥, 1), which contradictB(s; k + 1) <
B(s; k). ThereforeB(-; k + 1) must also be increasing.

(2) As noted above, the sequen®-; k)}i>1 is weakly pointwise decreasing, and its
elements are increasing and positive by Part (1). Hence, its pointwiseBimibo) is
nondecreasing. We first show that it satists; co) > 0.

As noted in the text, for any;, the Milgrom—Weber equilibrium bi@®%(s;) is interim
A-rationalizable, and hence interi(a\, k)-rationalizable for alk > 1. This implies that
B(s;; k) > b®(s;) for all s; andk > 1; henceB(-; oo) > b®4> 0, as required.

Next we show that every bid in the open intervd, B(s;; o0)) is interim A-
rationalizable for type;. Lemma 19 in Appendix A, applied to the sequefiBé ; k)}r>1
and to its limitB(- ; oo0), shows that

lim 7*(s;; B_;(-; k) = inf T (si; ).
s ( i i( )) LEAH (Mot Boi(-:00)) (si5 )

Therefore

pBC () = E[v; | 5i] — inf (s 1)
neAT(M_; B_;i(-;00))

= klim (E[V,’ | si] — TL’*(S,'; B_;(; k))) = klim B(si; k +1) = B(s;; 00).

Theorem 6 then implies that every bid € (0, B(s;; 00)) is a best reply to some belief
e AT(M_i; B_i(-; 00)).

We prove that the collection of correspondences— (0, B(s;; oo)))’}zl(slightly
modified for the extreme values = 0, 1) has the best-response property:’

o for Sj € 0, 1), |eth(Sj) = (0, B(Sj; 00));
o fors; =0, letC;(0) = {0} U (0, B(0; c0));
o fors; =1, letC;(1) = (0, B(1; 00)) U {be4(1)}.

The zero bid must be included for type = 0 to ensure that;(0) # ¥ and A; N
A(C—j) # §. As shown below, including bid = b®4(1) for type s; = 1 allows to
rationalize the zero bid for; = 0. Also, sinceb®d(1) is rationalizable for type; = 1,
B(1; 00) > b®(1); hence(; (1) is aninterval, an®®9(1) is either one of its interior points,
or its right endpoint.

@B = B(-; oo) implies thatC; (s;) = (0, B(s;; 00)) C p;(s;; A; N A(C—)) for all
sj > 0; moreover, it implies that0, B(s;; 00)) € pj(s;j; A; N A(C—;) fors; =0, 1.

Furthermore, note that Proposition 11 implies th&t(s;) € Cx(sx) for s, € (0, 1);
the definition of Cy(sx) for s = 0,1 ensures that & b®90) e C,(0), and b®4(1) e
Ck(1); thus, by the equilibrium conditions; € pj(sj; A; N A(C—;) for s; = 0,1 as
well, and we conclude that;(s;) € pj(sj; A; N A(C—;) for all 5;. Therefore, the
collection(Cs, . .., Cy) has the best-reply property. This proves that every bid in the interval
(0, B(s;; 00)) is A-rationalizable for type; .
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On the other hand, for every bid> B(s;; co) there is somé such thath > B(s;; k)
and this implies thak cannot beA-rationalizable fos; (see Remark 4). O

There are interesting examples of (symmetric) interdependent-values models where
(a) signals are independent, and (b) valuations functiongjaasi-linear: that is, the
valuation function has the form(s;,s_;) = v(s—_;)s; + k(s—;), wherev and ¢ are
nondecreasing anml > 0. Auctions with independent private values and the “wallet game”
(see (Klemperer, 1998)) belong to this class of models. For such models we find stronger
results about rationalizable bids. In particular, the following proposition shows that interim
A-rationalizabilityimplies substantial shading for high conditional valuations (signals),
but is consistent with negligible shading for low conditional valuations (of course, interim
A-rationalizability is also consistent with extreme shading for all signals, because every
positive bid below the equilibrium is interim-rationalizable for bidders with positive
signals).

Proposition 13. Suppose that the signals are independent and the valuation functions
quasi-linear. Then, for all k =2,3, ..., oo,

(1) the upper bound B(-; k) is concave;

(2) the“ minimum-shading” function S(s;; k) = E[v; | s;] — B(s;; k) isincreasing (nonde-
creasing for k = oo) and convex, with S(0; k) = 0 and S(s;; k) > 0 for all s; € (0, 1];

(3) the “ minimum-proportional-shading” function S(s;, k) /E[v; | s;] (defined for s; > 0)
is positive and nondecreasing; however,

im Stsi, k) =0.
sid0 E[v; | si]

Proof. Fix an increasing boun®. We claim that the value functiom*(s;; B_;) is
increasing and convex if.
To see this, note that, by quasi-linearity and independence,

w(b,si;B_i) =E[v; —b|s;,B_; <b]PIB_; <b]
= (E[v | B_; <bls; + E[x | B_; <b]— b) P{B_; < b], (6)

i.e.,m(b,s;; B_;) is linear ins;, for anyb.

To show thatr*(-; B_;) is increasing in its first argument, pick > s;. Suppose that
m*(s;; Boi) > 0; chooseb* € argmax>on (b, si; B_;), and note that PB_; < b*] >
0 andv > 0. Then (6) implies thatr*(s;; B_;) > n(b*,s/;B_;) > n(b*,s5;;B_;) =
w*(si; B-;). Ifinsteadr*(s;; B_;) = 0, Remark 3 shows that"(s;; B_;) > 7*(s;; B_;) =
0.

To see thatr*(-; B_;) is convex, choosg, s/, A € [0, 1] and let

b* e arglr)g%m (b, Asi + (1= 1)s/; B_y).
Then, by linearity,

n*(ksi + (1 —2)s); B_i) = n(b*, Asi + (1 —A)s); B_i)
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= A (b*, si3B-i) + (L= Mm (b*, 57 B—;)
< A*(sis Boi) + (L= V7™ (s; B-i). (7)

This completes the proof of the preliminary claim.

We first prove (1)—(3) fok < oo.

(1) By Theorem 12(1), the upper bouBd- ; k — 1) is indeed increasing far — 1 > 0.
Hence the argument above implies ti&it ; k) = ¢BC:*—D is concave for each > 1.
Concavity is preserved by taking the pointwise limit. Theref®¢e o) is also concave.

(2) The argument given above also implies tiS&t;; k) = 7*(s;; B_i(-;k — 1)) is
increasing and convex. Proposition 8(1) implies ®&;k — 1) = B(0; k) = E[v; | 5 = 0].
ThereforeS(0; k) = 0 andS(s;; k) > 0 for anys; > 0.

(3) Parts (1) and (2) imply thaS(s;, k)/E[v; | s;] is positive and nondecreasing.
Furthermore, we know thdi®d e AT (M_;; B_;(-; k — 1)), whereb®¥ is the Milgrom—
Weber equilibrium bidding function. Then, Theorem 6 and Result 2 yield

S(sis k) = inf ¥ (sis 1) < % (53 0%) <E[v; | si1P{B_; <]
UEAT(M_i;B_;i(-:k—1))

= Elv; | s1[G(B26s0)]"
whereG denotes the common marginal c.d.f. of the signals. Thus
. S(S,'; k) . 1 n—1
0<Ilim <Ilim|{G(B i =0.
I By, i1 < AToLC (B 0)]
Results (1)—(3) also hold far = oco. In particular,S(s;; oo) > S(s;, 2) > 0 fors; > 0.
Concavity/convexity and weak monotonicity are preserved by taking thedimitoo. As
for proportional shading by low types, Lemma 19 in Appendix A and the argument above
imply

S(s;; 00) = lim inf 7*(si; ) < E[V; | si1[G(B™1(s:))]"
(s; ) k00 peAt(Mor.Bi (k) (si5 ) [vi | l][ ( ( l))]

-1

Therefore

l—o0 o

. S(s;; 00) . -1 n—
O Epvs 7y < AT B0
4.2.1. Privatevalues
In the previous subsection we analyzed (interimjrationalizability with A; =
AT(B_;) N A(M_;). But we remarked in Section 3 that the restriction to monotonic
beliefs is immaterial if the auction game has private values, i.e., if signals and valuations
coincide. In particular, Theorem 6(4) implies that all the results akcrationalizability
of the previous subsection also hold foy = AT (B_;).
In the case of private values it makes sense to denote a generic signalltwe upper
bound on best responses to beliefsifi(B_;) is B(v;; 1) = v;. Therefore we obtain

Remark 6. R(v;; 1) = (0, v;) for all v; € (0, 1] andR(0; k) = {0} for all k. This implies
thatforallpuandallk =1,2,...,ue A;NA(R_;(-, k) ifandonly if u € A(R_; (-, k)),
that is, the conditiod > 0, fs_, Prib_; < b | v;]lu(db_;) > 0 is superfluous because it is
impliedbyu € A(R_; (-, k)).
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Using Theorem 6(4), one can easily prove that for evgry 0 a bid b is weakly
dominated for valuation/type; if and only if b ¢ (0, v;).18 We can conclude that the
procedure given by Definition 10 witl; = AT (B_;) is equivalent to performing one
round of elimination of all weakly dominated bids for each type, followed by the iterated
elimination, for each type, of bids which are never best resporisBserefore, in this case
A-rationalizability captures the implications of the following assumptions:

(a) every bidder is rational,
(b) every bidder igautious (i.e., she would never choose a weakly dominated bid),
(c) there is common certainty of (a) and (b).

5. Discussion

This section discusses the relationship between our findings and the experimental
evidence on first-price auctions, and indicates a number of extensions. To fix ideas, we
begin with an overview of our results.

Our key analytical tool is a characterization of the best responses for a type to beliefs
satisfying certain restrictions. Specifically, if a (risk neutral) rational playef type s;
believes that his opponents are not going to bid above a given, type-dependent least upper
boundB, then she can choose any bid in the inter@p®(s;)); ¢B is thus the new least
upper bound derived frorB.

We then use this result to obtain an iterative characterization of interim rationalizable
bids. The upper bound obtained in the first step of the algorithB(ss 1) = E(v; | s;),
where EHyv; | s;) is the conditional valuation of the good for type. In subsequent
stepsk = 2,3,..., we apply our characterization result and derive an upper bound
B(si; k) = ¢BC:k=D(s;) from the previous upper bourl- ; k — 1). (Of courseB(s;; k) <
B(s;; k — 1).) The set of interim rationalizable bids for typg is an interval with
interior (0, limg_ o, B(s;; k)). This provides a relatively simple implementation of interim
rationalizability.

We show that the upper bound on interim rationalizable bids is nondecreasing and
strictly above the Nash equilibrium. Furthermore, if signals are independent and valuation
functions quasi-linear (e.g., in auctions with independent private values), this upper bound
is concave, implying substantial proportional shading for high types.

Our analysis has implications for revenue comparisons in auctions with independent
private values and risk-neutral bidders. We rely on a form of “cautiousness” that rules
out weakly dominated bids. lisecond-price auctions, this implies that players will
bid their valuation, so that rationalizable bids coincide with equilibrium bids. On the
other hand, rationalizable expected revenues in a first-price auction can be lower or

18 A bid b is weakly dominated for valuation v; if there is another bidh’ such thatm (b, v;;b_;) <
7(b,v;;b_;) forall b_; € B_; and the inequality is strict for at least ohe;.

19 The “ex-ante version” of this procedure was first put forward and motivated by Dekel and Fudenberg (1990).
Since then, several papers provided other epistemic characterizations. See Section 6 in the survey by Dekel and
Gul (1997) and the references therein.
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higher than equilibrium expected revenues. By the equilibrium revenue equivalence result,
rationalizable expected revenues in a first-price auction can be lower or higher than in a
second-price auction.

Perhaps more interestingly, rationalizable expected revenues in a first-price auction can
be arbitrarily close to zero, and will always be lower than they would be if players were to
bid their valuation. Observe that, with independent private values, as the number of bidders
grows, the first-price equilibrium bid function approaches the identity function, implying
that the same must hold for the upper bound on rationalizable bids. Thus, in rough, intuitive
terms, in the limit, revenue equivalence obtains only in the “best scenario” (from the point
of view of the seller) where players bid close to their upper bound.

5.1. Experiments and deviations from the risk-neutral Nash equilibrium

There are (at least) three “stylized facts” emerging from the experimental studies on
first-price auctions with independent private values, which we find relevant in relation to
our theoretical analysi€

Overbidding. A large majority of subjects show a persistent tendency to bid above the
risk-neutral Nash equilibrium (RNNE).

Decreasing proportional deviations. Deviations from RNNE are proportionally larger for
subjects with smaller valuations; in other words, the ratio

|actual bid-RNNE bid
valuation
is negatively correlated with subjects’ private valuatiéhs.

Heterogeneity. Bidding behavior is heterogeneous across subjétts.

In a series of papers, Cox, Smith, and Walker try to explain the data with a family of
models featuring bidders with heterogeneous degrees of (constant relative) risk aversion. In
such models, equilibrium bidding functions are linear (like the RNNE function) except for
the largest valuations, but have heterogenous slopes and are steeper than the RNNE (e.g.,
Cox et al., 1988, 1992). The risk-aversion explanation of Overbidding is controversial. In
particular, it leaves Decreasing Proportional Deviations largely unexplained. Furthermore,
it is at odds with experimental findings concerning different auction setfihigs.

20 see, for example, Kagel (1995) for a survey about experiments on auctions.

21 see, e.g., Kagel and Roth (1992, p. 1381).

22 For example, Cox et al. (1988) reject the null hypothesis of a common bidding function in symmetric IPV
auctions.

23 |n third-price auctions, risk aversion implies bidding below the RNNE, whereas experiments show
significant bidding above the RNNE (Kagel and Levin, 1993). Other partial explanations of Overbidding involve
(i) psychological biases related to frame effects and the complexity of the decision problem (e.g., Kagel, 1995,
Section I.B), and (ii) lack of experimental control on subjects incentives due to a small expected cost of deviations
from the optimal bid (Harrison, 1989). Section I.G in Kagel (1995) provides a discussion of the debate about the
risk-aversion explanation. Kagel and Roth (1992) presents Decreasing Proportional Deviations as one of the
empirical findings at odds with the constant relative risk aversion model. A recent experimental paper by Goeree
et al. (2000) provides support for the risk-aversion explanation.
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We believe that our paper sheds light on a different explanation of these experimental
findings: different subjects have different beliefs about the bidding behavior of their
competitors, and the limited feedback they get from the outcomes of previous auctions
prevents them from approaching the equilibrium sufficiently fast (e.g., Friedman, 1992).
But even if subjects do not hold equilibrium beliefs, they may be sophisticated enough
to take into account that their competitors’ behavior satisfies some rationality restrictions
and, possibly, that also their opponents’ beliefs conform to analogous assumptions. Our
paper identifies the least upper bound on bids of strategically sophisticated, risk-neutral
bidders with heterogenous beliefs. Since the upper bound is above the (linear) RNNE and
concave, Overbidding and Decreasing Proportional Deviations are qualitatively consistent
with risk-neutrality and (a degree of) strategic sophistication.

We regard nonequilibrium (but strategically sophisticated) bidding as a complementary
explanation of experimental findings, which can be integrated with risk-aversion. In
(Battigalli and Siniscalchi, 2000) we show how risk-aversion can be incorporated into our
analysis.

Experimental evidence suggests a number of extensions to our results. First, our analysis
so far does not offer an explanation of the asymmetry in subjects’ deviations from RNNE
(i.e., the tendency to bidbove the RNNE), nor does it explain why very small bids are
so rare for subjects with intermediate or high valuations. Second, it may be argued that
rational bidders should form their beliefs about the competitors and make plans before
they are told their valuation, and therefaeante rationalizability is a more appropriate
solution concept in this contexf.Third, in most experimental settings there is an (explicit
or implicit) minimum bid increment. We discuss these issues in the following subsection.

5.2. Some extensions and related results

Unknown distribution of signals. We have derived our results under the assumption
that the distribution of signalg' is common knowledge. However, similar results can be
obtained under more general assumptions. For the sake of simplicity, we discuss here the
(symmetric) IPV case with two bidders.

Suppose that the true c.d.F is not known, but it is common knowledge that
the valuation of a generic bidder is distributed according to some continuous density
f bounded below by a strictly positive continuous functign[0, 1] — R such that
[Olg(v) dv < 1. Suppose that biddérbelieves that her competiteri will not bid above
a given increasing upper bouid> 0 (e.g.,B(v) = v). Adapting the proof of Theorem 6,
we can show that the new least upper bound on bids derivedBram

¢P(v) =v - Jmax (v - b)G*(B~()),

24 Which solution concept (interim or ex-ante) is more appropriate depends on our interpretation of the formal
asymmetric-information model. If it represents a situation with genuine incomplete information without an
ex-ante stage, then interim rationalizability is appropriate. If it represents a situation where the bidders really
obtain information about the outcome of a chance move, then ex-ante rationalizability may be more appropriate.
Experimental games fall in the second category.
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whereG* is the “pessimistic” c.d.f. that assigns probability mass folg(w) dw to the

highest typev_; = 1 and probabilityfv'i”g(w)dw to any interval[v’, v"] with v" < 1
(G* can be obtained as the limit of a sequence of continuously differentiable ckl.f.'s
such thatF), = f, > g).

Our qualitative results on bounds continue to hold in this setting. Of course, the upper
bounds we find will behigher than in the model where a densify (with f(v) > g(v))
is common knowledge: since more beliefs are allowed, more bids are rationalizable. For
example, ifg(v) = ¢ < 1, then second-step upper boundBi&; 2) = v — cv?/4 which
is above the upper bound obtained with a common knowledge uniform distribution, i.e.,
v — v2/4 (see Section 2

Lower bounds. Theorem 12 shows that imposing successively higher-order mutual belief
in the assumption that players are rational (and that positive bids win with positive
probability) yields a decreasing sequence of least upper boBids) on the set of
best replies for every bidder type. However, arbitrarily small but positive bids are interim
rationalizable.

In view of the experimental findings mentioned above, it may be interesting to
exogenously specify a lower bound. € B_; to players’ bids, and investigate the
consequences of the further assumption that (it is mutual belief that) players do not expect
their opponents to bid below. A preliminary analysis may be found in Appendix 6.2.2
of (Battigalli and Siniscalchi, 2000). It is shown that the upper bounds obtained with this
modified solution procedure are similar to those found here.

Ex-ante rationalizability. Our analysis ofinterim rationalizability provides an upper
bound onex-ante rationalizable bidding functions, but we are not able to show the
upper bound is tight. However, some of our qualitative results also hold for ex-ante
rationalizability. In particular, we can show that the analog of Proposition 11 continues to
hold: the upper bound on rationalizable bids is strictly above the RNNE and every positive
bid below this upper bound is rationalizable (see Battigalli and Siniscalchi, 2000, p. 24).

Discrete bids.  In most experimental settings, bids are discrete because there is a (pos-
sibly only implicit) minimum increments (e.g., a cent), so that the set of bids is
{0,4,28,...,k8, (k+ 1)8,...}. Our analysis of rationalizable bids provides an acceptable
approximation if the number of players is not very large arnglsmall. This appears to be

the case in most experiments, as well as in many real-life situations.

Dekel and Wolinski (2000) analyze the opposite case (a large population of players and a
nonnegligible minimum increment) in an IPV setting. They identify a nondecreasing lower
bound to the set of rationalizable bids and show that, forfixagt minimum incremeng, as
the number of bidders gets large, this lower bound approaches the equilibrium bidding
function. Thus, rationalizability and equilibrium roughly coincide in large IPV auctions
with a honnegligible minimum increment on bids.

25 n an interdependent-values setting with unknown distribution of signals, Chung and Ely (2000) analyze
the efficiency properties of a generalized Vickrey—Clarke—Groves mechanism using a notion of “iterated ex-post
weak dominance.”
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Asymmetries. The approach presented in this paper may be extended to environments
where players are not symmetric, i.e., Assumptions 1 and 2 are violated. This is carried out
in (Battigalli and Siniscalchi, 2000). Theorem 6 and Proposition 8 are easily extended, but
the upper bounds afrrationalizable bids may be flat at the top.
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Appendix A

A.1. Derivation and properties of bounds
We begin by introducing additional notation used in the proofs.

A.1.1. Notation

Sets of bidders and signals. Let N ={1,..., n} denote the set of players. For any subset of playegsn, let

Sy = ]‘[].EJ S;, and for simplicity defineSy\;;; = S_;. A generic element of; is denoteds,;. For any partition

{K, L} of the set of playerd and anyskx € Sk, s. € S., (sk, sz) is the element of; obtained fromsx ands; .
For any nonempty subsgtC N of players, denote by, the marginal of c.d.fF on S;, and byF_; its

marginal onSy, s; finally, given a subsek of players such thak N J = ¢, denote byFk |, the conditional c.d.f

on Sk given the signals of playerse J.

Private values. Recall that, by Assumption 4, the valuation functioiis continuous and increasing in its first
argument. Thus, if the game has private values, it may be assumed without loss of generality; that) = s;
for all s; ands_;.

Random vectors and events.  We denoten-dimensional random vectors, defined as (Borel measurable) functions
with domains; and rangeR™, with boldface letters. In particular, for any set of playgrand random variables

b;, j e J, we leth, denote the joint function (random vector) definedidyy(s;) = {b;(s;)};cs. For any set of
playersJ and tuple of random variablésy, we denote by the scalar-valued random variable defined by the
maps; = maxje; b;(s;).

Events related to the signals of players in $e&ire represented by means of square brackets with an ihdex
specifying that we refer to a subset$f. For example, leK C J; then[bgx < b]; C S, is the set of vectors of
signalss; such that;(s;) < b forall j € K. WhenJ = N\{i} we suppress the index, &s; is the basic space
of uncertainty from the point of view of bidder Thus, for examplelVj e K,b; <b;]1 S S_;.

Expected payoff. Taking the possibility of ties into account, the expected payoff of biddigtyen signals; and
belief u € A(B_;) is

(b, sii ) = / E[v; —b|si,b_; <b]Pb_; <b|s;]u(db_;)
B_;

1
+ﬂ > .rlll/E[v,-fb\s,-,T(J,b,b,,-)]Pr[T(J,b,b,,-)|xi]u(db,,-),

£JSN\(i) '
(A1)

whereT (J,b;b_;) =[b_suu < bINIVj € J,b; =b].
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It is convenient to define a modified version of the expected payoff function for a bidder with nondecreasing
conjectures, which may assign positive probability to ties. For any fi);.; of (nondecreasing) real-valued
functions on[0, 1], define

7 (b, si;B_j) = (ELv; | si, B_; <b] —b)PB_; <b|si]
+ max{0, (E[vi | s;, BT™=b] — b) P{B"™ =15 | 5;]}. (A.2)

To avoid repeating tedious qualifications, for every random varialalad eventr, if Pr{F] = 0, we assume
that Hh | F]is such that fh | FIP{F]=0.

If the game has private values, the above function takes up a particularly simple form. We define modified
payoffs for arbitrary beliefg € A(B_;).

(s —b) / PHB; <b|silu(do_). bel0 5],
Bi.

i

(b, siip) = (A3)

(si = b) / PiB; <b|silu(do_;), b>s;.
B_;

A.1.2. Preliminary results

Lemma 14. Consider a nondecreasing bid function B and let B_; = (B, B, ...). For every signal s; € [0, 1], the
function 77 (-, s;; B_;) : Ry — R isupper semicontinuous. Therefore, sup,>o7 (b, si; B—;) is attained. Finally, if
Bisincreasing (i.e, B_; e M_;),then (-, s;; B_;) = x (-, s;; B_;), and both functions are continuous.

Proof. Fix b > 0 and consider a sequeni— b such that lim_, . 7 (b%, s;; B_;) exists; denote the latter by
L. We must show thal. < 7 (b, s;; B_;). Observe that, sinc§k>1Pr[BT?"= b* |51 < 1, it must be the case
that P{B™®* = p* | 5;] — 0.

Assume first thab* 1 b. Note that the indicator functions of the evefigs_; < b¥] converge pointwise to
the indicator function ofB_; < b]. Therefore, since; is bounded and so is the convergent sequéhtp, by
Dominated Convergence (cf. Aliprantis and Border, 1994, p. 323) and the observation that the probability of
ties vanishes ak — oo we conclude thal = (E[v; | s;,B_; < b] —b)Pr{B_; <b|s;], SOL < 7(b,s;;B_;).
Observe that the inequality can only be strict if B¥* =5 | 5;] > 0.

Assume next thab* | b. Now the indicator functions of the eveniiB_; < b*] converge pointwise to the
indicator function of[B_; < b], soL = (E[v; | s;,B_; < b] —b)PiB_; < b |s;] <7 (b,s;; B_;). Again, the
inequality can only be strict if PB™™ =b | 5;] > 0.

To complete the proof, consider an arbitrary convergent sequéneeb and an arbitrary subsequeng@é. }
such that lim_, «, 7 (b*, s;; B_;) = L exists. If the subsequence is itself monotonic, tfieq 7 (b, s;; B_;) by
the above arguments. Otherwise, it must contain a monotonic sub-subsedbfengesuch thath*» — b and
7 (b, si:B_i) 2 iMoo (b, 5 B_;) = L.

Finally, to prove the last claim note thatBf_; € M_;, then P[B™> =5 |s;]=0forallb. O

In a private-values setting, the relationship between the payoff fungtiand the modified payoff functiof
is even closer.

Lemma 15. Assume the game has private values. Then, for every signal s;, bid b € [0, s;] and belief u € A(B_;),
7 (b, si; ) = (b, si; w). Moreover, w*(s;; 1) = MaX,»o T (b, 5i; it).

Proof. The first claim is obvious upon inspecting Egs. (A.1) and (A.3). This implies #ab;; u) <
max,>o 7T (b, si; ). Now chooseb™ € argmax>o7 (b, s;; ); notice thatb* € [0, s;] for at least one maxi-
mizer b*. Since there can be at most countably many Bidsuch thatf,;  Pi{bT =b | s;]u(db_;) > O,
there exists a sequené® | b* such that/,;  Prb™™ = b* | silu(db_;) = 0 for all k. For eachb_; € B_;,
Misalb-i < b*1 = [b_; < b*]; thus, by continuity of the measure [Pt s;], PB_; < b* | si] —
PiB_; < b | s;] for all k > 1. Hence, by Dominated Convergencﬁ&i Prib_; < b* | silu(db_;) —
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Js_, Pb—i < b | silu(db_;), and thereforer (b*, si; ) — 7 (b*, si3 ). Sincer*(si; w) > w(b*, s;; ) for
all &, *(si; ) = max,>o 7 (b, s;; 1). This establishes the second claint

We state another preliminary lemma, which verifies that the conje&urds “more pessimistic” than any
belief u € AT (M_;;B_)).

Lemma 16. Consider a nondecreasing bid function B and let B_; = (B, B, ...). For every signal s; € [0, 1] and
bid b > 0:

(1) if 7 (b,s;;B_)) >0and PUB™™=b| 5,1 =0, then 7w (b, ;5 ) > 7 (b, 55 B_;) for p e AT(M_;;B_);
(1-PV) ifthegamehasprivatevaluesand b < [0, s;1, then 7w (b, s;; ) = 7 (b, s;; B_;) forany u € AT (B_;; B_));
(2) ifw(b,si;B_;) > 0,b>0and P{B™=5] > 0, then E[v; — b |s;, BT =b] > 0.

Therefore:

(3) Infea+m_;i_ ) TF(sis ) = MaX o7 (b, si; By);
(3-PV) if the game has private values, then inf,c o+ 3_;:_,) 7*(si; 1) = Ma%>0 7 (b, si5 B_;).

Proof. The claims pertaining to the private-values case are simple to establish, and illustrate the basic ideas.
(1-PV) For any bidb and conjecturéh_; € B_; such thatb_; < B_;, Pib_; < b |s;] > PiB_; <b|s;].
Therefore, for any bid € [0, s;],

(b, si; w) = (si — b) / Prb_; <b|sjlu(db_;) > (si —b)PUB_; <b|s;]=7(b,si; B_;).
B_;

(3-PV) Clearly, for any beliefu € A*(B_;; B_;), no bidb > s; can maximizer (-, s;; u). Thus, (1-PV)
implies that, for any such belief, mgxo 7 (b, si; 1) > max,»o 7 (b, s;; B_;). Hence, by Lemma 15,

inf T (sis ) = inf maxw (b, s;; n) = maxa (b, s;; B_;).
HEAT(B_i;B_;) peAT(B_i;B_;) b>0 b>0
Under our monotonicity and affiliation assumptions, the same basic ideas generalize to the interdependent-
values setting. We first illustrate the argument by proving claim (1) for the case of a single compgtitgrand
continuous, increasing conjecturBs, b ; thus, there are no positive-probability ties(-,s;,b;) =7 (-,s;,b;),
and similarly forB;. Note that

ﬂ(b,si;bj)ZE[Vi—b|S,‘,B<b]Pf[B<b|S,‘]+E[Vi—b|si,b_/<b<B]-Pf[bj <b<B|S,‘].

Since P[B = b | 5;] =0, the first term in the r.h.s. equatgb, s;; B). If Prlb; <b <B|s;] =0 we are done. If
Prfb; <b<B]|s;]> 0, we must show that & — b |s;,b; <b <B]>0.Sincer(b,s;;B_;) >0,b > B~1(0).
Therefore[B < b]; = [0,B~(b)) and[b, < b < Bl; = [B1(b),b; (1)) (letb;'(b) = L if b > b;(1)). Hence,
by Result 2, Bv; — b | s;,b; <b <B] > E[v; —b|s;,B < b] >0, where the latter inequality follows from
w(b,si; B_;) =E[v; —b|s;,B <b]PiB < b|s;] > 0. This establishes the claim in the simple case.

(1) It is enough to prove the claim for a beligf concentrated on a single profile; € M_; such that
b_;, < B_;. Note that

7(b,si; b)) =E[vi —=b|s;, B_i <b]PIB_; <b|s;]
+ Z Elvi —b|si,Bmuui <b, by <b<By]
W#JSN\{i}
x PUBm\uiy <b,by <b<By sl
Since PIB™ = b | 5;] = 0, the first term in the r.h.s. equais(b, s;; B_;). If Pr[By\yui) < b.by <b < By |

s;] = 0 for all nonemptyJ C N\ {i}, the proof of the claim is complete. Otherwise, for any nonendpty N \ {i}
such that F{IBN\(jUi) < b, bj < b <By | si] > 0, we must show that & —b | si, BN\(le') < b, bj <b<
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B,] > 0. Fix one such/ and note that, for every # i, the greatest lower bound of the $Bt; < b]; is O (recall
that 7 (b, s;; B_;) > 0), and its least upper bound is §up B;(s;) < b}; also, the g.l.b ofb; <b <B;]; is
inf{s;: B;(s;) > b} >0andits L.u.b. is sup;: b;(s;) < b} >sups;: B;(s;) <b}. 26

Hence, by Remark 2, [§; — b | s;,By\uiy < b,by < b < By] > E[v; — b | 5;,B_; < b]; since
7(b,s;;B_;) > 0 and PPBT™® = | 5;] = 0 by assumption, we must have[Br; <b |s;] >0 and Bv; — b |
si, B_; < b] > 0, which establishes the claim.

2) If E[v; — b |s;,B_; < b] <0 the claim follows immediately because,s;;B_;) > 0. If instead
E[v; — b |s;, B_; < b] > 0, note that

E[vi —b|si, B"™*=1b]
= Z E[Vi7b|Sl', BN\(jUi)<b, By =b]P|’|:BN\(jUi)<b, By =b|S,,BT’aX=b:|
P#JSN\{i}

As above, Remark 2 implies that, for any nonempt N \ {i} such that ABy\uiy <b,B; =b|s;, BT?":
b]>0,Hv; —b|s;,Bv\ui) <b,B; =b] 2 E[v; —b|s;,B_; <b] >0, which proves the clairf!

(3) Chooseb™ € argmax o7 (b, s;; B_;). The required inequality holds trivially i (b*,s;;B_;) =0, so
assumert (b*, s;; B_;) > 0. In particular,B_; > 0 implies that PIB™™> = 0| 5;] = 0, so we can assume that
b* > 0. Chooseu € AT(M_;;B_;). Assume that RB™® = b* | 5;] = 0; then, by claim (1)7*(si; u) >
w(b*,si; ) > 7w (b*,5;;B_;), and we are done. If instead [BE'®™ = b* | 5;] > 0, consider a sequence
b* | b* such that ABM&X = b* | 5,1 =0 for all k: this is possible because there can be at most countably
many positive-probability ties. Since, for any_; € M_;, n(-,s;;b_;) is continuous,r (b*,s;; b_;) =
iMoo 7w (B, 575 0_i) = limp_ 00 T (B, 513 B_y) = 7; (b*, 5;; B_;), where the inequality follows from claim (1),
and the second equality follows from claim (2). Integrating with respegt,tthis implies thatr*(s;; n) >
a(b*, si3 ) =2 (b*,5;B-). O

We next develop the machinery required to approxinBite with beliefs belonging toA*(M_;; B_;).
Define an increasing and continuous neaf0, 1] x (0, 1] — [0, 1] by

1-—«
o

o o
1- 1
< 17(x>+17(xx x € (o, 1],

That is, for every € (0, 1], the graph ob (-, ) is the piecewise linear function joining the origin with the point
(¢, 1— ), and the latter with the point, 1). Each functioro (-, ) is continuous and differentiable everywhere
except atr = «. Its inverser : [0, 1] x (0, 1] — [0, 1] is given by

x x €[0,a],

V(x,a)€[0,1] x (0,1], o(x,a)= (A.9)

o

l—«
V(y,0) €[0,1] x (0,1], t(y,0)= ( 1—a
1—

y yel01—-a],
) 1—a (A.5)

+—y ye(l—-a1l

o
i.e., the piecewise linear function joining the origin with the paibt- «, «), and the latter with the pointl, 1).
Each functionr is continuous and differentiable everywhere except atl — «.

Note that, asa | O, o(-,a) converges pointwise om0, 1] to the constant function 1; for notational
convenience, we let(x,0) = 1 for all x € [0, 1]. Similarly, T converges pointwise to the constant function
0=1(y,0).

Now, for any nonnegative real number > 0 and bid functionb:[0,1] — R, define the function
b@:[0,1] - R, by

Vs; €[0,1], b (s;) =0 (s;, 0)b(s)). (A.6)

26 The above, detailed argument will be omitted henceforth.
27 The claim may be false fdr = 0, if PIB™*=0] 5;] > 0.
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In conjunction with Lemma 16, the following lemma implies that supw (b, s;; B—;) is the least upper
bound bidder may obtain by best-responding to beliefsArt (M _;; B_;).

Lemma 17. Let B be a nondecreasing bid function, and define B_; = (B, B, ...). Fix arbitrarily a signal
Si € [0, l].

(1) Foralla>0,B“ e AT(M_;;B_y).
Moreover, for every sequence oy | O:

(2) B@) — B as. pointwise;
(3) for every b > 0 and every sequence b — b, limy_.o 7 (BF, 5;; BY)) <7 (b, 5 B_y);
(4) m*(si; B(f‘i")) — Max%,>o 7 (b, si; B_;).

Proof. (1) Denote an arbitrary opponent of playesy j throughout this proof. Note that, for any> 0,B® <B
(with equality fors; = 1). Moreovers’; > s; implieso (sj, @)B(s;) < o (s}, @)B(s;) <o (s}, @)B(s)), soB® is
increasing. Finally, for ang > 0 there exists; > 0 such that (s, «)B(1) < b, and thuB® (s;) < b. Therefore,
PiB') <b|s;]> 0, and the first assertion of the lemma is proved.

Now fix b > 0 and consider sequenceg | 0 andb* — b.

(2) Pointwise convergence @, 1] follows from the properties of the functian.

(3) We begin by computing the a.s. pointwise limit of the sequence of indicator functions corresponding to
the eventgB“* < b].

Choose any; > 0. If B(s;) < b, then fork large B (s;) < b¥; similarly, if B(s;) > b, then fork large
B@ (s;) > b*. Also note that, ifB(0) > b, then, for everye > 0, there existsk such thatk > K implies
B (€) > b*, 50(M); 51 [B@) < b¥]; ={0}.

Finally, supposeB(s;) = b. Since B is increasing for every, it follows that, for everyk, the set
L(k) ={s; €[0,1]: B(s;) = b, B@)(s;) > b*} satisfies

sj € L(k), B(s}):b, s}>sj = s}eL(k).

Now define¢(k) = min(, inf L (k)) (where infd = 00). Thus, ifB(s;) = b, thens; > £(k) impliesB@) (s;) > bk
(otherwises; would be a greater lower bound fo(k) than£(k)), ands; < £(k) implies B(“k)(s,-) < bF (either
becauseL (k) = @, or because otherwise there would be some ojgmer (s;,£(k)) such thatB(s_’/) = b and

B(O"‘)(s’/) > bh).
Next, w.l.0.g. assume thdik) — ¢. Then the indicator functions of the everiB(_",” < b*] converge a.s.
pointwise to the indicator function of the event
[B_i <b]U([B™*=b]N[s_; <L;]) =[B_; <b]UT_;(b).

By the Dominated Convergence theorem, this yields

ﬂ(bkysﬁ B(_Ot,k)) — / (Vi =b)F_ji (ds—; | s;) + / (Vi = b)F_jji (ds—; | 8i).
[B_; <b] T_i(b)

If Pr(T_;(b) | s;] =0, then Iirr)Hmn,-(bk,s,-;B(_"ik)) < 7w (b, s;; B_;) follows immediately. Otherwise, by
Remark 2, Bv; — b | si, T_; (b)) < E[v; — b | s, B™®* = b] < max(0, E[v; — b | s;, BT = b)), and claim (3)
follows.

(4) Consider a sequenag; | 0 and, for everyk, chooseb* e arg max>om (b, si; B(j’f)); note that the
maximum is achieved becausd-, s;; B(_"f)) is continuous. Assume w.l.0.g. that the sequence of maximizers
converges, and lgt* = lim;_, o, b*. Claim (3) implies that lim_, oo 7*(s;; B(_"f)) =limy_ oo (X, 53 B(_"‘I.”) <
7 (b*,5i;B_j) < max,»o7 (b, si; B_;). Since the reverse inequality follows from Lemma 16(3), the proof is
complete. O



P. Battigalli, M. Sniscalchi / Games and Economic Behavior 45 (2003) 38-72 67

A.1.3. Theorem6

We are finally able to prove the main result of Section 3, Theorem 6. The key step is the proof of claim (2).
We sketch the main argument here (see also the discussion in Section 2).

For any bidb* < ¢B-i (s;), the justifying beliefg(_"‘l.) has the qualitative features illustrated in Fig. 1.
Specifically,g® is increasing and lies belo®; moreover, it approximates the upper bouhdp to the points
where the latter crosses the it and approximates* thereafter.
To verify the optimality of b* given g(_"‘l.), we proceed in two steps. First, we argue that bidder
payoff function (b, s;; g(f‘l.)) is pointwise dominated by the “two-bidder, private-values” objective function
(ELv; | si] —b) Pl{g(_",) < b | s;]. Moreover, the two functions share the same valpe Es;] — b* for b = b*.
We then prove thak = b* maximizes this auxiliary objective function among all bidshosen by at least one
opponent;j with types; > s—that is, a type for Whictg(“)(sj) approximates*.

The second and concluding step entails verifying that, for all remaining#hibdglderi’s payoff giveng(_"l.)
is close to her payoff giveB_;, her “pessimistic” conjecture. By the definition ¢F-i (s;), this implies that no
such bids can be profitable deviations fréin

Proof of Theorem 6. Note first that Lemmata 16 and 17 imply that part (3) of the theorem is true. Moreover, if
the game has private values, we have

maxz (b, s;; B_j) = inf ¥ (si5 1) = inf ¥ (si; w) = maxi (b, si; B_y),
b>0 peAt(M_;:B_;) neAT(B_i:B_;) b>0
the first equality appears in part (3) of the Theorem, the first inequality reflects the fagutthatt 5_;, and the
second inequality is claim (3-PV) in Lemma 16. Also, Lemma 15 states thatypaxd, si; B_;) = 7*(si; B_;).
Thus, (4) holds.
To see that (1) holds, observe that, by Remark 3, fortanye M _;, E[v; | s;, b_; < b*] < E[v; | s;]. Hence,
if o* > E[V; | i1 —inf,ca+ M8, 7 (sis 1) andb* < E[v; | s;], then, for anyu* € AT (M_;; B_y),

7 (b*, si; w*) = / (ELvi | si, b—j <b*]—b")Piib_; < b* | s;lu*(db_;) < E[v; | si] — b*
M_;
< inf 77 (sis ) < 7w (sis ),
peAt (M_;;B_;)
sob* cannot be a best reply to_;. On the other hand, i#* > E[v; | s;], thenz (b*, 5;; ©*) < 0 (recall thath* > 0
and positive bids win with positive probability), so agaithcannot be a best reply {o*.
We now prove (2).

Claim. b* < min(E[v; | s;], Iimml B(S/))

To see this, note that[& | s;] — b* > inf,ca+ a8 T (Gsis ) = sup,>o (b, si; B-;) implies that
b* < Elv; | 5;]. Moreover, suppose that" > limg; 11 B(s;). If Pr[BT? = b* | 5;] = 0, thenz (b*, 5;;B_;) =
ELv; | si] = b* > sup,>o 7 (b, s;; B_;), a contradiction. If instead BT =b*|s;] >0 (sob* = limg;11B(s)),
note that, by Remark 2,[& — b* | s;, BT = b*] > E[v; — b* | s;, B_; <b*] = E[v; | 5;] — b* > 0; hence, we
again obtainz (b*, s;; B_;) = E[v; | s;] — b*, which yields the same contradiction.

We now construct the conjecture to whighis a unique best response. First, define a bounded, nondecreasing
and measurable functiagy: [0, 1] — R, by

Vs; €[0,1], 9@sj)= min(B(s_,), b*). (A7)

Correspondingly, define the quantities

s=min(L inf{s; € [0,1]: B(s)) > b*}),  b® =0 (5, a)b*. (A.8)

Recall thatg® (s;) = o (s}, 2)g(s;) (EqQ. (A.6)). For everyx > 0 andb > 0, by Remark 2 and the observation
thatg® € M_;, w(b, 5i; ') < (Elv; — b | 5:1) P1g') <b | 51, with equality forb = b*. Also note thaf < 1,
for otherwise we would havB(s;) < b* for all s; € [0, 1), and thereforé* > Iimml B(s;).
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Letting v = E[v; | 5;] for notational convenience, and fixing an arbitrary opponeot playeri,
Pg <b|si] <Ps; g5 <b|si]
= PI‘[sj: sj<3§ andB(“)(sj) <bors; >5ando(sj, 0)b* <b | s,-]
<Pis;is; <5o0rs; >5ando(s;, 0)b* <b|si],

with equality forb = b*. Moreover, forb € [6®@, b*], 5; <5 implieso (s}, a)b* < o' (5, a)b* = b® < b, so we
also have
Sl')

(recall thatz(-, ) is the inverse ob (-, )), and thereforer (b, s;; g'*)) < (5 — b)Fj; (x(b/b*, @) | s;), with

Pr{g(_"‘i) <b | s,-] < PI‘[o(sj,(x)b* <b ‘ s,-] =Fjji (r(f—ﬁﬂ,a)

equality forb = b* . Hence, ifb* is the unique maximizer of the r.h.s. in the regi@f®, b*] of bids, thenb* is
also the unigue maximizer of play&s payoff in the same region. We now show that this is indeed the case.

It is expedient to represent bids as convex combinations“f= o (5, «)b* and b*. For everyx € [0, 1],
define

b a) =[(1 =N (5, o) + A]b*; (A.9)
note that%b(k, a) =[1-o0o(5,a)]b*. Also, for everyx € [0, 1], define the quantity

b(x, &)
b*

s(k,a):r( ,a):r((l—k)(r(i,a)+k,a), (A.10)
which yields the type (of playef) who bidsh(x, &), according to the bid functiog®, if B is right-continuous
ats.

Claim. The function H : [0, 1] x (0, 1] — R defined by
H( o) = (0= b)) Fji (s ) | 57) (A11)

has a unique maximum at A = 1 for sufficiently small «.

Case 1 (s > 0). Considera € (0,5). Theno(s,a) = (1 — a/(1 — @) + %55, 0 (L = Mo, @) + A =
1-@1- A)lﬁ—a(l —3§) > 1— «, where the inequality follows from the choice af Therefore,s(x,«) =
1—(1-21)(1-5)=s(r), which is independent ai. Also, %s(k) =(1-5)forxre(0,1).

We conclude that
il _ . _ _
T HO @) = —[1-0G. )b Fjji(sQ) | i) + (0 — b, @) fi1i (s | si) (L —5).
Now let f}‘l}i”(s,-) = Minyeo,1) fji (x | si) > 0: then, since < 1, a%H(A,cx) > —[1-0(@,a)]b* + (v —b*) x
f_mi”(s,-)(l —§) = h(a). Sinces > 0, lim,_.00 (5, @) = 1; this implies that, for sufficiently small,iz(«) > O,
and thereforeZ- H (1, ) > 0. This implies that arg max(o,q H (+, &) = {1}.

Case2 (s =0). Theno (s,a) =0, b(A, o) = Ab*, ands (X, o) = T (A, @). We have two sub-cases.
First,for0<1 <1l—a,t(h, a) = 7% 1. Definef}‘l}ax(s,-) = maXco,1) fjji (x | si) < oo; then, sincelf—a <1,
— o
H )= (v — Ab*)Fj“- <—A
1-«
For « sufficiently small, the r.h.s. is smaller thati(1,«) = v — b* > 0. Hence, for allx € (0,1 — «],
H,a)> HA, ).
Forre(l-o,1), t(ha) = (1— %)+ =23 5o

s,-) <v H}ax(s,-)a.

a —
aH(,\,cx) =—b*Fjji(t(h, o) | si) + (B — 10" fii (t O, @) | 57)
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Thus, with fjf{}i"(s,) as above 2 H (L, o) > —b* + (3 — b*)fjf‘l}i"(s,)lg—“, which is positive fora sufficiently
small. Thus,H (1, @) > H(x,«) for « smalland: € (1 — «, 1).
Since H(0, o) = 0, we can again conclude that argmax 1 H (1, «) = {1}, and the proof of the claim is

complete.

The claim implies thab* is the unique maximizer of (b, s;; g<_°‘,)) in the region[b®@, b*]. Clearly, every
b > b* is dominated by* given g(f‘l.).

If 5 =0, thens® =0, so we are done. Otherwise, notice th&0 = o (5, «)b* implies that[g"*) < b] =
[B(_"i) < b]forall b < 5@, To see this, supposﬁ)(s,i) < b, and fixj #i. If g(s;) = B(s;), thenB@ (s;) < b
follows immediately. Suppose instead thgt;) = b*. Note that, since we are considering a Ibick b@,
o(sj,0)b* = o (sj,)g(s;) = g9 (s;) < b < b@ = o (5, @)b*. Then we geto(s;, @) < o (5, @), and since
o(-,a) is increasing,s; < §; but thenB(s;) < b*, sog(s;) = B(s;), and both must be equal t¢'; moreover,
B<°‘)(sj) < b. Conversely, ifB(_"‘I.)(s,,-) < b, thena fortiori g(_"‘l.)(s,,-) < b, because, for allj # i, g("‘)(sj) =
o(sj.0)9(s;) < o(sj,a)B(s;) =B@(s)).

We conclude that, fob € [0,5®), 7 (b, s;; ) = (b, si;B)). For any sucth, Lemma 17, claim (3)
implies that lim, o7 (b, 5;; B(j’i)) < (b, si; Boi) < sUfyso 7 (b, s;i; B_;). By assumption, the latter quantity
is smaller than B; | s;] — b* = 7 (b*, s;; g(j’i)); therefore, for sufficiently smalk, and for allb [0, b)),

w(b,si; g% <m@*,5i;9%) . O

A.1.4. Proof of Proposition 8

(3) Note that, sinceg’ is continuous, by Dominated Convergencéy;B s;] andx (b, s;; B_;) are continuous
in s;; also, the latter function is continuous inby Lemma 14. By the Maximum Theorem, the function
si = max,>o (b, si; B_;) is thus continuous, and this implies thiht is continuous.

(4) Observation. By Assumption 4 and Remark 2, for all, s; € [0, 1] such that; > s;, E[v; | s;]1> E[V| s,f].
Similarly, for everyb > 0, if Pr{B_; < b | s;] > 0 (respectively RB™™ > b | 5;] > 0), then Bv; | s;, B_; < b]
(respectively Bv; | s;, BT > b]) is increasing ir; .

Chooses; > 0 andb € argmax o (y, si; B_;).

Claim. Assumethat PHB_; < b |s;] <1,50b < B(1). Then, for all s/ <s;, ¢B(s)) < ¢B(si).

To prove the claim, note first that, (b, s;; B_;) =0, thengB (s;) = E[v; | s;] > E[v; | 51 > ¢B(s)), where
the strict inequality follows from the initial Observation, and the weak inequality from part (1).

Thus, assume (b, s;; B_;) > 0, so in particular RB_; < b | s;] € (0,1) becaus8_; > 0. Then Bv; | s;] =
ELv; | si,B_i <b]PHB_; <b|s;]+E[V; | si, BT > b]P{B™™ > b | 5;] and

¢B(s) =E[Vi | 5, B"*> b]P{B™® > b | 5]+ bPHB_; < b |s:].

Sincem(b,s;;B_;) > 0, b < E[v; | si,B_; < b] < E[v; | s;, BT > b], where the second inequality follows

from Remark 2 by an argument analogous to the one used in the proof of Lemma 16(2). Also note that the
indicator function of the everiB™® > b] is nondecreasing, becauB®?* is nondecreasing; therefore, fgr< s;,

PIB™™ > b | 5;] > PIB™™ > b | 5/]. Note that, sincef is bounded away from zero, [B"™ > b | s/] > O;
therefore,

#B(s) > E[vi | s, B" > b] P{B™® > b | 5/] + bP{B_; <b|s{]
> E[v; | s/, BT*> p] P{BT™ > b | 5]] + bPB_; <b | 5]]
= E[vi | ) ~E[vi b s/, B_ <b]PH[Bs <b 5]
> E[vi |57] = maor (x, /s B) = 6°(5).

where the strict inequality follows from the initial Observation, and the proof of the claim is complete.
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Consider now signalss;, s/ such thats/ < s; and ¢>B(s{) = B(1). Then it must be the case that
argmax>o 7 (x, s;; B_;) = {B(1)}: otherwise, by the preceding Clainj,< s;, b € argmax o7 (y, s;: B_;) and
b < B(1) would imply

#5(s)) < ¢B(si) =EIV; | 5] — 7" (5:. B_i) <ELV; | 5] — 7 (B(D), 5:: B_)
=E[v; | si1— (E[v | s, B; <B(D)] - B(1)) =B(),
a contradiction. Thus, we must hay8(s;) = ¢B(s/) = B(1). Let
s° = mln(l, |nf{s, €[0,1]: B(1) € arg)rgaom(x,s,, B,,)}).
Theng® is increasing or0, sB) and constant ofs®, 1]. O

A.2. Rationalizability

Lemma 18. Let b, B be bid functions such that b isincreasing, B is nondecreasing, and b > B > 0. Then, for
every bid b € [0, E[v; | si, b—; <b]l, m(b, si; b) < (b, 5;; B). In particular, 7*(s;; b) < max,»o 7 (b, s;; B).

Proof. Note that

7(b,s;;B)=E[v; —b|s;,b_; <b]Pib_; <b|s;]

+ Z E[vi —b|si, byuiy <b, By <b<by]
9£JCN\(i)
-Pilbnvjuiy < b, By <b<bysi]

+max{0, (E[v; | si, BT =b] - b) P{B"™=b]s5]}.

Sinceb is increasing, the first term on the right-hand sider ®, s;; b). Sinceb andB are nondecreasing, by
Result 2, Bv; | s;, bysuiy < b,By <b < by] > E[v; | s;,b_; <b] for all J, as in the proof of Lemma 16,
part (1). Since, moreover, by assumptibr< E[v; | s;,b_; < b], the second term in the above expression is
nonnegative. Since the third is clearly also nonnegative, the first claim follows.

The second claim holds trivially ift*(s;; b_;) = 0; otherwise, it follows by observing that, #* €
argmax>o 7 (b, s;; b) andz*(s;; b—;) > 0, then surelyp* € (0, E[v; | s;,b_; <b*]). O

Lemma 19. Let {Bk}f,o= , be a weakly decreasing sequence of continuous, increasing and positive functions,
and let B = lim_, o B* > 0. Define B*, = (B¥,B¥...) and B_; = (B, B...). Then, for every signal s; € S,

My 0o 7 (535 Blil-) = inf‘LEN(Mﬂ.'Bﬂ.) ¥ (si; n).

Proof. Define*(s;, B_;) = max,>o7 (b, s;; B_;) for notational convenience. Then, Lemma 18 applied to the
pairsB¥, B! andB*+1, B implies that 0< % (s;, BY ;) < 7*(si, B*+Y) < #*(si, B;) for all k. Therefore, the
sequencér*(s;, B’il.)}f‘;l has a limit, and ift*(s;, B_;) = 0, this limit is zero. Now assume that'(s;, B_;) > 0
and letb* € argmax o7 (b, s;; B_;). SinceB_; > 0,7 (0, s;, B_;) =0 < 7*(s;, B_;). Thereforeb* > 0, and—
by Lemma 16(2)—if PIB™®* = b* | 5;] > 0, then Bv; — b* | s;, BT =b] > 0. Hence, regardless of whether or
notb* ties with positive probabilityw (b*, s;; B_;) = E[v; — b* | s;, B_; <b*]PAB_; <b* | s;].

Now let {b¢}72, be a sequence of bids such thatB%®* = b, | 5;] = 0 for all integerst, andb, | b*. Thus,
for each?, 7 (be,si; B_;) = E[v; — b* | 5;,B_; < by]P{B_; < b, | s;]. Also, for all £ and k, the indicator
functions of the set§B* . < b,] converge pointwise o_; to the indicator function ofB_; < b¢].28 Thus,

=1

28 Considers; such thatB(s;) < by; then, fork large enoughp* < b,. If instead B(s;) > b, then also
BX(s;) > b,. Thus, pointwise convergence obtains forsale S;.
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[V (si,s—i) — bg]1[35i<b£](s_,) — [Vi(si, 5-) — bellB_; <p,1(s—;) pointwise onS_;; hence, by Dominated

Convergences (bg, si; BY ;) — 7 (be, ;3 B_;).

Similarly, note that the indicator functions of the sgs; < b,] converge pointwise ofi_; to the indicator
function of [B_; < 5*1.2° Thus,[V; (s;, 5—i) — beldip_; <b,1(5—i) — [Vi (si, 5—i) — b*1p_, <p*|(s—;) pointwise on
S_;; hence, by Dominated Convergenégpy, s;; B_;) — 7 (b*, s;; B_;).

Thus, for every > 0 we can findc and¢ large enough thdtz * (b*, s;; B_;) — 7 (be, si; B’Li) |< €. Moreover,
7 (be, si3 B ) <% (si, BX,) < *(si, B_;). Therefore,

7*(si3Boi) = ¥ (s, BY,) = 7 (be, i3 BY,) > 7 (0", 55 Bi) — €,

which implies that lim_ o 7*(s;, B’i,-) = max,»o7 (b, s;; B_;). SinceB > 0 is nondecreasing, part (3) of
Theorem 6 yields the desired resulto
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