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The epistemic analysis of solution concepts for dynamic games involves
statements about the players' beliefs conditional upon different histories of play,
their conditional beliefs about each other's conditional beliefs, etc. To represent
such statements, we construct a space of infinite (coherent) hierarchies of condi-
tional probability systems, defined with respect to a fixed collection of relevant
hypotheses concerning an external state (e.g., the strategy profile being played.) As
an application, we derive results about common certainty of the opponent's
rationality conditonal on an arbitrary collection of histories in multistage games
with observed actions and (possibly) incomplete information. Journal of Economic
Literature Classification Numbers: C72, D82. � 1999 Academic Press

1. INTRODUCTION

A player's strategy in an extensive-form game is a complete description
of her dispositions to act at different information sets. In a symmetric
fashion, the analysis of rationality in extensive games relies (at least
implicitly) on an equally complete description of a player's dispositions to
hold beliefs about her opponents' strategic choices.

We take the view that preserving this symmetry is just as natural and
desirable in any treatment of the epistemic foundations of solution concepts
for extensive games.
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Higher-order beliefs, i.e., beliefs about beliefs ..., are key to the latter line
of research. Thus, two questions arise naturally. First, is it possible to
model players' dispositions to hold hierarchical beliefs in a complete and
consistent way? And, if so, can we make progress towards understanding
some of the so-called ``paradoxes'' of extensive-form analysis by exploiting
the expressive power of such a model?

Our first contribution answers the former question in the affirmative. In
the standard, normal-form setting, it is well known (see, e.g., Mertens and
Zamir [19], Brandenburger and Dekel [10]) that, under fairly general
conditions, there exists a ``universal'' space of epistemic types. Its elements
are sequences of probability measures, corresponding to progressively higher-
order beliefs. Thus, essentially any (coherent) statement about players'
reciprocal beliefs has a representation in the universal space.

In this paper, we extend this type of construction by considering a space
whose elements are sequences of collections of (conditional) probabilities.
In particular, we consider collections which satisfy Bayes' rule whenever
possible, so that our representation of agents' dispositions to believe coin-
cides with the notion of a conditional probability system (or CPS), due to
Alfred Renyi [26],1 and the elements of the ``universal'' space we construct
are actually infinite hierarchies of CPSs.

We point out that, as in [10, 19] our framework applies to more general
situations where a natural ``basic'' (or external) domain of uncertainty
exists, and agents hold interacting beliefs conditional on a fixed collection
of (relevant) hypotheses about the prevailing external state.

As in the normal-form case, a single (coherent) hierarchical sequence
of CPSs may be regarded as an epistemic type��that is, a complete and
explicit description of an agent's conditional beliefs of arbitrary order.
However, in the spirit of Harsanyi [15], one may also list a set of epistemic
types for each agent, and associate with each type a CPS over the Cartesian
product of the set of external states and the collection of types listed for the
other agents. Each type thus defined generates an infinite hierarchy of
CPSs; indeed, extending analogous results due to Mertens and Zamir [19],
we show that every such implicit description of a type space corresponds to
a (beliefs-closed) subset of the space of (coherent) hierarchies of CPSs,
which can thus be rightfully deemed universal. This is the second contribu-
tion of this paper.

We would like to suggest that the model we propose may be usefully
employed to further our understanding of some of the puzzles and paradoxes
of extensive-form analysis. To support this claim, we provide a collection of
results related to the notion of (conditional) common certainty of rationality
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in two-player multistage games with observed actions and (possibly)
incomplete information.

Common knowledge or certainty of rationality are central ideas in the
literature on the epistemic foundations of normal-form solution concepts
(e.g., Tan and Werlang [30]); they have also been employed in connection
with extensive games (e.g., Ben�Porath [7]), albeit often engendering
much controversy (see, for example, Aumann [1, 2], Binmore [9], and
Reny [24] on backward induction.)

In an effort to at least partially clarify some of the controversial issues
involved, we propose a notion of common certainty of the opponent's
rationality (CCOR) given an arbitrary collection of histories. Our defini-
tion formalizes the following sequence of assumptions: for i=1, 2 and j{i,
(0 . i) player i is rational, (1 . i) player i is disposed to believe, after each
history h in an arbitrarily specified collection F, that (0. j) is true, (2 . i)
player i is disposed to believe, after each history h # F, that (1 . j) is true,
etc.

We show that, for any collection of histories F, these assumptions
characterize an iterative elimination procedure which is reminiscent of
rationalizability (Bernheim [8], Pearce [22]), but incorporates stronger,
extensive-form-motivated restrictions. More specifically:

v In normal-form games, our procedure coincides with rationalizability;
hence, our results formally extend those of Tan and Werlang [30].

v In extensive-form games, if one takes the collection of relevant
conditioning events to be the (singleton) initial history, one obtains a
characterization of initial CCOR, as defined and analyzed by Ben�Porath
[7] in the more restricted class of generic perfect information games.

v However, we can also characterize CCOR at any subsequent history.
This allows us to provide a simple and transparent answer to questions
such as whether or not there can be CCOR in the ``Centipede'' game if
Player 1 does not choose ``down'' at the initial history.

v Finally, in our opinion, the most interesting and novel applications
of our result involves a non-singleton collection of conditioning events. For
instance:

�� one may verify whether there can be CCOR conditional on the
set of histories comprising a given path of play;

�� imposing CCOR given a collection of histories comprising a
path of play as well as select off-path histories may capture elements of
forward induction (see Example 1 in Section 5);

�� using results due to Reny [24], we can show that, in generic
perfect information games, CCOR is possible given the collection R of all
histories that are (i) consistent with the rationality of both players, and (ii)
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such that the player moving at an history h # R does not have a dominant
action, if and only if every h # R is on the backward induction path.

We have already mentioned and briefly discussed the literature more
immediately related to the present paper. Other relevant contributions on
the foundations of (extensive form) game theory include Aumann [1, 2],
Balkenborg and Winter [3], Dekel and Gul [11], Samet [27], and Stalnaker
[28, 29]. A more detailed discussion of some of these papers will be deferred
to the concluding section.

The paper is organized as follows. Section 2 contains the construction of
the (universal) space of infinite hierarchies of CPSs. Section 3 discusses
implicit (and typically finite) representations of type spaces and relates the
latter to the universal space constructed in Section 2. Belief operators are
the subject of Section 4. All game-theoretic results, as well as illustrative
examples, appear in Section 5. Finally, Section 6 concludes. Some of the
less instructive proofs are collected in an appendix. Omitted proofs and
examples of peripheral facts mentioned in the paper are available upon
request.2

2. INFINITE HIERARCHIES OF CONDITIONAL BELIEFS

2.1. Conditional Probability Systems and Higher Order Beliefs

For a given Polish (separable, and completely metrizable) space X, let A

be the Borel sigma-algebra on X and B/A a non-empty finite or coun-
table collection such that < � B and each B # B is both closed and open.
The interpretation is that a certain individual i is uncertain about the
``true'' element x # X, and B represents a collection of observable events, or
``relevant hypotheses.'' In particular, we will mostly be interested in the
following situation: there are a set 7 of basic ``external'' states and a set Z
consisting of (some representation) of another individual's beliefs about 7;
then each point (state) in the set X=7_Z provides a description of
``external'' as well as ``epistemic'' features of the situation at hand. In a
game, this could comprise a description of the strategy profile being played
and a representation of the beliefs held by individual i 's opponent. The set
B could consist of hypotheses concerning the ``external'' state only, i.e., sets
of the form B_Z for B/7; as long as the latter is finite, the elements of
B will be guaranteed to be both closed and open.3

For a different example, X may be the set of sample paths in a repeated
experiment with finitely many outcomes, or the set of complete histories in
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a supergame with a finite stage game, while elements of B may be equiv-
alence classes of histories sharing a common initial subhistory. In this case,
too, the conditioning events may be shown to be both closed and open.

A conditional probability system (or CPS) on (X, A, B) is a mapping

+( } | } ): A_B � [0, 1]

satisfying the following axioms:

Axiom 1. For all B # B, +(B | B)=1.

Axiom 2. For all B # B, +( } | B) is a probability measure on (X, A).

Axiom 3. For all A # A, B, C # B, if A/B/C then +(A | B) +(B | C)=
+(A | C).4

The set of probability measures on (X, A) is denoted by 2(X ); the set
of conditional probability systems on (X, A, B) can be regarded as a sub-
set of [2(X)]B (the set of mappings from B to 2(X)) and it is denoted by
2B(X ). Accordingly, we often write +=(+( } | B))B # B # 2B(X ). The topol-
ogy on X and A (the smallest sigma-algebra containing this topology) are
always understood and need not be explicit in our notation. Thus we
simply say ``conditional probability system (or CPS) on (X, B).''

We regard 2B(X ) as the space of possible conditional beliefs of an
individual, say j, and we wish to define the higher order beliefs of another
individual i about the beliefs of j. We argue below that it is conceptually
appropriate to define such higher order beliefs over the Borel sigma-algebra
generated by the product topology of weak convergence of measures.

Fix a Borel set A, a relevant hypothesis B and a real number p # [0, 1].
The informal statement ``conditional on B, individual j would assign prob-
ability at least p to A'' corresponds to the set ; p

B(A)#[+ # 2B(X ) :
+(A | B)�p]/2B(X ).

In order to formalize more complex statements such as ``conditional on
C # B, i would assign a subjective conditional probability to the event `j
would assign probability at least p to A conditional on B,'' we must endow
2B(X ) with a sigma-algebra including all sets ; p

B(A), for all Borel-
measurable A/X, B # B and p # [0, 1]. It is then natural to consider the
sigma�algebra generated by such sets, which we denote by A+1 (cf. Heifetz
and Samet [17].)

It turns out that, since X is assumed to be a Polish space, the rather
intuitive measure-theoretic structure just described is entirely consistent
with a particularly convenient topological structure on the set of condi-
tional probability systems.
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More specifically, endow 2(X ) with the topology of weak convergence of
measures, and [2(X )]B with the product topology. Consider the Borel
sigma-algebra on [2(X )]B. Lemma 1 below states that 2B(X ) is a closed
subset of [2(X )]B. Thus the collection of Borel subsets of 2B(X ) is the
Borel sigma-algebra of 2B(X) viewed as a topological subspace of [2(X)]B.
This Borel (sub-) sigma-algebra is precisely the ``natural'' sigma-algebra A+1

defined above.5

Lemma 1. The set 2B(X ) of conditional probability systems on (X, B) is
a closed subset of [2(X )]B. Therefore 2B(X) (endowed with the relative
topology inherited from [2(X )]B) and X_2B(X ) (endowed with the product
topology) are Polish spaces.6

Proof. See the Appendix. K

Let X+1=X_2B(X) and let C: A � 2X +1
be defined by C(A)=

A_2B(X ). Thus C(B)=[C/X : _B # B, C=B_2B(X )] is a set of
``cylinders'' generated by B and represents a copy of B in X+1. Then we
can define the set of ``second order'' CPSs 2C(B)(X+1). Since X+1 is a
Polish space, it follows from Lemma 1 that also 2C(B)(X+1) (endowed
with the appropriate topology as above) is a Polish space. Each element
++1

i # 2C(B)(X ) is a countable collection of individual i 's conditional joint
beliefs about the true value of x # X and +j # 2B(X )��individual j 's condi-
tional beliefs about x # X��whereby the conditioning events, or hypotheses,
are essentially the same as in B.

Note that 2C(B)(X+1) can be regarded as a subset of [2(X +1)]B. Thus,
we are somewhat justified in adopting the simpler notation 2B(X+1)
whenever the precise structure of the conditioning events is clear from the
context and�or need not be specified, even though B is not a collection of
subsets of X+1. More generally, let Y=X_Z, B/2X, BY=[C/Y : _B # B,
C=B_Z]; then the set of CPSs on (Y, BY) will be equivalently denoted
by 2BY (Y ) or 2B(Y ).

Finally, for any probability measure & on the product space Y=X_Z
let mrgX & # 2(X ) denote the marginal measure on X. In what follows
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it is useful to note that, if +=(+( } | B_Z))B # B # 2B(Y ), then
(mrgX +( } | B_Z))B # B # 2B(X).

2.2. Inductive Construction

We are now ready for the inductive construction of the space of infinite
hierarchies of conditional beliefs and the universal type space. For the sake
of simplicity, we assume that there are only two individuals i and j sharing
a common space 7 of external states (about which they are uncertain) and
a common collection of relevant hypotheses B. The individuals have condi-
tional beliefs about 7 and about each other for every hypothesis B # B.
However, we do not explicitply represent the beliefs of an individual about
her own beliefs. The implicit assumption is that an individual always
assigns probability one to her true beliefs. As before we assume that 7 is
a Polish space and B is a finite or countable collection of its non-empty
subsets which are both closed and open. Define Xn and Bn recursively as
follows:

X0=7, B0=B;
for all n�0,
Xn+1=C(Xn) :=Xn_2B n

(Xn),
Bn+1=C(Bn) :=[C/Xn+1 : _B # Bn, C=B_2Bn

(X n)].

An element +n+1 # 2B n
(Xn) is an (n+1)th-order CPS with elements

+n+1( } | B) # 2(Xn), B # Bn. It can be easily verified that in our notation

2B n
(Xn)=2B(Xn), X n+1=7_ `

k=n

k=0

2B(Xk).

The set of infinite hierarchies of CPSs is H=>�
n=0 2B(Xn). An infinite

hierarchy represents an epistemic type and is therefore typically denoted by
t=(+1, +2, ..., +n, ...). Lemma 1 implies that for all n�0, X n and 2B(Xn) are
Polish spaces. It follows that also H and 2B(7_H) are Polish spaces. Note
also that for all k�0, 7_H can be decomposed as follows:

7_H=Xk_ `
�

n=k

2B(Xn).

2.3. Coherent Hierarchies

We have not yet imposed any coherency condition relating beliefs of
different order. Of course, we want to assume that, conditional on any
relevant hypothesis, beliefs of different order assign the same probability to
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the same event. For all integers k�0, n�1 and subsets A/Xk let Cn(A)
denote the subset of Xk+n corresponding to A; that is,

Cn(A)=A_ `
m=k+n&1

m=k

2B(X m).

Note that, as the notation suggests, C(Cn&1A))=Cn(A). Similarly, C�(A)
is the subset of 7_H corresponding to A (replace n and k+n&1 with �
in the formula above.) In particular, for any B # B, Cn(B) (or C�(B)) is the
subset of Xn (or 7_H) corresponding to B. Recall that, for any probability
measure & on a product space X_Z, mrgX & # 2(X ) denotes the marginal
measure on X.

Definition 1. An infinite hierarchy of CPSs t=(+1, +2, ..., +n, ...) is
coherent if for all B # B, n=1, 2, ...,

mrgX n&1 +n+1( } | Cn(B))=+n( } | Cn&1(B)). (2.1)

The set of coherent hierarchies is denoted by Hc .

The following proposition establishes that we can equivalently describe
events concerning the conditional beliefs of a coherent individual i as (measur-
able) subsets of coherent hierarchies of conditional beliefs or (measurable)
subsets of conditional beliefs about the external state and the (coherent or
incoherent) infinite hierarchy of individual j.

Proposition 1 (cf. [10], Proposition 1). There exists a ``canonical ''
homeomorphism f : Hc � 2B(7_H) such that if += f (+1, +2, ..., +n, ...), then
for all B # B, n=1, 2, ...,

mrgXn&1 +( } | C�(B))=+n( } | Cn&1(B)). (2.2)

We first prove the following lemma:

Lemma 2. Consider the following set:

D=[($1, $2, ...) : \n�1, $n # 2(Xn&1), mrgXn&1 $n+1=$n].

There is a homeomorphism h: D � 2(7_H) such that

\n�1, mrgX n&1 h($1, $2, ...)=$n.
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Proof. Let Z0=X0=7, \n�1, Zn=2B(Xn&1). Each Zn is a Polish
space and

D=[($1, $2, ...) : \n�1, $n # 2(Z0_ } } } _Zn&1), mrgXn&1$n+1=$n].

The result then follows from Lemma 1 in [10]. K

Proof of Proposition 1. For each B # B, let ?B : Hc � D be the follow-
ing projection function:

?B(+1, ..., +n, ...)=(+1( } | B), ..., +n( } | Cn&1(B), ...).

?B is clearly continuous. By Lemma 2 the mapping

fB=h b ?B : Hc � 2(7_H)

is also continuous. Let +( } | C�(B))= fB(+1 , +2 , ...). Clearly, +(C�(B) | C�(B))
=1 and for all n=1, 2, ..., Eq. (2.2) is satisfied. Thus the mapping

f =( fB)B # B : Hc � [2(7_H)]B

is continuous and satisfies Eq. (2.2). The latter fact implies that f is 1&1
and the restriction of f &1 to f (Hc) is continuous. We only have to show
that f (Hc)=2B(7_H).

(2B(7_H)/f (Hc)). Take + # 2B(7_H) and for all B # B, n�1 define
+n( } | Cn(B)) using Eq. (2.2). If t=(+1, ..., +n, ...) # Hc , then f (t)=+ # f (Hc).
Thus it is sufficient to show that t=(+1, ..., +n, ...) # Hc ; in order to do this
we only have to verify that each +n satisfies Axiom 3 (coherency of t is
satisfied by construction.) For each n, let An/X n be measurable, B, C # B

and suppose that An/Cn(B)/Cn(C) (thus B/C.) Since 7_H is a (coun-
table) product of second-countable spaces, the Borel sigma-algebra generated
by the product topology coincides with the (product) sigma-algebra generated
by cylinders with finitely many nontrivial7 factors (see Kechris [18, p. 68]),
so in particular C�(An) is measurable. Also, C�(An)/C�(B)/C�(C).
Thus we can use Axiom 3 for + and Eq. (2.2) to show that +n+1(An | Cn(B))
_+n+1(Cn(B) | Cn(C))=+n+1(An | Cn(C )).

( f (Hc)/2B(7_H)). Take t=(+1, ..., +n, ...) # Hc and let += f (t). We
must verify that Axiom 3 holds for +. Choose B, C # B such that B/C and
n�0. Consider a set An/Xn, measurable in the Borel sigma-algebra
generated by the product topology on Xn. Applying Axiom 3 to +n+1 for
all n=0, 1, ..., we obtain

+n+1(An | Cn(B)) +n+1(Cn(B) | Cn(C))=+n+1(An | Cn(C)).
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Then Eq. (2.2) yields

+(C�(An) | C�(B)) +(C�(B) | C�(C))=+(C�(An) | C�(C))

This implies that + satisfies Axiom 3 on the collection C<� of cylinders,
i.e., Cartesian products of measurable sets of which at most finitely many
are nontrivial. Again, since each factor space in the Cartesian product
7_6n�02B(Xn) is second-countable, C<� generates A, the sigma-
algebra generated by the product topology.

Now let B(B, C)/A be the collection of measurable sets for which
Axiom 3 holds for fixed B, C # B. By sigma-additivity of +, B(B, C) is a
monotone class, and it contains the algebra C<�. Hence the smallest
monotone class containing C<� is also a sigma-algebra, which cannot be
smaller than the sigma-algebra generated by C<�, i.e., A. Also, it must be
contained in B(B, C), which completes the proof. K

2.4. Common Certainty of Coherency
Even if i 's hierarchy of CPSs ti is coherent, some elements of f (ti) (i.e.,

some fB(t i), B # B) may assign positive probability to sets of incoherent
hierarchies of the other individual j. We now consider the case in which
there is common certainty of coherency conditional on every B # B.
Observe that B is a collection of ``external'' events; conditioning on any
B # B does not restrict individuals' beliefs about each other's beliefs��only
their beliefs about the prevailing external state. In particular, no event
in B conveys information about an individuals' coherency. It follows
that there cannot be any inconsistency in assuming that there is
common certainty of coherency conditional on any B # B: that is, we
do not run the risk of formally requiring that an individual be (condi-
tionally) certain of something that must necessarily be false, given the
relevant conditional.

Formally, we shall say that individual i, endowed with a coherent
hierarchy of CPSs ti , is certain of some (measurable) event E/7_H given
B # B if fB(t i )(E)=1. Common certainty of coherency given every B # B

can thus be inductively defined as follows:

H 1
c=Hc ,

for all k�2,
H k

c =[t # H k&1
c : \B # B, fB(t)(7_H k&1

c )=1],
T=�k�1 H k

c .
T_T is the set of pairs of hierarchies satisfying common certainty of

coherency conditional on every relevant hypothesis.

Proposition 2 (cf. [10, Proposition 2]). The restriction of f =( fB)B # B

to T/Hc induces an homeomorphism g=(gB)B # B : T � 2B(7_T ) (defined
by gB(t)(E)= fB(t)(E) for all B # B, t # T, E/7_T measurable).
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Proof. First note that T=[t # Hc : \B # B, fB(t)(B_T )=1]. In fact,
let t # Hc and suppose that, for all B # B, fB(t)(7_T)=1. Then t #
�k�1 H k

c =T. Conversely, for each t # T, B # B and k, fB(t)(7_H k
c )=1.

Since the measure fB(t) is sigma-additive

fB(t)(7_T)= fB(t) \7_\ ,
k�1

H k
c++= lim

k � �
fB(t)(7_H k

c )=1.

It follows that f (T )=[+ # 2B(7_H) : \B # B, +(B_T | B_H)=1], T is
homeomorphic to f (T), and each fB(T) is homeomorphic to 2(B_T ).
Given the definition of g in terms of f, one can check that for all t # T, g(t)
satisfies Axioms 1, 2, and 3, and thus g is a homeomorphism between T
and 2B(7_T ). K

Proposition 2 shows that each element t # T corresponds to an epistemic
type in the usual sense, except that here a type is uniquely associated with
a conditional probability system on (7_T, B) instead of a single probabil-
ity measure on 7_T. Thus an epistemic type ti # T represents the beliefs
that individual i would have about the external state and about individual
j 's epistemic type conditional on every relevant hypothesis B # B.

The construction carried out above (in particular, Lemma 2) exploits the
topological structure of the sets X0, X1, ..., Xn, ... . We conjecture that an
alternative ``topology-free'' construction a� la Heifetz and Samet [17] is
possible in the present context. The resulting set of epistemic types T� could
then be shown to be equivalent to the set of CPSs on 7_T� , up to a
measurable isomorphism (as opposed to ``up to a homeomorphism'').
However, the topological structure additionally enables one to associate
closeness of epistemic types with closeness of beliefs��and conclude, for
instance, that an individual's best reply correspondence is upper semi-
continuous as a (composite) function of her type. It also enables one to
conclude that, if a (coarse) subset of T approximates a finer subset of
epistemic types, the same holds true for the corresponding subsets of beliefs
(see, e.g., Mertens and Zamir [19].)

Thus, introducing a topological structure in the analysis allows one to
derive a richer theory. Moreover, as was argued above, it can be done
without prejudice to the ``natural'' measure-theoretic structure on the space
of beliefs.

3. TYPE SPACES

Each element t=(+1, +2, ...) of the set T defined in the previous Section
is by construction a complete list of an individual's hierarchical beliefs.
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That is, each t # T provides an ``explicit'' representation of the individual's
epistemic type.

Alternatively, one may choose to start with an ``implicit'' representation,
which closely mimics Harsanyi's original formulation of incomplete infor-
mation games (see [15] and Mertens and Zamir [19]; for extensive games,
see also Ben�Porath [7]).

Definition 2. A type space on (7, B) is a tuple T=(7, B, T1 , T2 ,
g1 , g2) such that for each i=1, 2, Ti is a Polish space and gi is a con-
tinuous function

gi=(gi, B)B # B : Ti � 2B(7_Tj),

where i{ j.

There are obvious parallels between the definition of a type space and
Proposition 2.8

Remark 1. By Proposition 2, if we set T1=T2=T and g1= g2= g we
obtain a (symmetric) type space which is denoted by Tu.

Moreover, given a type space T=(7, B, T1 , T2 , g1 , g2) on (7, B), it is
possible to associate to every ``implicit'' description ti # Ti an ``explicit''
hierarchy of beliefs, i.e., a point in the set H constructed in the previous
Section. A canonical procedure, which we presently illustrate, achieves this.

3.1. From Implicit to Explicit Representation

The following notation is essential. For any given measurable function
.&i : 7_Tj � 7_Tj$ , let .&i@=(.&i, B@ )B # B : 2B(7_Tj) � 2B(7_Tj$) be
the corresponding function associating to each CPS +i on (7_Tj , B) the
induced CPS +$i=.&i@ (+i) on (7_Tj$ , B). More specifically, for all
+i # 2B(7_Tj), A$/7_T $ (measurable), B # B,

.&i, B@ (+ i)(A$)=+i ((.&i)
&1 (A$) | B_Tj).

Our objective is to construct a pair of functions (.1 , .2) associating to
each type {i # Ti a corresponding hierarchy of CPSs t i=.i ({i) # H. The
mappings .i=(.1

i , .2
i , ...)=[(.1

i, B)B # B , (.2
i, B)B # B , ...], i=1, 2 are obtained

with a canonical inductive construction: the first order beliefs .1
i ({i) are
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derived by marginalization on 7; the second order beliefs .2
i ({i) are obtained

using gj and .1
j , and so on. More precisely:

v (1) For each i=1, 2, {i # Ti , B # B,

.1
i, B({i)=mrg7 gi, B({i).

For each i, j=1, 2, i{ j, {j # Tj , _ # 7,

�1
&i(_, {j)=(_, .1

j ({ j)),

that is, �1
&i=(Id7 , .1

j ) (Id7 is the identity function on 7.) Thus we have
.1

i : Ti � 2B(X0) and �1
&i : 7_Tj � X 1 (recall that X0=7 and X n+1=

Xn_2B(Xn).)

v (n+1, n�1) Let .n
i : Ti � 2B(Xn&1) and �n

&i : 7_Tj � X n

(i, j=1, 2, i{ j) be given. For each i=1, 2, {i # Ti , B # B, An/X n

(measurable),

.n+1
i, B ({i)(An)= gi, B({i)((�n

&i)
&1 (An)),

that is, .n+1
i =�n

&i@ b gi . For each i, j=1, 2, i{ j, {j # Tj , _ # 7,

�n+1
&i (_, {j)=(�n

&i(_, {j), .n+1
j ({j)),

that is, �n+1
&i =(�n

&i , .n+1
j ). Thus we have .n+1

i : Ti � 2B(Xn) and
�n+1

&i : 7_Tj � Xn+1.

Note that �n+1
&i (_, {j)=(_, .1

j ({j), ..., .n
j ({j), .n+1

j ({j)).
This completes the inductive step.

3.2. Type-Morphisms and Universality

The preceding construction shows that, for any type space T=
(7, B, T1 , T2 , g1 , g2), there exists a canonical embedding of each Ti in H.
This subsection addresses the question whether the sets Ti can actually be
embedded in T, the collection of infinite hierarchies of beliefs satisfying
coherency and common certainty of coherency conditional on every hypo-
thesis. If this is the case, then any type space may essentially be regarded
as a (belief�closed) subspace of the symmetric type space Tu.

In order to formalize these ideas, we need to develop an adequate notion
of embedding for type spaces. The central ingredient is again the map
.&i@ : 2B(7_Tj) � 2B(7_Tj$) induced by a continuous function .&i : 7_Tj

� 7_Tj$ , where T j and Tj$ are sets of epistemic types.
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Definition 3. Let T=(7, B, T1 , T2 , g1 , g2) and T$=(7, B, T $1 , T $2 ,
g$1 , g$2) be two type spaces on (7, B). A type-morphism from T to T$ is
a triple of functions .=(.0 , .1 , .2) whereby .0 is the identity function on
7 and for each i=1, 2, .i : Ti � T $i is a continuous function such that

g$i b .i=.&i@ b g i

(where .&i=(.0 , .j): 7_Tj � 7_Tj$ .) If . is a homeomorphism between
7_T1_T2 and 7_T $1_T $2 , then we say that T and T$ are isomorphic.

The intuition is as follows. Fix a type ti # Ti ; the function .i maps t i to
some t$i # T $i , and g$i (t$i) then retrieves a CPS +$ on 7_Tj$ . Alternatively,
one can use the function gi to obtain from ti a CPS & on 7_Tj , then .&i@
to map & to a CPS &$ on 7_Tj$ . Intuitively, +$ and &$ should coincide,
because both originate from the same epistemic type ti # Ti . Equivalently,
the embedding .i : Ti � T $i and the (derived) embedding .&i@ : 2B(7_T j)
� 2B(7_Tj$) should be consistent with each other. This is precisely what
the above definition requires.

Type-morphisms satisfy an intuitively appealing closure property:

Remark 2. Let .=(.0 , .1 , .2) be a type-morphism between the type
spaces T=(7, B, T1 , T2 , g1 , g2) and T$=(7, B, T $1 , T $2 , g$1 , g$2) on
(7, B). Then

\i=1, 2, \{$i # .i (Ti), \B # B : g$i, B({$i)(7_.j (Tj))=1

That is, 7_.1(T1)_.2(T2) is a belief-closed subset of 7_T $1_T $2 .

This property is consistent with the proposed interpretation of type-
morphisms as a way to view one type space as a subset of another (up to
renaming and deletion of redundant types.)

Another useful (and natural) property of type�morphisms follows.

Remark 3. Suppose . is a type-morphism from T=(7, B, T1 , T2 ,
g1 , g2) to T$=(7, B, T $1 , T $2 , g$1 , g$2) let E/7_T1_T2 and E$/7_T $1
_T $2 be measurable subsets such that .(E)/E$. Then for all i # [1, 2],
{i # Ti , B # B,

gi, B({i)([(_, {j) : (_, {i , {j) # E])

�g$i, B(.({i))([(_, {$j) : {$j=.j ({j), .(_, {i , {j) # E$]).

We are finally able to tackle the issue of ``universality.''9
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that, if we drop the topological structure, the space of hierachies of beliefs (satisfying
coherency and common certainty of coherency) is ``larger'' than the set of hierarchies
generated by some type space. The latter is a universal type space.



The formal definition of this property should be by now entirely
transparent:

Definition 4. A type space T$ on (7, B) is universal if for every
other type space T on (7, B) there is unique type-morphism from
T to T$.

Remark 4. Any two universal type spaces are isomorphic.

We are ready to state the main result of this section.

Proposition 3. Let T=(7, B, T1 , T2 , g1 , g2) be an arbitrary type
space on (7, B) and, for i=1, 2, let .i : Ti � H be the functions defined in
Subsection 3.1. Then, for each i=1, 2, .i (Ti)/T and .=(Id7 , .1 , .2)
is the unique type-morphism from T=(7, B, T1 , T2 , g1 , g2) to Tu=
(7, B, T, T, g, g). Thus Tu is the unique universal type space (up to
isomorphisms.)

Proof. See the Appendix. K

3.3. Independence

As was suggested above, the set 7 represents a collection of possible
external states which are relevant to the individuals' decision problems.
Apart from certain topological properties, the construction of the universal
type space Tu and the definition of a type space do not require that 7
exhibit any particular structure. However, in game-theoretic applications,
7 is the Cartesian product of the two players' strategy spaces.10 Thus, we
may wish to require that an individual's conditional beliefs satisfy a (weak)
form of independence: informally, her beliefs about her own strategy should
be separable from her beliefs about her opponent's strategy and epistemic
type.

In general, suppose that 7=71 _72 , where each 7i , i=1, 2, is a Polish
space. Derive from B two collections B1 , B2 of marginal conditioning
events, where

B1=[B1 /71 : _B2 /72 , _B # B, B=B1_B2]
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and B2 is similarly defined. Note that each Bi is a finite or countable collec-
tion of subsets which are both closed and open. Finally, suppose that

B/[B/7 : _B1 # B1 , B2 # B2 such that B=B1_B2]. (3.1)

For any i=1, 2, the sets of CPSs on 7i and 7i_Ti will be denoted by
2Bi (7i) and 2Bi (7i_Ti ) respectively.

Definition 5. Fix a type space T=(7=71_72 , B, T1 , T2 , g1 , g2)
satisfying (3.1). Player i 's CPS +i # 2B(71_72_T2) has the independence
property if there are two CPSs + ii # 2Bi (7i ) and +ij # 2Bj (7j _Tj ) such that
for all B=B1_B2 # B,

+i ( } | B1_B2_Tj)=+ ii ( } | Bi)�+ ij ( } | Bj _Tj),

where � denotes the product of measures.

The set of CPSs for player i with the independence property is denoted by
I2B(7i , 7j_Tj). Similarly, the set of CPSs on 7 satisfying the independence
property is denoted I2B(7i , 7j ). Note that for all +i # I2B(7i , 7j_Tj) the
CPSs +ii and +ij mentioned in Definition 5 are uniquely determined. We
call +ii and + ij the marginals of + i on 7 i and 7j_Tj respectively.

As one should expect, type-morphisms preserve the independence
property:

Lemma 3. Suppose that 7=71_72 and B satisfies (3.1). Fix two type
spaces T=(7, B, T1 , T2 , g1 , g2) and T$=(7, B, T $1 , T $2 , g$1 , g$2) on (7, B)
and a type-morphism .=(.0 , .1 , .2) between T and T$. For all i=1, 2,
ti # Ti ,

gi (t i ) # I2B(7i , 7j_Tj) O g$i(.i (t i)) # I2B(7i , 7j _Tj$)

Proof. Omitted. K

4. CONDITIONAL BELIEF OPERATORS

Fix an arbitrary type space T=(7, B, T1 , T2 , g1 , g2). A point
(_, {1 , {2) # 7_T1_T2 comprises a description of the external state _, and
(perhaps via the canonical maps .i : Ti � T) a complete list of both
individuals' hierarchical beliefs. Thus, we refer to any such point as a state
of the world ; similarly, measurable sets E/7_T1_T2 will be called
events.
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The next order of business is to define the notions of probability p belief
and certainty (i.e., probability one belief.)

For each {i # Ti , E{i
/7_Tj denotes the set of pairs (_, {j) consistent with

the event E and the epistemic type {i (E{1
=[(_, {2) # 7_T2 : (_, {1 , {2) # E];

E{2
is similarly defined). Type {i assigns to E a probability of at least p

conditional on each hypothesis B # F/B if \B # F, gi, B({i)(E{i
)�p. Note

that we are implicitly assuming that i is certain of her epistemic type. For
every E/7_T1_T2 and collection of relevant hypotheses < � F/B,
the event ``i would be certain of E conditional on every B # F'' is

;i, F(E) :=[(_, {1 , {2) : \B # F, gi, B({ i)(E{i
)=1]

(note that ;i, F(E) is measurable for each (measurable) E). If F is a
singleton, we replace it with its unique element as a subscript. If we have
to emphasize the type space T, we add T as a subscript to the belief
operators; that is, we write ;i, F, T(E).

It is easily shown that each ; i, F has all the standard properties of belief
operators.11 In particular, each ;i, F satisfies:

v Monotonicity: E/F implies ;i, F(E)/;i, F(F ),

v Conjunction: ;i, F(E & F )=; i, F(E) & ;i, F(F ).

In the following, we will often consider events pertaining to the realiza-
tion of the external state and the individuals' first-order beliefs about 7; we
presently develop the required notation and note a related property of type
morphisms.

Let E/7_2B(7)_2B(7) be measurable. The event corresponding to
subset E in type space T=(7, B, T1 , T2 , g1 , g2) is denoted ET , i.e.,

ET :=[(_, {1 , {2) : (_, (mrg7 g1, B({1))B # B , (mrg7 g2, B({2))B # B) # E].

The following lemma states that if there is a type morphism . from T to
T$ and at some state (_, {1 , {2) of T player i would believe ET conditional
on each B # F, then at the corresponding state (_, .1({1), .2({2)) in T$
player i would believe ET$ conditional on each B # F. By induction, the
result also holds for higher-order beliefs about ET$ .

Lemma 4. Suppose that . is a type morphism from T=(7, B, T1 , T2 ,
g1 , g2) to T$=(7, B, T $1 , T $2 , g$1 , g$2) and let E/7_2B(7)_2B(7) be
measurable. Then

.(ET)/ET$
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and for all integers n�1, for all collections [i1 , ..., in] and [F1 , ..., Fn] with
ik # [1, 2] and <{Fk /B for all k=1, ..., n,

.((; i1 , F1 , T b } } } b ;in , Fn , T)(ET))/(; i1 , F1 , T$ b } } } b ; in , Fn , T$)(ET$).

Proof. Since . is a type-morphism from T to T$, mrg7 gi, B({i)=
mrg7 g$i, B(.i ({i )) for all i, {i , B. This implies .(ET)/ET$ . Thus the first
statement is true. Remark 3 implies that the second statement is true for
n=1. An obvious induction argument (again using Remark 3) implies that
the second statement is true for all n. K

5. INTERACTIVE EPISTEMOLOGY AND RATIONALITY IN
DYNAMIC GAMES

We now apply the foregoing analysis to the theory of dynamic games.
For the sake of simplicity we only consider finite games with observed
actions. On the other hand, we allow for incomplete information because
this does not alter the analysis in any significant way.

5.1. Games of Incomplete Information with Observed Actions

Consider a finite, two-person, multistage game with observed actions
and incomplete information (see, e.g., [13, Chap. 8, or 21, Chap. 12])
without the probabilistic structure. Let 3i the set of payoff-relevant types
for player i. A payoff-relevant type %i # 3i corresponds to i 's private
information about payoff-relevant aspects of the game and has to be dis-
tinguished from the epistemic type which specifies i 's attitudes to have
certain conditional beliefs given certain events. Players' beliefs about the
opponent's payoff-relevant type will be specified within an epistemic model.
We will omit the adjective ``payoff-relevant'' whenever no confusion can
arise. H denotes the set of partial histories, which includes the empty
history ,, and Z denotes the set of terminal histories. The set of strategies
for player i (functions from H to feasible actions) is denoted Si . Player i 's
preferences over lotteries are represented by a VNM utility function ui :
Z_31_32 � R. Static games, games of complete information, and games
of perfect information are included in this class of games as special cases.12

The basic elements of our analysis are strategy-type pairs (si , %i) #
Si _3i , i=1, 2. A generic pair for player i is denoted _ i and the set of such
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not type-dependent. The extension to the case of type-dependent feasibility constraints is
conceptually straightforward, but requires a more complex notation.



feasible pairs is 7i :=Si_3i . The external state space is 7 :=71_72 with
generic element _=(_1 , _2)=(s1 , %1 , s2 , %2). When there is complete infor-
mation each 3i is a singleton and 7 simply represents set of strategy pairs.
For each history h, Si (h) denotes the set of player i 's strategies consistent
with h, 7i (h)=Si (h)_3i is the set of _i consistent with h, and 7(h)=
71(h)_72(h) is the set of external states inducing h. H(si) is the set of
partial histories consistent with si , that is, H(si) :=[h # H : si # Si (h)].
For every partial history h, 7j (h) is a strategic form representation of i 's
information about j at h. We can obtain a strategic form payoff function
Ui : 7 � R in the usual way: for all (z, %1 , %2) # Z_31_32 and (s1 , %1 ,
s2 , %2) # 7(z), Ui (s1 , %1 , s2 , %2)=ui (z, %1 , %2).

To illustrate our game-theoretic notation, consider the signalling game
depicted in Fig. 1. We have 31=[%$1 , %"1], 32=[%2] is a singleton, thus
the set of pairs of types is 31_32=[%$, %"]. The set of partial histories is
H=[,, (R)] and the set of outcomes is [(L), (R, u), (R, d )]_[%$, %"].
The set of external states is (S1_31)_(S2_31), where S1=[L, R] and
S2=[u, d] (a means ``choose action a if R is observed,'' a # [u, d].) The
``strategic representation'' of partial history (R) is 7(R)=[(R, %$1), (R, %"1)]
_[(u, %2), (d, %2)]. To draw the picture we rely on the fact that the set of
triples (h, %1 , %2) # (H _ Z)_31_32 can be regarded as an arborescence
with initial nodes (,, %1 , %2) # [,]_31 _32 and terminal nodes (z, %1 , %2)
# Z_31_32 .13 For each type %i and partial history h, [h]_[%i]_3i

corresponds to an information set for player i in the graphical representa-
tion. For example, [(%$1 , %2 , (R)), (%"1 , %2 , (R))] corresponds to the informa-
tion set for player 2 depicted in Figure 1.

We are interested in players' (mutual) conditional beliefs at each (com-
monly observable) partial history h. Thus the collection of relevant
hypotheses in this context is B=[B : _h # H, B=7(h)]. Note that 7 # B,
because 7=7(,), where , is the empty history. In order to complete the
model we have to introduce a(n) (epistemic) type-space T=(7, B, T1 , T2 ,
g1 , g2). A complete type for player i is a pair (%i , {i) # 3i_Ti corresponding
to a vector (%i , gi({i)) # 3i_2B(7_Tj).

14 This description of an interactive
epistemic model based on a dynamic game is consistent with several papers
about the theory of extensive form games. In particular, it can be regarded
as a generalization of the epistemic model put forward by Ben Porath [7].
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13 The precedence relation is as follows (%1 , %2 , h) precedes (%$1 , %$2 , h$) if and only if (%1 , %2)
=(%$1 , %$2) and h is a prefix (initial subhistory) of h$. Clearly, to obtain the standard graph-
theoretic representation simultaneous moves have to be ordered in some arbitrary way adding
information sets appropriately.

14 In static games 3i _Ti corresponds to the set of types in the sense of Harsanyi [15]. In
most applications of the theory of games with incomplete information 3i is assumed to
coincide with Ti and the functions gi , i=1, 2, are derived from a common prior on 31_32

and a Bayesian equilibrium profile.
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FIGURE 1

Since each element of B represents the event that some history h occurs,
we simplify our notation for CPSs on 7 or 7_Ti (i=1, 2) and replace B

with H. Indeed, we shall denote strategic form events B=7(h) # B by
h # H whenever needed (and in particular, in subscripts denoting condi-
tioning events).

Note that B satisfies the product condition (3.1) of Section 3: since
7(h)=71(h)_72(h) for all h # H, we have

B/[B/7 : _B1 # B1 , _B2 # B2 , B=B1_B2],

where

Bi=[7i (h) : h # H] i=1, 2.

For notational simplicity, we shall write 2Bi (7i) and 2Bi (7i_Ti ) as
2H(7i ) and 2H(7i _Ti ) for i=1, 2, and no confusion will arise.

Finally, we continue to identify singletons with their unique elements.
For example, given h # H or F/H, we write (gi, h({i ))h # H # 2H(7_Tj )
and ;i, F(E) instead of (gi, 7(h)({i ))7(h) # B # 2B(7_Tj ) and ;i, [7(h) : h # F](E).

We are formally assuming that a players have beliefs about their own
strategies and payoff-relevant types. Considering players' beliefs about their
own strategies is germane to extensive form analysis, because the choice of
player i at a given history is motivated by his or her beliefs about the
opponents' and his or her own behavior later on in the game. However, it
is natural to focus on player i 's beliefs about the opponent. We assume that
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a rational player i is certain of her strategy and type and that she takes a
best response against her beliefs about the opponent. These beliefs are
represented by a conditional probability system +ij # 2H(7j_Tj ) with
corresponding first order beliefs (mrg7j

+ij, h)h # H # 2H(7 j ).

Definition 6. Let (si , %i) # 7i , +=(+( } | 7 j (h))h # H # 2H(7j). Strategy
si is a best response to + for type %i , written (si , %i) # ri (+), if for all
h # H(si ), s$i # Si (h)

:
_j # 7j (h)

[Ui (si , %i , _j )&Ui (s$i , %i , _ j )] +(_j | 7j (h))�0.

Note that this is a best response property for plans of actions,15 as maxi-
mization is required only at histories consistent with the given strategy (cf.
Reny [23]). A standard dynamic programming argument shows for every
+ # 2H(7j), ri (+){<.

Definition 7. Fix a type space T=(7, H, T1 , T2 , g1 , g2). Player i is
rational at state (si , %i , _j , {i , {j) in T if

(1) epistemic type {i is always certain of %i and is certain of si

whenever possible, that is, for all h # H, gi, h({i)(Si _[%i]_7j_Tj)=1 and
if si # Si (h), gi, h({i)([(si , %i)]_7j_Tj)=1,

(2) gi ({i) # I2H(7i , 7j_Tj) (see Definition 5 in Section 3),

(3) (si , %i) # ri ((mrg7j
gi, h({i))h # H).

Condition (1) says that a rational player knows her type and chooses
actions according to a specific plan she intends to implement. In most
epistemic models for games a property like (1) is assumed to hold globally,
while we only require that it holds at states where player i is rational.
Condition (2) says that the beliefs of a rational player can be decomposed
into marginal beliefs about herself and about the opponent. In a static
model (2) is implied by (1), but in a dynamic model player i might change
her beliefs about the opponents simply because she deviated from her own
plan. A condition similar to (2) is assumed explicitly in Reny [24, 25] and
implicitly in Ben Porath [7].16 Note that the natural extension of (2) to an
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16 Condition (2) is not really essential for our analysis and in the previous version of this
paper (2) was not used. In fact, it can be shown that for every state (_, ti , tj) in the universal
type space where (1) and (3) are satisfied, there is a state (_, t$i , tj) where (1), (2) and (3) are
satisfied and the beliefs of t$i about j coincide with the beliefs of ti at each h consistent with
_i . However, assuming (2) facilitates the comparison with the literature.



n-person game would not require that player i 's beliefs be uncorrelated. In
fact, the marginal +i, &i # 2H(7&i_T&i) might exhibit correlation. Inde-
pendence of beliefs about the opponents should be studied as a separate
assumption (see [6]).

In the following, we shall discuss a number of (finite) epistemic models
for games. Our analysis will focus on states in which Conditions (1) and
(2) above hold and there is common certainty of this fact. This allows us
to represent a (finite) type space in a compact tabular form. Consider for
example the following table, which refers to the game in Fig. 1; we use the
notation gij, h({i)=mrg7j_Tj

gi, h({i ).
Although Table I does not display an exhaustive list of states and shows

only the marginal beliefs about the opponent, it contains all the essential
information. A type space corresponding to a table like Table I can be
constructed according to the following conventions:

v (i) For each player i, Ti is the set of epistemic types {k
i listed in the

table. A similar convention holds for 3i (%i is omitted if 3i is a singleton).
But not all strategies need be listed in the table (see Table II).

v (ii) For each row k of player i in the table, the pair (sk
i , %k

i , {k
i )

satisfies Conditions (1) and (2) in Definition 7. This completely determines
the conditional beliefs gi, h({k

i ) at histories h # H(si). Otherwise, the CPS
gi ({k

i ) is completed in such a way as to satisfy (1) and (2).

v (iii) The set of states is completed by taking, for each i, all the
combinations (si , %i , {i) # Si_3 i_Ti . (Note that, by convention (i), all the
states not listed in the table violate (1).)

v (iv) Only the probabilities of (coordinates of) states listed in the
table are shown (the k th number is the probability of opponent's row k).
The probabilities of other states are always zero. Thus the set of states
listed in the table is a belief-closed subset of 7_T1_T2 .

TABLE I

A Type Space for the Game in Fig. 1

(_1 , {1) g12, ,({1) g12, (R)({1)

((L, %$), {1
1) 1,0 1,0

((L, %"), {2
1) 0,1 0,1

((R, %$), {3
1) 1,0 1,0

((R, %"), {4
1) 1,0 1,0

(_2 , {2) g21, ,({2) g21, (R)({2)

(u, {1
2) p, 0, 0, 1&p 0, 0, 0, 1

(d, {2
2) q, 1&q, 0, 0 0, 0, 1, 0
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From a substantive viewpoint, the following remarks are in order:

v Player 1's beliefs about her opponent are the same at the beginning
of the game and after the history (R). This is a consequence of the inde-
pendence assumption, together with Bayes' rule.

v Choosing R is strictly dominated for Player 1's payoff-type %$.
Hence, at any state ((R, %$), _2 , {3

1 , {2), for any _2 # [u, d] and {2 # [{1
2 , {2

2],
Player 1 is not rational.

v If x>0, type {1
2 (resp. {2

2) of Player 2 justifies choice u (resp. d ).
Therefore, in any of the explicitly described states, Player 1 is certain of
Player 2's rationality.

Further comments on this game will be provided below.
The set of states in T where player i is rational is denoted Ri, T . The

event that every player is rational is RT=R1, T & R2, T . Whenever no
confusion arises, we drop the reference to the given type space in our nota-
tion and simply write Ri for the event ``player i is rational'' and ;i, F(E) for
the event ``player i is certain of E conditional on each h # F.''

5.2. Common Certainty of the Opponent's Rationality

We are interested in the following question (among others): ``What
might player i do if (1) he or she is rational and (2) for all h # F, he or
she believes that the opponent is rational, (3) for all h # F, he or she
believes that, for all h$ # F, the opponent believes that he or she is rational,
(4)...?'' In other words we ask for the consequences of rationality and
common certainty of the opponent's rationality conditional on a given
collection of histories (cf. Reny [24]).

Formally, the statement ``There is common certainty of the opponent's
rationality given F from the point of view of player i '' corresponds to the
following event:

CCORi, F :=;i, F(Rj) & ;i, F(; j, F(R i)) & ; i, F(;j, F(; i, F(Rj))) & } } }

= ,
n�1

(;i1 , F b } } } b ;in , F)(Rin+1
), i1=i, ik+1 {ik .

Hence, the statement ``There is common certainty of the opponent's
rationality given F'' corresponds to the event

CCORF :=CCOR1, F & CCOR2, F .

Finally, let R :=R1 & R2 .
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Definition 8. We say that _ is consistent with rationality and common
certainty of the opponent's rationality given F if there are a type space T

and a pair of types ({1 , {2) such that

(_, {1 , {2) # R & CCORF .

If F is a singleton (F=[h] for some h) we obtain a notion of common
certainty of the opponent's rationality at a given history (cf. Reny [25]).
In particular, we may be interested in the consequences of common cer-
tainty of the opponent's rationality at the beginning of the game, that is,
given the empty history h=, (cf. Ben Porath [7]).17

There is a compact and convenient way to express event Ri & CCORi, F .
Let R1

i, F :=R i , i=1, 2. For all n>1, i{ j, define

Rn
i, F=R i & ; i, F(Rn&1

j, F ).

Clearly,

R2
i, F=Ri & ;i, F(Rj).

Since ;i, F satisfies conjunction, an easy induction argument shows that

Rn
i, F=R i & ; i, F(Rj) & } } } & (;i, F b } } } b ;j, F)(Ri), n>2 odd,

Rn
i, F=R i & ; i, F(Rj) & } } } & (;i, F b } } } b ;j, F b ; i, F)(Rj), n>2 even.

Therefore

CCORi, F= ,
n�1

Rn
i, F .

5.2.1. Examples. We begin with an analysis of the game in Fig. 1, along
with the epistemic model defined by the tables in Subsection 5.1. Assume
that x>0.

Consider the state ((L, %$), d, {2
1 , {2

2) corresponding to the second row
in the top table and the second row in the bottom table. Clearly, both
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17 In games with observed actions, a relevant hypothesis B=7(h) represents an event that
becomes common knowledge when history h occurs. Hence, an event such as CCORh & (7(h)
_T1_T2) may be interpreted as saying that history h occurs, and as soon as this becomes
common knowledge, there is common certainty of the opponent's rationality.

Information sets in general extensive games do not correspond to common knowledge
events. This is not problematic for certain applications (see, e.g., Battigalli and Siniscalchi
[5].) However, Battigalli and Bonanno [4]) show how to enrich the conventional formaliza-
tion of general extensive games to fully describe the players' information at every node.



players choose best responses to their beliefs. In particular, Player 2 is
certain at , that Player 1, regardless of her type, will choose L, so that
the history (R) should not occur. However, if it does, Player 2 revises his
beliefs and becomes convinced that Player 1's payoff-relevant type is %$,
which justifies his own choice of d.

Observe that this implies that, after history (R), type {2
2 of Player 2 is no

longer certain that Player 1 is rational. However, at , his beliefs are
concentrated on states at which Player 1 chooses optimally, and this holds
for the beliefs of Player 2's type {1

2 as well. That is, in any explicitly
described state, Player 2 is certain of Player 1's rationality at the beginning
of the game.

This, in turn, implies that, in any explicitly described state, Player 1 is
certain at , that (Player 2 is certain at , that (Player 1 is rational)).

It is easy to see that, in fact, there is common certainty of the opponent's
rationality at , in state ((L, %$), d, {2

1 , {2
2). Of course, in that state common

certainty of rationality would fail after the counterfactual history (R).
Consider now state ((R, %"), u, {4

1 , {1
2). It is easy to see that here, too,

there is common certainty of the opponent's rationality at ,. However,
regardless of the value of p= g21, ,({1

2)((L, %$), {1
1)), now Player 2 remains

convinced that Player 1 is rational even after observing R (which is an
unexpected event, if p=0.) Thus, Player 2's type {1

2 is actually certain of
Player 1's rationality given F=[,, (R)].

Indeed, since g12, ,({4
1)((u, {1

2))= g12, ,({1
1)((u, {1

2))=1, Player 1 is certain
at , (hence, by independence and Bayes' rule, also after (R)) that Player
2 is certain of 1's rationality given F. One sees easily that ((R, %"), u, {4

1 , {1
2) #

R & CCORF .
Thus, insisting on common certainty of the opponent's rationality at

every history refines our prediction about the behavior of Player 1's type
%". The underlying argument has the flavor of forward induction: faced with
a deviation from his original prediction, Player 2 attempts to find an
explanation for Player 1's choice of R which is consistent with the assump-
tion that Player 1 is rational; but this implies that Player 2 has to assign
conditional probability one to Player 1's payoff-relevant type %"��and
consequently best-respond with u. Of course, Player 1 anticipates this,
which makes R optimal at ,.

Notice however that this kind of reasoning leads to inconsistencies if
x<0. Intuitively, in this case if Player 1 is rational and is certain at , that
Player 2 (i) is rational and (ii) is certain at both , and (R) that the oppo-
nent is rational, Player 1 should expect Player 2 to choose d, and should
therefore pick L. But then Player 2 cannot be certain after history (R) that
Player 1 is able to reason along these lines, precisely because then Player 1
would not choose R.
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This informal argument suggests that rationality and common certainty
of rationality given F are impossible in this game. In the next sub-
section we will show that rationality and common certainty of rationality
given a family of histories F identify a simple iterative deletion procedure.
We shall then be able to show that the above intuition is correct by noting
that no strategy profile survives the relevant procedure in the game of
Fig. 1.

The game of complete and perfect information depicted in Fig. 2 (cf.
Fig. 5 in Reny [24]) further illustrates the differences between common
certainty of the opponent's rationality for a given history and for a collec-
tion of histories. Table II shows all the essential elements of a type space
for this game with four epistemic types for each player. (Recall that we
show only the states satisfying conditions (1) and (2) of Definition 8. We
do not list all the eight strategies of Player 1 and we do not specify the
beliefs of Player 1 when Player 1 is irrational.)

It can be verified that common certainty of the opponent's rationality at
histories�nodes (L) and (R) is possible. For example,

(Lab$, lr$, {1
1 , {2

2) # R & CCOR[,, (L)] , (Rab$, lr$, {4
1 , {2

2) # R & CCOR[,, (R)] .

FIGURE 2
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TABLE II

A Type Space for the Game in Fig. 2

(_1 , {1) ,, (R), (L) (L, l) (R, r$)

Lab$, {1
1 0, 1, 0, 0 0, 1, 0, 0 0, 1, 0, 0

Lbb$, {2
1 } } } } } } } } }

Raa$, {3
1 } } } } } } } } }

Rab$, {4
1 0, 0, 0, 1 0, 1, 0, 0 0, 0, 0, 1

(_2 , {2) , (L), (L, l ) (R), (R, r$)

ll$, {1
2 1, 0, 0, 0 1, 0, 0, 0 0, 0, 3

4 , 1
4

lr$, {2
2 1, 0, 0, 0 1, 0, 0, 0 0, 0, 0, 1

rl$, {3
2 1, 0, 0, 0 1, 0, 0, 0 0, 0, 3

4 , 1
4

rr$, {4
2 0, 0, 0, 1 0, 1, 0, 0 0, 0, 0, 1

Note also that state (Lab$, lr$, {1
1 , {2

2) satisfies the property that there would
be common certainty of the opponent's rationality if (R) occurred, even
though state (Lab$, lr$, {1

1 , {2
2) precludes history (R). Therefore,

(Lab$, lr$, {1
1 , {2

2) # R & CCOR[,, (L)] & CCOR[,, (R)] .

However, we argue that common certainty of the opponent's rationality
given [,, (L), (R)] is impossible: if player 2 is rational and believes after
(L) that player 1 is rational, player 2 chooses l after (L). Anticipating this
and being rational, as implied by R3

1, [,, (L), (R)]#CCOR[,, (L), (R)] , player 1
chooses L. But then the occurrence of history (R) would imply that player
1 either is irrational or does not believe that player 2 would believe at (L)
that player 1 is rational. Therefore player 2 could not believe event
R3

1, [,, (L), (R)] after history (R) and this implies CCOR[,, (L), (R)]=<. The
characterization result provided below can be used to verify our claim with
a simple iterative deletion procedure.

5.2.2. Characterization. We can ask the following questions about
common certainty of the opponent's rationality:

(i) How can we characterize the set of _ consistent with rationality
and common certainty of the opponent's rationality given F without any
reference to epistemic types?

(ii) When we consider the set of _ consistent with rationality and
common certainty of the opponent's rationality given F, can we restrict
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our attention to finite type spaces (more generally, type spaces with the
same cardinality of 7)?

(iii) Can we restrict our attention to the universal type space Tu

containing all the hierarchies of conditional systems satisfying common
certainty of coherency?

It is known that, for static games, the answers to (ii) and (iii) are affirm-
ative and that the answer to the characterization problem (i) is given by an
inductive procedure equivalent to the iterated deletion of strictly dominated
strategies.18 These results can now be extended to dynamic games. Let us start
from (i). By analogy with the analysis of static games the answer should rely
on an inductive procedure. For any Kj /7j , F/H, let

4i, F(Kj) :=[+ij # 2H(7j) : \h # F, +ij (K j | 7j (h))=1].

(Note that, if F is ``large'' and Kj is ``small,'' 4i, F(Kj) may well be empty.)
The inductive procedure is defined as follows:

v 70
i, F=7i , i # [1, 2],

v for n�0, i, j # [1, 2], i{ j, 7n+1
i, F =ri[4i, F(7n

j, F)].

That is, 7n+1
i, F is the set of (si , % i) such that si is a best response for % i to

some CPS +ij satisfying +ij (7n
j, F | 7 j (h))=1 for all h # F. Note that 71

i, F

is the set of _i consistent with player i being rational and does not depend
on F. The natural conjecture is that the set of _ consistent with rationality
and common certainty of the opponent's rationality given F is 7�

1, F_7�
2, F

:=�n�1 7n
1, F_7n

2, F .
Define 7n

F :=7n
1, F_7n

2, F , n=1, 2, ..., �, and

\F(K1_K2) :=r1[41, F(K2)]_r2[42, F(K1)].

Clearly \F is a monotone set to set operator,19 7n+1
F =\F(7n

F), and the
sequence [7n

F]�
n=0 is (weakly) decreasing. Since 7 is finite there is some N

such that, for all n�N, 7�
F=7n

F . This implies that the product set 7�
F

has the familiar fixed point property: 7�
F=\F(7�

F). It is easy to prove
(using monotonicity of \F) that every rectangular subset 7* such that
7*/\F(7*) is a subset of 7�

F . In general, 7�
F may well be empty (cf.

Reny [24] and the related comments in the next section). But it can be

215HIERARCHIES OF CONDITIONAL BELIEFS

18 These results have been explicitly proved for normal-form games of complete informa-
tion, but they can be extended to games of incomplete information.

19 A set to set operator \ is monotone if A/B implies \(A)/\(B) (/ denotes weak
inclusion.)



shown that 7�
, is nonempty.20 Given the fixed point property of 7�

F it is
easy to verify that 7�

F {< if and only if, for all h # F, 7�
F & 7(h){<.

The following results relate operator \F and procedure [7n
F] to

(rationality and) common certainty of the opponent's rationality given F.

Lemma 5. Let 7*=71*_72* /7, <{F/H. If 7*/\F(7*), then
there is a type space T=(7, H, T1 , T2 , g1 , g2) such that

(a) T1_T2 has the same cardinality as 7,

(b) for all _ # 7*, there is a pair of epistemic types ({1 , {2) # T1_T2

such that

(_, {1 , {2) # R & CCORF .

Proof. See the Appendix. K

Proposition 4. Fix a non-empty collection F of partial histories.

(i) The set of _ consistent with rationality and common certainty of
the opponent's rationality given F (cf. Definition 8) is precisely 7�

F .

(ii) There is a finite type space T such that, for all _ # 7, _ is consis-
tent with rationality and common certainty of the opponent's rationality if
and only if

(_, {1 , {2) # R & CCORF

for some ({1 , {2) in T (events are defined in the finite type space T).

(iii) For all _ # 7, _ is consistent with rationality and common
certainty of the opponent's rationality given F if and only if there is some
pair of hierarchies of CPSs (t1 , t2) # T_T such that

(_, t1 , t2) # R & CCORF

(events are defined in the universal type space Tu).

Proof. (i) Since 7�
F=\F(7�

F), Lemma 5 implies that every _ in 7�
F

is consistent with rationality and common certainty of the opponent's
rationality. To prove the converse, fix a type space T=(7, H, T1 , T2 ,
g1 , g2) and, for i=1, 2, consider the sequence of events [Rn

i, F]n�1 defined
in T as indicated in the preceding subsection. We show by induction that
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each player i and opponent j, there is a CPS +ij # 2H(7 j) such that +ij (7j* | 7j)=1, and for
each %i we can find a strategy si # Si such that (si , %i) # ri (+ij). When we apply this construc-
tion to 7*=7, we obtain 71

, {<. The construction can be applied inductively to
7*=7n

, {<, thus obtaining 7n+1
, {<.



for each i and n the projection of Rn
i, F on 7i is (weakly) contained in 7n

i, F .
This implies the assertion, because Ri & CCORi, F=�n�1 Rn

i, F . To sim-
plify the notation, let *ij ({i)=(*ij, h({ i))h # H denote the system of first order
beliefs for type {i concerning the opponent: that is, for all h # H,

*ij, h({i)=mrg7j
g i, h({i ).

Base Step. Let (_, {1 , {2) # Ri=R1
i, F . Then _ i # ri (*ij ({i)), which

implies _i # 71
i, F .

Induction Step. Suppose that for each player i and state (_$, {$1 , {$2),
(_$, {$1 , {$2) # Rn

i implies _$i # 7n
i, F . Let (_, {1 , {2) # Rn+1

i, F =Ri & ; i, F(Rn
j, F).

Since i is rational at (_, {1 , {2), _i # ri (*ij ({i)). Furthermore, since type { i is
certain of Rn

j, F at each h # F, the induction hypothesis (projection of Rn
j, F

on 7j contained in 7n
j, F) implies that for all h # F, *ij, h({i)(7n

j, F)=1.
Therefore _i # 7n+1

i, F .

(ii) Since 7�
F=\F(7�

F), Lemma 5 and (i) imply that there is a type
space T with the stated property and the same cardinality as the finite
set 7.

(iii) The ``if '' part is true by definition. To prove the ``only if '' part,
fix _ and suppose that for some type space T and some pair of types
({1 , {2),

(_, {1 , {2) # RT & CCORF, T ,

where we use subscript T to denote that events and belief operators
appearing in the construction of (R and) CCORF are defined in the space
T. By Proposition 3 there is a type morphism .=(Id7 , .1 , .2) from T to
the universal space Tu. We prove that

(_, .1({1), .2({2)) # R & CCORF .

where the absence of the subscript T indicates that events and belief
operators are defined in Tu. We will adhere to this convention throughout
the proof.

The claim follows from Lemma 4. To see this, for each i=1, 2, let Ei /
7_I2H(7i , 7j))_I2H(7i , 7j) be the set of (_, +1 , +2) such that

v +1 and +2 are independent CPSs; denote by +ii and + ij the marginal
CPS such that +i ( . | 7(h))=+ii ( . | 7i (h))�+ij ( . | 7 j (h)) for all h # H;

v for _i=(si , %i), +ii (_i | 7i (h))=1 for all h # H(si), and + ii (Si _
[%i] | 7i (h))=1 for all h # H;

v _i # ri (+ij).
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(Compare this with Definition 7.) Also define

Ii, T$=[(_, {$1 , {$2) # 7_T $1 _T $2 : g$i ({$i) # I2H(7i , 7j_Tj$)]

for any type space T$=(7, H, T $1 , T $2 , g$1 , g$2). Lemma 3 immediately
implies that

.(Ii, T)/Ii, T u .

Also observe that Ri, T=Ei, T & Ii, T and Ri=E i, T u & Ii, Tu . Then Lemma
4 implies that for all i=1, 2, n�1,

.(Ri, T)/.(Ei, T) & .(Ii, T)/E i, Tu & Ii, Tu=Ri

and similarly

.((;i1 , F, T b } } } b ;in , F, T)(Rin+1 , T))/(; i1 , F b } } } b ;in , F)(Rin+1
),

i1=i, ik+1 {ik . K

5.2.3. Examples (reprise). We can finally go back to the examples in
Figs. 1 and 2 and provide the details of the arguments sketched in Subsec-
tion 5.2.1.

Consider first the signalling game of Fig. 1. We claimed above that, if
x<0, then common certainty of rationality given F=[,, (R)] is
impossible. To see this, note that 71

1, F=[(L, %$), (L, %"), (R, %")] and
72

2, F=[u, d]; then 72
1, F=71

1, F , while 72
2, F=[d], because now Player 2

must assign probability 1 to 71((R)) & 71
1, F=[(R, %")] after observing R,

and we are assuming that x<0. But then 73
1, F=[(L, %$), (L, %")], 73

2, F is
unchanged, and finally 74

2, F=<, because 71((R)) & 73
1, F=< (which

implies 42, F(73
1, F)=<). The characterization result (Proposition 5.5)

now implies that R & CCORF=< in any type space.21

Similarly, for the game in Fig. 2 we obtain 74
[,, (L), (R)]=< and this

implies that common certainty of the opponent's rationality given the
collection of histories F=[,, (L), (R)] is impossible.

5.2.4. CCOR in games with perfect information. In light of this conclu-
sion, it is natural to ask whether one can find conditions which ensure the
possibility of rationality and common certainty of the opponent's
rationality given a collection of ``interesting'' histories.
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21 On the other hand, Player 2, upon observing R, may conclude that Player 1 is rational,
but not very sophisticated (i.e., Player 1 does not realize that Player 2 will interpret her choice
of R as a signal that her type is %"). This reinforces Player 2's inducement to play d, which
again leads Player 1 to choose L. Battigalli and Siniscalchi [5] develop these ideas and show
that they lead to an epistemic characterization of extensive-form rationalizability (Pearce
[22]). A similar set of assumptions yields the backward induction solution in the game of
Fig. 2.



Using results from Reny [24], we are able to provide an answer to this
question for generic games with complete and perfect information.22

First, following Reny, we deem a history h # H relevant (i.e., ``interest-
ing'') if (i) h is consistent with rationality: 7(h) & 71

, {<23 ; and (ii) at
least one player i has a payoff-type %i which does not have a dominant
choice24.

In the game of Fig. 2, both (L) and (R) are relevant (as is ,). Thus, in
that game, rationality and common certainty of the opponent's rationality
given all relevant nodes is not possible. Indeed, the class of games for which
rationality and common certainty of the opponent's rationality given all
relevant nodes are possible is very small. On the other hand, when these
conditions hold, the backward induction outcome obtains:

Proposition 5 (cf. Reny [24]). Consider a game with perfect and
complete information and no ties between payoffs at terminal histories. Let
R be the set of its relevant histories. Then

(a) there is a type space T for the game such that RT & CCORR, T

{< if and only if every history h # R is on the backward induction path;

(b) for all states (_, {1 , {2) # RT & CCORR, T , _ induces the back-
ward induction path.

Proof. (a)( O ) Suppose RT & CCORR, T {<. Then, by Proposition 4,
7�

R {<.
Observe that, for i=1, 2 and j{i, for any collection F/H and for any

Kj /7j ,

4i, F(K j)=4i, F \K j & .
h # F

7j (h)+ .

This follows directly from the definition of 4i, F . Since for each i=1, 2 and
j{i, 7�

i, R=ri[4i, R(7�
j, R)], we conclude that

7�
i, R=ri _4i, R \7�

j, R & .
h # R

7j (h)+& .
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22 Reny attempts to capture the intuitive notion of rationality and common certainty of
rationality by defining particular subsets of (Bayesian rational) strategy profiles satisfying a
belief closure condition with respect to a collection of nodes. His results concern the (non)
emptiness of such sets of strategy profiles.

23 The formal definition is motivated by the observation that, for any collection of histories
F/H, 71

F=71
, .

24 Type %i of Player i has a dominant choice at h # H iff there exists a strategy si # S i (h)
such that, for all s$i # Si (h) such that s$i(h){si (h), U i (si , %i , sj , %j)>Ui (s$i , %i , sj , %j) for all
(sj , %j) # 7j .



But then 7�
R {< implies that 7�

j, R & �h # R 7j (h){<, for i=1, 2 and
j{i. Therefore we conclude that

<{7�
i, R & .

h # R

7i (h)=ri _4i, R \7�
j, R & .

h # R

7j (h)+&& .
h # R

7i (h).

That is, letting 7*i, R #7�
i, R & �h # R 7 i (h) for i=1, 2 and j{i, each set

7*i, R satisfies

<{7*i, R=ri[4i, R(7*j, R] & .
h # R

7i (h)

so that the pair (7*1, R , 7*2, R) constitutes a nonempty jointly rational beliefs
system for R as defined in Reny [24, p. 269]. Hence, by the main theorem
in that paper, all relevant histories are on the backward induction path.

( o ) Let sB # S be the backward induction strategy profile. Suppose
that relevant histories are all on the backward induction path: h # R O
sB # S(h). For i=1, 2, let 7i*=[sB

i ] and consider the CPS +B
i # 2H(S i)

defined as follows: (i) if sB
i # Si (h), then +B

i ([sB
i ] | S i (h))=1; (ii) otherwise,

let [sB
i ]h=[si # Si (h) : si (h$)=sB

i (h$) for all h$ weakly following h], and let
+B

i ([si] | S i (h))=1�*[sB
i ]h for all s i # [sB

i ]h . Then, for i=1, 2 and j{i,
+B

j # 4i, R(7j*), and sB
i # ri (+B

j ). That is, 7i* /ri[4 i, R(7j*)] for i=1, 2. Now
Lemma 5 implies that RT & CCORR, T {< for some (finite) type space T.

We omit the proof of part (b). K

5.2.5. Common certainty of Both players' rationarlity. Several papers on
the epistemic analysis of games focus on common certainty of both players'
rationality at a given history, rather than common certainty of the opponent's
rationality conditional on a collection of histories (see in particular Stalnaker
[28] and Ben Porath [7]). In static games, there is no relevant difference
between these two sets of assumptions. Since a rational player knows her
strategy and beliefs, she is certain of her own rationality. Therefore,
rationality and mutual certainty of the opponent's rationality is equivalent
to rationality and mutual certainty of both players' rationality. But since
players' beliefs satisfy positive introspection, this also implies that rationality
and common certainty of the opponent's rationality are indeed equivalent
to rationality and common certainty of both players' rationality.

In dynamic games the result can be extended as follows.
Fix a type space T and a history h. The event that there is (would be)

common certainty of rationality at h is

CCRh=;h(R) & ;h(;h(R)) & } } } = ,
n�1

;n
h(R),

where ;h(E)=;1, h(E) & ;2, h(E) and ;n+1
h (E)=;h(;n

h(E)). Let [h] :=
7(h) & T1 & T2 denote the event that history h occurs.
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Proposition 6. For every type space T and history h # H,

[h] & R & CCORh=[h] & R & CCRh .

Proof. Omitted. K

However, we may have

(i) R & ;1, h(R2) & ;2, h(R1){R & ;h(R)

and

(ii) R & ;F(R)=<{R & ;1, F(R2) & ;2, F(R1).

To see (i) consider a state (_, {1 , {2) # R & ;1, h(R2) & ;2, h(R1) where
history h is counterfactual, for example, because _1 � 71(h). Suppose that
all best responses to type {1 's (first-order) beliefs prevent h from being
reached. If h were reached, player 1 could not believe that he or she is
rational, because he or she would know that he or she had deviated from
the best response. To see (ii) suppose that F contains two mutually
exclusive histories h$ and h" encoding different actions for player 1 at a
common predecessor h. Then it may be impossible to find a single (first-
order) belief for player 1 justifying both actions even if both h$ and h" are
consistent with player 1's rationality.

6. CONCLUDING REMARKS

In this paper we provide the main tools for the epistemic analysis of
multiagent dynamic models and we consider some applications to multi-
stage games with observed actions. Taking as given a collection of con-
ditioning events��or ``relevant hypotheses''��concerning external (i.e.,
non-epistemic) states, we construct a belief-closed space T of (coherent)
infinite hierarchies of conditional probability systems (CPSs.) An infinite
hierarchy of CPSs encodes an individual's dispositions to believe condi-
tional on every relevant hypothesis��that is, an individual's epistemic type.

The set 0=7_T_T of profiles of external states and infinite hierarchies
of CPSs can be interpreted as a universal (semantic) model providing truth
conditions, at every state | # 0, for subjunctive conditionals of the form ``if
B occurred, player i would believe E, '' where B is a relevant hypothesis, E
is an event concerning the external state and�or the agents' interactive con-
ditional beliefs, and the truth value is assigned even if B is counterfactual
at | (| � B.) Of course, subjunctive conditionals are crucial for the analysis
of counterfactual reasoning in extensive form (dynamic) games.

Other authors, including Ben Porath [7] and Stalnaker [28], put forward
``extensive form'' epistemic models, but��to the best of our knowledge��we
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are the first to provide the explicit construction of a universal type space of
this sort, thus extending classical results of Mertens and Zamir [19] and
Brandenburger and Dekel [10] to a dynamic framework. In particular, to
facilitate the comparison with this literature, we mimic as closely as
possible the elegant and relatively simple construction of [10].

The space of infinite hierarchies of CPSs is an important analytical tool
because it does not exclude any ``conceivable'' epistemic type; thus, it
provides an ``epistemically neutral'' representation of interactive conditional
beliefs. This allows us to state characterization results in a clean ``if-and-
only-if '' form (i.e. ``for all _ # 7, _ belongs to the solution set 7* if and only
if there is a profile of epistemic types such that...'').

Universal type spaces are particularly important for the epistemic
analysis of solution concepts featuring forward induction. According to
forward induction reasoning, a player always seeks a ``rational'' explana-
tion of her opponent's observed behavior. When the extensive form game
is embellished with an epistemic model, this amounts to looking for an
opponent's epistemic type (equivalently, a hierarchy of conditional beliefs)
that ``rationalizes'' the opponents' actions. Thus, adopting a non-universal
model effectively restricts the alternative explanations available to a player.
While constraining players' inferences may be desirable in certain applica-
tions, the restrictions implicit in a non-universal model prevent a neutral
analysis of forward inductive reasoning. We pursue this topic in Battigalli
and Siniscalchi [5, 6] (see also Stalnaker [29]).

On the other hand, for many purposes��in particular, for the analysis of
specific examples and in the proofs of some results��it is more convenient
to work with ``small'' (e.g., finite) non-universal type spaces. Therefore it is
important to be able to relate extensive form type spaces to each other and
to the space of infinite hierachies of CPSs. We extend Mertens and Zamir's [19]
notion of ``belief-preserving'' mappings between type spaces (type-morphisms)
and their fundamental result showing that every type space is equivalent to a
belief-closed subset of the space of infinite hierarchies of beliefs.

The main result of our game theoretic analysis is the characterization of
(rationality and) common certainty of the opponent's rationality given an arbi-
trary collection F of histories (i.e., R & CCORF , in the notation of Section 5).

We build on and extend previous work by Ben Porath [7] and Reny
[24]. Ben Porath restricts his analysis to finite type spaces for perfect
information games and characterizes the strategies consistent with initial
common certainty of rationality.25 He conjectures that his characterization
is also valid for infinite type spaces. Our results confirm his conjecture,
show that his type spaces can be embedded into an explicitly constructed
universal type space, and generalize his characterization.
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Reny [24] studies the possibility of common certainty of the opponent's
rationality conditional on certain collections of nodes in a perfect informa-
tion game. His analysis does not employ a formal extensive-form epistemic
model, but rather verifies whether one can find non-empty subsets of
strategy profiles satisfying an intuitive fixed point property. Our results
provide an ``epistemic validation'' of Reny's analysis.

Our work is also related to Stalnaker's [28, 29] analysis of counterfac-
tual reasoning in games. Stalnaker's approach draws on the philosophical
work discussing the axioms that belief revision should satisfy independently
of any particular information structure (see, e.g., Ga� rdenfors [14] and
references therein). A belief revision function specifies which events an
individual would believe if she came to be certain of any particular
��epistemic and�or external��event B. The probabilistic version of a belief
revision function is a complete conditional probability system, specifying
conditional beliefs for every nonempty subset of the relevant set of states
(Myerson [20]). To use our terminology and notation, let gi ({i) # 2B(7_Tj)
be the CPS corresponding to type {i . While in our notion of type space B

is a collection of non-empty subsets of 7 typically given by some kind of
information structure, in Stalnaker [28, 29] B is the collection of all non-
empty subsets of 7_Tj . Clearly, this is not a trivial difference. Since we are
given an information structure, we are only interested in the beliefs an
individual would have conditional on observable events. Hence we can
afford to be more parsimonius in representing epistemic types and we are
able to construct a universal type space. While Lemma 4 ``justifies'' using
type spaces in our sense, we doubt that an analogous result holds for
Stalnaker's epistemic spaces. However, it is easily shown that every epistemic
model a� la Stalnaker generates a type space in our sense (i.e., a type space
a� la Ben Porath) and��more interestingly��every finite type space in our
sense can be ``enriched'' so as to become a type space a� la Stalnaker.

Finally, we find it useful to compare our epistemic analysis with Aumann
[1] and related papers, such as Aumann [2], Samet [27], and Balkenborg
and Winter [3]. There are two main differences between Aumann's
approach and ours. First, Aumann and the other authors just mentioned
assume that the players' initial epistemic state can be described by means
of knowledge partitions on the set of states of the world. This can be
expressed within our framework as a property which holds ``locally'' (i.e.,
an event): players' initial beliefs (in a finite type space) assign positive
probability to the true state and this is (initially) common certainty.

The second difference is more radical and makes it difficult to compare
this set of papers with those discussed above:26 in Aumann's epistemic
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model, a state of the world describes the players' strategies (dispositions to
act) and their initial epistemic state, but it does not describe how a player
would revise her beliefs, should she learn that a particular history h has
occured. However, a belief revision theory of a sort is implicit in his defini-
tion of ``rationality'' (and made explicit in Aumann [2]): Suppose that
player i is initially certain that his opponent's strategy prescribes action a
at history h$, which (weakly) follows history h, then she is certain of this
also at h, whatever ``at h'' means. Note that this is completely unrelated to
Bayesian updating. There is no notion that, upon learning that h has
occurred, player i discards all the states of the world inconsistent with h.
Indeed, it may well be the case that, in a model a� la Aumann, no state of
the world is consistent with h and yet each player has well-defined beliefs
at h.27

Also, Samet's [27] theory of ``hypothetical knowldge''��although inter-
esting in its own right��is unrelated to Bayesian updating. In that paper,
a state of the world does not only describe players' strategies and initial
epistemic state (knowledge), but also what each player imagines she would
know if any hypothetical event H (possibly inconsistent with her initial
knowledge) were the case. This is different from this player imagining what
she would know (or believe) if she learned that H has occurred. In fact,
Samet does not assume that player i imagines that if H were the case she
would know it. (For example, we know that the Earth is not flat, but we
can imagine worlds were the Earth is flat and we hotly debate the compet-
ing theories about its shape without really knowing which is true.)

7. APPENDIX

7.1. Proof of Lemma 1

Remark 5. Given Axioms 1 and 2, Axiom 3 is equivalent to the following:

Axiom 3'. For all B, C # B such that B/C and all measurable func-
tions f : X � [0, 1] such that f (X"B)=[0]

| f d+( } | C)=+(B | C) | f d+( } | B).
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Let [+n]�
n=1 be a sequence of CPSs weakly converging to + # [2(X)]B.

We must show that + satisfies Axioms 1 and 3.
(Axiom 1 holds) For all B, C # B, since B is clopen (closed and open), its

boundary is empty. Therefore B must be a +( } | C)-continuity set and
limn � � +n(B | C)=+(B | C) (see, e.g., Dudley [12], Theorem 11.1.1.) In
particular,

+(B | B)= lim
n � �

+n(B | C)=1.

(Axiom 3 holds) Fix A # A, B, C # B such that A/B/C. Since any
finite Borel measure on X is (closed) regular (Dudley [12], Theorem 7.1.3),
for all =>0, we can find a closed set A$ and an open set A* such that
A$/A/A* and

max[(+(A* | C)&+(A$ | C)), (+(A* | B)&+(A$ | B))]�=.

Recall that B is (closed and) open. Therefore, the set A" :=B & A* is open.
Furthermore, A$/A/A"/B and

max[(+(A" | C)&+(A$ | C)), (+(A" | B)&+(A$ | B))]�=.

Since A$ and X"A" are disjoint closed subsets of the normal topological
space X, by Urysohn's lemma we can find a continuous function f : X �
[0, 1] such that f (A$)=[1] and f (X"A")=[0]. In particular, f (X"B)=
[0]. Thus, by Remark 5, for all n

| f d+n( } | C)=+n(B | C) | f d+n( } | B).

Since +n( } | C) and +n( } | B) weakly converge to +( } | C) and +( } | B), B is
clopen, and f is bounded and continuous, by taking limits we obtain

| f d+( } | C)=+(B | C) | f d+( } | B).

Collecting all these equalities and inequalities and taking into account the
properties of f we obtain

+(A | C)�+(A$ | C)+=�+(B | C) | f d+( } | B)+=�+(B | C)(+(A | B)+=)+=

and

+(A | C)�+(A" | C)&=�+(B | C) | f d+( } | B)&=�+(B | C)(+(A | B)&=)&=.

225HIERARCHIES OF CONDITIONAL BELIEFS



Since = is arbitrary, +(A | C)=+(B | C) +(A | B).

7.2. Proof of Proposition 3

(.i (Ti)/T ) We first verify that .i (Ti)/Hc , that is, for all { i # Ti , n�1,
B # B, mrgXn&1 .n+1

i, B ({i)=.n
i, B({i). Take An&1/Xn&1 (measurable). Then

.n+1
i, B ({i )(An&1_2B(Xn&1))= gi, B({i )((�n

&i)
&1 (An&1_2B(Xn&1))

=gi, B({i)([(_, { j) : �n&1
&i (_, {j) # An&1])

=.n
i, B({i)(An&1).

Claim. f b .i=.&i@ b g i , where .&i=(Id7 , .j).

Proof of the claim. Take An/Xn (measurable), B # B, and let A=
C�(An). Then

fB(.i ({i))(A)=.n+1
i, B ({i)(An)

=gi, B({i)((�n
&i)

&1 ((An)))

= gi, B({i)([(_, {j) : (_, .1
j ({j), ..., .n

j ({j)) # An])

=gi, B({i)([(_, {j) : (_, .j ({j)) # A])

= gi, B({i)((.&i)
&1 (A)).

We now invoke the extension argument used in the proof of Proposition 1.
Since the equality fB(.i ({i))(A)= g i, B({i)((.&i)

&1 (A)) holds on the
algebra of cylinders, it extends to the sigma-algebra generated by the latter,
which coincides with the Borel sigma-algebra generated by the product
topology by second-countability. Thus, the claim is proved.

Next we show by induction that for each i, .i (Ti)/T :=�n�1 H n
c . Recall

that .i ({i) # H n
c , n�2, if for all B # B, fB(.i ({i ))(7_H n&1

c )=1. We have
just shown that .i (Ti )/H 1

c for each i (by definition, H 1
c=Hc). Now

suppose that .j(Tj )/H n&1
c . Then for all {i # Ti , B # B,

fB(.i ({i ))(7_H n&1
c )= g i, B({ i )([(_, {j ) : . j ({j ) # H n&1

c ])

=gi, B({i )(7_Tj )=1,

where the first equality follows from the claim above and the second from
the induction hypothesis.

(Continuity) Continuity of .i is also proved by induction. Since gi is
continuous and .1

i, B({i)=mrg7 gi, B({i ), .1
i is also continuous. Suppose

that for i=1, 2, k=1, ..., n, .k
i is continuous. Then �n

&i (_, {j)=(_, .1
j ({j), ...,

.n
j ({j)) is continuous in (_, {j). Thus, also �n

&i@ is continuous. Continuity of �n
&i@
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and gi implies that .n+1
i =�n

&i@ b g i is continuous. Thus far we have proved
that each .i is a continuous mapping from Ti to T and that g b .i=
.&i@ b gi . Therefore (Id7 , .1 , .2) is a type-morphism from T to Tu.

(Uniqueness) Suppose that ,=(Id7 , ,1 , ,2) is a type-morphism from T

to Tu. We must prove that ,=.. Since g b ,i=,&i@ b gi and g is invertible,
,i= g&1 b ,&i@ b g i . Thus we can write the (n+1)th element of ,i ({i ) as

,n+1
i ({i)=(mrgX n ,&i, B@( gi ({i )))B # B ,

where ,&i, B@(g i ({i)) is the probability measure conditional on B_T of the

CPS ,&i@ (gi ({i)) # 2B(7_T ). Thus it is sufficient to show that for all n�0,
i=1, 2, B # B, {i # Ti , mrgX n ,&i, B@(gi ({i))=.n+1

i, B ({i). The statement is true
for n=0: take a measurable subset A0/7 :=X 0, then

mrgX0,&i, B@(gi ({i))(A0)=,&i, B@ (gi ({i))(A0_T)

=gi, B({i)([(_, {j) : (_, ,j ({ j)) # A0_T])

= gi, B({i )(A0_Tj)

=mrg7 gi, B({i)(A0)=.1
i, B({i ).

Suppose that the statement is true for n=0, ..., k&1. Then

(_, (mrgX 0 ,&i, B@(gi ({i)))B # B , ..., (mrgX k&1 ,&i, B@ (g i ({i )))B # B)=�k
&i(_, {j ).

Take Ak/Xk (measurable) and let A=C�(Ak), then

mrgX k ,&i, B@(gi ({i))(Ak)=,&i, B@(gi ({i))(A)

=gi, B({i)([(_, {j) : (_, ,j ({j)) # A])

=gi, B({i )([(_, {j) : (_, (mrgX0 ,&i, B@(gi ({i)))B # B , ...,

(mrgXk&1,&i, B@(g i ({ i)))B # B) # Ak])

=gi, B({i)([(_, {j) : �k
&i (_, {j) # Ak])

=.k+1
i, B ({i )(Ak).

This concludes the proof. K

7.3. Proof of Lemma 5

Proof. The statement is trivially true if 7*=<. Suppose <{7*/
\F(7*). Construct T as follows. Let T1_T2=7. Then, for each i we can
construct a function *ij : Ti � 2H(7j_Tj) such that for all {i # 7 i* ,

{i # ri (*ij ({i)) and *ij, h({i)(7j*)=1, \h # F.
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To complete the definition, fix +j # 2H(7j) and, for {i � 7i*, let *ij ({i)=+j .
Also, for any {i=(si , %i) # Ti=7i , it is always possible to construct a

CPS *ii ({i) such that *ii, h({i)(Si_[%i])=1 for all h # H, and *ii, h({i)([{i])
=1 for all h # H(si).

gi ( } ) is derived from *ii ( } ) and *ij ( } ) as follows. First, for i=1, 2 and for
all {i # Ti=7i , define a new function *d

ij : Ti � [2(7j_T j)]H by letting

*d
ij, h({i)([_j , _j])=*ij, h({i)(_ j) \_j # 7j=Tj , h # H.

It is easy to verify that each *d
ij ({i) is indeed a CPS.28

Next, for all {i # Ti , let

gi ({i )=*ii ({i )�*d
ij ({i )

Therefore, for every i and {i , gi ({i) # I2H(7i , 7j_Tj). Thus we have a
well defined type space, and in each state (i) beliefs are independent, (ii) at
any history, players are certain of their payoff-type and (if possible) of their
strategy; finally, (iii) properties (i) and (ii) are common certainty at any
point in the game.

Moreover, for all h,

mrg7j
gi, h({i)=*ij ({j),

which immediately implies that, for i=1, 2, _i* # 7i*, _ j # 7j and {j # Tj ,

(_i* , _j , _i*, {j) # Ri=R1
i, F .

That is, 7i*_7j_7i*_Tj /R1
i, F . Assume now that 7 i*_7j_7i*_

Tj /Rn
i, F for n�1 and i=1, 2. Then, since ; i, F is monotonic, and for any

_i* # 7i*, mrg7j_Tj
gi (_i*)=*d

ij, h(_i*) is concentrated on [(_j*, _j*) : _j* # 7j*]
at all h # F,

7i*_7 j_7i*_Tj /;i, F(7i_7j*_Ti_7j*)/;i, F(Rn
j, F)

which implies 7i*_7 j_7i*_Tj /Rn+1
i, F . Hence, <{7 i*_7j_7 i*_Tj/

�n�1 Rn
i, F=Ri & CCOR i, F for i=1, 2, as required. K
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28 Let D j=[(_j , {j) : {j=_j # 7 j]. Every *d
ij, h({i) is indeed a probability distribution over

7j _Tj (in particular, probabilities add up to one along D j) which is concentrated on
7j (h)_Tj (in particular, on the set [(_j , _j) : _j # 7j (h)]). As for Bayes' rule, for A j /7j (h)_
Tj /7 j (h$)_Tj , we have

*d
ij, h$(Aj)=*ij, h$(proj7j

(A j & Dj))

=*ij, h(proj7j
(A j & Dj)) } *ij, h$(proj7j

((7j (h)_T j) & D j))

=*d
ij, h(Aj) } *d

ij, h$(7j (h)_T j). (7.1)
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