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We provide two axiomatic characterizations of a stochastic independence
property for conditional probability systems, previously proposed by Hammond.
One characterization relies on the theory of lexicographic expected utility due to
L. Blume et al. [Econometrica 59 (1991), 61�79]; the other relies on the theory of
conditional expected utility maximization due to Myerson [``Game Theory:
Analysis of Conflict,'' Harvard Univ. Press, Cambridge, MA, 1991]. Journal of
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Given a finite, product space of states of the world 0=01_ } } } _0n and
a probability measure + : 20 � [0, 1], the usual condition of stochastic
independence states that for every |=(|1 , ..., |n) # 0, +(|)=>n

i=1 +i (|i),
where +i is the marginal probability measure of + on 0i , i=1, ..., n. This
multiplicative condition is equivalent to the following: \i, \|i # 0i ,
\E&i /0&i=>j{i 0j , if +(0i_E&i)>0, then +([|i]_E&i | 0i_E&i)=
+i (|i). This means that, in order to evaluate the probabilities on 0i , the
decision maker (DM henceforth) does not take into account any information
regarding 0&i . This condition can easily be obtained from the axiomatic
system of Anscombe and Aumann [1] by adding a very intuitive axiom, as
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Fig. 1. A product measure on 0=[s, t]_[_, {].

suggested by Blume et al. [5]. Nevertheless, this way of formulating the
stochastic independence condition turns out to be inappropriate in some
dynamic contexts. In fact, it is sometimes necessary to take into account
events with 0-prior probability (called Savage-null events) and to have
well-defined conditional probabilities on them. In the theory of extensive
games, for instance, there may be some nodes in the game tree which are
reached with 0-prior probability according to the ``equilibrium path'' and at
which the beliefs of the moving player are important to sustain the equi-
librium itself.

The following example illustrates the problem: let 0=01_02 , where
01=[s, t] and 02=[_, {] and let + be a probability measure on 0
defined as in Fig. 1. Observe that + can be obtained as a product of two
marginal probability measures on 01 and 02 . Consider the following two
conditional probabilities: +([s]_[_] | 01_[_]) and +([s]_[{] | 01_[{]).
These probabilities can be regarded as the marginal probabilities on 01

conditional on the occurrence of [_] and [{] respectively. If [s] is
assumed independent of events in 02 , it seems reasonable that these
probabilities coincide, by extension of the property that characterizes the
independence condition stated above. However, this need not be the case.
In fact, since the event [01_[{]] has 0-prior probability, we can choose
any version of conditional probability on it. Consider, for instance, the
conditional probability measure in Fig. 2. Since +( } | 01_[_]) is identical

Fig. 2. A version of the conditional probability +( } | 01_[{]).
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to the prior +( } ), we have that a change in information concerning 02 can
possibly lead to a change in the probability evaluations on 01 , i.e., violate
the independence condition (notice also that the probability measure in
Fig. 2 can be obtained as a product of two marginal probability measures).

One simple way to solve the problem is to assume away Savage-null
events, so that all conditional probability measures are well defined. This
approach, however, poses other difficulties. In game theory, for instance, it
would also rule out pure-strategy Nash equilibria. Alternative approaches
have been put forward in the literature.

Blume et al. [5] propose some modifications of Anscombe and
Aumann's system of axioms which on the one hand rule out Savage-null
events and on the other still preserve the idea that some events may be
``infinitely less likely'' than others. The main feature of their approach is the
weakening of the Archimedean axiom. They develop a consistent non-
Archimedean theory of subjective expected utility, in which a preference
relation between acts is represented lexicographically by means of what
they call ``lexicographic probability systems.''

Another author who deals with this kind of problems is Myerson [10].
He proposes an axiomatic system directly in terms of conditional preferen-
ces: a DM is supposed to have well-defined preferences conditional on each
event A�0. He then provides a numerical representation (as opposed to
a lexicographic one as in Blume et al. [5]) of the conditional preference
relations, using the so-called ``conditional probability systems'' (CPSs
henceforth).

In this paper we prove that both the above-mentioned approaches,
which are briefly summarized in Section 1, and the axiom of stochastic
independence proposed by Blume et al. [5] (or some strengthening of it)
lead to a condition of stochastic independence in terms of CPSs, which has
been first proposed by Hammond [6,7]. In addition to being very intuitive,
this condition enables us to deal easily with 0-prior probability events. In
particular, within the theory of extensive games it plays a major role in
Battigalli [4]. (See also Battigalli [2,3].)

In Section 2 we introduce the above-mentioned notions of conditional
probability system and of stochastic independence. In Section 3 we state
our main theorems.

1. Axiomatic Theories of Subjective Expected Utility

Let X be a set of consequences and 0 a finite set of states of the world.
Assume that 0 is a product space: 0=01_ } } } _0n . Let P denote the set
of simple probability measures on X and P0 the set of acts (as in
Anscombe and Aumann's approach, an act is a function f : 0 � P). For
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f # P0, f| denotes the (roulette) lottery associated with | # 0, fA=
( f|)| # A and f&A=f0&A . We say that f # P0 is constant if f|=
f|$ \|, |$ # 0. Given a partition [J, K] of [1, ..., n], denote 0J=>i # J 0i

and 0K=>i # K 0i . An act f is said constant across 0J if for every
|J , |$J # 0J and all |K # 0K , f (|J, | K)=f(|$J , | K) . Notice that P0 is a
mixture set: for f, g # P0, : # [0, 1], :f +(1&:) g is the act giving
probability :f|(x)+(1&:) g|(x) to the consequence x if the state |
obtains. We use ``f:g'' to denote the mixture ``:f+(1&:) g.''

1.1. Anscombe and Aumann's System of Axioms

The following are the usual axioms for an expected-utility representation
of preferences on P0. Let p be a binary relation on P0 (preference
relation); o and t are defined in the usual way.

A1 (Order). p is transitive and complete on P0.

A2 (Objective Independence). For all f, g, h # P0 and : # (0, 1], fo

(resp. t ) g O f:ho (resp. t ) g:h.

A3 (Non-triviality). There are f, g # P0 such that fog.

A4 (Archimedean Property). fogoh O _:, ; # (0, 1), :>;, such
that f:hogo f;h.

Definition 1.1. Given A�0, f, g # P0, f is preferred to g conditional
on A, written f pA g, if ( fA , h&A)p (gA , h&A) for some h # P0. (A1, A2
imply that this definition is independent of the choice of h.)1

Theorem 1.1. Under Axioms A1 and A2, the following property holds:
(Strong Subjective Substitution) \f, g # P0, \A, B�0 with A & B=<, if
f pA g and f oB (resp. pB) g then f oA _ B (resp. pA _ B) g (cf. Blume et al.
[5, Theorem 4.1]).

``Strong subjective substitution'' is often referred to as the sure thing
principle. It will be used repeatedly later.

Definition 1.2. An event A�0 is Savage-null if ftA g \f, g # P0.

Notice that under A1�A3, there is at least one state |* which is not
Savage-null (apply strong subjective substitution and A3).
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1 Suppose by way of contradiction that for some acts h and d we have (a) ( fA , h&A)p

(gA , h&A) but (b) (gA , d&A)o ( fA , d&A). Then (a) and A2 imply that ( fA , h&A) 1
2

(gA , d&A)p (gA , h&A) 1
2 (gA , d&A) and (b) and A2 imply that (gA , h&A) 1

2 (gA , d&A)o

(gA , h&A) 1
2 ( fA , d&A). Then A1 implies that ( fA , h&A) 1

2 (gA , d&A)o (gA , h&A) 1
2 ( fA , d&A),

but this contradicts ( fA , h&A) 1
2 (gA , d&A)=(( f 1

2 g)A , (h 1
2d )&A)=(gA , h&A) 1

2 ( fA , d&A).
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A5 (Non-null-state Independence). For all states |, |$ # 0 which are
not Savage-null and for any two constant acts f, g # P0, f p| g � f p|$ g.

1.2. Blume, Brandenburger, and Dekel 's approach

Let us recall some definitions and introduce the weakening of the
Archimedean axiom put forward by Blume et al. [5, Axiom 4"].

Definition 1.3. For disjoint events A, B�0 with A{<, A>>B (read
``A is infinitely more likely than B'') if f oA g O ( f&B , hB)oA _ B(g&B , dB)
for all h, d # P0.

A4". There exists a partition [41 , ..., 4R] of 0 such that:

(i) \r=1, ..., R, f o4 r go4r h O _:, ; # (0, 1), :>;, such that
f:ho4r go4 r f;h.

(ii) 41 >>42 } } } >>4R&1 >>4R .

A5$ (State Independence). For all states |, |$ # 0 and for any two
constants acts f, g # P0, f p| g � f p|$ g.

Since A1�A3 imply that at least one state |* is non-null, the additional
axiom A.5$excludes the existence of Savage-null events.2

The following is an axiom of stochastic independence (see Blume et al.
[5, axiom 6]):

A6 (Stochastic Independence). For any i=1, ..., n, every pair of acts
f, g # P0 constant across 0i and every |i , |$i # 0i : f p[|i]_0&i g �
f p[|$i]_0&i g.

The following lemma will be useful later:

Lemma 1.1. Under axioms A1 and A2, Axiom A6 holds if and only if for
all i=1, ..., n, for all D&i�0&i , for every pair of acts f, g # P0 constant
across 0i and every |i , |$i # 0i : f p[|i]_D&i g � f p[|$i]_D&i g.

Proof. (If) Obvious.
(Only if) Fix <{D&i�0&i , |i , |$i # 0i and suppose f p[| i]_D&i g.

We show that f p[|$i]_D&i g. Let h be any act constant across 0i and
consider the following two acts: f *=( f(0i_D&i) , h(0 i_(&D&i))) and g* =
(g(0i_D&i) , h(0i_(&D&i))). By definition of f * and g* we have f *p[|i]_D&i g*
and f *t[| i]_(&D&i) g*. Thus, by strong subjective substitution,
f *p[|i]_0&i g*. Now by A6, we have f *p[|$i]_0&i g*. We show that
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2 By A1�A3 there are f, g, and |* such that f o|* g. Consider the constant acts f * and g*
such that f *|= f|* , g*|= g|* for all | # 0. By A5$, f *o| g* for all | # 0. This shows that
there are no Savage-null states. Applying strong subjective substitution inductively, the
existence of Savage-null events is excluded.
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this implies that f *p[|$i]_D&i g*. In fact, suppose g*o[|$i]_D&i f *. Then,
since f *t[|$i]_(&D&i) g*, strong subjective substitution implies that
g*o[|$i]_0&i f *, which contradicts f *p[|$i]_0&i g*. Finally, since f (g)
coincides with f *(g*) over 0i_D&i we obtain f p[|$i]_D&i g by the
definition of conditional preference. K

Let us now introduce the following:

Definition 1.4. A lexicographic conditional probability system
(hereafter LCPS) is an R-tuple \=( p1 , ..., pR), for some integer R, of
probability measures on 0 such that Supp( pr) & Supp( ps)=<, if r{s. An
LCPS has full support if �R

r=1 Supp( pr)=0.

L2*(0) denotes the space of all LCPSs on 0 with full support. Given an
LCPS \=( p1 , ..., pR) # L2*(0), let us denote 4r=Supp( pr) and let
4(\)=(41 , ..., 4R) be the ordered partition of 0 induced by \.

1.3. Myerson's Approach

Myerson's axioms are stated in terms of conditional preferences. That is,
the conditional preference relations pA(<{A�0) are not derived from
a unique relation p as in Definition 1.1; they are primitive elements of the
analysis (see Myerson [10, Chap. 1]). It is assumed that, for every non-
empty A�0, pA satisfies order, objective independence, non-triviality,
and the Archimedean property (see A1*�A4* below). Furthermore, the
whole system of conditional preference relations ( pA)<{A�0 satisfies
some ``glue axioms'' relating its elements to each other (see A5*, A7*,
A8*):

A1* (Order). For every <{A�0, pA is transitive and complete
on P0.

A2* (Objective Independence). For every <{A�0, for all f, g, h #
P0 and : # (0, 1], f oA (resp. tA) g O f:hoA (resp. tA) g:h.

A3* (Non-triviality). For every <{A�0, there are f, g # P0 such
that f oA g.

A4* (Archimedean Property). For every <{A�0, f oA goAh O
_:, ; # (0, 1), :>;, such that f:hoA goA f;h.

A5* (State Independence). For all states |, |$ # 0 and for any two
constant acts f, g # P0, f p| g � f p|$ g.

A7* (Relevance). For every <{A�0, (\| # A, f|=g|) O ftA g.

A8* (Subjective Substitution). For every <{A, B�0, A & B=<,
( f pA (resp. oA) g, f pB (resp. oB) g) O f pA _ B (resp. oA _ B) g.

240 BATTIGALLI AND VERONESI
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Axiom A3* excludes the existence of Savage-null events as defined in
Definition 1.2. However, in this context another definition in terms of
conditional preferences seems more appropriate:

Definition 1.2*. Given <{B�C�0, B is Savage-null conditional
on C, if for all f, g, h # P0, ( fB , h&B)tC (gB , h&B).

For our purposes, Axiom A6 is too weak in this setting. In fact, strong
subjective substitution is not implied by A1*�A5*, A7*, A8*, because B
may be Savage-null conditional on A _ B. For this reason the equivalence
result stated in Lemma 1.1 does not hold (we will provide a counterexample
in Section 3 below). Therefore we need the following (stronger) axiom of
stochastic independence for conditional preferences:

A6* (Conditional Stochastic Independence). For all i=1, ..., n, for all
D&i�0&i , for every pair of acts f, g # P0 constant across 0i and every
|i , |$i # 0i : f p[|i]_D&i g � f p[|$i]_D&i g.

Lemma 1.1 could then be stated as follows: in Blume et al.'s setting,
under A1 and A2, Axioms A6 and A6* are equivalent.

2. Conditional Probability Systems and the Notion of

Stochastic Independence

Definition 2.1. A conditional probability system is a function
+ : 20_20"[<] � [0, 1] such that for all A # 20"[<], +( } | A) is a
probability measure concentrated on A and for all A, B, C # 20, A�B�C,
B{<,

+(A | C)=+(A | B) +(B | C). (1)

Let 2*(0) denote the space of conditional probability systems on 0.
Given a CPS + # 2*(0), a complete and transitive ordering ��+ (read
``not infinitely less probable than'') on 0 can be introduced (see McLennan
[9]): given |, |$ # 0, |� �+ |$ � +(| | [|, |$])>0. The ordering ��+

induces an ordered partition 4(+)=(41 , ..., 4R), for some integer R,
as follows: |, |$ # 4r for some r if and only if +(| | [|, |$]) # (0, 1)
and | # 4k , |$ # 4r , k<r if and only if +(| | [|, |$])=1. Given an
event A�0 and an ordered partition (41 , ..., 4R), define r(A)=
min[r : A & 4r {<]. The following lemma will be useful below:

Lemma 2.1. (a) Given a CPS + # 2*(0) with 4(+)=(41 , ..., 4R), for
every non-empty A�0, +(| | A)=+(| | A & 4r(A)).

241STOCHASTIC INDEPENDENCE
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(b) Given a LCPS \=( p1 , ..., pR) # L2*(0) with 4(\)=(41 , ..., 4R),
the function + : 20_20"[<] � [0, 1] defined by +(A | B)=pr(B)(A | B)=
pr(B)(A & B)�pr(B)(B), is a CPS and 4(+)=4(\).

(c) A CPS + # 2*(0) is completely determined by the probability
values conditional on events containing only two states: +(| | [|, |$]).

Proof. (a) is a straightforward consequence of Lemma 2.4 in
McLennan [9].

(b) Let A, B, C�0, A�B�C, B{<. By definition of r( } ), we have
the following cases:

(i) r(A)�r(B)>r(C ). If r(A)�r(B)>r(C ) then A & 4r(C)=<=
B & 4r(C) . Thus +(A | C)=pr(C)(A | C)=0=pr(B)(A | B) pr(C)(B | C)=
+(A | B) +(B | C).

(ii) r(A)�r(B)=r(C). If r(A)�r(B)=r(C) then pr(B)(A | B)=
pr(C)(A | B)=pr(C)(A)�pr(C)(B)=pr(C)(A | C)�pr(C)(B | C). Thus +(A | C)=
pr(C)(A | C)=pr(B)(A | B)pr(C)(B | C)=+(A | B)+(B | C).

Moreover, by construction +( } | A) is a probability measure concentrated
on A and 4(+)=4(\).

(c) By definition the ordered partition 4(+)=(41 , ..., 4R) is
completely determined by probabilities conditional on binary events (i.e.,
containing just two states). Furthermore, the LCPS defined by \(+)=
(+( } | 41), ..., +( } | 4R)) univocally determines the CPS + by (a) and (b). It
is then sufficient to show that all the measures +( } | 4r), r=1, ..., R, are
completely determined by the probabilities conditional on binary events.
\r=1, ..., R, \| # 4r , +(| | 4r)>0 by definition. By Bayes rule (1) then,
for all |, |$ # 4r ,

+(| | 4r)
+(|$ | 4r)

=
+(| | [|, |$])
+(|$ | [|, |$])

.

As the probabilities sum to 1, every +( } | 4r) is determined. K

By this lemma, we have an isomorphism between 2*(0) and L2*(0).
This will enable us to state the representation theorem in Blume et al.'s
approach in terms of CPSs instead of LCPSs.

Let us introduce the notion of stochastic independence (cf. Hammond
[6,7]).

Definition 2.2. Given a non-trivial partition [J, K] of [1, ..., n], the
algebras of events 20J, 20K are mutually independent with respect to the
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conditional probability system + : 20_20"[<] � [0, 1] if for all non-
empty subsets AJ , BJ�0J , CK , DK�0K the following equality holds:

+(AJ_CK | AJ_DK)=+(BJ_CK | BJ_DK). (2)

A CPS + satisfies the independence property if for all non-trivial partitions
[J, K] of [1, ..., n], 20J and 20K are mutually independent with respect
to +.

The intuition behind this condition of stochastic independence is that
any change in DM's information on events in 0J should not modify his�her
probability evaluations on 0K .3

Given + # 2*(0), we can define a marginal CPS +K on 0K as follows:
+K (CK | DK)=+(0J_CK | 0J_DK). If + satisfies the independence
property, +K(CK | DK)=+(AJ_CK | AJ_DK) for every non-empty AJ�0J .

Battigalli [4, Proposition 2.1] proves the following result, showing that
the independence condition for CPSs can be regarded as an extension of
the usual multiplicative condition of stochastic independence.

Theorem 2.1. A CPS + on 0 satisfies the independence property if and
only if for every partition [J, K, L, ...] of [1, 2, ..., n], every possible
rectangular event E=EJ_EK_EL_ } } } and every state |=(|J , |K , |L , ...)
# EJ_EK_EL_ } } } , the following holds:

+(| | E)=+J (|J | EJ)+K (|K | EK)+L(|L | EL) } } }

The following lemma will be useful below:

Lemma 2.2. A CPS + # 2*(0) satisfies the independence property if and
only if for every non-trivial partition [J, K] of [1, ..., n], for every pair
|J , |$J # 0J and every pair |K , |$K # 0K the following holds:

+((|J , |K) | [(|J , |K), (|J , |$K)])=+((|$J , |K) | [(|$J , |K), (|$J , |$K)]).

(2$)

Proof. (Only if) Obvious.

(If) For simplicity, we use Latin letters r, s, t, ... to denote elements of
0J and Greek letters \, _, {, ... to denote elements of 0K . r_, r{, s_, {, ...
denote the states of the world. We start by showing that (2) holds when
DK=[_, {]. Let AJ=[s, t, ...] be a non-empty subset of 0J . We show that

243STOCHASTIC INDEPENDENCE

3 This condition of stochastic independence is called ``quasi-independence'' by Swinkels
[11] and is somewhat stronger than the ``quasi-independence'' condition proposed by
Kohlberg and Reny [8]. See Swinkels [11] for a discussion.
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+(AJ_[_] | AJ_DK) is independent of AJ . Let r be any element of 0J .
We show that +(AJ_[_] | AJ_DK)=+(r_ | [r_, r{])

+(AJ_[_] | AJ_DK)=+(s_ | AJ_DK)++(t_ | AJ_DK)+ } } }

=+(s_ | [s_, s{]) +([s_, s{] | AJ_DK)

++(t_ | [t_, t{]) +([t_, t{] | AJ_DK)+ } } }

=+(s_ | [s_, s{]) +([s_, s{] | AJ_DK)

++(s_ | [s_, s{]) +([t_, t{] | AJ_DK)+ } } }

=+(s_ | [s_, s{])[+([s_, s{] | AJ_DK)

++([t_, t{] | AJ_DK)+ } } } ]

=+(s_ | [s_, s{])=+(r_ | [r_, r{]),

where the first equality is obvious, the second is implied by Bayes' rule (1),
the third is implied by (2$), the fourth and the fifth are obvious, and the
sixth follows again by (2$). For every AJ /0J , it is easy to see that
+(AJ_ } | AJ_} ): 20K"[<] � [0, 1] is a CPS on 0K . By Lemma 2.1 (c),
this CPS is completely determined by the probability values conditional on
binary events: +(AJ_[_] | AJ_[_, {]). As the latter is independent of AJ

by the above argument, we have that +(AJ_ } | AJ_} ) is independent of
AJ as well. This means that (2) holds. K

3. Main Theorems

Let �L denote the lexicographic ordering between vectors of real
numbers.4 The following are the main theorems:

Theorem 3.1. A1�A3, A4", A5$ hold if and only if there exist a linear
function u : P � R and a conditional probability system + : 20_20"[<] �
[0, 1] such that for all f, g # P0

f pg � { :
| # 0

+(| | 4r) u( f|)=
R

r=1

�L { :
| # 0

+(| | 4r) u(g|)=
R

r=1

,

where (41 , ..., 4R)=4(+) is the ordered partition mentioned in Axiom A4".
Furthermore, A6 holds if and only if the conditional probability system
satisfies the independence property.
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4 Given two vectors x=(x1 , ..., xR) and y=( y1 , ..., yR), x�L y if and only if yr>xr O
_k<r such that xk>yk .
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Theorem 3.2. A1*�A5*, A7*, A8* hold if and only if there exist a
linear function u: P � R and a conditional probability system +: 20_20"[<]
� [0, 1] such that for all f, g # P0, for all non-empty A�0:

f pA g � :
| # A

+(| | A) u( f|)� :
| # A

+(| | A) u(g|).

Furthermore, A6* holds if and only if the conditional probability system
satisfies the independence property.

(Note that B is Savage-null conditional on C if and only if +(B | C)=0
in the representation.)

The proofs of the representation part of both theorems already exist in
the literature. Specifically, Blume et al. [5] proved Theorem 3.1 by using
lexicographic conditional probability systems, which are isomorphic to
conditional probability systems by Lemma 2.1. As for Theorem 3.2, the
representation part corresponds to Theorems 1.1, 1.2, and 1.3 in Myerson
[10, Chap. 1] (who uses a different set of axioms which can be proved to
be equivalent to A1*�A5*, A7*, A8*).

The proof of Theorems 3.1 and 3.2 relies on the following lemma:

Lemma 3.1. Axiom A6* holds if and only if for any non-trivial partition
[J, K] of [1, ..., n], for every pair of acts f, g # P0 constant across 0J , for
every pair |J , |$J # 0J and every non-empty subset DK �0K :

f p[| J]_DK g � f p[|$J]_DK g.

Proof. (If) Obvious.

(Only if) Assume A6* holds and let J=[ j1 , j2 , j3 , ...]. If f, g are
constant across 0J , they are constant across every 0jk , jk # J. Thus,

f p[|j 1]_[| j 2]_[| j 3]_ } } } _DK g � f p[|$j 1]_[|j 2]_[|j 3]_ } } } _D K
g

� f p[|$j 1]_[|$j 2]_[|j 3]_ } } } _DK g � f p[|$j 1]_[|$j 2]_[|$j 3]_ } } } _D K g

The thesis follows by induction. K

Proof of Theorem 3.2. The fact that the independence condition implies
Axiom A6* is an immediate consequence of the representation part of the
theorem. Let us see that Axiom A6* implies that the system of conditional
preferences ( pA)<{A�0 is represented by some (u, +) where + satisfies
the independence property. By Lemma 2.2, we only have to prove that
condition (2$) holds. Again Latin letters s, t, ... denote elements of 0J and
Greek letters _, {, ... denote elements of 0K . Given s, t # 0J and _, { # 0K ,
we consider two acts f, g # P0 which are constant across 0J . Act f is such
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Fig. 3. Utility consequences of act f on [s, t]_[_, {].

that u( f|)=: if | # 0J_[_] and u( f|)=; if | # 0J_[{] (see Fig. 3),
where :>;. Act g is such that for any | # 0J_[_, {]:

g|=[+(s_ | [s_, s{]) fs_++(s{ | [s_, s{]) fs{].

By construction, we have ft[s]_[_, {] g, because both acts yield expected
utility +(s_ | [s_, s{]) :++(s{ | [s_, s{]) ; conditional on [s]_[_, {]. By
Lemma 3.1, ft[t]_[_, {] g; thus +(t_ | [t_, t{]) :++(t{ | [t_, t{]) ;=
+(s_ | [s_, s{]) :++(s{ | [s_, s{]) ;. As :>;, this equality holds if and
only if +(t_ | [t_, t{])=+(s_ | [s_, s{]). K

Proof of Theorem 3.1. As for the previous case, it is sufficient to show
that the preference relation p is represented by some (u, +) where +
satisfies (2$). Let f and g be as before, and let h be constant across 0J and
such that for any | # 0J_[_, {]:

h|=[+(t_ | [t_, t{]) fs_++(t{ | [t_, t{]) fs{].

Let d be an act constant across 0J , defined as f but with : (;) replaced
by ; (:), i.e., u(ds_)=u(dt_)=; and u(ds{)=u(dt{)=:. Furthermore, we
choose g, h, and d so that they coincide with f on 0J_(0K"[_, {]).
Without loss of generality, we assume that +(s_ | [s_, s{])>0. We have at
most three possibilities: (i) +(s_ | [s_, s{]) # (0, 1); (ii) +(s_ | [s_, s{])=1
and +(t_ | [t_, t{])>0; (iii) +(s_ | [s_, s{])=1 and +(t_ | [t_, t{])=0. In
case (i), we can argue as in the Proof of Theorem 2 above, because we have
ft[s]_0K g and Lemma 3.1 can be applied (recall that under A1�A5, A6,
and A6* are equivalent by Lemma 1.1). In case (ii), we have to show
that +(t_ | [t_, t{])=1. Assume not, i.e., +(s_ | [s_, s{])=1 and 0<
+(t_ | [t_, t{])<1. Then, using the lexicographic representation it can be
checked that f o[s]_0Kh and ft[t]_0 Kh, which contradicts Lemma 3.1.
Hence, +(t_ | [t_, t{])=1=+(s_ | [s_, s{]). Finally, we show that case
(iii) is incompatible with Axiom A6. In fact, we have f o[s]_0 K d and
do[t]_0 K f, which contradicts A6 by Lemma 3.1. K

246 BATTIGALLI AND VERONESI



File: 642J 215513 . By:MC . Date:04:06:96 . Time:13:00 LOP8M. V8.0. Page 01:01
Codes: 3043 Signs: 2165 . Length: 45 pic 0 pts, 190 mm

Fig. 4. Utility consequences of acts f and g.

Let us show now with an example that Axiom A6 is actually weaker
than Axiom A6* within Myerson's framework. Given the state space
0=[s, t]_[\, _, {], assume that the DM's conditional-preferences satisfy
Axioms A1*�A5*, A7*, A8* and are represented by some utility function
and a CPS + # 2*(0) such that 4(+)=([s\], [s_, s{, t\], [t_, t{]).
Assume also that the conditional probabilities (+( } | 4r))r=1, 2, 3 are
as follows: ((1), (1�3, 1�3, 1�3), (1�3, 2�3)). We can see, then, that
+(s\ | [s\, s_])=+(t\ | [t\, t_])=1, +(s_ | [s_, s{])=1�2, +(t_ | [t_, t{])
=1�3 (notice that condition (2) is violated). While it can be easily verified
that Axiom A6 is satisfied, we realise that Axiom A6* is not. In fact,
consider two acts f and g as in Fig. 4. Then, we have

f t[s]_[_, {] g and f o[t]_[_, {] g.

However, notice that within the framework of Blume et al. [5] (i.e.,
assuming that the DM's conditional preferences are derived by a preference
relation p satisfying Axioms A1�A3, A4", and A5$), also Axiom A6 is not
satisfied. In fact, in this case we have

f t[s]_0 2
g and f o[t]_02

g.
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