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In a finite game fix a space of extended probabilities over strategies and a profile of best
response correspondences. A profilgaifonality orderingsis then given by an ordered
partition of the set of strategies of each player, representing different degrees of rationality,
where at-leask + 1-rational strategies are best responses against extended probabilities
reflecting at leadt degrees of rationality. This solution can be constructed inductively, pro-
viding a Bayesian foundation for controversial deletion procedures such as extensive form
rationalizability and iterated weak dominance. Focusing on extensive games, this approach
formalizes the best rationalization principleurnal of Economic Literatur€lassification
Number: C72. ©1996 Academic Press, Inc.

1. INTRODUCTION AND GENERAL CONCEPTS

“What constitutes rational behavior and rational beliefs in a noncooperative
strategic situation?” Most game-theoretic solution concepts rely on the assum
tion that there is no intermediate level between pure strategic rationality an
pure strategic irrationality. Thus they can be defined by some sort of fixed-poin
condition with the following feature: rational beliefs must assign zero probabil-
ity to irrational strategies and rational strategies must be optimal against ration:
beliefs. Fixed point conditions of this sort characterize standard equilibrium con
cepts as well as nonequilibrium solution concepts such as rationalizability (se
Bernheim (1984) and Pearce (1984)).

In this paper we adopt a different game-theoretic approach, whereby ther
may be more than two degrees of strategic rationality/irrationality. This approacl
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STRATEGIC RATIONALITY ORDERINGS 179

provides a unified decision-theoretic (Bayesian) foundation for known iterativ
deletion procedures such as extensive form rationalizability and the iterati
deletion of weakly dominated strategies. Since these procedures are relate
the notion of forward induction in extensive games (Pearce (1984); Battigal
(1990); Sobekt al. (1990); Birgers (1991); Ben-Porath and Dekel (1992); Gul
(1991); Hammond (1994)), we think that our approach also sheds some lig
on this somewhat elusive principle. For this reason we focus our analysis ¢
extensive games.

Many forward induction arguments found in the literature rely on the follow-

ing:

RATIONALIZATION PRINCIPLE. A player should always try to interpret her
information about the behavior of her opponents assuming that they are n
implementing “irrational” strategiest

In order to provide a precise statement of the rationalization principle w
have to say what “irrational” means. Clearly a strategy is irrational if it is nof
a best response against any belief. But we are tempted to argue that a strat:
notion of irrationality should go further and deem a strategy irrational if it is
not optimal against any “rational” belief. This extension, however, suffers fron
logical difficulties similar to those concerning the backward induction solutior
(see, e.g., Basu (1990) and Reny (1993)). In this introductory section we illustre
the problem using a well-known example due to Van Damme (1989) and Be
Porath and Dekel (1992). Then we describe our general solution concept for
case of two players. Finally we briefly discuss the related literature.

1.1. Dissipative Moves and the Best Rationalization Principle

A player, say the Female, is given the opportunity to burn an ameuit
money before playing the Battle of the Sexes, wheigstrictly larger than the
Female’s payoff in her least preferred equilibrii, L), but strictly smaller
than the difference between her payoff in her most preferred equilibiiirR)
and the payoff inT, L) (see Fig. 1, where & x < 2). The Male observes this
move (eitherx or 0) before choosing betwednhand B. The forward induction
argument is as follows: the Female can signal that she is going toRplay
burning the money, sinceR is a best response to the Male strateByif(x; T
if 0), while x L is irrational. Therefore the Male has to assess &9 x) = 1.
This implies that T if x) is an irrational move. Hence the Female is sure to ge
(8 — x) if she playsxR and it is irrational for her to play [0, which gives a
payoff of 1 < (3 — x). On the other handR gives payoff 3> (3 — x) if the

1 For different statements of the forward induction principle in the context of equilibrium analysi
see Kohlberg and Mertens (1986), Kohlberg (1990), and Van Damme (1989).
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Fic. 1. Battle of the Sexes with a dissipative move: k < 2.

Male plays 8 if 0). Knowing this, the Male must assess P{@R | 0) = 1 and
play B if he observes 0. Therefore the Female must plRy 0

This is the same outcome selected by two iterative deletion procedures: e;
tensive form rationalizability (Pearce (1984)) and the iterated deletion of weakly
dominated strategies. But something is puzzling about this story: we have cor
cluded thatx R is also a strategically irrational strategy; why should the Male
think thatx Ris much more likely tham L, when both are strategically irrational?
A possible answer is that in a strategic situation the players may have a cohere
and common view about different degrees of rationality and irrationality. Given
this common view, in an extensive game the players conform to the following

BEST RATIONALIZATION PRINCIPLE. A player should always believe that her
opponents are implementing one of the “most ration@r “least irrational” )
strategy profiles which are consistent with her information

Inthe presentexample we may argue thRis more rational (or less irrational)
thanxL, because<R is a best response against some belief wkileis not.
Therefore the Male should think thaRis much (or infinitely) more likely than
xL if he observes, and his rational response %ois B. This leads us to the
concept of strategic rationality orderings.

1.2. Strategic Rationality Ordering#An Abstract Formulation

Consider a two-person finite game with strategy s@tce S%. For each, fix
an ordered partition d8 into subset®, Ry, . . ., Ry,. We tentatively interprei;,
as the class of completely irrational strategigs, as the class of most rational

2 Borgers and Samuelson (1992) and Samuelson (1992) point out corresponding difficulties cor
cerning iterated weak dominance.
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strategies andR! as the class of strategies wikhdegrees of rationality, dk-
rational strategies. Of course, K < m the strategies irRL are supposed to
be less rational than the strategiesRl). The assumption that the numbler

is the same for both players is innocuous if we allow for some classes to |
empty. We maintain, however, thg}, is not empty. According to our intended
interpretationR, U- - - U R}, is the set of playerrs at-least-k-rationaktrategies.
Assume that player is able to assess coherently all conditional probabilities
of the form p(s! | {s!, t1}). Such an assignment rufg- | -) can be derived
from different kinds of extended probability systems, such as the condition:
probability systems (Myerson, 1986), the lexicographic probability systems wit
full support, or some kind of non-Archimedean probabilities (see Blatra,
1991a)3 Let us also assume that for each probability syspeamsessed by player

i about playej we can sensibly define a ®%(p) € S of bestresponses against
p.
We emphasize that the relevant space of probability systems and the relev
best response correspondenBégp) areprimitivesof our analysis. Therefore,
what we actually propose is a “meta-solution concept.” Focusing on extensi
games, we will use Myerson’s conditional systems and the notion of sequent
rationality. But other sensible definitions could be used, leading to differer
solution concepts.

Our fundamental assumption is that if a rational player knew that one out «
two strategies andt is played and is less rational thaty then this player should
think thats is infinitely less likely thart. Therefore we say that a probability
systemp assessed by playeiis most rationalif s) € R}, t} € R} andm < n
implies p(s! | {s!,t/}) = 0. Suppose that, for sonte p is such thas! € Ry,
andt! e R} implies p(s! | {s!,t1}) = 0 whenevem < min{k, n}. Then we
only say thatp is at-least-k-rationalsince such a probability system may “pool”
distinct degrees of rationality which are (weakly) higher than

Finally, we say that(R}, ..., RY), (R3, ..., R%)] is a pair of rationality
orderingsif our intended interpretation about different degrees of rationality i
consistent, i.e., if the following is satisfied:

fori €e{1,2},ke{0,...,M —1}

(a)s' is at-leasték + 1)-rational (i.e.s' € Rl ; U--- U R},) if and only if §
is a best response against a probability syspemherep is at-leastk-rational,

(b)s' is most rational (i.es' € R},) if and only ifs' is a best response against
a most rational probability system

Note that this actually is a fixed-point condition for an operator mapping th
space of pairs of orderings into itself.

3 Hammond (1992) discusses the relationship between different kinds of extended probabil
systems.
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To illustrate part (a) of this definition let us go back to the example. Assume
that each player chooses an action which maximizes his/her expected payc
conditional on the observed behavior of the opponent. Since the Female do«
not receive any information about her opponent, she just maximizes her expects
payoff given a priomp(- | S¥@€), while the Male chooses a best response to the
conditional distributionp(- | {OL, OR}) or p(- | {XL, xR}) according to his
information. A belief is at-least-O-rational if no rationality constraint is imposed
at all. The only strategy of the Female which is not a best response against sor
belief is xL; all the other strategies are at-least-1-rational. ThereRjf& =
{xL}. Every strategy of the Male is at-least-1-rational because it can be justifies
by some belief. ThereforBY'@"® = (. This means that all beliefs about the Male
are at-least-1-rational. Hence every at-least-1-rational strategy of the Female
also at-least-2-rational and no strategy has exactly one degree of rationalit
RFe™ = (5. A conditional systenp about the Female is at-least-1-rational if and
only if p(xL | {xL,xR}) = 0. A strategy of the Male is at-least-2-rational if
and only if it is a best response against an at-least-1-rational conditional syster
This means that such a strategy must choose a&tiahenx is observed. Thus
the at-least-2-rational strategies 8r& and B B (the letter on the right denotes
the move wherx is observed). Taking this into account, it is easy to show that
the modified Battle of the Sexes has a unique pair of rationality orderings, whicl
supports the forward induction solution:

Female: ({xL}, @, {0L}, @, {XxR}, {OR}),
Male: @, {TT,BT},0,{TB}, 94, {BB}).

This pair of orderings can be computed iteratively, exploiting the inductive struc-
ture of condition (a) and the fact that a player's completely irrational strategie:
can be determined without reference to the rationality ordering of the opponen
We will show that such an iterative procedure always yields the unique profile
of rationality ordering$.

Part (b) should be clear. Optimality against a rational belief is a necessary cor
dition for strategic rationality in any sensible solution concept. We also require
that (b) is a sufficient condition: i.e., we require that the set of rational strateg)
profiles is “closed under rational behavior.” Strict Nash equilibria and the set of
rationalizable strategies have this property (see Basu and Weibull (1991) for
discussion).

1.3. Related Literature
Not surprisingly, the notion of rationality orderings is related to part of the
existing literature. The idea that “His less rational thah, the probability ofs

4 In the first version of this paper we give a more general definition where most rational strategie:
may have a “bootstrap” feature and multiple solutions result.
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must be infinitesimal with respect to the probabilityt'dis present in Myerson’s
(1978) concept of proper equilibrium, a refinement of Selten’s (1975) tremblin
hand perfect equilibrium (see also Bluraeal. (1991b)). McLennan (1989b)
gives a modified definition of this concept, the sequentially proper equilibriurn
which uses conditional systems in the context of extensive games. There are th
main differences between such equilibrium concepts and rationality ordering
First, in proper and sequentially proper equilibria the degree of rationality c
strategies is evaluated with respect to a unique “focal” equilibrium belief, while
we allow for multiple nonequilibrium rational beliefs. Second, this equilibrium
belief may assign zero probability to strategies which are best responses aga
it, while we require that every rational strategy is in the support of some ration
belief, i.e., the solution must be closed under rational behavior. Third, in suc
solution conceptss'is less rational thati means thas yields a smaller expected
payoff thant (given the equilibrium belief), while we use this phrase to say tha
the beliefs which justifys (if they exist at all) are less rational than the beliefs
which justify t. The modified Battle of the Sexes illustrates this point too. The
pair of strategiegOL, TT) is a Nash equilibrium where the Male insists on
his preferred outcome, ignoring the Female’s signal. It is also a proper ar
sequentially proper equilibrium. Strategy yields a higher expected payoff
thanx R againstT T. Therefore we hav@(XxR | {xL, XxR}) = 0 when using
Myerson'’s notion of “less rational than.” Of course, this justifies the conditiona
choice ([ if x).

Another strand in the literature proposes solution concepts which can be ©
tained with iterative procedures. Backward induction, iterated weak dominanc
and rationalizability are well-known examples. L be the set of playeirs
strategies deleted at stkpf the procedure (say that the first stefxis: 0) and
let R}, bet the set of surviving strategies. Then we obtain candidate rationali
orderings, which satisfy our fixed-point condition in some circumstances. A
important step toward this interpretation is taken in Gul (1991), Reny (1992
and Stahl (1991).

Gul (1991) considers two kinds of consistent restrictions about the belie
of strategically rational players: (i) restrictions on beliefs about the behavior ¢
“nonrational” types and (i) restrictions on beliefs about the behavior of “rational’
types. Condition (a)—(b) can be regarded as an example of such restrictions.

Reny (1992) defines the notion of “explicable equilibrium” by means of in-
creasingly strong restrictions on equilibrium beliefs in extensive games (see al
McLennan (1985)). Stahl (1991) provides a justification of iterated weak dom
nance which relies on lexicographic utility maximization. Both solutions can b
obtained within the present approach by appropriately specifiying the primitive
(for more on this see Section 4).

The rest of the paper is organized as follows. Section 2 defines the notion
correlated sequential rationality orderings, which is equivalent to extensive for
rationalizability (Pearce (1984)) either in two-person games or when correlatic
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in beliefs is allowed. Section 3 modifies the notion of rationality orderings in
order to incorporate the assumption that each player always regards the strate
choices of different opponents as stochastically independent events. It is shov
that Pearce’s formalization of this assumption is flawed and may lead to counte
intuitive results. For this reason “independent” sequential rationality orderings
do not correspond to Pearce’s original solution concept. Section 4 concludes t
paper, presenting some alternative definitions of extended probability syster
and best response correspondences, which yield different solution concepts su
as the iterated deletion of weakly dominated strategies. The Appendix contair
some proofs and additional results.

2. CORRELATED SEQUENTIAL RATIONALITY ORDERINGS

In this and the following section we provide alternative formalizations of the
best rationalization principle for extensive games. We assume that the playe
cannot make binding commitments and always maximize their conditional ex
pected utility given a coherent system of subjective conditional probabilities
concerning their opponents’ strategic choices. Hence knowledge of the extel
sive form is important, because actions are freely chosen, taking into accoul
information about the past play as encoded in information sets. However, ou
solution concept does not depend on all the details of the extensive form. Hel
we list only the primitive and derived elements of an extensive form which are
necessary in the analysis, taking for granted a basic understanding of the noti
of an extensive game and its strategic representation.

Notation Terminology

N={1,...,n} players set

H' (i € N) collection ofi’s information sets

s € S (S finite) pure strategies for player

S= XjenS set of strategy profiles

—i = N\{i} playeri’s opponents

ST =x;49 set ofi's opponents’ strategy profiles
U:S—>R normal-form payoff function for

Sth),he H'ieN set of strategy profiles which
_ _ reach information set _
S (h), S'(h) projection ofS(h) on S andS™'

Only the last two lines need some explanation. A strategy prefiteaches
an information seh, writtens € S(h), if the path induced bg contains a node
x € h. S (h) andS™' (h) are the sets of strategiesiaind—i respectively, which
do not prevenh from being reached.
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We assume for simplicity that the game has chance movésand, more
importantly, perfect recall A consequence of perfect recall is thahife H',
thenS(h) = S (h) x S (h). Sincei knows her past moves, information set
h corresponds to the event thia opponents are implementing some strategy
profiles™ e S (h).

The next step is the formal definition of players’ beliefs. Consider a finite se
of “states”Q. In the following analysi€2 will be S or S. A(2) denotes the
set of probability measures dn. For every nonempty subsét C @, A(E)
denotes the set of probability measurestowith support inE. A conditional
probability systen{Renyi (1955); Myerson (1986)) is a functig- | -) such
thatforallA, B,C C 2,B,C # @, p(- | C) € A(C), and

ACBCC impliesp(A|C) = p(A| B)p(B | C). 2.1

This means that conditional probabilities are updatedBayes rule whenever
possible. The set of conditional probability system<is denoted byA*(2).

We assume that playés conditional beliefs about her opponents are repre-
sented by somp € A*(S™). In this section we do not assume that beliefs satisfy
stochastic independence, because a player may think that there is spurious
relation between the strategies of different opponents (Aumann (1987)). This
even more plausible within a nonequilibrium solution concept, where beliefs al
subjective and at least partially arbitrary (Hammond (1994); Stalnaker (1993
Nevertheless we think that stochastic independence is a meaningful and wo
studying game-theoretic assumption. Therefore we will consider it in Section .

We now turn to the definition of the best response correspondences. Assu
that playeii is given the move at information sete H'. Beforeh was reached
i must have followed some strategy € S (h) if she played at all. Assume
that player is endowed with a conditional systeme A*(S™'). Then at each
information seh € H', she can compute the expected utility of ahyg S (h)
conditional onh using the formula

U, plsithn= > U, sHps™ Sty (2
s eSi(h)
By perfect recallU'(s', p | S'(h)) depends only on the choices prescribed
by s' on the collection of information sets containih@nd its followers inH',
provided thats e S (h). We assume that playémmaximizes her conditional
expected utility whenever she has to play.

DEFINITION 2.1.  Leth € H'. Astrategys' € S (h) is a best response against
p € A*(S™) athif and only if

Uis,pI STy >Ui,p|Sihy forallt’ e S(h).

5 The introduction of chance moves and incomplete information is quite straightforward (see Bat
galli (1993a, Section 6)).
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We say thats' is a sequential best response againstep A*(S™), written
s' € SB(p), if and only ifs' is a best response agairnsat every information
seth such thas' € S (h).%

Note .thatSB'(p) is included in the set of best responses against the prior
p(- | S") and these sets coincide in simultaneous games.

LEMMA 2.1. For every pe A*(S™) there is at least one sequential best
response against,p.e., SB (p) # 0.

Proof. See the Appendix.

Conditional systems enable us to formalize the notion that “statmfinitely
less likely than staté&’ without using limits: we just have(s | {s, t}) = 0. Of
course, this is meaningful if the relation “infinitely less likely than” is transitive.
Butformula (2.1) ensures that this is the case (McLennan (1989a), Lemma 2.3)
Therefore each conditional systgme A*(2) induces a total preorder dn,
which can be represented by an ordered parti@p) = (Qo, ..., Qup),
wherep(s | {s,t}) = 0ifand onlyifs € Q;,t € Qm, £ < m. (This implies that
s,t € Qm for somemifand only if 0 < p(s| {s,t}) < 1.)

An orderingof Q2 is an ordered tupl® = (Qq, Q1, ..., Qm), where{Qo, Q1,
..., Qum} is a partition ofQ2. For notational convenience we allow some cells
Qx to be empty. We say thatQ = (Qo, Q1,..., Qu) is a refinementof
R = (Ro, ..., Rk) written Q > R, if {Qqg, Q1,..., Qu} is a refinement of
{Ro, Ry, ..., Rk} andQ preserves the order &, i.e.,¥ # Q, € R, ¥ #

Qm S Rcandj < kimply £ < m.

Remark2.1. The refinement relation is transitive.

Remark2.2. For every orderinR of Q there is at least onp € A*(€2) such
thatQ(p) > R:take any linear ordet of Q that refinefRR and letp(s | {s, t}) =
0if s < t; by Lemma A.1 in the Appendix this determines a whole conditional
systemp such thaQ(p) > R.

The refinement relation provides a convenient characterization of “rational’
conditional systems. Le®2 = S and letR™ = (R;',..., Ry/) be a “ra-
tionality ordering” of S'. Theni’s belief p € A*(S™) is “most rational” if
and only ifQ(p) > R‘i and it is “at-leask-rational” if and only ifQ(p) >
(Ry', ..., R, (R('U---URy)). SinceR™ > (Ry', ..., Ry, (R U---U
Rﬁ )) and the refinement relation is transitive, a most rational conditional systen
is also at-leask-rational.

6 The fact that we consider only information sets reached byeans that we actually check the
rationality of plans of action (cf. Reny (1992)), but this is not essential for the argument.

7 Note the McLennan (1989a) uses a different notation, in whjglis the set of maximal elements
andQy is the set of minimal elements.
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To see how the refinement condition formalizes the best rationalization pril
ciple, assume that playeéris endowed with a conditional systemsuch that
Q(p) > RI. Then, at the beginning of the game playdselieves with proba-
bility one that her opponents’ strategy profile belong&fp. When she gets at
information set, she believes with probability one that her opponents’ strateg
profile belongs td:{,;'(h) N S (h), wherem(h) is the highest inderm such that
R, NS (h) # ¢ (see Lemma A.1 in the Appendix).

We are now ready to state our main definition. Consider a profile of ordering
[(RY,...,RY), ..., (RS, ...,Rp]of S, ..., . Let

R = REURG, . URY, R = xju R
and
R™ =(S\R{ RIT\R ..., RyL\RY, Ry).

According to our intended interpretatidR(f‘i is the set of at-least-rational
profiles ancR~" is the rationality ordering dfs opponents regarded as a whole.
For example, if the players are |, II, and ItI" € R}, s"" € R)', ands' € R),
then(s', t"") and(s', s'") belong to the same cell of irrational profilgs" . This
agrees with our assumption that in general beliefs exhibit correlation: player
may interpret a deviation from rationality by opponent | as evidence that Ill i
also irrational. Therefores', t'"') need not be infinitely more likely thass', s'')
(see the game depicted in Fig. 2). _
Finally, letR~" (k) denote the coarsening Bf ', where all the profiles oR;:™
are putin the same cell, i.e.,

Rk = (S\R, R\R™, ..., RO\RT L R,
(Note thatR~"(0) = (S™') is the trivial ordering.)

DErFINITION 2.2. A profile of correlated sequential rationality orderingsf
an extensive game is artuple of orderings(R3, ..., RY), ..., (RS, ..., R})]
of each player’s strategies such that foriadl N andk =0,..., M -1

r=M
U R =(eS|3pea’s™: Qp =Rk ands € SB(p)}, (2.3)

r=k+1

Ry = (s €S |3pea’(S"): Q(p)=R"ands € SB(p)}  (2.4)

Remark2.3. Sinceeactl € SB(p)isabestresponsetothe priaf | S7),
(2.4) implies that ifR}, = {§'} (a singleton) for alii, then(§8');cn is a Nash
equilibrium.

As we mentioned in the Introduction, the set of irrational strategigss
uniquely determined: it is just the set of strategies which are not sequent
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best responses against any conditional system*ifS'). Furthermore, Def-
inition 2.2 has a partly inductive structure given by (2.3). Therefore it is not
surprising that a unique profile of rationality orderings can be computed with ar
inductive procedure.

DEFINITION (INDUCTIVE PROCEDURE 2.3. For alli € N let Ri = S. Fix
k>0.GivenR}!, Ry ... R}, j € N, foralli € N defineQ~' (k) andR' , as

R =x4R',  €¢=0,...k
Q) = (RI\(RI™ U URT,
RIF\RTU---UR™), ..., R,
R, =1{s €S |3Ipear(s): s e SB(p,Q(p = Q' (k).
THEOREM2.1. Consider Procedurg.3.For all playersie N andallm=> 0
(@) Ris S R andQ'(m) = (RyT\R;™, ..., REL\RT, RiT);
(b) there is a minimal integer Msuch that for aII k> M, R;f' Rw, # 9;
(c) let M = maxM;;i e N}and R, = RI\R%. ;, m=0,...,M — 1;

then[(R}, ..., Ry _,, R, ..., (Rg, ..., Ry _,, RiM] is the unique profile of
correlated sequential rationality orderings

Proof.  (a) By mspectlon of Procedure 2 3 it follows immediately tﬁﬁt C
Ry andR;™ € R;™ foralli. Assume thaR} 1 S Ry andRZ;'l c R foralli
and¢ =0, ..., (m-1). ThenR; U - -UR"™ = R:~ i =R™U-- UR*"UR;‘;l
forallk = O , £. Therefore

QR BB R R
(RS\Ry™ RE\R L Ry = Q7' (m - .

Since the refinement relation is transitive,Q(p) > Q~ '(m) impliesQ(p) >
Q'(m—1). HenceR,, € R¥ andR%., < R foralli.

(b) By Lemma 2. 1,SB(p) # @ for aII p € A*(S™). Furthermore, for
any orderlngQ on S there is at least one conditional systgsuch that
Q(p) = Q" (see Remark 2.2). This implies thef' # ¢ for all k. SinceS is
finite and{ R }3° is a weakly decreasing sequence of subse® ahere must
be a first mtegeM such thalR*' R for allk > Mi.

(c) Thisisa stralghtforward consequence of (a) and (.

v

Note than an analogous result holds for different specifications of the primi-
tives. Itis sufficient that the analogs of Remark 2.2 and Lemma 2.1 hold. Proce
dure 2.3 yields stronger and stronger rationality restrictions on beliefs given b
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finer and finer orderings. This may be satisfactory from a foundational point
view, but it may also be computationally cumbersome. The traditional deletio
procedures of game theory aszluction procedureswvhereby the deletion step
k + 1 does not take into account the strategies already deleted in the prkviou
steps. One of these reduction procedurextensive form rationalizabilityith
correlated beliefs (Pearce (1984)). Pearce used this procedure in order to de
a solution concept relying on the following assumptions: (i) each player alway
maximizes her expected payoff and she updates her expectations using Bay
rule whenever possible; (ii) each player believes that her opponents are ratio
unless this is contradicted by their observed moves; (iii) assumptions (i) and (
are common knowledge at the beginning of the game.

We now define a version of Pearce’s reduction procedure using the langua
of conditional systems and allowing for correlated belfefs.

DEFINITION (INDUCTIVE PROCEDURE 2.4. For alli € N let Pg‘ = S. Fix

k > 0.Assume that P has been defined for allé N and let B~ = x4 Pk*j.
Then $ € By, if and only if

(@ s e P, |

(b) there is pe A*(S™) such thatQ(p) > (S7\P¢ ) and for all
he H' such thats e S(h) and S'(h) N P}~ b (z)and aII t' e SthynPH,
Ui, pl S'(hy) >=U't, p| S (h).

A strategys' is calledrationalizableif and only if ' € (., P

Consider a generic stép+ 1. Condition (a) says that only the strategies
P! which survived previous deletion steps are “eligible.” Condition (b) impose:
rationality restrictions on beliefs and conditional expected utility maximization
Conditional systems need only distinguish between “irrational” strategy profile
and “temporarily rational” (i.e., not yet deleted) strategy profese P;™
Expected utility maximization is imposed only at information sets which car
be reached by some undeleted strategy prefieP; . Furthermore, a strategy
s' e P is only compared with alternative strategiesifi.

The following theorem says that exstensive form rationalizability corresponc
to the profile of correlated sequential rationality orderifgs.

8 pearce’s original definition (Pearce (1984, Definitions 9, 10)) is formally different from ours:
(i) Pearce does not use conditional systems, (ii) he allows for the choice of mixed strategies, and (ii)
assumes a sort of independence property (see Section 3). In two-person games of perfect recall (w
issue (iii) does not arise) these differences are irrelevant. On (i) see Battigalli (1994, Theorem 1). As
(ii) the pure “strategy property” (Pearce (1984, Proposition 4)) implies that the set of pure rationalizak
strategies does not change if players are allowed to randomize.

9 A similar result appears in Battigalli (1990).
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- oy, 0

> L )

D b d 0
1 0
0 1 0
0 1

Fic. 2. A perfect information, 3-person game. P-rationalizability does not extlude

THEOREM2.2. Consider Procedureg.3and2.4.Foralli € N and k> 0,
R = B". Therefore

[(PE\P . ..., Pi_1\Pit. PiDlien

(where M is defined as in Theorenl) is the profile of correlated sequential
rationality orderings

Proof See the Appendix.

3. INDEPENDENT SEQUENTIAL RATIONALITY ORDERINGS

The following principle is assumed in many game-theoretic solution concepts
different players choose their strategy independently and this is reflected in eax
player's probabilistic beliefs about her opponents, which satisfy a stochasti
independence condition. We call this principteategic independenc8trategic
independence is incorporated into the Nash equilibrium concept and the origin:
definitions of rationalizability due to Bernheim (1984) and Pearce (1984). In his
definition of extensive form rationalizability, Pearce (1984) tries to formalize
the strategic independence principle by assuming that for each plegmeat
information seth € H', the conditional subjective beligi(- | S~ (h)) can be
generated by a product prior distribution &1'. In the refinements literature
this condition is calledstructural consistencysee Kreps and Wilson (1982)).
Formally, Pearce’s definition of rationalizability can be obtained by adding the
structural consistency condition to Procedure®® /e will use the terminology
P -rationalizabilityto indicate this solution concept (“P” stands for Pearce). The
following examples show that the structural consistency condition incorporatet
into P-rationalizability does not appropriately model strategic independence.

10 We are still translating Pearce’s formalization in our own terms (see Pearce (1984, Definitions 9
10)).
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First consider the perfect information game in Fig. 2. If player Il at the begin
ning of the game believes that her opponents are rational and regards thern
stochastically independent, she should predict chdibg player Il and play
b independently of her information about player I. Thus the solution shoul
be the subgame perfect equilibrium. But accordin@toationalizability player
Il may interpret the irrational mové by player | as evidence that player I
can also behave irrationally. This clearly violates strategic independence. /
a consequence, both player II's strategies are P-rationalizable. Note, howe\
that P-rationalizability and the intuitive solution incorporating strategic indepen
dence yield the same terminal node, the one reached by the backward induct
path. It can be shown that this is a general property of perfect information game
but the next example shows that different outcomes may result in games w
imperfect information.

According to Pearce’s definition, playeris allowed to change her belief
about opponent, just because she observed a subjectively unexpected (ratior
or irrational) behavior by another oppondntwhile our intuition suggests that
in such a case’s belief aboutj should not change if strategic independence
holds.

We illustrate this point with a story. Benjamin (Ben) and Abigail (Abi) play
the following game with Natalie (Nat). Nat choos¢®r Y, but she is indifferent
with respect to the outcome of the gafiden has to bet on Nat’s choice. After
the first stage Ben may choose either the same bet or the opposite one, but i
changes, he has to pay a small fine of&bi has to guess Ben'’s behavior in each
period. She gets $1 for each correct guess and she loses $1 for each incor
guess. Abi and Ben observe each other’s actions after the first stage and they
not receive any information concerning Nat's choice until the game is over. Be
maximizes his expected final wealth. Abi’s attitudes toward risk are immateri
for the argument. Figure 3 shows the game with monetary payoffs.

Abi is smart, and after a moment she understands that by playing propel
she cannot lose. If Ben bets of(Y) in the first stage, it is because this yields
a nonnegative subjectively expected payoff. Since Ben is an expected pay
maximizer, he will not change the bet in the second stage, as his probabili
assessment does not change (if his expected payoff from the bet is zero,
repeats the first stage choice to avoid the fine). Therefore Abiis sure to correc
predict Ben’s choice in the second stage and to get a total payoff of either $2
$0, just by replicating Ben's first-stage choice.

Although the solution illustrated above seems pretty trivial, P-rationalizability
is unable to replicate it. Even if Ben's conditional beliefs are always given by
productdistribution, after an unexpected first-stage action by Abi, Ben's margin
distribution on Nat’s choice may be different from the initial one. Consequently

11 We like to interpret Nat as the Nature player in a game of incomplete (but symmetric) informatio
with private (completely subjective) beliefs on the state of the world.
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Nat

Fic. 3. Part of a game with sequential betting and betting about bets. Every path is consistent wit
P-rationalizability.

Ben may change his bet in the second stage. This implies that every termin
node of the game tree is reached by some P-rationalizable profile. In this examp
as well as in the previous one P-rationalizability is equivalent to rationalizabilty
with correlated belief$?

We now provide a formalization of the Strategic Independence principle wher
players’ beliefs are represented by conditional probability systems. Fix a player
and a conditional system e A*(S™). For each subset of opponerdts N\{i}
we can derive thenarginal of p on S’ := x;;S as follows: for all A%,

BY c S, BY #4,

pJ(AJ | BJ) — p(AJ % SN\(JU{i}) | B.] % SN\(JU[i])).

DEFINITION 3.1. A conditional systenp € A*(S™) has the independence
propertyif for all partitions {J;, ..., J} of N\{i}, all rectangular subsets #
E-'"=EJx...EXcS'andalls” =(s¥,...,s*%) e S

r=k
ps” |ET) =]]p* " | EM. 3.1)
r=1

12 |t can be proved that P-rationalizability and correlated rationalizability are completely equivalent
in games of perfect information (Battigalli (1990, Lemma 1)).
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The set of conditional systems for playesatisfying the independence property
is denoted A*(S™).

Definition 3.1 is an extension of the usual multiplicative independence conditic
for probability measure® Building on Blumeet al. (1991a), Battigalli and
Varonesi (1992) provide a decision-theoretic rationale for (3.1), showing that
can be derived from a standard stochastic independence axiom for preferen
over lotteries. According to this axiom a decision maker does not take int
accountinformation concerning the coordiniatd the unknown state (opponent
k in the present framework) for decisions whose consequences depend only
other coordinates (the behavior of other opponents).

LEMMA 3.1. For every profile of orderingfR!]; . there is at least one con-
ditional system e | A*(S™") such that for all j# i, Q(p’) > RJ.

Proof. See the Appendix.

We are now able to state a definition of rationality orderings relying on the
strategic independence principle. In agreement with the notation of Section 2, 1
anyordering®' = (R., ..., Ri,)of S wehaveR (k) = (R}, ..., R._;, /=" R).

DerINITION 3.2. A profileindependent sequential rationality orderinigsan
n-tuple of orderings(R}, ..., RY), ..., (R, ..., R})] of each player’s strate-
gies suchthatforalle Nandk=0,...,M -1

r=Mm
U R =1{seS3pela’sh: vj#i.Qp) =Rk
e ands € SB(p)}, (3.2)

Ry = (s €S |3pela*(S"): ¥j#i,Qp)) =R
ands € SB(p)}. (3.3)

Once again we can define an iterative procedure which yields the unique prof
of rationality orderings.

DEFINITION (INDUCTIVE PROCEDURE 3.3. For alli € N let R = S. Fix

k > 0. GivenRg‘j, RIJ,..., R;fj,j e N, defineQ’ (k) andR. ;, j,i € N, as

Q) =RN\RU---UR) RN\RU---UR), ..., R,
d.=1{s €S |3Ipela* (ST Vj#i,Q(p) = Ql(k ands € SB(p)}.

13 Similar or equivalent independence properties have been put forward and discussed in a ga
theoretic context by Hammond (1992), Kohlberg and Reny (1992), Battigalli (1993a, 1994), ar
Swinkels (1993). Renyi (1955, p. 303) uses a similar (but weaker) condition.
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-1
1 A
0 -1

FiIG. 4. A 3-person game where independent sequential rationality orderings do not refine P
rationalizability.

THEOREM3.1. Consider Procedur8.3.For all playersie N andallm> 0,

(@) Ri,; C R andQ (m) = (RI\RY, ..., RI\RE R

(b) there is a minimal integer Msuch that for allk> M;, R = Ry, and
R;:,',i # 0,

(c) let M = maxM;;i € N} andF{n R@\Rn; m=0,...,M—1;
then[(R, ..., RYy_, RiD, ..., (R}, ..., Ry _;, RtM] is the unlque profile of
independent sequential ratlonallty orderlngs

Proof Similar to the proof of Theorem 2.1. In the proof of (b) take into
account Lemma 3.1. =

It is straightforward to check that the independent rationality orderings of
the games in Figs. 2 and 3 correspond to the intuitive solutions outlined above
These examples seem to suggest that independent rationality orderings refine
rationalizability, but this is not the cas&Consider the game of Fig. 4 (see also
Kreps and Ramey (1987, Fig. 1)). Actibrmaximizes player IlI's conditional

14 Analogously, Battigalli (1993b, Section 6.3) provides an example where correlated rationality
orderings are finer than independent rationality orderings.
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expected payoff if and only if

p(L,r) [{(L,O),(L,r), (RO} =12=p(R, 0| {(L,0),([L,1, (R OY.
(3.9

But such conditional beliefs violate structural consistency since they conn

be derived from a product prior. Therefore P-rationalizability implies thiat

deleted in the first step of the procedure. Hence, in the second step, playel

and Il are sure to get the highest payoff by playing left and the P-rationalizab

solution is{L} x {¢} x {a, c}.

On the other hand, there is an independent conditional syptenhA*(S' x
S") such thatp'(R | §) = p'"(r | S') = 1, which satisfies (3.4). This im-
plies that the triple of independent rationality orderings is just the trivial one
(@, S), @, S"), @, S"].

In this game P-rationalizability is more powerful than independent rationalit
orderings. But we claim that this is due to an implausible restriction impose
by structural consistency on player lII's beliéfsNote that the players | and Il
are symmetric in an obvious sense. Therefore we should allow for independe
conditional systems reflecting this symmetry. Furthermore, there &sprori
reason to exclude thar, r) has prior probability one. It can be checked that
the only symmetric and independent conditional system suchpfi&®, r) |
S x ') = 1is the one given above.

4. OTHER DEFINITIONS OF RATIONALITY ORDERINGS

So far we have analyzed only sequential best responses against conditio
probability systems, but we pointed outin Section 1 that other sensible definitio
of extended probabilities and best response correspondences can be given.

One possibility is to assume that, though each player is a conditional expect
utility maximizer, only ordinal preferences over terminal nodes are commo
knowledge (see &@ers (1993)). In this case the appropriate notion of sequenti
best response is the following:is a sequential best response agapsthere
is an increasing transformation of U’ such thas' maximizes(mo U")(-, p |
S(h)) for eachh € H' suchthas e S (h). It may be easily checked that with
this formulation the analog of Theorem 2.1 holds.

Another possiblity is given by lexicographic expected utility maximization.
Blumeet al. (1991a) develop a system of axioms about preferences over lotte
ies, in which the Archimedean axiom is weakened and the state independel

15 This may happen because the set of strategies reaching player IlI’s information set is not rect:
gular, otherwise (3.1) would imply structural consistency.
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axiom is strengthened. They show that a decision maker chooses as if she we
endowed with a utility function and a hierarchy of probability measures over the
(finite) set of states—callel@xicographic probability systemsuch that each
state is given a positive probability by at least one measure and she maximize
lexicographically the resulting vector of expected utilities. A lexicographic prob-
ability systemp = (po, p1, ..., pm) determines an orderinQ(p) over the set

of states as followd:is infinitely more likely thars, if and only if pms)(S) = 0,
wherem(s, t) is the highest indem such thatp, ({s, t}) > 0. We made clear in
the Introduction that these notions of extended probabilities and best respons
can also be easily fitted into our framework, yielding the notiolexitographic
rationality orderings It can be shown that the related procedure corresponds
to the iterated (maximal) deletion of weakly dominated mixed strategies (se
Stahl (1991, Proposition 1) and Rajan (1993)). Veronesi (1994) provides a pa
tial justification in terms of rationality orderings of the iterated deletion of pure
strategies which are weakly dominated by otbere strategies.

Yet another notion of rationality orderings can be obtained using a proce
dure put forward by Reny (1992) in order to define a refinement of the Nast
equilibrium concept called “explicable equilibrium.” Reny’s solution can be re-
formulated in the present framework through a modification of Procedure 3.:
by considering the set of conditional systems satisfying a strong independenc
property equivalent to Kreps and Wilson’s (1982) consistency of assessmen
(Kohlberg and Reny (1992) and Swinkels (1993) provide a rationale for this
property). It turns out that Reny’s procedure and Procedure 3.3 coincide on
restricted class of extensive games including two-person games-padson
games with observed actions (for more on this see Battigalli (1993b)).

There is no definite relationship between different notions of rationality or-
derings in general games. Consider two specifications of the primitives (space
beliefs and best response correspondette), B' (-))icn and(A=", B (-))ien.
Assume that for all € N andp € A7, A7 < A~ andBi(p) < Bi(p),
and letR}, R¥' denote the corresponding sets of at-ldasational strategies.
Intuition might suggest thak: < R, but this need not be the case. It is in-
deed trivially true thaR:' € R:', but this inclusion relation cannot be extended
to higher “degrees of rationality.” This is easily understood by considering the
structure of the beliefs supporting at-least-2 rational strategies. Assume that f
some player] #i, *’ C R"‘J andg # R0 C RO (C denotes strict inclusion).
ThenR- Q= (Fz0 R* ') is not a refinement otRO R™ "y = R (1). This
implies that the set of beliefs supporting strategleijs not a subset of the
beliefs supporting strategies RE'

Positive results can be obtained by considering restricted classes of game
In particular, applying results due to Battigalli (1990) and Reny (1992), it can
be shown that all the solutions considered so far are realization-equivalent t
backward induction in generic games of perfect information.
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APPENDIX

A.1. Conditional Probability Systems

The set of conditional probability systems (2) can be regarded as a subset
of a Euclidean space of dimensio®# (2%* — 1) (#Q denotes the cardinality
of ) endowed with the relative topology. Clearly a strictly positive prioion
generates a whole conditional system, which belongs to the “interiak™ ¢f2).
Myerson (1986) shows that*(2) is the closure of the set of conditional systems
generated by strictly positive priors di. Since A*(Q2) is bounded, it is also
compact.

Proof of Lemm&.1. We mustshow that for every profile of orderinBs]j .
we can find some € | A*(S™) such thatQ(p’) > RJ for all j # i, where
p! is the marginal ofp on SI. We already know that for alj # i there exist
ap' e A*(S) such thaQ(p') > R/ (see Remark 2.2). Furthermore, egech
is approached by some sequeripg}> , of conditional systems generated by
strictly positive priors. Letpx}ie, be the sequence generated by the product pri
ors[T;; pL(- | S)). Clearly{pc}2, € | A*(S™). Sincel A*(S™) is a subset of
A*(S™) defined by equality conditions A*(S™) is compact andlp} 2>, must
have a cluster poinp € | A*(S™"). By constructionp’ is exactly the marginal
of pon Si. Hencep is a conditional system with the required properties. m

LEMMA A.1%6.  Consider an orderingR = (R, ..., Ry) of Q and a condi-
tional system = A*(2) such thalQ(p) > R. Suppose thats E C Q and let
M(E) =maxk | Re N E # @}. Then @s| E) = p(s| E N Rye))-

Proof. We must show that i§ € E\Ryg), thenp(s | E) = 0. Lets €
E\Rm). Then, by definition oim(E), we can findt € E N RyE), andk <
m(E) such thats € E N Ry. Since{s} c {s,t} € E, condition (2.1) yields
p(s| E) = p(s| {s.t)p({s. t} | E). SinceQ(p) > R, s € Ry, t € Re), and
k < m(E), it follows thatp(s | {s,t}) = 0. Thereforep(s| E) =0. =

A.2. Sequential Rationality Orderings

Proof of Lemm&.1 (Sketch). Note that in games of perfect recall the col-
lection of information set#' can be ordered by the precedence relatioof
the game tree and it can be regarded as an arborescence. Fopever{y(S™),
the triple(H', <, p) corresponds to a finite decision tree (some random choice
may have zero probability, but this is immaterial for the present argument). .
strategys' € SB (p) can be constructed by backward induction on this decisior
tree. [

16 This is a slight generalization of McLennan (1989a, Lemma 2.4).
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Proof of Theoren2.2. For notational simplicity and without loss of gener-
ality we consider a two-person game.

By inspection of Definitions 2.3 and 2.4 it is clear i = Py, i = 1,
2. Now assume thelRy' = P, i = 1, 2. We have to show th&;', , = P/,
i=1,2

Lets € Ry ,. SinceRy,; € R = B}, condition (a) of Definition 2.4 holds.

We know thats' isa sequentlal best response against spraeA*(S)) such that
Q(p) > Ri(k). By LemmaA1,p(- | ) = p(- | Pk*’) and for allh € H' such
thatSi(h) N P} £ o we havep(- | S/(h)) = p(- | Si(h) N P;)). Therefore
condition (b) also holds arsl € P;,.

Lets' € Py ;. SinceP;!; € Py = R, we can find two conditional systems
Pe1, Pc € A*(S)) such thas' € SB (pc-1), Q(P-1) = (R}, ..., R, R
= R!(k — 1), and condition (b) of Definition 2.4 holds fgr = px. Now define
amapp(- | -) as

p(- | BY) = pe(- | BY), if BIn P £,
p(- | Bl) = pa(- | B, B NPT =g

Applying Lemma A.1 it is easy to check thatis a conditional system and
Q(p) > Ri(k). Now we show thas' € SB (p).

We already know thz—;E_li is a best response agaimsat allh € H' (reached by
s') such thatS (h) N P}’ = ¢, since for such information sef®- | Sl (h)) =
p_1(- | S'(h)), ands' € SB(px — 1). The remaining collection afs informa-
tion sets reached g/ is H' (s', k) = (h e H' | S/(h)yN PR} # @, ' reaches}.
We now show thas' is a best response also at hlle H'(s', k) because the
constraint’ € S (h) N P in the maximization condition (b) of Definition 2.4
is not binding. We rely again on the arborescence structuk¥ ¢éee the proof
of Lemma 2.1). We prove that is an unconstrained best response aggiret
eachh € H' (', k) by induction on the number of predecessors of

Note that each € H'(s', k) has exactly the same predecessolsiits', k) as
in H'. In what follows we speak of “predecessors” without further qualification.
Consider an information séte H' (s, k) without predecessors and a strategy
t' € SB(p) computed by backward induction as in the proof of Lemma 2.1. By
choice ofh, boths' andt’ reachh. SinceQ(p) > RI(k),t' € R, € R = P;.
Thereford' is an unconstrained best respongawhich belongs to the constraint
setS (h)N P! and thisimplies that also must be an unconstrained bestresponse
to p ath. Thus we may assume without loss of generality thahds' select the
same choice di. By this argumens' is an unconstrained best response against
p at all information sets without predecessors and there is a backward inductio
strategyt’ € SB (p) such that' ands' reach the same information sets with at
most one predecessor.

Now consider an information sét € H'(s', k) with at most¢ > 1 prede-
cessors and assume that there is some backward induction st'ate§B (p)
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which coincides witrs' at all information sets with at mogt— 1 predecessors.
Repeating the previous argumest,must be an unconstrained best response
againstp ath and without loss of generality we may assume thands' select
the same choice &t Thuss' is an unconstrained best response agarettall
information sets oH' (s, k) with at most¢ predecessors and there is a strategy
t € SB(p) such that' ands' reach the same information sets with at most
¢ + 1 predecessors. [
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