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In a finite game fix a space of extended probabilities over strategies and a profile of best
response correspondences. A profile ofrationality orderingsis then given by an ordered
partition of the set of strategies of each player, representing different degrees of rationality,
where at-leastk + 1-rational strategies are best responses against extended probabilities
reflecting at leastk degrees of rationality. This solution can be constructed inductively, pro-
viding a Bayesian foundation for controversial deletion procedures such as extensive form
rationalizability and iterated weak dominance. Focusing on extensive games, this approach
formalizes the best rationalization principle.Journal of Economic LiteratureClassification
Number: C72. © 1996 Academic Press, Inc.

1. INTRODUCTION AND GENERAL CONCEPTS

“What constitutes rational behavior and rational beliefs in a noncooperative
strategic situation?” Most game-theoretic solution concepts rely on the assump-
tion that there is no intermediate level between pure strategic rationality and
pure strategic irrationality. Thus they can be defined by some sort of fixed-point
condition with the following feature: rational beliefs must assign zero probabil-
ity to irrational strategies and rational strategies must be optimal against rational
beliefs. Fixed point conditions of this sort characterize standard equilibrium con-
cepts as well as nonequilibrium solution concepts such as rationalizability (see
Bernheim (1984) and Pearce (1984)).

In this paper we adopt a different game-theoretic approach, whereby there
may be more than two degrees of strategic rationality/irrationality. This approach
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provides a unified decision-theoretic (Bayesian) foundation for known iterative
deletion procedures such as extensive form rationalizability and the iterative
deletion of weakly dominated strategies. Since these procedures are related to
the notion of forward induction in extensive games (Pearce (1984); Battigalli
(1990); Sobelet al. (1990); Börgers (1991); Ben-Porath and Dekel (1992); Gul
(1991); Hammond (1994)), we think that our approach also sheds some light
on this somewhat elusive principle. For this reason we focus our analysis on
extensive games.

Many forward induction arguments found in the literature rely on the follow-
ing:

RATIONALIZATION PRINCIPLE. A player should always try to interpret her
information about the behavior of her opponents assuming that they are not
implementing “irrational” strategies.1

In order to provide a precise statement of the rationalization principle we
have to say what “irrational” means. Clearly a strategy is irrational if it is not
a best response against any belief. But we are tempted to argue that a strategic
notion of irrationality should go further and deem a strategy irrational if it is
not optimal against any “rational” belief. This extension, however, suffers from
logical difficulties similar to those concerning the backward induction solution
(see, e.g., Basu (1990) and Reny (1993)). In this introductory section we illustrate
the problem using a well-known example due to Van Damme (1989) and Ben-
Porath and Dekel (1992). Then we describe our general solution concept for the
case of two players. Finally we briefly discuss the related literature.

1.1. Dissipative Moves and the Best Rationalization Principle

A player, say the Female, is given the opportunity to burn an amountx of
money before playing the Battle of the Sexes, wherex is strictly larger than the
Female’s payoff in her least preferred equilibrium(T, L), but strictly smaller
than the difference between her payoff in her most preferred equilibrium(B, R)
and the payoff in(T, L) (see Fig. 1, where 1< x < 2). The Male observes this
move (eitherx or 0) before choosing betweenT andB. The forward induction
argument is as follows: the Female can signal that she is going to playR by
burning the money, sincex R is a best response to the Male strategy (B if x; T
if 0), while x L is irrational. Therefore the Male has to assess Prob(x R | x) = 1.
This implies that (T if x) is an irrational move. Hence the Female is sure to get
(3− x) if she playsx R and it is irrational for her to play 0L, which gives a
payoff of 1< (3− x). On the other hand 0R gives payoff 3> (3− x) if the

1 For different statements of the forward induction principle in the context of equilibrium analysis
see Kohlberg and Mertens (1986), Kohlberg (1990), and Van Damme (1989).
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FIG. 1. Battle of the Sexes with a dissipative move 1< x < 2.

Male plays (B if 0). Knowing this, the Male must assess Prob(0R | 0) = 1 and
play B if he observes 0. Therefore the Female must play 0R.

This is the same outcome selected by two iterative deletion procedures: ex-
tensive form rationalizability (Pearce (1984)) and the iterated deletion of weakly
dominated strategies. But something is puzzling about this story: we have con-
cluded thatx R is also a strategically irrational strategy; why should the Male
think thatx Ris much more likely thanx L, when both are strategically irrational?2

A possible answer is that in a strategic situation the players may have a coherent
and common view about different degrees of rationality and irrationality. Given
this common view, in an extensive game the players conform to the following

BESTRATIONALIZATION PRINCIPLE. A player should always believe that her
opponents are implementing one of the “most rational”(or “least irrational” )
strategy profiles which are consistent with her information.

In the present example we may argue thatx Ris more rational (or less irrational)
than x L, becausex R is a best response against some belief whilex L is not.
Therefore the Male should think thatx R is much (or infinitely) more likely than
x L if he observesx, and his rational response tox is B. This leads us to the
concept of strategic rationality orderings.

1.2. Strategic Rationality Orderings: An Abstract Formulation

Consider a two-person finite game with strategy spaceS1×S2. For eachi , fix
an ordered partition ofSi into subsetsRi

0, Ri
1, . . ., Ri

M . We tentatively interpretRi
0

as the class of completely irrational strategies,Ri
M as the class of most rational

2 Börgers and Samuelson (1992) and Samuelson (1992) point out corresponding difficulties con-
cerning iterated weak dominance.
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strategies andRi
k as the class of strategies withk degrees of rationality, ork-

rational strategies. Of course, ifk < m the strategies inRi
k are supposed to

be less rational than the strategies inRi
m. The assumption that the numberM

is the same for both players is innocuous if we allow for some classes to be
empty. We maintain, however, thatRi

M is not empty. According to our intended
interpretationRi

k∪· · ·∪ Ri
M is the set of playeri ’s at-least-k-rationalstrategies.

Assume that playeri is able to assess coherently all conditional probabilities
of the form p(sj | {sj , t j }). Such an assignment rulep(· | ·) can be derived
from different kinds of extended probability systems, such as the conditional
probability systems (Myerson, 1986), the lexicographic probability systems with
full support, or some kind of non-Archimedean probabilities (see Blumeet al.,
1991a).3 Let us also assume that for each probability systemp assessed by player
i about playerj we can sensibly define a setBi (p) ⊆ Si of best responses against
p.

We emphasize that the relevant space of probability systems and the relevant
best response correspondencesBi (p) areprimitivesof our analysis. Therefore,
what we actually propose is a “meta-solution concept.” Focusing on extensive
games, we will use Myerson’s conditional systems and the notion of sequential
rationality. But other sensible definitions could be used, leading to different
solution concepts.

Our fundamental assumption is that if a rational player knew that one out of
two strategiessandt is played ands is less rational thant , then this player should
think thats is infinitely less likely thant . Therefore we say that a probability
systemp assessed by playeri is most rationalif sj ∈ Rj

m, t j ∈ Rj
n andm < n

implies p(sj | {sj , t j }) = 0. Suppose that, for somek, p is such thatsj ∈ Rj
m

and t j ∈ Rj
n implies p(sj | {sj , t j }) = 0 wheneverm < min{k, n}. Then we

only say thatp isat-least-k-rational, since such a probability system may “pool”
distinct degrees of rationality which are (weakly) higher thank.

Finally, we say that [(R1
0, . . . , R1

M), (R
2
0, . . . , R2

M)] is a pair of rationality
orderingsif our intended interpretation about different degrees of rationality is
consistent, i.e., if the following is satisfied:

for i ∈ {1, 2}, k ∈ {0, . . . ,M − 1}

(a)si is at-least-(k+ 1)-rational (i.e.,si ∈ Ri
k+1 ∪ · · · ∪ Ri

M ) if and only if si

is a best response against a probability systemp, wherep is at-least-k-rational;
(b) si is most rational (i.e.,si ∈ Ri

M ) if and only if si is a best response against
a most rational probability systemp.

Note that this actually is a fixed-point condition for an operator mapping the
space of pairs of orderings into itself.

3 Hammond (1992) discusses the relationship between different kinds of extended probability
systems.
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To illustrate part (a) of this definition let us go back to the example. Assume
that each player chooses an action which maximizes his/her expected payoff
conditional on the observed behavior of the opponent. Since the Female does
not receive any information about her opponent, she just maximizes her expected
payoff given a priorp(· | SMale), while the Male chooses a best response to the
conditional distributionp(· | {0L , 0R}) or p(· | {x L, x R}) according to his
information. A belief is at-least-0-rational if no rationality constraint is imposed
at all. The only strategy of the Female which is not a best response against some
belief is x L; all the other strategies are at-least-1-rational. ThereforeRFem

0 =
{x L}. Every strategy of the Male is at-least-1-rational because it can be justified
by some belief. ThereforeRMale

0 = ∅. This means that all beliefs about the Male
are at-least-1-rational. Hence every at-least-1-rational strategy of the Female is
also at-least-2-rational and no strategy has exactly one degree of rationality:
RFem

1 = ∅. A conditional systemp about the Female is at-least-1-rational if and
only if p(x L | {x L, x R}) = 0. A strategy of the Male is at-least-2-rational if
and only if it is a best response against an at-least-1-rational conditional system.
This means that such a strategy must choose actionB whenx is observed. Thus
the at-least-2-rational strategies areT B andB B (the letter on the right denotes
the move whenx is observed). Taking this into account, it is easy to show that
the modified Battle of the Sexes has a unique pair of rationality orderings, which
supports the forward induction solution:

Female: ({x L}, ∅, {0L}, ∅, {x R}, {0R}),
Male: (∅, {T T, BT}, ∅, {T B}, ∅, {B B}).

This pair of orderings can be computed iteratively, exploiting the inductive struc-
ture of condition (a) and the fact that a player’s completely irrational strategies
can be determined without reference to the rationality ordering of the opponent.
We will show that such an iterative procedure always yields the unique profile
of rationality orderings.4

Part (b) should be clear. Optimality against a rational belief is a necessary con-
dition for strategic rationality in any sensible solution concept. We also require
that (b) is a sufficient condition: i.e., we require that the set of rational strategy
profiles is “closed under rational behavior.” Strict Nash equilibria and the set of
rationalizable strategies have this property (see Basu and Weibull (1991) for a
discussion).

1.3. Related Literature

Not surprisingly, the notion of rationality orderings is related to part of the
existing literature. The idea that “ifs is less rational thant , the probability ofs

4 In the first version of this paper we give a more general definition where most rational strategies
may have a “bootstrap” feature and multiple solutions result.
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must be infinitesimal with respect to the probability oft” is present in Myerson’s
(1978) concept of proper equilibrium, a refinement of Selten’s (1975) trembling
hand perfect equilibrium (see also Blumeet al. (1991b)). McLennan (1989b)
gives a modified definition of this concept, the sequentially proper equilibrium,
which uses conditional systems in the context of extensive games. There are three
main differences between such equilibrium concepts and rationality orderings.
First, in proper and sequentially proper equilibria the degree of rationality of
strategies is evaluated with respect to a unique “focal” equilibrium belief, while
we allow for multiple nonequilibrium rational beliefs. Second, this equilibrium
belief may assign zero probability to strategies which are best responses against
it, while we require that every rational strategy is in the support of some rational
belief, i.e., the solution must be closed under rational behavior. Third, in such
solution concepts “s is less rational thant” means thatsyields a smaller expected
payoff thant (given the equilibrium belief), while we use this phrase to say that
the beliefs which justifys (if they exist at all) are less rational than the beliefs
which justify t . The modified Battle of the Sexes illustrates this point too. The
pair of strategies(0L , T T) is a Nash equilibrium where the Male insists on
his preferred outcome, ignoring the Female’s signal. It is also a proper and
sequentially proper equilibrium. Strategyx L yields a higher expected payoff
thanx R againstT T. Therefore we havep(x R | {x L, x R}) = 0 when using
Myerson’s notion of “less rational than.” Of course, this justifies the conditional
choice (T if x).

Another strand in the literature proposes solution concepts which can be ob-
tained with iterative procedures. Backward induction, iterated weak dominance,
and rationalizability are well-known examples. LetRi

k be the set of playeri ’s
strategies deleted at stepk of the procedure (say that the first step isk = 0) and
let Ri

M bet the set of surviving strategies. Then we obtain candidate rationality
orderings, which satisfy our fixed-point condition in some circumstances. An
important step toward this interpretation is taken in Gul (1991), Reny (1992),
and Stahl (1991).

Gul (1991) considers two kinds of consistent restrictions about the beliefs
of strategically rational players: (i) restrictions on beliefs about the behavior of
“nonrational” types and (ii) restrictions on beliefs about the behavior of “rational”
types. Condition (a)–(b) can be regarded as an example of such restrictions.

Reny (1992) defines the notion of “explicable equilibrium” by means of in-
creasingly strong restrictions on equilibrium beliefs in extensive games (see also
McLennan (1985)). Stahl (1991) provides a justification of iterated weak domi-
nance which relies on lexicographic utility maximization. Both solutions can be
obtained within the present approach by appropriately specifiying the primitives
(for more on this see Section 4).

The rest of the paper is organized as follows. Section 2 defines the notion of
correlated sequential rationality orderings, which is equivalent to extensive form
rationalizability (Pearce (1984)) either in two-person games or when correlation
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in beliefs is allowed. Section 3 modifies the notion of rationality orderings in
order to incorporate the assumption that each player always regards the strategic
choices of different opponents as stochastically independent events. It is shown
that Pearce’s formalization of this assumption is flawed and may lead to counter-
intuitive results. For this reason “independent” sequential rationality orderings
do not correspond to Pearce’s original solution concept. Section 4 concludes the
paper, presenting some alternative definitions of extended probability systems
and best response correspondences, which yield different solution concepts such
as the iterated deletion of weakly dominated strategies. The Appendix contains
some proofs and additional results.

2. CORRELATED SEQUENTIAL RATIONALITY ORDERINGS

In this and the following section we provide alternative formalizations of the
best rationalization principle for extensive games. We assume that the players
cannot make binding commitments and always maximize their conditional ex-
pected utility given a coherent system of subjective conditional probabilities
concerning their opponents’ strategic choices. Hence knowledge of the exten-
sive form is important, because actions are freely chosen, taking into account
information about the past play as encoded in information sets. However, our
solution concept does not depend on all the details of the extensive form. Here
we list only the primitive and derived elements of an extensive form which are
necessary in the analysis, taking for granted a basic understanding of the notion
of an extensive game and its strategic representation.

Notation Terminology
N = {1, . . . ,n} players set
Hi (i ∈ N) collection ofi ’s information sets
si ∈ Si (Si finite) pure strategies for playeri
S= ×i∈N Si set of strategy profiles
−i = N\{i } playeri ’s opponents
S−i = ×j 6=i Sj set ofi ’s opponents’ strategy profiles
Ui : S→ R normal-form payoff function fori
S(h), h ∈ Hi , i ∈ N set of strategy profiles which

reach information seth
Si (h), S−i (h) projection ofS(h) on Si andS−i

Only the last two lines need some explanation. A strategy profiles reaches
an information seth, writtens ∈ S(h), if the path induced bys contains a node
x ∈ h. Si (h) andS−i (h) are the sets of strategies ofi and−i respectively, which
do not preventh from being reached.
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We assume for simplicity that the game hasno chance moves5 and, more
importantly,perfect recall. A consequence of perfect recall is that ifh ∈ Hi ,
then S(h) = Si (h) × S−i (h). Sincei knows her past moves, information set
h corresponds to the event thati ’s opponents are implementing some strategy
profiles−i ∈ S−i (h).

The next step is the formal definition of players’ beliefs. Consider a finite set
of “states”Ä. In the following analysisÄ will be Si or S−i . 1(Ä) denotes the
set of probability measures onÄ. For every nonempty subsetE ⊆ Ä, 1(E)
denotes the set of probability measures onÄ with support inE. A conditional
probability system(Renyi (1955); Myerson (1986)) is a functionp(· | ·) such
that for all A, B, C ⊆ Ä, B, C 6= ∅, p(· | C) ∈ 1(C), and

A ⊆ B ⊆ C impliesp(A | C) = p(A | B)p(B | C). (2.1)

This means that conditional probabilities are updatedvia Bayes rule whenever
possible. The set of conditional probability systems onÄ is denoted by1∗(Ä).

We assume that playeri ’s conditional beliefs about her opponents are repre-
sented by somep ∈ 1∗(S−i ). In this section we do not assume that beliefs satisfy
stochastic independence, because a player may think that there is spurious cor-
relation between the strategies of different opponents (Aumann (1987)). This is
even more plausible within a nonequilibrium solution concept, where beliefs are
subjective and at least partially arbitrary (Hammond (1994); Stalnaker (1993)).
Nevertheless we think that stochastic independence is a meaningful and worth
studying game-theoretic assumption. Therefore we will consider it in Section 3.

We now turn to the definition of the best response correspondences. Assume
that playeri is given the move at information seth ∈ Hi . Beforeh was reached
i must have followed some strategysi ∈ Si (h) if she played at all. Assume
that playeri is endowed with a conditional systemp ∈ 1∗(S−i ). Then at each
information seth ∈ Hi , she can compute the expected utility of anysi ∈ Si (h)
conditional onh using the formula

Ui (si , p | S−i (h)) =
∑

s−i∈S−i (h)

Ui (si , s−i )p(s−i | S−i (h)). (2.2)

By perfect recall,Ui (si , p | S−i (h)) depends only on the choices prescribed
by si on the collection of information sets containingh and its followers inHi ,
provided thatsi ∈ Si (h). We assume that playeri maximizes her conditional
expected utility whenever she has to play.

DEFINITION 2.1. Let h ∈ Hi. A strategysi ∈ Si (h) is a best response against
p ∈ 1∗(S−i ) at h if and only if

Ui (si , p | S−i (h)) ≥ Ui (t i , p | S−i (h)) for all t i ∈ Si (h).

5 The introduction of chance moves and incomplete information is quite straightforward (see Batti-
galli (1993a, Section 6)).
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We say thatsi is a sequential best response against p∈ 1∗(S−i ), written
si ∈ SBi (p), if and only if si is a best response againstp at every information
seth such thatsi ∈ Si (h).6

Note thatSBi (p) is included in the set of best responses against the prior
p(· | S−i ) and these sets coincide in simultaneous games.

LEMMA 2.1. For every p∈ 1∗(S−i ) there is at least one sequential best
response against p, i.e., SBi (p) 6= ∅.

Proof. See the Appendix.

Conditional systems enable us to formalize the notion that “states is infinitely
less likely than statet” without using limits: we just havep(s | {s, t}) = 0. Of
course, this is meaningful if the relation “infinitely less likely than” is transitive.
But formula (2.1) ensures that this is the case (McLennan (1989a), Lemma 2.3)).
Therefore each conditional systemp ∈ 1∗(Ä) induces a total preorder onÄ,
which can be represented by an ordered partitionQ(p) = (Q0, . . . , QM(p)),
wherep(s | {s, t}) = 0 if and only ifs ∈ Q`, t ∈ Qm, ` < m. (This implies that
s, t ∈ Qm for somem if and only if 0< p(s | {s, t}) < 1.)

An orderingofÄ is an ordered tupleQ = (Q0, Q1, . . . , QM), where{Q0, Q1,

. . . , QM} is a partition ofÄ. For notational convenience we allow some cells
Qk to be empty.7 We say thatQ = (Q0, Q1, . . . , QM) is a refinementof
R = (R0, . . . , RK ) written Q ≥ R, if {Q0, Q1, . . . , QM} is a refinement of
{R0, R1, . . . , RK } and Q preserves the order ofR, i.e., ∅ 6= Q` ⊆ Rj , ∅ 6=
Qm ⊆ Rk and j < k imply ` < m.

Remark2.1. The refinement relation≥ is transitive.

Remark2.2. For every orderingR ofÄ there is at least onep ∈ 1∗(Ä) such
thatQ(p) ≥ R: take any linear order< ofÄ that refinesR and letp(s | {s, t}) =
0 if s < t ; by Lemma A.1 in the Appendix this determines a whole conditional
systemp such thatQ(p) ≥ R.

The refinement relation provides a convenient characterization of “rational”
conditional systems. LetÄ = S−i and letR−i = (R−i

0 , . . . , R−i
M ) be a “ra-

tionality ordering” of S−i . Then i ’s belief p ∈ 1∗(S−i ) is “most rational” if
and only if Q(p) ≥ R−i and it is “at-least-k-rational” if and only if Q(p) ≥
(R−i

0 , . . . , R−i
k−1, (R

−i
k ∪ · · · ∪ R−i

M )). SinceR−i ≥ (R−i
0 , . . . , R−i

k−1, (R
−i
k ∪ · · · ∪

R−i
M )) and the refinement relation is transitive, a most rational conditional system

is also at-least-k-rational.

6 The fact that we consider only information sets reached bysi means that we actually check the
rationality of plans of action (cf. Reny (1992)), but this is not essential for the argument.

7 Note the McLennan (1989a) uses a different notation, in whichQ0 is the set of maximal elements
andQM is the set of minimal elements.
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To see how the refinement condition formalizes the best rationalization prin-
ciple, assume that playeri is endowed with a conditional systemp such that
Q(p) ≥ R j . Then, at the beginning of the game playeri believes with proba-
bility one that her opponents’ strategy profile belongs toR−i

M . When she gets at
information seth, she believes with probability one that her opponents’ strategy
profile belongs toR−i

m(h) ∩ S−i (h), wherem(h) is the highest indexm such that
R−i

m ∩ S−i (h) 6= ∅ (see Lemma A.1 in the Appendix).
We are now ready to state our main definition. Consider a profile of orderings

[(R1
0, . . . , R1

M), . . . , (R
n
0, . . . , Rn

M)] of S1, . . . , Sn. Let

R∗ j
k = Rj

k ∪ Rj
k+1 . . . ∪ Rj

M , R∗−i
k = ×j 6=i R

∗ j
k

and

R−i = (S−i \R∗−i
1 , R∗−i

1 \R∗−i
2 , . . . , R∗−i

M−1\R−i
M , R−i

M ).

According to our intended interpretationR∗−i
k is the set of at-least-k-rational

profiles andR−i is the rationality ordering ofi ’s opponents regarded as a whole.
For example, if the players are I, II, and III,t III ∈ RIII

M , sIII ∈ RIII
0 , andsI ∈ RI

0,
then(sI, t III ) and(sI, sIII ) belong to the same cell of irrational profilesR−II

0 . This
agrees with our assumption that in general beliefs exhibit correlation: player II
may interpret a deviation from rationality by opponent I as evidence that III is
also irrational. Therefore(sI, t III ) need not be infinitely more likely than(sI, sIII )

(see the game depicted in Fig. 2).
Finally, letR−i (k) denote the coarsening ofR−i , where all the profiles ofR∗−i

k
are put in the same cell, i.e.,

R−i (k) = (S−i \R∗−i
1 , R∗−i

1 \R∗−i
2 , . . . , R∗−i

k−1\R∗−i
k , R∗−i

k ).

(Note thatR−i (0) = (S−i ) is the trivial ordering.)

DEFINITION 2.2. A profile of correlated sequential rationality orderingsof
an extensive game is ann-tuple of orderings [(R1

0, . . . , R1
M), . . . , (R

n
0, . . . , Rn

M)]
of each player’s strategies such that for alli ∈ N andk = 0, . . . ,M − 1

r=M⋃
r=k+1

Ri
r = {si ∈ Si | ∃p ∈ 1∗(s−i ): Q(p) ≥ R−i (k) andsi ∈ SBi (p)}, (2.3)

Ri
M = {si ∈ Si | ∃p ∈ 1∗(S−i ): Q(p) ≥ R−i andsi ∈ SBi (p)} (2.4)

Remark2.3. Since eachsi ∈ SBi (p) is a best response to the priorp(· | S−i ),
(2.4) implies that ifRi

M = {ŝi } (a singleton) for alli , then(ŝi )i∈N is a Nash
equilibrium.

As we mentioned in the Introduction, the set of irrational strategiesRi
0 is

uniquely determined: it is just the set of strategies which are not sequential
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best responses against any conditional system in1∗(S−i ). Furthermore, Def-
inition 2.2 has a partly inductive structure given by (2.3). Therefore it is not
surprising that a unique profile of rationality orderings can be computed with an
inductive procedure.

DEFINITION (INDUCTIVE PROCEDURE) 2.3. For all i ∈ N let R∗i0 = Si . Fix
k ≥ 0. GivenR∗ j

0 , R∗ j
1 . . . , R∗ j

k , j ∈ N, for all i ∈ N defineQ−i (k) andR∗ik+1 as

R∗−i
` = ×j 6=i R

∗ j
` , ` = 0, . . . , k,

Q−i (k) = (R∗−i
0 \(R∗−i

1 ∪ · · · ∪ R∗−i
k ),

R∗−i
1 \(R∗−i

2 ∪ · · · ∪ R∗−i
k ), . . . , R∗−i

k ),

R∗ik+1 = {si ∈ Si | ∃p ∈ 1∗(S−i ): si ∈ SBi (p),Q(p) ≥ Q−i (k)}.
THEOREM2.1. Consider Procedure2.3.For all players i ∈ N and all m≥ 0

(a) R∗im+1 ⊆ R∗im andQ−i (m) = (R∗−i
0 \R∗−i

1 , . . . , R∗−i
m−1\R∗−i

m , R∗−i
m );

(b) there is a minimal integer Mi such that for all k≥ Mi , R∗ik = R∗iMi
6= ∅;

(c) let M = max{Mi ; i ∈ N} and Ri
m = R∗im\R∗im+1, m = 0, . . . ,M − 1;

then [(R1
0, . . . , R1

M−1, R∗1M ), . . . , (R
n
0, . . . , Rn

M−1, R∗nM )] is the unique profile of
correlated sequential rationality orderings.

Proof. (a) By inspection of Procedure 2.3 it follows immediately thatR∗i1 ⊆
R∗i0 andR∗−i

1 ⊆ R∗−i
0 for all i . Assume thatR∗i`+1 ⊆ R∗i` andR∗−i

`+1 ⊆ R∗−i
` for all i

and` = 0, . . . , (m−1). ThenR∗−i
k ∪· · ·∪R∗−i

` = R∗−i
k = R∗−i

k ∪· · ·∪R∗−i
` ∪R∗−i

`+1
for all k = 0, . . . , `. Therefore

Q−i (m) = (R∗−i
0 \R∗−i

1 , R∗−i
1 \R∗−i

2 , . . . , R∗−i
m−1\R∗−i

m , R∗−i
m )

≥ (R∗−i
0 \R∗−i

1 , R∗−i
1 \R∗−i

2 , . . . , R∗−i
m−1) = Q−i (m− 1).

Since the refinement relation≥ is transitive,Q(p) ≥ Q−i (m) impliesQ(p) ≥
Q−i (m− 1). HenceR∗im+1 ⊆ R∗im andR∗−i

m+1 ⊆ R∗−i
m for all i .

(b) By Lemma 2.1,SBi (p) 6= ∅ for all p ∈ 1∗(S−i ). Furthermore, for
any orderingQ−i on S−i there is at least one conditional systemp such that
Q(p) ≥ Q−i (see Remark 2.2). This implies thatR∗ik 6= ∅ for all k. SinceSi is
finite and{R∗ik }∞0 is a weakly decreasing sequence of subsets ofSi , there must
be a first integerMi such thatR∗iMi

= R∗ik for all k ≥ Mi .
(c) This is a straightforward consequence of (a) and (b).

Note than an analogous result holds for different specifications of the primi-
tives. It is sufficient that the analogs of Remark 2.2 and Lemma 2.1 hold. Proce-
dure 2.3 yields stronger and stronger rationality restrictions on beliefs given by
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finer and finer orderings. This may be satisfactory from a foundational point of
view, but it may also be computationally cumbersome. The traditional deletion
procedures of game theory arereduction procedures, whereby the deletion step
k+ 1 does not take into account the strategies already deleted in the previousk
steps. One of these reduction procedures isextensive form rationalizabilitywith
correlated beliefs (Pearce (1984)). Pearce used this procedure in order to define
a solution concept relying on the following assumptions: (i) each player always
maximizes her expected payoff and she updates her expectations using Bayes’
rule whenever possible; (ii) each player believes that her opponents are rational
unless this is contradicted by their observed moves; (iii) assumptions (i) and (ii)
are common knowledge at the beginning of the game.

We now define a version of Pearce’s reduction procedure using the language
of conditional systems and allowing for correlated beliefs.8

DEFINITION (INDUCTIVE PROCEDURE) 2.4. For all i ∈ N let P∗i0 = Si . Fix
k ≥ 0. Assume that P∗ik has been defined for all i∈ N and let P∗−i

k = ×j 6=i P
∗ j
k .

Then si ∈ P∗ik+1 if and only if

(a) si ∈ P∗ik ;
(b) there is p∈ 1∗(S−i ) such thatQ(p) ≥ (S−i \P∗−i

k , P∗−i
k ) and for all

h ∈ Hi such that si ∈ Si (h) and S−i (h) ∩ P∗−i
k 6= ∅ and all ti ∈ Si (h) ∩ P∗ik ,

Ui (si , p | S−i (h)) ≥ Ui (t i , p | S−i (h)).

A strategysi is calledrationalizableif and only if si ∈⋂k≥1 P∗ik .
Consider a generic stepk+ 1. Condition (a) says that only the strategiessi ∈

P∗ik which survived previous deletion steps are “eligible.” Condition (b) imposes
rationality restrictions on beliefs and conditional expected utility maximization.
Conditional systems need only distinguish between “irrational” strategy profiles
and “temporarily rational” (i.e., not yet deleted) strategy profiless−i ∈ P∗−i

k .
Expected utility maximization is imposed only at information sets which can
be reached by some undeleted strategy profiles ∈ P∗k . Furthermore, a strategy
si ∈ P∗ik is only compared with alternative strategies inP∗ik .

The following theorem says that exstensive form rationalizability corresponds
to the profile of correlated sequential rationality orderings.9

8 Pearce’s original definition (Pearce (1984, Definitions 9, 10)) is formally different from ours:
(i) Pearce does not use conditional systems, (ii) he allows for the choice of mixed strategies, and (iii) he
assumes a sort of independence property (see Section 3). In two-person games of perfect recall (where
issue (iii) does not arise) these differences are irrelevant. On (i) see Battigalli (1994, Theorem 1). As for
(ii) the pure “strategy property” (Pearce (1984, Proposition 4)) implies that the set of pure rationalizable
strategies does not change if players are allowed to randomize.

9 A similar result appears in Battigalli (1990).
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FIG. 2. A perfect information, 3-person game. P-rationalizability does not excludet .

THEOREM2.2. Consider Procedures2.3and2.4.For all i ∈ N and k≥ 0,
R∗ik = P∗ik . Therefore

[(P∗i0 \P∗i1 , . . . , P∗iM−1\P∗iM , P∗iM )] i∈N

(where M is defined as in Theorem2.1) is the profile of correlated sequential
rationality orderings.

Proof. See the Appendix.

3. INDEPENDENT SEQUENTIAL RATIONALITY ORDERINGS

The following principle is assumed in many game-theoretic solution concepts:
different players choose their strategy independently and this is reflected in each
player’s probabilistic beliefs about her opponents, which satisfy a stochastic
independence condition. We call this principlestrategic independence. Strategic
independence is incorporated into the Nash equilibrium concept and the original
definitions of rationalizability due to Bernheim (1984) and Pearce (1984). In his
definition of extensive form rationalizability, Pearce (1984) tries to formalize
the strategic independence principle by assuming that for each playeri and
information seth ∈ Hi , the conditional subjective beliefp(· | S−i (h)) can be
generated by a product prior distribution onS−i . In the refinements literature
this condition is calledstructural consistency(see Kreps and Wilson (1982)).
Formally, Pearce’s definition of rationalizability can be obtained by adding the
structural consistency condition to Procedure 2.4.10 We will use the terminology
P-rationalizabilityto indicate this solution concept (“P” stands for Pearce). The
following examples show that the structural consistency condition incorporated
into P-rationalizability does not appropriately model strategic independence.

10 We are still translating Pearce’s formalization in our own terms (see Pearce (1984, Definitions 9,
10)).
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First consider the perfect information game in Fig. 2. If player II at the begin-
ning of the game believes that her opponents are rational and regards them as
stochastically independent, she should predict choiced by player III and play
b independently of her information about player I. Thus the solution should
be the subgame perfect equilibrium. But according toP-rationalizability player
II may interpret the irrational moveA by player I as evidence that player III
can also behave irrationally. This clearly violates strategic independence. As
a consequence, both player II’s strategies are P-rationalizable. Note, however,
that P-rationalizability and the intuitive solution incorporating strategic indepen-
dence yield the same terminal node, the one reached by the backward induction
path. It can be shown that this is a general property of perfect information games,
but the next example shows that different outcomes may result in games with
imperfect information.

According to Pearce’s definition, playeri is allowed to change her belief
about opponentj , just because she observed a subjectively unexpected (rational
or irrational) behavior by another opponentk, while our intuition suggests that
in such a casei ’s belief about j should not change if strategic independence
holds.

We illustrate this point with a story. Benjamin (Ben) and Abigail (Abi) play
the following game with Natalie (Nat). Nat choosesX orY, but she is indifferent
with respect to the outcome of the game.11 Ben has to bet on Nat’s choice. After
the first stage Ben may choose either the same bet or the opposite one, but if he
changes, he has to pay a small fine of $ε. Abi has to guess Ben’s behavior in each
period. She gets $1 for each correct guess and she loses $1 for each incorrect
guess. Abi and Ben observe each other’s actions after the first stage and they do
not receive any information concerning Nat’s choice until the game is over. Ben
maximizes his expected final wealth. Abi’s attitudes toward risk are immaterial
for the argument. Figure 3 shows the game with monetary payoffs.

Abi is smart, and after a moment she understands that by playing properly
she cannot lose. If Ben bets onX(Y) in the first stage, it is because this yields
a nonnegative subjectively expected payoff. Since Ben is an expected payoff
maximizer, he will not change the bet in the second stage, as his probability
assessment does not change (if his expected payoff from the bet is zero, he
repeats the first stage choice to avoid the fine). Therefore Abi is sure to correctly
predict Ben’s choice in the second stage and to get a total payoff of either $2 or
$0, just by replicating Ben’s first-stage choice.

Although the solution illustrated above seems pretty trivial, P-rationalizability
is unable to replicate it. Even if Ben’s conditional beliefs are always given by a
product distribution, after an unexpected first-stage action by Abi, Ben’s marginal
distribution on Nat’s choice may be different from the initial one. Consequently,

11 We like to interpret Nat as the Nature player in a game of incomplete (but symmetric) information
with private (completely subjective) beliefs on the state of the world.
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FIG. 3. Part of a game with sequential betting and betting about bets. Every path is consistent with
P-rationalizability.

Ben may change his bet in the second stage. This implies that every terminal
node of the game tree is reached by some P-rationalizable profile. In this example
as well as in the previous one P-rationalizability is equivalent to rationalizabilty
with correlated beliefs.12

We now provide a formalization of the Strategic Independence principle when
players’ beliefs are represented by conditional probability systems. Fix a playeri
and a conditional systemp ∈ 1∗(S−i ). For each subset of opponentsJ ⊆ N\{i }
we can derive themarginal of p on SJ := ×j∈J Sj as follows: for all AJ ,
BJ ⊆ SJ , BJ 6= ∅,

pJ(AJ | BJ) = p(AJ × SN\(J∪{i }) | BJ × SN\(J∪{i })).

DEFINITION 3.1. A conditional systemp ∈ 1∗(S−i ) has the independence
property if for all partitions {Ji , . . . , Jk} of N\{i }, all rectangular subsets∅ 6=
E−i = EJi × · · · EJk ⊆ S−i and alls−i = (sJi , . . . , sJk) ∈ S−i

p(s−i | E−i ) =
r=k∏
r=1

pJr (sJr | EJr ). (3.1)

12 It can be proved that P-rationalizability and correlated rationalizability are completely equivalent
in games of perfect information (Battigalli (1990, Lemma 1)).
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The set of conditional systems for playeri satisfying the independence property
is denotedI1∗(S−i ).

Definition 3.1 is an extension of the usual multiplicative independence condition
for probability measures.13 Building on Blumeet al. (1991a), Battigalli and
Varonesi (1992) provide a decision-theoretic rationale for (3.1), showing that it
can be derived from a standard stochastic independence axiom for preferences
over lotteries. According to this axiom a decision maker does not take into
account information concerning the coordinatek of the unknown state (opponent
k in the present framework) for decisions whose consequences depend only on
other coordinates (the behavior of other opponents).

LEMMA 3.1. For every profile of orderings[R j ] j 6=i there is at least one con-
ditional system p∈ I1∗(S−i ) such that for all j 6= i , Q(pj ) ≥ R j .

Proof. See the Appendix.

We are now able to state a definition of rationality orderings relying on the
strategic independence principle. In agreement with the notation of Section 2, for
any orderingRi = (Ri

0, . . . , Ri
M)of Si we haveRi (k) = (Ri

0, . . . , Ri
k−1,

⋃r=M
r=k Ri

r ).

DEFINITION 3.2. A profile independent sequential rationality orderingsis an
n-tuple of orderings [(R1

0, . . . , R1
M), . . . , (R

n
0, . . . , Rn

M)] of each player’s strate-
gies such that for alli ∈ N andk = 0, . . . ,M − 1

r=M⋃
r=k+1

Ri
r = {si ∈ Si | ∃p ∈ I1∗(S−i ): ∀ j 6= i,Q(pj ) ≥ R j (k)

andsi ∈ SBi (p)}, (3.2)

Ri
M = {si ∈ Si | ∃p ∈ I1∗(S−i ): ∀ j 6= i,Q(pj ) ≥ R j

andsi ∈ SBi (p)}. (3.3)

Once again we can define an iterative procedure which yields the unique profile
of rationality orderings.

DEFINITION (INDUCTIVE PROCEDURE) 3.3. For all i ∈ N let R∗i0 = Si . Fix
k ≥ 0. GivenR∗ j

0 , R∗ j
1 , . . . , R∗ j

k , j ∈ N, defineQ j (k) andR∗ik+1, j , i ∈ N, as

Q j (k) = (R∗ j
0 \(R∗ j

1 ∪ · · · ∪ R∗ j
k ), R∗ j

1 \(R∗ j
2 ∪ · · · ∪ R∗ j

k ), . . . , R∗ j
k ),

R∗ik+1 = {si ∈ Si | ∃p ∈ I1∗(S−i ): ∀ j 6= i,Q(pj ) ≥ Q j (k) andsi ∈ SBi (p)}.
13 Similar or equivalent independence properties have been put forward and discussed in a game-

theoretic context by Hammond (1992), Kohlberg and Reny (1992), Battigalli (1993a, 1994), and
Swinkels (1993). Renyi (1955, p. 303) uses a similar (but weaker) condition.
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FIG. 4. A 3-person game where independent sequential rationality orderings do not refine P-
rationalizability.

THEOREM3.1. Consider Procedure3.3.For all players i ∈ N and all m≥ 0,

(a) R∗im+1 ⊆ R∗im andQi (m) = (R∗i0 \R∗i1 , . . . , R∗im−1\R∗im , R∗im );
(b) there is a minimal integer Mi such that for all k≥ Mi , R∗ik = R∗iMi

and
R∗iMi
6= ∅;

(c) let M = max{Mi ; i ∈ N} and Ri
m = R∗im+1\R∗im , m = 0, . . . ,M − 1;

then [(R1
0, . . . , R1

M−1, R∗1M ), . . . , (R
n
0, . . . , Rn

M−1, R∗nM )] is the unique profile of
independent sequential rationality orderings.

Proof. Similar to the proof of Theorem 2.1. In the proof of (b) take into
account Lemma 3.1.

It is straightforward to check that the independent rationality orderings of
the games in Figs. 2 and 3 correspond to the intuitive solutions outlined above.
These examples seem to suggest that independent rationality orderings refine P-
rationalizability, but this is not the case.14 Consider the game of Fig. 4 (see also
Kreps and Ramey (1987, Fig. 1)). Actionb maximizes player III’s conditional

14 Analogously, Battigalli (1993b, Section 6.3) provides an example where correlated rationality
orderings are finer than independent rationality orderings.
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expected payoff if and only if

p((L , r ) | {(L , `), (L , r ), (R, `)}) = 1/2= p((R, `) | {(L , `), (L , r ), (R, `)}).
(3.4)

But such conditional beliefs violate structural consistency since they connot
be derived from a product prior. Therefore P-rationalizability implies thatb is
deleted in the first step of the procedure. Hence, in the second step, players I
and II are sure to get the highest payoff by playing left and the P-rationalizable
solution is{L} × {`} × {a, c}.

On the other hand, there is an independent conditional systemp ∈ I1∗(SI ×
SII ) such thatpI(R | SI) = pII (r | SII ) = 1, which satisfies (3.4). This im-
plies that the triple of independent rationality orderings is just the trivial one:
[(∅, SI), (∅, SII ), (∅, SIII )].

In this game P-rationalizability is more powerful than independent rationality
orderings. But we claim that this is due to an implausible restriction imposed
by structural consistency on player III’s beliefs.15 Note that the players I and II
are symmetric in an obvious sense. Therefore we should allow for independent
conditional systems reflecting this symmetry. Furthermore, there is noa priori
reason to exclude that(R, r ) has prior probability one. It can be checked that
the only symmetric and independent conditional system such thatp((R, r ) |
SI × SII ) = 1 is the one given above.

4. OTHER DEFINITIONS OF RATIONALITY ORDERINGS

So far we have analyzed only sequential best responses against conditional
probability systems, but we pointed out in Section 1 that other sensible definitions
of extended probabilities and best response correspondences can be given.

One possibility is to assume that, though each player is a conditional expected
utility maximizer, only ordinal preferences over terminal nodes are common
knowledge (see B¨orgers (1993)). In this case the appropriate notion of sequential
best response is the following:si is a sequential best response againstp if there
is an increasing transformationm of Ui such thatsi maximizes(m ◦Ui )(·, p |
S−i (h)) for eachh ∈ Hi such thatsi ∈ Si (h). It may be easily checked that with
this formulation the analog of Theorem 2.1 holds.

Another possiblity is given by lexicographic expected utility maximization.
Blumeet al. (1991a) develop a system of axioms about preferences over lotter-
ies, in which the Archimedean axiom is weakened and the state independence

15 This may happen because the set of strategies reaching player III’s information set is not rectan-
gular, otherwise (3.1) would imply structural consistency.
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axiom is strengthened. They show that a decision maker chooses as if she were
endowed with a utility function and a hierarchy of probability measures over the
(finite) set of states—calledlexicographic probability system—such that each
state is given a positive probability by at least one measure and she maximized
lexicographically the resulting vector of expected utilities. A lexicographic prob-
ability systemp = (p0, p1, . . . , pM) determines an orderingQ(p) over the set
of states as follows:t is infinitely more likely thans, if and only if pm(s,t)(s) = 0,
wherem(s, t) is the highest indexm such thatpm({s, t}) > 0. We made clear in
the Introduction that these notions of extended probabilities and best responses
can also be easily fitted into our framework, yielding the notion oflexicographic
rationality orderings. It can be shown that the related procedure corresponds
to the iterated (maximal) deletion of weakly dominated mixed strategies (see
Stahl (1991, Proposition 1) and Rajan (1993)). Veronesi (1994) provides a par-
tial justification in terms of rationality orderings of the iterated deletion of pure
strategies which are weakly dominated by otherpurestrategies.

Yet another notion of rationality orderings can be obtained using a proce-
dure put forward by Reny (1992) in order to define a refinement of the Nash
equilibrium concept called “explicable equilibrium.” Reny’s solution can be re-
formulated in the present framework through a modification of Procedure 3.3
by considering the set of conditional systems satisfying a strong independence
property equivalent to Kreps and Wilson’s (1982) consistency of assessments
(Kohlberg and Reny (1992) and Swinkels (1993) provide a rationale for this
property). It turns out that Reny’s procedure and Procedure 3.3 coincide on a
restricted class of extensive games including two-person games andn-person
games with observed actions (for more on this see Battigalli (1993b)).

There is no definite relationship between different notions of rationality or-
derings in general games. Consider two specifications of the primitives (space of
beliefs and best response correspondence)(1−i , Bi (·))i∈N and(1̂−i , B̂i (·))i∈N .
Assume that for alli ∈ N and p ∈ 1̂−i , 1̂−i ⊆ 1−i and B̂i (p) ⊆ Bi (p),
and letR∗ik , R̂∗ik denote the corresponding sets of at-least-k-rational strategies.
Intuition might suggest that̂R∗ik ⊆ R∗ik , but this need not be the case. It is in-
deed trivially true thatR̂∗i1 ⊆ R∗i1 , but this inclusion relation cannot be extended
to higher “degrees of rationality.” This is easily understood by considering the
structure of the beliefs supporting at-least-2 rational strategies. Assume that for
some playerj 6= i , R̂∗ j

1 ⊂ R∗ j
1 and∅ 6= Rj

0 ⊂ R̂j
0 (⊂ denotes strict inclusion).

ThenR̂−i (1) = (R̂−i
0 , R̂∗−i

1 ) is not a refinement of(R−i
0 , R∗−i

1 ) = R−i (1). This
implies that the set of beliefs supporting strategies inR̂∗i2 is not a subset of the
beliefs supporting strategies in̂R∗i2 .

Positive results can be obtained by considering restricted classes of games.
In particular, applying results due to Battigalli (1990) and Reny (1992), it can
be shown that all the solutions considered so far are realization-equivalent to
backward induction in generic games of perfect information.
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APPENDIX

A.1.Conditional Probability Systems

The set of conditional probability systems1∗(Ä) can be regarded as a subset
of a Euclidean space of dimension #Ä · (2#Ä − 1) (#Ä denotes the cardinality
of Ä) endowed with the relative topology. Clearly a strictly positive prior onÄ

generates a whole conditional system, which belongs to the “interior” of1∗(Ä).
Myerson (1986) shows that1∗(Ä) is the closure of the set of conditional systems
generated by strictly positive priors onÄ. Since1∗(Ä) is bounded, it is also
compact.

Proof of Lemma3.1. We must show that for every profile of orderings [R j ] j 6=i

we can find somep ∈ I1∗(S−i ) such thatQ(pj ) ≥ R j for all j 6= i , where
pj is the marginal ofp on Sj . We already know that for allj 6= i there exist
a pj ∈ 1∗(Sj ) such thatQ(pj ) ≥ R j (see Remark 2.2). Furthermore, eachpj

is approached by some sequence{pj
k}∞k=0 of conditional systems generated by

strictly positive priors. Let{pk}∞k=0 be the sequence generated by the product pri-
ors

∏
j 6=i p j

k(· | Sj ). Clearly{pk}∞k=0 ⊆ I1∗(S−i ). SinceI1∗(S−i ) is a subset of
1∗(S−i ) defined by equality conditions,I1∗(S−i ) is compact and{pk}∞k=0 must
have a cluster pointp ∈ I1∗(S−i ). By constructionpj is exactly the marginal
of p on Sj . Hencep is a conditional system with the required properties.

LEMMA A.116. Consider an orderingR = (R0, . . . , RM) ofÄ and a condi-
tional system p∈ 1∗(Ä) such thatQ(p) ≥ R. Suppose that s∈ E ⊆ Ä and let
m(E) = max{k | Rk ∩ E 6= ∅}. Then p(s | E) = p(s | E ∩ Rm(E)).

Proof. We must show that ifs ∈ E\Rm(E), then p(s | E) = 0. Let s ∈
E\Rm(E). Then, by definition ofm(E), we can findt ∈ E ∩ Rm(E), andk <
m(E) such thats ∈ E ∩ Rk. Since{s} ⊂ {s, t} ⊆ E, condition (2.1) yields
p(s | E) = p(s | {s, t})p({s, t} | E). SinceQ(p) ≥ R, s ∈ Rk, t ∈ Rm(E), and
k < m(E), it follows that p(s | {s, t}) = 0. Thereforep(s | E) = 0.

A.2.Sequential Rationality Orderings

Proof of Lemma2.1 (Sketch). Note that in games of perfect recall the col-
lection of information setsHi can be ordered by the precedence relation< of
the game tree and it can be regarded as an arborescence. For everyp ∈ 1∗(S−i ),
the triple(Hi , <, p) corresponds to a finite decision tree (some random choices
may have zero probability, but this is immaterial for the present argument). A
strategysi ∈ SBi (p) can be constructed by backward induction on this decision
tree.

16 This is a slight generalization of McLennan (1989a, Lemma 2.4).
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Proof of Theorem2.2. For notational simplicity and without loss of gener-
ality we consider a two-person game.

By inspection of Definitions 2.3 and 2.4 it is clear thatR∗i0 = P∗i0 , i = 1,
2. Now assume thatR∗ik = P∗ik , i = 1, 2. We have to show thatR∗ik+1 = P∗ik+1,
i = 1, 2.

Letsi ∈ R∗ik+1. SinceR∗ik+1 ⊆ R∗ik = P∗ik , condition (a) of Definition 2.4 holds.
We know thatsi is a sequential best response against somep ∈ 1∗(Sj ) such that
Q(p) ≥ R j (k). By Lemma A 1,p(· | Sj ) = p(· | P∗ j

k ) and for allh ∈ Hi such
that Sj (h) ∩ P∗ j

k 6= ∅ we havep(· | Sj (h)) = p(· | Sj (h) ∩ P∗ j
k ). Therefore

condition (b) also holds andsi ∈ P∗ik+1.
Let si ∈ P∗ik+1. SinceP∗ik+1 ⊆ P∗ik = R∗ik , we can find two conditional systems

pk−1, pk ∈ 1∗(Sj ) such thatsi ∈ SBi (pk−1), Q(pk−1) ≥ (Rj
0, . . . , Rj

k−2, R∗ j
k−1)

= R j (k− 1), and condition (b) of Definition 2.4 holds forp = pk. Now define
a mapp(· | ·) as

p(· | B j ) = pk(· | B j ), if B j ∩ P∗ j
k 6= ∅,

p(· | B j ) = pk−1(· | B j ), if B j ∩ P∗ j
k = ∅.

Applying Lemma A.1 it is easy to check thatp is a conditional system and
Q(p) ≥ R j (k). Now we show thatsi ∈ SBi (p).

We already know thatsi is a best response againstp at allh ∈ Hi (reached by
si ) such thatSj (h) ∩ P∗ j

k = ∅, since for such information setsp(· | Sj (h)) =
pk−1(· | Sj (h)), andsi ∈ SBi (pk−1). The remaining collection ofi ’s informa-
tion sets reached bysi is Hi (si , k) = {h ∈ Hi | Sj (h)∩ P∗ j

k 6= ∅, si reachesh}.
We now show thatsi is a best response also at allh ∈ Hi (si , k) because the
constraintt i ∈ Si (h) ∩ P∗ik in the maximization condition (b) of Definition 2.4
is not binding. We rely again on the arborescence structure ofHi (see the proof
of Lemma 2.1). We prove thatsi is an unconstrained best response againstp at
eachh ∈ Hi (si , k) by induction on the number of predecessors ofh.

Note that eachh ∈ Hi (si , k) has exactly the same predecessors inHi (si , k) as
in Hi . In what follows we speak of “predecessors” without further qualification.
Consider an information seth ∈ Hi (si , k) without predecessors and a strategy
t i ∈ SBi (p) computed by backward induction as in the proof of Lemma 2.1. By
choice ofh, bothsi andt i reachh. SinceQ(p) ≥ R j (k), t i ∈ R∗ik+1 ⊆ R∗ik = P∗ik .
Thereforet i is an unconstrained best response ath which belongs to the constraint
setSi (h)∩P∗ik and this implies thatsi also must be an unconstrained best response
to p ath. Thus we may assume without loss of generality thatt i andsi select the
same choice ath. By this argumentsi is an unconstrained best response against
p at all information sets without predecessors and there is a backward induction
strategyt i ∈ SBi (p) such thatt i andsi reach the same information sets with at
most one predecessor.

Now consider an information seth ∈ Hi (si , k) with at most` ≥ 1 prede-
cessors and assume that there is some backward induction strategyt i ∈ SBi (p)
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which coincides withsi at all information sets with at most`− 1 predecessors.
Repeating the previous argument,si must be an unconstrained best response
againstp ath and without loss of generality we may assume thatt i andsi select
the same choice ath. Thussi is an unconstrained best response againstp at all
information sets ofHi (si , k) with at most̀ predecessors and there is a strategy
t i ∈ SBi (p) such thatt i andsi reach the same information sets with at most
`+ 1 predecessors.
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