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Summary

In this note | provide a formulation of the joint principle of structural
consistency and strategic independence, which is used to model
players’ expectations in finite extensive games. | compare updating
systems of conjectures and conditional probability systems, showing
that they represent equivalent formalizations of structural consistency.
The notion of strategic independence cannot be adequately formalized
by properties of updating systems of conjectures. However, it can be
naturally translated in an intuitive stochastic independence property
for conditional probability systems.
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1. Introduction

In this note I analyse the relationship between two principles
which are often used to model the expectations of strategically
interacting agents: strategic independence and structural con-
sistency. They can be informally stated as follows:

Strategic Independence (SI): each player i does not change his
or her expectations about a group of opponents <J, if he or she
gets new information exclusively concerning the complementary
group of opponents K.

Structural Consistency (SC): each player i has a probabilistic
conjecture about the strategic choices of his or her opponents,
which he or she uses to assess conditional probabilities according
to Bayes’ rule whenever possible; if the player receives a new
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piece of information h with zero prior probability according to
his or her former conjecture, he or she looks for an alternative
conjecture which assigns positive prior probability to k& and uses
it to assess conditional probabilities according to Bayes' rule
whenever possible.

Both principles concern conditional expectations and are relevant
for extensive games, where new information may actually be
received before some players choose among alternatives. Sl is also
relevant for simultaneous move games, where Sl is equivalent to
saying that each player regards the strategic choices of different
opponents as stochastically independent, i.e. the joint probability
measure is the product of the marginal measures. However, this
“multiplicative” stochastic independence is a weaker property than
SI in extensive games, because it allows player i to change his or
her expectations about group oJ, if he or she gets completely
unexpected information exclusively concerning the complementary
group K.

Sl is a cornerstone of normal-form game theory, though Aumann
(1974, 1987) has quite convincingly argued that it may be reas-
onable to allow for spurious correlation, induced for example by
the possibility of preplay communication. Correlated conjectures
are even more plausible if it is not assumed that players have
common expeclations, as is the case in the theory of rationalizability
(see, e.g., Hammond, 1994). In the context of extensive games it
can be argued that even if priors must have the independence
property, there may be unexpected events which signal an un-
foreseen degree of correlation between opponents’ strategies (see,
c.g., Kreps & Ramey, 1987; Fudenberg, Kreps & Levine, 1988).
Although such arguments are plausible, there are certainly con-
texts where players’ expectations should conform to SI. This prin-
ciple is closely related to the assumption that the types of different
players in a game of incomplete information are independent,
which is common in economic analysis (see, e.g., Fudenberg &
Tirole, 1991b: chapter 8, and references therein). Furthermore, SI
can be regarded as a default assumption for those cases where
there is no positive reason to expect any specific kind of correlation.
Therefore a correct formulation of SI in an extensive game theory
of strategic rationality is worth pursuing.

The first explicit reference to SC is in Kreps and Wilson (1982).
In this paper Kreps and Wilson take for granted that conjectures
correspond to behavioural strategies of the opponents. Since they
restrict their analysis to games of perfect recall, this is equivalent
to saying that conjectures are uncorrelated probability measures
on the opponents’ strategies. Kreps and Wilson regard SC as an
appealing property of players' assessments and claim that it is
implied by a topological notion of consistency, which is used to
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refine the Nash equilibrium concept into the sequential equilibrium
concepl. Later a similar notion of SC was used by Pearce (1984)
in the definition of a non-equilibrium notion of strategic rationality:
extensive form rationalizability. In Pearce’s paper it is also assumed
that conjectures are uncorrelated. In both approaches the idea
is to use SC to endow the players with reasonable conditional
expectations and make them maximize conditional expected utility.
Since it is also assumed that initial conjectures and new “al-
ternative conjectures” satisfy stochastic independence, both ap-
proaches can be considered as tentative formulations of the joint
SI-SC principle in order to define an extensive game notion of
rationality.

It turns out that these first attempts to formulate the joint
SI-SC principle in a theory of strategic rationality are not sat-
isfactory. Kreps and Ramey (1987) show that SC (as defined by
Kreps and Wilson, 1982) is not implied by Kreps and Wilson's
topological notion of consistency and that there are games where
no sequential equilibrium assessment is structurally consistent.
Battigalli (1993b) shows that Pearce’s notion of extensive form
rationalizability may fail to replicate intuitive solutions relying on
S1-SC.

Section 2 of this paper offers a coherent formulation of the joint
SI-SC principle for finite extensive games without chance moves.

Section 2.1 provides the game-theoretic framework. Section 2.2
presents (a generalization of) Pearce's (1984) formulation of SC
using updating systems of conjecturcs and shows that updating
systems of uncorrelated conjectures are inadequate to represent
SI. Then Section 2.3 shows that it is useful to characterize the
pattern of conditional expectations of a player even with respect
to virtual information which actually cannot be acquired in a
given game. This motivates using conditional probability systems
(Myerson, 1986) on the opponents’ strategies. Section 2.4 is the
core of the paper. Here the relationship between updating systems
of conjectures and conditional probability systems is studied, show-
ing that they are equivalent representations of SC. Then an in-
tuitive formalization of the SI principle is provided: the S[-property
for conditional systems. [t is argued that the SI-property yields all
the relevant restrictions implied by the SI-SC principle.

Some concluding remarks in Section 3 indicate how to extend
the analysis.

2. Conditional expectations in finite extensive games

2.1. THE GAME-THEORETIC FRAMEWORK

I shall restrict my analysis Lo finile extensive games with perfect
recall. I also assume for simplicily that there are no chance moves,
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but this last assumption can easily be removed (see Section 3).
Since the formal description of extensive games is by now standard,
I list below with very terse explanations the symbols I need, and
[ only define some primitive and derived elements of an extensive

form.

Notation

N

H* (keN)

A(h) (heH")

s*eS* (S* finite)

8=/ S*

—i=N\{1)

(JK}J YK =—i,J K= Q)
eST =TS (J< —i)

S”(h) (heH")

Terminology

players’ set (finite)

collection of k's information sets
available actions at h

a pure strategy for player k

the joint strategy set

player i's opponents

a bipartition of i's opponents

a #J-tuple of strategies of
players in J

the set of s reaching h

AX) the set of probability measures
on X
¢ 'eA(ST) a conjecture about i's opponents

¢/ =marg [c~1eA(SY) a conjecture about group <J

I say that a strategy profile sY reaches a node ¢ of the game tree,
if for every information set he(U,-EJH") along the path P(?) to ¢,
profile s’ selects the edge in P(f). A strategy profile s/ reaches an
information set heH =(|J,enH"®), written s7eS7(h), if s’ reaches ¢
for some teh. A conjecture ¢’ reaches h if its support contains a
joint strategy s’ reaching h, i.e. Supp(c”)[S(h) #Q@.

By perfect recall, if heH', then S(h)=S(h) x S~i(h), i.e. player i
can decompose the information content of h into information about
him or herself and information about his or her opponents.

Let P(h;c”,s"Y) be the probability of reaching information set heH
according to conjecture ¢/ when s is played. Then it is straight-
forward to check that for all heH', P(h;c~',s)>0 if and only if ¢~ and &'
reach h (the “if” part is due to perfect recall). Furthermore, if s'reaches
h,geH' and S~i(h)=S"(g), then P(h:c™'s)=P(g:c™' s").

The precedence relation of the game tree can be used to define
a binary relation <'< ({8} JH") x ({10}| JH) as follows: for all g,heH",
g<'h if and only if every node teh comes after a node xeg and no
node xeg comes after a node teh; for all heH', @<'h. By perfect
recall, (@ JH',<) is a tree. Note that g<'h implies S~{(h) =S~ (g)
(with the obvious convention S-i(@)=87". If g and h are unrelated
by <\, then S~{(R)(S~'(g) = 0.
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2.2. STRUCTURAL CONSISTENCY AND UPDATING SYSTEMS OF UN/
CORRELATED CONJECTURES

In order to formalize SC, Pearce (1984) endows each player i with
mappings of the form ¢™'[ -] :(H'U{@})—»A(S"‘) having the following
properties:

VheH', ¢~'[h] reaches h, ¢))

vgeH'| J{@}, VheH', if g<'h and c¢~'[g] reaches h, 2)
then c~[g] =c~[A].

I call such mappings updating systems of conjectures: c™'[h] is the
conjecture used by i to compute all relevant conditional prob-
abilities through Bayes’ rule and it is interpreted as the conjecture
that i thinks he or she should have had from the beginning, when
he or she gets information h. ¢7’[@] is i’s initial conjecture.}
Condition (1) says that i’s conjecture is always consistent with his
or her current information and condition (2) says that i does not
change his or her conjecture unless it becomes inconsistent with
his or her new information.

Pearce (1984) uses the additional condition that the conjectures

-1

¢~ '[h] be uncorrelated, i.e. for all s,
e~ [h)(s™) =T11;,.c(s).

In this case ¢™[-] is an updating system of uncorrelated conjectures.

Clearly, (1)=(2) correctly formalize SC, while the use of non-
correlated conjectures can only be reasonably justified by SI. How-
ever, updating systems of uncorrelated conjectures are not a correct
formulation of the joint SI-SC principle. This is shown by some
examples.

ExamMpPLE 1: Figure A represents a three-player extensive form.
Numbers in parentheses near actions and numbers in brackets
near nodes are the conditional probabilities (given that the relevant
information set is reached) derived by an underlying updating
system of conjectures for player III. Note that at information set
h, IT’s opinion about opponent I is the opposite of the initial one,
even though III has not observed anything about I's behaviour (111
only observes II's move and II does not observe I's move). This

t Pearce (1984) does not use initial conjectures, but it can be shown that in
games without chance moves. for every updating system defined on H' there
exists an equivalent updating system defined on H'| }{].
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FIGURE A. Player 11I's conditional expectations are derived from an
updating system of uncorrelated conjectures, but strategic
independence is violaled.

-

violation of the SI principle may happen because h is not reached
by III's initial joint conjecture.

This example suggests a condition which updating systems
should satisfy under SI-SC. Its informal statement is: “if i did not
expect to reach h, but this is not due to i's former conjecture about
group <J, this conjecture about J is not modified at A". In such a
situation I say that i's previous conjecture about J is "secure” at
h.t I propose the following formal definition:

DEFINITION 1: ¢ (where J< —i) is secure at heH' if, for all s™
eSM(h), P(h;c?,s¥V)>0.

Clearly ¢’ is secure at heH' only if ¢/ reaches h and—by perfect
recall—a conjecture about all the opponents ¢~ is secure at h if
and only if ¢~ reaches h. But when J=(—1) it may happen that
¢’ is “insecure” at h even if ¢’ reaches h. This is possible if the
information about i's opponents’ behaviour given by A cannot be
decomposed into information about group </ and information about
the complementary group K, so that it is impossible to discover
which component of (c’,c¥) must be wrong, if & is reached and P(h:

+ This terminology has been suggested by an anonymous referee.
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¢’,c®)=0. It is interesting to characterize the games where this
cannot happen.

DEFINITION 2: an extensive form E has observed deviators if, for all
ieN and all heH', S(h) =11,epS*h).T

In an extensive form with observed deviators, whenever player
i believes that his or her opponents play a given profile s~ and
detects a deviation at information set h, he or she is able to identify
which opponents caused h to be reached. Another interpretation
is the following: each information set h corresponds to a list
of messages h', h? ..., where message I/ says that player j is
implementing some strategy in the set S'(h). Two-person games
(of perfect recall), multistage games with observed actions (see
Fudenberg & Tirole, 1991b: pp. 70~72) and games of perfect in-
formation clearly have observed deviators.

LEMMA 1: the following statements are equivalent:
(@) E has observed deviators:
(b) for all ieN, heH' J< —i, conjecture c’ reaches h if and only

if ¢’ is secure at h.

PROOF: see the Appendix.

2.3. CONDITIONAL PROBABILITY SYSTEMS

The SI-SC principle may be violated even if secure conjectures
persist, as the following example shows.

EXaMPLE 2:1 consider the conditional probabilities associated with

t In an earlier version of this paper | used the phrase “strategically de-
composable”. The present terminology is borrowed from Fudenberg and Levine
(1993), where an equivalent definition is put forward. They use this concept to
analyse the relationship between equilibria with common expectations (e.g. Nash
equilibria) and equilibria where the expectations of different players may differ,
but are correct along the path of play.

i Fudenberg and Tirole (1991a) consider a related example.
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FiGURE B. Player III’s initial conjecture about player I is not secure at
k and k'. Thus, strategic independence can be violated even if secure
conjectures persist.

extensive form E, in Figure B. Such probabilities can be derived
by an underlying updating system of uncorrelated conjectures for
111 satisfying the condition that secure conjectures are not changed.
Player 1II has exactly the same information about I at A and h’
but his or her expectations about [ are different. This may happen
because III's initial conjecture about I is not secure at h and
k. But SI is clearly violated, because III's expectations about I
conditional on “I does not choose R’” should not be modified when
I11 gets information about II. Now modify E; as in Ej, introducing
a “dummy” information set h* for III before h and h’. Il has no
actual choice to make at h* and the information content of h* is
just that I did not choose R’. In this modified extensive form, if
secure conjectures are not changed, the pattern of III's conditional
expectations satisfies SI-SC.

An information set heH' is dummy if i has only one available
action at h. Intuitively, addition of dummy information sets should
not modify the strategic properties of a game, which in turn depend
on the properties of the pattern of conditional expectations of
each player at non-dummy information sets. Therefore, we should
provide conditions for such expectations, which are invariant with
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FIGURE C. After the introduction of a dummy information set,
persistence of secure conjectures implies strategic independence.

4 A)
. v

respect to addition or deletion of dummy information sets. A
direct way to accomplish this is to provide a player with virtual
information in the form of sets of his or her opponents’ strategies
and look for consistency conditions on conditional probabilities.
The strategically relevant conditional probabilities for a player i
are then obtained by conditioning on sets of the form S~i(h) where
heH is non-dummy. | thercfore use the notion of “conditional
probability system” (cf. Rényi, 1955, 1956; Myerson, 1986; McLen-
nan, 1989a,b). The definition of a conditional probability is given
here for an arbitrary finite set of “states” Q. In the following
analysis Q will be S, J&N

DEFINITION 3: let P(Q) denote the power set of Q and let Py(Q)=
P(Q\{D). A conditional probability system is a function p(-|-):
P(Q) x Py(2)—[0.1] such that for all XeP(Q) and all Y, ZePy(Q),
p(-12)eA(Z) and

XcY<cZ implies pX| 2)=p(X | YV)p(Y| 2). @)

A*(Q) denotes the set of conditional probability systems on Q.
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REMARK 1: A*(QQ) can be regarded as a subset of a Euclidean space
of dimension #Q-#Py(Q) (#X means “cardinality of X”) endowed
with the relative topology. Clearly, a strictly positive prior on Q
generates a whole conditional system, which belongs to A%(S9,
the “interior” of A*(Q) Myerson (1986) and McLennan (1989a)

show that A*(S~) is precisely the closure of A%(S~%) in the topology
of RO*PD).

2.4. UPDATING SYSTEMS OF CONJECTURES, CONDITIONAL PROBABILITY
SYSTEMS AND INDEFPIENDENCE

Condition (3) just says that conditional probabilities satisfy Bayes'’
rule. We are going to see that SC is equivalent to condition (3) as
far as strategically relevant conditional probabilities are concerned.

An updating system c7'[-] is said to be consistent with a con-
ditional probability system p(-|-)eA*(S~) if and only if for all heH'
and all s~'eS~(h)

(e RIS M e~ Thls ™) =p(s~* | S~(h) “4)

(recall that ¢™'[A](S~'(h))>0 by (1)).

Equation (4) just says that all the strategically relevant prob-
abilities computed by i via the updating system coincide with
those given by the conditional probability system. If two updating
systems are consistent with the same conditional probability sys-
tem, then they are obviously equivalent from the decision theoretic
point of view.

THEOREM 1: every updating system c¢~[-] is consistent with some
conditional systen p(-1)eA*(S™Y) and every conditional system
p(-1-)eA*(S™Y) is consistent with some updating system c~'[-].

PROOF: here 1 give only the main idea of the proof, which is quite
simple. Less straightforward details are provided in the Appendix.
Use equation (4) to define p(-|S~(h)) for all heH‘U{@}. It is easy

to show that condition (3) is not violated. Consider two information
sets g<h and let s7'eS7'(h)=S-(g). We have to show that
ps™H S (@)= p(s~H S~ (R)p(S~i(h) | S~(g)). There are two cases.
Either c~![g] does not reach & or condition (2) implies that c “ilgl=
c”'[h]. In the first case p(s~'| S~(g)) =p(S~i(h)| S~(g))=0. In the

second case

p(s~' [S7(@)={cI8l(S™' @)} e lgls ™))

_ c Thl(s™) Xc‘i[g](S":(h))
¢ [RISTI(R) " e~ gl(ST(g))

=p(s™'| ST(hP(S™H(h) | S~(g).
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Thus p(A|B) is defined for Be{S~'(h)| he{@} JH'). It is proved in

the Appendix that p(.|-) can be extended, obtaining a conditional
probability system. The second part of the theorem is also proved
in the Appendix. [ ]

Theorem 1 shows that conditional probability systems correctly
formalize SC. It goes without saying that the second part of
this result does not hold for updating systems of uncorrelated
conjectures.

An advantage of conditional probability systems is that they
make it easy to formulate SI. For any set Z& S~ of the form Z=
Z7 x Z% it is possible to define the marginal measures of p(- | Z) on Z
and Z%: given X' = Z” and X¥<Z¥, marg?(p)(X?| Z): =p(X’ x Z¥| Z)
and marg®(p)(X¥|2):=p(Z? x X¥| Z). According to SI the con-
ditional probability of X¥ should not change, if i is told that group
K played a strategy in X*.

DEFINITION 4: a conditional probability system for i has the SI-
property if and only if for all Z=277 x Z¥eP«(S~", all X’ <Z’ and
all YEePy(S%):

marg”(p)(X7 | 2)=p(X’ x Y¥| Z7 x Y¥). 6))

A%(S~™) denotes the set of conditional systems with the SI-property.
For each peA%(S~Y), the marginal of p on S7 is the conditional
system p’eA*(SY) such that for all X’eP(S7), Z7eP«(S?), p/(X?| Z7) =
pXI|Z7x YE| Z7 x YE), where Y2ePy(S¥) is arbitrarily chosen.

Hammond (1987) puts forward a similar notion of “conditional
independence” for conditional probability systems defined on a
product space Q= Q! x Q%1 As Theorem 2(i) will show, my definition
is just an extension of Hammond’s definition for the more general
case where Q=Q!x...xQ". A related decision theoretic axiom of
stochastic independence is proposed by Blume, Brandenburger and
Dekel (1991: p. 74). Battigalli and Veronesi (1992) show that this
axiom is indeed equivalent to the present definition given other
reasonable axioms. .

It is easy to check that A%(S™)4@: it is sufficient to take a
strictly positive product measure on S~* and derive p(-|-) via Bayes’
rule. However, it is normally the case that a game theoretic solution
concept prescribes that i's opponents should play according to
product measures without full support. Therefore. a more in-
teresting question is whether for any product probability measure

T This has come to my attention quite recently. Definition 5 has been put
forward independently, relying on the game theoretic arguments mentioned
above.
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m on S~ (perhaps suggested by the theory as the solution of the
game) there exists a p(-|-) with the SI-property such that p(- | S~ =
m(-). The answer is again affirmative. This is an implication of
the following theorem.

Let 4},(S™) denote the set of conditional systems generated by
a strictly positive product measure on S~° and let A§S~) be the
closure of A¥(S™).

THEOREM 2: for all ieN, A%(S™) is a compact set with the following
properties:

(@) If X and Z+Q are Cartesian products with respect to a

partition {J,K,L.,...} of —i and X = Z, then for all peA%(S~)

PXIx XEx X" 12)=p/(X7| Z)p" X | Z¥)p(X* | ZY) ... (6)

(i) AYS )< A%(S™) and A¥(S™) is the “relative interior” of
AH(S™).

(iir) If the extensive form has observed deviators, for each
pPeA%(S™) there exists qeA¥(S™") such that (-|S7'(h))=
q(-1S~'(h)) for all heH"

PROOF:T since A%,(S™) is defined by equalities between the values
of continuous functions of conditional probabilities, it is the in-
tersection of closed sets and it must be closed. Also, A%(S™) is a
subset of A*(S~), which is compact (see remark 1). A closed subset
of a compact set is compact.

Property (i) is proved only for the case of a bipartition {J,K}.
The general property follows by an easy induction argument. Fix
D+7Z=727xZ¥<S "and X! x X¥< Z. It must be proved that

pX7x XF| Z2)=p' (X | Z7)p*(X* | Z%). (69
Substitute XY x X¥*=X and Z” x X*=Y in equation (3):
PXIx X*| Z)=p(X? x X¥| 29 x X*)p(Z7 x X* | 2). )
By definition of marginal conditional probability
marg’(p)(X?| Z9 x X¥) =p(XI x XX | Z7 x X¥) 8)
marg“(p)(X*| Z)=p(Z’ x X¥| Z).
Substitute (8) into the r.h.s. of (7):
p(X? x X*1 Z)=marg’(p)(X’| Z’ x X&) margf(p)(X*| Z).

1 Proofs of these results are also offered elsewhere (see, e.g., Battigalli, 1993a),
but they are included here for completeness and for illustrative purposes.



EXTENSIVE GAMES 369

Equation (5) and the definition of marginal conditional system
yield  marg(p)(X’|Z/x X)=pY(X’|27),  marg"(p)X*|Z)=
pA(X¥| Z*¥). Substitute into (9), to get (6") as desired.

Properties (ii) and (iii) are easy consequences of property (i).
Any point in the interior of A%(S~%) must be generated by a strictly
positive prior on S~* and by property (i) this prior must be a product
measure. Hence, the interior of A%(S™) is A¥,(S™). Since A%(S~)
is closed, it follows that A%(S~) = A%,(S~), as clzumedm(u) Assume
that the extensive form has observed deviators: for all heH,

“(h)—ﬂ ‘,S’(h) Consider the marginal conditional systems p/,

j=t. For each p’ there exists a sequence {mf}®_, of strictly positive

measures on & such that the associated sequence {p},}7_, of strictly
positive conditional systems converges to p/. Let {m,}®., be the
corresponding sequence of strictly positive product priors and
{@.}7=0 be the associated sequence of strictly positive conditional
systems. Choose a limit point g of {g,}%.,. By property (i) and
continuity, for all heH', s~'eS~i(h)

(s~ 187 () = /(s | Si())
= lim TT,pi(s’| S(h))

n—>w
= lim TT;,;mi(sYmi(S'(h))
= lim m,(s~*Ym(S~(h))
=q(s™* | S~i(h)). n

It is now easy to answer the initial question. For any product
measure m on S~ we can find peA%,(S~) such that p(-|S~)=m(.)
by just taking a sequence {p,} SA¥«(S™*), where p,(-|S~’) converges
to m(-): p can be chosen among the limit points of {p,}. Clearly,
PeAE(S™) S A%(S™. Such conditional systems are called consistent.
Consistent conditional systems are essentially equivalent to con-
sistent assessments as defined by Kreps and Wilson (1982) (cf.
McLennan, 1989b).

Note also that there are extensive forms where the inclusion
AES™)SA%(S™) is strict and this is strategically relevant (see
Kohlberg & Reny, 1992).

I now turn to the relationship between updating systems of
uncorrelated conjectures and conditional probability systems. It is
reasonable to say that an updating system ¢~ '[-] satisfies the SI-
property if it is consistent with some p(-|-)eA%(S~). The following
theorem gives a partial characterization of such updating systems.

THEOREM 3: let p (-|-) be a conditional probability system for i
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FIGURE D. An extensive form with non-observable deviators. The
conditional probabilities at 4 cannot be derived by an uncorrelated
conjecture.

and assume that the extensive form has observed deviators. If
(- | )eA(S™), then there exists an updating system of uncorrelated
conjectures c™[-] consistent with p(-|-) and such that for all g, he '
and all non-trivial pariitions {J,K} of —i:

if g<'h and c’[g] is secure at h, then c’[g] =c’[h], (10)

if S7(h) =X’ x S%(h) and S~(g) = XY x SX(g), then c’[h] =c’[g].
(1D

PRrROOF: see the Appendix.

The proviso in theorem 3 about the information structure is
necessary. If an extensive form does not have observed deviators,
then an updating system of uncorrelated conjectures consistent
with p(-|-) may not exist, even though p(-|.) has the SI-property.
This is shown in the following example (cf. Kreps & Ramey, 1987:
figure 1).

EXAMPLE 3: consider the conditional probabilities in Figure D. They
may be obtained taking the limit as n— oo of the following sequence
of product measures:
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m,(R,R")=(1-1/n),
mu (L, R")=m, (R, L")=(1/n) 1 —=1/n),
m (L' L") =(1/n}.

By theorem 2 such conditional probabilities are part of a conditional
probability system with the SI property. But there is no conjecture
in A(S?) x A(S™) which generates these conditional probabilities via
Bayes' rule.

Example 3 shows that if one is willing to assume that conditional
probabilities are always assessed using suitable uncorrelated con-
jectures and Bayes’ rule, a stronger property for conditional prob-
ability systems is needed. But it is not at all clear why such a
property is desirable. After all, the Sl-property of conditional
probability systems seems a natural translation into formal prob-
abilistic language of the intuitive requirement that players’ up-
dated expectations should conform to the principle of strategic
independence. According to this position, updating systems of
uncorrelated conjectures are not well suited to analyse updated
expectations. On the one hand, they are not restrictive enough in
situations like those depicted in Figures A and B. Theorem 3
suggests that conditions (10) and (11) should be added to (1) and
(2) in the definition of an admissible updating system.

On the other hand, example 3 shows that updating systems of
uncorrelated conjectures can be too restrictive. Assume that in a
game with the extensive form Ej players I and II are symmetric.
Then it is reasonable to allow player III to assign the same
conditional probability to a deviation by player I only and to a
deviation by player II only. If it is assumed that the conditional
system of 11l has the SI-property and assigns prior probability 1
to (R',R"), then III must also assign zero conditional probability to
the event that both players deviated from (R’,R”), because the
event of two (simultaneous) deviations is “infinitely less likely”
than only one deviation (by either player).f A straightforward
computation shows that, if the conditional probability is deduced
{from an uncorrelated prior, at least one of these two requirements,
symmetry and SI, must be violated: let a=Prob(L")=Prob(L")>0
according to a symmetric uncorrelated prior, then Prob(x| k) =o¥
(2a—a?)>0, which violates SI.

+ It must be proved that for all peA%,(S' x 8.
PR, RS x 8" =1=p((L L)W LY, (LR, (R L)) =0.
Applying (5) and (3) one obtains

PR, R S'x SN =1=20=p({L} x S" | §'x 8"y =p((L".L") | ' x L"})
=p((I.". L") (L ,.L")(L ,R") (K" L")}) =
=p((L",L") | 8" x {L"Np(S" x (L} [ {(L.L"),(L".R") (R, L)) =0.
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All this may seem surprising, but on closer inspection, such
surprise is unjustified. The SC principle should not be concerned
with independence. Therefore, it should be formulated through the
definition of systems of conjectures c~'[h]eA(S~) which need not
be product measures. Theorem 1 says that there is a precise
equivalence between updating systems of possibly correlated con-
jectures and conditional probability systems. The SI principle is
formalized for conditional probability systems by the Sl-property
(equation (5)). This suggests that the updated expectations sat-
isfying the joint S1-SC principle are exactly those given by con-
ditional systems in A%(S™).

Mathematical considerations go in the same direction. While
theorem 2 shows that the set A%(S™" is “well behaved”, example
3 shows that the set of conditional probability systems which are
consistent with some updating system of uncorrelated conjectures
is not closed.

3. Concluding remarks

The analysis of Section 2 can be easily extended to games with
chance moves. Let “Nature” be player 0. Assume that the prob-
abilities of chance moves are given by a strictly positive behaviour
strategy

p'eMhe’ AAR)).

This behaviour strategy p° is realization-equivalent to a strictly
positive mixed strategy m%A(S®), which generates a conditional
probability system p%eA*(SY). In order to apply the analysis of
Section 2 it is sufficient to treat Nature as a non-strategic player,
with the additional assumption that the marginal on S° of each
independent conditional system is precisely p°.

Games of incomplete information can be represented as games
of complete and imperfect information with chance moves. Hence,
the previous trick applics to them as well. However, there is a
more direct way to deal with games of incomplete information with
independent types. Let T" be player i's (finite) type space. Consider
an “extended player i” with strategy space Zi=(T"xS%). Since i
observes his or her own type, this fictitious extended player has
perfect recall. Hence, the associated extensive form obtained in
this way satisfies the hypotheses of Section 2. Consistency, strategic
independence and “observed deviators” are defined with respect to
the product space IT;yZ'.

Note that the observed deviators condition is satisfied by all
multistage games of incomplete information with observed actions.
Most applications of game theory to information economics use
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games of this kind, which are analysed in depth by Fudenberg and
Tirole (1991a,b: 8.2.3).

This note has provided a coherent formulation of the SI-SC
principles. Their implications for the solution of extensive games
are studied elsewhere (see Battigalli, 1993a; Kohlberg and Reny,
1992, on perfect Bayesian equilibria and Battigalli, 1993b; Reny,
1992, on extensive form rationalizability).

Acknowledgements

I wish to thank two anonymous referees for helpful comments.

References

Aumann, R. (1974). Subjectivity and correlation in randomized strategies. Journal
of Mathematical Economics, 1, 67-96.

Aumann, R. (1987). Correlated equilibrium as an expression of Bayesian ra-
tionality., Econometrica, 55, 1-18.

Battigalli, P. (1993a). Strategic independence and perfect Bayesian equilibria.
Rapporto interno 93-011, Dipartimento di Economica e Produzione, Politecnico
di Milano, Milan, Italy.

Battigalli, P. (1993b). Strategic rationality orderings and the best rationalization
principle. Rapporto interno 93-014, Dipartimento di Economiche e Produzione,
Politecnico di Milano, Milan, Italy.

Battigalli, P. & Veronesi, P. (1992). Stochastic independence without Savage-nulil
events. Unpublished paper, Istituto di Economia Politica. Universita Bocconi,
Milan, Italy.

Blume, L., Brandenburger, A. & Dekel, E. (1991). Lexicographic probabilities and
choice under uncertainty. Econometrica, 59, 61-79.

Fudenberg, D. & Levine, D. (1993). Self-confirming equilibrium. Econometrica,
61, 523-545.

Fudenberg, D. & Tirole, J. (1991a). Perfect Bayesian equilibrium and sequential
equilibrium. Journal of Economic Theory, 53, 326-260.

Fudenberg, D. & Tirole, J. (1991b). Game Theory. Cambridge. MA: MIT Press.

Fudenberg, D., Kreps, D. & Levine, D. (1988). On the robustness of equilibrium
refinements. Journal of Economic Theory, 44, 354-380.

Hammond, P. (1987). Extended probabilities for decision theory and games.
Unpublished paper, Department of Economics, Stanford University, CA.

Hammond, P. (1992). Elementary non Archimedean representations of probability
for decision theory and games. Mimeo, Stanford University.

Hammond, P. (1994). Aspects of rationalizable behavior. In K. Binmore, A. Kirman
& P. Tani, Eds. Frontiers of Game Theory. Cambridge, MA: MIT Press.

Kohlberg. L. & Reny, P. (1992). On the rationale of perfect equilibrium. Mimeo,
Harvard University and University of Western Ontario.

Kreps. D. & Ramey, G. (1987). Structural consistency, consistency and sequential
rationality. Econometrica, 55, 13311348,

Kreps, D. & Wilson, R. (1982). Sequential equilibria. Econometrica, 50, 863-894.

McLennan, A. (1989a). The space of conditional systems is a ball. International
Journal of Game Theory, 18, 125-139.

McLennan, A. (1989b). Consistent conditional systems in noncooperative game
theory. International Journal of Game Theory, 18, 141-174.



374 P. BATTIGALLI

Myerson, R. (1986). Multistage games with communication. Econometrica, 54,
323-358.

Pearce, D. (1984). Rationalizable strategic behavior and the problem of perfection.
Econometrica. 52, 1029-1050.

Reny. P. (1992). Backward induction, normal-form perfection and explicable
equilibria. Econometrica, 60, 626-649.

Rényi, A. (1955). On a new axiomatic theory of probability. Acta Mathematica
Academiae Scientiarum Hungaricae, 6, 285-335.

Rényi, A. (1956). On conditional probability spaces genersled by a dimensionally
ordered set of measures. Theory of Probability and its Applications, 1, 61-71.

Appendix

PROOF OF LEMMA 1: assume (a), i.e. that the extensive form has
observed deviators. Then, by definition, for all heH, S(h) =1y
S*h). Take any ieN, heH', J< —i. It is sufficient to prove that if
¢’ reaches h, then ¢’ is secure at h. Let ¢” reach h. Then there is
some s7eSY(h)()Supp(c’). Decompose S(h) as S(h) =S?(h) x S*¥(h).
Since for all s"VeSVV(h)

Pic’s™)= > ) (A1)
+eSI(hNSupp(c”)

and s’eS7(h)(\Supp(c’), it follows that P(h;c”,s"¥)>0. Then ¢’ is
secure at h and (b) holds.

Now assume that (a) does not hold, i.e. deviators are not (always)
observed. We must show that (b) does not hold. By assumption,
there are ieN, heH', J< —i, s’eS7(h), s"YeS¥Y(h) such that
(¢7,s")¢S(h). Take a ¢” such that ¢/(s”)=Tlg,c/(s’)=1. ¢ reaches
h (because so does s”), but obviously P(h;c”,s¥¥)=0. Hence, ¢
is not secure at A and (b) of lemma 1 does not hold. ]

PROOF OF THEOREM 1, SECOND PART: it is well known that, for each
finite set Q with cardinality #Q =L, there is a canonical one-to-one

correspondence between A*(QQ) and the following set of “full support”
lexicographic conditional probability systems (LCPS):

¢=L
(Q) {(Po,P1, - - - PHE[A()) !

h=¢
Supp(p){ \Supp(py) =D, if j #k; kL_JOSupp(pk) =QJ,

where the correspondence is given by

P(A| B)=pus(A\BYpuwn(B), k(B) =min{k | p(B)>0)  (A2)
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(see, e.g., Hammond, 1992). Here it is convenient to use this
lexicographic representation of conditional systems.

Fix a player i and an updating system of conjectures ¢~[-]. Let
#(h) be the number of predecessors of he(@}{ JH' in the tree ({@)
JH' <), i.e. u(h)=#{ge(@) JH'| g<'h} (clearly u(@)=0). Let v:{1,. ..,
#H')->H' be a one-to-one function such that u(g)<u(h) implies
v i(@)<v~!(h), i.e. v~ is a linear order on H' refining the partial
order given by p, which in turn refines the partial order given by
<, v(k) is the information set with index k. For all heH", let n(h) =
max.i{g|g<'h} denote the immediate predecessor of h in H iU{@}.

Define an array of real valued functions p, with domain S~ as
follows:

So ‘' =Supp(c™[D),
S;i=S"{(w(k)) ﬂSupp(c“[v(la)] \Supp(c~[n(v(R)]), k=1,...,#H'

#r

s =S\ 5%
k=0

#H+1
delete all the indexes k such that S;'=@ and let
po(-)=c7[@1(-),
¢~ Iv(R)(s™) _ .
IS fork=1,...,H',S;'=d,
Demy =(#S7i )1

#H+1

p(s™)=

By construction, p,eA(S™) for all the undeleted & and S~i=
(sSi. If j#k and the information sets v(j) and v(k) are unrelated
by <, then S™(v())(\S~(v(k))=@, which implies S;*(\S;'=0@. If
Jj=k and v(j)=n(v(k)) (recall that n(h) is the immediate <-pre-
decessor of h), there are two possible cases:

(a) Supp(c~vIDNS™(v(k) =1, or
(b) Supp(c™ vHDNS(v(k) = B.

It follows immediately that S;j(}S;'=@ in case (a). In case (b),
(NI =c"v(k)] by equation (2). Thus, S;()S;'=@ in case (b)
also. This argument can be easily extended to all (j,k) such that
v(j)<'v(k) by induction on u(k)—pu(j). This shows that (p,; S;*+@)
is a well-defined LLCPS. It can be checked that ¢~ is consistent
with the conditional probability system p(-|-) derived from (p,;
Sy'=0) according to equation (A2).
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Take peA*(S~). It must be shown that p is consistent with
some c¢~‘[-]. Consider the LCPS (py,. ..,p.) corresponding to p and
construct ¢'[- ] as follows: for all hc—:{@}UH Y let

£(h)=min{¢ | S~(h)(\Supp(p,) = D).

C_i[g] = Po;
c'[h)=puu(-), if £(rn(h))<t(h),
c~i[h]=c7gl, if £(n(h))=¢(h).

Note that if g= n(h), then £(g) < £(h), because S~'(h) = S~'(g). There-
fore, ¢c~'[h] is defined for all information sets of i. Clearly, ¢~*[-]
satisfies condition (1). Condition (2) is satisfied whenever g<'h is
the immediate predecessor of A, i.e. g=mn(h). An easy induction
argument extends this result to the general case g<'h. Therefore,
¢~'[-] is a well-defined updating system of conjectures. [ |

PROOF OF THEOREM 3: assume that peA%(S™) and let p’ be the
marginal of p on S/ () =*t). For each opponent ] define the mapping
-] H‘U{@ - A(S) in the same way as in the last part of the proof
of theorem 1, replacing —1i with j. Let c"[h](s“) H,¢,c’ [k](s?). By
construction, ¢/[h] reaches h and whenever g<‘h and ¢/[g] reaches
h,then c'[h] =c’[g]. Since the extensive form has observed deviators,
if ¢/[h] reaches h, then c’[h] is secure at h (lemma 1). Therefore,
c”'[h] reaches h and c¢7'[-] is a well-defined updating system of
correlated conjectures. By theorem 2 c¢7[.] is consistent with p.
Equations (10) and (11) hold by construction. ]



