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Self-Confirming Equilibrium and Model Uncertainty †

By Pierpaolo Battigalli, Simone Cerreia-Vioglio, Fabio Maccheroni, 
and Massimo Marinacci *

We analyze a notion of self-confirming equilibrium with non-neutral 
ambiguity attitudes that generalizes the traditional concept. We show 
that the set of equilibria expands as ambiguity aversion increases. The 
intuition is quite simple: by playing the same strategy in a station-
ary environment, an agent learns the implied distribution of payoffs, 
but alternative strategies yield payoffs with unknown distributions; 
increased aversion to ambiguity makes such strategies less appeal-
ing. In sum, a kind of "status quo bias" emerges; in the long run, the 
uncertainty related to tested strategies disappears, but the uncertainty 
implied by the untested ones does not. (JEL C72, C73, D81, D83)

Chi lascia la via vecchia per la via nuova, sa quel che perde ma non sa 
quel che trova.1

— Italian proverb

In a situation of model uncertainty, or ambiguity, the decision maker does not 
know the probabilistic model for the variables affecting the consequences of choices. 
Such uncertainty is inherent in situations of strategic interaction. This is quite obvi-
ous when such situations have been faced only a few times. In this paper, we argue 
that uncertainty is pervasive also in games played recurrently where agents have had 
the opportunity to collect a large set of observations and the system has settled into 
a steady state. Such a situation is captured by the self-confirming equilibrium con-
cept (also called conjectural equilibrium). In a self-confirming equilibrium (SCE), 
agents best respond to confirmed probabilistic beliefs, where confirmed means that 

1 Translation: “Those who leave the old road for a new one, know what they leave but do not know what they 
will find.” 
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their beliefs are consistent with the evidence they can collect, given the strategies 
they adopt. Of course, this evidence depends on how everybody else plays. We ana-
lyze SCE and model uncertainty jointly and show that they are conceptually com-
plementary: the SCE conditions endogenously determine the extent of uncertainty, 
and uncertainty aversion induces a kind of status quo bias that expands the set of 
self-confirming patterns of behavior.

The SCE concept can be framed within different scenarios. A benchmark sce-
nario is just a repeated game with a fixed set of players in which there are no inter-
temporal strategic links between the plays. That is, the individuals who play the 
game many times are concerned only with their instantaneous payoff, and ignore the 
effects of their current actions on the other players’ future behavior; they simply best 
respond to their updated beliefs about the current period strategies of the opponents. 
Although all our results apply to this situation, our presentation is framed into the 
so-called large populations (or Nash’s mass action) scenario: there is a large society 
of individuals who play recurrently a given game  G  , possibly a sequential game 
with chance moves: for each player/role  i  in  G  (male or female, buyer or seller, 
etc.) there is a large population of agents who play in role  i . Agents are drawn at 
random and matched to play  G . Then, they are separated and rematched to play  G  
with (almost certainly) different opponents, and so on. After each play of a game 
in which he was involved, an agent obtains some evidence on how the game was 
played. The accumulated evidence is the dataset used by the agent to evaluate the 
outcome distribution associated with each choice. Note, there is an intrinsic limita-
tion to the evidence that an agent can obtain: if the game has sequential moves, he 
can observe at most the terminal node reached, but often he will observe even less, 
e.g., only his monetary payoffs (and not those of his opponents). Each agent is inter-
ested in the distribution of strategy profiles adopted by the opponents with whom he 
is matched, because it determines the expected payoffs of his alternative strategies. 
Typically, this distribution is not uniquely identified by the long-run frequencies of 
the agent’s observations. This defines the fundamental inference problem he faces, 
and explains why model uncertainty is pervasive also in steady states. The key dif-
ference between SCE and Nash equilibrium (NE) is that, in a SCE, agents may 
have incorrect beliefs because many possible underlying distributions are consistent 
with the empirical frequencies they observe (see Battigalli and Guaitoli 1988, 1997; 
Fudenberg and Levine 1993a; Fudenberg and Kreps 1995).

Partial identification of the true distribution and awareness of the possible incor-
rectness of beliefs form the natural domain for ambiguity aversion. Yet, according 
to the traditional SCE concept, agents are Bayesian subjective expected utility max-
imizers and hence ambiguity neutral. Here we modify the notion of SCE to allow for 
non-neutral attitudes toward model uncertainty (see Gilboa and Marinacci 2013 for 
a recent review on the topic). The decision theoretic work which is more germane 
to our approach distinguishes between objective and subjective uncertainty. Given 
a set  S  of states, there is a set  Σ ⊆ Δ(S)  of possible probabilistic models that the 
agent posits.2 Each model  σ ∈ Σ  specifies the objective probabilities of states and, 

2 In this context, we call objective probabilities the possible probability models (distributions) over a state space  
S . These are not to be confused with the objective probabilities stemming from an Anscombe and Aumann setting. 
For a discussion, see Cerreia-Vioglio et al. (2013b). 
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for each action  a  of the decision maker, it determines a von Neumann-Morgenstern 
expected utility evaluation  U(a, σ) ; the decision maker is uncertain about the true 
model  σ  (see Cerreia-Vioglio et al. 2013a,b). In our framework,  a  is the action, or 
strategy, of an agent playing in role  i  ,  σ  is a distribution of strategies in the popu-
lation of opponents (or a profile of such distributions in  n -person games), and  Σ  
is the set of distributions consistent with the database of the agent. Roughly, an 
agent is uncertainty averse if he dislikes the uncertainty about  U(a, σ)  implied by 
the uncertainty about the true probability model  σ ∈ Σ . We interchangeably refer 
to such feature of preferences with the expression aversion to model uncertainty or 
the shorter ambiguity aversion.

A now classical description of ambiguity aversion is the maxmin criterion of 
Gilboa and Schmeidler (1989), where actions are chosen to solve the problem 
  max  a       min  σ     U(a, σ) . In this paper, we span a large set of ambiguity attitudes using the 
smooth ambiguity model of Klibanoff, Marinacci, and Mukerji (2005)—henceforth, 
KMM. This latter criterion admits the maxmin criterion as a limit case, and the 
Bayesian subjective expected utility (SEU) criterion as a special case.

In a smooth SCE, agents in each role best respond to beliefs consistent with their 
database, choosing actions with the highest smooth ambiguity value, and their data-
base is the one that obtains under the true data generating process corresponding 
to the actual strategy distribution. The following example shows how our notion of 
SCE differs from the traditional, or Bayesian, SCE.

In the zero-sum game3 of Figure 1, the first player chooses between an outside 
option  O  and two Matching Pennies subgames, say  M P   1   and  M P   2  . Subgame  M P   2   
has “higher stakes” than  M P   1  : It has a higher (mixed) maxmin value ( 2 > 1.5 ), but 
a lower minimum payoff ( 0 < 1 ). In this game, there is only one Bayesian SCE out-
come,4 which must be the unique Nash outcome:  M P   2   is reached with probability  1  
and one-half of the agents in each population play Head. But we argue informally that 
moderate aversion to uncertainty makes the low stakes subgame  M P   1   reachable, and 
high aversion to uncertainty makes the outside option  O  also  possible.5 Specifically, 

3 The zero-sum feature simplifies the example, but it is inessential. 
4 We call outcome a distribution on terminal nodes. 
5 See Section III for a rigorous analysis. 
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Figure 1. Matching Pennies with Increasing Stakes
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let    μ –     k   denote the subjective probability assigned by an ambiguity  neutral agent in role  1  
to   h   k   , with  k = 1, 2 . Going to the low stakes subgame  M P   1   has subjective value  
 max  {  μ –     1  + 1, 2 −   μ –     1 }  ≥ 1.5  and going to the high stakes subgame  M P   2   has sub-

jective value  max  {4  μ –     2 , 4 (1 −   μ –     2 ) }  ≥ 2 . Thus,  O  is never an ambiguity neutral 
best reply and cannot be played by a positive fraction of agents in a Bayesian SCE. 
Furthermore, also the low stakes subgame  M P   1   cannot be played in a Bayesian SCE. 
For suppose by way of contradiction that a positive fraction of agents in population  1  
played  M P   1  . In the long run, each one of these agents, and all agents in population  2  , 
would learn the relative frequencies of Head and Tail. Since in a SCE agents best 
respond to confirmed beliefs, the relative frequencies of Head and Tail should be the 
same in equilibrium: i.e., the agents in population  1  playing  M P   1   would learn that its 
objective expected utility is  1.5 < 2  and would deviate to  M P   2   to maximize their 
SEU. On the other hand, for agents who are (at least) moderately averse to model 
uncertainty and keep playing  M P   1   , having learned the risks involved with the low 
stakes subgame confers to reduced-form6 strategies   H   1   and   T   1   a kind of status 
quo advantage: The objective expected utility of the untried strategies   H   2   and   T   2   
is unknown, and therefore they are penalized. Thus, the low stakes subgame  M P   1   
can be played by a positive fraction of agents if they are sufficiently averse to model 
uncertainty. Finally, also the outside option  O  can be played by a positive fraction of 
agents in a SCE if they are extremely averse to model uncertainty, as represented by 
the maxmin criterion.7 If an agent keeps playing  O  , he cannot learn anything about 
the opponents’ strategy distribution, hence he deems possible every distribution, or 
model,   σ 2   . Therefore, the minimum expected utility of   H   1     (resp.  T   1 )   is  1  and the min-
imum expected utility of   H   2     (resp.  T   2 )   is zero, justifying  O  as a maxmin best reply.8

The example shows that, by combining the SCE and ambiguity aversion ideas, a 
kind of status quo bias emerges: in the long run, uncertainty about the expected util-
ity of tested strategies disappears, but uncertainty about the expected utility of the 
untested ones does not. Therefore, ambiguity averse agents have weaker incentives 
to deviate than ambiguity neutral agents. More generally, higher ambiguity aversion 
implies a weaker incentive to deviate from an equilibrium strategy. This explains the 
main result of the paper: the set of SCEs expands as ambiguity aversion increases. 
We make this precise by adopting the smooth ambiguity model of KMM, which 
conveniently separates the endogenous subjective beliefs about the true strategy dis-
tribution from the exogenous ambiguity attitudes, so that the latter can be partially 
ordered by an intuitive “more ambiguity averse than” relation. With this, we provide 
a definition of smooth SCE whereby agents “smooth best respond” to beliefs about 
strategy distributions consistent with their long-run frequencies of observations. 
The traditional SCE concept is obtained when agents are ambiguity neutral, while 
a maxmin SCE concept obtains as a limit case when agents are infinitely ambiguity 
averse. By our comparative statics result, these equilibrium concepts are intuitively 
nested from finer to coarser: Each Bayesian SCE is also a smooth SCE, which in 

6   H   k     (resp.  T   k )   corresponds to the class of realization-equivalent strategies that choose subgame  M P   k   and then 

select   H   k     (resp.  T   k )  . 
7 As anticipated, the maxmin criterion is a limit case of the smooth one, therefore the same result holds for very 

high degrees of ambiguity aversion. 
8 Note that we are excluding the possibility of mixing through randomization, an issue addressed in Section IV. 
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turn is also maxmin SCE. Finally, we show how our results for smooth SCE extend 
to other robust decision criteria.

The rest of the paper is structured as follows. Section I gives the setup and 
our definition of SCE. In Section II, the core of the paper, we present a compar-
ative statics result and analyze the relationships between equilibrium concepts. 
Section III illustrates our concepts and results with a detailed analysis of a gen-
eralized version of the game of Figure 1. Section IV concludes the paper with a 
discussion of some important theoretical issues and of the related literature. In 
the main text we provide informal intuitions for our results. All proofs are col-
lected in the Appendix.

I.  Recurrent Games and Self-Confirming Equilibrium

A. Games with Feedback

We consider a finite game played recurrently between agents drawn at random 
from large populations, one population for each player role. The game may be 
dynamic, but in this case we assume that the agents play its strategic form; that is, 
they simultaneously and irreversibly choose a pure strategy, which is then mechan-
ically implemented by some device.

The rules of the game determine a game form with feedback  (I,  ( S  i  ,  M  i  ,  F  i  ) i∈I  )  , 
where:
	 •	 	 I = {1, … n}  is the set of player roles, and we call player  i  the agent who 

in a given instance of the game plays in role  i ∈ I ;
	 •	 	  S  i    is the finite set of strategies of  i ∈ I ; with this, we let  S =  Π i∈I    S  i    and   

S  −i   =  Π  j≠i    S  j    denote the set of all strategy profiles and of  i ’s opponents’ 
strategy profiles, respectively;

	 •	 	  M  i    is a set of messages that player  i  may receive ex post (at the end of the 
game);

	 •	   F  i   : S →  M  i    is a feedback function.

For each player role  i ∈ I  , there is a corresponding population of agents. 
Agents playing in different roles are drawn at random, hence independently, from 
the corresponding populations, which do not overlap. Once the game is played 
by the agents matched at random, the resulting strategy profile  s  generates a mes-
sage   m  i   =  F  i  (s)  for each player  i ∈ I . This message encodes all the information 
about play that player  i  receives ex post. This information typically includes, but 
need not be limited to, the material consequences of interaction observed by  i  , 
such as his consumption. If the game is dynamic, a player’s feedback is a func-
tion of the terminal node  ζ(s) ∈ Z  reached under strategy profile  s . In this case, 
  F  i  (s) =  f  i  (ζ(s))  where   f  i   : Z →  M  i    is the extensive-form feedback function for 
player  i .

Example 1: Three natural special cases are: For every  i ∈ I  and  s ∈ S  ,

	 •	 	  F  i  (s) = ζ(s)  , each player observes the terminal node (reached under the 
realized strategy profile), that is,   f  i    is the identity on  Z ;
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	 •	 	  F  i  (s) = g (ζ(s))   , each player observes everybody’s material consequences 
at the terminal node, that is,   f  i    is the consequence function  g ;9

	 •	 	  F  i  (s) =  g  i   (ζ(s))   , each player observes his own material consequences at 
the terminal node, that is,   f  i    is the  i th projection of  g .

Note that, while in the first two cases all agents obtain the same feedback, in the 
third one feedback is personal. We implicitly assume that player  i  knows the feed-
back function   F  i    and remembers the strategy   s  i    he just played. Hence, upon playing   s  i    
and receiving message   m  i    , he infers that the strategy profile played by his opponents 
must belong to the set

    { s  −i   ∈  S  −i   :  F  i  ( s  i  ,  s  −i  ) =  m  i  }  =  F  i,  s  i    
−1 ( m  i  ), 

where   F  i,  s  i     :  S  −i   →  M  i    denotes the section at   s  i    of the feedback function   F  i   .10 To 
streamline notation, and inspired by the important special cases in which   F  i   = F  
does not depend on  i  , we write   F   s  i      instead of   F  i,  s  i     . With this, every strategy   s  i    gives 
rise to an ex post information partition of the set of opponents’ strategy profiles:

       s  i     =  { F   s  i    
−1 ( m  i  ) :  m  i   ∈  M  i  } . 

Example 2: In the game of Figure 1, assuming that player 1 observes only his 
monetary payoff, the ex post information partition depends on   s  1    as follows:11

      O   = { S  2  },

      H   1    =     T   1    =  { { h   1 . h   2 ,  h   1 . t   2 } ,  { t   1 . h   2 ,  t   1 . t   2 } } ,

      H   2    =     T   2    =  { { h   1 . h   2 ,  t   1 . h   2 } ,  { h   1 . t   2 ,  t   1 . t   2 } }  ,

where   a   1 . a   2   denotes the strategy of player 2 that chooses action   a   1  ∈  { h   1 ,  t   1 }     
(resp.  a   2  ∈  { h   2 ,  t   2 } )   in subgame  M P   1     (resp. M P   2 )  . Summing up,      s  1      depends on   
s  1    and it never fully reveals the strategy played by the opponent.

A game form with feedback   ( I,   ( S  i  ,  M  i  ,  F  i  )  i∈I  )   satisfies own-strategy independence 
of feedback if the ex post information partition      s  i      is independent of   s  i    for every  
i ∈ I .12 This property is very strong and is violated in many interesting cases. For 
example, the property fails whenever the strategic game form is derived from a non-
trivial extensive game form where agents infer ex post the terminal node reached, 
such as the game discussed above.

9 The consequence function  g : Z →  Π i∈I    C  i    associates profiles of consequences with terminal nodes, where   C  i    
denotes the set of all material consequences that player  i  may face at the end of the game. 

10 That is,   F  i,  s  i    ( s  −i  ) =  F  i  ( s  i  ,  s  −i  )  for every   s  −i   ∈  S  −i    .
11 We are coalescing realization-equivalent strategies of player 1. 
12 This property is called “non-manipulability of information” by Battigalli, Gilli, and Molinari (1992) and 

Azrieli (2009), and “own-strategy independence” by Fudenberg and Kamada (2011). 
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B. Players’ Preferences

Next we describe agents’ personal features. We assume for notational simplicity 
that all agents in any given population  i  have the same attitudes toward risk and the 
same attitudes toward uncertainty (or ambiguity). The former are represented, as 
usual, by a von Neumann-Morgenstern payoff function

    U  i   : S → ℝ . 

We say that game  G  has observable payoffs whenever the payoff of every player 
only depends on his ex post information about play. Our main results rely on this 
maintained assumption, which can be formalized as follows: for each  i ∈ I  , each   
s  i   ∈  S  i    , and every   s  −i  ′  ,  s  −i  ′′   ∈  S  −i    such that   F   s  i     ( s  −i  ′  )  =  F   s  i     ( s  −i  ′′  )   , we have

    U  i  ( s  i  ,  s  −i  ′  ) =  U  i  ( s  i  ,  s  −i  ′′  ) . 

Contrapositively, this means that, upon playing a fixed strategy and obtaining differ-
ent utilities, the agent would detect a difference in his opponents’ counterstrategies 
(receive a different feedback).13

We call game with feedback the tuple  G = (I,  ( S  i  ,  M  i  ,  F  i  ,  U  i  ) i∈I  )  where agents’ 
payoffs are specified.

For each  i ∈ I  , the attitudes toward uncertainty, or ambiguity attitudes, of agents 
in population  i  are represented by a strictly increasing and continuous function 
  ϕ i   :   i   → ℝ  , where    i   =  [ min  s∈S      U  i  (s),  max  s∈S      U  i  (s)]  . Suppose that player  i  is 
uncertain about the true distribution   σ −i   ∈ Δ( S  −i  )  of strategies in the population 
of potential opponents,14 and that his uncertainty is expressed by some prior belief   
μ i    with support on a posited subset   Σ −i    of  Δ( S  −i  ) .15 Then, the value to player  i  of 
playing strategy   s  i   ∈  S  i    is given by the KMM smooth ambiguity criterion:

(1)    V  i  
 ϕ i    ( s  i  ,  μ i  )  =  ϕ  i  −1  ( ∫ supp μ i  

  
 
     ϕ i  ( U  i  ( s  i  ,  σ −i  )) μ i  (d σ −i  ))  , 

where

    U  i  ( s  i  ,  σ −i  ) =   ∑ 
 s  −i  ∈ S  −i  

    U  i  ( s  i  ,  s  −i  ) σ −i  ( s  −i  ) 

is the von Neumann-Morgenstern expected utility of   s  i    under   σ −i    , so that (1) is a 
certainty equivalent expressed in utils. The standard Bayesian SEU criterion

(2)    V  i  id  ( s  i  ,  μ i  )  =  ∫ supp μ i  
  

 
    U  i  ( s  i  ,  σ −i  ) μ i  (d σ −i  ) 

13 Mathematically, this amounts to      s  i     -measurability of each section   U   s  i     =  U  i,  s  i      of   U  i    . 
14 In games with three or more players,  i  is facing a profile of strategy distributions   ( σ  j  )  j≠i

   ∈  Π  j≠i  Δ( S  j  ) . The 

random matching structure implies that the objective probability of strategy profile   s  −i    is   σ −i  ( s  −i  ) =  ∏ j≠i     σ  j  ( s  j  ) . 
Thus,   σ −i   ∈ Δ( S  −i  )  is actually a product distribution. 

15 The simplex  Δ( S  −i  )  in   ℝ    S  −i     is endowed with the Borel sigma-algebra. 
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corresponds to an affine   ϕ i   ,16 while a robust criterion à la Gilboa and Schmeidler

(3)    V  i  ω ( s  i  ,  μ i  ) =   min  
 σ −i  ∈supp μ i  

  
 
   U  i  ( s  i  ,  σ −i  ) 

can be obtained as a limit of (1) when the measure of ambiguity aversion  − ϕ  i  ′′ / ϕ  i  ′    
converges pointwise to infinity (see KMM for details). Alternative robust prefer-
ences are discussed in Section IV.

We call game with feedback and ambiguity attitudes a pair   (G, ϕ)   , where  G  is a 
game with feedback and  ϕ =   ( ϕ i  )  i∈I    is a profile of ambiguity attitudes. We adopt the 
conventional equality   ϕ i   = ω  for some or all  i  in order to encompass preferences 
represented as in (3). Note that the latter preferences are fully characterized by   U  i    
and the set  supp μ i    of opponents’ strategy distributions that agent  i  deems plausible.

C. Partial Identification

Next we describe how an agent who keeps playing a fixed strategy in a station-
ary environment can partially identify the opponents’ strategy distributions, and, if 
payoffs are observable, he can learn—in the long run—the expected payoff of the 
fixed strategy itself.

The probability of observing a given message   m  i    for a player who chooses   s  i    and 
faces populations of opponents described by   σ −i    is

    σ −i   ( { s  −i   ∈  S  −i   :  F  i   ( s  i  ,  s  −i  )  =  m  i  } )  =  σ −i   ( F   s  i    
−1 ( m  i  )) . 

The corresponding distribution of messages   σ −i   ◦  F   s  i    
−1  ∈ Δ ( M  i  )   is denoted    F ˆ    s  i     ( σ −i  )   . 

Therefore, if  i  plays the pure strategy   s  i    and observes the long-run frequency distri-
bution of messages   ν  i   ∈ Δ( M  i  )  , then he can infer that the set of (product) strategy 
distributions of the opponents that may have generated   ν  i    is17

    { σ −i   ∈  Π  j≠i  Δ( S  j  ) :   F ˆ    s  i     ( σ −i  )  =  ν  i  } . 

If   σ  −i  ∗   =  Π  j≠i    σ  j  ∗   is the true strategy distribution of his opponents, the long-run 
frequency distribution of messages observed by  i  when playing   s  i    is (almost cer-
tainly) the one induced by the objective distribution   σ  −i  ∗    , that is,   ν  i  ∗  =   F ˆ    s  i     ( σ  −i  ∗  )  .18 
The set of possible distributions from  i ’s (long-run empiricist) perspective is thus

     Σ ˆ   −i  ( s  i  ,  σ  −i  ∗  ) =  { σ −i   ∈  Π  j≠i  Δ( S  j  ) :   F ˆ    s  i     ( σ −i  )  =   F ˆ    s  i     ( σ  −i  ∗  ) } 

  =  { σ −i   ∈  Π  j≠i  Δ( S  j  ) :  σ −i|    s  i       =  σ  −i|    s  i      
∗  }   .

16 Since this is by far the most well-known functional form, the superscript  id  (which stands for "identity func-
tion") will sometimes be omitted. 

17 With a slight abuse of notation we are identifying the product set   Π  j≠i  Δ( S  j  )  with the corresponding set of 
product distributions on   S  −i    . 

18 As common in steady-state analysis, we are heuristically relying on a law-of-large-numbers argument. 
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This is the set of all product probability measures on   S  −i    that coincide with   σ  −i  ∗    on 
the information partition      s  i     : although   σ  −i  ∗    remains unknown, its restriction to      s  i      is 
learned in the limit.

The identification correspondence    Σ ˆ   −i  ( s  i  , ·)  is nonempty (since   σ  −i  ∗    ∈    Σ ˆ   −i  ( s  i  ,  σ  −i  ∗   ) ) 
and compact valued; it is also convex-valued in two-person games. Our definition of 
   Σ ˆ   −i  ( s  i  ,  σ  −i  ∗   )  reflects the informal assumption that each agent in population  i  knows 
he is matched at random with agents from other populations. Hence, he knows that— 
conditional on the true profile of strategy distributions—the strategy played by the 
agent drawn from population  j  is independent of the strategy played by the agent drawn 
from population  k . Therefore,    Σ ˆ   −i  ( s  i  ,  σ  −i  ∗   )  need not be convex in games with three 
or more players.19

If payoffs are observable, then  i  can learn their time average and, in the long run, 
their expectation.20

LEMMA 1: If payoffs are observable in the game with feedback  G  , then, for every  
i  ,   s  i    , and   σ  −i  ∗    ,

    U  i  ( s  i  ,  σ −i  ) =  U  i  ( s  i  ,  σ  −i  ∗  ) ∀  σ −i   ∈   Σ ˆ   −i  ( s  i  ,  σ  −i  ∗  ). 

In contrast, if a different strategy   s  i  ′   ≠  s  i    is considered, the value of   U  i  ( s  i  ′  ,  σ −i  )  as   σ −i    
ranges in    Σ ˆ   −i  ( s  i  ,  σ  −i  ∗  )  remains uncertain. The set   { U  i  ( s  i  ′  ,  σ −i  ) :  σ −i   ∈   Σ ˆ   −i  ( s  i  ,  σ  −i  ∗  )}   
is not, in general, a singleton.21 This is the feature that, under ambiguity aversion, 
will generate a kind of status quo bias in favor of the strategy   s  i    that has been played 
for a long time.

As a matter of interpretation, we assume that each agent in population  i  knows  
I  ,  S  ,   M  i    ,   F  i    ,   U  i    , and   ϕ i    , but he may not know   F  −i    ,   U  −i    , and   ϕ −i   . In Section IV we 
comment extensively on the limitations and possible extensions of our framework.

D. Self-Confirming Equilibrium

Next we give our definition of self-confirming equilibrium with non-neutral atti-
tudes toward uncertainty. Recall that we restrict agents to choose pure strategies, so 
that mixed strategies arise only as distributions of pure strategies within populations 
of agents.

DEFINITION 1: A profile of strategy distributions   σ   ∗  =  ( σ  i  ∗ ) i∈I    is a smooth 
self-confirming equilibrium (SSCE) of a game with feedback and ambiguity atti-
tudes  (G, ϕ)  if, for each  i ∈ I  and each   s  i  ∗  ∈ supp σ  i  ∗  , there is a prior   μ  s  i  ∗     with sup-
port contained in    Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  )  such that

(4)    V  i  
 ϕ i    ( s  i  ∗ ,  μ  s  i  ∗   )  ≥  V  i  

 ϕ i    ( s  i  ,  μ  s  i  ∗   )   ∀  s  i   ∈  S  i  . 

19 If we assumed total ignorance about the matching process, then the partially identified set would be convex, 

as in the two-person case:    Σ ˆ   −i  ( s  i  ,  σ  −i  ∗   )  =   { σ −i    ∈  Δ( S  −i  )  :   F ˆ    s  i     ( σ −i  )   =    F ˆ    s  i     ( σ  −i  ∗   ) }  . 
20 Again, by a law-of-large-numbers heuristic. 
21 Because   U   s  i  ′     :  S  −i   → ℝ  is      s  i  ′      -measurable and not, in general,      s  i     -measurable. 
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The confirmed rationality condition (4) requires that every pure strategy   s  i  ∗   that 
a positive fraction   σ  i  ∗ ( s  i  ∗ )  of agents keep playing must be a best response within   S  i    
to the evidence: that is, the statistical distribution of messages    F ˆ    s  i  ∗   ( σ  −i  ∗  ) ∈ Δ( M  i  )  
generated by playing   s  i  ∗   against the strategy distribution   σ  −i  ∗    .

If all   ϕ i    s are affine, we obtain a definition of Bayesian self-confirming equilib-
rium (BSCE) that subsumes the earlier definitions of conjectural and self- confirming 
equilibrium. Finally, we also consider the corresponding classical (as opposed to 
Bayesian) case of maxmin self-confirming equilibrium.

DEFINITION 2: A profile of strategy distributions   σ   ∗  =  ( σ  i  ∗ ) i∈I    is a maxmin 
self-confirming equilibrium (MSCE) of a game with feedback  G  if, for each  i ∈ I  
and each   s  i  ∗  ∈ supp σ  i  ∗   ,

(5)     min  
 σ −i  ∈  Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  )

  
 
   U  i   ( s  i  ∗ ,  σ −i  )  ≥   min  

 σ −i  ∈  Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  )
  

 
   U  i   ( s  i  ,  σ −i  )   ∀  s  i   ∈  S  i  . 

Formally, this definition is a special case of the previous one. In fact, a MSCE 
is a SSCE of a game  (G, ϕ)  with  ϕ ≡ ω  under the additional assumption that, for 
each   s  i  ∗   played by a positive fraction of agents, the justifying prior   μ  s  i  ∗     has full sup-

port on    Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  ) . However, we state it separately since this maxmin notion also 
admits a conceptually different, classical, statistical interpretation in which priors 
are absent and so agents are empirical frequentists.

In Section III, we illustrate these definitions with a detailed analysis of a general-
ized version of the game of Figure 1. Here we consider a more symmetric example.

Example 3: Figure 2 gives the reduced strategic form of a sequential game where 
players unilaterally and simultaneously decide either to stop and get out (  O  i   ) or con-
tinue. If they both stop, they get 1 util each; if only one of them does, the player who 
stops gets 1 util, the other player gets 2 utils; if they both continue, next they play 
a Matching Pennies subgame. Suppose that each  i  only observes his own payoff, 
that is,   F  i  (·) =  U  i  (·) . Then, an agent who stops cannot observe anything, while an 
agent who plays Head or Tails identifies the strategy distribution of the population 
of opponents:

     Σ ˆ   −i  ( O  i  ,  σ −i  ) = Δ( S  −i  ) and   Σ ˆ   −i  ( H  i  ,  σ −i  ) =   Σ ˆ   −i  ( T  i  ,  σ −i  ) = { σ −i  } 

for every  i ∈ {1, 2}  and   σ −i   ∈ Δ( S  −i  ) . A necessary condition for   σ   ∗   to be a SCE is

    σ  i  ∗ ( O  i  ) < 1 ⇒  σ  −i  ∗  ( H  −i  ) =  σ  −i  ∗  ( T  −i  ),   ∀ i ∈ {1, 2}, 

because agents who do not stop identify the opponents’ distribution and have to be 
indifferent between Head and Tail. Next note that stopping is never a best response 
for an ambiguity neutral agent. 

With this, it is easy to check that BSCE and NE coincide: nobody stops and the 
two populations split evenly between Heads and Tails. But the set of SSCEs is much 
larger if agents are sufficiently ambiguity averse. Specifically, it can be shown that the 
belief that minimizes the incentive for an ambiguity averse agent to deviate from   O  i    
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is   μ i   =   1 _ 2    δ   H  −i     +   1 _ 2    δ   T  −i      . That is, agents with such belief think that either all agents in 
population  −i  play Head, or all of them play Tail, and that these two extreme distribu-
tions are equally likely. Let   ϕ i  (U) =  U   1/α   with  α > 0  for each  i . Then,

    V  i  
 ϕ i   ( H  i  ,  μ i  ) =  V  i  

 ϕ i   ( T  i  ,  μ i  ) =   (  1 _ 
2
    4   1/α  +   1 _ 

2
    0   1/α )    

α
  ≤ 1 ⇔ α ≥ 2. 

Therefore, if  α < 2  , then   O  i    cannot be a best reply to any prior, and so  
SSCE = BSCE = NE ; if  α ≥ 2  , then   O  i    is a best reply to   μ i    , which is trivially 
confirmed, and the necessary condition for a SCE is also sufficient:

  SSCE = { σ   ∗  :  ∀ i ∈ {1, 2},  σ  i  ∗ ( O  i  ) < 1 ⇒  σ  −i  ∗  ( H  −i  ) =  σ  −i  ∗  ( T  −i  )} 

  = { σ   ∗  :  ∀ i ∈ {1, 2},  σ  −i  ∗  ( H  −i  )(1 −  σ  i  ∗ ( O  i  )) =  σ  −i  ∗  ( T  −i  )(1 −  σ  i  ∗ ( O  i  ))}. 

We conclude that if agents are sufficiently ambiguity averse, i.e.,  α ≥ 2  , then they 
may stop in a SSCE.

As anticipated above and discussed in Section IV, our definition of Bayesian 
SCE subsumes earlier definitions of conjectural and self-confirming equilibrium as 
special cases. Like these earlier notions of SCE, our more general notion is moti-
vated by a partial identification problem: the mapping from strategy distributions to 
the distributions of observations available to an agent is not one to one. In fact, if 
for each agent  i  identification is full (that is,    Σ ˆ   −i  ( s  i  ,  σ −i  ) =  { σ −i  }   for all   s  i    and all  
  σ −i    ), condition (4) is easily seen to reduce to the standard Nash equilibrium 
 condition   U  i   ( s  i  ∗ ,  σ  −i  ∗  )  ≥  U  i   ( s  i  ,  σ  −i  ∗  )  . In other words, if none of the agents features 
a  partial identification problem, we are back to the Nash equilibrium notion (in its 
mass action interpretation).

II. Comparative Statics and Relationships

In this section, we compare the equilibria of games with different ambiguity atti-
tudes. This allows us to nest the different notions of SCE defined above. We also 
identify a special case where they all collapse to Nash equilibrium.

Figure 2
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A. Main Result

Ambiguity attitudes are characterized by the weighting functions’ profile  
ϕ =   ( ϕ i  )  i∈I   . We say that   ϕ i    is more ambiguity averse than   ψ i    if there is a concave and 
strictly increasing function   φ i   :  ψ i   (  i  )  → ℝ  such that   ϕ i   =  φ i   ◦  ψ i    (see KMM).22 
Game  (G, ϕ)  is more ambiguity averse than  (G, ψ)  if, for each  i  ,   ϕ i    is more ambigu-
ity averse than   ψ i   . Game  (G, ϕ)  is ambiguity averse if it is more ambiguity averse 
than   (G, i d   1    , … , i d   n    )   , that is, if each function   ϕ i    is concave.

Observe that we do not assume that the   ϕ i    s are concave. Therefore, our compar-
ison of ambiguity attitudes does not hinge on this assumption. In other words, for 
the relation of being more ambiguity averse, it only matters that profile  ϕ  be com-
paratively more ambiguity averse than profile  ψ  , something that can happen even if 
both are ambiguity loving.

Building on the non-ambiguity of the expected payoff of the long-run strategy, 
established in Lemma 1, we can now turn to the main result of this paper: the set of 
equilibria expands as ambiguity aversion increases.

THEOREM 1: If   (G, ϕ)   is more ambiguity averse than   (G, ψ)   , then the SSCEs of   
(G, ψ)   are also SSCEs of   (G, ϕ)  . Similarly, the SSCEs of any game with feedback 
and ambiguity attitudes   (G, ϕ)   are also MSCEs of  G .

We provide intuition for this result in the introduction. Now we can be more 
precise: let   σ   ∗   be an SSCE of  (G, ψ)  , the less ambiguity averse game, and pick 
any strategy played by a positive fraction of agents,   s  i  ∗  ∈  supp  σ  i  ∗  ; then, there is a 
justifying confirmed belief   μ  s  i  ∗     such that   s  i  ∗   is a best reply to   μ  s  i  ∗     given   ψ i    , that is, 
  V  i  

 ψ i   ( s  i  ∗ ,  μ  s  i  ∗   ) ≥  V  i  
 ψ i   ( s  i  ,  μ  s  i  ∗   )  for all   s  i   . We interpret   μ  s  i  ∗     as the belief held in the long 

run by an agent who keeps playing the long-run strategy   s  i  ∗   in the stationary envi-
ronment determined by   σ  −i  ∗   . Such agent eventually learns the long-run frequencies 
of the (observable) payoffs of   s  i  ∗  . Therefore, the value of   s  i  ∗   for this agent converges 
to its objective expected utility  U( s  i  ∗ ,  σ  −i  ∗  )  , independently of his ambiguity attitudes 
(cf. Lemma 1). But the value of an untested strategy   s  i   ≠  s  i  ∗   typically depends on 
ambiguity attitudes and, keeping beliefs fixed, it is higher when ambiguity aversion 
is lower, that is,   V  i  

 ψ i   ( s  i  ,  μ  s  i  ∗   ) ≥  V  i  
 ϕ i   ( s  i  ,  μ  s  i  ∗   ) . Therefore

    V  i  
 ϕ i   ( s  i  ∗ ,  μ  s  i  ∗   ) = U( s  i  ∗ ,  σ  −i  ∗  ) =  V  i  

 ψ i   ( s  i  ∗ ,  μ  s  i  ∗   ) ≥  V  i  
 ψ i   ( s  i  ,  μ  s  i  ∗   ) ≥  V  i  

 ϕ i   ( s  i  ,  μ  s  i  ∗   ) 

for all   s  i   . This means that it is possible to justify   σ   ∗   as an SSCE of the more ambiguity 
averse game  (G, ϕ)  using the same profile of beliefs justifying   σ   ∗   as an SSCE of  (G, ψ) .

B. Relationships

Theorem 1 implies that, under observable payoffs,

22 With the convention that   ϕ i   = ω  is more ambiguity averse than any   ψ i    , and that if   ϕ i    is more ambiguity averse 
than  ω  then   ϕ i   = ω .
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 (i) the set of BSCEs of  G  is contained in the set of SSCEs of every  (G, ϕ)  with 
ambiguity averse players;

 (ii) the set of SSCEs of every  (G, ϕ)  is contained in the set of MSCEs of  G .

In other words, under observable payoffs and ambiguity aversion, it holds that

(6)   BSCE ⊆ SSCE ⊆ MSCE . 

The degree of ambiguity aversion determines the size of the set of self-confirming 
equilibria, with the sets of Bayesian and maxmin self-confirming equilibria being, 
respectively, the smallest and largest one.23

It is well known that every Nash equilibrium   σ   ∗   is also a Bayesian SCE. The same 
relationship holds more generally for Nash and smooth self-confirming equilibria 
(also when agents are ambiguity loving). Intuitively, a Nash equilibrium is an SSCE 
with correct (hence confirmed) beliefs about strategy distributions; since correct 
beliefs cannot exhibit any model uncertainty, they satisfy the equilibrium conditions 
independently of ambiguity attitudes.

LEMMA 2: If a profile of distributions   σ   ∗   is a Nash equilibrium of a game with feed-
back  G  , then it is a SSCE of any game with feedback and ambiguity attitudes   (G, ϕ)  .

Since the set NE of Nash equilibria is nonempty, we automatically obtain exis-
tence of SSCE for any  ϕ .24 In particular, we can enrich the chain of inclusions in 
(6) as follows:

    0/ ≠ NE ⊆ BSCE ⊆ SSCE ⊆ MSCE 

under observable payoffs and ambiguity aversion.
The next simple, but instructive result establishes a partial converse. Recall that  G  

has own-strategy independent feedback if what each player can infer ex post about 
the strategies of other players is independent of his own choice. The following prop-
osition illustrates the strength of this assumption.

PROPOSITION 1: In every game with observable payoffs and own-strategy inde-
pendent feedback, every type of SCE is equivalent to Nash equilibrium:

   NE = BSCE = SSCE = MSCE . 

The intuition for this result is quite simple: the strategic-form payoff func-
tion   U  i  ( s  i  , ·) :  S  −i   → ℝ  is constant on each cell   F   s  i    

−1 ( m  i  )  of the partition 
     s  i     =  { F   s  i    

−1 ( m  i  )}   m  i  ∈ M  i  
    (observability of payoffs), but this partition is independent 

23 But note that the inclusions  BSCE ⊆ MSCE  and  SSCE ⊆ MSCE  do not require ambiguity aversion. 
Furthermore, one can show that, in two-person games,  BSCE ⊆ SSCE  independently of the ambiguity attitudes  ϕ  , 
due to the convex-valuedness of    Σ ˆ   −i  ( s  i  , ·)  in this case (see Battigalli et al. 2011). 

24 Hence, we also obtain existence of MSCE, by Theorem 1. 
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of   s  i    (own-strategy independence of feedback). This means that, in the long run, an 
agent does not only learn the objective probabilities of the payoffs associated with 
his status quo strategy, but also the objective probabilities of the payoffs associated 
with every other strategy. Hence, model uncertainty is irrelevant and he learns to 
play the best response to the true strategy distributions of the other players/roles 
even if he does not exactly learn these distributions.25

Further results about the relationship between equilibrium concepts can be 
obtained when  G  is derived from a game in extensive form under specific assump-
tions about the information structure (see Battigalli et al. 2011).

We conclude by emphasizing the key role played by payoff observability in 
establishing the inclusions in (6). The following example shows that, indeed, these 
inclusions need not hold when payoffs are not observable.

Example 4: Consider the zero-sum game of Figure 1, but now suppose that 
player 1   cannot observe his payoff ex post (he only remembers his actions). For 
example, the utility values in Figure 1 could be a negative affine transformation of 
the consumption of player  2  , reflecting a psychological preference of player  1  for 
decreasing the consumption of player  2  (not observed by  1 ) even if the consumption 
of  1  is independent of the actions taken in this game. Then, even if  1  plays one of 
the Matching Pennies subgames for a long time, he gets no feedback. Under this 
violation of the observable payoff assumption,    Σ ˆ   2   ( s  1  ,  σ 2  )  = Δ( S  2  )  for all   ( s  1  ,  σ 2  )  . 
Since   u  1  (O) = 1 + ε  is larger than the minimum payoff of each subgame, the out-
side option  O  is the only MSCE choice of player  1  at the root. If   ϕ 1    is sufficiently 
concave,  O  is also an SSCE choice (justified by a suitable prior). But, as already 
explained,  O  cannot be an ambiguity neutral best reply. Furthermore, it can be veri-
fied that every strategy   s  1    is an SSCE strategy. Therefore,

   BSCE ∩ MSCE =  0/ and SSCE ⊈ MSCE 

and so the inclusions of (6) here do not hold.

III. A Parametrized Example

In this section, we analyze the SCEs of a zero-sum example parametrized by 
the number of strategies. The zero-sum assumption is inessential, but it simplifies 
the structure of the equilibrium set. The game is related to the Matching Pennies 
example of the introduction. We show how the SSCE set gradually expands from the 
BSCE set to the MSCE set as the degree of ambiguity aversion increases.

To help intuition, we first consider a generalization of the game of Figure 1: 
player   1  chooses between an outside option  O  that yields  n − 1 + ε  utils 
( 0 < ε < 1/2 ) and  n ≥ 2  Matching Pennies subgames against player  2 . Subgames 
with a higher index  k  have higher stakes, that is, a higher mixed maxmin value, but 
a lower minimum payoff (see Figure 3). The game of Figure 1 obtains for  n = 2 .

25 Related results are part of the folklore on SCE. See, for example, Battigalli (1999) and Fudenberg and 
Kamada (2011). 
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In this game, player  1  has  (n + 1) ×  2   n   strategies and player  2  has   2   n   strategies. 
To simplify the notation, we instead analyze an equivalent extensive-form game   
Γ n    obtained by two transformations. First, player  2  is replaced by a team of oppo-
nents  2.1, … , 2.n  , one for each (zero-sum) subgame  k . Second, the sequence of 
moves   (k,  H   k )   of player  1  (go to subgame  k  then choose Head)—which is common 
to   2   n−1   realization-equivalent strategies—is coalesced into the single strategy   H   k  . 
Similarly,   (k,  T   k )   becomes   T   k  . The new strategy set of player  1  has  2n + 1  strategies:   
S  1   =  {O,  H   1 ,  T   1 , … ,  H   n ,  T   n }  . If player  1  chooses   H   k   or   T   k   , player  2.k  moves at 
information set   { H   k ,  T   k }   (i.e., without knowing which of the two actions was chosen 
by player  1 ) and chooses between   h   k   and   t   k  ; hence   S  2.k   =  { h   k ,  t   k }  . See Figure 4.

We assume that players observe the terminal node, or—equivalently—that the 
game has observable payoffs (cf. Example 2).

Although there are no proper subgames in   Γ n    , we slightly abuse language and 
informally refer to “subgame  k ” when player  1  chooses   H   k   or   T   k   , giving the move 
to opponent  2.k . The game   Γ n    and the previously described game have isomorphic 
sets of terminal nodes (with cardinality  4n + 1 ) and the same reduced normal form 
(once players  2.1, … , 2.n  of the second game are coalesced into a unique player  2 ). 
By standard arguments, these two games have equivalent sets of Nash equilibria, 
equivalent BSCE and MSCE sets, and equivalent SSCE sets for every  ϕ  .26

That said, consider the game with feedback   G  n    derived from extensive-form game   
Γ n    under the assumption that the terminal node reached is observed ex post (or that 
payoffs are observable). It is easily seen that, for every profile of strategy distribu-
tions   σ  2  ∗  =  ( σ  2.k  ∗  )  k=1  n    , it holds that27

(7)     Σ ˆ   2  (O,  σ  2  ∗ ) =  Π  k=1  n  Δ( S  2.k  ),  

26 Each profile  σ = ( σ 1  ,  ( σ 2.k  )  k=1  n  )  of the new  n -person game can be mapped to an equivalent profile  (  σ –   1  ,   σ –   2  )  of 
the old two-person game and vice versa while preserving the equilibrium properties. Specifically,   ( σ 2.k  )  k=1  n    is also 
a behavioral strategy of player  2  in the two-person game, which corresponds to a realization-equivalent strategy 
distribution    σ –   2    for player  2 . Similarly, any such distribution    σ –   2    can be mapped to a realization-equivalent profile   
( σ 2.k  )  k=1  n   . As for   σ 1    , for each   s  1    in the new game, the probability mass   σ 1  ( s  1  )  can be distributed arbitrarily among the 
pure strategies of the old two-person game that select the corresponding sequence of moves   (that is, either (O) , or  
(k,  H   k )  or  (k,  T   k ) )  , thus obtaining a realization-equivalent distribution    σ –   1   . In the opposite direction, every    σ –   1    of the 
old game yields a unique realization-equivalent   σ 1    in the new game, where   σ 1  ( s  1  )  is the    σ –   1    -probability of the set of 
(realization-equivalent) strategies that select the same sequence of moves as   s  1   .

27 For ease of notation, in this section we denote    Σ ˆ   −1    by    Σ ˆ   2   .

Figure 3. Fragment of Zero-Sum Game
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and

(8)     Σ ˆ   2   ( H   k ,  σ  2  ∗ )  =   Σ ˆ   2   ( T   k ,  σ  2  ∗ )  = { σ 2   :  σ 2.k   =  σ  2.k  ∗  } . 

As a result, next we provide necessary SCE conditions that partially character-
ize the equilibrium strategy distribution for player/role  1  and fully characterize the 
equilibrium strategy distributions for the opponents.

LEMMA 3: For every (Bayesian, smooth, maxmin) SCE   σ   ∗   and every  k = 1, … , n  ,

(9)    σ  1  ∗  ( H   k )  +  σ  1  ∗  ( T   k )  > 0 ⇒   
 σ  1  ∗  ( H   k ) 

  _____________  
 σ  1  ∗  ( H   k )  +  σ  1  ∗  ( T   k )    =   1 _ 

2
   =  σ  2.k  ∗   ( h   k ) . 

Furthermore, for every   ( σ  1  ∗ ,  σ  2  ∗ )   and    σ –    1  ∗   , if   ( σ  1  ∗ ,  σ  2  ∗ )   is a (Bayesian, smooth, maxmin) 
SCE, and  supp σ  1  ∗  = supp  σ ̅    1  

∗   , then   (  σ –    1  ∗ ,  σ  2  ∗ )   is also a (Bayesian, smooth, maxmin) 
SCE.

Note that these necessary conditions do not restrict at all the set of strategies 
that can be played in equilibrium: for every   s  1   ∈  {O,  H   1 ,  T   1 , … ,  H   n ,  T   n }   there 
is some distribution profile   σ   ∗   such that   σ  1  ∗ ( s  1  ) > 0  and (9) holds. The formal 
proof of the lemma is straightforward and left to the reader. Intuitively, if sub-
game  k  is played with positive probability, then each agent playing this subgame 
learns the relative frequencies of Head and Tail in the opponent’s population, and 
the best response conditions imply that a SCE reaching subgame  k  with positive 
probability must induce a Nash equilibrium in this Matching Pennies subgame. 
Thus, the   σ  2  ∗   -value to an agent in population  1  of playing the status quo strategy 

  H   k   or   T   k     (with  σ  1  ∗  ( H   k )  +  σ  1  ∗  ( T   k )  > 0)   is the mixed maxmin value of subgame  
k  ,  n − 1 + k/2 . With this, the value of deviating to another untested strategy 
depends on the exogenous attitudes toward model uncertainty, and on the subjec-

tive belief   μ 1   ∈ Δ (  Σ ˆ   2   ( H   k ,  σ  2  ∗ ) )   , which is only restricted by   σ  2.k  ∗    (equations (7) and 
(8)). As for the agents in roles  2.1, … , 2.n  , their attitudes toward uncertainty are 

•
1

• • • •2.1 2.1 2.2 2.2

2 1 1 2 4 0 0 4

O

1 + ε

H 1

h1 h1t1 t1

T 1 H 2
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Figure 4. The Case  n = 2 
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irrelevant, because, if they play at all, they learn all that matters to them, that is, 
the relative frequencies of   H   k   and   T   k  .

Suppose that a positive fraction of agents in population  1  play   H   k   or   T   k   , with  
k < n . By Lemma 3, in a SCE, the value that they assign to their strategy is its von 
Neumann-Morgenstern expected utility given that opponent  2.k   mixes fifty-fifty, that 
is,  n − 1 + k/2 . But, if they are ambiguity neutral, the subjective value of deviating 
to subgame  n  is at least the mixed maxmin value  n − 1 + n/2 > n − 1 + k/2 . 
Furthermore, the outside option  O  is never an ambiguity neutral best reply.28 This 
explains the following:

PROPOSITION 2: The BSCE set of   G  n    coincides with the set of Nash equilibria. 
Specifically,

   BSCE = NE =  { σ   ∗  ∈ Σ :  σ  1  ∗ ( H   n ) =  σ  1  ∗ ( T   n ) =  σ  2.n  ∗  ( h   n ) =   1 _ 
2
  }  . 

Next we analyze the SSCEs assuming that agents are ambiguity averse in the 
KMM sense. The following preliminary result, which has some independent inter-
est, specifies the beliefs about opponents’ strategy distributions that minimize the 
subjective value of deviating from a given strategy   s  1    to any subgame  j .

LEMMA 4: Let   ϕ 1    be concave. For all  j = 1, … , n  ,   μ 1  ,  ν  1   ∈ Δ ( Π  k=1  n  Δ( S  2.k  ))   , if

   mr g Δ ( S  2.j  )    ν  1   =   1 _ 
2
    δ   h   j    +   1 _ 

2
   δ   t   j   , 

then

    max     
   { V  1  

 ϕ 1   ( H   j ,  μ 1  ),  V  1  
 ϕ 1   ( T   j ,  μ 1  )} ≥  V  1  

 ϕ 1   ( H   j ,  ν  1  ) =  V  1  
 ϕ 1   ( T   j ,  ν  1  ). 

Intuitively, an ambiguity averse agent dislikes deviating to subgame  j  the most 
when his subjective prior assigns positive weight only to the highest and lowest 
among the possible objective expected utility values, i.e., when its marginal on 
 Δ( S  2.j  )  has the form  x δ   h   j    + (1 − x) δ   t   j    . By symmetry of the  2 × 2  payoff matrix 

of subgame  k  , he would pick, within   { H   k ,  T   k }   , the strategy corresponding to the 
highest subjective weight (  H   k   if  x > 1/2 ). Hence, the subjective value of deviating 
to subgame  j  is minimized when the two Dirac measures   δ   h   j     and   δ   t   j     have the same 
weight  x = 1/2 .

To analyze how the SSCE set changes with the degree of ambiguity aversion of 
player  1  , we consider the one-parameter family of negative exponential weighting 
functions

    ϕ  1  α (U) = − e   −αU , 

28 Indeed,  O  is strictly dominated by every mixed strategy    1 __ 
2
    H   k  +   1 __ 

2
    T   k  .
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where  α > 0  is the coefficient of ambiguity aversion (see KMM, p. 1865). Let 
 SSCE(α)  denote the set of SSCEs of  ( G  n  ,  ϕ  1  α ,  ϕ 2  , …,  ϕ n  ) . To characterize the equilib-
rium correspondence  α ↦ SSCE(α)  , we use the following transformation of   ϕ  1  α (U) :

   M(α, x, y) =  ( ϕ  1  α )   −1  (  1 _ 
2

    ϕ  1  α (x) +   1 _ 
2
    ϕ  1  α (y))  . 

By Lemma 4, this is the minimum value of deviating to a subgame characterized by 
payoffs  x  and  y . The following known result states that this value is decreasing in 
the coefficient of ambiguity aversion  α  , it converges to the mixed maxmin value as  
α → 0  (approximating the ambiguity neutral case), and it converges to the mini-
mum payoff as  α → +∞ .

LEMMA 5: For all  x ≠ y  ,  M(·, x, y)  is strictly decreasing, continuous, and satisfies

(10)     lim  
α→0

  
 
  M (α, x, y)  =   1 _ 

2
   x +   1 _ 

2
   y and   lim  

α→+∞
  

 
  M (α, x, y)  = min  { x, y}  . 

By Lemma 3, to analyze the  SSCE(α)  correspondence, we only have to determine 
the strategies   s  1    that can be played by a positive fraction of agents in equilibrium, 
or—conversely—the strategies   s  1    that must have measure zero. Let us start from very 
small values of  α  , i.e., approximately ambiguity neutral agents. By Lemmas 4 and 
5, the subjective value of deviating to the highest stakes subgame  n  is approximately 
bounded below by  n − 1 + n/2 >  u  1  (O) . Therefore, the outside option  O  cannot be 
a best reply. Furthermore, suppose by way of contradiction that   H   k   or   T   k   ( k < n ) 
are played by a positive fraction of agents. By Lemma 3, the value of playing subgame  
k  is the von Neumann Morgensstern expected utility  n − 1 + k/2 < n − 1 + n/2 . 
Hence all agents playing this game would deviate to the highest stakes subgame  n . 
Thus, for  α  small,  SSCE(α) = BSCE . By Lemma 5, as  α  increases, the minimum 
value of deviating to subgame  n  decreases, converging to zero for  α → + ∞ . More 
generally, the minimum value  M(α, n − j, n + 2( j − 1))  of deviating to subgame  j  
converges to  n − j  for  α → + ∞ . Since  n − j <  u  1  (O) < n − 1 + k/2  , this means 
that, as  α  increases, it becomes easier to support an arbitrary strategy   s  1    as an SSCE 
strategy. Therefore, there must be thresholds  0 <  α 1   < ⋯ <  α n    such that only the 
higher stakes subgames  k + 1, …, n  can be played by a positive fraction of agents in 
equilibrium if  α <  α n−k    , and every strategy (including the outside option  O ) can be 
played by a positive fraction of agents for some  α ≥  α n−k   . In particular, for  α  suffi-
ciently large,  SSCE(α)  coincides with the set of maxmin SCEs, which is just the set

    Σ   ∗  = { σ   ∗  ∈ Σ : eq. (9) holds} 

of distribution profiles satisfying the necessary conditions of Lemma 3.29 To sum-
marize, by the properties of the function  M(α, x, y)  stated in Lemma 5, we can define 

29 This characterization holds for every parametrized family of distributions that satisfies, at every expected 
utility value   U 

–
    , properties analogous to those of Lemma 5, with  α  replaced by the coefficient of ambiguity aversion  

− ϕ  1  ′′ ( U 
–
  )/ ϕ  1  ′   ( U 

–
  )  .
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strictly positive thresholds   α 1   <  α 2   < ⋯ <  α n    so that the following indiffer-
ence conditions hold

(11)    max  
j∈{k+1, … , n}

     M( α n−k  , n − j, n + 2( j − 1)) = n − 1 +   k _ 2  , k = 1, … , n − 1, 

(12)    max  
j∈{1, … , n}

     M( α n  , n − j, n + 2( j − 1)) = n − 1 + ε, 

and  SSCE(α)  expands as  α  increases, making subgame  k  playable in equilibrium 
as soon as  α  reaches   α n−k    , expanding to  MSCE  and making the outside option  O  
playable as soon as  α  reaches   α n   . Formally:

PROPOSITION 3: Let   α 1   < ⋯ <  α n    be the strictly positive thresholds defined 
by (11) and (12). For every  α  and  k = 1, …, n − 1  ,

  α <  α n−k   ⇒ SSCE(α) =  { σ   ∗  ∈  Σ   ∗  :  σ  1  ∗  ( {O,  L   1 ,  T   1 , … ,  H   k ,  T   k } )  = 0}  

and

   α <  α n   ⇒ SSCE(α) =  { σ   ∗  ∈  Σ   ∗  :  σ  1  ∗ (O) = 0}  . 

Furthermore

     ∪ 
α≥ α n−k  

    SSCE(α) =  Σ   ∗  = MSCE, 

and  SSCE(α) = BSCE = NE  if  α <  α 1    , while  SSCE(α) = MSCE  if  α ≥  α n   .

IV. Concluding Remarks and Related Literature

The SCE concept characterizes stable patterns of behavior in games played recur-
rently. We analyze a notion of SCE with agents who have non-neutral attitudes toward 
uncertainty about the true steady-state data generating process. We showed that this 
uncertainty comes from a partial identification problem: the mapping from strategy 
distributions to the distributions of observations available to an agent is not one to one. 
We use as our workhorse the KMM smooth-ambiguity model, which separates endog-
enous beliefs from exogenous ambiguity attitudes. This makes our setup particularly 
well suited to connect with the previous literature on SCE and to analyze how the set 
of equilibria changes with the degree of ambiguity aversion. Assuming observability 
of payoffs, we show that the set of smooth SCEs expands when agents become more 
ambiguity averse. The reason is that agents learn the expected utility values of the strat-
egies played in equilibrium, but not those of the strategies they can deviate to, which 
are thus penalized by higher ambiguity  aversion. This allows us to derive  intuitive 
 relationships between different notions of SCE. Nash equilibrium is a refinement of all 
of them, which guarantees existence. All notions of SCE collapse to Nash equilibrium 
under the additional assumption of own-strategy independence of feedback.

We develop our theoretical insights in the framework of population games played 
recurrently, but similar intuitions apply to different strategic contexts, such as repeated 
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games, or dynamic games with a stationary Markov structure. Our insights are likely 
to have consequences for more applied work. For example, the SCE and ambiguity 
aversion ideas have been applied in macroeconomics to analyze, respectively, learn-
ing in policymaking (see Sargent 1999, and the references in Cho and Sargent 2008) 
and robust control (Hansen and Sargent 2008). Our analysis suggests that these two 
approaches can be fruitfully merged. Fershtman and Pakes (2012) put forward a con-
cept of “experience based equilibrium” akin to SCE to provide a framework for the 
theoretical and empirical analysis of dynamic oligopolies. They argue that equilib-
rium conditions are, in principle, testable when agents beliefs are determined (if only 
partially) by empirical frequencies, as in their equilibrium concept and in SCE. Their 
model features observable payoffs because firms observe profits; therefore a version 
of our main result applies: ambiguity aversion expands the set of equilibria.

In the remainder of this section we consider some limitations and possible exten-
sions of our analysis, and we briefly discuss the related literature. We refer the reader 
to the working paper version (Battigalli et al. 2011) and to Battigalli et al. (2014) for 
a more detailed discussion.

More on Robust Preferences.—It is well known that the smooth ambiguity crite-
rion corresponding to   ϕ i   (t )  = − e   −   t __ α     for all  t ∈ ℝ  , with constant absolute ambigu-
ity aversion coefficient  α > 0  , can be written as

    V  i  
 ϕ i    ( s  i  ,  μ i  )  =   inf  

 ν  i   ≪  μ i  
  

 
   ( ∫ supp ν  i  

  
 
    U  i   ( s  i  ,  σ −i  )   ν  i  (d σ −i  ) + αH ( ν  i  || μ i  ) ) . 

Here  H  is the Kullback-Leibler divergence; thus the corresponding smooth criterion 
is akin to the multiplier criterion of Hansen and Sargent (2001). This suggests con-
sidering robust preferences of the form

(13)    V  i  
 Φ i    ( s  i  ,  μ i  )  =   inf  

 ν  i  ≪ μ i  
  

 
   ( ∫ supp ν  i  

  
 
    U  i   ( s  i  ,  σ −i  )   ν  i  (d σ −i  ) +  Φ i   ( ν  i  || μ i  ) ) , 

where   Φ i    is a generic divergence between priors, that is, a function

    Φ i   : Δ (Δ ( S  −i  ) )  × Δ (Δ ( S  −i  ) )  →  [0, ∞]  

such that   Φ i   ( · || μ i  )   is convex and   Φ i   ( μ i  || μ i  )  = 0  for every   μ i   . Maccheroni, Marinacci, 
and Rustichini (2006) and Cerreia-Vioglio et al. (2013a) show how   Φ i   (· || ·)   captures 
ambiguity attitudes in a simple way:   Φ i    is more ambiguity averse than   Ψ i    if   Φ i   (· || μ i  )  
≤  Ψ i   (· || μ i  )     for every   μ i   ∈ Δ (Δ ( S  −i  ) )  . It can be shown that all results in Section II 
hold when the smooth criterion (1) is replaced with the robust criterion (13).

Dynamic Consistency and Conditional Beliefs. —To avoid dynamic consistency 
issues, we assume that agents play the strategic form of the recurrent game, i.e., 
an essentially simultaneous stage game. But when agents really play a game with 
sequential moves, not its strategic form, they cannot commit to any contingent plan. 
A strategy for an agent is just a plan that allows him to evaluate the likely conse-
quences of taking actions at any information set. The plan is credible and can be 
implemented only if it prescribes, at each possible information set, an action that has 
the highest value, given the agent’s conditional beliefs and planned continuation. 
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The plans with this unimprovability property are obtained by means of a “folding 
back” procedure on the subjective decision tree implied by the agent’s beliefs. We 
sketch how we can make this precise in the context of the smooth-ambiguity model, 
and thus provide a notion of dynamically consistent SSCE. Next we discuss the 
properties of this concept. We assume that agents’ feedback functions satisfy ex 
post perfect recall, that is, after playing the game agents remember the information 
sets they crossed and the actions chosen at such information sets. For an in-depth 
analysis with proofs of claims, see Battigalli et al. (2014).

Each agent in role  i  has a system of beliefs   μ i  (· | · )  about distributions   σ −i    given 
by a prior   μ i   ∈ Δ (Δ( S  −i  ))   and a posterior   μ i  (· | h   i  )  at each information set   h   i    of  i . 
The predictive probability of reaching information set   h  i     (given that the agent 
chooses the actions leading to   h   i    ) is   P  μ i    ( h  i  ) =  ∫ Δ( S  −i  )  

 
    σ −i   ( S  −i  ( h   i  ))   μ i   (d σ −i  )   , where   

S  −i  ( h   i  )  denotes the set of strategy profiles   s  −i    consistent with   h   i   . If   P  μ i    ( h   i  ) > 0  , the 

posterior belief   μ i  (· | h   i  )  is derived from the prior using Bayes rule;30 otherwise, 
  μ i  (· | h   i  )  is derived from   μ i  (· |  h 

–
  i  )  , where    h 

–
  i    is the information set closest to the root 

such that   P   μ i    ( h   i  |  h 
–
  i  ) > 0  (note, it may be    h 

–
  i   =  h   i   ). Such system of beliefs yields a 

conditional probability system on   S  −i   × Δ( S  −i  )  given the collection of conditioning 
cylindrical events   S  −i  (h) × Δ( S  −i  )  (cf. Battigalli and Siniscalchi 1999). A plan   s  i    is 
a sequential best reply to   μ i  (· | ·)  if, at each information set   h   i    of  i  , it selects an action 
maximizing the KMM value   V  i  

 ϕ i     , given   μ i  (· | h   i  )  and the   s  i    -continuation after   h  i   . A 
profile of distributions   σ   ∗   is a dynamically consistent SSCE, for brevity   SSCE   DC    , if 
each   s  i    with   σ  i  ∗ ( s  i  ) > 0  is a sequential best reply to some   μ  s  i    (· | ·)  such that the prior   
μ  s  i      satisfies the confirmation condition supp  μ  s  i     ⊆   Σ ˆ   −i  ( s  i  ,  σ  −i  ∗  ) .

By the dynamic consistency of SEU maximization, SSC  E   DC   is realization-equiv-
alent to SSCE if agents are ambiguity neutral. The reason is that an ex  ante   
SEU-optimal strategy can prescribe suboptimal actions only at  information sets 
that the agent subjectively deems impossible; given ex post perfect recall, in a 
 self- confirming equilibrium, such information sets must be off the equilibrium 
path.31 But, in general, SSC  E   DC   outcomes may differ from SSCE outcomes, 
because—as is well known32—an ex ante optimal strategy of an ambiguity averse 
agent may prescribe ex post suboptimal actions even at information sets the agent 
deems possible. If agents truly play the game in a sequential fashion, SSC  E   DC   is 
the relevant concept. Does a version of our comparative statics result (Theorem 1) 
hold for SSC  E   DC  ? We can prove that, in games where each player moves at most 
once on any path (e.g., the game of Figure 4), if  (G, ϕ)  is more ambiguity averse 
than  (G, ψ)  , then every SSC  E   DC   of  (G, ψ)  is also an SSC  E   DC   of  (G, ϕ) . The main 
intuition for the result is again a kind of status quo bias: by ex post perfect recall 
and observability of payoffs, actions chosen at information sets on the equilibrium 
path are unambiguous, whereas deviations may be perceived as ambiguous; hence, 

30 That is,

     μ i  ( E  −i   |  h  i  ) =   1 _____  P  μ i    ( h  i  )
    ∫  E  −i  

  
 
     σ −i   ( S  −i  ( h  i  ))   μ i   (d σ −i  )  

for every Borel set   E  −i   ⊆ Δ( S  −i  ) .
31 As we discuss below, dynamic consistency makes a difference if beliefs are also assumed to be rationalizable. 
32 See, e.g., Siniscalchi (2011). 
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higher  ambiguity aversion penalizes deviations.33 We can show by example that the 
comparative statics statement cannot be generalized as is to all games, but we con-
jecture that a version of the result holds for outcome distributions.

Rationalizable Self-Confirming Equilibrium. —In a self-confirming equilibrium, 
agents are rational and their beliefs are confirmed. If the game is common knowl-
edge, it is interesting to explore the implications of assuming—on top of this—com-
mon (probability one) belief of rationality and confirmation of beliefs. Interestingly, 
the set of rationalizable SCEs thus obtained may be a strict subset of the set of SCEs 
consistent with common certainty of rationality, which in turn may be a strict subset 
of the set of SCEs.34 The separation between ambiguity attitudes and beliefs in the 
KMM smooth-ambiguity model allows for a relatively straightforward extension of 
this idea, which yields a notion of rationalizable SSCE, and a notion of rationaliz-
able SSC  E   DC  . For truly dynamic games, rationalizable SSC  E   DC   excludes outcome 
distributions that are allowed by either rationalizable SSCE, or mere SSC  E   DC  , as 
pointed out in the early literature on self-confirming equilibrium for the case of 
ambiguity neutral agents (e.g., Dekel, Fudenberg, and Levine 1999). The reason is 
that rationalizable beliefs must assign probability zero to opponents’ strategies that 
prescribe suboptimal actions at information sets off the equilibrium path. Hence, 
some “threats,” or “promises,” that support SSC  E   DC   outcomes may be deemed non-
credible according to rationalizable  SSC  E   DC  . We can easily extend our comparative 
statics result to rationalizable SSCE. As for rationalizable SSC  E   DC  , we can prove a 
version of the result for games where each player moves at most once (see Battigalli 
et al. 2014).

Mixed Strategies.—In our analysis, agents’ choice is restricted to pure strategies. 
This means that we do not allow them to commit to arbitrary objective randomiza-
tion devices. The equilibrium concept obtained by allowing mixed strategies is not a 
generalization of SSCE (or MSCE). This can be easily seen in the game of Figure 1. 
If player 1 delegates his choice to an objective randomization device that selects 
the high stakes subgame  M P   2   with probability one and splits evenly the probability 
mass on Head and Tail, he guarantees at least 2 utils in expectation. If this ran-
domized choice were available, no agent in population 1 would choose the outside 
option  O  or the low stakes subgame  M P   1   , and the unique SCE outcome would be 
the Nash outcome. In general, we can define notions of smooth and maxmin SCE 
whereby arbitrary randomizations are allowed, and show that the set of  maxmin 
SCEs is contained in the set of Bayesian SCEs. On the other hand, our result that 
under observable payoffs  BSCE ⊆ SSCE ⊆ MSCE  holds also when agents choose 
mixed strategies. We conclude that, if payoffs are observable and agents can com-
mit to delegate their choice of strategy to arbitrary randomization devices, then 
 ambiguity aversion does not affect the set of self-confirming equilibrium distribu-
tions (though, of course, their rationales can be very different).35

33 The proof, however, requires a nontrivial ancillary result. 
34 See Rubinstein and Wolinsky (1994) and Dekel, Fudenberg, and Levine (1999). See also the references to 

rationalizable SCE in Battigalli et al. (2011). 
35 See Section 6 in the working paper version (Battigalli et al. 2011). 
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The reason why we restrict choice to pure strategies is that credible randomiza-
tion requires a richer commitment technology than assumed so far. This can be seen 
by focusing on simultaneous-moves games, where playing a pure strategy simply 
means that an action is irreversibly chosen. But there is a commitment issue in 
playing mixed strategies. Suppose that an agent in population  i  believes that mixed 
strategy   σ  i  ∗   is optimal. If this is true for an ambiguity neutral (SEU) agent, then 
each action in the support of   σ  i  ∗   is also optimal, therefore   σ  i  ∗   can be implemented 
by mapping each action in supp   σ  i  ∗   to the realization of an appropriate roulette spin 
and then choosing the action associated with the observed realization. On the other 
hand, an ambiguity averse agent who finds   σ  i  ∗   optimal need not find all the actions 
in supp   σ  i  ∗   optimal within the simplex  Δ( S  i  ) . Therefore, unlike an ambiguity neutral 
agent, an ambiguity averse one has to be able to irreversibly delegate his choice to 
the random device. At the interpretive level, we are not really assuming that agents 
are prevented from using randomization devices: it may be the case that agents in 

population  i  have a set    S ˆ   i   ⊂  S  i    of truly pure strategies and that   S  i    also includes a 
finite set of choices that are realization-equivalent to randomizations over    S ˆ   i    .36 But, 
if this is the case, such commitment technology should be explicitly allowed by the 
rules of the game and represented in the game form.

Learning and Steady States.—Fudenberg and Levine (1993b) analyze agents’ 
learning in an overlapping generations model of a population game with stationary 
aggregate distributions. They show that steady-state strategy distributions approach 
a self-confirming equilibrium as agents’ life span increases. The intuition is that 
agents learn and experiment only when they are young; when the life span is very 
long, the vast majority of agents has approximately settled beliefs and choose stage-
game best responses to such beliefs. The stationarity assumption is a clever trick 
that allows using consistency and convergence results in Bayesian statistics about 
sampling from a “fixed urn” of unknown distribution.

The separation between ambiguity attitudes and beliefs in the KMM model 
allows us to analyze updating in a Bayesian fashion and attempt an extension of 
this result to SSCE. Our conjecture is that, as the life span increases, steady-state 
strategy distributions should approximate a smooth SCE even faster, because ambi-
guity averse agents stop experimenting sooner than ambiguity neutral ones. This 
can be more easily understood if agents observe only their own payoffs. In this case, 
choices that are perceived to give rise to uncertain posterior beliefs coincide with 
those that are perceived as ambiguous, i.e., those that yield uncertain distributions of 
payoffs. Therefore the choices that are worth experimenting with are exactly those 
that ambiguity averse agents tend to avoid.

Related Literature.—As we mentioned, our notion of SCE subsumes earlier defi-
nitions due to Battigalli (1987) and Fudenberg and Levine (1993a) as special cas-
es.37 These earlier definitions assume SEU maximization and apply to games in 

36 Of course, the definition of   F  i    has to be adapted accordingly, because   F  i  ( s  i  ,  s  −i  )  is a random message when   s  i    
is a randomization device. 

37 See also Battigalli and Guaitoli (1997). 
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extensive form with feedback functions   f  i   : Z →  M  i    defined on the set of terminal 
nodes  Z . We can fit this in our strategic-form framework letting   F  i  (s) =  f  i  (ζ(s))  , 
where  ζ : S → Z  is the outcome function associating strategy profiles with terminal 
nodes. Battigalli (1987) allows for general feedback functions   f  i    with observable 
payoffs, but he considers only equilibria where all agents playing in a given role 
have the same independent belief about opponents. Fudenberg and Levine (1993a) 
assume that players observe the terminal node reached (each   f  i    is one-to-one). Since 
payoffs are determined by end nodes, this implies that payoffs are observable.

We are not going to thoroughly review the vast literature on uncertainty 
and ambiguity aversion, which is covered in a comprehensive recent survey 
(Gilboa and Marinacci 2013). We only mention that in the paper we rely on the   
decision-theoretic framework of Cerreia-Vioglio et al. (2013a, b), which makes for-
mally explicit the decision maker’s uncertainty about the true probabilistic model, 
or data generating process.

To the best of our knowledge, the paper most related to our idea of combining 
SCE with non-neutral attitudes toward uncertainty is Lehrer (2012). In this paper, 
a decision maker is endowed with a partially specified probability (PSP), that is, a 
list of random variables defined on a probability space. The decision maker knows 
only the expected values of the random variables, hence he is uncertain about the 
true underlying probability measure within the set of all measures that give rise to 
such values. Lehrer (2012) axiomatizes a decision criterion equivalent to the maxi-
mization of the minimal expected utility with respect to the set of probability mea-
sures consistent with the PSP. Then he defines a notion of equilibrium with partially 
specified probabilities for a game played in strategic form. Lehrer’s equilibrium is 
similar to the one we obtain in the maxmin case,38 but his assumptions on informa-
tion feedback eliminate the status quo advantage of equilibrium strategies. To better 
compare our approach to Lehrer’s first note that, for each  i  and   s  i    , we have a PSP: the 
probability space is  ( S  −i  ,  σ −i  )  , the random variables are the indicator functions of the 
different messages (ex post observations), and their expectations are the objective 
probabilities of the messages given by distribution    F ˆ    s  i    ( σ −i  ) ∈ Δ(M) . However, in 
our paper, this PSP may depend on the chosen strategy   s  i   . Lehrer assumes instead 
that the PSP depends only on   σ −i    , not on   s  i   ; that is, he assumes  own-strategy inde-
pendence of feedback (in  n -person games he relies on an even stronger assump-
tion of separability of feedback across opponents). As we noticed, when this strong 
assumption is coupled with the rather natural assumption of observable payoffs, 
Nash equilibrium obtains. In other words, once the two frameworks are made com-
parable, our Proposition 1 shows that the intersection between the class of equilib-
ria considered in the present paper (where observability of payoffs is maintained) 
and those considered by Lehrer (2012) only consists of Nash equilibria. Battigalli 
et al. (2012) characterizes MSCE in greater detail according to the  properties of 
 information feedback, and provides a rigorous analysis of the relationship between 
MSCE and Lehrer’s equilibrium concept.

38 Lehrer considers mixed strategy equilibria and does not assume a population game scenario. His equilibrium 
concept should be compared to the version of MSCE where any mixed strategy is allowed, but all agents in a given 
role play the same strategy (see Battigalli et al. 2011, Section 6). 
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Appendix

A. Proof of Lemma 1

PROOF OF LEMMA 1:
Fix  i ∈ I  ,   s  i   ∈  S  i    , and   σ  −i  ∗   ∈ Δ ( S  −i  )  . Since payoffs are observable, the payoff 

function   U   s  i     :  S  −i   → ℝ  is      s  i     -measurable, and therefore, for every   σ −i   ∈   Σ ˆ   −i  ( s  i  ,  σ  −i  ∗  )  , 
we have

    U  i  ( s  i  ,  σ −i  ) =   ∑ 
 s  −i  ∈ S  −i  

    U  i  ( s  i  ,  s  −i  ) σ −i  ( s  −i  ) =  ∫  S  −i  
  

 
    U   s  i      dσ −i  

  =  ∫  S  −i  
  

 
    U   s  i      dσ −i|    s  i       =  ∫  S  −i  

  
 
    U   s  i      dσ  −i|    s  i      

∗   =  ∫  S  −i  
  

 
    U   s  i      dσ  −i  ∗  

  =   ∑ 
 s  −i  ∈ S  −i  

    U  i  ( s  i  ,  s  −i  ) σ  −i  ∗  ( s  −i  ) =  U  i  ( s  i  ,  σ  −i  ∗  ) ,

as wanted. ∎

B. Proofs for Section II

PROOF OF THEOREM 1:
For every  i  ∈  I  ,   s  i    ∈   S  i    ,  ( s  i  ∗ ,  σ  −i  ∗  )  ∈   S  i    ×  Δ( S  −i  )  ,   μ  s  i  ∗     with support in    Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  )  , 

and every   ϕ i    more ambiguity averse than   ψ i   

(14)    V  i  
 ψ i   ( s  i  ,  μ  s  i  ∗   ) ≥  V  i  

 ϕ i   ( s  i  ,  μ  s  i  ∗   ) ≥  V  i  ω ( s  i  ,  μ  s  i  ∗   ) ≥   min  
 σ −i  ∈  Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  )

  
 
   U  i  ( s  i  ,  σ −i  ). 

The last inequality is obvious because  supp μ  s  i  ∗    ⊆   Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  ) . The central inequal-
ity is also obvious if   ϕ i   = ω  , otherwise choose   σ  −i  ′   ∈ supp μ  s  i  ∗     such that

    U  i  ( s  i  ,  σ  −i  ′  ) =   min  
 σ −i  ∈supp μ  s  i  ∗   

  
 
   U  i   ( s  i  ,  σ −i  )  =  V  i  ω ( s  i  ,  μ  s  i  ∗   ) 

now

    V  i  
 ϕ i   ( s  i  ,  μ  s  i  ∗   ) =  ϕ  i  −1  ( ∫ supp μ  s  i  ∗   

  
 
     ϕ i  ( U  i  ( s  i  ,  σ −i  )) μ  s  i  ∗   (d σ −i  )) 

  ≥  ϕ  i  −1  ( ∫ supp μ  s  i  ∗   
  

 
     ϕ i  ( U  i  ( s  i  ,  σ  −i  ′  )) μ  s  i  ∗   (d σ −i  )) 

  =  ϕ  i  −1  ( ϕ i  ( U  i  ( s  i  ,  σ  −i  ′  )))  =  V  i  ω ( s  i  ,  μ  s  i  ∗   ) ,
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as desired. As for the first inequality of (14):

	 •	 	if	  ψ i   = ω  , then   ϕ i    , being more ambiguity averse than  ω  , coincides with  ω  , 
and the inequality is an equality;

	 •	 if	  ψ i   ≠ ω  and   ϕ i   = ω  , the inequality follows from the previous argument;
	 •	 	if	  ψ i   ≠ ω  and   ϕ i   ≠ ω  , then there exists a continuous concave and strictly 

increasing function   φ i    such that   ϕ i   =  φ i   ◦  ψ i    ,39 by the Jensen’s inequality 
we have

   V  i  
 ψ i   ( s  i  ,  μ  s  i  ∗   ) =  ψ  i  −1  ( ∫ supp μ  s  i  ∗   

  
 
     ψ i  ( U  i  ( s  i  ,  σ −i  )) μ  s  i  ∗    (d σ −i  )) 

  = ( ψ  i  −1  ◦  φ  i  −1 ) ◦  φ i   ( ∫ supp μ  s  i  ∗   
  

 
     ψ i  ( U  i  ( s  i  ,  σ −i  )) μ  s  i  ∗    (d σ −i  )) 

  ≥ ( ψ  i  −1  ◦  φ  i  −1 ) ( ∫ supp μ  s  i  ∗   
  

 
    ( φ i   ◦  ψ i  )( U  i  ( s  i  ,  σ −i  )) μ  s  i  ∗    (d σ −i  )) 

  =  ϕ  i  −1  ( ∫ supp μ  s  i  ∗   
  

 
     ϕ i  ( U  i  ( s  i  ,  σ −i  )) μ  s  i  ∗    (d σ −i  ))  =  V  i  

 ϕ i   ( s  i  ,  μ  s  i  ∗   ) .

Now let   σ   ∗   be a SSCE of the less ambiguity averse game   (G, ψ)  . Fix  i ∈ I  , and 
pick   s  i  ∗  ∈ supp σ  i  ∗   ,   μ  s  i  ∗     with support in    Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  )  such that

(15)    s  i  ∗  ∈   arg max  
 s  i  ∈ S  i  

      V  i  
 ψ i   ( s  i  ,  μ  s  i  ∗   ). 

We want to show that

(16)    s  i  ∗  ∈   arg max  
 s  i  ∈ S  i  

      V  i  
 ϕ i   ( s  i  ,  μ  s  i  ∗   ), 

which implies the first claim. Since payoffs are observable, by Lemma 1,   U  i  ( s  i  ∗ ,  σ −i  ) 
=  U  i  ( s  i  ∗ ,  σ  −i  ∗  )  for every   σ −i   ∈   Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  ) ⊇ supp μ  s  i  ∗    . Thus

(17)   U  i  ( s  i  ∗ ,  σ  −i  ∗   )  =   V  i  
 ϕ i   ( s  i  ∗ ,  μ  s  i  ∗   )  =   V  i  

 ψ i   ( s  i  ∗ ,  μ  s  i  ∗   )  =   V  i  ω ( s  i  ∗ ,  μ  s  i  ∗   )  =    min  
 σ −i  ∈  Σ ˆ   −i  ( s  i  ∗ ,  σ  −i   ∗  )

  
 
   U  i  ( s  i  ∗ ,  σ −i  ) 

concluding the proof of the first part of the statement since, together with (15) and 
(14), it delivers (16), in fact

    V  i  
 ϕ i   ( s  i  ∗ ,  μ  s  i  ∗   ) =  V  i  

 ψ i   ( s  i  ∗ ,  μ  s  i  ∗   ) ≥  V  i  
 ψ i   ( s  i  ,  μ  s  i  ∗   ) ≥  V  i  

 ϕ i   ( s  i  ,  μ  s  i  ∗   ) ∀  s  i   ∈  S  i  . 

39 Note that   ϕ i  ,  ψ i   :   i   → ℝ  are continuous and    i    is connected. Moreover,   φ i   :  ψ i   (  i  )  → ℝ  is increasing and 
such that   ϕ i   =  φ i   ◦  ψ i   . Therefore   φ i    is continuous too. 
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We now prove that all SSCEs are MSCEs. Let   σ   ∗   be an SSCE of a game  (G, ψ) . 
Fix  i ∈ I  , and pick   s  i  ∗  ∈ supp σ  i  ∗   ,   μ  s  i  ∗     with support in    Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  )  such that (15) 
holds. By (17), we have

     min  
 σ −i  ∈  Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  )

  
 
   U  i  ( s  i  ∗ ,  σ −i  ) =  U  i  ( s  i  ∗ ,  σ  −i  ∗  ) =  V  i  

 ψ i   ( s  i  ∗ ,  μ  s  i  ∗   ), 

thus (15) and (14) deliver

    min  
 σ −i  ∈  Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  )

  
 
   U  i  ( s  i  ∗ ,  σ −i  ) =  V  i  

 ψ i   ( s  i  ∗ ,  μ  s  i  ∗   ) ≥  V  i  
 ψ i   ( s  i  ,  μ  s  i  ∗   ) ≥   min  

 σ −i  ∈  Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  )
  

 
   U  i  ( s  i  ,  σ −i  ) 

for all   s  i   ∈  S  i    , as wanted. ∎

PROOF OF LEMMA 2:
Fix a mixed strategy Nash equilibrium   σ   ∗   of  G . Pick any  i  and pure strategy 

  s  i  ∗  ∈  supp    σ  i  ∗  . Then   U  i   ( s  i  ∗ ,  σ  −i   ∗  )  ≥  U  i   ( s  i  ,  σ  −i   ∗  )   for each   s  i   ∈  S  i   . By defini-
tion, it holds   σ  −i  ∗   ∈   Σ ˆ   −i  ( s  i  ∗ ,  σ  −i   ∗  )  , hence,   δ   σ  −i  ∗      has support in    Σ ˆ    −i  

 
  ( s  i  ∗ ,  σ  −i   ∗  ) . Since 

  V  i  
 ϕ i    ( s  i  ,  δ   σ  −i   ∗    )  =  U  i   ( s  i  ,  σ  i  ∗ )   for every weighting function   ϕ i    and   s  i   ∈  S  i    , it follows that   

σ   ∗   is an SSCE of   (G, ϕ)  . ∎

PROOF OF PROPOSITION 1:
Given the previous results, we only have to show that every MSCE is a Nash 

equilibrium. Fix an MSCE   σ   ∗  , any player  i  and any   s  i  ∗  ∈  supp   σ  i  ∗   , then,

     min  
 σ −i  ∈  Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  )

  
 
   U  i  ( s  i  ∗ ,  σ −i  ) ≥   min  

 σ −i  ∈  Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  )
  

 
   U  i  ( s  i  ,  σ −i  )  ∀  s  i   ∈  S  i  . 

By Lemma 1, observability of payoffs implies   U  i  ( s  i  ,  σ −i  ) =  U  i  ( s  i  ,  σ  −i  ∗  )  for every   s  i    
and   σ −i   ∈   Σ ˆ   −i  ( s  i  ,  σ  −i  ∗  ) . Own-strategy independence of feedback implies that, for 
each   s  i    ,      s  i     =     s  i  ∗    , hence

     Σ ˆ   −i  ( s  i  ,  σ  −i  ∗  ) =  { σ −i   ∈  Π  j≠i  Δ( S  j  ) :  σ −i|    s  i       =  σ  −i|    s  i      
∗  } 

 =  { σ −i   ∈  Π  j≠i  Δ( S  j  ) :  σ −i|    s  i  ∗   
   =  σ  −i|    s i  ∗   

  ∗  }  =   Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  ) .

From the above equalities and inequalities we obtain, for each   s  i    ,

   U  i  ( s  i  ∗ ,  σ  −i  ∗  ) =   min  
 σ −i  ∈  Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  )

  
 
   U  i  ( s  i  ∗ ,  σ −i  ) ≥   min  

 σ −i  ∈  Σ ˆ   −i  ( s  i  ∗ ,  σ  −i  ∗  )
  

 
   U  i  ( s  i  ,  σ −i  )

 =   min  
 σ −i  ∈  Σ ˆ   −i  ( s  i  ,  σ  −i  ∗  )

  
 
   U  i  ( s  i  ,  σ −i  ) =  U  i  ( s  i  ,  σ  −i  ∗  )  .

This shows that   σ   ∗   is a Nash equilibrium. ∎
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C. Proofs for Section III

PROOF OF PROPOSITION 2:
For any prior   μ 1    , the ambiguity neutral subjective value of playing any Matching 

Pennies subgame  k  is

  max  { V  1   ( H   k ,  μ 1  ) ,  V  1   ( T   k ,  μ 1  ) } 

   = max  {  μ ̅    1  k   ( h   k ) (n + 2(k − 1)) +  (1 −   μ ̅    1  k   ( h   k ) ) (n − k),

   μ ̅    1  k   ( h   k ) (n − k) +  (1 −   μ ̅    1  k   ( h   k ) ) (n + 2(k − 1))} 

  ≥ n − 1 +   k _ 
2
   > n − 1 + ε =  u  1  (O) ,

where  n − 1 + k/2  is the mixed maxmin value of subgame  k  ,    μ ̅    1  k   = mr g  S  2.k       μ ̅   1    
and    μ ̅   1    is the predictive belief. Therefore  O  cannot be played by a positive fraction of 
agents in a BSCE because it cannot be a best response to any predictive belief    μ ̅   1    .40 
Furthermore, no strategy   H   k   or   T   k   with  k < n  can have positive measure in a BSCE. 
Indeed, by (9), if   s  1  k  ∈  { H   k ,  T   k }   has positive probability in an equilibrium   σ   ∗   , then 
for every belief   μ 1   ∈ Δ(  Σ ˆ   2  ( s  1  k ,  σ  2  ∗ ))  , the value of   s  1  k   is

    V  1  ( s  1  k ,  μ 1  ) =  U  1   ( s  1  k ,  σ  −{1, 2.k}  ∗   ×  (  1 _ 
2
    h   k  +   1 _ 

2
    t   k ) )  = n − 1 +   k _ 

2
  , 

while the ambiguity neutral value of deviating to subgame  n  is

   max { V  1  ( H   n ,  μ 1  ),  V  1  ( T   n ,  μ 1  )} ≥ n − 1 +   n _ 
2
   . 

Therefore, equation (9) implies   σ  1  ∗ ( H   n ) =  σ  1  ∗ ( T    n ) =  σ  2.n  ∗  ( h   n ) =   1 _ 2    in each BSCE   
σ   ∗  . It is routine to verify that every such   σ   ∗   is also a Nash equilibrium. Therefore  
BSCE = NE . ∎

The proof of Lemma 4 is based on the following lemma, where  I  is the unit inter-
val   [0, 1]   endowed with the Borel  σ -algebra.

LEMMA 6: Let  φ : I → ℝ  be increasing and concave. For each Borel probability 
measure  μ  on  I 

(18)   max  { ∫ 
I
  
 
  φ ( x )  μ (dx ) ,  ∫ 

I
  
 
  φ (1 − x )  μ (dx ) }  ≥   1 _ 

2
   φ (1)  +   1 _ 

2
   φ (0)  . 

40 Recall that given a prior   μ i    on a Borel subset   Σ −i    of  Δ ( S  −i  )   , its predictive    μ –   i    is defined by

      μ –   i   ( s  −i  )  =  ∫ 
Σ−i

  
 
    σ −i   ( s  −i  )   μ i   (d σ −i  ) . 
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PROOF:
Let

    τ  :  I  →  I   
 
  

x
  

↦
  

1 − x
  . 

Then

    ∫ 
I
  
 
  φ (1 − x )  μ (dx )  =  ∫ 

I
  
 
  φ (τ  ( x ) )  μ (dx )  =  ∫ 

I
  
 
  φ ( y)   μ τ    (dy)  

where   μ τ   = μ ◦  τ   −1  . In particular, for  φ = i d I    it follows that  1 −  ∫ I   
 
   xμ (dx )  

=  ∫ I   
 
   y μ τ   (dy)  . Thus (18) becomes

   max  { ∫ 
I
  
 
  φ ( x )  μ (dx ) ,  ∫ 

I
  
 
  φ ( x )   μ τ   (dx ) }  ≥   1 _ 

2
   φ (1)  +   1 _ 

2
   φ (0)  

and either   ∫ I   
 
   xμ (dx )  ≥ 1/2  or   ∫ I   

 
   y μ τ   (dy)  ≥ 1/2 . Next we show that for each Borel 

probability measure  ν  on  I  such that   ∫ I   
 
   xν (dx )  ≥ 1/2 

(19)    ∫ 
I
  
 
  φ ( x )  ν  (dx )  ≥   1 _ 

2
   φ (1)  +   1 _ 

2
   φ (0) . 

Denote by  F ( x )  = ν  ( [0, x ] )   and by  G ( x )  =  (  1 _ 2    δ  0   +   1 _ 2    δ  1  )   ( [0, x ] )  .  In particular,  F  

and  G  are increasing, right continuous, and such that  F (1)  = G (1)  = 1  , more-
over,  G ( x )  = 1/2  for all  x ∈  [0, 1)  . Note that there exists   x –  ∈  (0, 1)   such that 
 F ( x – )  ≤ 1/2 . By contradiction, assume  F ( x )  > 1/2  for all  x ∈  (0, 1)   , then

     1 _ 
2
   ≤  ∫ 

I
  
 
  xν (dx )  =  ∫ 

0
  
1
   (1 − F ( x ) )  dx <   1 _ 

2
  , 

a contradiction. Let   x   ∗  = inf  { x ∈ I : F ( x )  > 1/2}   , then  0 <  x –  ≤  x   ∗  ≤ 1 .
Therefore  F (1)  = G (1)  = 1  and for each  y ∈  ( x   ∗ , 1)   ,  F ( y)  ≥ F ( x   ∗ )  ≥ 1/2  

≥ G ( y)  . For each  y ∈  [0,  x   ∗ )   ,  F ( y)  ≤ 1/2 ≤ G ( y)  . Finally, by the classic Karlin-
Novikoff (1963) result  F  second-order stochastically dominates  G  , that is (19) holds 
for all increasing and concave  φ . ∎

PROOF OF LEMMA 4:
Let  x =  σ 2.k   ( h   k )  . Clearly   U  1   ( H   k ,  σ 2  )   depends only on  x  and we can write 

  U  1   ( H   k , x )  , and similarly for   T   k  . Let  φ ( x )  =  ϕ 1   ( U  1   ( H   k , x ) )  . By symmetry of the 

payoff matrix,  φ (1 − x )  =  ϕ 1   ( U  1   ( T   k , x ) )  . Note that  φ  is strictly increasing and 
concave. Let  μ ∈ Δ(I)  be the marginal belief about  x =  σ 2.k   ( h   k )   derived from   μ 1   . 
Recall that   ν  1    is a prior such that  mr g Δ ( S  2.j  )    ν  1   =   1 _ 2    δ   h   j    +   1 _ 2    δ   t   j    . With this,

   max  { V  1  
 ϕ 1    ( H   j ,  μ 1  ) ,  V  1  

 ϕ 1    ( T   j ,  μ 1  ) } 

  = max  { ϕ  1  −1  ( ∫ 
I
  
 
  φ ( x )  μ (dx ) ) ,  ϕ  1  −1  ( ∫ 

I
  
 
  φ (1 − x )  μ (dx ) ) } 

  =  ϕ  1  −1  (max  { ∫ 
I
  
 
  φ ( x )  μ (dx ) ,  ∫ 

I
  
 
  φ (1 − x )  μ (dx ) } )   
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and

    V  1  
 ϕ 1    ( H   j ,  ν  1  )  =  V  1  

 ϕ 1    ( T   j ,  ν  1  )  =  ϕ  1  −1  (  1 _ 
2
  φ (1)  +   1 _ 

2
  φ (0) )  . 

Hence, the thesis is implied by Lemma 6. ∎

PROOF OF PROPOSITION 3:
By Lemma 3,  SSCE(α)  is determined by the set of pure strategies of player  1  

that can be played by a positive fraction of agents in equilibrium. Fix   σ   ∗  ∈  Σ   ∗    , i.e., 
a distribution profile that satisfies the necessary SCE conditions, and a strategy   s  1   ; 
  σ  1  ∗ ( s  1  ) > 0  is possible in equilibrium if and only if there are no incentives to deviate 
to any subgame  j . We rely on Lemma 4 to specify a belief   μ  1  

 s  1    ∈ Δ (  Σ ˆ   2  ( s  1  ,  σ  2  ∗ ))   that 
minimizes the incentive to deviate. Thus,   s  1    can be played in equilibrium if and only 
if it is a best reply to   μ  1  

 s  1    . Specifically,

    μ  1  O  =  ×  j=1  n   (  1 _ 
2
    δ   h   j    +   1 _ 

2
    δ   t   j   )  ∈ Δ(  Σ ˆ   2  (O,  σ  2  ∗ )) = Δ ( Π  j=1  n  Δ ( S  j.k  ) ) , 

for each  k = 1, … , n − 1  and   s  1  k  ∈  { H   k ,  T   k }   ,

    μ  1  k   =  δ    1 __ 
2
   h   k +  1 __ 

2
   t   k    ×  ( ×  j≠k   (  1 _ 2   δ   h   j    +   1 _ 2   δ   t   j   ) )  

belongs to  Δ (  Σ ˆ   2   ( s  1  k ,  σ  2  ∗ ) )  = Δ ( { σ 2   :  σ 2, k   =   1 _ 2    h   k  +   1 _ 2    t   k } )  . Given such beliefs, 

the value of deviating from   s  1    to subgame  j  is  M (α, n − j, n + 2 ( j − 1) )  . Therefore,  
O  is a best reply to   μ  1  O   , and can have positive measure in equilibrium, if and only if

(20)   n − 1 + ε ≥   max  
j∈{1, … , n}

     M (α, n − j, n + 2 ( j − 1) ) . 

By Lemma 5 there is a unique threshold   α n   > 0  that satisfies (20) as an equality so 
that (20) holds if and only if  α ≥  α n   . Similarly,   s  1  k  ∈  { H   k ,  L   k }   ( k = 1, … , n − 1 ) 
is a best reply to   μ  1  k    , and can have positive measure in equilibrium, if and only if

(21)   n − 1 +   k _ 
2
   ≥   max  

j∈{1, … , n}
     M (α, n − j, n + 2 ( j − 1) ) , 

where

     max  
j∈{1, … , n}

     M (α, n − j, n + 2 ( j − 1) )  =   max  
j∈{k+1, … , n}

     M (α, n − j, n + 2 ( j − 1) )  

because, for all  α > 0  and  j ≤ k 

   M (α, n − j, n + 2 ( j − 1) )  < n − 1 +   j _ 
2
   ≤ n − 1 +   k _ 

2
  . 

By Lemma 5 there is a unique threshold   α n−k   > 0  that satisfies (21) as an equality 
so that (21) holds if and only if  α ≥  α n−k   . Since  M( · , x, y)  is strictly decreasing if  
x ≠ y  , the thresholds are strictly ordered:   α 1   <  α 2   < ⋯ <  α n   . It follows that, for 
each  k = 1, … , n − 1  ,   σ   ∗  ( {O,  H   1 ,  T   1 , … ,  H   k ,  T   k } )  = 0  for every   σ   ∗  ∈ SSCE(α)  
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if and only if  α <  α n−k    , and every strategy has positive measure in some SSCE if  
α  is large enough (in particular if  α ≥  α n   ). Since the equilibrium set in this case is   
Σ   ∗   , which is defined by necessary SCE conditions, this must also be the MSCE set. 
If  α <  α 1    , then   σ   ∗  ( {O,  H   1 ,  T   1 , … ,  H   n−1 ,  T   n−1 } )  = 0  for each   σ   ∗  ∈ SSCE(α) ; by 
Proposition 2,  SSCE(α) = BSCE = NE  in this case. ∎
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