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NOTES AND COMMENTS

A NOTE ON COMPARATIVE AMBIGUITY AVERSION
AND JUSTIFIABILITY

BY P. BATTIGALLI, S. CERREIA-VIOGLIO,
F. MACCHERONI, AND M. MARINACCI1

We consider a decision maker who ranks actions according to the smooth ambiguity
criterion of Klibanoff, Marinacci, and Mukerji (2005). An action is justifiable if it is a
best reply to some belief over probabilistic models. We show that higher ambiguity aver-
sion expands the set of justifiable actions. A similar result holds for risk aversion. Our
results follow from a generalization of the duality lemma of Wald (1949) and Pearce
(1984).

KEYWORDS: Comparative ambiguity aversion, justifiability, rationalizability.

1. INTRODUCTION

IN THIS NOTE, we consider a decision maker (DM) who ranks alternatives un-
der uncertainty. The DM holds subjective beliefs over a set of probabilistic
models Σ⊆ Δ(S), where S is a set of states of nature. We assume that the DM
ranks actions according to the smooth ambiguity criterion of Klibanoff, Mari-
nacci, and Mukerji (2005). With this, we show that higher ambiguity aversion
expands the set of actions that are best replies to at least one belief; for brevity,
we call such actions “justifiable.” Empirically, they are the actions that an out-
side observer can infer as possible from the knowledge of the DM attitudes
toward uncertainty. Our result shows that such an inference becomes coarser
as ambiguity aversion increases. We derive our result from a generalization of
the duality lemma of Wald (1949) and Pearce (1984) which should be of inde-
pendent interest.

Another consequence of this duality lemma is that, under ambiguity neutral-
ity, higher risk aversion expands the set of justifiable actions. This risk version
of our result was independently obtained by Weinstein (2016) for subjective
expected utility maximizers in finite games (see Section 4 for a detailed dis-
cussion).2 For expositional purposes and to exploit economies of scope, we
present the results regarding comparative risk aversion and comparative am-
biguity aversion jointly.

At first sight, the result might be counterintuitive. Indeed, if the DM deems
possible very different probabilistic models, then higher ambiguity aversion

1We thank Nicodemo De Vito, Amanda Friedenberg, Kelly Gail Strada, and Jonathan Wein-
stein for their comments. Pierpaolo Battigalli acknowledges the financial support of ERC (Grant
324219), Simone Cerreia-Vioglio and Fabio Maccheroni of MIUR (PRIN 20103S5RN3_005),
and Massimo Marinacci of AXA Research Fund.

2We thank Amanda Fridenberg for making us aware of this work.
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increases the attractiveness of “safe” actions whose objective expected util-
ity is somewhat low for each model, but does not change much with the model.
Given the same belief over probabilistic models, actions that give high expected
utility for some models and low expected utility for other models become in-
stead less attractive. Yet, an increase in ambiguity aversion cannot make such
actions unjustifiable, because—regardless of ambiguity attitudes—they can al-
ways be justified by extreme beliefs assigning high probability to models under
which they yield high objective expected utility.

This comparative statics result is analogous to another result of ours, which
also relies on the smooth ambiguity criterion: higher ambiguity aversion ex-
pands the set of self-confirming equilibria (Battigalli, Cerreia-Vioglio, Mac-
cheroni, and Marinacci (2015)).3 However, as argued in Section 4, the simi-
larity between these results is only superficial, because they rely on different
assumptions about the decision or game problem and have very different ex-
planations.

The rest of the note is structured as follows. Section 2 presents the decision
criterion we use. Section 3 contains our main results. Our findings are dis-
cussed in Section 4 where we also briefly discuss alternative decision models.
All proofs are relegated to Appendix 4, where we state and prove the abstract
version of the duality lemma of Wald (1949) and Pearce (1984) which underlies
our analysis.

2. CRITERION

We consider a standard decision problem under uncertainty with action
space A, state space S, and payoff function r : A × S → R. We assume that
A and S are separable metric spaces and r is continuous in each component
and bounded. The payoff function may be interpreted as the composition of
a consequence function, or game form, g : A × S → C , where C is the con-
sequence space, and a von Neumann–Morgenstern utility function u : C → R,
that is, r = u ◦ g. For interpretational and expositional purposes, we assume
that consequences are monetary, that is, C ⊆R.

Let Σ be a nonempty closed subset of the collection Δ(S) of all Borel prob-
ability measures σ on the state space, each σ being interpreted as a possible
stochastic model for states.4 Actions are ranked by the smooth ambiguity cri-
terion Vφ�r :A×Δ(Σ)→ R given by

Vφ�r(a�μ)=φ−1

(∫
Σ

φ

(∫
S

r(a� s)σ(ds)
)
μ(dσ)

)
�

3In the working paper version of this manuscript, we also show that higher ambiguity aversion
expands the set of rationalizable actions of a game, when the rationalizability concept is modified
to take into account ambiguity attitudes.

4In this presentation of the results, to fix ideas the reader can think of all sets defining the
decision problem as finite. In Appendix 4, we prove our results in the general setting.
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where φ : co Im r → R is strictly increasing and continuous, and μ is a subjec-
tive probability measure on the posited set of stochastic models Σ.5 Function
φ is also known as the second-order utility because it can be interpreted as the
“utility of objective expected utility.” When φ is the identity, the criterion re-
duces to standard subjective expected utility, that is,

VId�r(a�μ)=
∫
Σ

∫
S

r(a� s)σ(ds)μ(dσ)=
∫
S

r(a� s)σμ(ds)�

where, for any (measurable) event E ⊆ S, σμ(E) = ∫
Σ
σ(E)μ(dσ) is the pre-

dictive probability of E induced by μ. Function φ captures the DM’s attitudes
toward ambiguity, whereas r = u ◦ g captures attitudes toward risk.

3. MAIN RESULTS

3.1. Justifiability

DEFINITION 1: The collection of justifiable actions for ambiguity attitudes φ
and risk attitudes r given Σ is

Jφ�r(Σ)= {
a ∈A : ∃μ ∈ Δ(Σ)�∀a′ ∈A�Vφ�r(a�μ)≥ Vφ�r

(
a′�μ

)}
�

In words, Jφ�r(Σ) is the collection of all actions that are best replies, accord-
ing to Vφ�r , to some belief μ over Σ.6

3.2. Risk Attitudes

We first consider higher risk aversion in the subjective expected utility case.
In our monetary setup, r ′ =ψ◦ r = (ψ◦u)◦g, with ψ concave, continuous, and
strictly increasing, is the payoff function of a more risk averse DM. The follow-
ing proposition says that, assuming ambiguity neutrality (φ= Id), a more risk
averse DM has more justifiable actions. We denote by δs the Dirac probability
measure supported by state s.

PROPOSITION 1: Let S be compact and {δs}s∈S ⊆ Σ. If r ′ =ψ ◦ r for some con-
cave, continuous, and strictly increasing functionψ : co Im r →R, then JId�r(Σ)⊆
JId�r′(Σ).

5Here co Im r is the smallest closed interval that contains the image Im r of the payoff func-
tion r.

6The terminology is inspired by Milgrom and Roberts (1991). Lehrer and Teper (2011) have
introduced a new class of “justifiable preferences” under uncertainty. The connection with our
notion of justifiability is, however, limited: ours is just the old best-reply-to-some-belief concept,
here applied to the smooth ambiguity model.
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EXAMPLE 1: Consider the following game form with monetary conse-
quences:

g: s′ s′′

t 0 1
m 1

3
1
3

b 1 0

(1)

Suppose the DM is a subjective expected utility maximizer (φ= Id). If the DM
is risk neutral (r = g), action m is unjustifiable: for every belief μ ∈ Δ(Σ),

VId�g(m�μ)= 1
3
<

1
2

≤ max
{
σμ

(
s′
)
�1 − σμ

(
s′
)}

= max
{
VId�g(b�μ)�VId�g(t�μ)

}
�

If Σ contains the two Dirac measures δs′ and δs′′ , that is, S is embedded in Σ,
then JId�g(Σ)= {t� b}. In particular b (resp., t) is a best reply to μ if and only if
σμ(s

′)≥ 1/2 (resp., σμ(s′)≤ 1/2). Now suppose that the DM is risk averse, with
a power utility function uθ(c)= c1/θ (where θ≥ 1 parameterizes risk aversion).
Then, the payoff function is rθ = uθ ◦ g and

JId�rθ(Σ)=
{ {t� b}� θ < θ̄,

{t�m�b}� θ≥ θ̄,

where θ̄ = log2 3 solves uθ(g(m)) = 1/2. The collection of justifiable actions
thus expands as θ increases. Note, however, that the sets of beliefs justifying
the risky actions b and t shrink as soon as θ increases above the threshold.7
Also note that the assumption {δs}s∈S ⊆ Σ is needed. Otherwise, if δs /∈ Σ (com-
pact) for some s, either VId�rθ(b�μ) = σμ(s

′) or VId�rθ(t�μ)= σμ(s
′′) is below 1

whereas VId�rθ(m�μ)= (1/3)1/θ → 1 as θ→ +∞.

3.3. Ambiguity Attitudes

Next we consider a change in ambiguity attitudes. The following proposition
says that a more ambiguity averse DM has a larger set of justifiable actions.
As argued in the Introduction, the result is not intuitively obvious. Note that
the hypothesis of Σ being compact is weaker than the hypothesis, made in the
previous proposition, of S being compact.

PROPOSITION 2: Let Σ be compact. If φ′ = ϕ ◦φ for some concave, continu-
ous, and strictly increasing function ϕ : co Imφ→ R, then Jφ�r(Σ)⊆Jφ′�r(Σ).

7We comment on this matter in more detail in the next example, which deals with the analogous
case of an increase in ambiguity aversion.
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EXAMPLE 2: Consider again the game form (1) and suppose, just for simplic-
ity, that the DM is risk neutral, that is, r = g, and Σ = {δs′� δs′′ }. Let φθ(x) =
x1/θ, where θ≥ 1 parameterizes ambiguity aversion. Then, it can be shown that
the belief μ that maximizes Vφθ�g(m�μ)− max{Vφθ�g(t�μ)�Vφθ�g(b�μ)} satisfies
μ(δs′)= μ(δs′′)= 1/2 (cf. Battigalli et al. (2015, Lemma 6)). With this, calcu-
lations similar to those of Example 1 yield

Jφθ�r(Σ)=
{

{t� b}� θ < θ̄,
{t�m�b}� θ≥ θ̄,

where θ̄ = log2 3 solves φθ(g(m)) = 1/2. The collection of justifiable actions
thus expands as θ increases. Note, however, that the sets of beliefs justify-
ing ambiguous actions b and t shrink: In fact, Vφθ�g(m�μ) = 1/3 regardless
of θ, whereas Vφθ�g(b�μ)= (μ(δs′))θ and Vφθ�g(t�μ)= (μ(δs′′))θ are strictly de-
creasing in θ if 0<μ(δs′)�μ(δs′′) < 1; as θ increases above the threshold θ̄, the
probability μ(δs′) must increase to make b a best reply, and similarly for t. See
Figure 1: On the horizontal (resp., vertical) axis we report the second-order
utility of objective expected utility given model σ1 = δs′ (resp., σ2 = δs′′). As
ambiguity aversion increases, the expected utility vector corresponding to ac-
tion m shifts north-eastward.

To sum up, higher aversion to either ambiguity or risk (under ambiguity neu-
trality) expands the collection of justifiable actions. As for the set of beliefs
justifying any action, we can only say that, if it is not empty, an increase in risk
or ambiguity aversion cannot make it empty. Propositions 1 and 2 are purely
comparative results which do not require either risk or ambiguity aversion, that
is, the functions u and φ are not assumed to be concave.

FIGURE 1.—As θ increases, the sets of beliefs justifying b and t shrink.



1908 BATTIGALLI, CERREIA-VIOGLIO, MACCHERONI, AND MARINACCI

The proof is based on an abstract version of the duality lemma of Pearce (cf.
Pearce (1984, Lemma 3)) presented in Appendix 4, which is a version of the
classic Complete Class Theorem of Wald (see, e.g., Wald (1949, Theorem 2.2)).

4. DISCUSSION

We conclude by discussing the related literature and some aspects of our
work.

A Superficial Analogy. First we compare our result with Battigalli et al.
(2015) and explain the difference. In that paper, we proved that higher am-
biguity aversion expands the set of self-confirming equilibria, a steady-state
phenomenon resulting from the strong discipline on beliefs that the notion
of self-confirming equilibrium imposes by requiring their consistency with the
long-run data that agents observe in recurrent interaction. Specifically, assum-
ing that each agent observes at least his realized payoff in each play, self-
confirming equilibrium actions are perceived as unambiguous best replies by
players, whereas unused alternatives are typically perceived as ambiguous.
Therefore, holding beliefs fixed, an increase in ambiguity aversion leaves the
value of self-confirming actions unaltered, but decreases the value of unused
alternatives. This implies that, for each equilibrium action, the set of confirmed
beliefs justifying it expands as ambiguity aversion increases. All this stands in
sharp contrast with the justifiability result of the present work: Here we are
not trying to characterize steady-state actions; hence, feedback is irrelevant
and beliefs are not restricted by experience (although, in games, rationalizable
beliefs are restricted by strategic thinking). Therefore, a justifiable action may
well be perceived as ambiguous. In this case, as ambiguity aversion increases,
the set of beliefs justifying this action typically shrinks, as demonstrated by our
examples.

Criterion. As explained above, our work builds on the choice model of
Klibanoff, Marinacci, and Mukerji (2005) and the duality lemma of Wald
(1949) reintroduced into game theory by Pearce (1984). We use the smooth
ambiguity model for two reasons. (i) It is portable, that is, it parameterizes
personality traits that agents are supposed to exhibit in any decision problem:
risk attitudes given by the von Neumann–Morgenstern utility function u and
ambiguity attitudes given by the second-order utility function φ. Such person-
ality traits can be assumed to be constant across decision, or game, situations;
state spaces and beliefs, on the other hand, change according to the situation.
(ii) Under this model, an increase in ambiguity aversion is represented by a
concave strictly increasing transformation of φ, which by a fortuitous coinci-
dence (see Remark 1 in Appendix 4) allows us to rely on the general version of
the duality lemma.

As for (i), we could think of alternative models sharing the same properties
of portability (see, e.g., eq. (13) of Battigalli et al. (2015)). However, we feel
that the smooth ambiguity model—among the known models of decision mak-
ing under ambiguity—is the one where these features are most evident. As for
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the possibility to extend our comparative statics result (point ii), it may be nat-
ural to consider the class of preferences that can be represented by quasicon-
cave utility functionals on R

S . Yet, such an extension does not hold. We can see
this by comparing justifiability under the smooth ambiguity criterion with jus-
tifiability under the maxmin criterion. Indeed, as ambiguity aversion becomes
higher and higher, that is, as −φ′′/φ′ ↑ +∞, we have larger and larger collec-
tions Jφ�r(Σ) of justifiable actions and it is natural to wonder how this property
relates to the fact that the Vφ�r(a�μ) criterion tends to the maxmin criterion
V∞�r(a�μ) = minσ∈suppμ

∫
S
r(a� s)σ(ds), which is a version of the classic crite-

rion of Gilboa and Schmeidler (1989).8 At the same time, the V∞�r criterion be-
longs to the aforementioned class of “quasiconcave” preferences and is more
ambiguity averse than Vφ�r for every concave φ. Nevertheless, we can construct
an example where an action (h below) is justifiable for every criterion Vφ�r , but
not for the more ambiguity averse criterion V∞�r .

EXAMPLE 3: Consider the payoff function:

r: s′ s′′

t 0 1
h c′ c′′

m ε ε
b 1 0

Assume Σ= {δs′� δs′′ } and set c′ = 2/7, ε= 1/3, and c′′ = 6/7. On the one hand,
if the DM is ambiguity neutral, φ = Id, action h is justifiable (according to
the uniform belief). Hence, h ∈ JId�r(Σ) and, by Proposition 2, h ∈ Jφ�r(Σ)
for all concave φ ∈ Φ, where Φ is the collection of continuous and strictly
increasing real-valued functions on co Im r. On the other hand, one can show
that h /∈J∞�r(Σ).9 Alternatively, if c′ = ε= 1/3< c′′ < 1, it is easy to check that
m ∈J∞�r(Σ), but m /∈ ⋃

φ∈ΦJφ�r(Σ).

To sum up, the previous example shows that there are actions that are justifi-
able under all smooth ambiguity criteria with concave φ ∈Φ but not under the
maxmin criterion, as well as actions that are justifiable under the maxmin crite-
rion V∞�r but not under any smooth ambiguity criterion Vφ�r with φ ∈Φ.10 This
implies that (1) our comparative result does not extend to all “quasiconcave”

8See Klibanoff, Marinacci, and Mukerji (2005, p. 1867).
9The set J∞�r(Σ) is defined as Jφ�r(Σ) just by replacing Vφ�r with V∞�r . The failure of the

inclusion
⋃
φ∈ΦJφ�r(Σ)⊆ J∞�r(Σ) further exemplifies how feeble is the connection with the com-

parative result of Battigalli et al. (2015), where the set of smooth self-confirming equilibria is
included in the set of maxmin ones.

10For a more thorough discussion of the maxmin case, we refer the interested reader to the
working paper version of this manuscript.
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preferences, and (2) the justifiability correspondence φ 
→ Jφ�r(Σ) is neither
upper nor lower hemicontinuous at “infinite” ambiguity aversion.

Weinstein. Our Proposition 1 implies, by means of an induction argument,
that the set of normal-form rationalizable strategy profiles of a game with am-
biguity neutral players expands as risk aversion increases. This is also the con-
tent of Proposition 1 in Weinstein (2016), the work most related to ours.11 On
the one hand, our note can be seen as a generalization of this (independent) re-
sult about comparative risk aversion and rationalizability. It is a generalization
because Weinstein considered finite games, while we allow for a continuum
of actions and states. It is also an extension because we allow for non-neutral
ambiguity attitudes and study the effect of changes in ambiguity aversion. On
the other hand, Weinstein (2016) also studied other solution concepts as well
as the limits of rationalizability and other solutions as risk aversion (or love)
goes to infinity. His analysis can be adapted to our uncertainty setup to obtain
the limit of the set of justifiable actions as ambiguity aversion (or love) goes to
infinity, under the assumption that A×Σ is finite.12

Other Papers. Other papers in the literature analyzed notions of justifiability
or rationalizability with non-neutral attitudes toward ambiguity. Ghirardato
and Le Breton (2000) characterized actions that are best replies to some
possibly non-additive belief under the Choquet expected utility criterion of
Schmeidler (1989). Epstein (1997) analyzed rationalizability under several cri-
teria, including the Choquet criterion of Schmeidler (1989) and the maxmin
criterion of Gilboa and Schmeidler (1989). To the best of our knowledge, ours
is the first work reporting a result on comparative ambiguity aversion and jus-
tifiability.

APPENDIX: PROOFS AND RELATED MATERIAL

A.1. Abstract Pearce–Wald Lemma

Fix two nonempty subsets A1 and A2 of a Hausdorff locally convex topolog-
ical vector space. Let Bi = coAi and B̄i = coAi denote respectively the convex
hull of Ai and its closure, for i= 1�2.

Given F : B1 × B̄2 → R, we say that a∗
1 ∈A1 is dominated if and only if

∃a1 ∈A1�∀a2 ∈A2� F
(
a∗

1� a2

)
<F(a1� a2)�

otherwise we say that a∗
1 is undominated; we say that a∗

1 is co-dominated if and
only if

∃b1 ∈ B1�∀a2 ∈A2� F
(
a∗

1� a2

)
<F(b1� a2)�

otherwise we say that a∗
1 is co-undominated.

11Weinstein (2016) expands on an earlier version dated 2013.
12See Section 5.2 of the working paper version of our manuscript.
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LEMMA 1: Suppose that:
(i) A2 is closed and B̄2 is compact;

(ii) F is quasiconcave and upper semicontinuous on B1;
(iii) F is affine and continuous on B̄2.

An element a∗
1 ∈A1 is co-undominated only if there exists some b2 ∈ B̄2 such that

a∗
1 ∈ arg maxa1∈A1 F(a1� b2). The converse is true if F is affine on B1.

Of course, condition (i) implies that A2 (a subset of B̄2) is compact. In many
examples, condition (i) is equivalent to the compactness ofA2.13 Condition (ii)
is satisfied if F is concave and upper semicontinuous on B1.

PROOF OF LEMMA 1: First note that, since A2 is compact, there exists a
function ῑ2 : B̄2 → Δ(A2) (the set Δ(A2) here denotes the set of all regular
Borel probability measures) such that

φ(b2)=
∫
A2

φ(a2)ῑ2(b2)(da2)

for all continuous and affine φ : B̄2 → R.14 Moreover, by definition of con-
vex hull, there is a function ι1 : B1 → Δ0(A1) (the set Δ0(A1) here denotes
the set of convex linear combinations of Dirac measures) such that b1 =∑

a1∈A1
a1ι1(b1)(a1).

(Only if) Suppose that a∗
1 is co-undominated. We must show that there exists

b∗
2 ∈ B̄2 such that F(a∗

1� b
∗
2) ≥ F(a1� b

∗
2) for all a1 ∈ A1. Define the function

h : B1 × B̄2 → R by

h(b1� b2)= F(
a∗

1� b2

) − F(b1� b2)�

Since a∗
1 is co-undominated, for each b1 ∈ B1 there exists ab1

2 ∈ A2 such that
F(a∗

1� a
b1
2 )≥ F(b1� a

b1
2 ), that is, h(b1� a

b1
2 )≥ 0. We can conclude that

∀b1 ∈ B1� max
b2∈B̄2

h(b1� b2)≥ h(
b1� a

b1
2

) ≥ 0�

In turn, this yields infb1∈B1 maxb2∈B̄2
h(b1� b2) ≥ 0. Given the properties of F ,

the function h satisfies all the assumptions of the Sion Minimax Theorem (cf.
Sion (1958, Corollary 3.3)), namely, h is quasiconvex and lower semicontinu-
ous on B1, and it is affine and continuous on B̄2. This implies that

max
b2∈B̄2

inf
b1∈B1

h(b1� b2)= inf
b1∈B1

max
b2∈B̄2

h(b1� b2)≥ 0�

13Consider, for example, quasi-complete locally convex topological vector spaces (see Holmes
(1975, p. 61)).

14See Propositions 1.2 and 4.5 of Phelps (1966). For later use, we find it convenient to denote
this map by ῑ2.
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By choosing b∗
2 ∈ arg maxb2∈B̄2

(infb1∈B1 h(b1� b2)), we have that

0 ≤ inf
b1∈B1

h
(
b1� b

∗
2

) = inf
b1∈B1

(
F

(
a∗

1� b
∗
2

) − F(
b1� b

∗
2

))
�

thus, F(a∗
1� b

∗
2)≥ F(a1� b

∗
2) for each a1 ∈A1.

(If) Suppose that F is also affine on B1. By way of contraposition, suppose
that a∗

1 is co-dominated, that is, there exists b1 ∈ B1 such that

∀a2 ∈A2� F
(
a∗

1� a2

)
<F(b1� a2)=

∑
a1∈A1

F(a1� a2)ι1(b1)(a1)�

We must show that for each b2 ∈ B̄2 there exists some ab2
1 ∈ A1 such that

F(a
b2
1 � b2) > F(a

∗
1� b2). Fix b2 ∈ B̄2 arbitrarily. Since a∗

1 is co-dominated by b1,
integrating over A2 and by using the maps ι1 and ῑ2, we obtain that

F
(
a∗

1� b2

) =
∫
A2

F
(
a∗

1� a2

)
ῑ2(b2)(da2)

<

∫
A2

( ∑
a1∈A1

F(a1� a2)ι1(b1)(a1)

)
ῑ2(b2)(da2)

=
∑
a1∈A1

(∫
A2

F(a1� a2)ῑ2(b2)(da2)

)
ι1(b1)(a1)

=
∑
a1∈A1

F(a1� b2)ι1(b1)(a1)�

If ab2
1 ∈ arg maxa1∈supp ι1(b1) F(a1� b2), then

F
(
a
b2
1 � b2

) ≥
∑
a1∈A1

F(a1� b2)ι1(b1)(a1) > F
(
a∗

1� b2

)
�

Q.E.D.

A.2. Randomization

Now let A1 and A2 be two separable metric spaces. Denote by Δ0(Ai) the
collection of all Borel probability measures with finite support, and by Δ(Ai)
the collection of all Borel probability measures on Ai. Given a function f :
A1 ×A2 → R, say that a∗

1 ∈A1 is dominated under randomization if and only if

∃β1 ∈ Δ0(A1)�∀a2 ∈A2� f
(
a∗

1� a2

)
<

∑
a1∈A1

f (a1� a2)β1(a1)�

Otherwise, we say that a∗
1 is undominated under randomization.
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At this level of generality, the separable metric spaces A1 and A2 are not re-
quired to be subsets of some Hausdorff locally convex topological vector space.
Denote by Bi the Borel sigma-algebra of Ai. In this framework, we can iden-
tify each element a of Ai with the Dirac δa at a. The set of Dirac probability
measures is a subset of the space of all Borel countably additive measures of
bounded variation ca(Ai�Bi) which, when it is endowed with the w∗-topology
σ(ca(Ai�Bi)�Cb(Ai)), is a Hausdorff locally convex topological vector space.
Since Ai is a separable metric space, the set of corresponding Dirac probabili-
ties is also closed. Under this identification, Bi corresponds to the set Δ0(Ai) of
all probability measures on Ai with finite support, while B̄i corresponds to the
set Δ(Ai) of all Borel probability measures on Ai. The set B̄i is compact if and
only if Ai is compact.15 Finally, note that if Ai is finite, then it is a separable
metric space once it is endowed with the discrete metric; moreover, if both A1

and A2 are finite, then f is continuous in each component and bounded.
In what follows, with a small abuse of notation, we will denote by Ai both

the original set Ai and the set of corresponding Dirac probability measures.
Also, we will denote the elements of B1 and B̄2 with the letter β rather than b
to stress that we interpret them as probability measures.

COROLLARY 1: Let A1 and A2 be two separable metric spaces. If
(i) A2 is compact,

(ii) f is continuous on A1 and A2 and bounded,
then, an element a∗

1 ∈A1 is undominated under randomization if and only if there
exists β2 ∈ B̄2 = Δ(A2) such that a∗

1 ∈ arg maxa1∈A1

∫
A2
f (a1� a2)β2(da2).

PROOF: Define F : B1 × B̄2 → R by

F(β1�β2)=
∫
A2

( ∑
a1∈A1

f (a1� a2)β1(a1)

)
β2(da2)�

It is routine to check that the function F is affine and continuous in each
component. Given our identifications, a∗

1 ∈A1 is undominated under random-
ization if and only if δa∗

1
is co-undominated. By Lemma 1, the statement fol-

lows. Q.E.D.

Set

Jf =
{
a1 ∈A1 : ∃β2 ∈ Δ(A2)�∀a′

1 ∈A1�

∫
A2

f (a1� a2)β2(da2)≥
∫
A2

f
(
a′

1� a2

)
β2(da2)

}
�

15See Chapter 15 of Aliprantis and Border (2006) for all the above notions, in particular, Foot-
note 1 and Theorems 15.8, 15.10, and 15.11.
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Say that a function f :A1 ×A2 → R is nice (resp., semi-nice) when any a1 ∈
A1 is undominated under randomization if and only if (resp., only if) a1 ∈ Jf .
Corollary 1 establishes conditions for niceness.

COROLLARY 2: Let f�h :A1 ×A2 → R be, respectively, nice and semi-nice. If
h= ϕ ◦ f , with ϕ : co(Im f )→ R concave and strictly increasing, then Jf ⊆Jh.

PROOF: Let ā1 ∈ Jf . Since f is nice, ā1 is undominated under randomiza-
tion. Hence, since ϕ is concave and strictly increasing, this implies that

∀β1 ∈ Δ0(A1)�∃a2 ∈A2� f (ā1� a2)≥
∑
a1∈A1

f (a1� a2)β1(a1)�

that is, for each β1 ∈ Δ0(A1) there exists a2 ∈A2 such that

(ϕ ◦ f )(ā1� a2) ≥ ϕ
( ∑
a1∈A1

f (a1� a2)β1(a1)

)

≥
∑
a1∈A1

(ϕ ◦ f )(a1� a2)β1(a1)�

Since h= ϕ ◦ f is semi-nice, this implies ā1 ∈Jh. Q.E.D.

A.3. Proofs of Propositions 1 and 2

First observe that, since S is a separable metric space, also Δ(S) is a sepa-
rable metric space (once endowed with the Prohorov metric). We denote by
B its Borel sigma-algebra. Given a set Σ ∈ B, we denote by B|Σ the relative
Borel sigma-algebra and by Δ(Σ) the collection of all Borel probability mea-
sures μ : B|Σ → [0�1]. We endow Δ(Σ) with the w∗-topology. Δ(Σ) is compact
if and only if Σ is w∗-compact in Δ(S).

PROOF OF PROPOSITION 1: Let A1 =A, A2 = S, f = r, and h= r ′ = ψ ◦ r.
By Corollary 1 and given the properties of A, S, r, and ψ, it is immediate to
see that f and h are nice. By Corollary 2 and since ψ is concave and strictly
increasing, we have that Jf ⊆ Jh. Finally, since Σ ⊇ {δs}s∈S , we can conclude
that JId�r(Σ)=Jf and Jh =JId�r′(Σ). Therefore, JId�r(Σ)⊆JId�r′(Σ). Q.E.D.

PROOF OF PROPOSITION 2: Define R(a�σ) = ∫
S
r(a� s)σ(ds) for all a ∈A

and σ ∈ Σ. Note that R is continuous in each component and bounded. Let
A1 =A,A2 = Σ, f =φ◦R, and h=φ′ ◦R= (ϕ◦φ)◦R= ϕ◦f . By Corollary 1
and given the properties of A, Σ, R, and φ and ϕ, it is immediate to see that
f and h are nice. By Corollary 2 and since ϕ is concave and strictly increasing,
we have that Jf ⊆ Jh. By construction, we have that Jφ�r(Σ) = Jf and Jh =
Jφ′�r(Σ). Therefore, Jφ�r(Σ)⊆Jφ′�r(Σ). Q.E.D.
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REMARK 1: To invoke the abstract Pearce–Wald lemma, in the proof of
Proposition 2, from a decision theoretic viewpoint, we consider randomized
actions β1 on A as ex ante randomizations rather than the more customary
ex post randomizations à la Anscombe and Aumann. Such ex ante randomiza-
tions are merely ancillary analytical objects. Formally, in our proofs the value
of a randomized action β1 is

φ−1

(∑
a∈A

∫
Σ

φ

(∫
S

r(a� s)σ(ds)
)
μ(dσ)β1(a)

)

rather than

φ−1

(∫
Σ

φ

(∑
a∈A

∫
S

r(a� s)σ(ds)β1(a)

)
μ(dσ)

)
�

Conceptually, we reiterate that DM can only choose in A, which encompasses
any feasible randomization. It is a fortuitous coincidence that the smooth
model permits such a treatment of randomized actions, which in turn allows
us to exploit the abstract Pearce–Wald lemma.
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