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We consider a game in extensive form recurrently played by agents who are randomly 
drawn from large populations and matched. We assume that preferences over actions at 
any information set admit a smooth-ambiguity representation in the sense of Klibanoff 
et al. (2005), which may induce dynamic inconsistencies. We take this into account in 
our analysis of self-confirming equilibrium (SCE) given players’ feedback about the path 
of play. Battigalli et al. (2015) show that the set of SCE’s of a simultaneous-move game 
with feedback expands as ambiguity aversion increases. We show by example that SCE in 
a sequential game is not equivalent to SCE applied to the strategic form of such game, and 
that the previous monotonicity result does not extend to general sequential games. Still, 
we provide sufficient conditions under which the monotonicity result holds for SCE.
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1. Introduction

Self-confirming equilibrium When a game is played recurrently and the learning dynamic has reached a rest point, each 
agent chooses a (one-period) best reply to his subjective belief, which may be incorrect and yet confirmed by the evidence 
available to him. A profile of strategies and beliefs with this property is a self-confirming equilibrium (henceforth, SCE).1

The standard definition of SCE assumes that agents are subjective expected utility maximizers, i.e., that they are ambiguity 
neutral.2 Yet, a large body of empirical evidence supports the ambiguity aversion hypothesis.3 This is particularly relevant 
when agents only have scarce evidence of opponents’ behavior and face therefore strategic uncertainty. Following Battigalli 
et al. (2015, henceforth BCMM), we analyze the SCE concept in games played by ambiguity averse agents. Unlike BCMM, 
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who essentially restrict their attention to simultaneous-move games, we consider games with sequential moves, represented 
in extensive form. In a sequential game, agents have evidence, at best, of how opponents play on the equilibrium path, but 
no evidence of how they would play off the path. Thus, sequential games constitute a natural context for self-confirming 
equilibrium analysis. In the rest of this introduction, we describe how our paper adds to the previous literature in general 
and to BCMM in particular.

SCE and model uncertainty BCMM analyze SCE in simultaneous-move population games played recurrently by agents with 
non-neutral attitudes toward ambiguity, which is the imperfect quantifiability of the relevant risks. Specifically, agents are 
assumed to have smooth-ambiguity preferences in the sense of Klibanoff et al. (2005, henceforth KMM). This decision 
model is flexible and analytically convenient for game theoretic applications. First, it separates ambiguity attitudes, a stable 
personal trait like risk attitudes, from the perception of uncertainty, which is a property of subjective beliefs affected by 
the game situation; second, it provides a parameterization of ambiguity aversion analogous to the parameterization of risk 
aversion, which simplifies comparative static exercises.4

SCE is defined as follows: Let I denote the set of player roles (e.g., buyer and seller) and Si the set of pure strategies 
of any agent playing in role i. A profile of strategy distributions σ ∗ = (σ ∗

i )i∈I ∈ ×i∈I�(Si) is an SCE if, for each i ∈ I and 
each s∗

i ∈ Si with σ ∗
i (s∗

i ) > 0, there is a belief μi about the strategy distributions of the opponents that justifies s∗
i as a 

KMM-best response and is consistent with the long-run distribution of ex-post observations for i generated by s∗
i and σ ∗

−i
(e.g., the (s∗

i , σ
∗
−i)-induced distribution of terminal nodes). Since the distribution of observations may not reveal the true 

underlying distribution of strategies σ ∗
−i , agents may be uncertain about it.

Assuming that the own-payoff relevant consequences (e.g., one’s own monetary payoff) are observed by each agent 
after each play, BCMM prove a monotonicity result: higher ambiguity aversion entails a larger set of equilibria. Intuitively, 
for each agent, the strategy played repeatedly in equilibrium yields known risks because the agent observes its long-run 
distribution of payoffs, while deviations are untested and may be perceived as ambiguous; therefore, higher ambiguity 
aversion penalizes deviations relative to the equilibrium choice. This monotonicity result implies that greater ambiguity 
aversion entails less predictability of strategies in the long-run, because the set of possible steady states is larger.

Our contribution The scope of BCMM’s analysis is essentially limited to simultaneous-move games and, possibly, games 
played in strategic form—such as experimental games played in the lab with the so-called “strategy method”5—because it is 
well known that ambiguity aversion may make preferences over strategies dynamically inconsistent (e.g., Siniscalchi, 2011). 
As a consequence, there would be incentives to make covert commitments if such commitment moves were available.6 Thus, 
the fact that agents in sequential games cannot (irreversibly) choose strategies must be faced and dealt with explicitly. We 
assume that agents are sophisticated: They understand their future contingent incentives and choose actions in early stages 
predicting how such incentives determine their actions in later stages, that is, they plan by “folding back” given their 
subjective conditional beliefs about the strategies of other players. Hence, they execute “unimprovable” strategies, that is, 
those that satisfy the one-deviation property. Since unimprovable strategies may be different from best replies in the normal 
form of the game, the definition of equilibrium due to BCMM cannot be applied to sequential games.

Two questions naturally arise: First, how does SCE defined on the extensive form relate to SCE in the normal form of 
the same game? Second, does the monotonicity result extend to games with sequential moves? To elaborate on the first 
question, fix a sequential game with feedback (�, f ), where f represents what each player observes ex post about the path 
of play. This determines the normal (or strategic) form (G, F ) = N (�, f ), where G is given by the strategic-form payoff 
functions, and F is the strategic-form feedback derived from f , so that two strategy profiles inducing the same path are 
necessarily indistinguishable. Under subjective expected utility maximization, which is dynamically consistent, SCE in the 
extensive form (�, f ) is equivalent to SCE in the normal form (G, F ). With ambiguity aversion, instead, we show that there 
may be different, non-nested sets of equilibrium outcomes; in other words, working with the normal form is neither too 
permissive nor too restrictive, it is just wrong.

This leads us to the second question. Since the sets of SCE outcomes in the extensive and normal form do not coincide, 
we cannot rely on the monotonicity result of BCMM to argue that, in a game with sequential moves, the set of SCE outcomes 
expands as ambiguity aversion increases. It is still true that, on the equilibrium path, equilibrium actions entail known 
risks while deviations may be perceived as ambiguous. But, if a deviation is followed by other actions of the same player, 
folding-back planning may require that plans (i.e., predictions) about these actions change with ambiguity aversion, and 
dynamic inconsistency may lead to an increase in the value of deviations. Indeed, as we demonstrate in examples, there may 
be instances of non-monotonicity when the SCE strategies at some baseline level of ambiguity aversion are such that some 
agents at some reachable information sets would be willing to pay to commit—if they only could—on a different course of 
action involving multiple sequential deviations from the folding-back plan. We prove a preliminary result, Lemma 1, stating 
that such willingness to commit is necessary for non-monotonicity.

4 See the survey by Marinacci (2015) and the discussion of Cubitt et al. (2019), who test experimentally the different behavioral implications of the 
smooth-ambiguity model and other models of ambiguity attitudes.

5 See the survey by Brandts and Charness (2011) and the references therein.
6 Unlike overt commitment, covert commitment moves are not observed by other players. The strategic advantages of overt commitment are well known 

at least since Schelling (1960) and do not depend on dynamic inconsistency as traditionally defined in decision theory.
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Lemma 1 allows us to prove the monotonicity result for two special cases: (i) games where, on each path, no player 
moves more than once, and (ii) pure strategy equilibria of games with no chance moves.7 In case (i) there cannot be 
multiple sequential deviations from folding-back planning. In case (ii) we show that, loosely speaking, in equilibrium ambi-
guity aversion is not distinguishable from the risk aversion of expected utility maximizers, who are dynamically consistent. 
Lemma 1 also implies the following noteworthy result: The set of SCE outcomes with ambiguity neutral agents is always 
included in the set of SCE outcomes with ambiguity averse agents. This means that the standard version of the SCE concept, 
by ignoring ambiguity aversion, overestimates the predictability of long-run outcomes in recurrent interactions.

Related literature This is the first paper that analyzes SCE with non-neutral ambiguity attitudes in sequential games. 
BCMM and Battigalli et al. (2016b) only consider games played in strategic form. The extensive form game from which the 
strategic form is derived only affects feedback: two strategy profiles that yield the same terminal node necessarily yield the 
same feedback to every player. Furthermore, Battigalli et al. (2016b) focus on “maxmin SCE” a notion of equilibrium with 
extreme ambiguity aversion (see Gilboa and Schmeidler, 1989), whereas here—like BCMM—we apply the smooth ambiguity 
criterion of KMM. Hereafter we call “standard SCE” the self-confirming equilibrium concept with ambiguity neutrality, i.e., 
subjective expected utility maximization.

A version of the standard SCE concept was first put forward in the undergraduate thesis of Battigalli (1987)8 and called 
“conjectural equilibrium.” The first definition in English appears in a working paper by Battigalli and Guaitoli (1988), who 
also define and apply an extensive-form rationalizability refinement. Fudenberg and Levine (1993) independently put for-
ward a definition of standard SCE under the maintained assumption that agents perfectly observe ex-post the path of play. 
Unlike Battigalli (1987) and Battigalli and Guaitoli (1988), the analysis of Fudenberg and Levine applies to large population 
games. This is important because it justifies the assumption that agents maximize their short-run expected utility even if 
they are patient. The reason is that in a large population game there are no incentives to affect the future behavior of cur-
rent opponents, who are almost surely different from the future ones.9 For further references and details see the discussion 
in Section IV of BCMM and the survey by Battigalli et al. (1992).

Fudenberg and Levine (1993) note that standard SCE is not strategic-form invariant, arguing that the strategic—or 
normal—form is therefore insufficient to characterize SCE. But their comment rests on the maintained assumption that 
players always observe ex-post the path of play, which in a simultaneous-move game is just the actual profile of strategies 
(actions of the strategic form). Therefore, when they compare standard SCE in the extensive (i.e., sequential) and strate-
gic form, they change what players can observe ex post about the behavior of others: only on-path actions in the extensive 
form, and complete strategy profiles in the strategic form. If feedback about the behavior of others is instead kept constant—
as we do when we look at strategic-form feedback—standard SCE in the extensive form is equivalent to standard SCE in the 
strategic form (see Remark 3). On the other hand, we show that SCE with ambiguity aversion is not strategic-form invariant 
(see Example 4).

As mentioned above, BCMM proved that in simultaneous-move games the SCE correspondence is monotone with respect 
to players’ degree of ambiguity aversion. Here we prove partial versions of this result for sequential games. A similar 
monotonicity result can be proved for comparative risk aversion in the particular case of pure standard SCE (see the lecture 
notes of Battigalli, 2018), and for comparative risk or ambiguity aversion in the case of rationalizable strategies (Battigalli et 
al., 2016a). Note that the intuition and proof in the case of rationalizability are very different from the SCE case.10

Next we compare our contribution to other papers on equilibria with ambiguity aversion in sequential games. Unlike 
us, these papers analyze versions or refinements of the Nash equilibrium concept, that is, they assume that each player’s 
conjecture about the “decision rules” of other players is correct. Thus, they consider different sources of ambiguity. Lo
(1999) analyzes a notion of Nash equilibrium whereby players are mini-maximizers given belief sets in the sense of Gilboa 
and Schmeidler (1989). Assuming Bayesian updating11 for each measure in each player’s belief set, preferences at different 
information sets may be dynamically inconsistent. As Lo points out, this implies that the proposed equilibrium concept 
is not strategic-form invariant. We differ from Lo (1999) in several ways: we adopt the smooth ambiguity criterion, we 
analyze a version of SCE rather than Nash equilibrium, and we define rational planning as unimprovability (folding back), 
whereas Lo imposes a form of sequential—or interim—optimality (mini-maximization with respect to continuation strategies 
at each reachable information set). For similar reasons, our work differs from Riedel and Sass (2014, 2017), who apply the 
maxmin criterion to analyze equilibria of games where players may delegate the selection of actions to random devices with 
unknown outcome probabilities (“Ellsberg urns”), and put forward conditions on the extensive form that ensure the dynamic 
consistency of the ex ante optimal strategy. Hanany et al. (2018) use the smooth ambiguity criterion to analyze sequential 
games with incomplete information. Their work differs from ours in two important ways. First, they analyze a notion of 
perfect Bayesian equilibrium, which assumes that players’ conjectures about the type-dependent strategies of other players 

7 We call such equilibria “symmetric” because in the population game scenario they represent situations where all agents in the same role play in the 
same way.

8 Written in Italian.
9 Furthermore, incentives to experiment vanish in the long run.

10 Interestingly, in the working paper we rely on Battigalli et al. (2016a) to prove (in some special cases) monotonicity of the rationalizable SCE corre-
spondence.
11 Or maximum likelihood updating.
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are correct, while beliefs about the distribution of types are not disciplined; we instead allow for incorrect beliefs about 
strategies, the confirmed-beliefs requirement partially disciplines these beliefs, and the limited observability of opponents’ 
behavior is the source of the residual ambiguity. Second, Hanany et al. model subjectively rational planning in a different 
way. We maintain that players’ beliefs satisfy the standard rules of conditional probability, which imply Bayes rule; given 
this, each player adopts an unimprovable strategy that—by the dynamic inconsistency of ambiguity averse preferences—may 
be suboptimal according to his initial preferences, or the interim preferences he holds at some information set. Hanany et al. 
instead assume that each player’s equilibrium strategy is sequentially optimal, that is, optimal according to his preferences 
at each information set. Ambiguity aversion implies that this cannot always be reconciled with Bayesian updating. However, 
they show it is without loss of generality to restrict attention to beliefs generated using a particular generalization of 
Bayesian updating, where more ambiguity aversion implies larger deviations from standard Bayesian updating. Eichberger 
et al. (2017) analyze a notion of equilibrium with ambiguity aversion in sequential games that combines Choquet-expected 
utility maximization (Schmeidler, 1989) with a generalized form of Bayesian updating. Unlike Lo (1999) and Hanany et 
al. (2018), and like us, they assume folding-back planning. To conclude the comparison, we emphasize that our approach 
can easily accommodate incomplete information and commitment to randomizations with unknown probabilities, as we 
explain in Section 7. Yet, from our perspective, the source of ambiguity is the residual uncertainty that persists in the long 
run because of imperfect learning. Thus, for example, the probabilities of the states of nature in a game with incomplete 
information played recurrently remain unknown only if players’ feedback does not reveal the realized state of nature (cf. 
Dekel et al., 2004). Similar considerations apply to randomizations with unknown probabilities.

Outline The rest of the paper is organized as follows. Sections 2 and 3 introduce the setup and the smooth ambiguity 
criterion; Section 4 defines and analyzes unimprovability; Section 5 defines our SCE concept; Section 6 presents comparative 
results for SCE; finally, Section 7 discusses the relevance of some assumptions and equilibrium concepts, and provides hints 
for generalization and extension of the analysis. The main text contains some intuitive arguments, but all formal proofs are 
collected in Appendix A.

2. Framework

We analyze an agent with non-neutral ambiguity attitudes who plays a game with sequential moves. Such moves occur 
in one period of time and consequences realize at the end of the period. Our interpretation is that the game is played 
recurrently for infinitely many periods in a population-game scenario. We assume that the commitment technology of this 
agent is explicitly represented by the rules of the game. Therefore, the agent can control—i.e., irreversibly choose—only his 
(pure) actions at whatever information set is reached. We also assume that he is sophisticated and therefore he takes this 
into account when he plans how to play the game. We need not assume that the game is common knowledge. We postpone 
comments on this aspect until after our definition of equilibrium, so that they can be better understood.

Consider an agent who plays in role i ∈ I of a finite extensive-form game � with perfect recall. Let Hi denote the collection 
of information sets of i and let Ai(h) be the set of actions available at h ∈ Hi . We assume for expositional simplicity that 
|Ai (h) | ≥ 2 for each h ∈ Hi , where |X | denotes the cardinality of a finite set X . This means that we include in Hi only the 
information sets where i is active. Let ∅ denote the root of the game; then {∅} ∈ Hi if and only if i is a first mover.12

We endow Hi with the weak (respectively, strict) precedence relation � (≺) inherited from the game tree.13 The set of
strategies for player i is Si := ×h∈Hi Ai(h). For every si ∈ Si and h ∈ Hi , we let si,h denote the action specified by si at h; 
thus, si = (

si,h
)

h∈Hi
. We let S := × j∈I S j denote the set of pure strategy profiles of the players.

We model randomization explicitly as the choice of a randomization device. Therefore it is important to allow for chance 
moves as the moves of a special player denoted by 0 /∈ I . With this, H0 denotes the collection of information sets of the 
chance player, A0 (h) is set of chance moves available at h ∈ H0, and S0 := ×h∈H0 A0(h) is the set of “strategies” of the 
pseudo-player 0. Throughout, we maintain for simplicity the assumption that the probabilities of chance moves are commonly 
known. Such probabilities are specified by a “behavioral strategy” β̄0 ∈ ×h∈H0� (A0 (h)), with β̄0 (a0|h) > 0 for every h ∈ H0

and a0 ∈ A0 (h); β̄0 induces the “mixed strategy” σ̄0 ∈ � (S0) such that

σ̄0 (s0) =
∏

h∈H0

β̄0
(
s0,h|h

)
> 0

for every s0 ∈ S0. Thus, the outcome distributions respectively induced by β̄0 and σ̄0 coincide for every strategy profile of 
the true players (see Kuhn, 1953). We let I0 := I ∪{0} denote the set of true player-roles and chance, and we let −i := I0\{i}. 
In particular, S−i := × j∈I0\{i} S j denotes the set of pure strategy profiles of the opponents including chance.

12 Our preferred representation of games in extensive form starts from sequences of actions, that correspond to the nodes of the game tree (e.g., Chapters 
6 and 11 of Osborne and Rubinstein, 1994). This affects the way we draw pictures and describe examples, but it is otherwise irrelevant for the analysis of 
the paper, because our notation is consistent with all standard representations of games.
13 Perfect recall implies that, for all h, h′ ∈ Hi , there are nodes (histories) x ∈ h and x′ ∈ h′ such that x precedes x′ if and only if every node of h′ is 

preceded by a node of h. With this, we can stipulate that, for all h, h′ ∈ Hi , h strictly precedes h′ , written h ≺ h′ , if every node of h′ is strictly preceded 
by a node of h. Perfect recall implies that each h ∈ Hi can have at most one immediate predecessor. The reflexive closure of ≺ is �, an antisymmetric and 
transitive relation that makes Hi a directed forest. If {∅} ∈ Hi , then (Hi ,�) is a directed tree.
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Let Z denote the set of terminal nodes of the game. Every profile (s0, s) induces a complete path, hence a terminal node, 
through the outcome function

ζ : S0 × S → Z .

Since the definition of ζ is standard, we take it for granted and then define some derived concepts using ζ .
For conceptual clarity, we also include in the description of the extensive form � a consequence function

γ : Z → C

which specifies the material consequence c = γ (z) ∈ C of each terminal node z ∈ Z . For example, we may have C ⊆ RI

where c = (c j) j∈I ∈ C is a consumption allocation or a distribution of monetary payoffs to players. Thus, player i’s risk 
attitudes (preferences over objective lotteries of consequences) are represented by a von Neumann–Morgenstern utility
function

vi : C →R.

To ease notation, we write the payoff function of i as

ui := vi ◦ γ : Z →R.

It is convenient to specify the information about strategies implied by any information set h. First, for any node x, let

S I0 (x) := {(s0, s) ∈ S0 × S : x ≺ ζ(s0, s)}
denote the set of pure strategy profiles reaching x. With this, for any subset of nodes h,

S I0(h) :=
⋃
x∈h

S I0 (x)

is the set of strategy profiles (s0, s) reaching h,

S−i(h) := projS−i
S I0(h) = {s−i ∈ S−i : ∃ (x, si) ∈ h × Si, x ≺ ζ(si, s−i)}

is the set of pure strategy profiles of chance and opponents that allow for h, and

Si(h) := projSi
S I0(h) = {si ∈ Si : ∃(x, s−i) ∈ h × S−i, x ≺ ζ(si, s−i)}

is the sets of i’s strategies allowing for h.
It is useful to keep in mind that perfect recall implies the following factorization:

∀h ∈ Hi , S I0(h) = Si(h) × S−i(h).

In words, the information about behavior encoded in h ∈ Hi can be decomposed into information about own behavior and 
information about the opponents’ behavior, because i remembers what he knew and did at earlier nodes.

Players are drawn at random from large populations of agents, each playing a pure strategy. The distribution of pure 
strategies in population j ∈ I is denoted by σ j ∈ �(S j) and is unknown to the other players. For any profile of distributions (
σ j

)
j∈I , we let14

σ−i := σ̄0 × (× j∈I\{i}σ j
) ∈ �(S−i)

denote the product distribution over strategies of chance and of i’s opponents. From the viewpoint of an agent in role i, 
σ−i(s−i) is the unknown objective probability of facing opponents and chance playing pure strategy profile s−i .15 We let

�−i :=
{
σ−i ∈ �(S−i) : ∃ (σ j

)
j∈I\{i} ∈ × j∈I\{i}�

(
S j
)
,σ−i = σ̄0 × (× j∈I\{i}σ j

)}
denote the set of these product distributions. We endow �−i with the topology inherited from the Euclidean topology on 
RS−i , which makes it compact, and with the corresponding Borel sigma algebra B(�−i).

14 We use symbol × to denote both the Cartesian product of sets and the product of measures.
15 Statistical independence follows from random matching: For each i ∈ I , let Pi denote the set of agents playing in role i, and let ςi : Pi → Si denote the 

(measurable) strategy map of population i. If agents are drawn at random from their populations, that is, according to a uniform distribution on ×i∈I P i , 
then the induced distribution on S given (ςi)i∈I is a product measure. Taking into account that player i has a known deterministic plan, knows chance 
probabilities, and knows that opponents are randomly matched, we obtain the product formula in the text.
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Fig. 1. Running example.

At each point of the game, the agent playing in role i has some belief μi ∈ � (�−i). Note that by the definition of �−i , 
the marginal of μi on �0 always assigns probability 1 to σ̄0. The belief μi that i holds at the beginning of the game is i’s
prior. For each μi ∈ � (�−i), we let pμi ∈ �(S−i) denote the predictive probabilities implied by μi : for each s−i ∈ S−i ,

pμi (s−i) :=
∫

�−i

σ−i(s−i)μi(dσ−i).

We summarize our notation in the following table and illustrate it with an example. We will refer to this example 
repeatedly.

Primitive elements Terminology

i, j ∈ I (I0 := I ∪ {0}) players (0 /∈ I denotes chance)
h ∈ Hi information sets of i
� (≺) (strict) precedence relation of �

(Hi ,�) directed forest of information sets of i
z ∈ Z terminal histories/nodes
γ : Z → C consequence function
vi : C → R von Neumann–Morgenstern utility function of i
ai ∈ Ai(h) i’s actions at h ∈ Hi

Derived elements Terminology

si ∈ Si := ×h∈Hi Ai(h) strategies of i
s ∈ S (s−i ∈ S−i ) strategy profiles (of −i := I0\{i})
S I0 (h) strategy profiles (including 0) reaching h
Si(h) := projSi

S I0 (h) strategies of i allowing for h
S−i(h) := projS−i

S I0 (h) strategy profiles of −i (including 0) allowing for h
σ j ∈ �(S j) strategy distributions on S j

σ−i ∈ �−i ⊂ �(S−i) product distributions on S−i , with marg�(S0)σ−i = σ̄0

μi ∈ �(�−i) beliefs of i
pμi ∈ �(S−i) predictive probabilities implied by μi

ζ : S0 × S → Z outcome function
ui := vi ◦ γ : Z →R payoff function of i

Example 1 (Running example, notation). The game depicted in Fig. 1 is a two-person, multistage game where I = {1,2}, 0 is 
chance, and the numbers at terminal histories/nodes, including the boxes in the matrix subgame, are the payoffs of Player 1. 
Player 1 is participating to a game show. He has already won an equivalent of 4 utils and can decide to stop (Out) or accept 
(In) a bet with known odds that can destroy his win (E) or multiply it (G) to an amount worth 9 utils. If he accepts the bet 
and the bet is successful, he can decide to stop (T) or play a coordination game with Player 2, who qualified to the final 
stage of the game as well.16 If the two players coordinate ((M, R) or (B, L)), they win an amount worth 36 utils, otherwise 
((M, L) or (B, R)) they go home with a consolation prize worth 1 util. If we identify nodes with histories,17 information sets, 
actions sets and terminal histories/nodes are as follows:

16 It does not matter whether at this stage player 1 chooses among three actions or makes two sequential binary choices (T or ¬T, with the latter followed 
by a 2 × 2 subgame). We assume the former for simplicity.
17 See, e.g., Chapter 11 in Osborne and Rubinstein (1994).
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H0 = {In}, H1 = {{∅}, {(In,G)}} , H2 = {(In,G)},

A0({In}) = {E,G}, A2({(In,G)}) = {L,R},
A1({∅}) = {In,Out}, A1({(In,G)}) = {T,M,B},
Z = {Out,(In,E)} ∪ ({(In,G)} × {T,M,B} × {L,R}) .

The probabilities of chance moves are σ̄0(E) = σ̄0(G) = 1
2 .

Assume that the agent in role 1 has the following belief about the behavior of player 218:

μ1 (σ−1) =
{

1
2 if σ2 ∈ {δL, δR} ,

0 otherwise,

where δx denotes the Dirac measure supported by x. Intuitively, he thinks that all the agents playing in role 2 “attended 
the same school” and hence are doing the same thing, but he does not know what. The induced predictive probabilities are 
pμ1 (E, L) = pμ1 (E,R) = pμ1 (G,R) = pμ1 (G, L) = 1

4 . �

3. Smooth-ambiguity preferences over actions

In this section, we take the perspective of an agent, or decision maker, playing in role i, henceforth DMi , with given 
beliefs about the behavior of agents in different roles and a contingent plan, or strategy. Specifically, he has a plan si
specifying the action si,h ∈ Ai(h) he expects to take (but he is not committed to take) at each information set h ∈ Hi ; he 
has no randomization technology beyond what is already explicitly represented in the extensive form of the game (see 
Section 2), and we assume that he is certain about his contingent behavior, i.e., his contingent plan is deterministic.

Conditional distributions and conditional objective expected utility Let �−i(h) denote the set of distributions that assign 
positive probability to S−i(h), that is,

�−i(h) := {σ−i ∈ �−i : σ−i(S−i(h)) > 0}.

Note that whether σ−i ∈ �−i(h) or not depends only on (σ j) j∈I\{i} because σ0 = σ̄0 is strictly positive. We now define the
strategic-form von Neumann–Morgenstern conditional expected utility function

Ui(·, ·|h) : Si(h) × �−i(h) → R,

(si,σ−i) �→ ∑
s−i∈S−i(h) σ−i(s−i|h)ui(ζ(si, s−i))),

where, given σ−i ∈ �−i (h), σ−i(·|h) denotes the objective conditional distribution on the opponents’ strategy profiles con-
sistent with h.

In words, if i is certain that σ−i is the true objective probability model, then upon observing h (he believes that) his 
conditional objective expected utility from following strategy si ∈ Si (h) is Ui(si, σ−i |h).19

Plans and replacements Plan si yields a continuation on the information sets in Hi following any given h ∈ Hi (that is, the 
projection of si onto ×{h′∈Hi :h�h′} Ai(h′)). DMi expects to continue according to this plan, but he knows (by perfect recall) 
that he has already chosen the actions leading to h, possibly violating si , and he considers the consequences of choosing 
action ai ∈ Ai(h), again possibly violating si . It is convenient to define the replacement plan (si|h, ai) obtained by replacing 
si with the already chosen actions at information sets preceding h and with action ai at h; that is,

(si|h,ai)h′ :=
⎧⎨
⎩

ai if h′ = h,

αi(h′,h) if h′ ≺ h,

si,h′ otherwise,

where αi(h′, h) is the action chosen at h′ ≺ h in order to reach h.20 Finally, we let si|h denote the replacement plan obtained 
when action si,h is played at h:

18 In the examples, we will always specify beliefs about the true opponents only, taking for granted that σ̄0 is commonly known.
19 One can show that this coincides with the more familiar formula

Ui(si, σ−i |h) =
∑
x∈h

Psi ,σ−i (x|h)
∑
z∈Z

Psi ,σ−i (z|x) ui (z)

where Psi ,σ−i (·|·) denotes the probability of reaching a node conditional on an information set, or an earlier node, given by si and σ−i .
20 By perfect recall, αi is well defined.
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(
si|h

)
h′ :=

{
αi(h′,h) if h′ ≺ h,

si,h′ otherwise.

Action values We assume that DMi ’s preferences over actions, given his beliefs and plan, satisfy the smooth-ambiguity 
model of KMM: On top of the von Neumann–Morgenstern utility function vi : C → R specified by game � (hence, the 
payoff function ui = vi ◦ γ ), we assume that there is a continuous and strictly increasing second-order utility function

φi : Vi→R,

where

Vi :=
[

min
z

vi(γ (z)),max
z

vi(γ (z))
]

is the convex hull of the range of vi . Function φi captures DMi ’s ambiguity attitudes. It is analogous to the utility of money 
in the theory of choice under risk, with objective expected utility values replacing monetary values. In particular, DMi

is ambiguity averse if φi is concave. For every given h ∈ Hi , μi ∈ �(�−i(h)), and si ∈ Si , DMi assigns values to actions 
ai ∈ Ai(h) as follows21:

V̄ i(ai |h; si,μi, φi) := φ−1
i

⎛
⎜⎝ ∫

�−i(h)

φi
(
Ui

(
(si|h,ai),σ−i |h

))
μi(dσ−i)

⎞
⎟⎠ . (1)

Condition μi (�−i(h)) = 1 suggests that, in eq. (1), we interpret μi as the conditional belief of DMi upon observing h. 
We postpone the definition of conditional beliefs to Section 4. If μi assigns probability 1 to some σ−i ∈ �−i (h) (that is, 
μi = δσ−i ∈ � (�−i (h))), then

V̄ i(ai |h; si,μi, φi) = φ−1
i

(
φi

(
Ui

(
(si|h,ai),σ−i |h

))) = Ui
(
(si|h,ai),σ−i |h

)
.

Thus, ambiguity attitudes are immaterial when DMi is certain about the true probability model, because in this case he does 
not perceive any ambiguity. Note also that (1) boils down to the classical subjective expected utility formula if φi is linear 
(ambiguity neutrality), hence equivalent to the identity function IdVi . We emphasize in our notation only the dependence 
of values of i’s actions on parameter φi , not on the von Neumann–Morgenstern utility function vi , because we are going to 
consider different possible shapes of φi (in particular, linear and concave) with a fixed vi .

Example 2 (Running example, value). In the game of Fig. 1,

U1 (In.B, σ̄0 × δL| {(In,G)}) = 36,

U1 (In.B, σ̄0 × δR| {(In,G)}) = 1,

and

U1 (In.B, σ̄0 × δL| {∅}) = 1

2
· 36 = 18,

U1 (In.B, σ̄0 × δR| {∅}) = 1

2
· 1 = 1

2
.

Assume φ1 (u) = √
u and consider the (marginal) belief of Example 1, that is

μ1 (σ−1) =
{ 1

2 if σ2 ∈ {δL, δR} ,

0 otherwise;
then

V̄ 1 (B| {(In,G)} ; s1,μ1, φ1) =
(

1

2

√
36 + 1

2

√
1

)2

= (3.5)2 = 12.25

for each s1 ∈ S1. �

21 For an axiomatization of the smooth ambiguity criterion, see Cerreia-Vioglio et al. (2013). Note that their value function does not include the normal-
ization operation φ−1. Obviously, the two criteria are behaviorally equivalent. We use (1) because it allows for a more direct comparison of the values of 
ambiguous and unambiguous actions.
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4. Conditional beliefs and unimprovability

A prior belief μi ∈ �(�−i) over opponents’ strategy distributions induces a joint belief πμi ∈ �(S−i × �−i) determined 
by the following equation:

∀(s−i, E−i) ∈ S−i × B(�−i), πμi ({s−i} × E−i) :=
∫

E−i

σ−i(s−i)μi(dσ−i).

This probability measure represents the joint belief about the actual strategy profile played by the agent(s) matched with i
and the overall distribution in population(s) −i. Note that

πμi (S−i × E−i) = μi (E−i) ,

and

πμi ({s−i} × �−i) = pμi (s−i).

Each information set h ∈ Hi corresponds to the conditioning event S−i(h) × �−i (h). Let

Hi(μi) := {h ∈ Hi : πμi (S−i(h) × �−i (h)) > 0} = {h ∈ Hi : pμi (S−i(h)) > 0}
denote the collection of information sets of player i that he believes he can reach with positive probability. If h ∈ Hi(μi), 
then we can derive by Bayesian updating the conditional probability of every measurable set E−i ∈ B(�−i) of strategy 
distributions:

μi(E−i|h) = πμi (S−i × E−i|S−i(h) × �−i (h)) (2)

= πμi ((S−i ∩ S−i(h)) × (E−i ∩ �−i (h)))

πμi (S−i(h) × �−i (h))

=
∫

E−i
σ−i(S−i(h))μi(dσ−i)

pμi (S−i(h))
.

For example, if μi has finite support:

μi(σ−i |h) = μi(σ−i) · σ−i(S−i(h))∑
σ ′

−i∈Suppμi
μi(σ

′
−i) · σ ′

−i(S−i(h))
.

With this, we consider the profile of conditional beliefs (μi (·|h))h∈Hi(μi)
derived from prior belief μi , we let

V i (ai|h; si,μi, φi) := V i(ai|h; si,μi(·|h),φi) = φ−1
i

⎛
⎜⎝ ∫

�−i(h)

φi
(
Ui

(
(si|h,ai),σ−i |h

))
μi(dσ−i |h)

⎞
⎟⎠

whenever h ∈ Hi (μi), and we derive well defined preferences over actions (given μi and si ) only for information sets that 
are possible according to μi . This is what we need for our definition of unimprovability, which is instead silent about 
choices at information sets deemed unreachable.

Definition 1. A strategy si is (μi, φi)-unimprovable if

∀h ∈ Hi(μi), si,h ∈ arg max
ai∈Ai(h)

V i(ai|h; si,μi, φi).

Unimprovability is a kind of “one-deviation property” requiring that the strategy of player i is an intrapersonal equilibrium 
between the “agents” of i playing at different reachable information sets.22 By finiteness of the game, unimprovability 
is equivalent to folding-back planning: given (μi, φi), DMi derives a contingent plan that prescribes a choice for each 
information set he deems reachable. He starts from information sets h ∈ Hi(μi) with no successor in Hi(μi), and to each 

22 As we note below, game theory textbooks consider the analogous property for strategy profiles of |I| players. They call “one-deviation principle” 
the theorem stating that in finite games played by expected utility maximizers a given profile is a sequential, equilibrium if and only if it satisfies the 
one-deviation property (the result extends to most infinite games of interest in applications). We instead consider the subjective sequential decision 
problem of a single player for given beliefs about the co-players. Furthermore, we explain below that the foregoing principle does not apply to such decision 
problems due to the dynamic inconsistency implied by ambiguity aversion.
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one of them he assigns an action si,h that maximizes V i(ai |h; si, μi, φi).23 Then he folds back, considering the information 
sets h ∈ Hi(μi) such that every successor has no further successors; for every such successor, viz. h′ , DMi predicts that the 
previously selected maximizing action si,h′ will be chosen; and so on until all the reachable information sets in Hi (μi) have 
been covered backwards. This folding-back procedure—possibly breaking some ties arbitrarily—computes an unimprovable 
strategy for every (μi, φi).24

Of course, we could define beliefs, and thus impose optimality requirements, also at information sets in Hi\Hi(μi), but 
we are not interested in doing so: The moves of DMi at each h ∈ Hi\H(μi) are immaterial for the equilibrium outcomes 
(by ex post perfect recall and confirmed beliefs), and impossible to predict for the opponents as long as we do not assume 
that they know the payoff function of i.25

From the point of view of an external observer, or of agents in roles different from i, it is impossible to distinguish 
between two strategies of DMi that yield the same outcomes independently of the opponents’ behavior. This leads to the 
following notion of equivalence, which will play an important role in comparing self-confirming equilibria for different levels 
of ambiguity aversion (see Section 6).

Definition 2 (Kuhn, 1953). Two (possibly degenerate) strategy distributions σ ∗
i and σi are realization-equivalent if they 

induce the same distribution on terminal nodes, that is,

∀(z, s−i) ∈ Z × S−i ,
∑

si :ζ
(
si ,s−i

)=z

σ ∗
i (si) =

∑
si :ζ

(
si ,s−i

)=z

σi(si).

The set of strategy distributions realization-equivalent to σ ∗
i is denoted by [σ ∗

i ].

We let [si] denote the set of strategies (that is, Dirac distributions) realization-equivalent to si .

Remark 1. Fix any σi, σ ∗
i ∈ � (Si); σi ∈ [σ ∗

i ] if and only if σi ([si]) = σ ∗
i ([si]) for every si ∈ Si .

Let Hi(si) := {h ∈ Hi : si ∈ Si (h)} denote the subset of information sets of DMi that can be reached when si is played. 
Focusing on pure strategies, we obtain the following observation:

Remark 2 (Theorem 1, Kuhn, 1953). Fix any si, s∗
i ∈ Si ; si ∈ [s∗

i ] if and only if si and s∗
i are behaviorally equivalent, that is, if 

and only if Hi(si) = Hi(s∗
i ) and si,h = s∗

i,h for each h ∈ Hi(s∗
i ).

Now, suppose that DMi is ambiguity neutral: φi = IdVi . Then, by a classical dynamic programming result, unimprov-
ability is equivalent to “global” (ex ante) subjective EU-maximization. This is an intrapersonal-equilibrium version of the 
one-deviation principle26:

Proposition 1. For every strategy s∗
i ∈ Si and prior μi ∈ �(�−i) the following are equivalent:

(1) [s∗
i ] contains a (μi, IdVi )-unimprovable strategy,

(2) s∗
i ∈ arg maxsi∈Si

∑
s−i

pμi (s−i)ui (ζ (si, s−i)).

We introduce the following strengthening of unimprovability:

Definition 3. A strategy si is (μi, φi)-sequentially optimal if

∀h ∈ Hi(μi), si ∈ arg max
s′i∈Si

φ−1
i

⎛
⎜⎝ ∫

�−i(h)

φi

(
Ui(s′

i|h,σ−i |h)
)
μi(dσ−i|h)

⎞
⎟⎠ .

23 Note that, in this particular case, V i(ai |h; si , μi , φi) does not depend on si .
24 A further refinement can be obtained by imposing a consistent-planning condition: whenever DMi is indifferent at h, then he breaks ties according to 

the preferences at the immediate predecessor of h in Hi . If this does not solve all the indifferences, ties are broken according to the preferences of the 
twice-removed predecessor, and so on. We omit this refinement for simplicity, and also because we find it arbitrary.
25 In the working paper, we put forward a stronger notion of optimal planning, called “full unimprovability,” which considers beliefs and imposes opti-

mality requirements also at information sets that cannot be reached under the initial belief. Full unimprovability, per se, does not refine the set of SCE 
outcome distributions (see Proposition 10 in the working paper), but it is instrumental for the analysis of strategic reasoning through rationalizable SCE.
26 All the dynamic programming results of this section can be proved by standard folding-back arguments.
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If DMi has dynamically consistent preferences over strategies, sequential optimality is equivalent to the traditional defi-
nition, which requires maximization also at the root even if DMi is inactive at the beginning of the game. This equivalence 
does not hold under dynamic inconsistency, and we find it convenient to use the weaker definition given above.27 We 
also point out that, under dynamic inconsistency, a sequentially optimal strategy may not exist, as illustrated in Example 3
below.

If DMi is ambiguity neutral, unimprovability coincides with sequential optimality. This is an intrapersonal-equilibrium 
version of the one-deviation principle28:

Proposition 2. A strategy si is (μi, IdVi )-unimprovable if and only if it is (μi, IdVi )-sequentially optimal.

The following example illustrates the well known dynamic inconsistency of preferences of decision makers with non-
neutral attitudes towards ambiguity.29,30

Example 3 (Running example, dynamic inconsistency). Consider the game of Fig. 1 and the (marginal) belief of Example 1:

μ1 (σ−1) =
{ 1

2 if σ2 ∈ {δL, δR} ,

0 otherwise.

Then

H1(μ1) = H1 = {{∅}, {(In,G)}} .

The induced belief on S−1 × �−1 is

πμ1(s−1,σ−1) =
{ 1

4 if (s−1,σ−1) ∈ {E,G} × {(L, σ̄0, δL), (R, σ̄0, δR)} ,

0 otherwise.

For an ambiguity neutral player 1 with belief μ1, the value of M and B at (In, G) is 
( 1

2 · 36 + 1
2 · 1

)
> 9, so it is higher than 

the value of T. Therefore, by folding-back, the (μ1, IdV1)-unimprovable strategies are In.M and In.B.
Now suppose instead that the ambiguity attitudes of player 1 are represented by some continuous and strictly concave 

φ̄1 such that:

φ̄1 (u) = √
u if 1 ≤ u ≤ 36,

φ̄1

(
1

2

)
= −1.

At (In, G), player 1 still prefers M (or B) over T, because:

V 1(M| {(In,G)} ; s1,μ1, φ̄1) = φ̄−1
1

(
1

2
· φ̄1(1) + 1

2
· φ̄1(36)

)
= (3.5)2 > 9 = V 1(T| {(In,G)} ; s1,μ1, φ̄1).

Hence, a (μ1, φ̄1)-unimprovable strategy must prescribe action M or B at (In, G). But then, it must also prescribe action Out
at {∅}. Indeed, for every strategy s1 such that s1,(In,G) ∈ {M,B} we have:

V 1(In| {∅} ; s1,μ1, φ̄1) = φ̄−1
1

(
1

2
· φ̄1

(
1

2
· 36

)
+ 1

2
· φ̄1

(
1

2
· 1

))

=
(

1

2
· √18 − 1

2

)2

< 4 = V 1(Out| {∅} ; s1,μ1, φ̄1).

So, on the one hand, the only (μ1, φ̄1)-unimprovable strategies are Out.M and Out.B. On the other hand, from the perspec-
tive of the agent at the root of �, the value of committing to strategy In.T is

27 Sequential optimality appears in the hypotheses of some of our results, but never in the theses. Thus, using a weak definition makes our results more 
general.
28 Cf., for example, Fudenberg and Tirole (1991, pp. 108–110), and Osborne and Rubinstein (1994, Lemma 98.2).
29 See Siniscalchi (2011), for illustrative examples and an in-depth analysis of this issue.
30 Note that these dynamic inconsistencies arise as a consequence of the combination of Bayesian updating and non-neutral ambiguity attitudes. Indeed, 

it is not even obvious from the decision theoretic literature that ambiguity averse players are supposed to update beliefs according to the standard rules 
of conditional probabilities (see Epstein and Schneider, 2007; Hanany and Klibanoff, 2009, and Hanany et al., 2018). Instead we take the position that 
these rules are part of rational cognition, and we stick to them. This position is supported also by works that justify Bayesian updating in an evolutionary 
perspective, see Blume and Easley (2006) and the references therein.
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V 1(In| {∅} ; In.T,μ1, φ̄1) =
(√

1

2
· 9

)2

> 4 = V 1(Out| {∅} ;Out.a1,μ1, φ̄1), (3)

for all a1 ∈ {T,M,B}. So, player 1 would commit to take the first bet (In) and then to stop before the coordination game (T) 
if he only could. This implies that neither Out.M nor Out.B are sequentially optimal. �

5. Selfconfirming equilibrium

BCMM analyze a notion of smooth self-confirming equilibrium under the assumption that agents play the strategic form 
of a game with feedback and ambiguity attitudes, as with the strategy method in lab experiments. Specifically, consider 
a triple (�, f , φ), where � is a standard extensive-form game, f = ( f i : Z → M)i∈I is a profile of feedback functions such 
that every f i describes the message m ∈ M that player i observes ex post as a function of the terminal node, and φ = (φi :
Vi→R)i∈I is a profile of continuous and strictly increasing functions capturing players’ attitudes toward ambiguity.

To relate to BCMM it is convenient to define the normal form of a game with feedback (�, f ). We first define the 
strategic form payoff function and feedback function:

Ui : = ui ◦ ζ : S0 × S →R,

Fi : = f i ◦ ζ : S0 × S → M .

With this, the normal-form (expected) payoff function of player i is

Ū i : S → R,

s �→ ∑
s0∈S0

σ̄0(s0)Ui(s0, s).

Similarly, we define normal-form feedback function F̄ i : S → � (M) as follows: If strategy profile s is played in the long 
run, then i observes the distribution of messages determined by s and chance probabilities. Therefore,

∀ (s,m) ∈ S × M , F̄ i (s) (m) =
∑

s0:Fi(s0,s)=m

σ̄0 (s0) .

With this, the normal form of (�, f ) is N (�, f ) := (
Si, Ū i, F̄ i

)
i∈I . The equilibrium concept of BCMM applies to 

(N (�, f ) ,φ) = (
Si, Ū i, F̄ i, φi

)
i∈I under the assumption that each agent in role i covertly commits in advance to a strat-

egy si . Here, instead, we analyze an equilibrium concept that is appropriate when agents play (�, f , φ) with the “direct 
method” making choices as the play unfolds, and we compare it with the strategic-form concept of BCMM.

Given that the information structure of � is assumed to satisfy perfect recall, we maintain the assumption that (�, f )

also satisfies “ex post perfect recall”31:

Assumption (Ex post perfect recall). For every player i ∈ I , the augmented collection of information sets that includes the 
partition of Z induced by f i ,

Ĥi := Hi ∪ { f −1
i (m) : m ∈ f i (Z)},

satisfies the perfect recall assumption.

Thus, in particular, for all terminal histories z, z′ ∈ Z , if there are an information set h ∈ Hi and a node x ∈ h such that 
x ≺ z and either z′ has no predecessor in h, or αi(x, z) �= αi(x′, z′) for the predecessor x′ of z′ in h, then f i(z) �= f i(z′).

Furthermore, we also consider (but we do not always assume) the following property of feedback32:

Definition 4. An extensive-form game with feedback (�, f ) satisfies observable payoffs whenever the payoff of every player 
only depends on his ex post information:

∀ (
i, z, z′) ∈ I × Z 2, f i (z) = f i

(
z′) ⇒ ui (z) = ui

(
z′) .

31 See Battigalli et al. (2016b). There, the statement of the ex post perfect recall property is slightly different. The two versions are equivalent for extensive-
form representations that specify the information of each player i at each nonterminal node, not only those where i is active. Otherwise, one should use 
the statement of this paper.
32 See Battigalli et al. (2016b) for an in-depth analysis of the properties of feedback and how they affect the SCE set.
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In other words, the payoff function is constant on each element of the ex post information partition { f −1
i (m) : m ∈ f i (Z)}. 

We say that (�, f , φ) satisfies observable payoffs if (�, f ) does.
In some examples, we will assume that agents observe the terminal node they reach, that is, f i = IdZ . We call this 

hypothesis perfect feedback.
To define our main equilibrium concept, it is convenient to introduce the pushforward distribution of messages 

F̂ i (si, σ−i) ∈ � (M) induced by strategy si and the profile of strategy distributions σ−i . Specifically:

∀ (si,σ−i,m) ∈ Si × �−i × M , F̂ i (si,σ−i) (m) =
∑

s−i :Fi
(
si ,s−i

)=m

σ−i (s−i) .

Definition 5. A self-confirming equilibrium (SCE) of (�, f , φ) is a profile of strategy distributions (σ̄i)i∈I with the following 
property: For each i ∈ I and s̄i ∈ Suppσ̄i there is a belief μs̄i ∈ �(�−i) such that

1. (rationality) s̄i is (μs̄i , φi)-unimprovable,

2. (confirmed beliefs) μs̄i

({
σ−i ∈ �−i : F̂ i(s̄i, σ−i) = F̂ i(s̄i, σ̄−i)

})
= 1.33

An SCE (σ̄i)i∈I is a symmetric SCE (symSCE) if, for each i ∈ I , there is a pure strategy s̄i with σ̄i(s̄i) = 1, that is, if all agents 
in the same population i play the same pure strategy.

When profiles (σ̄i)i∈I and 
(
μs̄i

)
i∈I,s̄i∈Suppσ̄i

satisfy the foregoing SCE conditions, we say that (σ̄i)i∈I is justified by 
confirmed beliefs

(
μs̄i

)
i∈I,s̄i∈Suppσ̄i

. The set of self-confirming equilibria of (�, f , φ) is denoted by SC E(�, f , φ), while 
symSC E(�, f , φ) denotes the set of symmetric SCEs.

As in BCMM, the confirmed beliefs condition says that an agent rules out opponents’ strategy distributions that are 
inconsistent with his “empirical distribution” of observations. More specifically, we consider stability conditions for a profile 
of strategy distributions in a scenario where agents drawn at random from large populations (corresponding to game roles) 
play the given game recurrently and learn from their personal experience. Suppose each agent keeps playing the same (pure) 
strategy for a very long time, and consider an agent in role i who has been playing s̄i and accumulated a large dataset of 
personal observations. With probability 1, and in the limit, this dataset is summarized by the frequency distribution of 
observations generated by his strategy s̄i and by the actual strategy distributions for the opponents’ populations, that is, 
F̂ i(s̄i, σ̄−i).34 Every profile of distributions that yields the same distribution of observations is empirically indistinguishable 
from the true one, and hence it cannot be objectively rejected.

The extensive form � is sufficient to define traditional solution concepts that do not try to capture steady states and 
implicitly assume that either ambiguity is absent or players are ambiguity neutral. With this, we first observe that every 
sequential equilibrium of � corresponds to an SCE of any extension of � with feedback and ambiguity attitudes:

Proposition 3. For every (�, f , φ), every sequential equilibrium in behavioral strategies 
(
β̄i
)

i∈I of � corresponds to a realization-
equivalent SCE (σ̄i)i∈I of (�, f , φ).

Intuitively, for every sequential equilibrium in behavioral strategies 
(
β̄i
)

i∈I of �, we can consider the corresponding 
realization-equivalent mixed strategy profile (σ̄i)i∈I . Let μs̄i = δσ̄−i for every i and s̄i ∈ Suppσ̄i ; since no ambiguity is per-
ceived, agents with these beliefs behave as expected utility maximizers. With this, it can be shown that each s̄i ∈ Suppσ̄i is 
(μs̄i , φi)-unimprovable, because (σ̄i)i∈I corresponds to a sequential equilibrium of �.

Thus, we obtain existence of SCE from well known results of existence for the sequential equilibrium concept (see, e.g., 
Theorem 8.5 in Fudenberg and Tirole, 1991):

Corollary 4. For every (�, f , φ), the set SC E(�, f , φ) is not empty. Furthermore, if � has perfect information also symSC E(�, f , φ)

is not empty.

The second statement in Corollary 4 follows from Proposition 3 and the well known fact that every finite game with 
perfect information has a pure strategy subgame perfect equilibrium, which is also a sequential equilibrium.

Observe that our definition does not coincide with the one proposed in BCMM, because the rationality assumption of 
BCMM is given by the ex ante KMM criterion:

s̄i ∈ arg max
si∈Si

∫
�−i

φi

⎛
⎝∑

s−i

σ−i(s−i)Ui (si, s−i)

⎞
⎠μi (dσ−i) .

33 Recall that σ̄−i includes σ̄0.
34 See Battigalli et al. (2016c) for a learning foundation of self-confirming equilibrium with non-neutral ambiguity attitudes.
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This best reply condition is appropriate only in simultaneous moves games, possibly obtained by having agents play the 
strategic form of a sequential game (cf. BCMM, pp. 665–667). Therefore, the set of self-confirming equilibria à la BCMM of a 
sequential game (�, f , φ) is SC E (N (�, f ), φ). Here, instead, we require agents to maximize the KMM value over actions at 
every information set they deem reachable.

Proposition 1 implies that our definition is equivalent to the one of BCMM when agents are ambiguity neutral: Given 
(σ̄i)i∈I ∈ SC E

(
N (�, f ), (IdVi )i∈I

)
with associated beliefs (μsi )i∈I,si∈Suppσ̄i , replace each si ∈ Suppσ̄i with a realization-

equivalent (μsi , IdVi )-unimprovable strategy ŝi(si), where ŝi(·) is a suitably defined map; then, let σi be the pushforward of 
σ̄i under map ŝi(·), that is, σi = σ̄i ◦ ŝ−1

i ; the resulting profile σ with associated beliefs (μŝi (si)
)i∈I,si∈Suppσ̄i satisfies the SCE 

conditions. To sum up:

Remark 3. Suppose that φi is linear for each i ∈ I . Then, for every (σ̄i)i∈I ∈ SC E (N (�, f ), φ) there is some (σi)i∈I ∈
SC E (�, f , φ) such that, for each i ∈ I , σ̄i and σi are realization-equivalent.

If agents instead are ambiguity averse, the SCEs of a game are not realization-equivalent to SCEs of its strategic-form 
representation. Indeed, the two sets of SCE outcomes may be non-nested.

Example 4 (Running example, strategic form). In Example 3 we considered a belief μ1 and ambiguity attitudes φ̄1 of player 1
such that Out.M and Out.B are (μ1, φ̄1)-unimprovable strategies. It follows that, for instance, (Out.M, L) is a symmetric 
SCE of the game, where Out.M is justified by belief μ1 (trivially confirmed for any feedback function) and L is justified by 
any confirmed belief for any φ̄2; the latter condition holds vacuously because player 2 is not reached. However, note that 
inequality (3) implies that (Out.M, L) does not belong to SC E

(
N (�, f ), φ̄

)
. Specifically, (3) implies that, for every belief 

μ1 and action a1 ∈ {T,M,B}, strategy Out.a1 is not ex-ante optimal, and thus it does not satisfy the best reply condition 
of BCMM. Hence, for every feedback f , Out is an SCE outcome of (�, f ), but it is not an SCE outcome of N (�, f ). Now 
suppose that players just observe their monetary payoff (that is, f = u). Then it can be checked that, for every α2, (In.T,α2)

is an SCE of N (�, f ) supported by the same belief μ1 as before,35 because player 1 prefers to commit to T and this 
prevents him from observing the long-run frequencies of L and R. Yet, In.T is not an SCE strategy of (�, f ) because—as 
argued in Example 3—player 1 with prior μ1 would deviate from T in the subgame despite the fact that μ1 is the belief 
that minimizes the maximum value of deviating from T.36 �

Comment on knowledge of the game The definition of SCE relies on very weak interpretive assumptions about agents’ 
knowledge of the game: each agent playing in role i has to know only his preferences (vi, φi), the extensive-game form 
(hence, also ζ : S → Z and γ : Z → C ), and his feedback function f i : Z → M . Therefore, in an SCE an agent in population 
i may believe that a positive fraction of agents in population j are implementing strategies that cannot be justified by any 
belief, given their true preferences and feedback (v j, φ j, f j) (possibly unknown to agents in population i). Essentially, SCE 
is a solution concept for incomplete information games with private values.37

6. Monotonicity of selfconfirming equilibrium

In this section we analyze changes in the set of equilibria when ambiguity attitudes are modified with respect to some 
baseline φ̄ . In particular, we would like to prove an extension for sequential games of the following monotonicity theorem
of BCMM: under observable payoffs, the SCE correspondence is monotone with respect to ambiguity aversion, that is, as 
ambiguity aversion increases, the set of SCEs expands.38 Formally:

Definition 6. We say that (�, f , φ) features more ambiguity aversion than (�, f , φ̄) if, for each i ∈ I , φi = ϕi ◦ φ̄i for some 
concave and strictly increasing function ϕi , and that (�, f , φ) features ambiguity aversion if each φi is concave.

BCMM proved that if (�, f ) has observable payoffs and (�, f , φ) features more ambiguity aversion than (�, f , φ̄), then

SC E (N (�, f ),φ) ⊇ SC E
(
N (�, f ), φ̄

)
.

Therefore, if (�, f , φ) features ambiguity aversion, then

SC E (N (�, f ),φ) ⊇ SC E (N (�, f ), IdV) .

35 The belief of player 2 is immaterial.
36 See Lemma 8, or Lemma 6 in BCMM.
37 In the working paper, we analyze a notion of rationalizable SCE that is appropriate when there is common knowledge of (�, f , φ). See Section 7.
38 In their working paper BCMM also show that when feedback is less informative, the set of SCE’s is larger. This intuitive monotonicity result holds for 

our SCE concept as well.
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As already observed, self-confirming equilibria in the strategic and extensive form of the game are not realization equiva-
lent. Hence, the monotonicity result of BCMM cannot be invoked to obtain an equivalent result for SCE in sequential games, 
not even in terms of induced outcome distributions. Yet, the core of the argument of BCMM can be adapted to sequential 
games when all the strategies in the support of an SCE with baseline ambiguity attitudes φ̄ are sequentially optimal under 
the confirmed beliefs that justify them, that is, at every reachable information set h the prescribed continuation strategy is 
the one that maximizes the value at h (see Definition 3).

Recall that [σi] (respectively, [si]) is the set of distributions (resp., strategies) realization equivalent to σi (resp. si), and 
that σ ′

i ∈ [σi] if and only if σ ′
i ([si]) = σi ([si]) for every si .39

Lemma 1. Fix two games with observable payoffs (�, f , φ) and (�, f , φ̄) so that (�, f , φ) features more ambiguity aversion than 
(�, f , φ̄), and fix any (σ̄i)i∈I ∈ SC E(�, f , φ̄) justified by confirmed beliefs 

(
μs̄i

)
i∈I,s̄i∈Suppσ̄i

. Suppose that, for each i ∈ I , every s̄i ∈
Suppσ̄i is (μs̄i , φ̄i)-sequentially optimal. Then, there exists some (σi)i∈I ∈ SC E(�, f , φ) such that, for each i ∈ I , σi ∈ [σ̄i] and every 
si ∈ Suppσi is justified by confirmed belief μs̄i for some s̄i ∈ [si] ∩ Suppσ̄i .

This result is a corollary of Lemma 5 proved in Appendix A. We provide a sketch of proof, because it helps to understand 
how dynamic (in)consistency matters for SCE analysis. Fix (σ̄i)i∈I ∈ SC E(�, f , φ̄) and consider a strategy s̄i ∈ Suppσ̄i that is 
sequentially optimal given μs̄i . Since the confirmed-beliefs condition does not depend on ambiguity attitudes, we only have 
to argue that some si ∈ [s̄i] is 

(
μs̄i , φi

)
-unimprovable. Fix any h consistent with s̄i , that is, h ∈ Hi(s̄i). By ex post perfect 

recall, μs̄i assigns probability 1 to the set of distributions σ−i such that σ−i (S−i (h)) = σ̄−i (S−i (h)), because i observes 
the frequency of h. There are two cases. (1) If σ̄−i (S−i (h)) > 0, then μs̄i (�−i (h)) > 0 and conditional belief μs̄i (·|h) is 
determined by Bayes rule. Since payoffs are observable, according to conditional belief μs̄i (·|h) the equilibrium action s̄i,h
is unambiguous (that is, it involves known risks), whereas deviations are untested and can be perceived as ambiguous. 
Thus, keeping continuation plan and beliefs fixed, an increase in ambiguity aversion from the baseline φ̄i to the more 
concave φi decreases the value of deviations without affecting the value of s̄i,h . Moreover, by sequential optimality, after 
each deviation the original continuation plan described by s̄i is optimal under φ̄i given μs̄i (·|h). This implies that any 
(μs̄i , φi)-unimprovable continuation plan makes deviations less attractive under φ̄i (if the plan involves further deviations 
from s̄i down the road) and hence less attractive than s̄i,h under the higher ambiguity aversion represented by φi . (2) 
If σ̄−i (S−i (h)) = 0, also μs̄i assigns probability 0 to h (that is, h /∈ Hi

(
μs̄i

)
) and unimprovability does not impose any 

optimality requirement on s̄i,h (see Definition 1). Hence, one can find a 
(
μs̄i , φi

)
-unimprovable and realization-equivalent 

strategy si ∈ [s̄i]. The following example illustrates this intuition.

Example 5 (Sequential optimality). Let �′ be the our game show, but suppose that Player 1 has already won an amount worth 
5 utils instead of 4 that he gets if he opts Out immediately. The symmetric SCE (Out.M, L) of (�, f , φ̄) of Example 4 is also 
a symmetric SCE of (�′, f , φ̄) justified by the same confirmed beliefs as in Examples 1 and 4:

μ1 (σ2) =
{ 1

2 if σ2 ∈ {δL, δR} ,

0 otherwise.

Now, Out.M is not only a (μ1, φ̄1)-unimprovable strategy, but it is also (μ1, φ̄1)-sequentially optimal, because at the root 
the best alternative strategy In.T (see Example 3) yields an unambiguous expected payoff of 4.5 < 5. Consider now any 
strictly increasing and concave transformation φ1 = ϕ1 ◦ φ̄1 such that:

φ1

(
1

2

)
= φ̄1

(
1

2

)
= −1,

φ1 (u) = φ̄1(u) = √
u if u ∈ [1,9],

φ̄1(36) = 6 > k = φ1 (36) > φ1 (9) = 3.

Specifically, φ1 (36) is close to 3. In the transformation from φ̄1 to φ1, the values of In.M and In.B at the root (given μ1) 
decrease, whereas the value of In.T is constant. Then, at the root, In.aφ

1 is worse than Out, where aφ
1 denotes any action 

that maximizes player 1’s (μ1, φ1)-value conditional on {(In,G)}. This implies that Out.aφ
1 is (μ1, φ1)-unimprovable and (

Out.aφ
1 , L

)
is a symmetric SCE of (�′, f , φ) realization equivalent to (Out.M, L). �

What can go wrong when the SCE strategies are not sequentially optimal under the confirmed beliefs that justify them? 
Take the viewpoint of an agent in population i at some information set h ∈ Hi(μi) ∩ H(si), where si is the agent’s strategy in 
an SCE of 

(
�, φ̄, f

)
and μi is the confirmed belief that justifies it. At h, the agent evaluates a deviation from the equilibrium 

action si,h to an alternative action ai , after which he might play once more at an information set h′ ∈ Hi(μi). Suppose 

39 See Definition 2 and Remark 1.



16 P. Battigalli et al. / Games and Economic Behavior 115 (2019) 1–29
that, given his belief and some action a′
i at h′ , ai has a higher value than the SCE expected payoff. Yet, since si is not 

(μi, φ̄i)-sequentially optimal, the agent also realizes that his “future self” at h′ will play action si,h′ different from a′
i , and 

this makes the agent prefer si,h to ai at h. But, as his ambiguity aversion increases from φ̄i to φi , the future self of the agent 
may switch from si,h′ to a′

i at h′ for all the confirmed beliefs that justify si,h under φ̄i . Then, although for any fixed belief and 
action at h′ the value of ai compared to si,h at h decreases (because ai exposes the agent to ambiguity while si,h does not, 
and the agent has become more ambiguity averse), the value of ai at h under the predicted choice at h′ can increase when 
moving from φ̄i to φi . The following example demonstrates this possibility.

Example 6 (Running example, no monotonicity). Let φ̄1 and φ1 be the ambiguity attitudes described in Examples 4 and 5. In 
Appendix A.2 we show that, if φ1 (36) is sufficiently small, Out does not belong to the set of SCE outcomes of (�, f , φ), 
although it is an SCE outcome of (�, f , φ̄). The intuition is as follows. For an intermediate level of ambiguity aversion, 
captured by the baseline second-order utility φ̄1, upon reaching (In, G) player 1 is tempted by actions M and B even under 
the most pessimistic belief (μ1(·| {(In,G)}) = 1

2 δL + 1
2 δR, cf. Lemma 8). At the root, he anticipates this and, scared by the 

implied ex-ante objective expected reward of 1/2 under the “bad model” (δL if he plans M and δR if he plans B), he chooses 
Out. For a higher level of ambiguity aversion, captured by φ1, at (In, G) player 1 is tempted by M and B only for sufficiently 
optimistic beliefs. As a consequence, at the root, he is less worried by the “bad model,” either because now he plans the 
unambiguous action T for the subgame, or because he plans an ambiguous action and he deems the “bad model” sufficiently 
unlikely. Therefore, he chooses In at the root. �

Thus, the monotonicity result of BCMM does not extend to all sequential games, even if we restrict our attention to 
distributions of outcomes.40 Yet, we can use Lemma 1 to show that the monotonicity result holds for classes of games and 
equilibria of interest.

6.1. No player moves more than once

We say that no player moves more than once in � if, for every i ∈ I and z ∈ Z , there is at most one information set 
h ∈ Hi that contains a predecessor of z. For example, games with simultaneous moves, leader-follower games and signaling
games have this property. In this class of games, at any information set h ∈ Hi , the agent does not move again after h. 
Then, the value of an action at h ∈ Hi does not depend on i’s strategy, thus unimprovability coincides with sequential 
optimality.41 Moreover, no information set of i is prevented by any strategy of i, thus strategies (or strategy distributions) 
are realization-equivalent if and only if they coincide. Hence, Lemma 1 implies the following result:

Corollary 5. Fix two games with observable payoffs where no player moves more than once, (�, f , φ) and (�, f , φ̄), so that (�, f , φ)

features more ambiguity aversion than (�, f , φ̄). Then

SC E(�, f , φ) ⊇ SC E(�, f , φ̄).

Since in games with simultaneous moves no player moves more than once, Corollary 5 yields the monotonicity result of 
BCMM as a special case.

6.2. Symmetric self-confirming equilibria

Consider now a symmetric SCE s̄ in a game with observable payoffs and without chance moves. We show that with higher 
ambiguity aversion there is a symmetric SCE equilibrium s with the same outcome.42

Theorem 6. Fix two games with observable payoffs, ambiguity aversion, and without chance moves, (�, f , φ) and (�, f , φ̄), so that 
(�, f , φ) features more ambiguity aversion than (�, f , φ̄). Then:

ζ (symSC E(�, f , φ)) ⊇ ζ
(
symSC E(�, f , φ̄)

)
.

The intuition for this result is as follows. The symmetric SCE strategies may not be sequentially optimal under the 
confirmed beliefs that justify them. However, consider alternative beliefs that are supported by Dirac models and give 
the same predictive beliefs as the original ones. By construction, these beliefs are confirmed by the equilibrium play, and 

40 This shows that the conjecture informally stated by BCMM (p. 667) is false.
41 Indeed, Proposition 2 can be extended to any φi in one-move games. Yet, Proposition 1 cannot; the reason is that, if φi is not linear and i is not a 

first mover, sequential optimality does not imply ex ante value maximization. Indeed, if sequential optimality was defined to include ex ante maximization, 
Lemma 1 would not be applicable to one-move games.
42 Note that we can identify symSC E

(
�, f , φ̄

)
with a subset of S . Hence, it makes sense to write ζ (

symSC E
(
�, f , φ̄

))
.
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Fig. 2. A 3-person common interest game: I = {0,1,2}.

they feature two additional properties. First, they are the most pessimistic beliefs among those that give rise to the same 
predictive probabilities; thus, by certainty of the equilibrium payoff, they justify a realization equivalent symmetric SCE. This 
is shown by Lemma 8 in Appendix A and it is based on the following intuition: For any belief μi , the corresponding belief 
supported by Dirac models μ̂i with the same predictive as μi is a “mean-preserving spread” of μi , and the concavity of 
φi implies that player i feels worse-off with such spread. Second, absent chance moves, beliefs supported by Dirac models 
cannot entail dynamic inconsistencies of preferences over strategies, because the payoff under each model is deterministic, 
thus it is not influenced by a partial resolution of the uncertainty. This is shown by Lemma 7 in Appendix A. Therefore, the 
symmetric SCEs that these beliefs justify are in sequentially optimal strategies. With this, we can use Lemma 1 to prove the 
monotonicity result for equilibrium outcomes.

Absence of chance moves and symmetry of the equilibrium are tight conditions. In Example 6, outcome Out is induced 
by a symSCE of the game with chance moves (�, f , φ̄), but it is not induced by any symSCE of the game (�, f , φ), which 
features more ambiguity aversion. As for the role of symmetry (pure equilibrium), consider the following example.

Example 7 (No chance). Let �′ be the following modification of the game of Fig. 1, represented in Fig. 2: deviating from our 
standard notation, here 0 is not chance but rather an actual player, choosing between E and G simultaneously with player 1
at the root. Assuming common interests, all players obtain payoff 4 at both outcomes (E,Out) and (G,Out). Assume perfect 
feedback and consider the same φ̄1 and φ1 of Example 6. The SCE (σ0,Out.M, L) of (�′, f , φ̄), where σ0(E) = σ0(G) = 1

2 , 
yields outcomes (E,Out) and (G,Out) with probability 1/2 (cf. Example 4). By perfect feedback and confirmed beliefs, in any 
realization-equivalent SCE player 1 is certain of σ0. Yet, for the same argument as for Example 6, no (μ1, φ1)-unimprovable 
strategy of player 1 prescribes action Out when the marginal of μ1 on �0 is δσ0 . Thus, no SCE of (�′, f , φ) yields outcomes 
(E,Out) and (G,Out) with probability 1/2. �

6.3. Ambiguity aversion versus ambiguity neutrality

Fix a sequential game with feedback (�, f ) and let IdV := (
IdVi

)
i∈I denote the profile of players’ identity functions char-

acterizing their neutrality toward ambiguity. We relate the set SC E (�, f , IdV) of SCEs of � given feedback functions f and 
neutral ambiguity attitudes with the set SC E (�, f , φ) with non-neutral ambiguity attitudes φ. We start with a preliminary 
observation43:

Remark 4. For every two-person game with feedback (�, f ) and every profile φ of second-order utility functions, 
SC E (�, f , IdV) ⊆ SC E (�, f , φ).

To see this, note that ambiguity neutrality and the convexity of �−i = � (S−i) in two-person games allow to replace 
the justifying confirmed beliefs supporting (σ̄i)i∈I as an SCE of (�, f , IdV) with the corresponding Dirac beliefs supported 
by their predictive measure. Since ambiguity attitudes are immaterial for agents with Dirac beliefs, (σ̄i)i∈I is also an SCE 
of (�, f , φ). This argument does not hold with n > 2 players, because in this case �−i is not convex, hence, the Dirac 
measure supported by the predictive of μs̄i may belong to � (�(S−i))\� (�−i). Nonetheless, we can relate SC E (�, f , IdV)

and SC E (�, f , φ) for a large class of games.
As a corollary of their main monotonicity result, BCMM show that, under observable payoffs, SC E (N (�, f ) , IdV) is 

contained in SC E (N (�, f ) ,φ) if each φi is concave. Even if the main monotonicity result of BCMM does not extend to 
SCE of sequential games for the entire spectrum of ambiguity attitudes, we are still able to obtain a sequential version 
of this corollary in terms of induced outcome distributions. By dynamic consistency under ambiguity neutrality (i.e., by 

43 Cf. footnote 23 of BCMM.
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Proposition 2), the result about the comparison between ambiguity neutrality and ambiguity aversion is a corollary of 
Lemma 1.

Corollary 7. Suppose that (�, f ) has observable payoffs and (�, f , φ) features ambiguity aversion. Then, the set of SCE distributions 
over terminal nodes of (�, f , φ) contains the set of SCE distributions over terminal nodes with ambiguity neutrality.

Given the large body of empirical evidence supporting the ambiguity aversion hypothesis, we conclude that the standard 
SCE concept, which implicitly assumes neutral ambiguity attitudes, overestimates the predictability of long-run outcomes of 
learning dynamics.

7. Discussion

We discuss some extensions and possible modifications of the SCE concept.

7.1. Heterogeneous populations

Our analysis can be easily extended to the case of populations with heterogeneous personal traits affecting preferences, or 
feedback. Let θi ∈ �i be the possible, privately known, personal traits of agents in population i. Tastes and risk attitudes (vθi ), 
ambiguity attitudes (φθi ), and feedback ( fθi ) are affected by θi . Assume for simplicity that �i is finite and let τi ∈ � (�i)

denote the exogenous distribution of personal traits in population i. For any j ∈ I and θ j ∈ � j we let σθ j denote the 
strategy distribution in the subpopulation of agents with trait θi . For every profile of distributions 

(
σθ j

)
θ j∈� j

∈ � 
(

S j
)� j

and every s j ∈ S j the aggregate fraction of agents playing s j is 
∑

θ j∈� j
τ j

(
θ j
)
σθ j

(
s j
)
. With this, we can extend SCE to 

take into account that unimprovability and belief confirmation depend on personal traits (cf. Ch. 7 in Battigalli, 2018, and 
Dekel et al., 2004): A profile of distributions 

((
σθi

)
θi∈�i

)
i∈I

is a selfconfirming equilibrium if there is a profile of beliefs ((
μθi ,si

)
θi∈�i ,si∈Suppσθi

)
i∈I

such that, for all i ∈ I , θi ∈ �i , and si ∈ Suppσθi

1. si is unimprovable given μθi ,si , vθi , and φθi ,

2. μθi ,si

({
σ ′

−i ∈ �−i : F̂θi

(
si, σ

′
−i

) = F̂θi

(
si,× j �=i

(∑
θ j∈� j

τ j
(
θ j
)
σθ j

))})
= 1.

Our results extend seamlessly to this more general environment.

7.2. Incomplete information, ambiguous randomizations

We already explained that the SCE concept is relevant for incomplete-information environments with “private values,” 
where players know their own utility (and feedback) function, but not those of co-players (see Section 5). We can extend 
the analysis to other forms of incomplete information. In particular, it is straightforward to relax the assumption that the 
probabilities of chance moves are (commonly) known: Chance can be analyzed as an indifferent player; then, one just 
applies the definitions we already have for games without chance moves, letting the chance player distribution be the one 
obtained from the objective probabilities of chance moves. This notational trick also allows us to cover the case where 
players can delegate their choice of actions to random devices with unknown probabilities of outcomes (“Ellsberg urns”), as 
in Riedel and Sass (2014, 2017).

More generally, we can parametrize all the features of the game that are not commonly known with a parameter profile 
θ = (

θ j
)

j∈I0
∈ �, where θ0 parameterizes unknown chance probabilities and other non personal aspects of the game such 

as some features of the consequence function, and each θi (i ∈ I) parameterizes privately known personal features. Then we 
can give definitions of SCE at a given θ (cf. Ch. 7 in Battigalli, 2018; Battigalli and Guaitoli, 1988). Also in this case, our 
results extend seamlessly to this more general environment.44

7.3. Rationalizable selfconfirming equilibrium

The SCE concept does not capture strategic reasoning: In an SCE, agents’ beliefs may allow for irrational, or at least 
“strategically unsophisticated” behavior of other agents. Indeed, as we explained in Section 5, the SCE concept makes sense 
even if agents do not know the preferences and the feedback functions of other agents. In the working paper version 
we refine our notion of SCE so as to capture a form of strategic reasoning under complete information. Specifically, we 
put forward a relatively simple definition of rationalizable SCE that can be derived from the epistemic assumptions of (a) 

44 Of course, Theorem 6 holds vacuously if the games has chance moves.
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subjective rationality, (b) belief confirmation, and (c) common initial belief of (a) and (b).45 In the special case of ambiguity 
neutrality, our refinement is similar to the “partition-confirmed rationalizable SCE” of Fudenberg and Kamada (2015, 2018). 
We prove that analogs of the monotonicity results of this paper also hold for rationalizable SCE.

7.4. Monotonicity and restrictions on beliefs

In some applications, it is natural to suppose that the players have some structural knowledge, or common belief about 
the possible distributions of strategies in the populations of opponents, e.g., that agents use rationalizable strategies (see 
Section 7.3). More generally, we may add to the parameters describing the game a profile of restricted belief sets R = (Ri)i∈I
with Ri ⊆ � (�−i) for each i ∈ I , and consider the equilibrium set SC E (�, f , φ, R) obtained by requiring that each player 
i’s belief belongs to his restricted set. By inspection of the definition of SCE, one can check that stronger restrictions yield a 
smaller set of equilibria, that is, ×i∈I R̄ i ⊆ ×i∈I Ri implies SC E

(
�, f , φ, R̄

) ⊆ SC E (�, f , φ, R). Hence, if restrictions on beliefs 
are due to restrictions on the possible probability models and there is more ambiguity (i.e., larger sets of possible probability 
models), the SCE set is larger.

Another natural question is whether our monotonicity results about increasing aversion to ambiguity extend to the case 
where the beliefs supporting any SCE are required to belong to the restricted sets. More formally, when is it the case 
that, if ambiguity aversion increases from a baseline level (represented by) φ̄ to a higher level φ, then SC E

(
�, f , φ̄, R

) ⊆
SC E (�, f , φ, R)? An inspection of the statement of Lemma 1 shows that the results for one-move games and the compar-
ison between ambiguity neutrality and ambiguity aversion still hold when belief sets are restricted. In a one-move game 
or under ambiguity neutrality, given an SCE (σ̄i)i∈I justified by the confirmed beliefs 

(
μs̄i

)
i∈I,s̄i∈Suppσ̄i

with μs̄i ∈ Ri , ev-

ery s̄i ∈ Suppσ̄i is (μs̄i , φ̄i)-sequentially optimal.46 Therefore, by Lemma 1, under increased ambiguity aversion there is a 
realization-equivalent SCE justified by the same confirmed beliefs, hence beliefs that continue to satisfy the restrictions.

As for symmetric SCEs, by inspection of the proof of Theorem 6 one can show that a sufficient condition for the result to 
hold is that each restricted belief set Ri has the following property: for every belief μi in Ri also the corresponding belief

μ̂i =
∑

s−i∈S−i

pμi (s−i) δδs−i

belongs to Ri , where δδs−i
∈ � (�−i) is the Dirac belief that assigns probability one to the Dirac model δs−i ∈ �−i (that 

is, player i is certain that all agents in population j play strategy s j ). For example, suppose we analyze a repeated game 
with impatient players, rather than a recurrent population game. Impatience implies that players only care about their 
one-period payoffs. With this, the definition of pure SCE is the relevant one to characterize steady states. Suppose also 
that the one-period game has no chance moves, which excludes the possibility to commit to randomizations and fits the 
hypothesis of Theorem 6. It is then natural to assume that each player believes that the co-players play pure strategies. In 
this case, Ri is the set of beliefs supported by Dirac models (isomorphic to � (S−i)), the foregoing sufficient condition is 
obviously satisfied, and Theorem 6 holds.47 This also clarifies that we can reinterpret this theorem as a result about repeated 
games played by impatient players.

7.5. Infinite games

As most of the literature on SCE in sequential games, we analyze finite games. In this discussion, without much loss 
of generality, we restrict our attention to games with a multistage structure and we consider infinite games. It is quite 
straightforward to extend the formal analysis to games with finitely many stages where players have finitely many feasible 
actions at nonterminal information sets, but may have a continuum of feasible actions in the last stage.48 Yet, our analysis 
of ambiguity aversion and our notion of SCE rely on the informal assumptions that the sequential play occurs in one period, 
consequences realize at the end, and the game is played—with changing, randomly drawn opponents—for infinitely many 
periods (see Section 2). The possibility of infinite duration, instead, requires a different analysis for games with one or 
more stages in each period that may last for infinitely many periods, such as infinitely repeated games. It does not make 
much sense to assume that games with infinite duration are played infinitely many times with changing opponents. We 
should instead consider a notion of SCE as a limit that can be approached while playing the same game, similar to the 
“subjective equilibrium” of Kalai and Lehrer (1995). The key difference concerning the belief-confirmation property is that 
in this context beliefs concern multi-period strategies, e.g., grim strategies in the infinitely-repeated Prisoners Dilemma. As 
for preferences, one should consider streams of consequences that realize at the end of each period, and a smooth ambiguity 

45 In the working paper we offer a preliminary discussion of the learning foundations of rationalizable SCE and we relate them to alternative epistemic 
assumptions.
46 Clearly, φ̄i is linear in the case of ambiguity neutrality.
47 Another example of a restriction on beliefs that satisfies the aforementioned condition is the one imposed by Peer-Confirming Equilibrium, a network-

based refinement of RSCE (see Lipnowski and Sadler, 2018).
48 A continuum of actions in earlier stages instead presents technical difficulties in the analysis of conditional beliefs. For related reasons, there is no 

agreed-upon definition of sequential equilibrium for such games. See Myerson and Reny (2018).
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criterion that takes this into account, possibly allowing for a form of discounting (Battigalli et al. 2016c take some steps in 
this direction). Our informed conjecture is that appropriate versions of Lemma 1, Theorem 6, and Corollary 7 can be proved 
for this different framework.

Appendix A

To ease notation, throughout the appendix we let σ denote a profile of distributions (σi)i∈I , whereas σ−i still denotes a 
product distribution in �−i (thus including σ̄0) as in the main text.

A.1. Proof of Proposition 3

Fix any sequential equilibrium in behavioral strategies β̄ = (
β̄i
)

i∈I0
of game � (chance has been included for notational 

convenience). For each i ∈ I0, let σ̄i denote the mixed strategy associated with β̄i according to Kuhn’s (1953) transformation:

∀si ∈ Si , σ̄i (si) =
∏

h∈Hi

β̄i
(
si,h|h

)
.

Let μs̄i = δσ̄−i for each s̄i ∈ Suppσ̄i . By construction, these beliefs are correct, hence confirmed. To show that σ̄ = (σ̄ j) j∈I is 
an SCE justified by these confirmed beliefs, we must prove that, for each i ∈ I , each s̄i ∈ Suppσ̄i is (μs̄i , φi)-unimprovable.

It is well known that every pure strategy in the support of a sequential equilibrium is a sequential best reply to the 
equilibrium beliefs. Therefore, for every i ∈ I , h ∈ Hi and s̄i such that 

∏
h′∈Hi

β̄i
(
s̄i,h′ |h′) > 0, that is, for every s̄i ∈ Suppσ̄i ,

s̄i,h ∈ arg max
ai∈Ai(h)

∑
x∈h

P(
s̄i|h,ai

)
,β̄−i

(x|h)
∑
z∈Z

P(
s̄i|h,ai

)
,β̄−i ,

(z|x) ui (z) ,

where Psi ,β̄−i
(·|·) denotes the probability of a node conditional on an information set, or an earlier node, determined by 

the behavioral strategy profile 
(
si, β̄−i

)
. Since σ̄−i is by construction realization-equivalent to β̄−i , Psi ,β̄−i

(·|·) = Psi ,σ̄−i (·|·); 
hence,

∀si ∈ Si (h) , Ui (si, σ̄−i |h) =
∑
x∈h

Psi ,β̄−i
(x|h)

∑
z∈Z

Psi ,β̄−i
(z|x) ui (z) .

Since μs̄i = δσ̄−i ,

∀ai ∈ Ai (h) , V i
(
ai |h; s̄i,μs̄i , φi

) = φ−1
i

(
φi

(
Ui

((
s̄i|h,ai

)
, σ̄−i |h

))) = Ui
((

s̄i|h,ai
)
, σ̄−i |h

)
.

Therefore s̄i is 
(
μs̄i , φi

)
-unimprovable. �

A.2. Example 6

We prove that in Example 6, there exists a concave and strictly increasing transformation φ1 = ϕ1 ◦ φ̄1 such that for every belief
μ1, Out is not prescribed by any (φ1, μ1)-unimprovable strategy of player 1. As anticipated in Example 5, we look for a φ1 such 
that

φ1

(
1

2

)
= φ̄1

(
1

2

)
= −1

φ1 (u) = φ̄1(u) = √
u if u ∈ [1,9],

φ̄1(36) = 6 > φ1 (36) > φ1 (9) = 3

with k = φ1 (36) close to 3.
For every σ2 in �(A2({(In,G)})) = �({L,R}), let

eM(σ2) = 1 · σ2 (L) + 36 · σ2 (R)

denote the objective expected payoff of M in the subgame. For every probability measure ν on �({L,R}), define Gν :
�({L,R}) → [0,1] as

Gν(σ2) := ν
({

σ ′
2 ∈ �({L,R}) : eM(σ ′

2) ≤ eM(σ2)
})

.

Player 1 prefers M to T only if

V 1(M| {(In,G)} ; s1,μ1, φ1) ≥ 9 = V 1(T| {(In,G)} ; s1,μ1, φ1).
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Let ν = μ1 (·| {(In,G)}). Then, for every σ2 ∈ �({L,R}),49

φ−1
1 (Gν(σ2) · φ1(eM(σ2)) + (1 − Gν(σ2)) · φ1 (36)) ≥ V 1(M| {(In,G)} ; s1,μ1, φ1),

that is,

Gν(σ2) · φ1(eM(σ2)) + (1 − Gν(σ2)) · φ1 (36) ≥ φ1(V 1(M| {(In,G)} ; s1,μ1, φ1)).

Therefore, a necessary condition for 1 to choose M over T is that, for every σ2 ∈ �({L,R}),

Gν(σ2) · φ1(eM(σ2)) + (1 − Gν(σ2)) · k ≥ 3.

Let σ̂2 be the solution of eM(σ2) = 17/2, then

Gν(σ̂2) ≤ k − 3

k − √
17/2

. (A.1)

The interpretation is that the probability assigned to the models under which action M has an (objective) value lower or 
equal than 17/2 must be sufficiently small if player 1 is to choose M at (In,G).

Now, we return to the choice of player 1 at the root of the game. Note that

μ1 = μ1 (·| {∅}) = μ1 (·| {(In,G)})
because the belief about the co-player cannot change upon observing one’s own move, or a chance move. DMi is sophisti-
cated, therefore, before choosing between In and Out, he predicts his behavior at (In,G). There are three cases:

1. Player 1 understands that his subjective belief μ1 makes him play T at (In,G). Then, since In.T is preferred to Out for 
every belief, he will play In at {∅}.

2. Player 1 understands that his subjective belief μ1 makes him play M at (In,G). But then, it must be the case that (A.1)
holds. Therefore, the probability assigned to the models that (given In.G) yield an objective expected utility of choosing 
action M larger than or equal to 17/2 is at least 1 − k−3

k−√
17/2

. In turn, this implies that the probability assigned to 
the models that, ex-ante, yields an objective expected utility of strategy In.M larger than or equal to 17/4 is at least 
1 − k−3

k−√
17/2

. But then, the evaluation of strategy In.M under belief μ1 satisfies the following conditions50:

φ1(V 1(In| {∅} ; In.M,μ1, φ1)) ≥ φ1

(
1

2

)
· k − 3

k − √
17/2

+ φ1

(
17

4

)
·
⎛
⎜⎝1 − k − 3

k −
√

17
2

⎞
⎟⎠

=
√

17

2
− k − 3

k −
√

17
2

·
(√

17

2
+ 1

)
.

For k = φ1 (36) sufficiently close to 3, φ1(V 1(In| {∅} ; In.M, μ1, φ1)) is higher than 2, thus player 1 chooses In over Out.
3. Player 1 understands that his subjective belief μ1 makes him play B at (In,G). A similar argument as for the previous 

case shows that for k sufficiently close to 3 also in this case player 1 chooses In over Out.

Summing up, there is a concave and strictly increasing transformation φ1 = ϕ1 ◦ φ̄1 such that Out is not prescribed by 
any (μ1, φ1)-unimprovable strategy for all beliefs μ1.

A.3. Monotonicity of the SCE correspondence

Define the set of messages for i consistent with an information set h ∈ Hi as follows:

Mi (h) := {m : ∃ (x, z) ∈ h × Z , (x ≺ z) ∧ (m = f i (z))} .

49 Given the belief ν and a model σ2, Gν (σ2) is the probability assigned by ν to the models that, paired with action M, yield an (objective) expected 
utility lower or equal to the one obtained under model σ2. Therefore, the value of action M under ν cannot exceed the value of M under the following 
belief: the models that, paired with action M, yield an (objective) expected utility equal to the one obtained under model σ2 have probability Gν (σ2), 
whereas δR has probability (1 − Gν (σ2)).
50 The first inequality is due to the following fact. The probability assigned by μ1 to the models that, ex-ante, given strategy In.M, yield an (objective) 

expected utility larger or equal than 17
4 must be larger or equal than 1 − k−3

k−√
17/2

. Therefore, the value of action In given strategy In.M under μ1 cannot be 
lower than its value under the following belief: the set of models that, given strategy In.M, yield an (objective) expected utility equal to 17

4 has subjective 
probability 1 − k−3√ , whereas δL has subjective probability k−3√ .
k− 17/2 k− 17/2
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Lemma 2. Ex post perfect recall implies that, for all i ∈ I , h ∈ Hi , and si ∈ Si (h), the collection of subsets 
{

F −1
i,si

(m) : m ∈ Mi (h)
}

is a 
partition of S−i (h).

In words, S−i (h) is the union of the sets of preimages of messages consistent with h, because these messages “record” 
that h has been reached.

Proof. Fix i ∈ I , h ∈ Hi , and si ∈ Si (h) arbitrarily. Note that perfect recall implies

S I0 (h) = Si (h) × S−i (h) ,

and that m′ �= m′′ implies F −1
i,si

(
m′)∩ F −1

i,si

(
m′′) = ∅. We must show that

S−i (h) =
⋃

m∈Mi(h)

F −1
i,si

(m) .

We first prove that

S−i (h) ⊆
⋃

m∈Mi(h)

F −1
i,si

(m) .

Fix any s−i ∈ S−i (h); since si ∈ Si (h) and S I0 (h) = Si (h) × S−i (h), then (si, s−i) ∈ S I0 (h), that is, x ≺ ζ (si, s−i) for some 
x ∈ h. Thus, by definition of Mi (h), f i (ζ (si, s−i)) ∈ Mi (h). Hence, s−i ∈ F −1

i,si
(m) for some m ∈ Mi (h).

Next we prove by contraposition that the converse

S−i (h) ⊇
⋃

m∈Mi(h)

F −1
i,si

(m)

is implied by ex post perfect recall. Suppose that we can find some m ∈ Mi (h) and s′
−i ∈ F −1

i,si
(m)\S−i (h). We show that this 

implies a violation of ex post perfect recall. Since m ∈ Mi (h), there is a pair (x, z) ∈ h × Z such that x ≺ z and f i (z) = m. Fix 
any s−i ∈projS−i ζ

−1 (z), so that (si, s−i) ∈ Si (h) × S−i (h) = S I0 (h) for some si ∈ Si(h). Let z = ζ (si, s−i) and z′ = ζ
(
si, s′

−i

)
. 

Then, by choice of s−i and s′
−i , f i (z) = m = f i

(
z′), z is preceded by a node of h, and z′ is not preceded by any node of h. 

Hence, there are z, z′ ∈ Z such that z has a predecessor in h, z′ has no predecessor in h, and yet f i (z) = m = f i
(
z′), thus 

violating ex post perfect recall. �

The following result says that the value of equilibrium actions is unambiguous, hence independent of ambiguity attitudes:

Lemma 3. Let σ̄ be an SCE of the game with observable payoffs (�, f , φ) justified by the confirmed beliefs 
(
μsi

)
i∈I,si∈Suppσ̄i

. For every 
i ∈ I and si ∈ Suppσ̄i and h ∈ Hi(μsi ) ∩ Hi(si), action si,h is μi(·|h)-unambiguous, and its value is the conditional objective expected 
payoff, that is,

V i(si,h|h; si,μsi , φi) = Ui(si, σ̄−i |h).

Proof. By ex post perfect recall and Lemma 2,

S−i (h) =
⋃

m∈Mi(h)

F −1
i,si

(m) (A.2)

for each h ∈ Hi , where the sets F −1
i,si

(m) (m ∈ Mi (h)) are disjoint. Let

�̂−i (si, σ̄−i) :=
{
σ−i ∈ �−i : ∀m,σ−i(F −1

i,si
(m)) = σ̄−i(F −1

i,si
(m))

}
denote the partially identified set of co-players distributions of strategies observationally equivalent (obs.eq) for i to σ̄−i
given si .

Fix any h ∈ Hi(μsi ) ∩ Hi(si). Then,

∀σ−i ∈ �̂−i (si, σ̄−i) ,

σ−i (S−i (h))
((A.2),obs.eq)= σ̄−i (S−i (h))

(conf)= pμsi
(S−i (h)) > 0, (A.3)

where the first equality follows from eq. (A.2) and the fact that σ−i is observationally equivalent to σ̄−i , the second equality 
follows from the first and belief confirmation (conf), that is μsi

(
�̂−i (si, σ̄−i)

)
= 1, and the inequality follows from h ∈

Hi(μsi ).
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Fix any m ∈ Mi (h); by observable payoffs (obs.p), there is um ∈ R such that ui (ζ(si, s−i)) = um for all s−i ∈ S−i with 
f i(ζ(si, s−i)) = m. Then, observable payoffs and eqs. (A.2)–(A.3) imply that

∀σ−i ∈ �̂−i (si, σ̄−i) , Ui(si,σ−i |h) = Ui(si, σ̄−i |h). (A.4)

Indeed, for all σ−i ∈ �̂−i (si, σ̄−i),

Ui(si,σ−i |h)
(def,(A.3))=

∑
s−i∈S−i(h)

σ−i(s−i)

σ−i(S−i(h))
ui(ζ(si, s−i)))

((A.2),obs.p)=
∑

m∈Mi(h)

σ−i(F −1
i,si

(m))um

σ−i(S−i(h))

(obs.eq,(A.3))=
∑

m∈Mi(h)

σ̄−i(F −1
i,si

(m))um

σ̄−i(S−i(h))

((A.2),obs.p)=
∑

s−i∈S−i(h)

σ̄−i(s−i)

σ̄−i(S−i(h))
ui(ζ(si, s−i)))

(def)= Ui(si, σ̄−i|h).

Confirmed beliefs (μsi

(
�̂−i (si, σ̄−i)

)
= 1), the updating formula (2), and eqs. (A.3)–(A.4) yield

V i(si,h|h; si,μsi , φi) = φ−1
i

⎛
⎜⎝ ∫

�−i(h)

φi (Ui(si,σ−i |h))μsi (dσ−i |h)

⎞
⎟⎠

(2)= φ−1
i

⎛
⎜⎝ ∫

�−i(h)

φi (Ui(si,σ−i |h))
σ−i (S−i (h))

pμsi
(S−i (h))

μsi (dσ−i)

⎞
⎟⎠

((A.4),conf.)= φ−1
i

⎛
⎜⎝φi (Ui(si, σ̄−i |h))

∫
�−i(h)

σ−i (S−i (h))

pμsi
(S−i (h))

μsi (dσ−i)

⎞
⎟⎠

(A.3)= φ−1
i (φi (Ui(si, σ̄−i|h))) = Ui(si, σ̄−i|h). �

An increase in ambiguity aversion (weakly) decreases the values of actions:

Lemma 4. If (�, f , φ) features more ambiguity aversion than (�, f , φ̄), then

V i(ai |h; si,μi, φ̄i) ≥ V i(ai|h; si,μi, φi)

for all i ∈ I , μi ∈ � (�−i), si ∈ Si , h ∈ Hi (μi), and ai ∈ Ai (h).

Proof. Fix i and si arbitrarily. For every h ∈ Hi and ai ∈ Ai (h), define the following auxiliary function:

Usi ,h,ai : �−i (h) → R,

σ−i �→ Ui
((

si|h,ai
)
, σ−i |h

)
.

With this, for every μi ∈ � (�−i) and h ∈ Hi (μi), the conditional belief μi (·|h) is well defined and

V i(ai |h; si,μi, φ̄i) = φ̄−1
i

(
Eμi(·|h)

[
φ̄i ◦ Usi ,h,ai

])
, (A.5)

V i(ai |h; si,μi, φi) = φ−1
i

(
Eμi(·|h)

[
φi ◦ Usi ,h,ai

])
.

Since φi = ϕ ◦ φ̄i for some concave and strictly increasing ϕ : φ̄i (Vi) → R, Jensen’s inequality implies

ϕ
(
Eμi(·|h)

[
φ̄i ◦ Usi ,h,ai

]) ≥ Eμi(·|h)

[
ϕ ◦ φ̄i ◦ Usi ,h,ai

] = Eμi(·|h)

[
φi ◦ Usi ,h,ai

]
.

By monotonicity of ϕ and φ̄i , and recalling that φ−1
i = φ̄−1

i ◦ ϕ−1, we obtain

Eμi(·|h)

[
φ̄i ◦ Usi ,h,ai

] ≥ ϕ−1 (Eμi(·|h)

[
φi ◦ Usi ,h,ai

])
,

φ̄−1
i

(
Eμi(·|h)

[
φ̄i ◦ Usi ,h,ai

]) ≥
(
φ̄−1

i ◦ ϕ−1
)(

Eμi(·|h)

[
φi ◦ Usi ,h,ai

]) = φ−1
i

(
Eμi(·|h)

[
φi ◦ Usi ,h,ai

])
.

By eq. (A.5), V i(ai |h; si, μi, φ̄i) ≥ V i(ai |h; si, μi, φi). �

The following result implies Lemma 1 of the main text. Furthermore, it is used to prove Theorem 6.
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Lemma 5. Fix two games with observable payoffs, (�, f , φ) and (�, f , φ̄), such that (�, f , φ) features more ambiguity aversion 
than (�, f , φ̄). Fix an SCE σ̄ of (�, f , φ̄) and justifying beliefs 

(
μsi

)
i∈I,si∈Suppσ̄i

. Suppose that for each i ∈ I , every si ∈ Suppσ̄i is 
(μsi , φ̄i)-sequentially optimal. Then, there exist maps s̄i : Suppσ̄i → Si , i ∈ I , such that

(i) for every i ∈ I and h ∈ Hi(si), s̄i(si)h = si,h, and
(ii) σ = (σ̄i ◦ s̄−1

i )i∈I is an SCE of (�, f , φ) where for every i ∈ I and si ∈ Suppσ̄i , μsi justifies s̄i(si).

(So, σ and σ̄ are realization equivalent and are justified by the same beliefs.)

Proof. For every i ∈ I and si ∈ Suppσ̄i , we construct a (μsi , φi)-unimprovable strategy s̄i(si). Map s̄i : Suppσ̄i → Si is such 
that (1) s̄i(si)h = si,h for all h ∈ Hi(si), and (2) s̄i(si) is derived by folding back on Hi

(
μsi

)\Hi(si) given μsi and φi .51

Therefore, by construction, for every h ∈ Hi
(
μsi

)\Hi(si),

s̄i(si)h ∈ arg max
ai∈Ai(h)

V i(ai|h; s̄i(si),μsi , φi).

Now, let h ∈ Hi
(
μsi

)∩ Hi(si). For every ai ∈ Ai(h), we have

V i(s̄i(si)h|h; s̄i(si),μsi , φi) = V i(si,h|h; si,μsi , φi)

(Lemma 3)= Ui(si, σ̄−i |h)

(Lemma 3)= V i(si,h|h; si,μsi , φ̄i)

(s.opt)≥ V i(ai|h; s̄i(si),μsi , φ̄i)

(Lemma 4)≥ V i(ai|h; s̄i(si),μsi , φi),

where the first equality follows from condition (i) in the statement of the lemma, which implies that s̄i(si) and si are 
realization equivalent, the second and the third equalities from Lemma 3, the first inequality from sequential optimality 
(s.opt), and the second inequality from Lemma 4. This shows that s̄i(si) is (μsi , φi)-unimprovable.

To conclude, note that the profile 
(
σ̄i ◦ s̄−1

i ,
(
μŝi

)
ŝi∈Supp(σ̄i◦s̄−1

i )

)
i∈I

, where μŝi
= μsi for some si with ŝi = s̄i(si), also 

satisfies the confirmed beliefs condition, because profiles(
s̄i(si), (σ̄0, (σ̄ j ◦ s̄−1

j ) j∈I\{i})
)

and (si, σ̄−i)

induce the same distribution over terminal nodes. Therefore (σ̄i ◦ s̄−1
i )i∈I is an SCE of (�, f , φ). �

A.4. Symmetric equilibria

In this subsection we consider games without chance moves. Therefore, the outcome function and the strategic-form 
feedback and payoff functions of player i are, respectively,

ζ : S → Z ,

Fi = f i ◦ ζ : S → M ,

and

Ui = ui ◦ ζ : S →R.

The proof of Theorem 6 requires some preliminary results. Since, for every i ∈ I , the augmented collection

Ĥi = Hi ∪
{

f −1
i (m) : m ∈ f i (Z)

}
satisfies ex post perfect recall, we can derive from the game tree a transitive and antisymmetric precedence relation � on 
Ĥi that makes it a directed forest (collection of directed trees). Furthermore, we can extend to Ĥi the definition of the sets 
S (h), Si (h) and S−i (h) so that S (h) = Si (h) × S−i (h); in particular, for each m ∈ f i (Z),

51 Note that if h /∈ Hi(si), and h′ � h, h′ /∈ Hi(si), therefore the folding back construction is well defined. See Section 4 for the description of folding back 
optimality.
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S
(

f −1
i (m)

)
= F −1

i (m) = projSi
F −1

i (m) × projS−i
F −1

i (m)

= Si

(
f −1

i (m)
)

× S−i

(
f −1

i (m)
)

.

For each μi , we can define the collection of information sets in Ĥi that are possible under μi :

Ĥi (μi) :=
{

h ∈ Ĥi : pμi (S−i (h)) > 0
}

.

Note that, Hi (μi) ⊂ Ĥi (μi). Also, for each h ∈ Hi and ai ∈ Ai (h), we define the collection of information sets in Ĥi that 
“immediately” follow h and action ai :

Ĥi(h,ai) :=
{

h′ ∈ Ĥi : (h ≺ h′)∧ (
αi

(
h,h′) = ai

)∧ (
�h′′ ∈ Hi,h ≺ h′′ ≺ h′)} .

Finally, it is convenient to extend the formula for the values of actions (given strategy and belief) from Hi (μi) to Ĥi (μi). 
Thus, we stipulate that if h = f −1

i (m) then Ai (h) = {am
i } is the singleton that contains only the pseudo-action “i observes 

m.” By observability of payoff, if h = f −1
i (m), then V i

(
am

i |h; si,μi, φi
) = ui (z) for every z ∈ h, independently of (si,μi, φi).

Remark 5. By ex post perfect recall, for every i ∈ I , h ∈ Hi and ai ∈ Ai (h), 
{

S−i(h′)
}

h′∈Ĥi(h,ai)
is a partition of S−i(h).

Proof. We first prove that distinct elements of the collection 
{

S−i(h′)
}

h′∈Ĥi(h,ai)
are disjoint. By ex post perfect recall 

S
(
h′) = Si

(
h′)× S−i

(
h′) for each h′ ∈ Ĥi . Let

Si (h,ai) := {
si ∈ Si (h) : si,h = ai

}
denote the strategies of i allowing for h and choosing ai at h. Then, by definition of Ĥi(h, ai), Si

(
h′) = Si (h,ai) for each 

h′ ∈ Ĥi (h,ai), because i does not move again after choosing ai and before any such h′ . Therefore,

∀h′ ∈ Ĥi (h,ai) , S
(
h′) = Si (h,ai) × S−i

(
h′) .

Take any h′, h′′ ∈ Ĥi (h,ai) with h′ �= h′′ (if such distinct information sets exist). By definition of Ĥi (h,ai), h′ ⊀ h′′ and 
h′′ ⊀ h′ . By perfect recall, this implies that{

z′ ∈ Z : ∃x′ ∈ h′, x′ � z′}∩ {
z′′ ∈ Z : ∃x′′ ∈ h′′, x′′ � z′′} = ∅,

which in turn implies that S
(
h′)∩ S

(
h′′) = ∅. Since Si

(
h′) = Si (h,ai) = Si

(
h′′), then S−i

(
h′)∩ S−i

(
h′′) = ∅.

Note that⋃
h′∈Ĥi(h,ai)

S−i(h
′) ⊆ S−i (h)

because h ≺ h′ , hence S−i
(
h′) ⊆ S−i (h), for each h′ ∈ Ĥi(h, ai).

To prove the converse, pick any (si, s−i) ∈ Si (h,ai)× S−i (h) and let h′ be the first information set in Ĥi after h (possibly a 
terminal information set) reached by the path with terminal node ζ (si, s−i). Then h′ ∈ Ĥi(h, ai) and s−i ∈ S−i(h′). Therefore,

S−i (h) ⊆
⋃

h′∈Ĥi(h,ai)

S−i(h
′).

We conclude that 
{

S−i(h′)
}

h′∈Ĥi(h,ai)
is a partition. �

We say that a belief μi ∈ � (�−i) is supported by Dirac models if

μi
({

δs−i : s−i ∈ S−i
}) = 1.

Then

∀s−i ∈ S−i , μi
(
δs−i

) = pμi (s−i)

and

∀h ∈ Ĥi (μi) ,∀s−i ∈ S−i (h) , μi
(
δs |h) = pμ (s−i|h) .
−i i
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Therefore, if μi is supported by Dirac models,

V i (ai|h; si,μi, φi) = φ−1
i

⎛
⎝ ∑

s−i∈S−i(h)

pμi (s−i|h)φi
(
Ui

((
si|h,ai

)
, s−i

))⎞⎠ .

Since φi is strictly increasing, maximizing V i (ai |h; si,μi, φi) is the same as maximizing

φi (V i (ai|h; si,μi, φi)) =
∑

s−i∈S−i(h)

pμi (s−i|h)φi
(
Ui

((
si|h,ai

)
, s−i

))

and we can focus on the latter expected value. Under a belief supported by Dirac models, φi
(

V i
(
si,h|h; si,μi, φi

))
is a 

weighted sum of the expected values given by si at the next information sets (including the terminal ones), where the 
weights are the predictive probabilities of reaching them.

Lemma 6. Fix any i ∈ I and a belief supported by Dirac models μ̂i . Then, for every si ∈ Si and h ∈ Hi
(
μ̂i

)
,

φi
(

V i
(
si,h|h; si, μ̂i, φi

)) =
∑

h′∈Ĥi(h,si,h)

pμ̂i

(
S−i

(
h′) |h)φi

(
V i

(
si,h′ |h′; si, μ̂i, φi

))
.

Proof. Fix si ∈ Si and h ∈ Hi
(
μ̂i

)
arbitrarily. By Remark 5 and taking into account that μ̂i is supported by Dirac models, we 

can write

φi
(

V i
(
si,h|h; si, μ̂i, φi

)) =
∑

s−i∈S−i(h)

pμ̂i
(s−i|h)φi

(
Ui

(
si|h, s−i

))

=
∑

h′∈Ĥi(h,si,h)

∑
s−i∈S−i(h′)

pμ̂i
(s−i|h)φi

(
Ui

(
si|h, s−i

))

=
∑

h′∈Ĥi(h,si,h):pμ̂i

(
S−i(h′)|h)>0

pμ̂i

(
S−i

(
h′) |h) ∑

s−i∈S−i(h′)

pμ̂i
(s−i|h)

pμ̂i
(S−i (h′) |h)

φi
(
Ui

(
si|h, s−i

))
.

By the chain rule, for every h′ ∈ Ĥi(h, si) with pμ̂i

(
S−i

(
h′) |h) > 0 and for every s−i ∈ S−i(h′),

pμ̂i
(s−i|h)

pμ̂i
(S−i (h′) |h)

= pμ̂i

(
s−i|h′) .

Furthermore, for every h′ ∈ Ĥi(h, si,h) and s−i ∈ S−i
(
h′), Ui

(
si|h, s−i

) = Ui
(
si|h′ , s−i

)
, because, by definition and by choice of 

h′ , replacements si|h and si|h′ are the same strategy. Thus,

∑
s−i∈S−i(h′)

pμ̂i
(s−i|h)

pμ̂i
(S−i (h′) |h)

φi
(
Ui

(
si|h, s−i

))

=
∑

s−i∈S−i(h′)
pμ̂i

(
s−i|h′)φi

(
Ui

(
si|h′ , s−i

)) = φi
(

V i
(
si|h′ |h′; si, μ̂i, φi

))
and we obtain the desired result. �

Iterating the previous formula and using the chain rule, one can prove the following:

Corollary 8. Fix i ∈ I and a belief μ̂i supported by Dirac models. Then, for every si ∈ Si and h ∈ Hi
(
μ̂i

)
,

φi
(

V i
(
si,h|h; si, μ̂i, φi

)) =
∑

s−i∈S−i

pμ̂i
(s−i|h)φi

(
Ui

(
si|h, s−i

))
.

Thus, maximizing the conditional value of a strategy under a belief μ̂i supported by Dirac models is the same as maxi-
mizing the subjective expectation of the transformed utility ûi = φi ◦ Ui . Applying Proposition 2 to μ̂i and ûi we obtain the 
following:

Lemma 7. For every i ∈ I and μ̂i ∈ � (�−i), if μ̂i is a belief supported by Dirac models, then the set of 
(
μ̂i, φi

)
-unimprovable and (

μ̂i, φi
)
-sequentially optimal strategies of i coincide.
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Note that, for every belief μi ∈ � (�−i) there is a unique belief μ̂i supported by Dirac models with the same predictives 
as μi :

∀s−i ∈ S−i , μ̂i
(
δs−i

) = pμi (s−i) .

We show that, for an ambiguity averse agent, μ̂i is the “most pessimistic” belief with the same predictive as μi in the 
following sense: for every h ∈ Hi (μi) = Hi

(
μ̂i

)
, the value at h ∈ Hi (μi) of a (μi, φi)-unimprovable strategy is at least as 

high as the value at h of a 
(
μ̂i, φi

)
-unimprovable strategy. Formally:

Lemma 8. Fix i ∈ I , μi ∈ �(�−i), and a concave second-order utility function φi . Let μ̂i ∈ �(�−i) denote the belief supported by 
Dirac models with the same predictive as μi , and let s∗

i be (μi, φi)-unimprovable; then,

∀si ∈ Si,∀h ∈ Ĥi (μi) , V i

(
s∗

i,h|h; s∗
i ,μi, φi

)
≥ V i

(
si,h|h; si, μ̂i, φi

)
.

Proof. First note that Ĥi (μi)—with the obvious precedence relation—is a directed forest and its leaves are also leaves 
in Ĥi as well, that is, if h is a leaf in Ĥi (μi) then h is a set of terminal nodes (h ∈

{
f −1

i (m) : m ∈ f i (Z)
}

). Furthermore, 

Ĥi (μi) = Ĥi
(
μ̂i

)
because pμi (S−i (h)) = pμ̂i

(S−i (h)) for every h ∈ Ĥi . We prove the result by induction on the depth of h
within Ĥi (μi).

Basis step. Let h = f −1
i (m) be a terminal information set in Ĥi (μi). Then the weak inequality holds trivially as an 

equality: in particular, by observable payoffs

∀z ∈ h, V i

(
s∗

i,h|h; s∗
i ,μi, φi

)
= ui (z) = V i

(
si,h|h; si,μi, φi

)
.

Inductive step. Let h have at least one successor in Ĥi (μi) and suppose, by way of induction, that for every h′ ∈ Ĥi (μi)

with h ≺ h′ ,

V i(s∗
i,h′ |h′; s∗

i ,μi, φi) ≥ V i(si,h′ |h′; si, μ̂i, φi). (I.H.)

Consider the replacement plan sh
i =

(
s∗

i|h, si,h

)
, that is,

∀h′ ∈ Hi ,
(

sh
i

)
h′ =

(
s∗

i|h, si,h

)
h′ =

⎧⎨
⎩

si,h i f h′ = h,

αi
(
h′,h

)
if h′ ≺ h,

s∗
i,h′ if h′ � h.

Since s∗
i is (μi, φi)-unimprovable

V i

(
s∗

i,h|h; s∗
i ,μi, φi

)
≥ V i

(
si,h|h; s∗

i ,μi, φi
)

.

Next we prove that

V i
(
si,h|h; s∗

i ,μi, φi
) ≥ V i

(
si,h|h; si, μ̂i, φi

)
,

which implies the thesis.
To ease notation, write

Ĥi (h,ai,μi) := Ĥi (h,ai) ∩ Ĥi (μi)

for the collection of information sets that immediately follow h after ai and can be reached with positive probability under 
μi ; Ĥi (h,ai, σ−i) is similarly defined (thus, Ĥi (h,ai, σ−i) = Ĥi

(
h,ai, δσ−i

)
). By Remark 5, the definitions of V i and sh

i , 
Jensen’s inequality, the chain rule for σ−i (·|·), Bayes rule for μi (·|·), Lemma 6, and the Inductive Hypothesis,

φi
(

V i
(
si,h|h; s∗

i ,μi, φi
))

(R5,def)=
∫

�−i(h)

φi

⎛
⎜⎝ ∑

h′∈Ĥi
(
h,si,h

)
∑

s−i∈S−i(h′)
σ−i (s−i|h) Ui

(
sh

i , s−i

)⎞⎟⎠μi (dσ−i|h)

=
∫

� (h)

φi

⎛
⎜⎝ ∑

h′∈Ĥi
(
h,s ,σ−i

)σ−i
(

S−i
(
h′) |h) ∑

s−i∈S−i(h′)

σ−i (s−i|h)

σ−i (S−i (h′) |h)
Ui

(
sh

i , s−i

)⎞⎟⎠μi (dσ−i|h)
−i i,h
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(Jen,ch)≥
∫

�−i(h)

∑
h′∈Ĥi

(
h,si,h,σ−i

)σ−i
(

S−i
(
h′) |h)φi

⎛
⎝ ∑

s−i∈S−i(h′)
σ−i

(
s−i|h′)Ui

(
sh

i , s−i

)⎞⎠μi (dσ−i|h)

(def)=
∑

h′∈Ĥi
(
h,si,h,μi

)
∫

�−i(h′)

σ−i
(

S−i
(
h′) |h)φi

(
Ui

(
s∗

i|h′ ,σ−i |h′))μi (dσ−i|h)

=
∑

h′∈Ĥi
(
h,si,h,μi

) pμi

(
S−i

(
h′) |h) ∫

�−i(h′)

σ−i
(

S−i
(
h′) |h)

pμi (S−i (h′) |h)
φi

(
Ui

(
s∗

i|h′ ,σ−i |h′))μi (dσ−i|h)

(Bayes)=
∑

h′∈Ĥi
(
h,si,h,μi

) pμi

(
S−i

(
h′) |h) ∫

�−i(h′)

φi

(
Ui

(
s∗

i|h′ ,σ−i |h′))μi
(
dσ−i|h′)

(def)=
∑

h′∈Ĥi
(
h,si,h,μi

) pμi

(
S−i

(
h′) |h)φi

(
V i(s∗

i,h′ |h′; s∗
i ,μi, φi)

)

(I.H.)≥
∑

h′∈Ĥi
(
h,si,h,μi

) pμi

(
S−i

(
h′) |h)φi

(
V i(si,h′ |h′; si, μ̂i, φi)

)
(Lemma 6)= φi

(
V i

(
si,h|h; si, μ̂i, φi

))
.

Since φi is strictly increasing, V i
(
si,h|h; s∗

i ,μi, φi
) ≥ V i

(
si,h|h; si, μ̂i, φi

)
. �

Proof. Proof of Theorem 6 Let z∗ ∈ ζ
(
symSC E

(
�, f , φ̄

))
. Then, there is a symmetric SCE 

(
s∗

i

)
i∈I of (�, f , φ̄) such that 

z∗ = ζ(
(
s∗

i

)
i∈I ). Let 

(
s∗

i

)
i∈I be justified by the profile of confirmed beliefs (μi)i∈I . For each i ∈ I , let m∗

i = f i (z∗), and let 
μ̂i ∈ � (�−i) be the belief supported by Dirac models with the same predictive as μi , so that Hi (μi) = Hi

(
μ̂i

)
. Compute 

by folding back a 
(
μ̂i, φ̄i

)
-unimprovable strategy ŝ∗

i ; let ŝi be the strategy that coincides with equilibrium strategy s∗
i on 

each path observationally equivalent to the equilibrium path, and with ŝ∗
i elsewhere, that is,

∀h ∈ Hi , ŝi,h =
{

s∗
i,h if h ≺ f −1

i (m∗) ,

ŝ∗
i,h if h ⊀ f −1

i (m∗) .

By construction, ζ
((

ŝi
)

i∈I

) = ζ
((

s∗
i

)
i∈I

) = z∗ . For each i ∈ I , since μ̂i has the same predictive as μi , which is a confirmed,

pμ̂i

(
S−i

(
f −1 (m∗))) = pμi

(
S−i

(
f −1 (m∗))) = 1.

Therefore, each belief in profile 
(
μ̂i

)
i∈I is confirmed under both 

(
s∗

i

)
i∈I and 

(
ŝi
)

i∈I . We are going to prove that each ŝi is (
μ̂i, φ̄i

)
-sequentially optimal, which implies that 

(
ŝi
)

i∈I is an SCE of (�, f , φ̄) and that Lemma 5 applies. Therefore, there is 
an equivalent symmetric SCE (si)i∈I of the more ambiguity averse game (�, f , φ) such that ζ

(
(si)i∈I

) = z∗ , as desired.
Sequential optimality of ŝi under

(
μ̂i, φ̄i

)
. We show that ŝi is 

(
μ̂i, φ̄i

)
-unimprovable. Since μ̂i is supported by Dirac models, 

Lemma 7 implies that ŝi is also 
(
μ̂i, φ̄i

)
-sequentially optimal.

By belief confirmation and perfect recall, the collection of information sets over which s∗
i and ŝi coincide is given by 

those that are possible (indeed, certain) under 
(
ŝi, μ̂i

)
, that is,

Hi
(
μ̂i

)∩ Hi
(
ŝi
) =

{
h ∈ Hi : h ≺ f −1

i

(
m∗)} ,

because i expects message m∗ with certainty given that he plans to play ŝi .
By (ex post) perfect recall, for all h, h′ ∈ Hi

(
μ̂i

)
such that h ⊀ f −1

i (m∗) (hence h /∈ Hi
(
ŝi
)
), h ≺ h′ implies h′ ⊀ f −1

i (m∗). 
Therefore,

∀h ∈ Hi
(
μ̂i

)\Hi
(
ŝi
)

, ŝi,h = ŝ∗
i,h

and

∀h ∈ Hi
(
μ̂i

)\Hi
(
ŝi
)

, V i
(·|h; ŝi, μ̂i, φ̄i

) = V i
(·|h; ŝ∗

i , μ̂i, φ̄i
)

.

By 
(
μ̂i, φ̄i

)
-unimprovability of ŝ∗

i , this implies

∀h ∈ Hi
(
μ̂i

)\Hi
(
ŝi
)

, ŝi,h ∈ arg max V i
(
ai|h; ŝi, μ̂i, φ̄i

)
. (A.6)
ai∈Ai(h)
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Next consider any h ∈ Hi
(
μ̂i

) ∩ Hi
(
ŝi
)
, hence any h ≺ f −1

i (m∗). Belief confirmation (for both μi and μ̂i ) and payoffs 
observability imply

ui(z∗) = V i

(
s∗

i,h|h; s∗
i ,μi, φ̄i

)
.

By definition of ŝi ,

V i
(
ŝi,h|h; ŝi, μ̂i, φ̄i

) = ui(z∗) = V i

(
s∗

i,h|h; s∗
i ,μi, φ̄i

)
.

By Lemma 8,

V i

(
s∗

i,h|h; s∗
i ,μi, φ̄i

)
≥ V i

(
ŝ∗

i,h|h; ŝ∗
i , μ̂i, φ̄i

)
.

Hence:

V i
(
ŝi,h|h; ŝi, μ̂i, φ̄i

) ≥ V i

(
ŝ∗

i,h|h; ŝ∗
i , μ̂i, φ̄i

)
.

By definition of ŝi and 
(
μ̂i, φ̄i

)
-unimprovability of ŝ∗

i

∀ai ∈ Ai (h)\{ŝi,h}, V i

(
ŝ∗

i,h|h; ŝ∗
i , μ̂i, φ̄i

)
≥ V i

(
ai |h; ŝ∗

i , μ̂i, φ̄i
) = V i

(
ai|h; ŝi, μ̂i, φ̄i

)
,

where the equality holds because ŝi,h = ŝ∗
i,h and ŝi coincides with ŝ∗

i after deviations from an expected path. Collecting these 
equalities and inequalities, we obtain

∀h ∈ Hi
(
μ̂i

)∩ Hi
(
ŝi
)

, ŝi,h ∈ arg max
ai∈Ai(h)

V i
(
ai|h; ŝi, μ̂i, φ̄i

)
. (A.7)

Eqs. (A.6)–(A.7) imply that ŝi is 
(
μ̂i, φ̄i

)
-unimprovable, hence—by Lemma 7—sequentially optimal and the thesis follows 

from Lemma 5. �
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