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if one can be transformed into the other through a composition of two elementary 
transformations, commonly known as “Interchanging of Simultaneous Moves” and “Coa-
lescing Moves/Sequential Agent Splitting.”
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1. Introduction

Fix a player, viz. player i, in the extensive-form representation of a finite game. Say that two strategies s′
i and s′′

i of 
player i are behaviorally equivalent if they are consistent with (do not prevent from being reached) the same collection of 
information sets of player i and behave in the same way at such information sets. Two strategies s′

i and s′′
i are realization-

equivalent if, for every given strategy profile s−i of the opponents (including the chance player), s′
i and s′′

i induce the 
same play path, or terminal node (of course, the induced terminal node may depend on s−i ). Kuhn proved that these two 
equivalence relations coincide, see Kuhn (1953, Theorem 1). Intuitively, two strategies of player i are equivalent in this sense, 
if they respond in the same way to information about other players, but may respond in different ways to past moves of i. 
This corresponds to a notion of “forward planning,” such as planning the sequence of actions to be taken in a one-person 
game (without chance moves). For this reason, some authors call “plan of action” such an equivalence class of strategies, cf. 
Osborne and Rubinstein (1994, Section 6.4) and Rubinstein (1991). Several authors studying the foundations of game theory 
put forward solution concepts that do not distinguish between behaviorally equivalent strategies. Such solution concepts rely 
on the following notion of sequential best reply. For each of his information sets, player i has a probabilistic belief about 
the strategies of the opponents and the resulting system of beliefs satisfies the rules of conditional probability whenever 
they apply. A strategy s�

i is a sequential best reply to such system of beliefs if, for each information set of i reachable under 
s�

i , there is no alternative strategy that yields a higher expected utility given the belief at such information set. Different 
notions of “extensive-form rationalizability” put forward and applied in the last four decades (e.g., Pearce, 1984; Ben-Porath, 
1997; Battigalli, 2003; Battigalli and Siniscalchi, 2003) rely on this notion of sequential best reply and therefore do not 
distinguish between behaviorally equivalent strategies. These solution concepts have been rigorously justified by explicit 
and formal assumptions about strategic reasoning. See, for example, the surveys of Battigalli and Bonanno (1999), and 
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Fig. 1. Example of Coalescing Moves.

Dekel and Siniscalchi (2015), the textbook of Perea (2012), and the relevant references therein for rigorous and transparent 
epistemic justifications of these solution concepts.1

Since behavioral and realization equivalence coincide, if two strategies are behaviorally equivalent, they are necessarily 
payoff equivalent; but it is easy to show by example that the converse is not true (see below). Thus, behavioral equivalence, 
sequential best reply, and the related solution concepts are not normal-form invariant. It is also clear from the definition 
of behavioral equivalence and its coincidence with realization equivalence that the only relevant part of a game in exten-
sive form that matters to ascertain such equivalence is the game structure (that is, the game tree with the information 
structure), not the map from terminal nodes to consequences, or payoffs. Call a class of behaviorally equivalent strategies 
a structurally reduced strategy. A transformation of a game structure preserves behavioral equivalence if, up to relabeling, 
the new game structure has the same set of structurally reduced strategies for each player, the same set of terminal nodes, 
and the same map from profiles of structurally reduced strategies to terminal nodes as the initial game structure. In this 
case, we say that two game structures are behaviorally equivalent.

As anticipated, the notions of realization equivalence and behavioral equivalence are related to, but distinct from payoff 
equivalence of strategies in a game, and normal-form equivalence of two games in extensive form. The latter relations can be 
defined only for fully specified games whereby each terminal node is associated with a corresponding profile of payoffs. Two 
behaviorally equivalent strategies are necessarily payoff equivalent, that is, independently of how the co-players’ behavior 
is fixed, they yield the same profile of payoffs. But the possibility of ties between terminal nodes implies that the converse 
is not true. The standard notion of equivalence between games requires the same map (up to relabeling) between profiles of 
classes of payoff equivalent strategies and payoff profiles. If we assign the same payoff functions (up to relabeling of terminal 
nodes) to two behaviorally equivalent game structures, we obtain two games in extensive form that are equivalent in the 
(less demanding) traditional sense, that is, they have the same reduced normal form. But such traditional equivalence may 
also hold between non behaviorally equivalent games. For example, a (non trivial) 2-person game with perfect information 
and a game with (essentially) simultaneous moves with the same normal form are not behaviorally equivalent.

Since there are well-known and relevant solution concepts that are not normal-form invariant, but yield the same solu-
tions (up to relabeling) for games with the same structure and the same payoff functions, we find it interesting to provide 
a characterization of behavioral equivalence by means of invariant transformations. We consider a class of extensive-form 
structures allowing a direct representation of simultaneous moves whereby more than one player may be active at a given 
node; see, e.g., Osborne and Rubinstein (1994, Section 6.3.2). Therefore, besides the standard transformation of “Interchang-
ing” essentially simultaneous, but formally sequential moves, we apply a “Simultanizing” transformation that makes such 
moves truly simultaneous. We also consider the standard transformation of “Coalescing Moves” and its inverse, that is, 
“Sequential Agent Splitting” (see the examples below). With this, we prove the following result: Two finite game structures G
and G ′ are behaviorally equivalent if and only if there is a sequence of transformations of the “Interchanging/Simultanizing” kind and 
“Coalescing Moves” kind and their inverses that connects G with G ′ .

Example 1. Consider player 1 in the extensive game structures G and G ′ represented in Fig. 1. Neither the consequence 
function nor the preference relations over the set of terminal nodes {z1, z2, z3} are specified. In particular, the “normal-
form” representations will be defined as maps from strategy profiles to terminal nodes. It has been argued that player 1
should regard G and G ′ as representing “essentially” the same situation, if his preferences over {z1, z2, z3} are the same. In 
particular, strategies x.a and x.b are behaviorally equivalent and the set {x.a, x.b} gives the structurally reduced strategy x, 
representing the “plan” of reaching z1, whereas y.a (resp. y.b) corresponds to the plan of reaching z2 (resp. z3). Thus, G
and G ′ have isomorphic sets (of cardinality 3) of structurally reduced strategies, where the isomorphism preserves the map 
from reduced strategies to terminal nodes.

Example 2. The two game structures in Fig. 2 feature imperfect information. In both cases players 1 and 2 move sequentially 
and the second mover cannot observe the move of the first, which is represented by joining with a dashed line the nodes 
where the second mover is active, but the order of moves is interchanged.

1 There are also extensive-form refinements of the Nash equilibrium concept, such as Reny’s explicable equilibrium Reny (1992) that do not distinguish 
between behaviorally equivalent strategies.
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Fig. 2. Example of Interchanging/Simultanizing.

It has been argued that these two structures represent “essentially” the same situation.

1.1. Literature

The standard literature on game equivalence aims at characterizing classes of games with the same reduced normal 
form by means of invariant transformations. The first work on game equivalence is Thompson (1952), who defines four 
transformations commonly known as “Interchanging of Simultaneous Moves,” “Coalescing Moves/Sequential Agent Splitting,” 
“Addition of a Superfluous Move,” and “Inflation/Deflation.” Relying on the simplification of Krentel et al. (1951) and the 
extensive-game model proposed by Kuhn (1950), he shows that, up to relabelings, two finite games share the same reduced 
normal form if and only if each extensive form representation can be transformed into the other through a finite number 
of applications of these transformations (see also Dalkey, 1953).

A few later contributions extended Thompson’s work. In particular, Kohlberg and Mertens (1986) extend the above re-
sult to games with chance moves, proposing two additional transformations which are, essentially, modified versions of 
Coalescing Moves and Addition of Superfluous Moves for the chance player. They argue that all the “strategic features” are 
unchanged through the application of these transformations. Elmes and Reny (1994) point out that one of these transfor-
mations, Inflation/Deflation, does not preserve the perfect recall property. Hence, given a modified version of the Addition 
of a Superfluous Move transformation, they show that two extensive form games with the same reduced normal form can 
be transformed into each other without using the unwanted transformation, and preserving the perfect recall property. This 
is, in our view, conceptually appealing, because whether players have perfect or imperfect recall should be part of the de-
scription of their personal traits (like their subjective preferences), not of the objective rules of the game. Such rules should 
describe the objective “flow” of information to players. Assuming that players are necessarily informed of the actions they 
just chose, the objectively accumulated “stock” of information is represented by information partitions with the perfect recall 
property, see also Section 2.3. Other notions of game equivalence have been studied in the literature. For example, Hoshi 
and Isaac (2010) extend Thompson’s result to the case of games with unawareness. Bonanno (1992) investigates the notion 
of game equivalence which arises from the iterated application of Interchanging of Simultaneous Moves only, showing that 
the resulting equivalence classes correspond to set-theoretic reductions. Goranko (2003) takes a linguistic approach, gives 
an axiomatization of the algebra of games and defines canonical forms so that every game term is provably equivalent to a 
minimal canonical one. Lastly, van Benthem et al. (2018) look at equivalence from the perspective of the players’ power for 
controlling outcomes.

Compared to most of this literature, we differ in two ways. First, we consider a different set of transformations, which 
just apply to the extensive form structure, irrespective of the outcome function.2 Second, our formal language is somewhat 
different. In particular, for us actions, rather than nodes, are the primitive terms; furthermore, we provide a direct repre-
sentation of simultaneity. The latter is in principle important, because two games with different sequences of “essentially 
simultaneous” moves are not necessarily viewed as equivalent by the players. For example, only the first mover can be 
afraid (or hopeful) of being spied on. More generally, we can cleanly represent incomplete information about the order 
of moves and the information structure as in Penta and Zuazo-Garin (2019), whereas the representation à la Kuhn (1953)
would be cumbersome.

2. Preliminaries on game structures

2.1. Preliminary notation

Let (X, ≤) be a finite partially ordered set, i.e., a nonempty finite set X with a binary relation ≤ contained in X × X
which is transitive, reflexive, and antisymmetric. As usual, given x, y ∈ X , we write x < y as an abbreviation of x ≤ y and 
x �= y. We let [x, y] represent the order interval {v ∈ X : x ≤ v ≤ y} (hence [x, y] �= ∅ if and only if x ≤ y) and denote the 
immediate predecessor relation by �, that is, x � y with x �= y if and only if [x, y] = {x, y}. A finite partially ordered set 

2 In this respect, our work is similar to Bonanno (1992).



536 P. Battigalli et al. / Games and Economic Behavior 121 (2020) 533–547
(X, ≤) is said to be a tree whenever there exists a (necessarily unique) minimum element e, which is called the root of the 
tree, and for each x ∈ X the order interval [e, x] is totally ordered.

Given a nonempty set S , we denote by 2S the power set of S and by (Part(S), ≤) the collection of partitions of S . 
The latter is partially ordered by the refinement relation, that is, P ≤ P ′ for some partitions P, P ′ of S whenever, for 
each P ∈ P , there exists a sub-collection {P ′

i : i ∈ I} ⊆ P ′ such that P = ⋃
i∈I P ′

i . In addition, we represent the set of finite 
sequences of elements from S by

S<N0 := ⋃
n∈N0

Sn,

where S0 := {∅} is the singleton containing the empty sequence (here N0 and N stand, respectively, for the set of nonneg-
ative integers and positive integers; in particular 0 ∈N0). Accordingly, we define a partial order 
 on S<N0 such that x 
 y
if and only if x = (x1, . . . , xn) ∈ Sn is a prefix of y = (y1, . . . , ym) ∈ Sm , that is, if and only if x = ∅ or 0 < n ≤ m and xi = yi
for all positive integers i ≤ n. Note that ∅ 
 x for all x ∈ S<N0 , every nonempty order interval [x, y] is finite, hence totally 
ordered, and the set {v : x ≺ v 
 y} has a minimum provided that x ≺ y; cf. Alós-Ferrer and Ritzberger (2016, pp. 144–145). 
Thus (S<N0 , 
) is a tree. Here, the immediate predecessor relation is denoted by ≺≺.

Recall that a complete lattice is a partially ordered set such that all subsets have both a supremum and an infimum. 
In particular, a complete lattice admits a greatest and a least element. Accordingly, we have the following result (we omit 
details).

Lemma 1. Fix a finite set X. Then the partially ordered set (Part(X), ≤) is a complete lattice. In particular, for each nonempty collection 
{P j : j ∈ J } of partitions of X, sup

{
P j : j ∈ J

}
exists in Part(X).

Lastly, given nonempty sets X, Y , Z , a correspondence ϕ : X � Y is a map that associates each x ∈ X with some possibly 
empty subset of Y . With this, for each y ∈ Y , we define the inverse image of y as ϕ−1(y) := {x ∈ X : y ∈ ϕ(x)} (hence, ϕ−1

is a correspondence from Y to X). Given another correspondence ψ : Y � Z , the composition ψ ◦ ϕ : X � Z is the corre-
spondence defined by (ψ ◦ ϕ)(x) := ⋃

y∈ϕ(x) ψ(y) for all x ∈ X . Note that correspondences can be equivalently reinterpreted 
as binary relations (see also the comments in Section 4).

2.2. Extensive game structures

Let G be the collection of all extensive game structures G with imperfect information and perfect recall represented by 
tuples

〈I, H̄, (Ai,Hi)i∈I 〉, (1)

where each primitive component will be described below (this is inspired by Osborne and Rubinstein (1994)). For brevity, 
we will often write “game” instead of “game structure.” Hereafter, all extensive game structures are assumed to be finite and 
without chance moves.

2.2.1. Players
I is a nonempty finite set of players.

2.2.2. Actions
For each i ∈ I , Ai is a nonempty finite set of potentially feasible actions which can be chosen by player i. Then, we let

A :=
⋃

∅�= J⊆I

⎛
⎝∏

i∈ J

Ai

⎞
⎠

denote the set of action profiles of subsets of players.

2.2.3. Histories
H̄ is the finite set of histories, i.e., a finite tree contained in (A<N0 , 
) such that ∅ ∈ H̄ and closed under the immediate 

predecessor relation, that is, if x ≺≺ y in (A<N0 , 
) and y ∈ H̄ , then x ∈ H̄ . We refer to elements of H̄ as “histories” or 
“nodes” as convenient. (Hence, each node in H̄ is a chain of profile of actions in A.) With this, H̄ can be partitioned in the 
sets of terminal histories Z and non-terminal histories H := H̄ \ Z .

From the previous elements, we derive an active-player correspondence I(·) : H � I that associates with each h ∈ H the 
nonempty subset I(h) ⊆ I such that

∀a ∈ A, (h,a) ∈ H̄ =⇒ a ∈
∏

Ai .
i∈I(h)
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In addition, we assume that, for each i ∈ I , there is some h ∈ H such that i ∈ I(h), that is,

Hi := {h ∈ H : i ∈ I(h)} �= ∅.

2.2.4. Information structure
For each player i ∈ I , Hi is a partition of Hi , called the information partition of i.

Moreover, we assume that the profile (Fi : H � Ai)i∈I of feasibility correspondences defined, for each i ∈ I , by

∀h ∈ H, Fi(h) := projAi

{
a ∈ ∏

j∈I(h) A j : (h,a) ∈ H̄
}

satisfies the following properties:

� For each player i ∈ I and each non-terminal history h ∈ H , if Fi(h) �= ∅, then |Fi(h)| ≥ 2; in the latter case, we say that 
i is active, otherwise he3 is inactive.

� For each non-terminal history h ∈ H , the feasibility conditions of distinct players are logically independent, that is,

∀a ∈ ∏
i∈I(h) Ai, h ≺≺ (h,a) ⇐⇒ a ∈ ∏

i∈I(h) Fi(h).

Hence, we write (h, a) := (a1, . . . , an, a) whenever h = (a1, . . . , an) ∈ H ; in particular, (h, a) = (a) if h =∅.
� For each player i ∈ I , Fi is Hi -measurable, that is,

∀hi ∈ Hi,∀h,h′ ∈ hi, Fi(h) = Fi(h′).
Each element hi ∈ Hi is interpreted as an information set of player i, i.e., a maximal subset of non-terminal histories 
that player i is not able to distinguish. With this, it makes sense to write Fi(di) for each nonempty subset di ⊆ hi . Note 
that, at an information set, player i might not know who his active opponents are and their feasible actions.

� For notational convenience, we assume that different information sets are associated with disjoint sets of feasible ac-
tions, that is,

∀hi,h′
i ∈ Hi, hi �= h′

i =⇒ Fi(hi) ∩ Fi(h′
i) = ∅. (2)

Lastly, for each history h ∈ H̄ , let Z(h) := {z ∈ Z : h 
 z} be the set of terminal histories which follow h and, for each 
nonempty U ⊆ H̄ , write Z(U ) := ⋃

h∈U Z(h). Also, for each information set hi ∈ Hi and feasible action a�
i ∈ Fi(hi), define the 

set of terminal histories which follow hi and a�
i as

Z(hi,a�
i ) :=

⋃
h∈hi

⋃
a−i∈F−i(h)

Z((h, (a�
i ,a−i))).

The following example illustrates and explains our formalism.

Example 3. Consider the extensive game structure represented in Fig. 3.
Here, the set of players is I = {1, 2, 3} and the set of feasible actions are A1 = {u, d}, A2 = {�, r}, and A3 = {x, y}. The 

set of histories H̄ is partitioned into the set of terminal histories Z = {((u, �)), ((u, r)), ((d, r)), ((d, �), x), ((d, �), y)} and 
non-terminal histories H = {∅, h}, where h := ((d, �)). In addition, the feasibility correspondences satisfy Fi(∅) = Ai and 
Fi(h) = ∅ for each i ∈ {1, 2}, F3(∅) = ∅, and F3(h) = A3. Lastly, all information sets are singletons, so that Hi = {{∅}} for 
each i ∈ {1, 2}, and H3 = {{h}}. Despite this, the game does not feature perfect information in the usual sense because it 
contains simultaneous moves by player 1 and 2 at the root.

2.3. Perfect recall

Game structures G ∈ G have to satisfy perfect recall, see Alós-Ferrer and Ritzberger (2016, Definition 6.5). This means 
that each player always remembers everything he knew and did earlier. Thus information sets represent the “stock” of 
information objectively given to a player irrespective of his cognitive abilities, which are personal features and not part of 
the rules of the game.4 In particular, perfect recall implies that, in each information set, two distinct histories are unrelated, 
i.e.,

∀i ∈ I,∀hi ∈ Hi,∀h,h′ ∈ hi, h 
 h′ =⇒ h = h′. (3)

The violation of (3) is commonly known as “absent-mindedness” (see Piccione and Rubinstein, 1997).

3 The male pronouns (he, him, his) are used throughout this paper. We hope this won’t be interpreted by anyone as an attempt to exclude females from 
the game or to imply their exclusion. Centuries of use have made these pronouns neutral, and we feel their use provides for clear and concise written text.

4 We could instead describe explicitly the information flows implied by the rules of the game (as, for example, in Myerson (1986)), but this would make 
notation heavier and proofs more convoluted.
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Fig. 3. An example of extensive game structure.

2.4. Z-reduced normal form

For each player i ∈ I , let Si be his set of strategies, that is,

Si :=
∏

hi∈Hi

F i(hi).

Similarly, S := ∏
i∈I Si denotes the set of strategy profiles. Each strategy profile s ∈ S determines a unique terminal history 

z ∈ Z .5 We denote this path function by

ζ : S → Z .

Accordingly, for each game structure G = 〈I, H̄, (Ai, Hi)i∈I 〉 ∈ G , we define its Z -normal form by

nZ (G) := 〈I, (Si)i∈I , Z , ζ 〉.
Note that the Z -normal form is not graphical per se, but rather represents the game G by means of a kind of matrix.

Definition 1. Fix G ∈ G as in (1) and a player i ∈ I . Two strategies si, s′
i ∈ Si are behaviorally equivalent, written as si

i∼ s′
i , 

if

∀s−i ∈ S−i, ζ(si, s−i) = ζ(s′
i, s−i),

where S−i := ∏
j∈I\{i} S j .

It is worth noting that this is the classical definition of realization-equivalent strategies. However, as proved by Kuhn
(1953, Theorem 1), this coincides with the condition that strategies si , s′

i ∈ Si do not prevent from being reached the same 
collection of information sets in Hi and behave in the same way at such information sets.

Since i∼ is an equivalence relation on Si , we can define the quotient space

Si := Si/
i∼ .

Elements of Si are structurally reduced strategies of player i, that is, classes of behaviorally equivalent strategies of i. 
Similarly, we set S := ∏

i∈I Si and denote the representative of each s ∈ S by s• ∈ S .
For each G ∈ G , we let its Z -reduced normal form be

rnZ (G) := 〈I, (Si)i∈I , Z , ζ̃ 〉,
where ζ̃ : S → Z is the map defined by ζ̃ (s•) = ζ(s).

With this, we have all the ingredients to define the notion of behavioral equivalence for game structures.

5 Players who are active at ∅ determine a unique history h1 ∈ H̄ of length 1; if h1 ∈ Z we are done, otherwise players who are active at h1 determine a 
unique history h2 ∈ H̄ of length 2; this is repeated only a finite number of times, hence the algorithm terminates.
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Definition 2. Two extensive game structures G, G ′ ∈ G are behaviorally equivalent if they share the same Z -reduced normal 
form up to isomorphisms6 (i.e., rnZ (G) � rnZ (G ′)).

In particular, the two game structures in Example 1 and the two game structures in Example 2 are, respectively, behav-
iorally equivalent.

3. Invariant transformations

We introduce the notion of invariant transformation:

Definition 3. A correspondence T : G � G is said to be an invariant transformation if dom(T ) := {G ∈ G : T (G) �= ∅} �= ∅
and G is behaviorally equivalent to G ′ for all G ∈ dom(T ) and G ′ ∈ T (G). The family of invariant transformations will be 
denoted by T .

To define the basic invariant transformations, we first need to introduce the notions of “controlling” and “dominating”
sets. Intuitively, these sets are collections of histories in the same information set of an active player i that, in a sense, 
control suitable paths which are successors of a given set of histories h ∈ H .

3.1. Controlling and dominating sets

Fix a game structure G ∈ G as defined in (1).

Definition 4. Given a player i ∈ I and two information sets hi, h′
i ∈ Hi , we say that h′

i controls hi , written

hi �i h′
i ,

whenever there exists a feasible action a�
i ∈ Fi(hi) such that

Z(hi,a�
i ) = Z(h′

i). (4)

In other words, given perfect recall, hi �i h′
i means that h′

i follows hi in the directed forest of information sets of player 
i,7 and the only thing i learns moving from hi to h′

i is that he chose at hi the unique action leading to h′
i (hence, h′

i is an 
immediate follower of hi in the directed forest, given that player i has at least two actions at each information set).

For example, the bottom information set of player 2 in the left hand side of Fig. 4 controls the top information set.

Remark 1. Fix i ∈ I . Given an information set hi ∈ Hi and a feasible action a�
i ∈ Fi(hi), it is easily seen, due to perfect recall, 

that there is at most one h′
i ∈ Hi following action a�

i such that hi �i h′
i .

Definition 5. Given a player i ∈ I , a non-terminal history h ∈ H with i /∈ I(h), and a nonempty subset di of some information 
set hi ∈ Hi , we say that di dominates h, written

h �i di,

whenever

Z(h) = Z(di).

In other words, h precedes di and they have the same set of terminal successors. For example, the two nodes on the 
right of the information set of player 3 in the first game tree of Fig. 5 dominate history (r), i.e., (r) �3 {(r, a), (r, b)}.

Remark 2. In the same spirit of Remark 1, fix h ∈ H and i ∈ I such that i is inactive at h. Then it is easily seen that there is 
at most one nonempty set di ⊆ hi ∈ Hi such that h �i di .

With these notions at hand, we can define two invariant transformations, which are the natural generalizations of the 
ones provided in Examples 1 and 2, respectively.

6 More explicitly, there exist a bijection f i : Si → S ′
i for each i ∈ I and a bijection g : Z → Z ′ such that g(ζ̃ (s)) = ζ̃ ′( f (s)) for all s ∈ S; here f (s) is the 

structurally reduced strategy profile ( f i(si))i∈I ∈ S ′ .
7 That is, hi precedes h′

i in the directed forest if, for each h′ ∈ h′
i there is h ∈ hi such that h ≺ h′ .
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3.2. Coalescing moves

We represent the so-called Coalescing Moves transformation (or, simply, Coalescing) by the correspondence

γ : G � G,

and recall that its inverse correspondence is commonly known in the literature as Sequential Agent Splitting. The domain 
dom(γ ) := {G ∈ G : γ (G) �= ∅} is the collection of all extensive game structures G defined by (1) for which there exist i ∈ I
and information sets hi, h′

i ∈ Hi such that h′
i controls hi , that is, hi �i h′

i .
For each G ∈ dom(γ ) and hi, h′

i ∈ Hi with hi �i h′
i , we identify the game in γ (G) corresponding to the pair (hi, h′

i) with

γ (G;hi,h′
i).

Denoting by a�
i ∈ Fi(hi) the (unique) feasible action of the player i ∈ I for which (4) holds, the transformed game

γ (G;hi,h′
i) := 〈 Ĩ, ˜̄H, ( Ãi, H̃i)i∈ Ĩ 〉

is defined as follows:

• Ĩ = I;
• ˜̄H coincides with H̄ for all histories h such that at least one of the following is satisfied:

(i) there exists h′ ∈ hi such that h 
 h′;
(ii) h is unrelated to any h′ ∈ hi ;

(iii) there exist h′ ∈ hi , ai ∈ Fi(h′) \ {a�
i }, and a−i ∈ F−i(h′) with (h′, (ai, a−i)) 
 h.

In the remaining cases, each history h′ ∈ H̄ such that (h, (a�
i , a−i)) 
 h′ , for some a−i ∈ F−i(h) and h ∈ hi , has to be 

replaced in ˜̄H by h̃′ where the actions chosen by player i at the histories in the information set h′
i are shifted back 

replacing a�
i ;

• Ã j = A j for all j ∈ I;
• denoting with h̃ the history in γ (G; hi, h′

i) corresponding to h ∈ H , we have8

F̃ i(h̃) = Fi(hi) ∪ Fi(h′
i) \ {a�

i }
for all h ∈ hi ; otherwise F̃ j(h̃) = F j(h). The new information sets (H̃ j) j∈I are modified accordingly. In particular, hi and 
h′

i are coalesced into h̃i . Moreover, new information sets of players j ∈ I \ {i} who are active in the subtrees with roots 
h ∈ hi are added, so that they are not able to observe the choices made by player i at histories h̃ ∈ h̃i among the feasible 
actions Fi(h′

i); see, e.g., the information sets of player 3 in Fig. 4.

Intuitively, the Coalescing transformation shifts all the actions in a information set h′
i of a given player i backwards to 

another information set hi of i controlled by the first one. Note that the histories in h̃′
i corresponding to h′

i may “disappear” 
if player i was the only active player in such histories. Note also that the equalities between action sets that appear in the 
definition of Coalescing are best interpreted as isomorphisms, since the meaning of actions such as p and q in Fig. 4 is 
changed by the transformation. For example, choosing action p on the right hand side corresponds to choosing b and p on 
the left hand side.

Lemma 2. Coalescing is an invariant transformation, that is, γ ∈ T .

Proof. Fix G ∈ dom(γ ) and consider the transformed game γ (G; hi, h′
i). For each player j ∈ I \ {i}, there is an obvious 

isomorphism between S̃ j and S j . Moreover, there exist a bijection f i : Si → S̃i and a bijection g : Z → Z̃ such that g(ζ(s)) =
ζ̃ ( f (s)) for all s ∈ S , where f (s) is the structurally reduced strategy profile ( f j(s j)) j∈ J and f j(s j) := s j for all j ∈ I \ {i}. 
This implies that rnZ (G) � rnZ (γ (G; hi, h′

i)), i.e., G and γ (G; hi, h′
i) are behaviorally equivalent. �

3.3. Interchanging/simultanizing

We denote the Interchanging/Simultanizing transformation by the correspondence

σ : G � G.

8 We recall by (2) that Fi(hi) ∩ Fi(h′
i) = ∅.
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Fig. 4. An example of the transformation “Coalescing” γ .

The domain dom(σ ) := {G ∈ G : σ(G) �= ∅} is the collection of all extensive game structures G defined as in (1) for which 
there exist a history h ∈ H , a player i ∈ I , and an information set hi ∈ Hi with a nonempty subset di such that h �i di , that 
is, di dominates h.

For each G ∈ dom(σ ), h ∈ H and di ⊆ hi ∈ Hi with h �i di , we denote the game in σ(G) corresponding to the pair (h, di)

with σ(G; h, di), where the transformed game

σ(G;h,di) := 〈 Ĩ, ˜̄H, ( Ãi, H̃i)i∈ Ĩ 〉
is defined as follows:

• Ĩ = I;
• ˜̄H coincides with H̄ for all histories h′ such that either h′ 
 h or h′ is unrelated to h. In the remaining cases, each 

history h′ ∈ H̄ such that h ≺ h′ has to be replaced in ˜̄H by h̃′ where the actions chosen by player i at the histories in 
di are shifted back at the last coordinate of h (this is possible since, as observed after Definition 5, player i has to be 
inactive at h);

• Ã j = A j for all j ∈ I;
• denoting with h̃′ the history in σ(G; h, di) corresponding to h′ ∈ H , we have

F̃ i(h̃) = Fi(di),

and F̃ j(h̃′) = F j(h′) in all remaining cases. The new information sets (H̃ j) j∈I are modified accordingly. The position of 
the subset di ⊆ hi is shifted back at the last coordinate of h, all the others do not change; see e.g. the information set 
of player 3 in Fig. 5.

Intuitively, the Interchanging/Simultanizing transformation shifts all the actions in a subset di of an information set hi of 
a player i backwards to another history h dominated by di (where he is not active). In addition, as it is shown in Fig. 5, di
can be a proper subset of hi .

The extensive game structure in Fig. 6 provides another illustrative example: shifting back the two third-tier nodes of 
player 2 we get the extensive game structure in the right hand side of Fig. 5.

Note that the classical “Interchanging of Simultaneous Moves” transformation used in the literature (such as the one 
represented in Fig. 2) can be always obtained as follows: G and G ′ are related by “Interchanging” if G ′ ∈ σ−1(G ′′), for some 
G ′′ ∈ σ(G).

Lemma 3. Interchanging/Simultanizing is an invariant transformation, that is, σ ∈ T .

Proof. Fix G ∈ dom(σ ) and consider the transformed game σ(G; h, di). It follows by construction that S j is isomorphic to 
S̃ j for all j ∈ I . In particular, S j is isomorphic to S̃ j for all j ∈ I , so that there exist bijections f j : S j → S̃ j and a bijection 
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Fig. 5. An example of the transformation “Interchanging/Simultanizing” σ .

1

2 3

3

m r

�

3 3 2 2

a b x y

z1 z2 z3 z4 z5 z6 z7 z9 z8 z10

x y x y x y a b a b

Fig. 6. A σ -inverse of the game in the right hand side of Fig. 5.

g : Z → Z̃ such that g(ζ(s)) = ζ̃ ( f (s)) for all s ∈ S , where f (s) is the structurally reduced strategy profile ( f j(s j)) j∈I . In 
particular, rnZ (G) � rnZ (σ (G; h, di)), i.e., G and σ(G; h, di) are behaviorally equivalent. �
Remark 3. It is immediate to see that the composition of invariant transformations is invariant. In particular, by Lemma 2

and Lemma 3, the compositions of transformations γ and σ and their inverses are invariant. First, define 
iso∈ as inclusion up 

to isomorphisms. Then, a transformation T : G � G with dom(T ) �= ∅ is invariant provided that

∀G ∈ G,∀G ′ ∈ T (G),∃n ∈N0,∃ι1, . . . , ιn ∈ {γ ,γ −1,σ ,σ−1}, G ′ iso∈ (ι1 ◦ · · · ◦ ιn)(G), (5)

where, by convention, (ι1 ◦ · · · ◦ ιn)(G) := {G} if n = 0.

4. Characterization of behavioral equivalence

Fix a game structure G ∈ G . Then we say that:

• G has a coalescing opportunity if we can find in G two information sets hi, h′
i of the same player i such that h′

i controls 
hi , that is, G ∈ dom(γ );

• G has a simultanizing opportunity if we can find in G a non terminal history h and a subset di of an information set 
of a player i (not active at h) such that di dominates h, that is, G ∈ dom(σ );
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Fig. 7. γ and σ are not independent.

• G is minimal if it has no coalescing or simultanizing opportunity, that is,

G ∈ Ĝ := G \ (dom(σ ) ∪ dom(γ )).

In addition,

• A game structure G ′ ∈ G is a reduction of G if there is a finite sequence of game structures (G1, . . . , Gn), with n ∈ N
such that G1 = G , Gn = G ′ , and Gk+1 ∈ γ (Gk) ∪ σ(Gk) for each k = 1, . . . , n − 1; in particular, G is a reduction of G
itself.9

Note that, if we interpret γ and σ as binary relations on G (with G γ G ′ if G ′ ∈ γ (G) and G σ G ′ if G ′ ∈ σ (G)) and let 
(γ ∪ σ)� denote the transitive closure of relation γ ∪ σ , then G ′ is a reduction of G if and only if G = G ′ or G (γ ∪ σ)� G ′ .

With these premises, we are going to show in Lemma 5 below that each game structure G ∈ G has a unique minimal 
reduction. Then our main result follows:

Theorem 1. For all extensive game structures G, G ∈ G , the following are equivalent:

(a1) G and G ′ are behaviorally equivalent;
(a2) G and G ′ have the same minimal reduction;
(a3) G and G ′ have a common reduction, up to isomorphisms;
(a4) G can be transformed into G ′ , up to isomorphisms, through a (possibly empty) finite chain of transformations γ and σ and their 

inverses.

Before we prove our characterization, note that the order on which the two transformations γ and σ are applied matters. 
Indeed, as we show in Example 4, it is possible that G ∈ dom(γ ) ∩ dom(σ ) and, at the same time, γ (G) ∩ dom(σ ) = ∅.

Example 4. Consider the game structure G in left hand side of Fig. 7. Transformation σ may be applied to the subgame 
with root (t). However, considering that the bottom information set of player 1, say h1 , controls {(t)}, we may apply also 
the γ transformation, which yields the game structure γ (G; {(t)}, h1) in the right hand side of Fig. 7. It can be checked that 
σ cannot be applied to γ (G; {(t)}, h1), that is, γ (G; {(t)}, h1) /∈ dom(σ ).

While standard reduced normal forms defined in terms of payoffs do not allow the identification of a game tree, for Z -
reduced normal forms we can instead identify an “essentially unique” (that is, up to isomorphisms) minimal game structure. 
The next result consists in obtaining such essentially unique game.

Lemma 4. Let ̂G and ̂G ′ be two behaviorally equivalent minimal game structures. Then ̂G = Ĝ ′ , up to isomorphisms.

Proof. Let G0 be the set of extensive game structures that are behaviorally equivalent to Ĝ , that is,

G0 := {
G ∈ G : rnZ (G) � rnZ (Ĝ)

}
.

It is claimed that, up to isomorphisms, G0 ∩ Ĝ is a singleton.
Fix a minimal extensive game structure G0 ∈ G0 ∩ Ĝ . First, we claim that, up to isomorphisms, at the root of G0 there are 

the same active players as at the root of Ĝ with the same feasible actions.

9 We use the term “reduction” because, for both transformations, the height of the tree decreases (in a weak sense). In addition, note that transformation 
γ reduces strictly the sum of the cardinalities of the action sets of the involved player.
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By Lemma 1, for each game G and for each player i, we can define a partition P�
i of Si as follows:

P�
i := sup

{
Pi ∈ Part(Si) : {ζ̃ (Pi × S−i) : Pi ∈ Pi} ∈ Part(Z)

}
. (6)

(Indeed, the above collection contains {Si}, hence it is nonempty.) In other words, P�
i is the finest partition of the set of 

structurally reduced strategies Si of player i which, independently of the profile of strategies of the opponents s−i ∈ S−i , 
induces a partition of the terminal histories through the map ζ̃ . In particular, we will prove that, if i is active at ∅ (that is, 
i ∈ I(∅)), then the partitions of Si and Z correspond to his set of feasible actions Fi(∅); whereas if i /∈ I(∅) the partitions 
of Si and Z are trivial.

For each player i ∈ I and information set hi ∈ Hi , define the partition

Pi(hi) := {Pi(hi,ai) : ai ∈ Fi(hi)} ∈ Part(Si(hi)), (7)

where Si(hi) denotes the set of structurally reduced strategies si ∈ Si which are consistent with hi , and Pi(hi, ai) denotes 
the set of strategies si ∈ Si(hi) which select ai at hi . Note also that Pi(hi) induces the following partition:

Zi(hi) :=
{
ζ̃ (Pi(hi,ai) × S−i(hi)) : Pi(hi,ai) ∈ Pi(hi)

}
∈ Part(Z(hi)). (8)

In particular, |Zi(hi)| = |Pi(hi)| = |Fi(hi)|.

Claim 1. For each game G and for each player i, if i ∈ I(∅) then P�
i �= {Si}.

Proof. Since {∅} ∈ Hi , Si({∅}) = Si , and Z({∅}) = Z , we have by (7) and (8) that Pi({∅}) ∈ Part(Si) and Zi({∅}) ∈
Part(Z). Hence |P�

i | ≥ |Pi({∅})| = |Fi(∅)| ≥ 2. �
Claim 2. For each game G and for each player i, if P�

i �= {Si} then there exists hi ∈ Hi such that Z(hi) = Z .

Proof. We prove the claim by induction on the length � of the longest history of the game. If the game has longest history 
� = 1, then hi = {∅} and the thesis is obvious. Suppose that the claim holds for all games such that the length of their 
longest history is at most � ∈ N . Then let G be a game structure such that the length of its longest history is � + 1. If 
i ∈ I(∅) then, by Claim 1, Pi({∅}) �= {Si} and Z({∅}) = Z .

Suppose now that i /∈ I(∅). In this case, let {h(1), . . . , h(k)} be the set of histories of length 1 of G , so that h( j) = (a), 
with a ∈ ∏

ι∈I(∅) F ι(∅); also, for each j = 1, . . . , k, let G( j) be the “subgame” which starts at h( j) defined by restriction 
on the subtree with root h( j) (cutting the information sets, if necessary). For each j = 1, . . . , k, the length of the longest 
history in G( j) is at most �, and by the induction hypothesis there exists a unique information set h( j)

i of i in G( j) for which 
Z(h( j)

i ) = Z(h( j)). Let {P1, . . . , Pm} ∈ Part(Si) be a partition of Si into nonempty sets such that

{ζ̃ (P1 × S−i), . . . , ζ̃ (Pm × S−i)} ∈ Part(Z).

Also, for each j = 1, . . . , k, let S( j)
−i be the set of profiles of structurally reduced strategies s−i ∈ S−i consistent with history 

h( j) . Then {ζ̃ (P1 × S( j)
−i ), . . . , ̃ζ (Pm × S( j)

−i )} ∈ Part(Z(h( j))). It follows that the union of all information sets h( j)
i of the 

“subgames” G( j) is a unique information set of the original game G , so that Z(hi) = ⋃k
j=1 Z(h( j)

i ) = Z . �
Claim 3. If P�

i �= {Si} in the minimal game G0 then i ∈ I(∅).

Proof. Suppose by way of contradiction that i /∈ I(∅) and P�
i �= {Si}. By Claim 2, there exists hi ∈ Hi such that Z(hi) = Z . 

Since i /∈ I(∅), hi �= {∅}; furthermore, hi dominates ∅. It follows that there is a simultanizing opportunity at ∅. This 
contradicts the minimality of G0. �

It follows by Claims 1, 2, and 3 that a player i ∈ I is active at the root ∅ of G0 if and only if P�
i �= {Si}. Then, we 

show that, if player i is active, his set of feasible actions Fi(∅) can be labeled by the elements of P�
i (cf. Example 5 for an 

illustrative example):

Claim 4. For each i ∈ I(∅) in the minimal game G0, we have |Fi(∅)| = |P�
i |.

Proof. Fix i ∈ I(∅). By definition P�
i is finer than Pi({∅}) (defined in Equation (7)), i.e., Pi({∅}) ≤ P�

i and, in particular, 
2 ≤ |Fi(∅)| ≤ |P�

i |. Suppose by way of contradiction that the second inequality is strict, i.e., Pi({∅}) �= P�
i . Then there 

exists a partition Pi ∈ Part(Si) such that {ζ̃ (Pi × S−i) : Pi ∈ Pi} ∈ Part(Z) and Pi �≤ Pi({∅}). In particular, Pi �= {Si}. 
However, by Lemma 1, Part(Si) is a complete lattice and there exists
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P ′
i := sup{Pi({∅}),Pi} ∈ Part(Si).

As in the proof of Claim 2, let {h(1), . . . , h(k)} be the set of histories of length 1 of G0, so that h( j) = (a), with 
a ∈ ∏

ι∈I(∅) F ι(∅); similarly, for each j = 1, . . . , k, let G( j)
0 be the “subgame” which starts at h( j) defined by restriction 

on the subtree with root h( j) (cutting the information sets, if necessary). Note that each G( j)
0 must be minimal like G0

(indeed, if there were a simultanizing or a coalescing opportunity in G( j)
0 , there would be also in G0). Considering that 

Pi({∅}) ≤ P ′
i , Pi({∅}) �= P ′

i , and that {ζ̃ (P ′
i × S−i) : P ′

i ∈ P ′
i } ∈ Part(Z), it follows that there exists j ∈ {1, . . . , k} such 

that the partition of the corresponding “subgame” G( j)
0 is not a singleton. Hence, by Claim 3, player i is active at the root 

of G( j)
0 . Thus {∅} �i hi , where hi is the information set of i containing h( j) . Therefore there is a coaleascing opportunity at 

∅. This contradicts the minimality of G0. �

It follows that G0 (hence, also Ĝ ′) has, up to isomorphisms, the same active players at the root and the same feasible 
actions of Ĝ .

Then, for each i ∈ I , fix P �
i ∈ P�

i . For each i ∈ I(∅), P �
i identifies an action which is feasible at ∅. For each i /∈ I(∅), P�

i
is the trivial partition by Claim 1, hence P �

i = Si indicates that no action is available at ∅. Notice that, with this, (P �
i )i∈I

identifies a history h of length 1. Consider the sub-Z -reduced normal form, where the set of strategies is restricted to P �
i

for each i ∈ I . Let Z� be the set of terminal histories consistent with 
∏

j∈I P �
j . With the same argument as above, for each 

i ∈ I , there exists a unique partition P��
i of P �

i defined by

P��
i := sup

{
Pi ∈ Part(P �

i ) : {ζ̃
(

Pi × ∏
j∈I\{i} P �

j

)
: Pi ∈ Pi} ∈ Part(Z�)

}
.

Similarly, player j ∈ I is active at the history h if and only if P��
j �= {P �

j } and his set of feasible actions F j(h) can be labeled 
as the elements of P��

j . At this point, for each player i, if two histories h′, h′′ of length ≤ 1 belong to the same information 
set of i, then they identify the same partition P��

i (hence, by construction, the same feasible actions). Conversely, if the 
histories h′, h′′ identify the same partition P��

i then by Claim 4 they belong to the same information set.

This algorithm can be inductively repeated, relabeling all profiles of actions of G0 by profiles of cells of partitions of 
each Si . By construction, with this relabeling, two histories h, h′ are on a same information set of a player i if and only if 
Fi(h) = Fi(h′). This allows to reconstruct uniquely (that is, up to isomorphisms) the whole game structure G0 , completing 
the proof. �
Lemma 5. Each extensive game structure G ∈ G has a unique minimal reduction, up to isomorphisms.

Proof. Fix G ∈ G . First, we show that there exists a minimal game structure Ĝ which is behaviorally equivalent to G . The 
game Ĝ is constructed by recursive application of transformations γ and σ . The recursion is based on the length of histories 
that offer coalescing or simultanizing opportunities. Recall that we consider only finite game structures; therefore, all the 
collections defined below are finite as well.

Basis step. Consider the root ∅, that is, the only history of length 0. Define the set C0 made by all pairs ({∅}, hi)

such that {∅} �i hi (so that i ∈ I(∅) and {∅} ∈ Hi ). Define also the set S0 made by all pairs (∅, di) such that ∅ �i di
(so that i /∈ I(∅)). Of course, both sets C0 and S0 are finite. Apply the transformation γ at all pairs ({∅}, hi) ∈ C0; to 
be precise, enumerate the elements of C0 as ({∅}, w1), . . . , ({∅}, wk), in some order, and consider the finite sequence of 
games γ (G; {∅}, w1), γ (γ (G; {∅}, w1); {∅}, w ′

2) (where ({∅}, w ′
2) is the pair corresponding to ({∅}, w2) in γ (G; {∅}, w1)), 

. . ., γ (· · ·γ (γ (G; {∅}, w1); {∅}, w ′
2) · · · ; {∅}, w ′

k) and note that the latter game does not depend on the chosen enumeration 
of C0. Then, similarly, apply the transformation σ in the latter game at the corresponding pairs (∅, di) ∈ S0 and denote the 
obtained game by G(1) (where G(1) = G if both C0 and S0 are empty). Note that, since all transformations are applied at 
the root of the game, all coalescing and simultanizing opportunities are preserved at each transformation.

Induction Step. Suppose that G(n) has been defined for some positive integer n. Define the set Cn made by all pairs 
(hi, h′

i) of the game G(n) such that hi �i h′
i and there exists h ∈ hi with length n (in particular, i ∈ I(h)). Define also the 

set Sn made by all pairs (h, di) of the game G(n) such that h �i di and h has length n (so that i /∈ I(h) for each such 
history h). Apply the transformation γ at all pairs (hi, h′

i) ∈ Cn . Then, apply the transformation σ at all pairs (h, di) ∈ Sn

and denote by G(n + 1) the obtained game (where G(n + 1) = G(n) if both Cn and Sn are empty). Similarly, note that, since 
all transformations are applied at the same height of G(n), all coalescing and simultanizing opportunities are preserved at 
each transformation.

By Lemma 2 and Lemma 3, G(n) is behaviorally equivalent to G for every n ≥ 1. In addition, since G is finite, there exists 
an integer n0 ≥ 1 such that G(n) = G(n0) for all n ≥ n0. Set Ĝ := G(n0). We claim that Ĝ ∈ Ĝ . Let us suppose by contradiction 
that Ĝ ∈ dom(γ ), i.e., there exists a coalescing opportunity in Ĝ , let us say with hi �i h′

i . Let k be the minimal length of 
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Fig. 8. rnZ (Ĝ) of the game in Fig. 7.

histories h ∈ hi and note that k ∈ {0, 1, . . . , n0 − 1}. This implies that G(k + 1) has a coalescing opportunity at an information 
set with a history of length k, which contradicts our construction. With a similar argument, we have Ĝ /∈ dom(σ ). Therefore 
Ĝ is minimal, hence it is a reduction of G .

To complete the proof, we need to show that Ĝ is the unique reduction of G , up to isomorphisms. Indeed, suppose that 
Ĝ ′ is another minimal game structure which is behaviorally equivalent to G . Then Ĝ and Ĝ ′ are two behaviorally equivalent 
minimal game structures. It follows from Lemma 4 that Ĝ = Ĝ ′ , up to isomorphisms. �
Example 5. Consider the game Ĝ ∈ Ĝ in the right hand side of Fig. 7. Its Z -reduced normal form is given in Fig. 8.

It follows from the algorithm described in Lemma 4 that player 1 is active at the root ∅ with three feasible actions, 
whereas player 2 is inactive at ∅ because the unique partition of {x, y} which divides the terminal paths in disjoint sets is 
{x, y} itself. At this point, for the sub-games starting at the histories (a) and (b), player 2 is active and the finest partition 
dividing the terminal paths in disjoint sets is {{x}, {y}}. It follows that player 2 is active at such histories, they are on the 
same information set, and he has two available actions. Finally, player 2 is inactive at the history (u). In other words, we 
constructed the game Ĝ whose extensive game structure is represented in the right hand side of Fig. 7.

We can thus provide a characterization of invariant transformations.

Lemma 6. A correspondence T : G � G with dom(T ) �= ∅ is an invariant transformation if and only if it satisfies (5).

Proof. By Remark 3, T contains all the correspondences T : G � G with dom(T ) �= ∅ which satisfy (5). Conversely, fix an in-
variant transformation T and an extensive game structure G ∈ dom(T ) (which is possible, since dom(T ) �= ∅). Then, for each 
G ′ ∈ T (G), we have that G is behaviorally equivalent to G ′ , i.e., rnZ (G) � rnZ (G ′). By Lemma 4, there exist unique minimal 
game structures Ĝ and Ĝ ′ with Z -reduced normal forms rnZ (G) and rnZ (G ′), respectively. It follows by Lemma 5 that Ĝ and 
Ĝ ′ are the minimal reductions of G and G ′ , respectively. Therefore there exist n, k ∈N0 and ϕ1, . . . , ϕn, ψ1, . . . , ψk ∈ {γ , σ }
such that

Ĝ ∈ (ϕ1 ◦ · · · ◦ ϕn)(G) and Ĝ ′ ∈ (ψ1 ◦ · · · ◦ ψk)(G ′).

This implies that G ′ iso∈ (ψ−1
k ◦ · · · ◦ ψ−1

1 ◦ ϕ1 ◦ · · · ◦ ϕn)(G), so that T satisfies (5). �
Finally, we are ready to prove our main result.

Proof of Theorem 1. (a1) ⇐⇒ (a2). The if part is clear. The only if part follows from Lemma 4 and Lemma 5.
(a2) ⇐⇒ (a3). The only if part is clear. The if part follows from Lemma 5.
(a1) ⇐⇒ (a4). The if part is clear, cf. Remark 3. Conversely, if G is behaviorally equivalent to G ′ then there exists an 

invariant transformation T ∈ T such that G ′ ∈ T (G). By Lemma 6, T : G � G is a correspondence with dom(T ) �= ∅ satisfying 

(5). This means that there exist n ∈N and ι1, . . . , ιn ∈ {γ , γ −1, σ , σ−1} such that G ′ iso∈ (ι1 ◦ · · · ◦ ιn)(G). This completes the 
proof. �
4.1. Concluding remarks

The four transformations put forward by Thompson (1952) are the starting point for the development of many other 
equivalence relations. Some solution concepts, like Nash equilibrium, iterated (weak or strict) dominance, and strategic 
stability (Kohlberg and Mertens, 1986) are invariant to transformations that preserve the reduced normal form. Others, 
like subgame perfection or trembling hand perfection in the agent normal form (Selten, 1965, 1975), are only invariant to 
Interchanging/Simultanizing. The latter is almost a must if games are represented in the traditional way of Kuhn (1953), 
which does not allow for a direct representation of simultaneity, but not if the formalism allows for such representation, 
as in our case. It is worth noting that some solution concepts, like weak perfect Bayesian equilibrium (Myerson, 1991; 
Mas-Colell et al., 1995) are not even invariant to Interchanging, as shown by Myerson (1991, Figs. 4.6 and 4.7).

We do not see different forms of invariance as strategic rationality requirements, but rather as interesting properties 
that independently justified solution concepts may or may not satisfy. In particular, different notions of extensive-form ra-
tionalizability with an independent epistemic foundation are based on the notion of sequential best reply described in 
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the Introduction, which applies to classes of behaviorally equivalent strategies. With this, we look at transformations that 
preserve behavioral equivalence and prove that two simple invariant transformations, i.e., Interchanging/Simultanizing and 
Coalescing Moves/Sequential Agent Splitting, are sufficient to characterize the notion of behavioral equivalence.
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