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Abstract

We consider an ambiguity averse, sophisticated decision maker facing a recurrent decision problem where 
information is generated endogenously. In this context, we study self-confirming actions as the outcome of 
a process of active experimentation. We provide inter alia a learning foundation for self-confirming equi-
librium with model uncertainty (Battigalli et al., 2015), and we analyze the impact of changes in ambiguity 
attitudes on convergence to self-confirming equilibria. We identify conditions under which the set of self-
confirming equilibrium actions is invariant to changes in ambiguity attitudes, and yet ambiguity aversion 
may affect the dynamics. Indeed, we argue that ambiguity aversion tends to stifle experimentation, increas-
ing the likelihood that the decision maker gets stuck into suboptimal “certainty traps.”
© 2019 Elsevier Inc. All rights reserved.
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Keywords: Learning; Stochastic control; Ambiguity aversion; Self-confirming equilibrium

1. Introduction

We study the dynamic behavior of a decision maker (DM) who faces a recurrent decision prob-
lem in which the actions he selects depend on the information endogenously gathered through 
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Fig. 1. Timeline.

his past behavior as, for example, in multiarmed bandit problems (cf. Gittins, 1989). We diagram 
the flow of actions and information in Fig. 1.

Our DM is ambiguity averse, finitely patient, and uncertain about the stochastic process of 
states of nature. In this setting, there are three crucial elements of our analysis. First, the process 
of states is governed by an unknown objective probability model (e.g., the composition of an urn). 
Second, the uncertainty of the DM about the objective model is represented through a subjective 
probability measure, a belief, which is updated according to information feedback. Each period, 
the DM evaluates the possible actions (given his updated belief) according to a dynamic version 
of the smooth ambiguity criterion of Klibanoff et al. (2005), which separates ambiguity attitudes 
(a personal trait) from the evolving perception of ambiguity, and allows for a Bayesian analysis 
of learning. Third, the DM uses a rational strategy given his prior belief.

It is essential to understand the meaning of the term “rational” in our setting. An uncertainty 
averse DM may have dynamically-inconsistent preferences (cf. Example 5). While we allow 
for such reversal of preferences, we assume that the DM is sophisticated in the sense that he 
formulates a dynamically-consistent strategy, that is, a strategy that satisfies the one-deviation 
(or intrapersonal equilibrium) property: There is no instance where the DM has an incentive 
to choose an action different from the one prescribed by the given strategy. In a finite-horizon 
model, this is equivalent to folding-back planning. But we cannot rely on folding back, because 
we focus on infinite-horizon models to study the limit properties of behavior and beliefs, and to 
exploit the ensuing stationarity of the dynamic decision problem.

We study how steady-state actions arise from an active experimentation process, providing a 
novel convergence result. Specifically, we show that the stochastic process of beliefs and actions 
converges with probability 1 to a random limit action-belief pair. This random limit pair satisfies 
almost surely the following self-confirming equilibrium conditions: The limit action maximizes 
the one-period value given the limit belief, and the limit belief assigns probability 1 to the set of 
probability models that are observationally equivalent to the true one given the limit action.

Therefore, even if the DM cares about the future, the limit action-belief pair must be a self-
confirming equilibrium of the one-period game repeatedly played against nature. Since the belief 
may only partially identify the true model (nature’s “behavior strategy”), such limit behavior 
may be very different from the “Nash” (or “rational expectations”) equilibrium, in which the 
DM plays the objective best reply.1

Since we assume that the state process is exogenous, that is, the DM’s actions cannot influence 
the probabilities of states in future periods, our framework cannot model long-run interactions 
with a fixed set of co-players. However, our exogeneity assumption is justified within the scenario 

1 Our definition of self-confirming equilibrium (also called “conjectural equilibrium”) is broader than the one of 
Fudenberg and Levine (1993, 1998). See the discussion in Battigalli et al. (2015).
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of large population games. Indeed, our setup can represent the point of view of a DM who 
plays a game recurrently with other agents independently drawn from large, statistically stable, 
populations. Hence, the DM recognizes to be unable to influence the evolution of the environment 
with his actions. The probability models describe the distribution of behaviors in the co-players’ 
populations. Experimentation is valuable to the DM since a better understanding of the correct 
distribution may allow him to select a better strategy in the following periods. In particular, our 
setting is consistent with a steady-state learning environment à la Fudenberg and He (2018), 
where individual agents learn through their life, but the population’s statistics are constant.

Under this interpretation, we provide a learning foundation for self-confirming equilibrium 
with model uncertainty (Battigalli et al., 2015, henceforth BCMM). Specifically, the random 
limit pair corresponds to the “smooth” self-confirming equilibrium concept of BCMM since 
the limit action is a myopic best response, and the evidence generated by the limit action and 
the steady-state distribution of opponents’ actions confirms the limit belief. BCMM prove that 
higher ambiguity aversion yields a larger set of self-confirming equilibrium actions. Intuitively, 
the reason is that a self-confirming equilibrium action is “tested,” hence it yields known risks (ob-
jective probabilities of consequences), whereas deviations yield unknown risks that are the less 
attractive the higher the aversion to ambiguity. Since we show that self-confirming equilibrium 
emerges as the long-run outcome of an active experimentation and learning process, the compar-
ative statics result of BCMM implies that higher ambiguity aversion reduces the predictability of 
long-run behavior.

We provide special conditions under which the BCMM theorem holds as an invariance result: 
The set of self-confirming equilibrium actions does not depend on ambiguity attitudes. Nonethe-
less, ambiguity aversion may still affect the dynamics. Specifically, we argue that ambiguity 
aversion tends to stifle experimentation, increasing the likelihood that the DM gets stuck into 
suboptimal “certainty traps.” The intuition is as follows. Suppose that the DM can only learn 
from observing his realized payoffs. The actions perceived as ambiguous, that is, those with 
uncertain distributions of payoffs, are those from which the DM expects to learn. If instead an 
action is perceived as unambiguous, the DM expects to have the same belief before and after 
choosing it, i.e., he does not expect to learn from it. Hence, ambiguity aversion biases the DM 
toward “exploitation” and against “exploration.”

Related literature We point out that there is a formal connection between the concept of 
SCE and the literature on active learning (or “stochastic control”), and in particular the semi-
nal work by Easley and Kiefer (1988, henceforth EK). The working paper version2 provides a 
translation between our setup and the active learning setup. Our paper departs from EK in two 
fundamental aspects. First, we allow for non-neutral ambiguity attitudes and dynamically in-
consistent preferences. Second, EK requires the DM to assign positive subjective probability to 
(every neighborhood of) the correct model, whereas our sufficient condition for convergence to 
an SCE allows for misspecified beliefs.3

Our definition of self-confirming equilibrium is related to the notion of subjective equilibrium 
of Kalai and Lehrer (1993 and 1995, henceforth KL). Relatively minor details aside, there are two 
key differences between the two concepts. First, KL define and analyze subjective equilibrium 
as the rest point of a process of updated beliefs about the path of play in a supergame. Such 

2 Available as IGIER w.p. 588.
3 See Section 3. Moreover, the working paper version considers the more general case of non i.i.d. state generating 

process.



P. Battigalli et al. / Journal of Economic Theory 183 (2019) 740–785 743
beliefs can be interpreted either as “subjective averages” of probability models, or as subjective 
Dirac beliefs over probability models. Focusing on such beliefs is without loss of generality 
under subjective expected utility maximization, but not under non-neutral ambiguity attitudes 
(see Sections 2.1 and 4). Second, since in KL the set of interacting players is fixed once and for 
all, their analysis concerns the convergence to a steady state of beliefs about supergame behavior. 
Our analysis, instead, is consistent with steady-state learning in a population game scenario; thus, 
we obtain convergence to an equilibrium of the one-period game.

Our results on ambiguity aversion and experimentation are consistent with the findings in 
Li (2019) and Anderson (2012). Li (2019) characterizes the optimal experimentation strategy 
under ambiguity aversion in an independent K-armed bandit problem. Aside from focusing on 
this specific case, the key difference with our paper is that Li (2019) models ambiguity aversion 
following the two-stage multiple-prior model of Marinacci (2002), while we employ the smooth 
ambiguity criterion of Klibanoff et al. (2005). As a result, the comparative-statics analysis in Li
(2019) considers the impact of changes in the perception of ambiguity, while ours studies the 
effect of changes in ambiguity attitudes. Moreover, Li (2019) uses a recursive version of the 
maxmin expected-utility criterion and is thus able to employ standard dynamic programming 
techniques. Such a recursive representation is precluded in our setting. Unlike Li (2019) and 
our paper, Anderson (2012) derives the predictions of his model under the implicit assumption 
that the decision maker can commit ex-ante to any strategy. However, the empirical evidence he 
presents is consistent with the theoretical predictions of our model.

Outline The paper is structured as follows. Section 2 presents the static and dynamic decision 
framework, as well as preliminary concepts. Section 3 describes the endogenous information pro-
cess. Section 4 describes the DM’s intertemporal preferences. Section 5 analyzes self-confirming 
equilibrium, rational strategies, and presents our results on convergence to SCE. Section 6
presents our comparative dynamics results with respect to changes in ambiguity attitudes. Fi-
nally, Section 7 briefly relates our analysis to the literature on learning in games and concludes. 
Proofs are relegated to the appendix. We refer to the working paper version for the complete 
derivation of the results presented in the examples.

2. Framework

2.1. Static environment

Let S be a finite space of states of nature and let M be a finite outcome space. We consider 
a control setup where a finite set A of actions (or controls) is available to the DM, and actions 
and states translate into outcomes through a feedback function f : A × S → M .4 We assume 
that outcomes are observable, while states are not directly observable. Thus, unless the feedback 
function is injective given the chosen action, inference on the states is partial. The quadruple 
(A,S,M,f ) is the basic structure of the decision problem.

Given a probability measure θ on S, an action a induces a pushforward measure over out-
comes via the function F : A × �(S) → � (M) defined by:

∀m ∈ M , F (a, θ) (m) =
∑

s∈f −1
a (m)

θ (s) ,

4 We endow all finite sets with the discrete topology.
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where fa := f (a, ·) is the section of f at a. Our first maintained assumption is that the DM is 
an Expected Utility Maximizer with respect to these (objective) lotteries.

Assumption 1 (Expected utility on lotteries). There exists a utility function u : A × M → R
such that, for every objective probability measure θ on S and pair of actions a′, a′′ ∈ A, the DM 
prefers the (objective) distribution over outcomes induced by a′ to the one induced by a′′ if and 
only if:∑

m∈M

u
(
a′,m

)
F
(
a′, θ

)
(m) ≥

∑
m∈M

u
(
a′′,m

)
F
(
a′′, θ

)
(m) .

Under Assumption 1, we define the expected payoff over outcomes as:

R(a, θ) := EF(a,θ) [ua] ,

where ua := u (a, ·) is the section of u at a.
Let � ⊆ �(S) be a compact set of probability measures on S. These measures, which we call 

models, represent the structural (often physical) information available to the DM, with θ̄ ∈ �

denoting the objectively true model.5 We identify � with a subset of the simplex of dimension 
|S| − 1 and endow it with the Borel σ -algebra B(�). Incompleteness of information is captured 
by the non-singleton nature of �. Under model uncertainty (cf. Marinacci, 2015), the DM ranks 
actions according to the smooth ambiguity criterion of Klibanoff et al. (2005):

V̄ (a,μ) := φ−1

⎛⎝ ∫
�

φ (R (a, θ))μ (dθ)

⎞⎠ , (1)

where μ is a prior probability measure on (�, B(�)), and φ : [mina,θ R (a, θ) ,maxa,θ R (a, θ)
]

→ R is a strictly increasing and continuous function that describes attitudes towards ambigu-
ity.6 In particular, a concave φ captures ambiguity aversion, while a linear φ (e.g., the identity 
function) corresponds to the classical subjective expected utility criterion (Cerreia-Vioglio et al., 
2013b)7:

V̄ (a,μ) =
∫
�

R (a, θ)μ (dθ) = R
(
a, θμ

)
,

where θμ ∈ � is the predictive probability given by θμ (E) := ∫
�

θ (E)μ (dθ) for all E ⊆ S. 
Finally, note that:

(i) When the support of μ, suppμ, is a singleton {θ}, criterion (1) reduces to the expected payoff 
criterion R (a, θ);

5 For example, if S = {b,g} is the set of possible colors of the ball drawn from an urn of 90 balls that are either black 
or green, then � = {θ ∈ �(S) : θ (b) = i/90 = 1 − θ (g) , i ∈ {0, ...,90}}.

6 See Theorem 6 in Cerreia-Vioglio et al. (2013a) for an axiomatization. In our setting, the domain of φ is well defined 
by finiteness of A and continuity of R(a, θ) with respect to θ .

7 To map our decision criterion into theirs, let their space of consequences be A × M and identify each action a with 
the act g (s) = (a, f (a, s)).



P. Battigalli et al. / Journal of Economic Theory 183 (2019) 740–785 745
(ii) The limit case of criterion (1) as ambiguity aversion increases is a version of the maximin cri-
terion minθ∈supp μ R (a, θ) of Gilboa and Schmeidler (1989); see Proposition 3 in Klibanoff 
et al. (2005).

The static decision problem can be summarized by:

� = (A,S,M,�,f,u,φ,μ) . (2)

2.2. Dynamic environment

Notation For every finite set Z, we let Zt =∏t
τ=1 Z and Z∞ =∏∞

τ=1 Z.8 We endow the space 
Z∞ with the Borel σ -algebra, B (Z∞), corresponding to the product topology on Z∞; this is the 
same as the σ -algebra generated by the elementary cylinders {z1} × · · · × {zt } × Z∞ (see, e.g., 
Proposition 1.3 in Folland, 2013). We denote by zt = (z1, ..., zt ) ∈ Zt both the histories and the 
elementary cylinders that they identify through the following map:

(z1, ..., zt ) 
→ {z1} × · · · × {zt } × Z∞ .

We denote by z∞ = (z1, ..., zt , ...) a generic element of Z∞.

Environment Given S, let (S∞,B (S∞)) be the measurable space on which a coordinate state 
process (s1, s2, ...) is defined, with st : S∞ → S for each t .9 We will use the less demanding 
notation s∞ for the state process describing the exogenous uncertainty in the decision problem. 
Its realizations are denoted by s∞ ∈ S∞. Similarly, we write st = (s1, ..., st ) with realization st

for finite state processes.
For a generic stochastic process (z1, z2, ...) defined on (S∞,B (S∞)), we denote by σ

(
zt
)

the σ -algebra generated by the random variables z1, ..., zt , namely, by the process up to time t ; 
σ
(
z0
)

denotes the trivial σ -algebra.
Finally, for every θ ∈ � we define pθ ∈ � (S∞) as the unique i.i.d. extension on B(S∞) of 

the measure given on all elementary cylinders by:

pθ(s
t × S∞) =

t∏
τ=1

θ (sτ )

for every t and every st in St .10

Actions and outcomes We describe the DM’s choices as a sequence (at ) ∈ A∞ that consists 
of an action at for each period t . At each such t , there is a time-independent feedback function 
f : A × S → M , where f (at , st ) is the outcome that the DM observes ex-post (i.e., after the 
decision) at the end of period t if he chooses action at and state st obtains.

8 Unless otherwise stated, it is understood that t is an element of N , the set of natural numbers. We use the terms 
“time” and “period” interchangeably to refer to t .

9 We use boldface letters for random variables and normal letters for realizations.
10 Existence and uniqueness are guaranteed by the Kolmogorov Extension Theorem.
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Information feedback In a dynamic setting, the outcome that the DM observes provides feed-
back about past states, which is a source of “endogenous” (choice dependent) information.11 Its 
relevance is peculiar to the dynamic setting and will play a key role in the paper. By selecting 
action at ∈ A at time t , the DM observes ex-post the outcome mt = f (at , st ) if state st realizes. 
Thus, a DM who selects action at and observes outcome mt ex-post knows that the realized state 
st belongs to the set {s ∈ S : f (at , s) = mt } = f −1

at
(mt ).

In general, ex-post information about the state is typically endogenous; that is, the partition of 
the state space S induced by outcomes,{

f −1
a (m) : m ∈ M

}
,

may depend on the choice of action a. If the DM receives the same information about states 
regardless of his action, namely, if:

∀a, a′ ∈ A,
{
f −1

a (m) : m ∈ M
}

=
{
f −1

a′ (m) : m ∈ M
}

,

we say that feedback satisfies own-action independence. In particular, there is perfect feedback
when the DM observes the realized state st ex-post; that is, if fa is injective for each a ∈ A.

Actions and outcomes are remembered: At each period t > 1, the ex-ante endogenous 
information—that is, the endogenous information gathered prior to the period-t decision—is 
given by the history of outcomes mt−1 = (m1, ...,mt−1) that obtained in the previous periods as 
a result of the history of actions at−1 = (a1, ..., at−1) and states st−1 = (s1, ..., st−1).

Example 1 (Prelude). Consider an urn that contains black (B), green (G), and yellow (Y ) balls. 
At each time t , the DM is asked to bet 1 euro on the color of the ball that will be drawn from 
the urn; therefore, the possible bets are black (b), green (g), and yellow (y). Suppose that the 
DM is told ex-ante that one-third of the balls are black (and that the only possible colors are B , 
G, and Y ), as in the classical Ellsberg’s paradox. That is, the set of posited models is � = {θ ∈
� ({B,G,Y }) : θ(B) = 1/3}. Ex post, after the draw, he only learns the result of his bet, namely, 
whether or not he wins 1 euro. Here, S = {B,G,Y }, A = {b,g, y}, and M = {0,1}. The feedback 
function is described in the following table:

f B Y G

b 1 0 0
y 0 1 0
g 0 0 1

Therefore, we have:

f −1
b (1) = {B} , f −1

b (0) = {Y,G} ,

f −1
y (1) = {Y } , f −1

y (0) = {B,G} ,

f −1
g (1) = {G} , f −1

g (0) = {B,Y } .

Note that own-action independence is violated: Ex post, betting on b yields the partition 
{{B} , {Y,G}} of S, while the bets on y and g respectively yield the partitions {{Y } , {B,G}}
and {{G} , {B,Y }}. �

11 We refer to the working paper version of this paper for a more general setting that separates outcomes and feedback.
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Example 2 (Two-arm bandit). There are two urns, I and II , with black and green balls. The DM 
chooses an urn, say k, and wins 1 euro if the ball drawn from urn k is green (Gk , good outcome 
from urn k) and zero if it is black (Bk , bad outcome from urn k). The outcome for the chosen urn 
is observed ex-post. Here, S = {BIBII ,BIGII ,GIBII ,GIGII }, A = {I, II }, and M = {0,1}. 
The following table describes the feedback function:

f BIBII BIGII GIBII GIGII

I 0 0 1 1
II 0 1 0 1

Therefore:

f −1
I (1) = {GIBII ,GIGII } , f −1

I (0) = {BIBII ,BIGII } ,

f −1
II (1) = {BIGII ,GIGII } , f −1

II (0) = {BIBII ,GIBII } .

Own-action independence of feedback is once again violated. �

2.3. Strategies and information

Strategies At each period t , the overall ex-ante information available to the DM is given by 
the histories of actions and outcomes, at−1 and mt−1. The ex-ante information history ht at time 
t is given by:

h1 =
(
a0,m0

)
; ∀t > 1, ht =

(
at−1,mt−1

)
= (ht−1, at−1,mt−1) ,

where 
(
a0,m0

)
represents null data. Hence, the ex-ante information history space Ht+1 at the 

beginning of period t + 1, determined by information about previous periods, is:

Ht+1 = {
(at ,mt ) ∈ At × Mt : ∃st ∈ St , ∀k ∈ {1, ..., t}, mk = f (ak, sk)

}
.

By definition, H1 = {(
a0,m0

)}
.

Strategies specify an action for each possible information history. Thus, they are modeled as 
sequences α = (αt ) of time-t strategies, with αt : Ht → A for each t . Since H1 = {(

a0,m0
)}

is 
a singleton, the first element in the sequence, α1, prescribes a non-contingent action. Sometimes 
it is useful to refer to the strategy α|ht that behaves as specified by ht at the information sets 
preceding ht , and coincides with α elsewhere.

Information and strategies A state process s∞ and a strategy α = (αt ) recursively induce 
an action process 

(
aα
t

)
, an outcome process 

(
mα

t

)
, and an information process hα = (

hα
t

)
, as 

follows:

(i) hα
1 = (

a0,m0
)

and aα
1 = α1

(
a0,m0

)
;

(ii) mα
1 = f

(
aα

1 , s1
)
;

(iii) hα
t+1 = (

hα
t ,aα

t ,mα
t

)
, aα

t+1 = αt+1
(
hα

t+1

)
, and mα

t+1 = f
(
aα
t+1, st+1

)
for each t .

In words, at each period t , an action at is selected according to αt based on the information 
history ht = (ht−1, at−1,mt−1). In turn, its execution generates an outcome mt that the DM 
may consider in subsequent periods. Note that α1 prescribes only one action, α1

(
a0,m0

)
, which, 

together with realization s1 of s1, initializes the recursion by sending outcome m1.
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The sequence of σ -algebras 
(
σ
(
hα

t

))
on S∞ generated by the information process (hα

t ) is a 
filtration that describes the information structure generated and used by strategy α. Since feed-
back will typically not be perfect, this filtration is coarser than the one generated by the state 
process s∞; that is, σ

(
hα

t

)⊆ σ
(
st−1

)
for each t > 1. For this reason, without loss of generality, 

we can regard hα
t as well as aα

t and mα
t−1 as functions defined on St−1.12

Each finite history ht = (
at−1,mt−1

)
corresponds to the cylinder:

I (ht ) = {
s∞ ∈ S∞ : ∀τ ∈ {1, . . . , t − 1}, f (aτ , sτ ) = mτ

} ∈ σ
(

st−1
)

.

This is the information about the realized sequence of states revealed by ht .
Since states are not directly observed, we can focus on processes (aα

t ), (mα
t ), and (hα

t ), keep-
ing the underlying parameterized probability space (S∞,B (S∞) ,pθ ) in the background. We 
write events in terms of the processes observable by the DM. In particular,

[
hα

t+1 = (
at ,mt

)]=
{

I
(
at ,mt

)
, if ∀τ ∈ {1, ..., t}, ατ

(
aτ−1,mτ−1

)= aτ ,

∅, otherwise.

Example 3 (Act I). Assume that only bets on either black or yellow are possible, not on green. 
As a result, we now have A = {b, y} and the table in the Prelude becomes:

f B Y G

b 1 0 0
y 0 1 0

Throughout we will consider two strategies, denoted by αNE (No Experimentation) and αE

(Experimentation). Strategy αNE dictates betting on black forever. Strategy αE dictates experi-
menting with yellow in period 1, and, from period 2 onwards, the action prescribed is constant 
but depends on the result of this experimentation: If a success is observed in period 1, y is chosen; 
otherwise b is chosen every period thereafter. Formally:

Strategy αNE : For each ht = (at−1, mt−1),

αNE
t (ht ) =

⎧⎨⎩
b if t = 1,

y if t > 1, and (y,1) ∈ {(a1,m1), . . . , (at−1,mt−1)},
b if t > 1, and (y,1) /∈ {(a1,m1), . . . , (at−1,mt−1)}.

(Of course, to assess deviations, the strategy must specify actions to be taken at histories that the 
strategy itself excludes, such as what to do after having bet on yellow.)

By always betting on black, the DM cannot observe the relative frequencies of Y and G. In 
particular, for each period t and state history st ,

aαNE

t

(
st−1

)
= b,

mαNE

t

(
st
)=

{
1 if st = B,

0 if st ∈ {Y,G},

hαNE

t+1

(
st
)=

{
(hαNE

t

(
st−1

)
, b,1) if st = B,

(hαNE

t

(
st−1

)
, b,0) if st ∈ {Y,G}.

12 Recall that σ
(

s0
)

is the trivial σ -algebra.
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Strategy αE : For each ht = (at−1, mt−1),

αE
t (ht ) =

⎧⎨⎩
y if t = 1,

y if t > 1, and (y,1) ∈ {(a1,m1), . . . , (at−1,mt−1)},
b if t > 1, and (y,1) /∈ {(a1,m1), . . . , (at−1,mt−1)}.

The only difference between this strategy and αNE is the action chosen in the first period. 
Next we describe the induced processes of actions and outcomes:

aαE

1 = y,

mαE

1 (s1) =
{

1 if s1 = Y,

0 if s1 ∈ {B,G},
hαE

2 (s1) =
{

(y,1) if s1 = Y,

(y,0) if s1 ∈ {B,G},
and, for each t > 1 and st ,

aαE

t

(
st−1

)
=
{

y if s1 = Y,

b else,

mαE

t

(
st
)=

⎧⎪⎨⎪⎩
1 if s1 = Y and st = Y,

1 if s1 ∈ {B,G} and st = B,

0 else,

hαE

t+1

(
st
)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(hαE

t

(
st−1

)
, y,1) if s1 = Y and st = Y,

(hαE

t

(
st−1

)
, b,1) if s1 ∈ {B,G} and st = B,

(hαE

t

(
st−1

)
, y,0) if s1 = Y and st ∈ {B,G},

(hαE

t

(
st−1

)
, b,0) if s1 ∈ {B,G} and st ∈ {Y,G}. �

3. Models and learning

3.1. Distributions and updating

Prior, predictive, and posterior probabilities A probability measure μ : B (�) → [0,1] is 
called a prior. A prior induces a predictive distribution pμ ∈ � (S∞) defined by pμ (B) =∫
�

pθ (B)μ (dθ) for all B ∈ B (S∞). We make the following maintained assumption about the 
prior of the DM.

Assumption 2. The prior μ has finite support and satisfies the following “no-surprise” property:

∀t ∈ N,∀ht ∈ Ht pθ̄ (I (ht )) > 0 ⇒ pμ (I (ht )) > 0. (3)

In words, pθ̄ -almost surely, the DM is not surprised by what he observes.13 A sufficient con-
dition for (3) is to have μ 

(
θ̄
)
> 0. A weaker sufficient condition for (3), one which allows for 

13 Our results would still hold without the “no-surprise” assumption if we endow the DM with a conditional probability 
system describing how he updates, or revises, his beliefs over models (see the working paper version of Battigalli et al., 
2019).
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misspecification, is the existence of a model θ̂ ∈ suppμ such that θ̄ is absolutely continuous with 
respect to θ̂ .14 For example, it is sufficient that the prior assigns positive probability to a full sup-
port model. With this, the posterior of the DM after every information history ht with positive 
objective probability (i.e., with pθ̄ (I (ht )) > 0) is given by Bayes rule:

∀θ ∈ � μ(θ |ht ) = pθ (I (ht ))μ (θ)

pμ (I (ht ))
.

Our use of Bayes rule for an ambiguity sensitive DM may seem surprising since Bayesian 
updating has a revealed-preference foundation in the Subjective Expected Utility axioms for 
preferences over strategies. However, if we do not allow for commitment, we cannot rely on a 
revealed-preference approach to justify Bayesian updating in this setting: Strategies cannot be 
chosen, only actions can be chosen. This impossibility of commitment to a particular strategy is 
critical in a context where preferences are allowed to be dynamically inconsistent.

By sticking to Bayesian updating, we can preserve the separation between ambiguity attitudes 
and the perception of ambiguity of the static KMM decision criterion in this dynamic setting. 
This separation is lost if we consider dynamically consistent rules for updating beliefs.15 Our 
approach complements the analysis of the dynamic choices of a KMM decision maker by Hanany 
et al. (2019). In their work, they maintain dynamic consistency of the preferences of the DM but 
consider a different updating rule for beliefs.

Observationally equivalent models Given a strategy α and a probability distribution pθ , let 
pα

θ : σ (hα) → [0,1] denote the restriction of pθ to the σ -algebra generated by the α-observable 
events: σ (hα) = σ

(∪t σ
(
hα

t

))
. With this, we define the σ

(
hα

t

)
-measurable correspondence (ran-

dom set) representing the collection of models that are deemed possible and that, conditional on 
hα

t

(
st−1

)
, are observationally equivalent to the true model θ̄ under α and prior μ. Formally,16

�
α,μ
t

(
s∞)=

{
θ ∈ suppμ

(
·|hα

t

(
st−1

))
: pα

θ

(
·|hα

t

(
st−1

))
= pα

θ̄

(
·|hα

t

(
st−1

))}
.

Note that, for some s∞, the set �α,μ
t (s∞) may be empty if θ̄ /∈ suppμ.

The next lemma establishes a monotonicity property of this correspondence. We introduce 
the following abuse of notation/terminology: When a property holds pθ -almost surely, we will 
simply say that it holds θ -almost surely (θ -a.s. for short).

Lemma 1. For every true model θ̄ ∈ � and every period t , �α,μ
t ⊆ �

α,μ
t+1 θ̄ -a.s.

The intuition behind the lemma is as follows. The set �α,μ
t may contain models that disagree 

with θ̄ on the relative probabilities of past events (up to t − 1), but that agree with θ̄ on the 
relative probabilities of future events (from t ). Almost surely, every model that agrees with θ̄ on 
future events conditional on information up to t − 1 also agrees on future events conditional on 
information up to t . Act II of our running Example shows that the inclusion can be strict.

It follows from the lemma that, θ̄-a.s.,

�
α,μ
1 :=

{
θ ∈ suppμ : pα

θ = pα

θ̄

}
⊆ �

α,μ
t

14 That is, supp θ̄ ⊆ supp θ̂ . Under perfect feedback, this condition is equivalent to (3).
15 See Hanany and Klibanoff (2009), further discussed in Section 7, and Maccheroni et al. (2006).
16 It is actually enough to require pα

θ

(
E | hα

t

(
st−1

))
= pα

θ̄

(
E | hα

t

(
st−1

))
for all E ∈ ∪t≥1σ

(
hα
t

)
. That is, obser-

vational equivalence is determined by the α-observable events.
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for every t . Set �α,μ
1 represents the irreducible model uncertainty that, when θ̄ is the true model, 

the DM faces if he plays α and holds belief μ.17 When �α,μ
1 = suppμ, such uncertainty and 

strategy do not allow any learning, as all the models that the DM initially deems possible are 
α-observationally equivalent to the true model. The opposite is true when �α,μ

1 = {
θ̄
}
, since in 

this case the DM will assign probability arbitrarily close to 1 to the true model as he accumulates 
observations.

In what follows, we will often study properties of a triple 
(
α,μ, θ̄

)
where α is the strategy 

carried out by the DM, μ is his prior belief over models at period 0, and θ̄ is the correct model. 
We want to understand the behavior and learning of a DM who follows strategy α when his prior 
is μ and the true model is θ̄ . Therefore, we have a particular interest in statements that hold 
θ̄ -a.s., that is, that are almost surely true for the correct model. The notion of observationally 
equivalent models motivates the following definition.

Definition 1. A triple 
(
α,μ, θ̄

)
is consistent at time t if �α,μ

t �= ∅ θ̄ -a.s.

In words, a triple 
(
α,μ, θ̄

)
is consistent at time t if, conditional on the available information 

hα
t , at least one model deemed possible is α-observationally equivalent to the true model.18

Let:

σ≥t (hα(st−1)) = σ
(
∪τ≥1

{
B ∈ σ

(
hα

t+τ

) : B ⊆ I
(

hα
t (st−1)

)})
denote the sigma-algebra of α-observable events from date t onwards given st−1. Then:

�
α,μ
t

(
s∞)=

{
θ ∈ suppμ

(
·|hα

t

(
st−1

))
: ∀E ∈ σ≥t

(
hα
(
st−1

))
, pα

θ (E) = pα

θ̄
(E)

}
.

Hence, 
(
α,μ, θ̄

)
is consistent at t if, for θ̄ -almost every st−1, there exists some θ ∈

suppμ 
(· | hα

t

(
st−1

))
such that pα

θ (E) = pα

θ̄
(E) for all E ∈ σ≥t

(
hα
(
st−1

))
. Of course, an obvi-

ous sufficient condition for consistency is that μ(θ̄) > 0.
In view of Lemma 1, for a triple 

(
α,μ, θ̄

)
it is easier to meet the condition for consistency as t

gets larger. Let T
(
α,μ, θ̄

)
denote the infimum of the set of t at which 

(
α,μ, θ̄

)
is consistent.19 If 

T
(
α,μ, θ̄

)= T < ∞, we say that the triple is consistent from period T ; if the triple is consistent 
for some period T ′ < ∞, we say that it is eventually consistent. We begin by showing that, under 
our consistency assumption, beliefs converge almost surely.

Lemma 2. If 
(
α,μ, θ̄

)
is eventually consistent, then the process 

(
μ
(·|hα

t

))
converges θ̄ -a.s.

For the next result, note that convergence of beliefs along a path does not imply convergence 
of actions. That is, more than one action can be played infinitely often along a path.

17 In this work, we use the term “belief” to denote the probability assessment over (stochastic) models. Using the 
terminology of Marinacci (2015), this belief represents how the DM addresses epistemic uncertainty, whereas models 
capture the (perceived) physical uncertainty.
18 The word “consistent” may remind the reader of the consistency criterion imposed in Arrow and Green (1973). 
However, theirs is an “existence of equilibrium condition” requiring that, given any DM’s action and true model, there 
exists a subjective model conceivable by the DM that is observationally equivalent to the actual one.
19 We set T

(
α,μ, θ̄

)= ∞ if no such t exists.
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Proposition 1. If 
(
α,μ, θ̄

)
is eventually consistent, then

lim
t→∞μ(

{
θ ∈ � : F (ā, θ) = F

(
ā, θ̄

)} | hα
t

(
s∞)) = 1 (4)

for θ̄ -almost every s∞ and every action ā played infinitely often by α on path s∞.

In words, a triple (α, μ, θ̄ ) that is eventually consistent allows the DM to learn the 
α-observable implications of the true model θ̄ in the long run.20

Under perfect feedback, the true model is asymptotically identified. This is the classical result 
of Doob (1949).

Corollary 1. If 
(
α,μ, θ̄

)
is eventually consistent, then, under perfect feedback,

μ
(
θ̄ |hα

t

)→ 1 θ̄ -a.s.

Example 4 (Act II). Suppose that the DM:

1. knows that 1/3 of the balls are black (and so all his models θ are such that θ (B) = 1/3);
2. has a 3-point prior μ with suppμ = {

θY , θuni, θG
}

and believes it is equally likely that the 
true model is either θY (with θY (Y ) = 2/3), the uniform model θuni , or θG (with θG (G) =
2/3):

Marginals B Y G

θY 1
3

2
3 0

θuni 1
3

1
3

1
3

θG 1
3 0 2

3

Prior θY θuni θG

μ 1
3

1
3

1
3

By requiring to always bet on the color with known proportion, strategy αNE does not allow 
the DM to learn anything. Formally,

∀st ∈ St , μ
(
·|hαNE

t+1

(
st
))= μ.

Here, T (αNE, μ, θ̄ ) = 1 and �αNE,μ
1 = suppμ regardless of what θ̄ is; strategy αNE only allows 

partial identification. We also have that T (αE, μ, θ̄ ) = 1 for αE if θ̄ ∈ suppμ, although αE may 
allow identification of the true model. After a success in period 1, we have suppμ (·|(y,1)) =
{θY , θuni} and:

�
αE,μ
2

(
s∞)=

{ {
θ̄
}

if hαE

2 (s1) = (y,1) ,{
θY , θuni, θG

}
if hαE

2 (s1) = (y,0) ,

20 In this respect we differ from the literature on learning with a misspecified prior, and in particular from Esponda and 
Pouzo (2016). The standard result of this literature is that, starting from a misspecified prior, beliefs about the model and 
its observable implications may converge to a distribution of observables that is different from the one implied by the 
model. Instead, although our notion of consistency allows for misspecification, by Proposition 1 beliefs about observables 
converge to the distribution implied by the model.
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Notice that the inclusion in Lemma 1 can be strict. Strategy αE experiments with y at t = 1, 
but reverts to b if a failure is observed, that is, if s1 ∈ {B,G}. Given αE , model θY is the only 
one that predicts success at t = 1 with probability 2/3, whereas all models predict success with 
probability 1/3 (betting on B) from t = 2 if a failure is observed at t = 1. Therefore, if θ̄ = θY ,

�
αE,μ
1

(
s∞)=

{
θY
}

⊂
{
θY , θuni, θG

}
= �

αE,μ
2

(
s∞)

for s1 = B, G.
By Proposition 1,

μ
(
·|hαE

t

)
→
{

δθ̄ if hαE

2 = (y,1) ,

μ (· | (y,0)) if hαE

2 = (y,0) ,

where δθ̄ denotes the Dirac measure on θ̄ . If experimentation succeeds, the true model is asymp-
totically learned. Otherwise, if h2 = (y, 0), posterior beliefs attain their limit value as early as 
the second period, and the DM remains in the dark. �

4. Value

We posit that, in the absence of model uncertainty, the DM ranks alternative strategies ac-
cording to the standard Discounted Expected Utility criterion. Let R : A × � → R denote the 
(objective) expected reward function defined in Section 2.1.

Assumption 1’ (Discounted expected utility on lotteries). There exists a constant δ ∈ [0, 1) such 
that, for every objective probability measure θ , history ht with pθ (I (ht )) > 0, and strategies α
and β , the DM prefers α to β if and only if:

∞∑
τ=t

δτ−t
∑

hτ ∈Hτ

R (α (hτ ) , θ)pθ

([
hα|ht

τ = hτ

]
|ht

)

≥
∞∑

τ=t

δτ−t
∑

hτ ∈Hτ

R (β (hτ ) , θ)pθ

([
hβ|ht

τ = hτ

]
|ht

)
.

Under model uncertainty, we postulate a dynamic version of smooth ambiguity preferences. 
Let φ be the function capturing ambiguity attitudes introduced in Section 2.1. Given prior μ, 
if history ht with pμ (I (ht )) > 0 is observed the DM ranks strategy α according to the present 
value of the continuation stream of utility certainty equivalents:21

V (α,μ | ht ) :=
∞∑

τ=t

δτ−t φ−1

⎛⎝∫
�

φ

⎛⎝ ∑
hτ ∈Hτ

R (α (hτ ) , θ)pθ (hτ |ht )

⎞⎠μ(dθ | ht )

⎞⎠ . (5)

This criterion evaluates uncertain one-period outcomes according to the smooth ambiguity model 
and then aggregates their (utility) certainty equivalents over time through discounting. Therefore, 
(utility) smoothing over time is irrelevant. Indeed, when the DM evaluates two continuation 
streams of utility certainty equivalents, he is interested only in their discounted sum, not on their 

21 We abbreviate 
([

hα|ht
τ = hτ

]
|ht

)
as (hτ |ht ).
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variability over time. Note that the value only depends on the continuation strategy induced by α
starting from ht .

In particular, we obtain:

(i) V (α,μ | ht ) = ∑∞
τ=t δ

τ−t
(∑

hτ ∈Hτ
R
(
α (hτ ) ,

∑
μ(θ |ht ) θ

) ∫
�

pθ (hτ | ht )μ (dθ | ht )
)

(up to an affine transformation) when φ is linear;
(ii) V (α,μ | ht ) =∑∞

τ=t δ
τ−t

∑
hτ ∈Hτ

R (α (hτ ) , θ)pθ (hτ |ht ) when suppμ = {θ}.

Our analysis relies on the continuity of V with respect to the prior μ.

Lemma 3. For every strategy α and history ht , the functional V (α, · | ht ) is continuous on the 
set of priors μ such that pμ (I (ht )) > 0.

With this lemma, we obtain the following additional corollary to Proposition 1.

Corollary 2. If 
(
α,μ, θ̄

)
is eventually consistent, then, θ -a.s.,∣∣V (

α,μ | hα
t

)− V
(
α, δθ | hα

t

)∣∣→ 0.

This corollary tells us that, in a consistent triple, the strategy becomes unambiguous on path 
in terms of value. Of course, this result does not imply that μ 

(· | hα
t

)→ δθ , only that the present 
value of the strategy that is used converges to the true value. In particular, even in the limit, 
alternative strategies may entail unknown outcome distributions. Therefore, this corollary is the 
dynamic version of the observation made in the static analysis of BCMM that only equilibrium 
strategies have to be unambiguous.

Note that, except for the benchmark case of ambiguity neutrality, this time-additive value does 
not admit a recursive formulation. This is related to the well-known dynamic inconsistency of 
decision makers with non-neutral attitudes toward ambiguity. For this reason, we are precluded 
from employing many of the standard dynamic programming results. We provide an example of 
these inconsistencies in our setting.

Example 5 (Dynamic inconsistency). Consider a modified version of our running example. There 
are only two periods. Only bets on either black or yellow are possible, not on green. However, 
by paying a small cost ε, it is also possible to bet on black and to observe the color of the 
selected ball (action bo). Thus, the outcome has two components: m = (m1,m2), where m1 is 
the monetary payoff and m2 is the color of the drawn ball under action bo, and null information 
(denoted by ∗) under actions b and y. Finally, we normalize payoffs as u (a, (m1,m2)) = m1. 
The feedback function f is thus described by the following table:

f B Y G

b 1,∗ 0,∗ 0,∗
y 0,∗ 1,∗ 0,∗
bo 1 − ε,B 0 − ε,Y 0 − ε,G

Suppose that the DM:

1. knows that 1/3 of the balls are black (and so all her models θ are such that θ (B) = 1/3);
2. believes it is equally likely that the true model is either θ̂ Y or θ̂G:
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Marginals B Y G

θ̂Y 1
3

5
12

1
4

θ̂G 1
3

1
4

5
12

Prior θ̂ Y θ̂G

μ 1
2

1
2

Let φ(u) = −e−10u. Then, the ex-ante optimal strategy if ε is sufficiently small is:
Strategy β: “Bet on black observing the color at t = 1. For t = 2, given yellow in the first 

period, bet on yellow, otherwise bet on black.”22 The ex-ante value of strategy β is23:

V (β,μ) = 0.3 − ε + δ0.3364.

However, β does not satisfy the one-deviation property, i.e., it is not incentive compatible. 
Indeed, after having observed yellow, the DM prefers to bet on black. The posterior belief after 
having chosen bo and having observed yellow is:

Posterior θ̂ Y θ̂G

μ(·|(bo,Y )) 5
8

3
8

Hence,

V (β,μ | (bo,Y )) ∼= 0.3207 <
1

3
,

where 1/3 is the value of betting on black.
This is a typical example of dynamically-inconsistent preferences. At period 0, for sufficiently 

small ε, the DM would want to commit to conditioning his behavior on the observed draw. In 
particular, he would like to choose y if the draw in the first period is Y , that is, after history 
(bo, Y). Indeed, even if betting on yellow leads to ambiguous consequences, the DM is confident 
that with high probability, if θ̂G is the true model, Y will not be the first-period draw. Therefore, 
even under model θ̂G, this strategy presents a moderately high expected value. However, after 
having observed (bo, Y), even if the posterior probability of θ̂G is lower, the DM considers the 
consequences of choosing action y to be too ambiguous. Indeed, the expected value under model 
θ̂G, 1/4, is quite small. Therefore, since the DM is highly ambiguity averse, he will select b.

Moreover, it can be shown that the strategy “always bet on black” has a lower ex-ante value, 
(1 + δ)/3, but satisfies the one-deviation property. A sophisticated DM will not pay the cost ε
anticipating that he will not condition his behavior on the observed outcome, even if this condi-
tioning is ex-ante optimal. �

4.1. Stationary strategies

A strategy α is stationary if, given the prior μ, it depends on history only through the induced 
posterior belief; that is, for all t, t ′ ∈ N and for every two histories ht ∈ Ht , h′

t ′ ∈ Ht ′ such that 
pμ(I (ht )) and pμ(I

(
h′

t ′
)
) are strictly positive:

22 Note that this is not a proper strategy since it does not assign an action to every information history. In particular, it 
does not assign an action to personal histories ruled out by the strategy itself. However, the specification of the actions 
selected at those information histories is irrelevant in determining ex-ante optimality.
23 We refer to the working paper version for the computations used to obtain formulas in the examples.
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μ(·|ht ) = μ(·|h′
t ′) ⇒ α(ht ) = α(h′

t ′).

Note that stationarity is a property of the pair (α, μ) of strategy and prior.
The following result, obtained using a coupling argument, shows that when the DM uses a 

stationary strategy, the function V depends on the history only through belief updating.

Lemma 4. For all α and μ satisfying stationarity, if ht and h′
t ′ are two histories such that 

pμ(I (ht )) and pμ

(
I
(
h′

t ′
))

are strictly positive, then μ(· | ht ) = μ(· | h′
t ′) implies V (α,μ|ht ) =

V
(
α,μ|h′

t ′
)
.

Under ambiguity neutrality, Hinderer (1970)24 proves the existence of an optimal stationary 
strategy for arbitrary beliefs. Therefore, it is without loss of generality to focus on stationary 
strategies. We cannot adopt this approach “as is” because it relies on a notion of global optimality 
that may violate incentive compatibility under dynamically inconsistent preferences, as shown 
in Example 5. However, Proposition 2 in the next section provides a partially analogous result 
for the notion of rationality (intra-personal equilibrium) used in this paper. Given this result, we 
focus on stationary strategies in the sequel. Therefore, with an abuse of notation, we will often 
regard α as a function of beliefs over probability models.25 More precisely, given prior μ, we 
call belief-range of μ the set of beliefs that the DM may hold with positive probability under pμ:{

μ(·|ht ) : t ∈ N, ht ∈ Ht,pμ (I (ht )) > 0
}

.

Then for all ν = μ (·|ht ) in the belief range of μ, α (ν) is defined as:

α (ν) = α (ht ) .

5. Self-confirming equilibrium and learning

5.1. Self-confirming equilibrium

A self-confirming equilibrium (SCE) is a state in which the DM chooses a subjectively op-
timal action according to the static smooth criterion and, given this choice, his posterior belief 
coincides with his prior belief. Formally:

Definition 2. A triple (a∗, μ∗, θ̄ ) ∈ A × �(�) × � is a self-confirming equilibrium (SCE) if:

(i) μ∗ ({θ ∈ � : F (a∗, θ) = F
(
a∗, θ̄

)})= 1;
(ii) a∗ ∈ arg maxa∈A V̄ (a,μ∗).

We say that a∗ is an SCE action if it is part of an SCE (a∗, μ∗, θ̄ ), and that a∗ is a Nash 
equilibrium action if a∗ ∈ arg maxa∈A R

(
a, θ̄

)
.

The second condition says that a∗ is a (myopic, or one-period) best response to μ∗ given the 
ambiguity attitude determined by φ. The first condition is a self-confirming property adapted to 

24 Building on the results of Dynkin (1965).
25 We refer the interested reader to the working paper version for more general results for non-stationary strategies in a 
non i.i.d. setting.
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the static framework. It is equivalent to requiring that, θ̄ -a.s., μ∗ (·|a∗, f (a∗, s)) = μ∗(·), because 
all models in the support of μ∗ yield the same distribution of outcomes as the true model θ̄ given 
action a∗. We can interpret this condition as follows. The distribution of outcomes that the DM 
“observes” in the long run if he always plays a∗ is precisely what he expects it to be. In this sense, 
a∗ is unambiguous for μ∗; since payoffs are observable, the self-confirming property implies that 
the expected distribution of payoffs coincides with the one implied by the true model θ̄ .

Remark 1. If (a∗, μ∗, θ̄ ) is an SCE, R (a∗, θ) =EF(a∗,θ) [ua∗ ] is constant over suppμ∗. �

5.2. Rational learning dynamics

When the DM faces a recurrent choice problem, the notion of SCE characterizes behavior and 
beliefs after the latter have “converged.” In other words, the data provided by the equilibrium 
strategy do not lead to any further updating because the models that the DM deems possible in 
an SCE cannot be distinguished from each other or from the true model.

In dynamic settings, we are interested not only in behavior after beliefs have reached a steady 
state, but also in rational behavior as the DM is learning from the data. To define our notion of 
rationality, we introduce the following notation. For any information history ht and action a, let 
α/(ht , a) denote the continuation strategy that selects a at ht and behaves as α thereafter.26

Definition 3. A pair (α,μ) is rational if it satisfies stationarity and if

∀t ∈ N,∀ht ∈ Ht,∀a ∈ A pμ(I (ht )) > 0 ⇒ V (α,μ | ht ) ≥ V (α/(ht , a),μ | ht ) .

Besides stationarity, this condition is the one-deviation property, which says that—for every 
information history ht that the DM deems reachable with positive probability—action α(μ(· |
ht )) maximizes the continuation value conditional on ht given that α is expected to apply in the 
future. The motivation is the following: Strategy α is a plan formulated by a sophisticated DM 
who understands his sequential incentives. In each period t , the DM only controls the action in 
that period, and therefore we require that he maximizes his value with respect to what he can 
control, given the predicted behavior of his “future selves,” i.e., his continuation strategy. If the 
time horizon is finite, then this condition is equivalent to folding-back planning: In all periods, the 
DM predicts to behave in the last period according to his last-period contingent incentives; given 
such last-period prediction, the DM predicts to behave in the second-to-last period according to 
his second-to-last period contingent incentives, and so on. When the DM is ambiguity neutral, the 
one-deviation principle implies that if (α,μ) is rational, then strategy α is subjectively optimal 
given μ.

A strategy α is said to be rational given μ if the pair (α,μ) is rational. The proposition below 
establishes the existence of rational strategies given any prior.

Proposition 2. For every prior μ there exists a strategy α that is rational given μ.

We illustrate the concept of rationality in our running example.

26 Formally, the value function maps strategies into real numbers. However, we have already pointed out that the value 
at a history ht depends only on the continuation of the posited strategy. Therefore, the expression V (α/(ht , a),μ | ht ) is 
well defined.
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Example 6 (Act III). We normalize payoffs as u (a,0) = 0 and u (a,1) = 1. Outcomes are thus 
the bets’ payoffs. Moreover, we assume that φ (u) = −e−λu, so that higher (absolute) ambiguity 
aversion corresponds to higher λ (see Klibanoff et al., 2005).

Suppose that the DM features the prior μ presented in Act II. We consider the same strategies 
αNE and αE analyzed there. The former strategy involves no experimentation as it recommends 
always betting on black, the color with the known proportion. Thus, the value of this strategy is 
independent of histories and beliefs, and it is given by27:

V (αNE,μ|ht ) =
1
3

1 − δ
.

The latter strategy recommends betting on y at t = 1 and then switching to b permanently if and 
only if this first bet is unsuccessful. If the DM chooses y, the outcomes are informative about the 
distribution, and he updates his belief. Recall by Act II that the DM has a uniform 3-point prior 
μ with suppμ = {

θY , θuni, θG
}
. If we denote μ (·|ht ) := (

μ
(
θuni |ht

)
,μ
(
θY |ht

)
,μ
(
θG|ht

))
, 

the posterior is:

μ(·| (y,1)) =
(

1

3
,

2

3
,0

)
if the outcome is 1 (success), and:

μ(·| (y,0)) =
(

1

3
,

1

6
,

1

2

)
otherwise.

After the first period, strategy αE recommends a fixed action. Thus, the continuation value is 
equal to 1

1−δ
times the single-period expected payoff. Specifically, for any history ht (t > 1) that 

induces belief μ (·|ht ), the continuation-value after a success in period 1 is

V (αE,μ|ht ) = φ−1
(
μ
(
θuni |ht

)
φ( 1

3 ) + μ
(
θY |ht

)
φ( 2

3 )
)

1 − δ
.

For the initial (empty) history, we have:

V (αE,μ|h1) = φ−1
(

1

3
φ(

1

3
) + 1

3
φ(

2

3
) + 1

3
φ(0)

)
+ δ

1 − δ
φ−1

(
1

3
φ

(
1

3

)
+ 1

3
φ

(
5

9

)
+ 1

3
φ

(
1

3

))
.

Two forces affect the option value of experimentation: ambiguity aversion (the higher the value 
of λ, the lower the value of experimentation) and patience (the higher the value of δ, the higher 
the value of experimentation). Given this, strategy αNE is preferred if either δ = 0 or λ is high 
enough given δ > 0; if so, the pair 

(
αNE,μ

)
is rational. As for strategy αE , if δ is sufficiently 

high and λ is low enough, e.g., λ = 1 and δ = 0.39, strategy αE satisfies the one-deviation 
property at 

(
a0,m0

)
. However, because of experimentation, we need to consider two different 

contingencies.

27 This holds only for histories allowed by the strategy, namely on path.
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1. If experimentation is successful (i.e., s1 = Y ), the DM learns that model θG is false and 
updates his belief from (1/3, 1/3, 1/3) to (1/3, 2/3, 0). Moreover, at every information 
history, Bayesian updating implies that the posterior will be of the form (1 − k, k, 0), with 
k ∈ (0, 1). At this point, the strategy recommends sticking to y. It can be checked that this 
recommendation is better than trying out b once before switching to y thereupon. In other 
words, it satisfies the one-deviation property: For all δ ∈ (0, 1) and all λ > 0, the value at an 
information history ht = ((y,1) , ...) with μ (·|ht ) = (1 − k, k, 0) satisfies:

V (αE,μ|ht ) = φ−1
(
(1 − k)φ(θuni(Y )) + kφ(θY (Y ))

)
1 − δ

= φ−1
(
(1 − k)φ( 1

3 ) + kφ( 2
3 )
)

1 − δ

>
1

3
+ δ

φ−1
(
(1 − k)φ( 1

3 ) + kφ( 2
3 )
)

1 − δ

= V (αE/(ht , b),μ|ht ).

2. If experimentation is unsuccessful (i.e., s1 ∈ {B, G}), the posterior lowers the weight of 
model θY relative to models θuni and θG, so that pμ (Y | (y,0)) < pμ (B | (y,0)) = 1/3. 
Thereupon, strategy αE recommends switching (and sticking) to black, so that the continu-
ation value is the same as that under αNE . Moreover, since betting on black does not lead 
to any further updating, it is enough to check the inequality with second-period beliefs. For 
sufficiently small δ, or for sufficiently high λ,

V (αE,μ|h2) = 1

3

1

1 − δ
> V

(
αE/(h1, y),μ|h1

)
.

In particular, this inequality holds with λ = 1 and δ = 0.39, and we have already argued 
that 

(
αE,μ

)
satisfies the one-deviation property at the initial history; therefore, 

(
αE,μ

)
is 

rational. �

5.3. Convergence to SCE

We are interested in studying the limit behavior of a rational DM. In particular, we investigate 
the conditions that imply convergence to SCE. Building on Lemma 2, we provide a learning 
foundation to the SCE concept of BCMM.

The stochastic process of actions and beliefs 
(
aα
t ,μ

(·|hα
t

))
converges to an SCE if, for 

θ̄ -almost every s∞, beliefs converge to a limit μα
s∞ and there exists a finite time t such 

that (aα
τ (sτ−1), μα

s∞ , θ̄ ) forms an SCE for all τ ≥ t . Note that the tail sequence of actions 
(aα

τ (sτ−1))τ≥t is not required to be constant, but each action in the tail is a one-period best 
reply to the limit belief, which is confirmed given said action.

Proposition 3. Assume that (α, μ) is rational. If (α, μ, θ̄ ) is eventually consistent, then the 
stochastic process of actions and beliefs 

(
aα
t ,μ

(·|hα
t

))
converges to an SCE.

The intuition is as follows. Since the action set A is finite, after a certain amount of time, every 
action chosen by α is played infinitely often. Under the stated assumptions, beliefs converge 
almost surely to a random limit μα

s∞ . Thus, each action chosen by α in the long run must be a 
myopic best reply to the limit belief. This holds because the updated beliefs converge and the 
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value of experimentation vanishes for actions played infinitely often. Proposition 1 implies that, 
for θ̄ -almost every s∞, the limit belief μα

s∞ assigns probability 1 to the models that induce the 
same probabilities over consequences as θ̄ given the actions played in the long run. Therefore, 
for every action a∗ chosen by α in the long run, (a∗, μα

s∞, θ̄ ) must be an SCE.
As noted above, the realized sequence of actions 

(
aα
t (st−1)

)
need not converge unless there 

is a unique myopic best reply to the limit belief μα
s∞ . If the myopic best reply is a unique action 

a∗, the action sequence 
(
aα
t (st−1)

)
is eventually constant at a∗ and 

(
a∗,μα

s∞ , θ̄
)

is an SCE. 
Moreover, after a finite time, the agent chooses an action that maximizes the one-period value 
given the current belief (and not only limit one); that is, exploration (experimentation) becomes 
irrelevant, all that matters is exploitation. Formally:

Proposition 4. Assume that (α, μ) is rational and that 
(
aα
t ,μ

(·|hα
t

))
converges to an SCE on 

path s∞. If:

arg max
a∈A

φ−1

⎛⎝ ∫
�

φ (R (a, θ))μα
s∞(dθ)

⎞⎠= {
a∗}

for some a∗ ∈ A, there exists some τ such that, for all t ≥ τ ,

aα
t (st−1) = a∗ ∈ arg max

a∈A
φ−1

⎛⎝ ∫
�

φ (R (a, θ))μ
(

dθ |hα
t

(
st−1

))⎞⎠ .

It is important to stress that this convergence implies neither that the limit belief is the Dirac 
measure supported by the correct model, nor that the limit action is the objective myopic best 
reply. However, the limit pairs of beliefs and actions almost surely satisfy the standard properties 
of stochastic limits in the (expected utility) stochastic control literature. Indeed, the realization (
a∗,μα

s∞
)

features the following:

• (Confirmed Beliefs): μα
s∞ assigns probability 1 to the models that are observationally equiv-

alent to the true θ given a∗ (see, Proposition 1);
• (Subjective Myopic Best Reply): Even if the discount factor is strictly positive, the agent 

maximizes his one-period value. That is, exploitation prevails over exploration.

In contrast, in a Nash equilibrium, beliefs are correct (i.e., μ = δθ̄ ) and the action played is an 
objective myopic best reply. A sufficient condition for convergence to an SCE where the action 
played is objectively optimal is to have own-action independence.

Corollary 3. Under own-action independence, if (α, μ, θ) is eventually consistent and (α,μ) is 
rational, then the stochastic action process 

(
aα
t

)
converges to a Nash equilibrium action.

Note that own-action independence guarantees convergence to a Nash equilibrium under ob-
servable payoffs, a maintained assumption in this work. If we relax this hypothesis, the stronger 
condition of perfect feedback is needed.

Our running example illustrates how the true model may remain unidentified in the limit.

Example 7 (Act IV). Consider the strategy αE of the previous acts. Again, recall that the DM 
has a uniform 3-point prior μ with suppμ = {

θY , θuni, θG
}
. In Act II, we show that (αE, μ, θ)
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is consistent from period 1, whereas, in Act III, we have proved that with parameters λ = 1 and 
δ = 0.39, (αE, μ) is rational. We can show how our convergence result obtains in this specific 
case. Suppose that θ = θY . By Lemma 2, beliefs converge. In particular:

μαE

s∞ =
(
μαE

s∞(θuni),μαE

s∞(θY ),μαE

s∞(θG)
)

=
{

( 1
3 , 1

6 , 1
2 ) if s1 ∈ {B,G} ,

(0,1,0) if s1 = Y.

If experimentation is unsuccessful, the posterior of μ lowers the weight of model θY relative 
to models θuni and θG; thereupon, strategy αE recommends switching (and sticking) to black, so 
there is no additional updating. On the other hand, if the experimentation is successful, strategy 
αE prescribes sticking to yellow thereupon, and then the correct model θY is asymptotically 
identified.

If s1 ∈ {B,G}, for every t > 1,

aαE

t (st−1) = b,

and (b, (1/3, 1/6, 1/2), θY ) is the SCE that obtains in the limit. Note that in this case the DM 
will end up choosing an objectively sub-optimal action.

If s1 = Y ,

aαE

t (st−1) = y,

for every t > 1, and (y, (0, 1, 0), θY ) is the SCE that obtains in the limit. It is immediate to 
see that these actions maximize one-period value for limit beliefs and that the distribution of 
probabilities over outcomes confirms them.

Finally, consider strategy αNE . In Act III, we argue that 
(
αNE,μ

)
is rational if the DM is suf-

ficiently ambiguity averse. In this case, regardless of the correct model θ̄ ∈ � = {
θ Y, θ uni, θ G

}
, 

we have almost sure convergence to an SCE from period 1. Indeed, the DM sticks to black 
from the first period onwards, and black is the myopic best reply to the confirmed prior 
μ = (1/3,1/3,1/3). However, note that if the correct model is θ Y, betting on black is objec-
tively sub-optimal. �

6. Comparative dynamics for changes in ambiguity aversion

6.1. Certainty traps: the general case

Act III of our running example suggests that as ambiguity aversion increases, experimentation 
becomes less attractive. In this section we formalize this intuition. Actions that induce the same 
probabilities of payoffs under all the models that the DM deems possible are appealing under 
ambiguity aversion, but generate no new information about the underlying probability model. To 
obtain evidence on the correct model, the DM has to choose an action that will potentially induce 
a different probability measure over payoffs under the different models he deems possible—that 
is, he has to experiment. An ambiguity averse DM is inclined to avoid such ambiguous actions.

Fix an arbitrary belief ν; we say that action a is ν-unambiguous if F (a, θ) = F
(
a, θ ′) for 

every θ, θ ′ ∈ suppν. In words, an action a is unambiguous given the DM’s beliefs if all models 
entertained by the DM assign the same probabilities to outcomes given a. Otherwise, we say 
that a is ν-ambiguous. The next proposition shows that, if a strategy α is rational given μ for an 
ambiguity-neutral DM and prescribes unambiguous actions, then every strategy β that is rational 
given μ for a strictly ambiguity averse DM must also prescribe unambiguous actions. In other 
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words, if experimentation is not rational for an ambiguity neutral DM, then it cannot be rational 
for an ambiguity averse DM with the same beliefs. For notational simplicity, in this section we 
will assume that the utility function u is injective.

Proposition 5. Assume that (α,μ) is rational under ambiguity neutrality and (β,μ) is ratio-
nal under strict ambiguity aversion. For every belief ν in the belief-range of μ, if α (ν) is 
ν-unambiguous, then the same holds for β (ν).

In what follows, we restrict our attention to cases where there is a unique μ-ambiguous 
action.28 Although this assumption is restrictive, it encompasses interesting stochastic control 
problems such as two-armed bandits with a safe arm. Moreover, this restriction parallels the one 
needed for important comparative statics results in the case of choice under risk.29

The next proposition establishes that, given a prior μ, the sequence of actions and posteri-
ors induced by a strategy β that is rational under strict ambiguity aversion will almost surely 
converge faster to an SCE (given the true model) than the sequence of actions and posterior be-
liefs corresponding to a strategy α that is rational under ambiguity neutrality. The intuition is 
as follows. Under the stated assumptions, the decision problem amounts to deciding how long 
to experiment, choosing the unique ambiguous action, say a∗. Assuming that convergence oc-
curs, there are two possibilities: Either the DM never stops experimenting, or he stops at some 
finite time t , choosing the best unambiguous action thereafter. In the first case, convergence to an 
SCE occurs (typically) at infinity. In the second case, it occurs at the stopping time. By Propo-
sition 5, if an ambiguity neutral DM prefers to stop at time t , then a strictly ambiguity averse 
DM prefers to stop as well. Alternatively, if an ambiguity neutral DM chooses a∗ forever, an 
ambiguity averse DM either does the same, or starts choosing the best unambiguous action from 
some period t onwards and is henceforth “trapped” in a self-confirming equilibrium.

Proposition 6. Assume that (i) there is a unique μ-ambiguous action a∗, (ii) (α,μ) is ratio-
nal under ambiguity neutrality and (β,μ) is rational under strict ambiguity aversion, and (iii) (
α,μ, θ̄

)
is eventually consistent. Then, θ̄ -a.s., the action-belief process (β(μ(·|hβ

t )), μ(·|hβ
t ))

converges to an SCE at least as fast as the action-belief process 
(
α
(
μ
(·|hα

t

))
,μ
(·|hα

t

))
.

The next proposition shows that an ambiguity averse DM is less likely than an ambiguity 
neutral DM to eventually play the Nash equilibrium (i.e., objectively optimal) action.

Proposition 7. Assume that (i) there is a unique μ-ambiguous action a∗, (ii) (α,μ) and (β,μ)

are, respectively, rational under ambiguity neutrality and strict ambiguity aversion, and (iii) (
α,μ, θ̄

)
and 

(
β,μ, θ̄

)
are eventually consistent. Then, θ̄ -a.s., if 

(
aβ
t

)
converges to a Nash Equi-

librium action, so does 
(
aα
t

)
.

We illustrate the previous results in the classical setup introduced by Rothschild (1974) where 
a monopolist trades-off exploration of the demand curve for his good against exploitation using 
the price that (subjectively)-maximizes one period profit.

28 We refer to Battigalli et al. (2019) for an in-depth analysis of the role of this assumption.
29 Specifically, the seminal contribution by Arrow (1971) shows that, when there is a unique risky asset, the amount 
invested in such an asset is decreasing in the risk aversion of the DM. Additional reasons to focus on this case are 
provided by Proposition 8.
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Example 8. A monopolist who is uncertain about the demand for its product faces a new cus-
tomer each period. The cost of producing a unit is c > 0. The monopolist can charge either a low 
price, pL, or a high price, pH , where pH > pL > c ≥ 0. Each new customer has a reservation 
price in {pH ,pL,0}, and he buys the product if and only if his reservation price is weakly larger 
than the ask price. If the price is set to pi and a sale is made, the monopolist’s profit is pi −c; oth-
erwise, the profit is 0. Thus, we are considering build-to-order production. Here, A = {pL, pH }, 
M = {0, 1}, S = {pH ,pL,0},

f (a, s) =
{

1 a ≤ s,

0 a > s,

and:

Payoff u(p,m) m = 1 m = 0
p = pL pL − c 0
p = pH pH − c 0

Suppose that according to his prior μ, the monopolist believes that θ = (θ (pH ) , θ (pL) , θ (0))

is either θ1 := (0.8, 0.1, 0.1), or θ2 := (0, 0.9, 0.1), and that these two models are equally likely. 
Here, the monopolist is certain that if he posts the low price he sells with probability 0.9, but he 
is uncertain about the selling probability at a high price, which is—therefore—a μ-ambiguous 
action.

Moreover, suppose that the correct model is θ1 and that 0.9(pL − c) < 0.8(pH − c). Our 
previous results imply that an ambiguity averse monopolist will stop experimentation with the 
high price earlier and that he will be more likely to be trapped in the (objectively) suboptimal 
SCE where he posts the low price (the μ-unambiguous action). �

At first sight, the previous results may seem surprising. Indeed, if a DM is ambiguity averse, 
why does he not experiment more, so as to eliminate (or reduce) the uncertainty about the true 
model? This reasoning tacitly relies on a different notion of experimentation. It is true that, typ-
ically, an ambiguity averse DM is willing to pay more to eliminate model uncertainty (see e.g., 
Theorem 2 in Anderson, 2012). However, in our active-learning setting, the DM cannot simply 
buy information about the true model; learning happens only when actions with ambiguous prob-
abilities of consequences are chosen. Since an ambiguity averse DM dislikes those actions, he 
will end up resolving less ambiguity than his ambiguity neutral counterpart.

The results above relate to the findings in Anderson (2012). On the theoretical side, his The-
orem 1 for two-armed bandits with a safe arm strictly relates to our Proposition 5. The main 
difference is that Anderson (2012) implicitly assumes the possibility to commit to a strategy. 
Indeed, the Gittins indices used in that paper characterize the ex-ante optimal strategy for a deci-
sion maker, that is, the strategy that maximizes the value at the initial history. However, like us, 
he assumes the DM performs Bayesian updating, a feature that paired with ambiguity aversion 
induces dynamically inconsistent preferences.

On the experimental side, the theoretical predictions of our model are consistent with the 
findings presented in Anderson (2012): The behavior of a Subjective Expected Utility maxi-
mizer cannot explain joint data about willingness to pay for information about the stochastic 
process characterizing the ambiguous arm and the amount of experimentation that is performed. 
In particular, the resulting experimentation is too low, which is the prediction of our model under 
ambiguity aversion.
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Another reason to focus on the case of a unique ambiguous action is to illustrate how our 
analysis adds to BCMM. Indeed, the following proposition shows that, when there is a unique 
ambiguous action, the set of SCE actions is invariant with respect to the (positive) degree of 
ambiguity aversion captured by the (concave) function φ. Yet, as Propositions 6 and 7 show, am-
biguity aversion has “dynamic” effects on the persistence of experimentation and the distribution 
of long-run outcomes.

Proposition 8. Assume that there is a unique μ-ambiguous action a∗. For every concave and 
strictly increasing φ, φ′ and every action ā, if 

(
ā,μ, θ̄

)
is an SCE under ambiguity attitudes φ, 

then, for some belief μ′, 
(
ā,μ′, θ̄

)
is an SCE under ambiguity attitudes φ′.

Our running example illustrates. As the unique ambiguous action is to bet on yellow, Propo-
sition 8 implies that the monotonicity result of BCMM (that the SCE set is weakly increasing in 
the degree of ambiguity aversion) holds vacuously: The set of equilibrium actions is not affected 
by ambiguity attitudes. Nonetheless, if the true model is θY , the example shows that beliefs con-
verge to the true model with positive probability under ambiguity neutrality, while the process of 
actions and beliefs is trapped in a non-Nash SCE under ambiguity aversion.

The next example illustrates the relevance of the assumption of a unique ambiguous action.

Example 9 (Multiple ambiguous actions). There are four possible states, S = {
g, ḡ, b, b̄

}
, and 

two possible models in �, the good model θg and the bad model θb defined as follows:

θg (g) = 0.9 = θb (b) and θg (ḡ) = 0.1 = θb

(
b̄
)

.

The DM has three actions: He can bet aggressively (action a), bet conservatively (action c), or 
not bet at all (action n). The feedback received by the DM is his monetary payoff. We also assume 
risk-neutrality: For all ā ∈ A, m ∈ M , u (a,m) = m. Feedback and payoffs are summarized in 
the following table:

f g ḡ b b̄

a 10 0 0 10
c 5 5 4 4
n 4.2 4.2 4.2 4.2

Therefore,

R
(
a, θg

)= 9, R (a, θb) = 1, R
(
c, θg

)= 5 and R (c, θb) = 4.

For simplicity, suppose δ = 0 and μ 
(
θg

) = μ (θb) = 1/2. In this case, in the first period, an 
ambiguity neutral DM bets aggressively (a):

R
(
a, θg

)+ R (a, θb)

2
= 5 > 4.5 = R

(
c, θg

)+ R (c, θb)

2
.

Similarly, one can check that a DM with intermediate ambiguity attitudes (i.e., λ = 1) and with 
the same belief μ bets conservatively. Now, suppose that the true model is θg. First note that, 
since c perfectly reveals the model, the ambiguity averse DM discovers the true model at the 
end of the first period and starts to bet aggressively from the second period. In other words, 
convergence to Nash equilibrium (since a is the objectively optimal action under θg) happens in 
one period and with probability 1. Now, consider the ambiguity neutral DM. He bets on a in the 
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first period, and with probability 0.1 = θg (ḡ) he receives message m = 0 and updates his beliefs 
to:

μ
(
θg| (a,0)

)= 0.1.

With this, from the second period onwards, he stops betting (i.e., he chooses n) and remains in 
the dark. Thus, there is at least probability 0.1 that the ambiguity neutral DM will be trapped in 
a non-Nash SCE. �

In this example there is a misalignment between the most informative action (c) and the most 
ambiguous one (a). Therefore, by avoiding the most ambiguous action, an ambiguity averse DM 
quickly gathers information about the true model. We believe that this kind of misalignment is 
unlikely to arise in applications. Still, we conjecture that the results of this section can be ex-
tended to the case of multiple ambiguous actions by first giving an adequate definition of an 
ambiguity order (see, e.g., Jewitt and Mukerji, 2017), and then imposing a condition of comono-
tonicity between informativeness and ambiguity of actions.30

6.2. Certainty traps: myopic decision makers

Sharper versions of our comparative dynamics results can be provided when the DM is my-
opic, i.e., when δ = 0. This follows from the fact that, in the present framework where each 
period consists of a one-stage decision problem, a myopic DM is not vulnerable to dynamic 
inconsistencies. Despite this simplification, the behavior over time of a myopic DM evolves in 
interesting ways as he gathers information about the true stochastic process. Indeed, several mod-
els of learning in games use the assumption of myopic players (see, e.g., Fudenberg and Kreps, 
1995, and Fudenberg and Levine, 1998). We show that when the DM is myopic our comparative 
statics results hold for the entire spectrum of ambiguity attitudes.

For the rest of this section, we assume that the value is given by:

V (α,μ | ht ) := φ−1

⎛⎝ ∫
�

φ (R (α (hτ ) , θ))μ (dθ | ht )

⎞⎠ .

We let φ′ be a strictly increasing and concave transformation of φ, i.e., we assume that the 
DM with ambiguity attitudes φ′ is strictly more ambiguity averse than the one with ambiguity 
attitudes φ.

Proposition 9. Let (α,μ) be rational under ambiguity attitudes φ and let (β,μ) be ratio-
nal under ambiguity attitudes φ′. Then, for every belief ν in the belief-range of μ, if α (ν) is 
ν-unambiguous, the same holds for β (ν).

Similarly, the speed of convergence to the SCE is monotone for the entire spectrum of ambi-
guity attitudes.

Proposition 10. Assume that there is a unique μ-ambiguous action a∗; let (α,μ) be rational 
under ambiguity attitudes φ and let (β,μ) be rational under ambiguity attitudes φ′; further-
more, assume that 

(
α,μ, θ̄

)
is eventually consistent. Then, θ̄ -a.s., the action-belief process 

30 We can prove this for the case of a myopic DM (δ = 0).
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(
β
(
μ
(
·|hβ

t

))
,μ
(
·|hβ

t

))
converges to an SCE at least as fast as the action-belief process (

α
(
μ
(·|hα

t

))
,μ
(·|hα

t

))
.

As a consequence, the probability of converging to a Nash equilibrium is decreasing in ambi-
guity aversion as well.

Proposition 11. Assume that there is a unique μ-ambiguous action a∗. Let (α,μ) and (β,μ)

be rational under ambiguity attitudes φ and φ′, respectively, and let 
(
α,μ, θ̄

)
and 

(
β,μ, θ̄

)
be 

eventually consistent. Then, θ̄ -a.s., if 
(

aβ
t

)
converges to a Nash Equilibrium action, so does 

(
aα
t

)
.

7. Concluding remarks

The concept of self-confirming equilibrium with standard expected utility maximizing agents 
has been given a rigorous learning foundation. We note that the literature on stochastic control 
problems implicitly addresses this issue, showing that the behavior and beliefs of an ambiguity 
neutral agent, who faces an unknown i.i.d. process of states affecting the outcome of his ac-
tions, almost surely converges to what we call an SCE.31 As for games against other agents, 
convergence cannot be taken for granted; but if it occurs, the limit point must be an SCE (e.g., 
Fudenberg and Levine, 1993, and Fudenberg and Kreps, 1995).

This learning foundation cannot be mechanically applied to the case of non-neutral ambigu-
ity attitudes. Ambiguity averse agents typically have dynamically inconsistent preferences over 
strategies, and dynamic inconsistency prevents us from applying standard dynamic programming 
techniques. Given such difficulties, to derive results and insights about convergence to SCE under 
ambiguity aversion, we focus on the case of repeated play against nature, assuming that the de-
cision maker is sophisticated and thus takes future incentives into account as he chooses actions 
in earlier periods. With this, we obtain a result of convergence to SCE under ambiguity aversion 
(Proposition 3).

We point out that, in several interesting problems, the set of SCE actions is independent of 
ambiguity attitudes (Proposition 8). Yet, ambiguity aversion affects the dynamics: Higher am-
biguity aversion tends to decrease experimentation and therefore makes convergence to Nash 
equilibrium (best reply to the correct model) less likely. In particular, we show that ambiguity 
aversion may make it more likely that the agent falls into a suboptimal “certainty trap” whereby 
he keeps choosing an unambiguous action from which he cannot learn, which leads him to settle 
faster and prevents him from identifying the objectively optimal action (Propositions 5 through 
11).

The adoption of the smooth ambiguity model allows us to separate ambiguity attitudes, a per-
sonal feature of the DM, from the perception of ambiguity, which depends on his beliefs about 
statistical models and therefore changes as new evidence accumulates. We model the process of 
updating such beliefs in a standard Bayesian fashion, as we regard the chain rule, hence Bayesian 
updating, as part or rational cognition (cf. Section 3 and Battigalli et al., 2019). Yet, the decision-
theoretic literature does not take a clear stand on whether ambiguity averse players should update 
beliefs according to the standard rules of conditional probabilities (see, for example, Epstein and 
Schneider, 2007; Hanany and Klibanoff, 2009). We remark that one may conduct an analysis 

31 See Easley and Kiefer (1988) and Section 5 of the working paper version of this article for a detailed analysis of the 
connection with their work.
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similar to ours by considering a DM who uses the Hanany and Klibanoff (2009) updating rule 
for beliefs. In particular, we can prove that every SCE is stable according to their updating rule. 
Therefore, the main message of Section 6 that “ambiguity aversion makes convergence to a non-
Nash equilibrium more likely” still holds.32

We can give a game-theoretic interpretation of our analysis within a population-game sce-
nario. In this setting, the DM recognizes to be unable to influence the actions of future co-players. 
Nevertheless, experimentation is valuable for him, since a better understanding of the correct dis-
tribution of behaviors in co-players’ populations may allow him to select a better strategy in the 
following periods. Fudenberg and Levine (1993) put forward a model of this kind. The main dif-
ference with their work is that they consider an overlapping generations model with finitely lived 
agents. Since we assume an infinite horizon, we have to slightly modify our model by introduc-
ing a constant probability of death to embed our analysis in an overlapping generations model, 
as in Fudenberg and He (2018).33
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Appendix A. Proofs and related material

For our proofs, it is often convenient to use the notation R (a, θ) =∑
s∈S r (a, s) θ (s), where 

r : A × S →R is the payoff (or reward) function r (a, s) := (ua ◦ fa) (s).

Lemma 5. If we endow � (�) with the topology of weak convergence of measures then, for every 
a ∈ A, the functional V̄ (a, ·) is continuous.

Proof. Note that R (a, ·) is a bounded function, since |R (a, ·) | ≤ maxs∈S |r (a, s) |. More-
over, it is an affine function on a finite dimensional space, so it is continuous. Thus, ∫
�

φ (R (a, θ)) (·) (dθ) is continuous. Since φ is strictly increasing and continuous on the in-
terval[

min
s∈S

r (a, s) ,max
s∈S

r (a, s)

]
,

φ−1 is continuous as well. Since V̄ (a, ·) = φ−1 ◦ ∫
�

φ (R (a, θ)) (·) (dθ), the result follows. �
A.1. Models and learning

Instrumental for the following proofs is the correspondence ιαt : St−1 → σ(hα
t ) defined by:

ιαt

(
st−1

)
:= I

(
hα

t

(
st−1

))
× S∞ =

{
s̄∞ ∈ S∞ : hα

t

(
s̄t−1

)
= hα

t

(
st−1

)}
. (6)

32 A formal statement and proof are available by request.
33 See also Blanchard (1985).
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We can regard ιαt as the identification correspondence determined by α at time t . This corre-
spondence models the information about state histories which is available ex-ante at time t to 
a DM who is acting according to strategy α. Clearly, st−1 × S∞ ∈ ιαt

(
st−1

)
, and so the cor-

respondence induces a partition of St−1. We have perfect (state) identification under α when 
ιαt
(
st−1

) = {
st−1

}× S∞ for each st−1 and each t > 1; in this case, the DM knows the actual 
past history st−1. Otherwise, we have partial identification. This dependence on α of the identi-
fication correspondence plays a key role in our results. Of course, there is no such dependence 
under own-action independence of feedback, in which case we can write ιt

(
st−1

)
; in particular, 

under perfect feedback, ιt
(
st−1

)= {
st−1

}× S∞.

Proof of Lemma 1. Fix st with pθ̄

(
st
)

> 0. Note that st ∈ ιαt+1

(
st
) ⊆ ιαt

(
st−1

)
; thus,

pθ̄

(
ιαt
(
st−1

)) ≥ pθ̄

(
ιαt+1

(
st
)) ≥ pθ̄

(
st
)

> 0. Let θ ∈ �
α,μ
t (s∞); By definition θ ∈

suppμ 
(· | hα

t

(
st−1

))
, and so pθ

(
ιαt
(
st−1

))
> 0. We want to show that θ ∈ �

α,μ
t+1 (s∞). To this 

end, notice that if E ∩ ιαt+1

(
st
)=∅, pα

θ

(
E | hα

t+1

(
st
))= pα

θ̄

(
E | hα

t+1

(
st
))= 0. Therefore, it is 

enough to show that pα
θ

(· | hα
t+1

(
st
))= pα

θ̄

(· | hα
t+1

(
st
))

for E ∈ σ(hα) with E ⊆ ιαt+1

(
st
)
. Fix 

such an E. Since θ ∈ �
α,μ
t (s∞), then:

pθ (E)

pθ

(
ιαt
(
st−1

)) = pθ̄ (E)

pθ̄

(
ιαt
(
st−1

)) ; pθ

(
ιαt+1

(
st
))

pθ

(
ιαt
(
st−1

)) = pθ̄

(
ιαt+1

(
st
))

pθ̄

(
ιαt
(
st−1

)) .
The second equality implies pθ

(
ιαt+1

(
st
))

> 0. Since:

pθ (E)

pθ

(
ιαt+1(s

t )
) pθ

(
ιαt+1(s

t )
)

pθ

(
ιαt (st−1)

) = pθ̄ (E)

pθ̄

(
ιαt+1(s

t )
) pθ̄

(
ιαt+1(s

t )
)

pθ̄

(
ιαt (st−1)

) ,
it follows that:

pα
θ

(
E | hα

t+1

(
st
))= pθ (E)

pθ

(
ιαt+1(s

t )
) = pθ̄ (E)

pθ̄

(
ιαt+1(s

t )
) = pα

θ̄

(
E | hα

t+1

(
st
))

.

Hence, pα
θ

(· | hα
t+1

(
st
))= pα

θ̄

(· | hα
t+1

(
st
))

. Since θ ∈ suppμ 
(· | hα

t

(
st−1

))
and

pθ

(
ιαt+1

(
st
))

> 0, it follows that θ ∈ suppμ 
(· | hα

t+1

(
st
))

, hence θ ∈ �
α,μ
t+1(s

∞). �
Lemma 6. For every θ̂ ∈ �, the process 

(
μ
(
θ̂ |hα

t

))
is a uniformly bounded martingale in 

(S∞, B (S∞) , pμ).

Proof. Uniform boundedness is immediate from the fact that the process is [0,1]-valued. For 

every t , we want to show that, for all k ∈ R such that pμ

(
[μ
(
θ̂ |hα

t−1

)
= k]

)
> 0 we have:

Epμ

[
μ
(
θ̂ |hα

t

) ∣∣∣μ(θ̂ |hα
t−1

)
= k

]
= k.

Let ht−1 be an arbitrary element of Ht−1 such that μ 
(
θ̂ |ht−1

)
= k and pμ (ht−1 ) > 0. By the 

Law of Iterated Expectations, it is enough to prove that:

Epμ

[
μ
(
θ̂ |hα

t

) ∣∣hα
t−1 = ht−1

]
= k.

Recall that the Bayes map yields:
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�(�) × A × M → �(�)

(μ,a,m) 
→ B (μ,a,m) (θ) = F (a, θ) (m)μ(θ)∑
θ ′∈supp μ F (a, θ ′) (m)μ(θ ′)

for each m deemed possible according to μ given action a, that is, each m such that the denomi-
nator is positive. Define:

M (ht−1 ) =

⎧⎪⎨⎪⎩m ∈ M :
∑

θ ′∈supp μ
(·|ht−1

)F
(
a, θ ′) (m)μ

(
θ ′|ht−1

)
> 0

⎫⎪⎬⎪⎭ .

With this,

Epμ

[
μ
(
θ̂
∣∣hα

t

) ∣∣hα
t−1 = ht−1

]
=

∑
m∈M

(
ht−1

)pμ

[
mα

t−1 = m|hα
t−1 = ht−1

]
B (μ(·|ht−1 ) , α (ht−1 ) ,m)

(
θ̂
)

=
∑

m∈M
(
ht−1

)
∑

θ∈supp μ

μ(θ)pθ

({
s∞ ∈ I (ht−1) : st ∈ f −1

α
(
ht−1

) (m)
})

∑
θ ′∈supp μ μ(θ ′)pθ ′ (I (ht−1))

× B (μ(·|ht−1 ) , α (ht−1 ) ,m)
(
θ̂
)

=
∑

m∈M
(
ht−1

)
∑

θ∈supp μ

μ(θ)pθ (I (ht−1))F (α (ht−1 ) , θ) (m)∑
θ ′∈supp μ μ(θ ′)pθ ′ (I (ht−1))

× B (μ(·|ht−1 ) , α (ht−1 ) ,m)
(
θ̂
)

=
∑

m∈M
(
ht−1

)
∑

θ∈supp μ

F (α (ht−1 ) , θ) (m)μ(θ |ht−1 )

×
kF

(
α (ht−1 ) , θ̂

)
(m)∑

θ ′ supp μ
(·|ht−1

)μ(θ ′|ht−1 )F (α (ht−1 ) , θ ′) (m)

=
∑

m∈M
(
ht−1

)kF
(
α (ht−1 ) , θ̂

)
(m)

∑
θ∈supp μ μ(θ |ht−1 )F (α (ht−1 ) , θ) (m)∑

θ ′ supp μ
(·|ht−1

)μ(θ ′|ht−1 )F (α (ht−1 ) , θ ′) (m)

=
∑

m∈M
(
ht−1

)kF
(
α (ht−1 ) , θ̂

)
(m) = k,

where the first equality comes from the definition of expected value, the second by the definition 
of pμ, the third from the fact that the environment is i.i.d., the fourth from the definition of Bayes 
map, and the fifth from rearranging the terms.

For the last equality notice that either μ 
(
θ̂ |ht−1

)
= k = 0, and the equality is trivial, or 

μ 
(
θ̂ |ht−1

)
> 0, and therefore m /∈ M (ht−1 ) implies that F

(
α (ht−1 ) , θ̂

)
(m) = 0. �

Lemma 7. For every θ̂ ∈ suppμ, the process 
(
μ
(·|hα

t

))
t∈N0

converges θ̂ -a.s. to a random limit 
μα∞ .
s
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Proof. By Lemma 6, the stochastic process 
(
μ
(·|hα

t

))
t∈N0

is a uniformly-bounded martingale 
in (S∞, B (S∞) , pμ). By the Martingale Convergence Theorem (Billingsley, 2012, Theorem 
35.5), the limit random variable μα

s∞ exists pμ-almost surely. This means that there exists a set 
E ∈ B(S∞) such that pμ(E) = 1, so pμ(S∞\E) = 0, and:

lim
t→+∞μ

(·|hα
t

(
s∞))= μα

s∞

for every s∞ ∈ E. Note that, since μ(θ̂) > 0,∑
θ∈supp μ

pθ (S
∞\E)μ(θ) = pμ(S∞\E) = 0

implies that pθ̂ (S
∞\E) = 0 and so pθ̂ (E) = 1. �

Proof of Lemma 2. Let T
(
α,μ, θ̄

) = T . If θ ∈ suppμ the result follows immediately from 
Lemma 7. If θ /∈ suppμ, by consistency the set O := {

s∞ : �α,μ
T (s∞) �= ∅} has pθ̄ -probability 

1. Define the set E∗ := {
s∞ : ∃ν ∈ �(�) : limt→+∞ μ

(·|hα
t (s∞)

)= ν
}
. For every s∞ ∈ O , 

we can find some θ(s∞) ∈ suppμ 
(·|hα

T

(
sT −1

))
such that pθ(A) = pθ(s∞)(A) for every 

A ∈ σ≥T

(
hα

T

(
sT −1

))
. Repeating the arguments of Lemmata 6 and 7 with the probability 

space 
(
I
(
hα

T

(
sT −1

))
, σ≥T

(
hα

T

(
sT −1

))
,μ
(·|hα

T

(
sT −1

)))
in place of (S∞,B (S∞) ,μ), and 

pθ(s∞)(·|hα
T

(
sT −1

)
) in place of p

θ̂
, we obtain that there exists a set E ∈ σ≥T

(
hα

T

(
sT −1

))
such 

that pθ(s∞)(E|hα
T

(
sT −1

)
) = 1, and:

∀s∞ ∈ E, ∃ν ∈ �(�) : lim
t→+∞μ

(·|hα
t

(
s∞))= ν.

Moreover,

pθ(E
∗|hα

T

(
sT −1

)
) ≥ pθ(E|hα

T

(
sT −1

)
) = pθ(s∞)(E|hα

T

(
sT −1

)
) = 1,

and therefore pθ(E
∗|hα

T

(
sT −1

)
) = 1. Since s∞ was an arbitrary element of the set O with 

pθ (O) = 1, by the Law of Iterated Expectations (see, e.g., 9.7i in Williams, 1991) pθ(E
∗) =

1. �
For every path s∞, denote by aα∞ (s∞) the set of actions played infinitely often (i.o.) under 

strategy α along this path. Also for every θ ∈ � let Eα

θ̂
denote the event that an action and a state 

that occur i.o. also occur jointly i.o. More formally,

Eα

θ̂
=
{
s∞ : ∀ (a, s̄) ∈ aα∞

(
s∞)× supp θ̂ ,

(
α
(
hα

t−1

(
s∞)) , st)= (a, s̄) i.o.

}
.

Lemma 8. For every θ̂ ∈ suppμ, we have p
θ̂
(Eα

θ̂
) = 1.

Proof. For every (a, s̄) ∈ aα∞ (s∞)× supp θ̂ , denote by E(a, s, n) ⊆ S∞ the set of sequences s∞
such that a ∈ aα∞ (s∞) but 

(
α
(
hα

t−1 (s∞)
)
, st
) �= (a, s̄) for every t ≥ n. We have:

S∞\Eα

θ̂
⊆

⋃
a∈aα∞(s∞)

⋃
s̄∈suppθ̂

⋃
n∈N

E(a, s, n).

In turn, for every k ∈ N ,
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E(a, s, n) ⊆
k⋂

j=1

{
s∞ : ∃sj ∈ S\{s}, tj ≥ n,

(
α
(

hα
tj −1

(
s∞)) , stj

)
= (

a, sj
)}

,

and so:

pθ̂ (E(a, s, n)) ≤ ×k
j=1pθ̂

({
s∞ : ∃sj ∈ S\{s}, tj ≥ n,

(
α
(

hα
tj −1

(
s∞)) , stj

)
= (

a, sj
)})

≤ ×k
j=1θ̂ (S\{s})

= (
θ̂ (S\{s}))k .

Since s̄ ∈ supp θ̂ , this inequality implies that pθ̂ (E(a, s, n)) = 0. It follows that pθ̂ (S
∞\Eα

θ̂
) = 0, 

or pθ̂ (E
α

θ̂
) = 1. �

Lemma 9. For every θ̂ ∈ suppμ, we have, θ̂ -a.s.,

∀a ∈ aα∞
(
s∞) , μα

s∞
({

θ ∈ � : F (a, θ) = F
(
a, θ̂

)})
= 1.

Proof. Fix any θ̂ ∈ suppμ. Let E be as in the proof of Lemma 7. Define the set E
α

θ̂ := E ∩ Eα
θ̂

, 

and fix a sample path s∞ ∈ E
α

θ̂ . Suppose by way of contradiction that there is some a ∈ aα∞ (s∞)

and some m ∈ M such that, for some θ ∈ suppμα
s∞ , we have F (a, θ) (m) �= F

(
a, θ̂

)
(m). 

This implies that, for any s ∈ f −1
a (m), we have B

(
μα

s∞, a, f (a, s)
) �= μα

s∞ ; thus, we can find 
some ε > 0 such that 

∥∥B (μα
s∞, a, f (a, s)

)− μα
s∞
∥∥ = 2ε. By continuity of the Bayes map at (

μα
s∞, a, f (a, s)

)
, there exists some δ > 0 such that 

∥∥μ (·|hα
t−1 (s∞)

)− μα
s∞
∥∥< δ implies34:∥∥B (μ (·|hα

t−1

(
s∞)) , a, f (a, s)

)− B
(
μα

s∞, a, f (a, s)
)∥∥< ε.

Therefore,

2ε = ∥∥B (μα
s∞, a, f (a, s)

)− μα
s∞
∥∥

≤ ∥∥B (μ (·|hα
t−1

(
s∞)) , a, f (a, s)

)− μα
s∞
∥∥

+∥∥B (μ (·|hα
t−1

(
s∞)) , a, f (a, s)

)− B
(
μα

s∞, a, f (a, s)
)∥∥

<
∥∥B (μ (·|hα

t−1

(
s∞)) , a, f (a, s)

)− μα
s∞
∥∥+ ε,

so 
∥∥B (μ (·|hα

t−1 (s∞)
)
, a, f (a, s)

)− μα
s∞
∥∥ > ε. Invoking Lemma 7 and since s∞ ∈ Eθ̂ , there 

exists a sequence of dates (tn)n∈N such that, for every n,(
α
(
hα

tn−1

(
s∞)) , stn)= (a, s̄) and

∥∥μ (·|hα
tn−1

(
s∞))− μα

s∞
∥∥< δ,

and so: ∥∥μ (·|hα
tn

(
s∞))− μα

s∞
∥∥

= ∥∥B (μ (·|hα
tn−1

(
s∞)) , α (hα

tn−1

(
s∞)) , f (α

(
hα

tn−1

(
s∞)) , stn))− μα

s∞
∥∥

= ∥∥B (μ (·|hα
tn−1

(
s∞)) , a, f (a, s)

)− μα
s∞
∥∥> ε.

34 Notice that the Bayes map is continuous at all (ν, a,m) such that 
∑

θ F (a, θ) (m)ν (θ) > 0. Since s∞ ∈ E
α
θ̂ , this is 

the case for 
(
μα∞ , a, f (a, s)

)
.

s
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This contradicts Lemma 7. Since by Lemmata 7 and 8 pθ̂

(
E

α

θ̂

)
= 1, the result follows. �

Proof of Proposition 1. The result is obtained from Lemma 9 using the same argument used to 
derive Lemma 2 from Lemma 7, replacing the set E∗ with:

E∗ := {
s∞ : ∀ā ∈ aα∞

(
s∞) ,μα

s∞
({

θ ∈ � : F (ā, θ) = F
(
ā, θ̄

)})= 1
}
.

Further details are omitted. �
Proof of Corollary 1. Since under perfect feedback

∀ā ∈ A
{
θ ∈ � : F (ā, θ) = F

(
ā, θ̄

)}= θ̄

and A is finite, the statement follows from Proposition 1. �
A.2. Value

In the rest of the Appendix, we will make use of the fact that the dependence on the state in 
the value can be made explicit. Indeed, by definition we have:∑

hτ ∈Hτ

R (α (hτ ) , θ)pθ

([
hα

τ = hτ

] |ht

)=
∑

sτ ∈Sτ

r
(

aα
τ

(
sτ−1

)
, sτ

)
pθ(s

τ |ht ),

so that the value function can be expressed as:

V (α,μ | ht ) =
∞∑

τ=t

δτ−t φ−1

⎛⎝∫
�

φ

(∑
sτ ∈Sτ

r
(

aα
τ

(
sτ−1

)
, sτ

)
pθ

(
sτ |ht

))
μ(dθ | ht )

⎞⎠ .

Proof of Lemma 3. It is immediate to see that the map:

Wt̄ : θ 
→ φ

⎛⎝∑
st̄∈St̄

r
(

aα
t̄

(
st̄−1

)
, st̄

)
pθ

(
st̄ | ht

)⎞⎠
is continuous and bounded by max(a,s)∈A×S |φ (r (a, s))|. Moreover, as argued in the proof 
of Lemma 5, φ−1 is continuous. Since the space of measures endowed with the topology of 
weak convergence is metrizable, it is enough to establish sequential continuity. By continuity of 
Bayesian updating with respect to positive probability events and pμ (I (ht )) > 0,

μn → μ ⇒ μn (· | ht ) → μ(· | ht ) .

Therefore, by definition of weak convergence of measures and continuity of Wt̄ and φ−1:

μn (· | ht ) → μ(· | ht ) ⇒ φ−1

⎛⎝ ∫
�

Wt̄ (θ)μn (dθ | ht )

⎞⎠→ φ−1

⎛⎝ ∫
�

Wt̄ (θ)μ (dθ | ht )

⎞⎠ .

Let ε > 0. Since δ < 1 and Wτ is bounded, there exists a T such that for every μ (· | ht ),∣∣∣∣∣∣
∞∑

τ=T

δτ−t φ−1

⎛⎝ ∫
Wτ (θ)μ (dθ | ht )

⎞⎠∣∣∣∣∣∣< ε.
�
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But then, let n be such that for every τ ≤ T ,

|φ−1 (Wt̄ (θ)μn (dθ | ht )) − φ−1 (Wt̄ (θ)μ (dθ | ht )) | < ε.

It follows that:

|V (α,μ | ht ) − V (α,μn | ht ) |

=
∣∣∣∣∣∣

∞∑
τ=t

δτ−t φ−1

⎛⎝∫
�

Wτ (θ)μ (dθ | ht )

⎞⎠−
∞∑

τ=t

δτ−t φ−1

⎛⎝∫
�

Wτ (θ)μn (dθ | ht )

⎞⎠∣∣∣∣∣∣
≤
∣∣∣∣∣∣

T∑
τ=t

δτ−t φ−1

⎛⎝∫
�

Wτ (θ)μ (dθ | ht )

⎞⎠−
T∑

τ=t

δτ−t φ−1

⎛⎝∫
�

Wτ (θ)μn (dθ | ht )

⎞⎠∣∣∣∣∣∣
+
∣∣∣∣∣∣

∞∑
τ=T +1

δτ−t φ−1

⎛⎝∫
�

Wτ (θ)μ (dθ | ht )

⎞⎠
−

∞∑
τ=T +1

δτ−t φ−1

⎛⎝∫
�

Wτ (θ)μn (dθ | ht )

⎞⎠∣∣∣∣∣∣
< (T + 2) ε.

Since ε has been chosen arbitrarily, the result is proved. �
Proof of Corollary 2. By Proposition 1 and Lemma 2, the set:

E∗ =
{
s∞ : ∃ν ∈ �(�) : lim

t→+∞μ
(·|hα

t

(
s∞))= ν, ν(

{
θ ∈ � : F (a, θ) = F

(
a, θ̄

)}
) = 1

}
has θ -probability 1. For each s∞ ∈ E∗, consider:

lim
t→∞V

(
α,μ | hα

t

(
s∞))= lim

t→∞

∞∑
τ=t

δτ−t φ−1

⎛⎝∫
�

Wτ (θ)μα
s∞ (dθ)

⎞⎠
= lim

t→∞V
(
α, δθ̄ | hα

t

(
s∞)) ,

where the first equality follows from Lemma 3, and the second equality follows from the defini-
tion of E∗. �
Proof of Lemma 4. First note that since pμ(I (ht )) and pμ(I

(
h′

t ′
)
) are strictly positive, then:

μ(θ)pθ

(
I
(
h′

t ′
))

pμ(I
(
h′

t ′
)
)

= μ(θ | h′
t ′) = μ(θ | ht ) = μ(θ)pθ (I (ht ))

pμ(I (ht ))
.

In particular,

μ(θ | h′
t ′) = μ(θ | ht ) > 0 ⇒ pθ (I (ht )) > 0, and pθ

(
I
(
h′

t ′
))

> 0.

That is, the models in the support of the μ(· | h′
t ′) = μ(· | ht ) assign positive probability to the 

two conditioning events. In turn, this implies that pθ(·|ht ) and pθ(·|ht ′) are obtained by Bayes 
rule. Hence we have:
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V (α,μ | ht )

=
∞∑

τ=t

δτ−t φ−1

⎛⎜⎝ ∫
supp μ(·|ht )

φ

(∑
sτ ∈Sτ

r
(

aα
τ

(
sτ−1

)
, sτ

)
pθ(s

τ |ht )

)
μ(dθ | ht )

⎞⎟⎠ .

To show our result, we will prove that for every n in N0,

φ−1

⎛⎜⎝ ∫
supp μ(·|ht )

φ

⎛⎝ ∑
st+n∈St+n

r
(

aα
t+n

(
st+n−1

)
, st+n

)
pθ(s

t+n|ht )

⎞⎠μ(dθ | ht )

⎞⎟⎠

= φ−1

⎛⎜⎜⎝ ∫
supp μ(·|h′

t ′ )

φ

⎛⎝ ∑
st ′+n∈St ′+n

r
(

aα
t ′+n

(
st ′+n−1

)
, st ′+n

)
pθ(s

t ′+n|h′
t ′)

⎞⎠μ
(
dθ | h′

t ′
)⎞⎟⎟⎠ .

Since V (α,μ | ht ) and V
(
α,μ | h′

t ′
)

are defined as the discounted sum from n = 0 to infinity of, 
respectively, the first and second line above, the statement will follow.

Let n ∈ N0, θ ∈ suppμ(· | ht ) = suppμ(· | h′
t ′), and (k0, ..., kn) ∈ Sn+1 such that θ(ki) �= 0

for every i ∈ {0, ..., n}. Define:

K(k0, ..., kn) := {
st+n ∈ I (ht ) |st = k0, ..., st+n = kn

}
and

K ′(k0, ..., kn) :=
{
st ′+n ∈ I

(
h′

t ′
) |st ′ = k0, ..., st ′+n = kn

}
.

By definition of pθ , for every st+n ∈ K(k0, ..., kn) and every st ′+n ∈ K ′(k0, ..., kn),

pθ(s
t+n|ht ) =

n∏
i=0

θ(kn) = pθ(s
t ′+n|h′

t ′).

To ease notation, fix (k0, ..., kn) momentarily and let K = K(k0, ..., kn) and K ′ = K ′(k0, ..., kn). 
We show that

r
(

aα
t+n

(
st+n−1

)
, st+n

)
is constant on K . Indeed, we prove by way of induction that for every j ∈ {0, ..., n}, 
aα
t+j

(
st+j−1

)
is constant on K . Since for every st+n ∈ K we have hα

t (st−1) = ht ,

aα
t

(
st−1

)
= α (μ(·|ht )) .

Suppose by way of induction that the statement holds for j ′ ≤ j . Thus, for every st+n ∈ K we 
have:

hα
t+j (s

t+j−1) =
(
ht ,aα

t

(
st−1

)
, f
(

aα
t

(
st−1

)
, st

)
, ...,aα

t+j−1

(
st+j−2

)
,

f
(

aα
t+j−1

(
st+j−2

)
, st+j−1

))
,

which, by definition of K and by the inductive hypothesis, is constant on K . It follows that:

aα
t+j

(
st+j−1

)
= α

(
μ
(
·|hα

t+j (s
t+j−1)

))



P. Battigalli et al. / Journal of Economic Theory 183 (2019) 740–785 775
is constant on K . Since st+n = kn for every st+n ∈ K , we have shown that r
(
aα
t+n

(
st+n−1

)
, st+n

)
is also constant on K . A similar argument shows that r

(
aα
t ′+n

(
st ′+n−1

)
, st ′+n

)
is constant on 

K ′. Moreover, for every st+n in K and st ′+n in K ′, and for every j in {0, ..., n},
μ
(
·|hα

t+j (s
t+j−1)

)
= μ

(
·|hα

t ′+j (s
t ′+j−1)

)
.

We prove this equality by induction on j . By hypothesis, it is true for j = 0. Let j ∈ {1, ..., n}
and suppose that it is true for j − 1. This implies that:

aα
t+j−1

(
st+j−2

)
= α

(
μ
(
·|hα

t+j−1(s
t+j−2)

))
= α

(
μ
(
·|hα

t ′+j−1(s
t ′+j−2)

))
= aα

t ′+j−1

(
st ′+j−2

)
.

Therefore:

μ
(
θ |hα

t+j (s
t+j−1)

)
=

μ
(
θ |hα

t+j−1(s
t+j−2)

)
F
(

aα
t+j−1

(
st+j−2

)
, θ
)(

f
(

aα
t+j−1

(
st+j−2

)
, kj−1

))
F

(
aα
t+j−1

(
st+j−2

)
, θ

μ
(
·|hα

t+j−1(s
t+j−2)

))(f (aα
t+j−1

(
st+j−2

)
, kj−1

))

=
μ
(
θ |hα

t ′+j−1(s
t ′+j−2)

)
F
(

aα
t ′+j−1

(
st ′+j−2

)
, θ
)(

f
(

aα
t ′+j−1

(
st ′+j−2

)
, kj−1

))
F

(
aα
t ′+j−1

(
st ′+j−2

)
, θ

μ
(
·|hα

t ′+j−1
(st ′+j−2)

))(f (aα
t ′+j−1

(
st ′+j−2

)
, kj−1

))
= μ

(
θ |hα

t ′+j−1(s
t ′+j−1)

)
.

This in turn implies that, for every st+n in K and st ′+n in K ′,

r
(

aα
t+n

(
st+n−1

)
, st+n

)
= r

(
α
(
μ
(
·|hα

t+n(s
t+n−1)

))
, kn

)
= r

(
α
(
μ
(
·|hα

t ′+n(s
t ′+n−1)

))
, kn

)
(7)

= r
(

aα
t ′+n

(
st ′+n−1

)
, st ′+n

)
.

Now, we restart to explicitly highlight the dependence on (k0, ..., kn) of K . Moreover, for 
every n ∈ N0 and for every (k1, ..., kn) ∈ Sn, let r (k0, ..., kn) = r

(
aα
t+n

(
st+n−1

)
, st+n

) =
r
(

aα
t ′+n

(
st ′+n−1

)
, st ′+n

)
, where st+n ∈ K (k0, ..., kn) and st ′+n ∈ K ′ (k0, ..., kn). By (7), this 

quantity is well defined. We have:∑
st+n∈St+n

r
(

aα
t+n

(
st+n−1

)
, st+n

)
pθ(s

t+n|ht )

=
∑

st+n∈St+n

r
(

aα
t+n

(
st+n−1

)
, st+n

) n∏
i=0

θ(kn)

=
∑

t ′+n t ′+n

r
(

aα
t ′+n

(
st ′+n−1

)
, st ′+n

)
pθ(s

t ′+n|h′
t ′).
s ∈S
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Finally, since we have μ(· | ht ) = μ(· | h′
t ′), this implies that:

φ−1

⎛⎜⎝ ∫
supp μ(·|ht )

φ

⎛⎝ ∑
st+n∈St+n

r
(

aα
t+n

(
st+n−1

)
, st+n

)
pθ(s

t+n|ht )

⎞⎠μ(dθ | ht )

⎞⎟⎠

= φ−1

⎛⎜⎜⎝ ∫
supp μ(·|h′

t ′ )

φ

⎛⎝ ∑
st ′+n∈St ′+n

r
(

aα
t ′+n

(
st ′+n−1

)
, st ′+n

)
pθ(s

t ′+n|h′
t ′)

⎞⎠μ
(
dθ | h′

t ′
)⎞⎟⎟⎠

and the thesis follows. �
Proof of Proposition 2. The result follows by considering the subgame perfect equilibrium of 
an ancillary game. We describe the structure of this game:

• The set of players is P =N∪{0}. That is, players are the different periods and Nature;
• The set of actions available to each player t ∈ N is A, the set of actions available to Nature 

is S;
• The timing is as follows: at period t ∈ N , player t chooses an action. After player t has 

chosen his action, Nature chooses st ∈ S accordingly to a (stationary) uniform distribution 
over the states;

• Every player observes the sequence of actions played and states realized in the previous 
periods.

Notice that the set of subgames where a player t ∈ N is going to move is one to one with the 
set Ht . Therefore, a strategy profile σ of the ancillary game is mapped in an obvious way into a 
strategy of our single-agent decision problem.

• Finally, we specify the payoff of player t when the strategy profile of the single-agent deci-
sion problem induced by σ is α and the sequence of state realized is s∞:

Ut

(
α, s∞)= V

(
α,μ

(·|hα
t (st )

) |hα
t (st )

)
where V is the value in the single-agent decision problem.

The ancillary game thus obtained is a perfect information game, and by Lemma 4 it sat-
isfies all the assumptions of Theorem 4 in Hellwig and Leininger (1987). Therefore it admits 
a subgame-perfect equilibrium in pure strategies α. Moreover, by Theorem 4 in Hellwig and 
Leininger (1987) and the coupling argument of Lemma 4 every player with the same belief plays 
the same action, and by definition of the payoff function of each player, (α,μ) is rational. �
A.3. Convergence to SCE

By Lemma 4, we know that if ht and h′
t ′ are two histories such that pμ(I (ht )) and pμ(I

(
h′

t ′
)
)

are strictly positive, then μ(· | ht ) = μ(· | h′
t ′) implies V (α,μ|ht ) = V

(
α,μ|h′

t ′
)
. Therefore, the 

value function at a particular history depends on the history only through the updated beliefs. In 
particular, whenever pμ(I (ht )) > 0,
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V (α,μ|ht ) = V (α,μ(·|ht ) |h1) .

Therefore, to ease notation, in the following proofs we will use the ancillary function V̂ mapping 
stationary strategies and beliefs into real numbers:

V̂ (α, ν) := V (α, ν|h1) .

By the previous argument, V̂ (α, ν) = V (α,μ|ht ) whenever ν = μ (·|ht ).

Lemma 10. Let 
(
α,μ, θ̄

)
be such that:

1. μ 
(
{θ ∈ � : pα

θ = pα

θ̄
}
)

= 1;

2. For every action a, period t , and information history ht ,

pμ(I (ht )) > 0 ⇒ V (α,μ | ht ) ≥ V (α/(ht , a),μ | ht ) .

Then, 
(
α (μ) ,μ, θ̄

)
is an SCE.

Proof. It is immediate to see that condition (1) implies condition (i) of SCE. Now, we show that (
α,μ, θ̄

)
features myopic best reply on path, that is, (α(μ), μ , θ) satisfies property (ii) of SCE. 

By way of contradiction, suppose there is a ∈ A such that:

φ−1

⎛⎝∫
�

φ

(∑
s∈S

r(a, s)θ(s)

)
μ(dθ)

⎞⎠> φ−1

⎛⎝∫
�

φ

(∑
s∈S

r(α(μ), s)θ(s)

)
μ(dθ)

⎞⎠ .

By property 2, it must be the case that V̂ (α/a, μ) ≤ V̂ (α, μ), where α/a is the strategy that 
prescribes a in the first period to come and coincide with α otherwise. However, we have:

V̂ (α,μ)

=
∑
s∈S

r(α(μ), s)θ(s) + δV̂ (α,μ)

≤
∑
s∈S

r(α(μ), s)θ(s) + δ min
m:F (a,θμ

)
(m)>0

V̂ (α,μ(·|(a,m))

< φ−1

⎛⎝∫
�

φ

(∑
s∈S

r(a, s)θ(s)

)
μ(dθ)

⎞⎠+

δ min
m:F (a,θμ

)
(m)>0

( ∞∑
τ=2

δτ−2φ−1

×
⎛⎝∫

�

φ

(∑
sτ ∈Sτ

r
(

aα
τ

(
sτ−1

)
, sτ

)
pθ(s

τ |(a,m))

)
μ(dθ | (a,m))

⎞⎠⎞⎠
= φ−1

⎛⎝∫
�

φ

(∑
s∈S

r(a, s)θ(s)

)
μ(dθ)

⎞⎠+

δ

( ∞∑
δτ−2φ−1

(
min

m:F (a,θμ

)
(m)>0
τ=2
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×
⎛⎝∫

�

φ

(∑
sτ ∈Sτ

r
(

aα
τ

(
sτ−1

)
, sτ

)
pθ(s

τ |(a,m))

)
μ(dθ | (a,m))

⎞⎠⎞⎠⎞⎠
≤ φ−1

⎛⎝∫
�

φ

(∑
s∈S

r(a, s)θ(s)

)
μ(dθ)

⎞⎠+

δ

⎛⎝ ∞∑
τ=2

δτ−2φ−1

⎛⎝∫
�

φ

(∑
sτ ∈Sτ

r
(

aα
τ

(
sτ−1

)
, sτ

)
pθ(s

τ |(a,m))

)
Epμ [μ(dθ |(a,m))]

⎞⎠⎞⎠
= φ−1

⎛⎝∫
�

φ

(∑
s∈S

r(a, s)θ(s)

)
μ(dθ)

⎞⎠+

δ

⎛⎝ ∞∑
τ=2

δτ−2φ−1

⎛⎝∫
�

φ

(∑
sτ ∈Sτ

r
(

aα
τ

(
sτ−1

)
, sτ

)
pθ(s

τ |(a,m))

)
μ(dθ)

⎞⎠⎞⎠
=

∞∑
τ=1

δτ−2φ−1

⎛⎝∫
�

φ

(∑
sτ ∈Sτ

r
(

aα/a
τ

(
sτ−1

)
, sτ

)
pθ(s

τ |(a,m))

)
μ(dθ)

⎞⎠
= V (α/a,μ),

where the first equality comes from property 1, the strict inequality comes from hypothesis, the 
second equality comes from the fact that φ is strictly increasing, the third equality by Lemma 6, 
and the fourth and fifth equalities by the definition of α/a. Note that we will be done as soon as 
we prove the first weak inequality, that is:

V̂ (α,μ) ≤ min
m:F (a,θμ

)
(m)>0

V̂ (α,μ(·|(a,m)).

Indeed, it would follow that V̂ (α, μ) < V̂ (α/a, μ), a contradiction with the fact that (α, μ , θ̄)

satisfies 2.
Suppose that there exists m such that F

(
a, θμ

)
(m) > 0 with V̂ (α, μ(·|(a, m))) < V̂ (α, μ). 

The fact that F
(
a, θμ

)
(m) > 0 implies that θμ(I (a, m)) > 0. On the other hand, by property 1, 

μ 
({

θ ∈ � : pα
θ = pα

θ

})
= 1, and in particular:

μ
({

θ ∈ � : F (α(μ), θ) (m) = F
(
α(μ), θ̄

)
(m)

})= 1.

Then, let B = {
θ ∈ � : F (α(μ), θ) = F

(
α(μ), θ̄

)}
. By Bayes rule, we have that:

μ(B|(a,m)) = μ(B) = 1.

But then, it follows that:

V̂ (α,μ(·|(a,m)))

< (1 − δ)V̂ (α,μ) + δV̂ (α,μ(·|(a,m))

= φ−1

⎛⎝∫ φ

(∑
s∈S

r(α(μ), s)θ(s)

)
μ(dθ)

⎞⎠+ δV̂ (α,μ(·|(a,m))
�
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= φ−1

⎛⎝∫
�

φ

(∑
s∈S

r(α(μ), s)θ(s)

)
μ(dθ |(a,m))

⎞⎠+ δV̂ (α,μ(·|(a,m))

=
∞∑

τ=1

δτ−1φ−1

⎛⎝∫
�

φ

(∑
sτ ∈Sτ

r
(

aα/α(μ)
τ

(
sτ−1

)
, sτ

)
pθ(s

τ )

)
μ(dθ |(a,m))

⎞⎠
= V̂ (α/(α(μ),μ(·|(a,m))).

This contradicts the fact that (α, μ , θ) satisfies property 2. �
Proof of Proposition 3. Let 

(
α,μ, θ̄

)
be consistent from period T . First, we have that the hy-

potheses of Lemma 7 are satisfied, so let E be as in the corresponding proof. Define

Ê = E
⋂
t∈N

{
s∞ : θ̄

(
ιαt

(
st−1

))
> 0

}
.

By Lemma 3, the value (4) is continuous in beliefs μ. Fix s∞ ∈ Ê; for every a in A,

lim
t→∞ V̂ (α/a,μ(·|hα

t

(
st−1

)
)) = V̂ (α/a,μα

s∞).

Let A∞ := arg maxa∈A V̂ (α/a, μα
s∞). Note that, in general, our definition of rationality does not 

require that α(μα
s∞) ∈ A∞. Indeed, if there is no ht such that pμ(I (ht )) > 0 and μ(·|ht ) = μα

s∞ , 
then α

(
μα

s∞
)

does not need to satisfy the one-deviation property. Since s∞ ∈ Ê, it follows that 
pθ(I (hα

t

(
st−1

)
)) > 0 for every finite t . By Assumption 2, pμ(I (hα

t

(
st−1

)
)) > 0. Hence,

α(μ(·|hα
t

(
st−1

)
)) ∈ arg max

a∈A
V̂ (α/a,μ(·|hα

t

(
st−1

)
)).

Now, let a /∈ A∞, and fix a∗ ∈ A∞. We have that

lim
t→∞ V̂ (α/a,μ(·|hα

t

(
st−1

)
)) = V̂ (α/a,μα

s∞)

< max
a′∈A

V̂ (α/a′,μα
s∞) = V̂ (α/a∗,μα

s∞)

= lim
t→∞ V̂ (α/a∗,μ(·|hα

t

(
st−1

)
)).

Hence there exists T a
s∞ such that a /∈ α(μ(·|hα

t

(
st−1

)
)) for every t ≥ T a

s∞ . Let T ∗
s∞ =

maxa∈A\A∞ T a
s∞ . Then, from T ∗

s∞ onward, the only actions played are in A∞, that is, they sat-
isfy the one-deviation property with respect to the limit beliefs μα

s∞ . Let T̂s∞ = max
{
T ,T ∗

s∞
}
; 

we have that from T̂s∞ onward the action prescribed by strategy α, aα
t (st−1), satisfies the one-

deviation property with respect to beliefs μα
s∞ , and μα

s∞ is confirmed given such action. By 
Lemma 10, this implies that (aα

t (st−1), μα
s∞, θ) is an SCE for every t ≥ T̂s∞ . �

Proof of Proposition 4. By hypothesis, we know that 
(
aα
t (s∞),μ

(·|hα
t (s∞)

))
converges to an 

SCE. Therefore, there exists T̂ such that, for every t ≥ T̂ , the triple (aα
t (st−1), μα

s∞ , θ) is an SCE, 
and so:

aα
t (st−1) ∈ arg max

a∈A
φ−1

⎛⎝∫ φ (R (a, θ))μα
s∞(dθ)

⎞⎠= {
a∗} .
�
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It follows that (a∗, μα
s∞, θ) is an SCE. Now, let a �= a∗. By Lemmata 5 and 7,

lim
t→∞φ−1

⎛⎝∫
�

φ

(∑
s∈S

r(a∗, s)θ(s)

)
μ(dθ |hα

t

(
st−1

)
)

⎞⎠
= φ−1

⎛⎝∫
�

φ

(∑
s∈S

r(a∗, s)θ(s)

)
μα

s∞(dθ)

⎞⎠
> φ−1

⎛⎝∫
�

φ

(∑
s∈S

r(a, s)θ(s)

)
μα

s∞(dθ)

⎞⎠
= lim

t→∞φ−1

⎛⎝∫
�

φ

(∑
s∈S

r(a, s)θ(s)

)
μ(dθ |hα

t

(
st−1

)
)

⎞⎠ .

Thus, there exists T̄a,s∞ > T̂ such that t > T̄a,s∞ implies:

φ−1

⎛⎝∫
�

φ

(∑
s∈S

r(a∗, s)θ(s)

)
μ(dθ |hα

t

(
st−1

)
)

⎞⎠
> φ−1

⎛⎝∫
�

φ

(∑
s∈S

r(a, s)θ(s)

)
μ(dθ |hα

t

(
st−1

)
)

⎞⎠ .

Let T̄s∞ = maxa∈A\a∗ T̄a,s∞ . We have that t > T̄s∞ implies

φ−1

⎛⎝∫
�

φ

(∑
s∈S

r(a∗, s)θ(s)

)
μ(dθ |hα

t

(
st−1

)
)

⎞⎠
= max

a∈A
φ−1

⎛⎝∫
�

φ

(∑
s∈S

r(a, s)θ(s)

)
μ(dθ |hα

t

(
st−1

)
)

⎞⎠ .

The thesis follows. �
Proof of Corollary 3. By Proposition 3, there exists a set E ⊆ S∞ with pθ̄ (E) = 1 such that 
convergence to an SCE happens on that set. By Proposition 1, there exists a set E∗ ⊆ S∞ with 
pθ̄ (E∗) = 1 such that, if s∞ ∈ E∗, then for every a ∈ aα∞(s∞):

lim
t→∞μ(

{
θ ∈ � : F (a, θ) = F

(
a, θ̄

)} | hα
t

(
s∞)) = 1. (8)

Let G = E ∩ E∗. Own-action independence and 8 imply that, if s∞ ∈ G, then for every â ∈ A:

lim
t→∞μ(

{
θ ∈ � : F (â, θ

)= F
(
â, θ̄

)} | hα
t

(
s∞)) = 1.

Thus, for every s∞ ∈ G ⊆ E∗,
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φ−1

⎛⎝∫
�

φ
(
R
(
â, θ

))
μα

s∞(dθ)

⎞⎠= R
(
â, θ̄

) ; (9)

that is, the value of each action under the limit belief is equal to the objective value. Since 
s∞ ∈ G ⊆ E, there exists a finite time t such that (aα

τ (sτ−1), μα
s∞, θ̄ ), τ ≥ t , forms an SCE. By 

definition of SCE and Equation (9), this means that for τ ≥ t only the objective myopic best reply 
is played. �
A.4. Comparative dynamics

Since this section deals with different levels of ambiguity attitude, we make the dependence 
of the value on the ambiguity attitude explicit by writing V̂φ (α,μ) in place of V̂ (α,μ).

Proof of Proposition 5. Since (α,μ) is rational under ambiguity neutrality, it satisfies the one-
deviation property for every ht such that pμ (I (ht )) > 0 and ν = μ (·|ht ):

VId (α,μ|ht ) ≥ VId (α/ (ht , a) ,μ|ht )

for every a ∈ A. Since the spaces of action and state are finite and δ < 1, our problem is contin-
uous at infinity. By the one-deviation principle for ambiguity neutral agents (see e.g., Theorem 
4.2 in Fudenberg and Tirole, 1991), this implies that for every alternative strategy γ and every 
history hτ with pμ (I (ht )) > 0:

VId (α,μ|ht ) ≥ VId (γ,μ|ht ) . (10)

Let ν be in the belief range of μ, say ν = μ (·|ht ) and suppose, by way of contradiction, that 
β (ν) prescribes an ambiguous action while α (ν) is unambiguous given ν. Then,

Vφ (β,μ|ht ) ≥ Vφ (β/ (α (ν) ,ht ) ,μ|ht )

= R (α (ν) ,pν) + δ
∑
m∈M

F (α (ν) ,pν) (m)Vφ (β,μ| (ht , (α (ν) ,m)))

= R (α (ν) ,pν) + δVφ (β,μ|ht )

where the inequality follows from the one-deviation property, the second equality follows from 
the assumption that α (ν) is unambiguous, and the third equality follows from α (ν) being 
ν-unambiguous and Lemma 4. Therefore,

Vφ (β,μ|ht ) ≥ R (α (ν) ,pν)

1 − δ
.

Since α (ν) is ν-unambiguous,

Vφ (α,μ|ht ) = R (α (ν) ,pν) + δ
∑
m∈M

F (α (ν) ,pν) (m)Vφ (α,μ| (ht , (α (ν) ,m)))

=
∞∑

k=0

δkR (α (ν) ,pν) = R (α (ν) ,pν)

1 − δ
.

Then by (10), and Jensen’s inequality (see page 294 in Billingsley, 2012 for the version used 
here),
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R (α (ν) ,pν)

1 − δ
= VId (α, ν|ht ) ≥ VId (β, ν|ht ) > Vφ (β, ν|ht ) ≥ R (α (ν) ,pν)

1 − δ
,

a contradiction. �
Proof of Proposition 6. Let pθ̄

(
hα

t

(
st−1

))
> 0, and let 

(
α
(
μ
(·|hα

t

(
st−1

)))
,μ
(·|hα

t

(
st−1

))
, θ̄
)

be an SCE under ambiguity neutrality. By Assumption 2, an action that is unambiguous given 
μ will be unambiguous given μ 

(·|hα
t

(
st−1

))
. Therefore, when an action a �= a∗ is chosen, 

with probability 1 it does not induce any updating in beliefs. Then, stationarity of the strat-
egy implies that the same action a will be chosen in the following period. Thus, the sequence (
α
(
μ
(·|hα

τ

(
sτ−1

))))t
τ=1 has almost surely the form (a∗, ..., a∗, a, ..., a) for some a ∈ A.35

The same reasoning guarantees that 
(
β
(
μ
(
·|hβ

τ

(
sτ−1

))))t

τ=1
also has almost surely the 

form (a∗, ..., a∗, a, ..., a) for some a ∈ A. We show that for almost every s∞, the sequence of a∗
is (weakly) shorter under β . In particular, suppose that t ∈N , θ̄

(
st−1

)
> 0, and let:(

α
(
μ
(
·|hα

τ

(
sτ−1

))))t

τ=1
= (

a∗, ..., a∗)=
(
β
(
μ
(
·|hβ

τ

(
sτ−1

))))t

τ=1
.

Then,

hα
t

(
st−1

)
= (

a∗, f
(
a∗, sτ

))t−1
τ=1 = hβ

t

(
st−1

)
,

and by Assumption 2:

μ
(
·|hα

τ

(
sτ−1

))
= μ

(
·|hβ

t

(
st−1

))
.

By Proposition 5, α
(
μ
(·|hα

t

(
st−1

))) �= a∗ implies β
(
μ
(·|hα

t

(
st−1

))) �= a∗; with probability 
1, if strategy α ends experimentation after t − 1 periods, β ends experimentation in at most t − 1

periods. Therefore, 
(
β
(
μ
(
·|hβ

τ

(
sτ−1

))))t

τ=1
has the form (a∗, ..., a∗, a, ..., a) with a (weakly) 

shorter sequence of a∗. If β
(
μ
(
·|hβ

t

(
st−1

))) �= a∗, 
(
β
(
μ
(
·|hβ

t

(
st
)))

,μ
(
·|hβ

t

(
st
))

, θ̄
)

is 

an SCE by Lemma 10 and rationality of (β,μ). If 
(
β
(
μ
(
·|hβ

τ

(
sτ−1

))))t

τ=1
= (a∗)tτ=1, then α

and β have prescribed the same action a∗ at every node, and therefore:(
α
(
μ
(
·|hα

t

(
st−1

)))
,μ
(
·|hα

t

(
st−1

))
, θ̄
)

=
(
β
(
μ
(
·|hβ

t

(
st−1

)))
,μ
(
·|hβ

t

(
st−1

))
, θ̄
)

.

Again, by Lemma 10, the fact that the L.H.S. is an SCE with ambiguity neutrality, and the 
definition of SCE, the R.H.S. is an SCE under ambiguity aversion. �
Proof of Proposition 7. First, suppose that the objectively-optimal action played in the SCE is 

a∗. Then, given the original belief μ and infinite history s∞, 
(

aβ
t ,μ

(
·|hβ

t

))
converges to an 

SCE 
(
a∗,μ∗, θ̄

)
if and only if β

(
μ
(
·|hβ

τ (s∞)
))

= a∗ for every τ . But Proposition 5 guarantees 

that this can happen only if α
(
μ
(·|hα

τ (s∞)
))= a∗ for every τ , and therefore 

(
aα
τ ,μ

(·|hα
τ

))
also 

converges to 
(
a∗,μ∗, θ̄

)
.

35 Possibly including the cases 
(
a∗, ..., a∗) and (a, ..., a).
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Second, suppose that the objectively-optimal action is a �= a∗. Consider s∞ where conver-

gence of 
(

aβ
t ,μ

(
·|hβ

t

))
to an SCE 

(
a, ν, θ̄

)
happens. Then, by definition of SCE, R (a, θ) =

R
(
a, θ̄

)
is constant on suppν. At the same time, Proposition 3 guarantees convergence of (

aα
t ,μ

(·|hα
t

))
to an SCE 

(
â, μ̂,θ̄

)
. Assumption 2 implies that suppμ 

(·|ha
t

)⊂ suppμ (·) for ev-
ery ht and therefore R (a, θ) = R

(
a, θ̄

)
is constant on supp μ̂. Since, by definition of SCE, 

R
(
â, θ

)= R
(
â, θ̄

)
is also constant on supp μ̂ and:

â ∈ arg max
a′∈A

φ−1

⎛⎝∫
�

φ

(∑
s∈S

r(a′, s)θ(s)

)
μ∗(dθ)

⎞⎠ ,

we must have R
(
â, θ̄

)≥ R
(
a, θ̄

)= maxa′∈A R
(
a′, θ̄

)
. �

Proof of Proposition 8. Let 
(
ā,μ, θ̄

)
be an SCE under ambiguity attitude φ. The optimality 

condition for an SCE gives:

ā ∈ arg max
a′∈A

φ−1

⎛⎝∫
�

φ

(∑
s∈S

r
(
a′, s

)
θ (s)

)
μ(dθ)

⎞⎠ . (11)

Therefore, there exists θ∗ in suppμ with:∑
s∈S

r (ā, s) θ∗ (s) ≥
∑
s∈S

r
(
a∗, s

)
θ∗ (s) .

Next, consider an arbitrary a �= a∗; such actions are unambiguous given μ. By (11):

∑
s∈S

r (ā, s) θ∗ (s) = φ−1

⎛⎝∫
�

φ

(∑
s∈S

r (ā, s) θ (s)

)
μ(dθ)

⎞⎠
≥ φ−1

⎛⎝∫
�

φ

(∑
s∈S

r (a, s) θ (s)

)
μ(dθ)

⎞⎠
=
∑
s∈S

r (a, s) θ∗ (s) .

We have established that, for every σ ∈ � (A), 
∑

s∈S r (ā, s) θ∗ (s) ≥ ∑
a′∈A σ

(
a′)×∑

s∈S r(a′, s)θ∗(s). Now, define the function v̄ : � (A) × �(suppμ) → R as v̄(σ, ν) =
V̄Id(ā, ν) −∑

a′∈A σ
(
a′) V̄Id(a

′, ν). Then, for every σ ∈ � (A), v̄(σ, δθ∗) ≥ 0, and so:

min
σ∈�(A)

max
ν∈�(supp μ)

v̄(σ, ν) ≥ 0.

By Sion’s minimax theorem in Sion (1958),

max
ν∈�(supp μ)

min
σ∈�(A)

v̄(σ, ν) = min
σ∈�(A)

max
ν∈�(supp μ)

v̄(σ, ν) ≥ 0.

The function v̄ is continuous and its domain is compact, so the set of maximizers is non-empty.36

Pick any:

36 Compactness of the domain of v̄ follows from the fact that supp μ (·|ht ) is a closed subset of �.



784 P. Battigalli et al. / Journal of Economic Theory 183 (2019) 740–785
μ′ ∈ arg max
ν∈�(supp μ)

( min
σ∈�(A)

v̄(σ, ν)).

We have, for every a′ ∈ A,

V̄Id(ā,μ′) − V̄Id(a
′,μ′) ≥ min

a′∈A
v̄(δa′ ,μ′) ≥ 0.

It follows that (ā, μ′, θ̄ ) is an SCE under ambiguity neutrality. By Theorem 1 in Battigalli et al.
(2015), 

(
ā,μ′, θ̄

)
is an SCE under ambiguity attitude φ′. �

Proof of Proposition 9. Since (α,μ) is rational under φ, and the DM is myopic, the one-
deviation property reads:

∀a ∈ A, φ−1

⎛⎝∫
�

φ
(
R
(
α (ν) , θ̂

))
ν
(

dθ̂
)⎞⎠≥ φ−1

⎛⎝∫
�

φ
(
R
(
a, θ̂

))
ν
(

dθ̂
)⎞⎠ ,

where ν is as in the proof of Proposition 5. Let (β,μ) be rational under φ′. Suppose, by way of 
contradiction, that β (ν) prescribes an ambiguous action. Then,

V̂φ′ (β, ν) = (
φ′)−1

⎛⎝∫
�

φ′ (R (β (ν) , θ̂
))

ν
(

dθ̂
)⎞⎠

≥ (
φ′)−1

⎛⎝∫
�

φ′ (R (α (ν) , θ̂
))

ν
(

dθ̂
)⎞⎠

= R (α (ν) ,pν) ,

where the inequality follows from the one-deviation property, while the second equality follows 
from the assumption that α (ν) is unambiguous. Therefore,

V̂φ′ (β, ν) ≥ R (α (ν) ,pν) .

By Jensen’s inequality, since φ′ is a strictly concave transformation of φ,

R (α (ν) ,pν) = V̂φ (α, ν) ≥ V̂φ (β, ν) > V̂φ′ (β, ν) ≥ R (α (ν) ,pν) ,

a contradiction. �
Proof of Proposition 10. The proof is very similar to that of Proposition 6, invoking Proposi-
tion 9 instead of Proposition 5. Further details are omitted. �
Proof of Proposition 11. As with the previous proposition, invoke Proposition 9 instead of 
Proposition 5. �
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