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Abstract
We extend the epistemic analysis of dynamic games of Battigalli and Siniscalchi
(J Econ Theory 88:188–230, 1999, J Econ Theory 106:356–391, 2002, Res Econ
61:165–184, 2007) from finite dynamic games to all simple games, that is, finite
and infinite-horizon multistage games with finite action sets at nonterminal stages
and compact action sets at terminal stages. We prove a generalization of Lubin’s
(Proc Am Math Soc 43:118–122, 1974) extension result to deal with conditional
probability systems and strong belief. With this, we can provide a short proof of the
following result: in every simple dynamic game, strong rationalizability characterizes
the behavioral implications of rationality and common strong belief in rationality.
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1 Introduction

Battigalli andSiniscalchi (henceforthBS) put forward the constructionof a “canonical”
type structure of all hierarchies of conditional probability systems (CPSs) that satisfy
coherence and common full belief in coherence (Battigalli and Siniscalchi 1999).
This construction applies to a large class of simple infinite dynamic games with
compact metric strategy spaces, that is, finite and infinite-horizon multistage games
with finite action sets at nonterminal stages and compact action sets at terminal stages
(see Battigalli 2003). Simple games include the infinite discounted repetitions of finite
games, and all finite-horizon games where feasible action sets are compact subsets of
R
n in the last stage and finite in previous stages. Thus, for all such games one can

construct a corresponding canonical structure that is complete (belief maps are onto),
compact, and continuous.

Battigalli and Siniscalchi (2002) introduces the notion of “strong belief” to provide
an epistemic foundation of solution concepts with a forward-induction flavor: a CPSμ

(or a type ti with such CPS) strongly believes an event E ifμ (E |C) = 1 for each con-
ditioning event C that does not contradict E . Battigalli and Siniscalchi (2002) shows
that, in a complete compact and continuous type structure based on a finite game
Γ (hence, in the canonical structure based on Γ ), strong rationalizability1 character-
izes the behavioral implications of rationality and common strong belief in rationality
(RCSBR). The solution can be computed bymaximal iterated deletion of conditionally
dominated strategies (Shimoji and Watson 1998). In generic finite games with com-
plete and perfect information, RCSBR implies the backward induction path, although
not (always) the backward induction strategies (see Battigalli and Siniscalchi 2002).
Furthermore, Battigalli and Siniscalchi (2002, 2003, 2007) show that similar epis-
temic assumptions that take as transparent some restrictions on players’ beliefs justify
the iterated intuitive criterion in signaling games, and similar equilibrium refinements
in more general games.2

This leaves a gap between the class of games for which BS could provide epistemic
justifications of solution concepts—i.e., finite games—and the class of simple dynamic
games forwhich a complete compact and continuous type structure can be constructed,
as in Battigalli and Siniscalchi (1999). We point out that many interesting applications
of game theory consist of such simple, but infinite dynamic games. Here, we fill this
gap. As a preliminary step, we prove a generalization of Lubin’s (1974) extension
result3 (originally given for probability measures, here applied to CPSs): for every
decreasing sequence of events E1, E2, . . . in the Polish state space X × T and every
CPS ν on X that strongly believes each projX Em , there exists a CPS μ on X × T that
strongly believes each Em and such that ν is the marginal of μ. This technical lemma

1 In finite games of complete informationwithout chancemoves, strong rationalizability coincideswith (the
correlated version of) “extensive-form rationalizability,” a solution concept put forward by Pearce (1984).
Battigalli (2003) coined the term “strong rationalizability” to distinguish it from other legitimate, but weaker
notions of rationalizability for dynamic games (e.g., Ben Porath 1997). For more on rationalizability in
dynamic games, see the references therein.
2 Of course, the general epistemic framework of BS allows for the analysis of different epistemic assump-
tions not involving forward-induction reasoning, as illustrated in Battigalli and Siniscalchi (1999).
3 Actually, the extension result of Lubin (1974) follows from Lemma 2.2 of Varadarajan (1963).
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Interactive epistemology in simple dynamic games… 739

allows us to provide streamlined proofs of results in epistemic game theory for simple
dynamic games. In particular, we prove the following:

1.1 Characterization result

Fix a simple dynamic game Γ with complete or incomplete information and, for
each player i , a closed set �i of first-order CPSs representing some given transparent
restrictions of i’s beliefs; the profile � = (�i ) of restricted sets of first-order beliefs
gives raise to a solution procedure called strong�-rationalizability.4 Let [�]denote the
event that such belief restrictions hold; then, the behavioral implications of m-mutual
strong belief in rationality and [�] are characterized by m + 1 steps of strong �-
rationalizability, and the behavioral implications of common strong belief in rationality
and [�] are characterized by strong �-rationalizability.

1.2 Related literature

We refer to Dekel and Siniscalchi (2015) for an up-to-date rigorous survey on epis-
temic game theory that adopts the approach of this paper. Here, we focus on earlier
characterization results similar to the one stated above. We already cited most of the
literature on dynamic epistemic game theory we build upon. The first characterization
result for type structures where beliefs are CPSs is proved by Ben Porath (1997): in
generic finite games with complete and perfect information, a strategy is consistent
with rationality and common initial belief in rationality if and only if it survives one
round of (maximal) deletion of weakly dominated strategies followed by the iterated
deletion of strictly dominated strategies. Since initial belief is a monotone opera-
tor, Ben Porath can prove his result restricting attention to finite (hence, incomplete)
type structures. As argued by Battigalli and Siniscalchi (2002), this standard line of
proof cannot be applied to epistemic assumptions featuring strong belief, which is
not monotone. Tan andWerlang (1988) consider the canonical type structure based on
any compact continuous gamewith simultaneousmoves and state that rationalizability
characterizes the behavioral implications of rationality and common belief in rational-
ity; but they prove only one direction of the characterization result, the one from the
epistemic assumptions to the solution concept. The other—more difficult—direction
is proved by Arieli (2010) for continuous games with simultaneous moves and Polish
action spaces. Arieli’s proof relies on Lubin’s extension lemma. Our proof is inspired
by this. Chen et al. (2016) analyzes the behavioral implications of rationality and
common belief in rationality in arbitrary static games under general preferences.

The rest of the paper is structured as follows. Section 2 introduces preliminary
mathematical concepts and results. Section 3 presents our generalization of Lubin’s
extension result for conditional probability systems and a sketch of proof. Section 4
presents our epistemic analysis of simple dynamic games, a short proof of the main
game theoretic results (Theorem 1 and Corollary 1), and two illustrative economic

4 See Battigalli (2003, 2006) and Battigalli and Siniscalchi (2003). Battigalli and Siniscalchi (2007),
Battigalli and Friedenberg (2012), and Battigalli and Prestipino (2013) relate strong �-rationalizability to
the epistemic analysis of forward-induction reasoning.
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740 P. Battigalli, P. Tebaldi

applications. Section 5 discusses some extensions and generalizations. All proofs but
those of Theorem 1 and Corollary 1 are collected in ‘Appendix”.

2 Preliminaries

Following Battigalli and Siniscalchi (1999), we first carry out a preliminary analysis
within an abstract probabilistic framework. Consider an individual who faces primitive
uncertainty about the true state x in some Polish space X . Given any topological space
Y (possibly, but not necessarily Y = X ), we denote by B(Y ) its Borel sigma-algebra,
whose elements are called events (in Y ). We endow the primitive uncertainty space X
with a countable collectionC ⊆ B(X) ofBorel subsets of X , which are the observables,
or conditioning events.

Besides the primitive uncertainty space, we also posit a Polish space T to be inter-
preted as the set of possible hierarchies of beliefs, or types, or profiles of types, and
we regard the Polish space X × T as the relevant uncertainty space. From now on, we
reserve the name event for the Borel subsets of X × T . We assume that the individual
can only obtain direct information about X , that is, the set of observable events is the
collection of “cylinders” of the form C × T for some C in C, denoted by C× T . There
is an obvious identification of the elements of C with the elements of C × T , and they
are all referred to as conditioning events. By the same identification, we can write,
with a small abuse of notation, (X × T , C) for the pair (X × T , C × T ). Furthermore,
(X , C) can be identified with (X × T , C × T ) if T is a singleton.

2.1 Conditional probability systems and strong belief

For every topological space Y , let �(Y ) denote the set of probability measures on
B(Y ). We consider arrays of probability measures on Y indexed by elements of a
collection C ⊆ B(Y ): i.e., μ = (μC )C∈C ∈ [�(Y )]C . When we want to stress the
interpretation of μC as a conditional probability given C , we write it as μ(·|C).

Definition 1 LetY be a Polish space and C be a countable collection of Borel subsets of
Y . A conditional probability system (CPS) on (Y , C) is an array of probabilitymeasures
(μC )C∈C in [�(Y )]C such that, for all E in B(Y ), and C , D in C, μC (C) = 1 and

E ⊆ D ⊆ C ⇒ μC (E) = μD(E) μC (D). (1)

Using the conditional probability notation, (1) can be written as follows: if E ⊆
D ⊆ C then

μ (D|C) > 0 ⇒ μ (E |D) = μ (E |C)

μ (D|C)
.

Recall the setting introduced in the previous subsection, where conditioning events
C ⊆ X concern primitive uncertainty and correspond to “cylinders” C × T in the
overall uncertainty space Y = X × T . Then, beliefs of the players are given by CPSs
on (X × T , C):
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Remark 1 Let C ⊆ B(X) be countable; a CPS on (X × T , C) is an element of [�(X ×
T )]C , say μ, that satisfies the following conditions: μC (C × T ) = 1, and

μC (E) = μD(E) μC (D × T )

for all E in B(X × T ) and C , D in C such that E ⊆ D × T ⊆ C × T .

The set�(X ×T ) is endowed with the topology of weak convergence of measures.
If X and T are Polish, then also�(X ×T ) is a Polish space (see Aliprantis and Border
2006, Theorem 15.15), and so is [�(X × T )]C because C is countable. By Remark 1,
the set of CPSs on (X×T , C) is a subset of [�(X×T )]C and is denoted by�C(X×T ).

Lemma 1 (Battigalli and Siniscalchi 1999) If all the elements of the countable col-
lection C are clopen (closed and open), the set of CPSs �C(X × T ) is closed in
[�(X × T )]C . Therefore, �C(X × T ) is a Polish space.

Given spaces Y and Q, for every probability measure ν on their Cartesian product
Y × Q, we let mrgY ν denote the marginal of ν on Y . If Q = R × W , it makes sense
to consider the marginal on Y × R of a CPS μ on (Y × Q, C).

Definition 2 Let Y be a Polish space and C a countable subset ofB(Y ), let Q = R×W ,
where R andW are Polish spaces. For anyμ = (μC )C∈C in [�(Y×Q)]C , themarginal
ofμ onY×R, denoted bymrgY×R μ, is the array of probabilitymeasures ν = (νC )C∈C
in [�(Y × R)]C such that νC = mrgY×R μC for each C in C.

Remark 2 Under the assumptions of Definition 2, we have mrgY×R μ ∈ �C(Y × R)

for every CPS μ on (Y × R × W , C).

We conclude this paragraph introducing the notion of strong belief, which is central
to the epistemic analysis of dynamic games.

Definition 3 Given an event E in X × T and an array of probability measures μ =
(μC )C∈C in [�(X × T )]C , we say that μ strongly believes E if, for every C in C,

E ∩ (C × T ) �= ∅ ⇒ μC (E) = 1.

Let E be a decreasing (finite or infinite) sequence of events in X × T . We say that μ

in [�(X × T )]C strongly believes E if μ strongly believes each element of E .

Simple Conditional Spaces. For some dynamic games, the information structure
satisfies nice properties that allow for a simpler analysis. In line with our momentary
abstraction from the game theoretic setting, we introduce these properties with the
following definition.

Definition 4 A pair (Y , C) with C ⊆ B(Y ) is a simple conditional space if Y is a
compact metrizable space, C is a countable collection of clopen subsets of Y , and

(i) Y ∈ C;
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742 P. Battigalli, P. Tebaldi

(ii) for all C ′,C ′′, D in C, if C ′ ⊇ D and C ′′ ⊇ D, then either C ′ ⊇ C ′′ or C ′′ ⊇ C ′;
(iii) for all D in C, the set {C ∈ C : C ⊇ D} is finite.

If we interpret the elements of C as “nodes,”C ⊇ D can be read as “node C weakly
precedes node D,” and each node in (C,⊇) has a finite number of predecessors,
including Y . Thus, we refer to ⊇ as a (weak) precedence relation and we can regard
(C,⊇) as a tree with distinguished root Y .

Notice that if (X , C) is a simple conditional space and T is a compact metric space,
then the pair (X×T , C×T ) is also a simple conditional space.5 The following example
illustrates the relevance of this concept.

Example 1 The elements of X = AN are the paths (infinite histories) of an infinitely
repeated game with perfect monitoring and a finite set of action profiles A in the stage
game. The set A is endowed with the discrete metric dA (i.e., dA(x, y) = 1 if x �= y,
dA(x, y) = 0 if x = y), and AN is endowed with the “discounting metric,” defined
for x = (an)n∈N and x ′ = (a′

n)n∈N as

d(x, x ′) =
∑

n∈N

1

2n
dA

(
an, a

′
n

)
.

With this, X is a compact metric space. Let H = A<N0 be the set of finite histories
(including the empty history) and let 
 denote the “(weak) prefix of” precedence
relation on H ∪ X . In particular, given h in H and x in X , write h 
 x if there exists x ′
in X such that x = (

h, x ′), i.e., x is the concatenation of h and x ′. Then, each cylinder
X(h) = {x ∈ X : h 
 x} is clopen, H is countable, and the class of cylinders

C = {C ∈ 2X : ∃h ∈ H ,C = X(h))}

has a tree-like structure. Therefore, (X , C) is a simple conditional space, where each
node in C is interpreted as the event that a given finite sequence of action profiles is
observed. �

3 A generalization of Lubin’s lemma

For any Cartesian product X × T and subset E ⊆ X × T , we let projX E denote the
projection of E onto X , that is,

projX E = {x ∈ X : ∃t ∈ T , (x, t) ∈ E)}.

Lubin (1974) proved an “extension” result for probability measures, essentially
stating the existence of a probability measure concentrated on a given subset of a
product space and with a given marginal. This is the content of the following lemma,
which adapts Lubin’s result to our simple topological assumptions.

5 Note that if C is clopen, then so is C × T .
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Lemma 2 (Lubin 1974) Let X and T be compact metrizable spaces and let E ⊆ X×T
be closed. For each ν in �(X) such that ν(projX E) = 1, there exists some μ in
�(X × T ) such that μ(E) = 1 and mrgX μ = ν.

We extend this result in two ways: first, we show that it holds for CPSs; second,
while the above result just looks at a measure that assigns probability one to an event,
we look at a CPS that strongly believes a chain (decreasing sequence) of events.

Lemma 3 Let (X , C) be a simple conditional space and let T be compact metrizable.
Fix a decreasing sequence of closed events E = (E1, . . . , En) in X × T . For each
CPS ν on (X , C) that strongly believes (projX E1, . . . , projX En), there is a CPS μ on
(X × T , C) that strongly believes E and such that mrgX μ = ν.

The proof is in “Appendix,” here we give only a sketch. Starting from a CPS ν

on (X , C) that strongly believes (projX E1, . . . , projX En), Lemma 2 applied to each
measure νC gives an array of probability measures μ̄ = (μ̄C )C∈C in [�(X × T )]C
such that (i) mrgX μ̄ = ν, μ̄C (C × T ) = 1 for all C in C, and (ii) μ̄ strongly believes
E . However, μ̄ need not be a CPS because it may fail to satisfy the chain rule (1).
To obtain the required CPS μ, we need to carefully select some of the measures in
μ̄ and construct μ from such measures so that the chain rule is satisfied. Certainly,
we want to derive μC from the initial belief μ̄X for each conditioning event C with
μ̄X (C × T ) > 0 (i.e., νX (C) > 0): for every event E in X × T ,

μC (E) = μ̄X (E ∩ (C × T ))

μ̄X (C × T )
.

Now, think of C×T as a tree with root X ×T , where C ×T (weakly) precedes D×T
if and only if C × T ⊇ D × T (i.e., C ⊇ D). For each maximal (hence possibly
infinite) chain of eventsD ⊆ C × T starting with the root X × T , pick the first C × T
inD such that μ̄X (C × T ) = 0 (if it exists) and derive μD from μ̄C for every D × T
in D with μ̄C (D × T ) > 0: for every event E in X × T ,

μD (E) = μ̄C (E ∩ (D × T ))

μ̄C (D × T )
.

Next, for each maximal chain D′ ⊆ C × T starting with C × T , pick the first D × T
inD′ such that μ̄C (D × T ) = 0 (if it exists) and derive μE from μ̄D for every E × T
in D′ such that μ̄D(E × T ) > 0. Proceeding in this way, one can assign a probability
measure concentrated on C × T for each conditioning event C in C. The construction
implies that the chain rule (1) holds and that μ strongly believes E .

4 Interactive epistemology in infinite dynamic games

We consider a class of dynamic games, with finite or infinite horizon, in which each
player has a finite set of feasible actions at each stage except (possibly) the last one,
where they are only required to have a compact set of feasible actions (see Battigalli
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744 P. Battigalli, P. Tebaldi

2003). The length of the game, the set of active players and their sets of feasible
actions may be history dependent. We allow for incomplete information about payoff
functions, but we assume for simplicity that there is perfect monitoring of past actions
and that the feasibility constraints do not depend on private information. For such
games, we characterize the behavioral implications of rationality and common strong
belief in rationality.

4.1 Simple infinite dynamic games

Our definition of game takes as primitive terms the actions and private information
of each player, e.g., the output and cost function of a firm; we refer to the latter as
“information type.”6 Histories are sequences of action profiles. With this, nodes of
the game tree are constructed as pairs of states of nature and histories. We use the
following notation on sequences: for any range A, A<N0 = ⋃

n∈N0
An is the set of

sequences (a1, . . . , an) of finite (but otherwise arbitrary) length.7 In particular, the
set A<N0 contains the empty sequence ∅, which is the only element of A0 (i.e., it
is the unique sequence of length 0), and every sequence (a) of length 1, which we
simply identify with its only element a; AN is the set of infinite sequences (an)n∈N,
that is, the set of functions from N to A, and A≤N0 = A<N0 ∪ AN. For all h′ in
A<N0 and h′′ in A≤N0 , (h′, h′′) denotes the concatenation of h′ with h′′ (in particular,
h = (h, h′) = (h′, h) if h′ = ∅), and we say that h′ is a prefix of h, written h′ 
 h, if
h = (h′, h′′) for some h′′. With this, the empty sequence is a prefix of every sequence.
A nonempty set H̄ ⊆ A≤N0 of finite or infinite sequences in A is a tree if it is closed
with respect to prefixes, that is, for every h in H̄ and every prefix h′ of h, h′ ∈ H̄ ; in
particular, ∅ ∈ H̄ .

Fix a tree H̄ ⊆ A≤N0 ; a sequence in H̄ is terminal if it is not the prefix of any other
nonempty sequence in H̄ , and it is nonterminal otherwise. Thus, terminal sequences
may have infinite length and nonterminal sequences are necessarily finite. For each
finite sequence h in H̄ , we letA(h) = {a ∈ A : (h, a) ∈ H̄}. The sets of nonterminal
and terminal sequences are, respectively, H = {h ∈ H̄ ∩ A<N0 : A(h) �= ∅} and
Z = H̄ \ H . A nonterminal sequence h in tree H̄ is preterminal if (h, a) ∈ Z for all
a in A(h).

Definition 5 A simple dynamic game structure is a tuple

〈I , H̄ , (Θi , Ai )i∈I 〉

where I is a countable set of players, Θi is a nonempty compact metrizable space
of information types, each Ai is a nonempty compact metrizable space of actions
(i ∈ I ), H̄ is a tree of sequences of elements of A = ∏

i∈I Ai , called histories, such

6 Information types may be different from types in the sense of Harsanyi (1967–1968), that implicitly
determine hierarchies of exogenous initial beliefs, and from the epistemic types introduced later, that
represent hierarchies of conditional probability systems.
7 Note that An is the set of all sequences of elements of A with length n. In the rest of the paper, it will be
clear from the context whether a superscript stands for a product (as in this case) or as a mere index (as, for
example, in the statement of Lemma 3).
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that, for every nonterminal history h in H , (i) A(h) = ∏
i∈I projAi

A(h), (ii) if h is
not preterminal, A(h) is finite, (iii) if h is preterminal, A(h) is compact.

Condition (i) means that what is feasible for a player cannot depend on actions
simultaneously chosen by other players. Thus,Ai (h) = projAi

A(h) is the (nonempty)
set of feasible actions for player i given history h in H . Player i is active at history
h if |Ai (h)| > 1 and inactive otherwise (that is, if |Ai (h)| = 1). An information
type of player i , θi ∈ Θi , describes the private information of i : for example, θi may
be a preference, or a productivity parameter. It is informally assumed that there are
no other sources of private information; in particular, the actions chosen in previous
stages are public information. In other words, we consider multistage game structures
with observable actions. We make this assumption only for notational simplicity. The
fact that Ai does not depend on θi means that, at each stage, the history-dependent
set of feasible actions is common knowledge. It is easy to extend our results to the
case where Ai depends on a discrete component of θi . We can also add an explicit
common source of uncertainty θ0, which is a payoff-relevant parameter unknown to
all the players; this is conceptually useful for some purposes, but not here. Similarly,
we could easily add chance moves.8 We avoid these generalizations only to simplify
some aspects of the mathematical notation.9 The game tree can be derived as follows:
let Θ = ∏

i∈I Θi be the set of states of nature. The nonterminal nodes of the game
tree are the pairs (θ, h) in Θ × H , the terminal nodes are pairs in Θ × Z ; node (θ, h)

precedes node (θ ′, h′) if θ = θ ′ and h 
 h′; the information sets of player i have the
form

{(θ ′, h′) ∈ Θ × H : θ ′
i = θi , h′ = h},

for θi in Θi and h in H (where in the expression above, θ ′
i denotes the i th component

of the profile θ ′). In words, all the nodes featuring the same information type of i and
the same history are indistinguishable for i .

We let payoffs be functions of the terminal nodes (θ, z) in Θ × Z and informally
assume that such functions are common knowledge. All uncertainty and private infor-
mation about payoffs is therefore captured by states of nature θ = (θi )i∈I with the
understanding that each i knows his information type θi . With this, we consider simple
conditional spaces determined by the game structure. Let the strategies of player i be
given by elements of Si = ∏

h∈H Ai (h). Note that we take an “interim perspective”:
i is “born” with knowledge of his information type θi , and si only describes how i
behaves as a function of h. Player i does not know the types of the other players, nor
what strategies they are implementing; thus, the space of primitive uncertainty for i is∏

j �=i (Θ j × S j ). To ease notation, we write Σi = Θi × Si and Σ−i = ∏
j �=i Σ j .

The relevant conditioning events are determined as follows: each strategy profile

8 Such features can be implicitly modeled within the present framework by letting 0 ∈ I be an indifferent
“fictitious” player. Then, θ0 parameterizes residual uncertainty, about which no nonfictitious player has
private information, andA0(h) is the set of realizations of a chance move. Knowledge about the objective
probabilities of chance moves can be modeled by restrictions on players’ beliefs.
9 Battigalli and Prestipino (2013) allow for imperfect monitoring, a dimension of common uncertainty, and
chance moves, but they maintain that the game structure is finite.
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s = (si )i∈I in S = ∏
i∈I Si determines a unique terminal history

s �→ ζ(s) = (s(∅), s(s(∅)), s (s(∅), s(s(∅))) , . . .) ,

where s(h) = (si (h))i∈I is the action profile determined by s at h. The set of strategy
profiles consistent with history h is

S(h) = {s ∈ S : h 
 ζ(s)}.

Note that10

S(h) = {s ∈ S : ∀(h′, a) ∈ H , (h′, a) 
 h ⇒ s(h′) = a} =
∏

i∈I
projSi S(h).

Then, if h occurs, i is informed that the co-players are implementing strategies in
subset S−i (h) = projS−i

S(h). Since feasibility constraints do not depend on types,
observed choices cannot reveal hard information about θ−i .We can therefore represent
i’s information at h about the types of the co-players and the strategies they are
implementing with the set Σ−i (h) = Θ−i × S−i (h). Note that if a = (ai , a−i ) and
a′ = (a′

i , a−i ) belong to A(h), then Σ−i (h, a) = Σ−i (h, a′). Thus, we implicitly
assume that player i’s beliefs about the strategies and types of others, conditional on
a given history, are independent of his own actions. Let

Ci = {Σ−i (h) : h ∈ H}

denote the set of conditioning events for player i .

Lemma 4 Fix a simple dynamic game structure 〈I , H̄ , (Θi , Ai )i∈I 〉 and a player i in
I . Then, (Σ−i , Ci ) is a simple conditional space.

Adding to a game structure a map from terminal nodes to outcomes (or conse-
quences), we obtain a game form, which is the mathematical representation of the
rules of the game; adding to the game form players’ type-dependent preferences over
(lotteries of) outcomes, we obtain a game with incomplete information.11

Definition 6 A simple dynamic game form is a tuple

〈I , H̄ , (Θi , Ai )i∈I ,Y , g〉,

where 〈I , H̄ , (Θi , Ai )i∈I 〉 is a simple dynamic game structure, Y is a compact metric
space of outcomes, and g : Θ × Z → Y is a continuous outcome function. A simple
dynamic game with incomplete information is a tuple

Γ = 〈I , H̄ , (Θi , Ai )i∈I ,Y , g, (vi )i∈I 〉,
10 More generally, in all games with perfect recall, S(hi ) = projSi S(hi ) × projS−i

S(hi ) for each infor-
mation set hi of each player i , which is all we really need.
11 The intermediate step from game structure to game form could be skipped, defining utility/payoff
functions over terminal nodes. We keep this step because it adds conceptual clarity at little cost.
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where 〈I , H̄ , (Θi , Ai )i∈I ,Y , g〉 is a simple dynamic game form and, for each player
i , vi : Θi × Y → R is a continuous utility function; the composition

(θ, z) �→ ui (θ, z) = vi (θi , g(θ, z))

is called payoff function of player i .

Henceforth, we maintain the following:

Assumption 1 Γ is a simple dynamic game.

Comment:StructureΓ is also called “gamewith payoff uncertainty” (Battigalli and
Siniscalchi 2007) or “basic game” (Bergemann andMorris 2016) to distinguish it from
Bayesian games (Harsanyi 1967–1968), that is, richer structures implicitly describ-
ing players’ infinite hierarchies of exogenous initial beliefs about θ . The epistemic
structures considered in this paper implicitly describe players’ infinite hierarchies of
conditional beliefs based on (Θ × S, H), from which one can derive infinite hierar-
chies of exogenous initial beliefs. But there is no need to refer to Bayesian games in
our analysis.

Example 2 (Disclosure, see Battigalli 2006) Consider a buyer–seller signaling game.
The seller (player 1) has private information about the quality θ ∈ Θ1 = {1, . . . , K }
of the object to sell. After some message m ∈ A1 of the seller, the buyer (player 2)
chooses a price a2 ∈ A2 = [0, b] for the object, where the upper bound b is large:
b > K . Partial and terminal histories are, respectively,

H = {∅} ∪ (A1 × {w}) ∼= {∅} ∪ A1, Z = (A1 × {w}) × ({w} × A2) ∼= A1 × A2,

where w denotes the pseudo-action of “waiting.” To ease notation, let Y = Z and
g = idZ . The utility of the seller is strictly increasing in the action of the buyer, while
the utility of the buyer is a quadratic loss function u2(θ∗,m, a2) = −(θ∗ − a2)2. It
is assumed for simplicity that the message of the sender has the form “quality is at
least k,” which we denote by [θ ≥ k], for some k ∈ Θ1 (note that Θ1 and A1 are
isomorphic in an obvious sense). Moreover, information is verifiable and the seller is
harshly punished if his message conveys false information: for all θ∗ in Θ1, [θ ≥ k]
in A1, and a2 in A2,

u1(θ
∗, [θ ≥ k], a2) =

{
a2 if θ∗ ≥ k,

a2 − P otherwise,

where P > b. With this, it is dominant for the seller to tell the truth, that is, to send
message [θ ≥ k] given his true type θ∗ only if θ∗ ≥ k. The game has finite horizon,
but it is infinite, like the set of actions of the buyer. Nonetheless, it is readily verified
that it is a simple game. �

Example 3 (Reputation, see Schmidt 1993) Consider a finite, two-player stage game
G = 〈I = {1, 2}, A1, A2, v1, v2〉 (vi : A1 × A2 → R, i ∈ {1, 2}). Assume for
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simplicity that each player has a unique best reply to each pure action of the co-
player in G. Let G be infinitely repeated, with discount factors δ1 and δ2. Player 1
is more patient than player 2: δ1 > δ2. The partial histories are the finite sequences
in H = (A1 × A2)

<N0 , and the set of terminal histories is Z = (A1 × A2)
N. The

constraint correspondence is simply Ai (h) = Ai , for all h in H and each i .
To ease notation, let Y = Z and g = idZ . The game has private values, with Θ2

a singleton and Θ1 ∼= Θ = {θ◦, θc, . . .}. The payoff functions of types θ◦ and θc of
player 1 and player 2 are given by

u1(θ
◦, (at )∞t=1) = (1 − δ1)

∞∑

t=1

δt−1
1 v1(a

t ), u2((a
t )∞t=1) = (1 − δ2)

∞∑

t=1

δt−1
2 v2(a

t ),

u1(θ
c, (at )∞t=1) = (1 − δ1)

∞∑

t=1

δt−1
1 vc1(a

t ),

where vc1(a) = 1 if a = (a∗
1 , a2) for any a2 ∈ A2, and vc1(a) = 0 otherwise, with

a∗
1 = arg max

a1∈A1
v1

(
a1, arg max

a2∈A2
v2 (a1, a2)

)
.

In other words, player 1 can be either a normal (θ◦), or a “crazy” type (θc); in the latter
case, it is always dominant for him to choose the Stackelberg action a∗

1 . The strategy
s∗
1 that plays a∗

1 at each h is called Stackelberg strategy. Even if there are other types
besides θ◦ and θc, they do not matter for our analysis.

The game just described is simple, as is every infinite repetition of a finite stage
game. �

4.2 Epistemic characterization results

Following Battigalli and Siniscalchi (1999), one can construct a canonical epistemic
type structure based on a simple dynamic game. Each epistemic type ti is an infinite
hierarchy of CPSs ti = (μm

i )m∈N whereμ1
i is the first-order CPS of type ti , an element

of �Ci (Σ−i ), μ2
i is the second-order CPS of type ti , an element of �Ci (

∏
j �=i (Σ j ×

�C j (Σ− j ))), so that μ1
i = mrgΣ−i

μ2
i , and so on. Denoting by Ti the set of infinite

hierarchies satisfying coherence and common full belief in coherence12 (a compact
metrizable space), there is a canonical homeomorphism βi : Ti → �Ci (Σ−i × T−i )

that determines, for each epistemic type (hierarchy) ti , a CPS βi (ti ) over information
types, strategies, and epistemic types (hierarchies) of the other players.13

12 Roughly, this means that everybody’s lower-order beliefs are the marginals of higher-order beliefs and
there is common belief of this conditional on each history.
13 Furthermore, Battigalli and Siniscalchi (1999) prove that the canonical type structure is also universal,
i.e., that every other type structure can be universally (hence uniquely up to isomorphism) mapped into it
preserving beliefs hierarchies. On such belief-preserving morphisms, see Heifetz and Samet (1998) and
Friedenberg and Meier (2011).
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4.2.1 Complete type structures

Although this construction of the canonical structure is the conceptual backdrop of our
epistemic analysis, we do not need to make it explicit for our formal results. In fact, it
is enough to work with any type structure with belief maps that satisfy the continuity
and surjectivity properties of the canonical structure.

Definition 7 Fix a simple dynamic gameΓ . A complete epistemic type structure based
on Γ is a tuple 〈I , (Ti , βi )i∈I 〉 where, for each player i , Ti is a compact metrizable
space of epistemic types and βi : Ti → �Ci (Σ−i × T−i ) is a continuous surjective
belief map.14 A profile (θi , si , ti )i∈I in

∏
i∈I Σi × Ti is a state of the world, (θi , si , ti )

in Σi × Ti is a personal state of player i .

The consideration of incomplete type structures entails restrictions on players
beliefs that are implicitly assumed to be transparent to the players, but not explicit
in the theoretical analysis.15 We therefore maintain the following:

Assumption 2 The given type structure 〈I , (Ti , βi )i∈I 〉 is complete.

To ease notation, we let βi,h denote the component of βi that corresponds to con-
ditioning event Σ−i (h). Similarly, for each μi ∈ �Ci (Σ−i × T−i ) (respectively,
μi ∈ �Ci (Σ−i )), we let μi,h denote the belief of i conditional on Σ−i (h). The
topological assumptions of the definition above, together with Lemma 1, imply that
�Ci (Σ−i ×T−i ) is a Polish space; therefore, it makes sense to assume that all the belief
maps βi (and thus all their components βi,h) are continuous—a convenient technical
property satisfied by the canonical structure. Completeness requires that for each CPS
μi about the information types, strategies, and epistemic types of the co-players there
is an epistemic type ti with βi (ti ) = μi , that is, each conceivable system of beliefs
is represented in the type structure. In particular, this implies that, for any history
h ∈ H , if there is a profile of information types, strategies, and beliefs of the co-
players (θ−i , s−i , μ−i ) such that the strategies s−i are consistent with h and are best
replies16 to the beliefs μ−i given θ−i , then it is possible for i , upon observing h, to
believe that the co-players are rational, because there is a profile of epistemic types
t−i such that (θ−i , s−i , t−i ) satisfies rationality and is consistent with h. This is a key
feature of the analysis of forward-induction reasoning of Battigalli and Siniscalchi
(2002, 2007), which we extend here.17

4.2.2 Epistemic assumptions

Fix a simple dynamic game Γ and a complete type structure 〈I , (Ti , βi )i∈I 〉 based on
Γ , which we interpret as the canonical type structure for Γ . Our basic assumption is

14 Each type ti is also a type in the sense of Harsanyi (1967–1968), because it determines an initial belief
about the information and epistemic types of the co-players: ti �→ mrgΘ−i×T−i

βi,∅(ti ). Therefore, Γ and
〈I , (Ti , βi )i∈I 〉 together yield a Bayesian game.
15 See Battigalli and Friedenberg (2012), and Battigalli and Prestipino (2013).
16 The formal definition of best reply is given below.
17 Battigalli and Friedenberg (2012) analyze forward-induction reasoning when contextual assumptions
rule out completeness.
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that players are rational in the following sense. Let Si (h) = projSi S(h) denote the set
of strategies of i that do not prevent history h. Also, let

Ui : Θ × S → R

(θ, s) �→ ui (θ, ζ(s))

denote the strategic-form payoff function of i .

Definition 8 Strategy s∗
i is a sequential best reply to CPS μi in �Ci (Σ−i ) given θi if,

for every h in H such that s∗
i ∈ Si (h),

s∗
i ∈ arg max

si∈Si (h)

∫
Ui (θi , si , σ−i )μi (dσ−i |Σ−i (h)).

Player i is rational at personal state (θi , si , ti ) if si is a sequential best reply to
mrgΣ−i

βi (ti ) given θi .

Comment:By standard arguments, si is a sequential best reply toμi given θi if and
only if it is realization-equivalent to a strategy with the one-shot-deviation property
given (μi , θi ); that is, if and only if there exists some s∗

i such that

∀h ∈ H , s∗
i (h) ∈ arg max

ai∈Ai (h)

∫
Ui (θi , s

∗
i |hai , σ−i )μi (dσ−i |Σ−i (h)),

and

∀s−i ∈ S−i , ζ(s∗
i , s−i ) = ζ(si , s−i ),

where s∗
i |hai is the strategy consistent with h that chooses ai at h and coincides with s∗

i
at each history that does not weakly precede h (hence, at all histories following h). In
simple dynamic games with finite horizon, this is equivalent to the standard “folding-
back” rationality of dynamic programming. If players’ preferences were dynamically
inconsistent, then the conceptually appropriate best reply condition should be the
one-shot deviation property.

To ease notation, we let ri (μi , θi ) denote the set of sequential best replies to μi

given θi . Then, we can define the event “player i is rational” as

Ri = {(θi , si , ti ) ∈ Σi × Ti : si ∈ ri (mrgΣ−i
βi (t), θi )}.

Lemma 5 For each i ∈ I , the sequential best reply correspondence

ri : �Ci (Σ−i ) × Θi ⇒ Si
(μi , θi ) �→ ri (μi , θi )

is upper hemicontinuous with nonempty values, and Ri is nonempty and closed.
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As argued by Battigalli (2003) and Battigalli and Siniscalchi (2003), it is often plau-
sible in applications to assume that players’ first-order beliefs satisfy some restrictions
and that this is transparent. Such restrictions may depend on the information type. For
example, we may want to assume that beliefs satisfy independence across co-players
or that beliefs about θ−i given θi are derived from a common prior on Θ . Battigalli
(2003, 2006) and Battigalli and Siniscalchi (2003) provide many other examples and
applications.

Definition 9 A system of first-order belief restrictions is a profile of closed-graph
correspondences � = (�i )i∈I , where �i : Θi ⇒ �Ci (Σ−i ) and �i has nonempty
values for each i in I .

We let �i,θi ⊆ �Ci (Σ−i ) denote the resulting nonempty closed set of CPSs for
information type θi , and we let [�i ] denote the event in Σi × Ti that i satisfies the
restrictions �i , that is,

[�i ] = {(θi , si , ti ) : mrgΣ−i
βi (ti ) ∈ �i,θi }.

Remark 3 Since the graph of �i is closed and the map

(θi , si , ti ) �→
(
θi , si ,mrgΣ−i

βi (ti )
)

is continuous, [�i ] is closed.
Battigalli and Siniscalchi (2007) consider two systems of epistemic assumptions:

common initial belief in rationality and in the belief restrictions, and common strong
belief in rationality and in the belief restrictions. Here, we focus on the latter, which
models a form of forward-induction reasoning. The analysis of the former is simpler
and can be carried out adapting the techniques of this paper (see Sect. 5). For each
event E−i ⊆ Σ−i × T−i , define SBi (E−i ) ⊆ Σi × Ti as the event that i strongly
believes E−i :

SBi (E−i ) = Σi × {ti ∈ Ti : ∀h ∈ H , (E−i ∩ (Σ−i (h) × T−i ) �= ∅) ⇒ βi,h (ti ) (E−i ) = 1}.

In words, i strongly believes E−i if he is certain of E−i conditional on every history
h that does not contradict E−i . Since Σ−i (∅) = Σ−i , strong belief implies belief at
the beginning of the game.

Remark 4 If E−i is closed, the set

Mi (E−i ) =
⋂

h∈H :(Σ−i (h)×T−i ) �=∅

{
μi ∈ �Ci (Σ−i × T−i ) : μi,h (E−i ) = 1

}

of CPSs μi that strongly believe E−i is closed; since βi is continuous,

SBi (E−i ) = Σi × β−1
i (Mi (E−i ))

is closed as well.
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Consider the following sequence of events: for each player i ,

– R�,1
i = Ri ∩ [�i ];

– for each positive integer m, R�,m+1
i = R�,m

i ∩ SBi (
∏

j �=i R
�,m
j ).

Note that the sequence is well defined, because—by an easy induction argument—
Lemma 5 and Remarks 3–4 imply that each set R�,m

i is closed. To ease notation, let

R�,∞
i = ⋂

m∈N
R�,m
i .

The sequence of events
(∏

i∈I R
�,m
i

)

m∈N

embodies the “best rationalization prin-

ciple”: If (θi , si , ti ) ∈ R�,∞
i , then player i is rational at (θi , si , ti ) and βi (ti ) strongly

believes each event in the decreasing sequence
(
R�,m

−i

)

m∈N∪{∞}; this means that

player i always believes in the highest level m ∈ N ∪ {∞} of “strategic sophistica-
tion” consistent with what he observes.

Definition 10 Player i satisfies�-rationality and mutual strong belief in�-rationality
of order m − 1 at personal state (θi , si , ti ) if (θi , si , ti ) ∈ R�,m

i ; player i satisfies
�-rationality and common strong belief in �-rationality at personal state (θi , si , ti ) if
(θi , si , ti ) ∈ R�,∞

i .

4.2.3 Characterization theorem

We are interested in the behavioral implications of the foregoing epistemic assump-
tions. In particular, for each information type θi , the section at θi of projΣi

R�,m
i is the

set of strategies consistent with�-rationality and mutual strong belief in�-rationality
of order m − 1 given θi ; similarly, the section at θi of projΣi

R�,∞
i is the set of strate-

gies consistent with�-rationality and common strong belief in�-rationality given θi .
The main result of this paper yields a characterization of these behavioral implications
by means of a solution concept, called “strong�-rationalizability,” related to Pearce’s
1984 notion of rationalizability for finite games in extensive form.

Definition 11 (cf. Battigalli 2003) Fix a systemof belief restrictions�. For each player
i , let

Σ
�,1
i = {(θi , si ) : ∃μi ∈ �i,θi , si ∈ ri (μi , θi )};

then recursively define, for each i in I and for each positive integer m,

Σ
�,m+1
i =

{
(θi , si ) : ∃μi ∈ �i,θi , si ∈ ri (μi , θi ),∀k ∈ {1, . . . ,m},∀h ∈ H

Σ
�,k
−i ∩ Σ−i (h) �= ∅ ⇒ μi

(
Σ

�,k
−i |Σ−i (h)

)
= 1

}
,

where Σ
�,k
−i = ∏

j �=i Σ
�,k
j ; finally, let Σ

�,∞
i = ⋂

m∈N
Σ

�,m
i . Strategy si is m-

strongly �-rationalizable for information type θi if (θi , si ) ∈ Σ
�,m
i ; strategy si is

strongly �-rationalizable for θi if (θi , si ) ∈ Σ
�,∞
i .
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In words, a strategy is strongly �-rationalizable for information type θi if it can be
justified as a sequential best reply to a first-order CPSμi that strongly believes each set
Σ

�,k
−i of k-strongly�-rationalizable profiles of information types and strategies of the

co-players. On top of the applications mentioned—for example—by Battigalli (2003),
Battigalli (2006), and Battigalli and Siniscalchi (2003), this solution concept is used in
the analysis of self-enforcing agreements18 and of robust implementation/mechanism
design.19

Comment: Battigalli and Prestipino (2013) show that, if the belief restrictions �

are “closed under compositions,” the solution algorithm can be simplified, requiring
at each step m + 1 that μi strongly believes Σ

�,m
−i (only). In particular, this simplifi-

cation holds when the restrictions concern only independence, or initial beliefs (e.g.,
exogenous beliefs), or there are no restrictions at all.20

The following theorem and corollary are the main game theoretic results of this
paper. We provide a proof in the main text because its simplicity illustrates the power
of Lemma 3.

Theorem 1 For every player i , pair (θi , si ) in Σi , and positive integer m, strategy si
is m-strongly �-rationalizable for information type θi if and only if there exists an
epistemic type ti in Ti such that i satisfies �-rationality and mutual strong belief in
�-rationality of order m − 1 at personal state (θi , si , ti ); that is,

∀i ∈ I ,∀m ∈ N, Σ
�,m
i = projΣi

R�,m
i .

Proof Let R�,0
i = Σi × T−i , so that the basis step is trivial. Suppose by way of

induction that Σ
�,m
i = projΣi

R�,m
i for all i and m ≤ n. Let (θi , si , ti ) ∈ R�,n+1

i ;
then, the inductive hypothesis implies that μ1

i = mrgΣ−i
βi (ti ) is a CPS in �i,θi that

strongly believesΣ
�,m
−i for eachm ≤ n and si ∈ ri (μ1

i , θi ); hence, (θi , si ) ∈ Σ
�,n+1
i .

For the other direction, let (θi , si ) ∈ Σ
�,n+1
i . By definition of Σ

�,n+1
i , there exists

some νi ∈ �i,θi such that νi strongly believes Σ
�,m
−i = projΣ−i

R�,m
−i for each m ≤ n

and si ∈ ri (νi , θi ). By Lemma 3 and the inductive hypothesis, there is a CPS μi on
(Σ−i ×T−i , Ci ) such thatμi strongly believes (R�,m

−i )nm=0. Since βi is surjective, there

exists some ti in Ti so that βi (ti ) = μi ; therefore, (θi , si , ti ) ∈ R�,n+1
i . ��

Corollary 1 For every player i and pair (θi , si ) in Σi , strategy si is strongly �-
rationalizable for information type θi if and only if there exists an epistemic type
ti in Ti such that i satisfies �-rationality and common strong belief in �-rationality
at personal state (θi , si , ti ); that is,

∀i ∈ I , Σ
�,∞
i = projΣi

R�,∞
i .

18 Catonini (2017b), and Harrington (2017). See Sect. 5.
19 Artemov et al. (2013) analyze robust virtual implementation with respect to �-rationalizability in static
mechanisms. Mueller (2016) applies strong rationalizability to dynamic mechanisms. Bergemann andMor-
ris (2016 and references therein) apply to static mechanisms the solution concept without belief restrictions
and call it “belief-free rationalizability.”
20 Battigalli and Siniscalchi (2002, 2003) correctly rely on such simplified algorithm.
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Proof One inclusion is immediate (and does not use compactness):

Σ
�,∞
i =

⋂

m∈N

Σ
�,m
i =

⋂

m∈N

projΣi
R�,m
i ⊇ projΣi

(
⋂

m∈N

R�,m
i

)
= projΣi

R�,∞
i ,

where the first and last equalities hold by definition, the second equality follows from
Theorem 1, and the inclusion is obvious. To show the converse, let σi ∈ Σ

�,∞
i =⋂

m∈N
projΣi

R�,m
i , so that for every m ∈ N there exists tmi in Ti such that (σi , tmi ) ∈

R�,m
i . This implies that, for every m ∈ N, the section Tm

σi
of R�,m

i at σi is nonempty.

Like (R�,m
i )m∈N, also (Tm

σi
)m∈N is a decreasing sequence of closed nonempty subsets

of a compact space. By the finite intersection property of compact spaces,
⋂

m∈N
Tm

σi

is nonempty. If ti is an element of the intersection, we have (σi , ti ) ∈ ⋂
m∈N

R�,m
i .

Hence, σi ∈ projΣi

⋂
m∈N

R�,m
i , and the claim follows. ��

Example 4 Consider Example 2. Strategies of the seller are identified with his actions,
while the set of strategies of the buyer is S2 = AA1×{w}

2
∼= AA1

2 . Therefore, the set of
beliefs of the seller (whose only observable event about the buyer corresponds to the
empty history) is identified with �(S2), and we do not impose exogenous restrictions,
that is, �1,θ = �(S2) for each θ . The conditioning events for the buyer correspond to
the empty history and the possible messages by the seller:

C2 = {Θ1 × A1,Θ1 × {[θ ≥ 1]}, . . . , Θ1 × {[θ ≥ K ]}} .

The belief system of the buyer is given by a CPS in �C2(Θ1 × A1). We assume that
the buyer is “mildly skeptical,” in the sense that, after observing a message, he assigns
probability greater than some small positive value to the worst state consistent with it.
Formally,

�2 = {μ ∈ �C2(Θ1 × A1) : ∀k ∈ Θ1, μ (k|[θ ≥ k]) ≥ ε},

where μ (·|[θ ≥ k]) is the marginal on Θ1 of the component of the CPS conditional
on Θ1 × {[θ ≥ k]}, and ε is a fixed positive real number (we assume ε small and, in
particular, less than 1).

Battigalli (2006) shows that the only �-rationalizable message of a seller of type
k is a1 = [θ ≥ k], and the �-rationalizable response of the buyer to such mes-
sage is a2 = k. The result follows from forward-induction reasoning: First note
that strong belief in the rationality of the seller implies that the buyer believes
that he tells the truth. With this, weak skepticism implies that the strategy of the
buyer satisfies s2 ([θ ≥ K ]) > s2([θ ≥ K − 1]). Given that the seller believes
in R2 ∩ [�2] ∩ SB2(R1), if θ = K he will never send message [θ ≥ K − 1],
because he believes he can make the buyer increase a2 by sending message [θ ≥ K ].
Thus, SB2(R1) ∩ SB2 (R1 ∩ SB1 (R2 ∩ [�2] ∩ SB2(R1))) implies that if the rational
buyer receives message [θ ≥ K − 1], he is certain that θ = K − 1 and chooses
s2([θ ≥ K − 1]) = K − 1. An induction argument shows that s2([θ ≥ k]) = k for
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each k. Formally, the following “full disclosure” result holds:

Σ
�,∞
1 = {(θ∗, [θ ≥ k]) ∈ Θ1 × A1 : θ∗ = k},

Σ
�,∞
2 = {s2 ∈ S2 : ∀k ∈ {1, . . . , K }, s2([θ ≥ k]) = k}.

Hence, by the characterization result in Corollary 1, these are the sets of type–strategy
pairs consistent with rationality, weak skepticism, and common strong belief in ratio-
nality and weak skepticism. �

Example 5 Consider now the infinitely repeated game described in Example 3. There
are no restrictions on the beliefs of player 1: that is,

∀θ1 ∈ Θ1, �1,θ1 = �C1 (S2) ,

while player 2 initially assigns probability at least ε to the crazy type θc:

�2 =
{
μ2 ∈ �C2(Θ1 × S1) : μ2,∅({θc} × S1) ≥ ε

}
,

where ε ∈ (0, 1) is given. Call this restriction ε-possibility of θc. Adapting a proof by
Fudenberg and Levine (1989) one can show that if the Stackelberg action a∗

1 is played
long enough, and player 2 strongly believes that player 1 is rational,21 then player 2
eventually assigns conditional probability close to 1 to a∗

1 .
Suppose that the stage game has “conflicting interests,” that is, the Stackelberg

action holds player 2 to his maxmin payoff:

v2

(
a∗
1 , arg max

a2∈A2
v2

(
a∗
1 , a2

)) = min
a1∈A1

max
a2∈A2

v2 (a1, a2) .

Then, adapting arguments from Schmidt (1993) and Watson (1993), one can show
that the Stackelberg payoff for player 1 is an approximate lower bound on his strongly
�-rationalizable expected payoff as he becomes infinitely patient; the reason is that
he can eventually “teach” player 2 to play the stage-game best reply to the Stackelberg
action:22

∀μ1 ∈ �
(
S∞,�
2

)
, lim

δ1→1
max
s1∈S1

Eμ1 (U1 (s1, ·))

≥ lim
δ1→1

Eμ1

(
U1

(
s∗
1 , ·

)) ≥ v1

(
a∗
1 , arg max

a2∈A2
v2

(
a∗
1 , a2

))
.

21 In this case, 2’s belief in the rationality of 1 after any Stackelberg history h∗ =((
a∗
1 , a12

)
,
(
a∗
1 , a22

)
, . . .

)
is implied by ε-possibility of θc .

22 If θc is a “commitment type” whose only feasible action is the Stackelberg actions, then the result also
holds for “weak,” or “initial” �-rationalizability. See also Battigalli and Watson (1997), who consider a
countable sequence a short-run players in the role of player 2.
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By Corollary 1, under common strong belief in rationality and ε-possibility of θc,
the expected payoff of a rational and very patient player 1 is approximately bounded
below by the Stackelberg payoff. �

5 Discussion

In this section, we discuss some extensions and generalizations of our analysis.

5.1 More general information structures

For the sake of simplicity, we restricted our attention to simple incomplete-information
dynamic gameswith observable actions, distributed knowledge of θ (i.e., pooling play-
ers’ private information, the true state of nature θ is identified), and without chance
moves. All these simplifications can be removed without affecting the main charac-
terization result.23

5.2 Common initial belief in rationality

We focused on epistemic assumptions that capture a form of forward-induction reason-
ing because this makes the analysis more challenging compared to other assumptions
such as common initial belief in rationality, or common belief in rationality conditional
on a fixed family of observable events. It is quite straightforward to extend to sim-
ple infinite dynamic games the characterization results concerning such assumptions
obtained for finite games. Adapting the statement and proof of Lemma 3, we obtain
the following:

Lemma 6 Let X and T be compact metrizable spaces and let C be a countable sub-
collection of B(X). Fix some family F ⊆ C and a closed event E ⊆ X × T . For each
CPS ν on (X , C) such that νC (projX E) = 1 for every C ∈ F , there is a CPS μ on
(X × T , C) such that mrgX μ = ν and μC (E) = 1 for every C ∈ F .

Letting F = {X} ⊆ C in this modified lemma, we can prove that the behavioral
implications of rationality (and�-restrictions) and common initial belief in rationality
(and in the�-restrictions) are characterizedby “weak”or “initial” (�-)rationalizability
(see Battigalli 2003, Battigalli and Siniscalchi 1999, 2007). A similar result holds
for rationality and common belief in rationality conditional on a fixed family F of
nonterminal histories (see Battigalli and Siniscalchi 1999).

5.3 Transparent belief restrictions

Battigalli and Prestipino (2013) prove, for finite games, that strong�-rationalizability
also characterizes the behavioral implications of a stronger set of epistemic assump-
tions than those considered here, that is, stronger than rationality, [�] and common

23 For an epistemic analysis of finite, but otherwise general dynamic games of incomplete information, see
Battigalli and Prestipino (2013).
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strong belief in rationality and [�]. Specifically, define the mutual full belief operator
B (·) as follows: for every event E = ∏

i∈I Ei ,

B (E) =
∏

i∈I
Bi (E−i ) =

∏

i∈I

{
(θi , si , ti ) : ∀h ∈ H , βi,h(ti ) (E−i ) = 1

}
.

An event is transparent at a state (θ, s, t) if E is true and there is common full belief
of E at (θ, s, t), that is,

(θ, s, t) ∈
∞⋂

n=0

Bn (E) =: B∗ (E) ,

where B0 (E) = E . Also, as in Battigalli and Siniscalchi (2002), let

CSB (E) =
∏

i∈I
Ei ∩ SBi (E−i )

denote the mutual correct strong belief operator. It is routine to check that

∏

i∈I
R�,m
i = CSBm−1 (R ∩ [�])

for each m. Battigalli and Prestipino (2013) prove that

∀m ∈ N, projΘ×SCSB
m−1 (R ∩ [�]) =

∏

i∈I
Σ

�,m
i = projΘ×SCSB

m−1 (
R ∩ B∗ ([�]))

and

projΘ×SCSB
∞ (R ∩ [�]) =

∏

i∈I
Σ

�,∞
i = projΘ×SCSB

∞ (
R ∩ B∗ ([�])) ,

that is, one can replace [�] with transparency of [�] in the epistemic assumptions
considered here. This is equivalent to saying that �-rationalizability characterizes
the behavioral implications of rationality and common strong belief in rationality in
the substructure of the canonical structure obtained by assuming transparency of the
restrictions �.24 By inspection of the proof of Battigalli and Prestipino, it is clear that
it can be applied verbatim to the more general case of simple games considered here.

5.4 Self-enforcing agreements and forward induction

Let � represent the restrictions implied by belief in the compliance with a preplay
nonbinding agreement.Harrington (2017) applies strong�-rationalizability to analyze
incomplete collusive agreements in infinite oligopoly models where firms set prices in

24 See the discussion in Battigalli and Friedenberg (2012) and Battigalli and Prestipino (2013).
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a finite grid. Such games are simple, and our result provides an epistemic foundation of
Harrington’s analysis. Catonini (2017a, b) develops a theory of self-enforcing (possi-
bly incomplete) agreements in finite games based on forward-induction reasoning. He
argues that strong �-rationalizability can capture aspects of such a theory, although a
somewhat different solution concept, selective rationalizability, is more appropriate.
Catonini’s argument refers to the result by Battigalli and Prestipino (2013) mentioned
above, which shows that �-rationalizability implicitly gives “epistemic priority” to
belief in the agreement over belief in rationality when they cannot be reconciled.
Catonini (2017a) shows that selective rationalizability characterizes the behavioral
implications of CSB∞ ([�] ∩ CSB∞ (R)). Lemma 3 allows to extend Catonini’s the-
ory to simple infinite games.

5.5 Evidence games

Example 2 is a special case of the class of evidence games where an agent (player
1) has the ability to exhibit verifiable information about a discrete state of nature and
a principal (player 2) chooses a reward. There is a rich literature about mechanisms
and evidence games,25 which are therefore an important subset of the class of infinite
dynamic games with incomplete asymmetric information analyzed in this paper. We
conjecture that the forward-induction analysis of Example 4 and—more generally—
the epistemic analysis allowed by our results can be fruitfully applied to shed light on
this literature.

5.6 Nonsimple games

The main reason to restrict our analysis to simple dynamic games is that this allows
us to prove that the topological properties of the primitive uncertainty conditional
space (X , C) are inherited by

(
X × �C (X) , C)

: if (X , C) is a simple conditional
space, so is

(
X × �C (X) , C)

(see Battigalli and Siniscalchi (1999) and Lemmas 1,
4). However, the requirement that each conditioning event C in C is both closed and
open (clopen) is restrictive in some applications. For example, suppose that Θ−i is
uncountable and that i gets signals about θ−i ; then, even if signals are discrete, the
set of profiles

(
θ j , s j

)
j �=i consistent with an information set hi , Σ−i (hi ) may be not

clopen. Similarly, facial expressions and other observable features of co-players in
face-to-face interaction may be signals of, say, co-players’ first-order beliefs; then,

the set of profiles
(
θ j , s j , μ1

j

)

j �=i
consistent with an information set hi may be not

clopen. We can prove a version of Lemma 3 that does not assume the clopeness of
conditioning events in C and perhaps can be applied to more general constructions of
hierarchical belief spaces.26

25 See, for example, Hart et al. (2017) and the references therein.
26 We thank Gabriele Beneduci for proving this generalization. See the working paper version: http://www.
igier.unibocconi.it/folder.php?vedi=6337&tbn=albero&id_folder=4878.
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Appendix: Proofs

Proof of Lemma 3

Fix some ν ∈ �C(X) that strongly believes (projX E1, . . . , projX En). Define recur-
sively a partition {C0, C1, . . .} of C as follows: let C0 = {C ∈ C : νX (C) > 0}. Suppose
we have defined C0, . . . , Cm , and let

C̄m+1 = {C̄ ∈ C \ (C0 ∪ · · · ∪ Cm) : ∀C ∈ C, C ⊃ C̄ ⇒ C ∈ C0 ∪ · · · ∪ Cm}

be the collection of conditioning events C̄ not in C0∪· · ·∪Cm whose strict predecessors
C are all in C0 ∪ · · · ∪ Cm ; then, let

Cm+1 = {D ∈ C \ (C0 ∪ · · · ∪ Cm) : ∃C̄ ∈ C̄m+1, C̄ ⊇ D, νC̄ (D) > 0}.

For convenience, let C̄0 = {X}. Note that, by definition of Cm and since ν is a CPS,
we have C̄m ⊆ Cm for every m = 0, 1, . . . (in particular, C̄0 = {X} ⊆ C0).

Claim 1 Every element of Cm has a unique predecessor in C̄m .
First note that it is true by definition that each element of Cm has at least one

predecessor in C̄m ; we only have to prove uniqueness. The claim is obvious form = 0.
For m = 1, 2, . . ., let C ∈ Cm and consider any two distinct predecessors C ′,C ′′ ⊃ C
(if they exist); then—by the tree-like property of C—either C ′′ ⊃ C ′ or C ′ ⊃ C ′′.
Thus, by definition of C̄m , at most one of C ′ and C ′′ can belong to C̄m . ��
Claim 2 {C0, C1, . . .} is a partition of C.

By the construction above, it is clear that the collections Cm are pairwise disjoint.
Let us show that C =

⋃
n≥0

Cn . Pick any C in C. By definition of simple conditional

space, the collection of predecessors (supersets) of C in C, denoted by C⊇(C), is finite
and totally ordered by⊇. Hence, C⊇(C) can be written as {C0, . . . ,Cm}where allCks
are distinct (k = 0, . . . ,m) and X = C0 ⊃ · · · ⊃ Cm−1 ⊃ Cm = C . Remark that, for
every k less than m, {C0, . . . ,Ck} is the set of strict predecessors of Ck+1. We show
inductively that

Ck ∈ C0 ∪ · · · ∪ Ck

for all k = 0, . . . ,m, so that, in particular, C = Cm ∈ C0 ∪ · · · ∪ Cm ⊆
⋃

n≥0
Cn .

Indeed, C0 = X ∈ C0 is trivially true. Suppose that Ck ∈ C0 ∪ · · · ∪ Ck for all
k = 0, . . . , 
 ≤ m − 1: if C
+1 ∈ C0 ∪ · · · ∪ C
 we are done; if not, every strict
predecessor of C
+1 belongs to C0 ∪ · · · ∪ C
 by the inductive hypothesis, which
implies—by definition of C̄
+1—that C
+1 ∈ C̄
+1 ⊆ C
+1.

By Claims 1–2, we can define a map e : C → C that associates each C ∈ C with
the earliest predecessor C̄ of C such that νC̄ (C) > 0: let Cm be the cell of partition
{C0, C1, . . .} that contains C , then C̄ = e(C) is the unique predecessor of C in C̄m .
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Note that C ∩projX Em �= ∅ if and only if Em ∩ (C ×T ) �= ∅, for allm = 0, . . . , n
and C in C. Since ν strongly believes each projX Em , by Lemma 2 we can find an
array of probability measures μ̄ = (μ̄C )C∈C in [�(X × T )]C (possibly not a CPS)
such that mrgX μ̄ = ν and μ̄ strongly believes E . More explicitly: for all C in C and
for all m = 0, . . . , n,

mrgX μ̄C = νC ,

and

Em ∩ (C × T ) �= ∅ ⇒ μ̄C (Em ∩ (C × T )) = 1.

We use some of these measures to construct the desired CPS μ:
For all m = 0, 1, . . ., for all C in Cm , and for all E in B(X × T ), let

μC (E) = μ̄e(C)(E ∩ (C × T ))

μ̄e(C)(C × T )
,

where the denominator is positive because μ̄e(C)(C × T ) = mrgX μ̄e(C)(C) =
νe(C)(C) > 0 by definition of e (C). Since {C0, C1, . . .} is a partition of C, we obtain
an array (μC )C∈C in [�(X × T )]C . Clearly, μC (C × T ) = 1 for all C in C.

Claim 3 ν is the marginal of μ.
For each C in C and each event of the form E × T for E in B(X),

μC (E × T ) = μ̄e(C)((E ∩ C) × T ))

μ̄e(C)(C × T )
= νe(C)(E ∩ C)

νe(C)(C)

= νC (E ∩ C) νe(C)(C)

νe(C)(C)
= νC (E),

where we used the definition of e(C) and the fact that ν satisfies the chain rule (1). ��
Claim 4 μ strongly believes E .

Let m ∈ {1, . . . , n} and C ∈ C. We must show that Em ∩ (C × T ) �= ∅ implies
μC (Em) = 1. If Em∩(C×T ) �= ∅, thenC∩projX Em �= ∅, and e(C)∩projX Em �= ∅
because C ⊆ e(C) by definition. Since μ̄ strongly believes E , μ̄e(C)(Em) = 1, which
implies μ̄e(C)(Em ∩ (C × T )) = μ̄e(C)(C × T ) and thus

μC (Em) = μ̄e(C)(Em ∩ (C × T ))

μ̄e(C)(C × T )
= μ̄e(C)(C × T )

μ̄e(C)(C × T )
= 1.

��
Claim 5 μ satisfies the chain rule (1).

Fix an event E and two conditioning events C and D in C with E ⊆ D × T ⊆
C × T . We must show that μC (E) = μD(E) μC (D × T ). There are two cases: (i) If

123



Interactive epistemology in simple dynamic games… 761

e(C) = e(D), then

μC (E) = μ̄e(C)(E)

μ̄e(C)(C × T )
= μ̄e(D)(E)

μ̄e(D)(C × T )

= μ̄e(D)(E)

μ̄e(D)(D × T )

μ̄e(D)(D × T )

μ̄e(D)(C × T )

= μD(E) μC (D × T ).

(ii) If e(C) �= e(D), then D ⊆ e(D) ⊂ C ⊆ e(C) and νe(C)(e(D)) = 0. Therefore
μ̄e(C)(E) = μ̄e(C)(D × T ) = 0, which implies that (1) holds:

μC (E) = μ̄e(C)(E)

μ̄e(C)(C × T )

= 0

= μ̄e(D)(E)

μ̄e(D)(D × T )

μ̄e(C)(D × T )

μ̄e(C)(C × T )

= μD(E) μC (D × T ).

��
Since ν is themarginal ofμ, which strongly believesE and satisfies all the properties

of a CPS, the theorem is proved. ��

Other proofs

Proof of Lemma 4

Let Hn = H ∩ An be the set of nonterminal histories of length n. By assumption,
Hn is finite for each n = 0, 1, . . .; therefore, H = ⋃

n∈N0
Hn is countable. Each set

A j (h) is a compact metrizable space; hence, the countable Cartesian product S j =∏
h∈H A j (h) is compact and metrizable as well. The set Θ j is compact metrizable

and I \ {i} is countable, hence Σ−i = ∏
j �=i (Θ j × S j ) is a compact metrizable space.

We have to show that Ci is a countable collection of clopen subsets of Σ−i with a
tree-like structure. The collectionCi is countable because H is countable, and it inherits
its tree-like structure from the countable tree H : indeed, Σ−i = Σ−i (∅) ∈ Ci , and
the set of strict predecessors of any Σ−i (h) in Ci is the finite collection C≺

i (h) =
{Σ−i (h′) : h′ ≺ h}; pick any pair of distinct predecessors Σi (h′) and Σi (h′′) in
C≺
i (h). Since H is a tree, either h′ ≺ h′′ and Σ−i (h′′) ⊂ Σ−i (h′) or h′′ ≺ h′ and

Σ−i (h′) ⊂ Σ−i (h′′).
Obviously,Σ−i (∅) = Σ−i is closed and open inΣ−i . To see thatΣ−i (h) is closed

for each h in H \ {∅}, let h = (a1, . . . , an) and note that

Σ−i (h) =
∏

j �=i

⎛

⎝Θ j × {a1j } × · · · × {anj } ×
∏

h′∈H :h′⊀h

A j (h
′)

⎞

⎠
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where each set in the product is closed. To see that Σ−i (h) is also open in Σ−i ,
we first show that Σ (h) is open in Σ . Note that {Σ(h′) : h′ ∈ Hn} is the finite
partition of subsets of Σ obtained from the preimages through map (θ, s) �→ ζ (s)
of the elements of the finite partition {Z(h′) : h′ ∈ Hn} of Z . Each Σ

(
h′) is a

product of closed subsets (see above) and it is closed as well; therefore, the finite
union

⋃
h′∈Hn\{h} Σ(h′) is closed and Σ(h) = Σ \ ⋃

h′∈Hn\{h} Σ(h′) is open. Since
a Cartesian product C = ∏

j∈I C j ⊂ Σ is open if and only if each C j is open, it
follows that each Σ j (h) is open and Σ−i (h) = ∏

j �=i Σ j (h) is open. ��

Proof of Lemma 5

The result follows from standard compactness-continuity arguments and is therefore
omitted (see Battigalli 2003). ��
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