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Abstract
In games with complete information, all aspects of the interactive
situation ("game"), including players’personal features such as their
preferences and abilities, are common knowledge (everybody knows
them, everybody knows that everybody knows, etc.). Incomplete
information means that some aspects of the interactive situation are
not commonly known. In this case, we want to describe what is
commonly known, and to distinguish it from what is privately known by
each player. We also want to describe players’beliefs about the
exogenous and unknown aspects of the game, besides their beliefs about
behavior, as well as beliefs about beliefs. Incomplete information is the
norm, both in real life and in experiments. Incompleteness of
information affects the way we analyze games in important ways.
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Introduction

Whether a solution or equilibrium concept is consistent with
incomplete information is a matter of interpretation, we must look
at the conceptual motivations:

The iterated deletion of never-best replies analyzed in Lectures
9-10 represents the behavioral implications of rationality and
common belief in rationality under complete information (common
knowledge of the outcome function and utility functions).

Nash equilibrium can be motivated as an “obvious way to play the
game”: e.g., what comes out of strategic reasoning (see above), or
a "self-enforcing agreement". Also this makes sense under the
complete information assumption.

Deductive interpretation of NE: Unique outcome of the iterated
deletion of never-best replies, see above.
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Self-enforcing agreement interpretation of NE: Again, we need
complete information (or maybe something “close” to it) in order
to make sense of this interpretation.

Consider the following game with the assumption that utility
coincides with own monetary payoff. Then (t, `) is a Pareto Nash
equilibrium. Is it self-enforcing? The agreement (t, `) is
self-enforcing if there is common belief that there is no incentive to
deviate from (t, `).

` r
t 100,100 0,99
b 99,0 99,99

Would Rowena (row player) play t if she is not sure of the payoff
function of Colin (column player)? What if she is not sure that
Colin is sure of her payoff function? What if...?
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Static environments with Incomplete Information

Rules of the game ⇒ outcome function π : A→ Y .

Each player i ∈ I ranks (lotteries over) consequences according to
(the expectation of) a vNM utility function vi : Y → R.
In environments with incomplete information there is lack of
common knowledge of π and/or (vi )i∈I .

Such situation can be described with parametrized utility (of
actions) functions

ui : Θ× A→ R,

with

θ ∈ Θ parameter affecting payoffs and utilities,

θ = (θ0, (θi )i∈I ) ∈ Θ = Θ0 × (×i∈IΘi )

i ∈ I knows only θi =private info. of i about (uj )j∈I , the type of i .
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Intuition: it is common knowledge that θ ∈ Θ, Θi represents what
is commonly deemed possible about i’s attributes, the “larger”Θi

the more uncertain are the other players about i’s type.

If Θi is a singleton (i ∈ I ), that is, Θi =
{
θ̄i
}
, it means that what i

knows is common knowledge (it is common knowledge that θi = θ̄i )
and Θi can be neglected: indeed, Θ0 ×

(
×j∈I\{i}Θj

)
and Θ have

the same cardinality; hence, they are (intuitively) isomorphic.

Θ0 represents the residual uncertainty that would remain if the
players could pool their private information.

We often focus on the case where Θ0 is a singleton: there is no
residual uncertainty after pooling private information (in this case
it is said that there is “distributed knowledge”of θ). Thus, we
will often neglect Θ0.
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Private and interdependent values

We distinguish between the case of private values, where ui depends
only on θi , and interdependent values, where ui may depend on the
whole θ.

Private values: Common knowledge of π but lack of common
knowledge of (vi )i∈I

(common knowledge that) each i knows his vNM utility function vi
⇒ parametrized representation vi : Θi × Y → R.
Note: {wi ∈ RY : ∃θi ∈ Θi ,wi = vi (θi , ·)} is the set of utility
functions that each j 6= i thinks i might have ⇒ get

ui (θi , a) = vi (θi , π(a))

Note: under private values we may assume w.l.o.g. that there is
distributed knowledge of θ (Θ0 singleton).

Typically in experiments outcome (monetary payoffs) function
π : A→ Y (with Y ⊆ RI ) is made common knowledge, but the
preferences of others (v−i ) are unknown ⇒ private values.
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Interdependent values: lack of common knowledge of π (maybe
π depends on personal features such as “ability”).

if common knowledge of (vi )i∈I (just for simplicity) ⇒ parametrized
representation π : Θ× A→ Y ({f ∈ Y A : ∃θ ∈ Θ, f = π (θ, ·)} is
the set of possible outcome functions) ⇒ get

ui (θ, a) = vi (π(θ, a)).

More generally, if neither π nor (vi )i∈I is common knowledge, each
vi is parametrized by θi and

ui (θ, a) = vi (θi , π(θ, a)).

Experiments sometimes create situations with an unknown
outcome function, e.g., to study behavior in common-value
auctions: the monetary value of the object on sale is the same for
all subjects and it is unknown to them, subjects obtain private
information correlated with such value.
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Example

Cournot oligopoly model (quantity setting): firm i = 1, ..., n produces
qi ≥ 0 units of homogeneous good
I Inverse demand P(Q) = [p̄ + θ0 − Q]+ (with [x ]+ := max {0, x},
Q =

∑n
i=1 qi )

I Cost function of firm i: Ci (qi , θi ) = θiqi , 0 ≤ qi ≤ q̄ (q̄=common
capacity),
I Common knowledge of selfish risk neutrality and of sets Θ0,Θ1,...,Θn

I Utility/payoff of i :
ui (θ0, θi , q1, ..., qn) =

([
p̄ + θ0 −

∑n
j=1 qj

]+
− θi

)
qi ,

I There are private values and distributed knowledge of θ if there is
common knowledge of market demand (Θ0 singleton)
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Example

Team production: Team agents i = 1, ..., n, i exerts effort ei ≥ 0
I Cost of effort (in units of output) Ci (ei , ki ) = kie2i , ki ∈ Ki ⊆ R+

I Production function: y =
∏n
i=1 e

pi
i , pi ∈ Pi ⊆ R+

I θi = (ki , pi ) ∈ Ki × Pi = Θi

I Common knowledge of (output-)risk neutrality and of sets
Θi = Ki × Pi
I Utility of i : ui (k1, p1, ..., kn, pn, e1, ..., en) = 1

n

∏n
j=1 e

pj
j − kie2i

I Private values iff sets P1, ...,Pn are singletons (productivities are
common knowledge), otherwise interdependent values
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Static games with uncertainty

We can represent (simultaneous) strategic interaction under
incomplete information with the mathematical structure

Ĝ =
〈
I ,Θ0, (Θi ,Ai , ui : Θ× A→ R)i∈I

〉
which is (informally) assumed to be common knowledge. This is
called game with uncertainty.
Interpretation: θ0 affects the payoff/utility of somebody (if
θ′0 6= θ′′0 , then ∃i ∈ I , ui (θ′0, ·) 6= ui (θ′′0 , ·)). But part, or all, of i’s
private information θi may be payoff irrelevant. Yet even
payoff-irrelevant information may be strategically relevant (e.g., θi
may be the report to i by an art expert about the autenticity of a
painting on auction).
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Games with uncertainty are suffi cient to describe certain aspects of
strategic thinking, specifically, rationality and common belief in
rationality, by an extension of the algorithm of iteratively
eliminating never-best replies.

Write Bi (E ) for “i believes E”(with prob. 1), and
B(E ) =

⋂
i∈I
Bi (E ) for “everybody believes E ,”Ri for “i is

rational,”R =
⋂
Ri for “everybody is rational.”

What actions of i are consistent with R (rationality), B(R)
(mutual belief in rationality), B(B(R)), B(B(B(R))) ...
R ∩ CB(R)? [CB (E )=common belief of E .]
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Example
Assume: CK that utility=payoff. Possible payoff functions given by the
following tables. Player 1 (Rowena) knows θ while player 2 (Colin) does
not (Θ ≈ Θ1)

Ĝ 1 :

θ′ ` r
t 4,0 2,1
b 3,1 1,0

θ′′ ` r
t 2,0 0,1
b 0,1 1,2

I R1 ⇒ [t if θ′], because t dominates b given θ = θ′ (recall, Row.
knows θ) ⇒ (θ′, b) is inconsistent with rationality (delete).I
R2 ∩ B2(R1) ⇒ r , because u2(θ, x , `) < u2(θ, x , r) for all (θ, x) 6= (θ′, b)
(those consistent with R1).I R1 ∩ B1(R2) ∩ B1(B2(R1)) ⇒ Row. picks
best reply to r given θ ⇒ [b if θ = θ′′].
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Example

Assume: CK that utility=payoff. Players 1 and 2 receive an envelope.
Envelope of i contains θi Euros, with θi = 1, ...,K. Each player can
offer to exchange (OE) by paying transaction cost ε > 0 (small).
Exchange executed IFF both offer:

Ĝ 2 :

ai\aj OE N
OE θj − ε θi − ε
N θi θi

Note: A rational player i offers to exchange only if she assigns positive
probability to event [θj > θi ] ∩ [aj = OE ].I Ri ⇒ [ai = N if θi = K ]
because OE is dominated in this case.I Ri ∩ Bi (Rj ) ⇒ [ai = N if
θi = K − 1] because ...I Ri ∩ Bi (Rj ) ∩ Bi (Bj (Ri )) ⇒ [ai = N if
θi = K − 2] because ...I It can be shown that:
R ∩ CB(R)⇒ (∀θi , ai = N given θi ) (no-trade!).
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First-order beliefs (static games)

To ease notation, disregard residual uncertainty Θ0.
The primitive uncertainty space of pl. i (person playing in role i)
includes the unknown parameters (about which others have private
information) besides the actions of others: Θ−i × A−i .
Therefore, 1st -order beliefs about others are probabilistic beliefs
αi ,−i ∈ ∆ (Θ−i × A−i ).
The plan of i yields her (typically certain) prediction about her
own behavior: αi ,i ∈ ∆ (Ai ).
1st -order beliefs are subjective probability measures
αi = αi ,i × αi ,−i (self vs others independence), space
∆1
i ⊆ ∆ (Θ−i × A).

Suppose there are private values (ui depends only on θi ), why
should i care about θ−i? For strategic reasoning: e.g.,

if my oligopolistic competitor has low marginal cost, her output is
more likely to be high;
if my competitor in an auction values the object on sale a lot, she is
likely to bid high.
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Second-order beliefs (static games)

If the beliefs of others matter for psychological reasons,
ui : Θ× A×∆1

−i → R, 2nd -order beliefs are necessary to compute
expected utility.

Even if preferences over outcomes are belief-independent, 2nd -order
beliefs can be used, for example, to express the belief in the
rationality of others (only triples (θj , aj , αj ) s.t. aj is a best reply to
αj ,−j for θj are possible).

2nd -order beliefs about others are subjective prob. measures
β i ,−i ∈ ∆

(
Θ−i × A−i ×∆1

−i
)
from which we can derive 1st -order

belief αi ,−i by marginalization as
αi ,−i (θ−i , a−i ) = β i ,−i

(
{θ−i} × {a−i} ×∆1

−i
)
.

Together with i’s own plan we get the overall 2nd -order belief
β i = αi ,i × β i ,−i ∈ ∆

(
Ai ×Θ−i × A−i ×∆1

−i
)
(self vs others

independence). The space of 2nd -order beliefs of i is ∆2
i .
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Best replies (static games)

In games with uncertainty and asymmetric information i’s best
replies of i to her subjective beliefs depend on type θi . In
traditional GT:

ūi (θi , ai , αi ,−i ) =
∑

θ−i ,a−i

ui (θi , θ−i , ai , a−i )αi ,−i (θ−i , a−i ) ,

BRi : Θi ×∆1
i ⇒ Ai ,

(θi , αi ,−i ) 7→ argmaxai∈Ai ūi (θi , ai , αi ,−i ).

Exercise: Find the best-reply correspondences of the row and
column players in game Ĝ 1.
In PGT (under own-plan independence of psychological utility):

ūi
(
θi , ai , β i ,−i

)
= Eβi,−i (ui (θi , ·, ai , ·, ·)) ,

BRi : Θi ×∆2
i ,−i ⇒ Ai ,(

θi , β i ,−i
)
7→ argmaxai∈Ai ūi

(
θi , ai , β i ,−i

)
.
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Predictions, solutions

By eliciting beliefs, BR correspondences may be used to derive
some predictions. Yet, the standard approach of GT is to use
solution concepts, and specifically some notion of equilibrium.
Game theorists devised clever ways to extend the traditional
equilibrium analysis to games with incomplete information. This
requires a specification of the possible exogenous beliefs of players.
This is an important part of game theory studied by several Nobel
prize winners (the latest are Milgrom and Wilson). But it is not
crucial to derive predictions in the experiments we are interested in.
We can extend the algorithm of iterated deletion of never-best
replies to allow for incomplete information:

1. Eliminate all type-action pairs (θi , ai ) s.t. ai is never a best reply
for θi , that is, ai /∈ BRi (θi , αi ,−i ) for all αi ,−i (in PGT,
ai /∈ BRi

(
θi , β i ,−i

)
for all β i ,−i ).

n > 1. Eliminate all the (remaining) pairs (θi , ai ) s.t. ai is not a
best reply for θi to beliefs consistent with steps 1, ..., n − 1.
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Exercises

Exercise: For game Ĝ 1, perform the iterated deletion of pairs
(θ1, a1) for the pl. 1 (row) and actions a2 for pl. 2 (col.), carefully
explaining the steps.

Exercise: For game Ĝ 2, try prove that the iterated deletion of
pairs (θi , ai ) ∈ {1, ...K} × {OE ,N} eventually yields N for every i
and θi . (If you know what is a proof by mathematical induction,
you can try that; otherwise, try at least to provide an intuitive
argument.)
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Dynamic games with uncertainty

In the lecture on dynamic games we learned that we can represent
a dynamic game form with player set I (plus, possibly the chance
player 0) specifying the tree H̄ of histories (sequences of action
profiles) allowed by the rules of the game, where H̄ is partitioned
into non-terminal histories (H) and terminal histories (Z ).

What was explained above for static games can be extended to
dynamic games, letting the outcome depend on the terminal
history: π : Z → Y .

If the outcome function π is not commonly known, let it depend on
parameter vector θ, about which players may have differential
knowledge: π : Θ× Z → Y .

If the probabilities of chance moves are not commonly known, let
p0 depend on θ as well: p0 = (p0 (·|h, θ))h∈H0,θ∈Θ.

Extend the notions of best reply and rational planning to such
incomplete-information environment.
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