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Abstract
These notes complement Chapter 3 ofGame Theory, Analysis of Strategic Thinking.

That chapter only covers subjective expected utility maximization. Here we also cover
the model of maxmin expected utility and the so called “smooth ambiguity” model.
The decision theoretic axiomatizations of these models are not covered, we just look at
functional-form representations. We stress the geometrical interpretation and present
some results at the advanced-undergraduate level, without using a rigid definition-
theorem-proof format.

1 Setting

We consider a problem of decision under uncertainty. This problem may be a game between
the Decision Maker (DM), a player on whom we focus our attention, and another player
whom we treat as “Nature.” We compare some decision criteria that have been axiomatized
in decision theory in terms of preferences over acts (see the surveys by Gilboa and Mari-
nacci [7] and Marinacci [10]). But our analysis does not concern the axiomatization (for an
axiomatization close to the formalism of these notes see Battigalli et al. [6]).

1.1 Primitives

All the sets we consider below are finite:

● Actions a ∈ A

● States s ∈ S

● Outcomes (or consequences) y ∈ Y

● Outcome function g ∶ A × S → Y

● Von Neumann Morgenstern (VNM) utility function1 v ∶ Y → R

From g ∶ A × S → Y and v ∶ Y → R we derive the payoff function

u = v ○ g ∶ A × S → R.
1See the Appendix of [12].



1.2 Objective probabilities, lotteries and state-contingent lotter-
ies

We call probability distribution on a finite set X an element of the unit simplex in RX ,
i.e., an element of the set

∆(X) ∶= {ξ ∈ RX
+ ∶ ∑

x∈X
ξ(x) = 1} .

The support of a probability distribution ξ ∈ ∆(X) is the set of points in X with positive
probability:

suppξ ∶= {x ∈X ∶ ξ(x) > 0}.

1.2.1 Risk

A decision problem under risk is characterized by a known objective probability distribution
σ ∈ ∆(S). Whether a probability is objective or subjective is a matter of interpretation.2

We use the symbol σ to stress the objective interpretation. Think of σ as the composition
of an urn, where S is the set of colors, e.g., the urn contains balls of two colors, lilac (ℓ) and
red (r), and σ(r) is the fraction of red balls. In a decision problem under risk, DM knows
the composition of the urn, hence the objective probability of drawing a ball of each given
color. Therefore DM also knows that each action a ∈ A induces a corresponding objective
probability distribution over consequences, called lottery:

a z→ λa,σ ∈∆(Y ),
λa,σ(y) = ∑

s∶g(a,s)=y
σ(s).

Since we want to study the incentive to randomize, we are going to consider a larger
decision problem whereby DM has a rich commitment technology allowing him to pick an
objective random device and let his actual action be chosen by this device. For example, DM
can spin a roulette wheel and let a machine (or trustworthy agent) pick a if the realization is
an even number and b if it is an odd number, or alternatively he can let a machine pick a if
the realization is a number x ≤ 10 and b if x > 10. The resulting probabilities of actions are
denoted α(a), the resulting mixed action is denoted α = (α(a))a∈A ∈∆(A). By choosing the
random device and the rule that maps realizations to actions, the DM determines a mixed
action α ∈ ∆(A). Note, it is important that DM irreversibly commits to let the random
device select the pure action, for suppose that the DM could change the decision after the
realization of the random device (e.g., the roulette wheel), if the pure action selected by
device is not deemed optimal by DM, the he would switch ex post to another action. This
cannot happen when DM is a subjective expected utility maximizer, but it may happen
according to other decision models considered below.

In general, the available commitment technology allows to implement some, but possibly
not all the mixed actions; thus DM must choose within a given feasible subset A ⊆∆(A)

2Some probability theorists even deny the existence of objective probabilities.
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of mixed actions. But here, with the exception of Section 6, we assume for simplicity that
the commitment technology is rich enough to span the whole space of mixed actions, i.e.,
A =∆(A).

We will see that randomizations are redundant for a subjective expected utility maxi-
mizer, but not for other types of decision makers. Be as it may, given the objective distribu-
tion σ over states, each mixed action α induces a lottery λα,σ ∈ ∆(Y ), which is the convex
combination of the lotteries λa,σ (a ∈ suppα) with weights given by the probabilities of pure
actions:

λα,σ = ∑
a∈A

α(a)λa,σ,

that is, for each consequence y ∈ Y ,

λα,σ(y) = ∑
a∈A

α(a)λa,σ(y) = ∑
a∈A

∑
s∶g(a,s)=y

α(a)σ(s).

1.2.2 Uncertainty

If DM does not know the objective distribution (urn composition) σ ∈ ∆(S), we have a
problem of decision under uncertainty. All we can say in this case is that, for each s ∈ S,
a mixed action α ∈∆(A) induces the corresponding lottery

λα,s ∈ ∆(Y )
y z→ λα,s(y) = ∑

a∶g(a,s)=y
α(a).

In words, λα,s is the lottery that picks consequence c with the total probability of actions
that yield c in state s. Thus, a mixed action does not induce a single lottery, but a profile
of lotteries, one for each state s:

λα = (λα,s)s∈S ∈ [∆(Y )]S.

Such profiles are called Anscombe–Aumann acts in decision theory (see [1]). Thus, the
set of mixed actions induces a corresponding subset of the set of Anscombe–Aumann acts:

{λ ∈ [∆(Y )]S ∶ ∃α ∈∆(A), λ = λα} ⊆ [∆(Y )]S.

2 Intermezzo: probability distributions, probability mea-

sures, pushforward

Another useful way to write the induced lottery λa,σ involves the isomorphism between
probability distributions and probability measures on a finite space, and the relationship
between probability measures on different spaces, in our case S and Y .

3



2.1 Probability distributions and measures

First, note that for every finite set X there is an isomorphism between the unit simplex in
RX and the set of probability measures over 2X (the power set of X)3

{µ ∈ R2X

+ ∶ µ(X) = 1,∀E,F ∈ 2X ,E ∩ F = ∅⇒ µ(E ∪ F ) = µ(E) + µ(F )} .

The isomorphism is obvious: each measure µ (a function in R2X
+ ) determines the distribution

ξµ (a function in RX
+ ) where

∀x ∈X, ξµ(x) = µ({x});
each distribution ξ determines the measure µξ where

∀E ∈ 2X , µξ(E) = ∑
x∈E

ξ(x).

It is easy to check that µξµ = µ and ξµξ
= ξ, and that convex combinations (also called

mixtures) of distributions and measures are preserved under such invertible map: for all
γ ∈∆({1, ..., n}), ξ1, ..., ξn, µ1, ..., µn,

n

∑
k=1

γkµξk = µ(∑n
k=1 γkξk)

,

n

∑
k=1

γkξµk
= ξ(∑n

k=1 γkµk).

Given the isomorphism between the space of probability distributions and the space of
probability measures, it makes sense denote both with the symbol ∆(X).

2.2 Pushforward

Take a map f between two sets,4 say

f ∶X → Y .

It is intuitive that each probability measure µ ∈ ∆(X) induces, through f , a corresponding
probability measure ν = f̂(µ) on Y . Such induced measure f̂(µ) is called the pushforward
of µ through f . Here is the formula:

f̂(µ) = µ ○ f−1 ∈∆(Y ),
E z→ f̂(µ)(E) = µ(f−1(E)).

3More generally, a probability measure can be defined for every measurable space (X,F), where
F ⊆ 2X is a collection of subsets, called sigma-algebra, or sigma-field, such that (i) X ∈ F , and for every
E,E1,E2, ... ∈ 2X (ii) E ∈ F ⇒ X/E ∈ F , (iii) E1,E2, ... ∈ F ⇒ ∪nEn ∈ F . A probability measure on
(X,F) is a map µ ∶ F →[0,1] such that (1) µ(X) = 1, and (2) if E1,E2, ... ∈ F are pairwise disjoint then
µ(∪nEn) = ∑n µ(En). When X is finite it is customary to consider F =2X and we are back to the definition
in the main text.

4We keep considering finite spaces: but what we say here applies to infinite measurable spaces as well,
i.e., spaces endowed with a sigma-algebra of measurable events, like the interval [0,1] with the collection of
all Borel subsets of [0,1].
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In other words, for each subset E ⊆ Y , the induced probability of E is the summation of the
probabilities of pre-images in X of points y ∈ E

f̂(µ)(E) = ∑
x∈f−1(E)

µ({x}).

2.3 Sections of functions and acts

Next, note that each action a determines a map from states to consequences, which is the
section ga of function g at a:

ga ∶ S → Y ,

s z→ g(a, s) ∈ Y .

A map from states to consequences is called Savage act in decision theory (see Savage [11]).
The set of pure actions induces a subset of the set of savage acts:

{f ∈ Y S ∶ ∃a ∈ A,f = ga} ⊆ Y S.

With this, for each objective distribution (or measure) σ ∈∆(S) we can write the lottery
λa,σ induced by pure action a as follows

λa,σ = ĝa(σ) = σ ○ g−1a ∈∆(Y )
E z→ λa,σ(E) = σ(g−1a (E)).

Similarly, each mixed action α ∈∆(A) also induces a corresponding lottery in ∆(Y ), which
is the weighted sum of the lotteries induced by the pure actions a ∈ suppα:

λα,σ = ∑
a∈A

α(a)λa,σ,

that is, for each subset E ⊆ Y ,

λα,σ(E) = ∑
a∈A

α(a)λa,σ(E).

If no objective measure σ ∈ ∆(S) is given, we cannot derive a lottery in ∆(Y ) from a
pure or mixed action α. All we can say is that, for each s ∈ S, the mixed action α induces a
lottery λα,s ∈∆(Y ) obtained as the pushfoward of α on Y through the section gs ∶ A→ Y

λα,s = ĝs(α) = α ○ g−1s
E z→ λα,s(E) = α(g−1s (E)).

This yields the profile of lotteries (Anscombe–Aumann act)

λα = (λα,s)s∈S ∈ [∆(Y )]S.
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3 Risk: objective expected utility

When we say that v ∶ Y → R is a VNM utility function we mean that in decision problems
under risk DM ranks lotteries in ∆(Y ) according to the corresponding expected value of v:

λ′ ≿ λ′′⇐⇒ ∑
y∈Y

λ′(y)v(y) ≥ ∑
y∈Y

λ′′(y)v(y),

or, more briefly,5

Eλ′[v] ≥ Eλ′′[v].
Therefore, for a given objective probability measure (urn composition) σ, DM ranks actions
a ∈ A as follows:

a ≿ b⇐⇒ Eλa,σ[v] ≥ Eλb,σ
[v],

or, more explicitly,

a ≿ b⇐⇒ ∑
y∈Y

σ(g−1a (y))v(y) ≥ ∑
y∈Y

σ(g−1b (y))v(y),

that is
a ≿ b⇐⇒ u(a, σ) ∶=∑

s∈S
σ(s)u(a, s) ≥∑

s∈S
σ(s)u(b, s) =∶ u(b, σ).

4 Uncertainty: subjective expected utility

Suppose DM does not know the objective probabilities of states, i.e., that we have a problem
of decision under uncertainty. According to the subjective expected utility theory, DM has
quantifiable beliefs about such unknown probabilities. We can take a direct approach and
just look at the subjective probabilities of states: if µ̄ ∈∆(S) represents the subjective belief
(or “conjecture”) of DM, then he ranks mixed actions according to the subjective expected
utility (SEU) criterion, i.e., for each α,β ∈∆(A)

α ≿ β ⇐⇒ Eλα,µ̄[v] ≥ Eλβ,µ̄
[v].

Specifically, recall that each mixed action α ∈ ∆(A) determines a state-contingent lottery
λα = (λα,s) ∈ [∆(S)]S, that is, one lottery for each state s. Then

Eλα,µ̄[v] = ∑
s∈S

µ̄(s)Eλα,s[v] =∑
s∈S

µ̄(s)∑
a∈A

α(a)v(g(a, s))

= ∑
s∈S
∑
a∈A

µ̄(s)α(a)u(a, s).

Hence, for every α,β ∈∆(A)

α ≿ β ⇐⇒∑
s∈S
∑
a∈A

µ̄(s)α(a)u(a, s) ≥∑
s∈S
∑
a∈A

µ̄(s)β(a)u(a, s),

5For each (finite) space X, real-valued function f ∈ RX and probability measure µ ∈∆(X), we write

Eµ[f] ∶= ∑
x∈X

µ(x)f(x).
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or, using our abbreviations,

α ≿ β ⇐⇒ u(α, µ̄) ≥ u(β, µ̄).

But it is more instructive to take an indirect approach. Let us use again the metaphor of
the urn. If DM does not know the true composition σ of the urn, then he forms subjective
beliefs about it. To avoid mathematical complications, we assume that DM deems possible
a finite subset Σ ⊂∆(S) of urn compositions. Then his belief is represented by a subjective
probability measure µ ∈ ∆(Σ). For each urn composition σ ∈ Σ, a mixed action α ∈ ∆(A)
yields a lottery λα,σ and a corresponding objective expected utility

Eλα,σ[v] = u(α,σ) =∑
s∈S
∑
a∈A

σ(s)α(a)u(a, s).

DM ranks mixed actions according to the subjective expected value of his objective expected
utility: for every α,β ∈∆(A)

α ≿ β ⇐⇒ ∑
σ∈Σ

µ(σ)u(α,σ) ≥ ∑
σ∈Σ

µ(σ)u(β,σ)

⇐⇒ ∑
σ∈Σ
∑
s∈S

µ(σ)σ(s)u(α, s) ≥ ∑
σ∈Σ
∑
s∈S

µ(σ)σ(s)u(β, s)

⇐⇒ ∑
s∈S

u(α, s)∑
σ∈Σ

µ(σ)σ(s) ≥∑
s∈S

u(β, s)∑
σ∈Σ

µ(σ)σ(s),

where the second equivalence follows by replacing u(α,σ) [respectively u(β,σ)] with
∑s∈S µ(σ)σ(s)u(α, s) [respectively ∑s∈S µ(σ)σ(s)u(β, s)].

DM’s belief µ on urn compositions induces subjective probabilities µ̄ ∈∆(S) of the colors
of the balls in the urn, called the predictive probabilities of states (colors), which are
just the weighted average of the objective probabilities with weights given by belief µ:

∀s ∈ S, µ̄(s) = ∑
σ∈Σ

µ(σ)σ(s).

With this, using the previous equivalence we obtain

α ≿ β ⇐⇒∑
s∈S

u(α, s)∑
σ∈Σ

µ(σ)σ(s) ≥∑
s∈S

u(β,σ)∑
σ∈Σ

µ(σ)σ(s)

⇐⇒ ∑
s∈S

µ̄(s)u(α, s) ≥∑
s∈S

µ̄(s)u(β, s)⇐⇒ u(α, µ̄) ≥ u(β, µ̄).

Hence we are back to the previous formulation.
Since DM only cares about the objective probabilities of consequences in each state,

indeed his objective expected utility in each state, he actually ranks vectors (u(α, s))s∈S ∈ RS.
If (u(α, s))s∈S = (u(β, s))s∈S then α and β are equivalent and represented by the same vector
in RS. Such vectors are a kind of “reduced form”of Anscombe–Aumann acts.

The set of feasible vectors corresponding to mixed actions is the convex hull of the finite
set of vectors corresponding to pure actions

Ā = convhull{(u(a, s))s∈S ∶ a ∈ A},
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a convex and compact polyhedron in RS (see Chapter 3 of the lecture notes [3]). We will
often refer to the vector in RS corresponding to a mixed action α ∈∆(A) under the surjection
from ∆(A) to Ā defined by

α ↦ (u(α, s))s∈S.

Since (mixed) actions inducing the same utility vector are equivalent, we can represent DM’s
preferences within space RS (which contains the feasible set Ā) rather than space RA (which
contains the feasible set ∆(A)).

Under the subjective expected utility theory, the DM’s indifference sets in RS are hyper-
planes of the form

{U ∈ RS ∶∑
s∈S

U(s)µ̄(s) = k}

for some constant k ∈ R, i.e., hyperplanes with normal vector µ̄. When S = {ℓ, r}, Ā is a
polygon and we have indifference lines in R{ℓ,r} defined by the equation

µ̄(ℓ)U(ℓ) + µ̄(r)U(r) = k,

i.e., lines with negative slope

dU(r)
dU(ℓ)

= − µ̄(ℓ)
µ̄(r)

= − µ̄(ℓ)
1 − µ̄(ℓ)

.

A subjectively optimal mixed action α∗ corresponds to either a vertex of Ā, which implies
that α∗ is either a pure action or a convex combination of equivalent pure actions, or a point
in the relative interior of an edge or face of the compact and convex polyhedron Ā. Suppose
that an optimal point (u(α∗, s))s∈S is in the relative interior of a “full face” F (a set of
dimension ∣S∣ − 1, e.g. a polygon when ∣S∣ = 3, or a line segment when ∣S∣ = 2); then face F
must be a subset of the indifference set

H(α∗, µ̄) ∶= {U ∈ RS ∶∑
s∈S

U(s)µ̄(s) = u(α∗, µ̄)} ,

which is a hyperplane; with this, every other vector in face F is also optimal. Indeed, face
F is the convex hull of the vectors corresponding to optimal pure actions (see Lemma 1 in
Chapter 3 of [3]):

F = convhull{(u(a, s))s∈S ∶ u(a, µ̄) = u(α∗, µ̄)}.

In the two-dimensional case with S = {ℓ, r}, an optimal (pure or) mixed action corre-
sponds to a point on the “North-East boundary” of the feasible set Ā ⊆ R{ℓ,r}. If this point
is in the relative interior of an edge, then this edge must have slope µ̄(ℓ)/µ̄(r) in absolute
value and its two endpoints (vertices) correspond to optimal pure actions. More generally,
every optimal point (u(α∗, s))s∈S must be on the part of the boundary of the polyhedron
Ā with positive orientation, because H(α∗, µ̄), the hyperplane through point (u(α∗, s))s∈S
with orientation µ̄, defines a half-space containing Ā. Note that the boundary of Ā with
positive orientation corresponds to the set of undominated mixed actions.

To sum up, a SEU maximizer cannot have a strict preference for randomization, for such
a SEU-DM mixed actions are redundant.
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5 Uncertainty aversion and preference for randomiza-

tion

Consider a problem of decision under uncertainty. Let Σ ⊆ ∆(S) be the finite set of urn
compositions deemed possible, with ∣Σ∣ ≥ 2 For example, it may be known that there 10 balls
in a two-color urn and the number of red balls is between 4 and 6:

Σ = {σ ∈∆({ℓ, r}) ∶ σ(r) ∈ { 4

10
,
5

10
,
6

10
}} .

Let us compare two types of DM. The first, DM’, is subjectively certain that the true
objective distribution is a particular σ̂ (e.g., the uniform on S), i.e., he has a degenerate
belief µ′ = δσ̂, where6

δσ̂(σ) = {
1, if σ = σ̂,
0, if σ ≠ σ̂.

The second one, DM”, has a belief µ′′ ∈ ∆(Σ) with ∣suppµ′′∣ ≥ 2 that yields predictive
probabilities of states µ̄′′ = σ̂. Since ∣suppµ′′∣ ≥ 2, DM” assigns positive subjective probability
to at least two possible urn compositions in Σ, hence DM” is subjectively uncertain. However,
in both cases the predictive probabilities are equal to σ̂: µ̄′ = σ̂ = µ̄′′. According to the SEU
maximization theory there is no difference between DM’ and DM” because only the predictive
probabilities matter for a SEU maximizer.

But there are other plausible decision models that predict different behavior for DM’
and DM.” According to such models, a decision maker – other things being equal – dislikes
(mixed or pure) actions that give rise to an unknown objective expected utility, i.e., actions
α ∈∆(A) such that

u(α,σ′) ≠ u(α,σ′′)

for some σ′, σ′′ ∈ Σ.
Consider the previous example, where Σ has three elements. Let A = {t,m, b} (top,

medium, bottom) and let the payoff function be given by the following matrix

g(⋅, ⋅) ℓ r
t 0 3
m 1 1
b 3 0

Suppose that DM’ is certain that there are exactly 5 red balls out of 10 in the urn: µ′ = δσ̂
with σ̂(r) = 5

10 , whereas DM” deems the three urn compositions equally likely:

µ′′(σ(r) = 4/10) = µ′′(σ(r) = 5/10) = µ′′(σ(r) = 6/10).

Then µ̄′(r) = σ̂(r) = 1
2 = µ̄′′(r). According to SEU theory DM’ and DM” have the same set

of optimal mixed actions, that is

{α ∈∆(A) ∶ α(m) = 0}.
6The Greek letter δ stands for “Dirac measure,” but it also reminds the reader of “deterministic belief.”
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This set is isomorphic to the line segment in R{ℓ,r} with endpoints (0,3) (top, t) and (3,0)
(bottom, b), i.e., the “North-East”edge of Ā. In particular, it contains the mixed action α∗

that assigns 50% chances to top and bottom, that is, the convex combination with equal
weights of the two deterministic measures δt and δb:

α∗ = 1

2
δt +

1

2
δb.

As shown in Figure 1, mixed action α∗ is the only one in the set {α ∈∆(A) ∶ α(m) = 0} with
the notable feature of yielding the same objective expected utility (payoff) for each possible
distribution: u(α∗, σ) = 3

2 for each σ ∈ Σ.

u(⋅, r)

u(⋅, ℓ)1 3
2 2 3

Ā
1

3
2

2

3

α⋆

m

t

b45°

µ(ℓ)
µ(r)

Figure 1: Optimal choice for SEU maximizer

If a decision maker dislikes choices that yield an uncertain objective expected payoff, this
gives an edge to α∗. In particular, DM’ who is subjectively certain that the true urn contains
exactly 5 red balls, is still indifferent between all the mixed actions in {α ∈∆(A) ∶ α(m) = 0}.
But DM”, who is subjectively uncertain about the urn composition, should strictly prefer
α∗. Thus, the models considered here may give a strict preference for randomization. The
intuition is that randomization allows to “hedge against uncertainty” by shifting objective
expected utility from one state to another so as to decrease the differences in expected utility
across possible distributions.

We present two such models. In the first one, only the support suppµ of the subjective
belief µ ∈∆(Σ) plays a role, whereas in the second one the whole belief µ plays a role. These
models have the common feature that the decision maker, other things being equal, dislikes
mixed actions that give rise to an uncertain objective expected payoff. Another way to say
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this is the following. Call mixed action α ∈ ∆(A) ambiguous (relative to suppµ) if there
are σ′, σ′′ ∈ suppµ such that

u(α,σ′) ≠ u(α,σ′′).

Note that an ambiguous action must yield consequences whose objective probabilities are
uncertain. According to the decision criteria presented below, DM tends to dislike ambiguous
actions. Therefore these decision criteria are also called models of “ambiguity aversion”.

5.1 The maxmin criterion

To ease notation, for each belief µ ∈∆(Σ), let Σµ denote its support

Σµ = suppµ = {σ ∈ Σ ∶ µ(σ) > 0}.

According to the maxmin criterion due to Gilboa and Schmeidler [8],7 for every α,β ∈
∆(A), DM prefers α to β if and only if

min
σ∈Σµ

u(α,σ) ≥ min
σ∈Σµ

u(β,σ).

Intuitively, DM behaves as if he thought that he is playing against an adversarial Nature
that, instead of choosing the state s ∈ S, chooses the probabilities of states σ within the
restricted set Σµ after observing the DM’s mixed action and with the goal of minimizing the
expected payoff of DM. Obviously, this is just a metaphor for a criterion that captures the
preference for those mixed actions that tend to equalize expected payoffs across distributions
in Σµ, i.e., a preference for unambiguous actions.

Going back to our example of the two decision makers, for DM’ we have the singleton
Σµ′ = {σ̂} with σ̂(r) = 1

2 , therefore

arg max
α∈∆({t,m,b})

min
σ∈Σµ′

u(α,σ) =

arg max
α∈∆({t,m,b})

[1
2
u(α, ℓ) + 1

2
u(α, r)] = {α ∈∆(A) ∶ α(m) = 0}.

In other words, since DM’ is certain that the true composition of the urn is 50%-50%, he
behaves like a SEU maximizer with predictive probabilities µ̄(ℓ) = 1

2 = µ̄(r) (see Figure 1).
On the other hand, DM” has a belief µ′′ that deems possible three distributions: Σµ′′ =

{σℓ, σ̂, σr} with σℓ(r) = 2
5 , σ̂(r) =

1
2 , σ

r(r) = 3
5 . Hence each action α gives rise to three

7Gilboa and Schmeidler present axioms about preferences ⪰ over the set [∆(Y )]S of Anscombe–Aumann
acts that yield such a functional-form representation: the DM satisfies the axioms if and only if there is a
VNM utility function v ∶ Y → R and a (compact and convex) set of measures Σ̂ ⊆∆(S) such that

α ⪰ β⇔min
σ∈Σ̂

Eα,σ[v] ≥min
σ∈Σ̂

Eβ,σ[v]

Note that these authors do not explicitly mention subjective probabilistic beliefs µ, because such beliefs
cannot be elicited from the preference relation. Here we interpret Σ̂ as the convex hull of suppµ.
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possible objective expected payoffs

u(α,σℓ) = 3

5
u(α, ℓ) + 2

5
u(α, r),

u(α, σ̂) = 1

2
u(α, ℓ) + 1

2
u(α, r),

u(α,σr) = 2

5
u(α, ℓ) + 3

5
u(α, r),

and DM” solves

max
α∈∆({t,m,b})

min{3
5
u(α, ℓ) + 2

5
u(α, r), 1

2
u(α, ℓ) + 1

2
u(α, r), 2

5
u(α, ℓ) + 3

5
u(α, r)} .

The indifference curves in R{ℓ,r} are piecewise linear with a kink on the 45○-line, slope
−3

2 above it and slope −2
3 below it, where the ascissa is the expected payoff in state ℓ. Note

that the same is true if the Decision Maker deems possible only the extreme distributions
σℓ and σr. The feasible set in R{ℓ,r} is

Ā = convhull{(0,3), (1,1), (3,0)}.

The highest indifference curve in R{ℓ,r} with nonempty intersection with the feasible set Ā is
the one with kink at point (1.5,1.5), which corresponds to the mixed action α∗ = 1

2δt +
1
2δb.

Thus, as shown in Figure 2, α∗ ∈ {α ∈∆(A) ∶ α(m) = 0} is the only optimal action for DM”,
who has a strict preference for randomization.

u(⋅, r)

u(⋅, ℓ)1 3
2 2 3

Ā
1

3
2

2

3

α⋆

m

t

b45°

3
2

2
3

Figure 2: Optimal choice with the maxmim criterion
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5.2 The smooth criterion

Now we consider a choice criterion due to Klibanoff, Marinacci and Mukerji [9] that makes
use of the whole subjective belief µ ∈∆(Σ) and yields smooth indifference sets in RS. Let

v = min
λ∈∆(Y )

Eλ[v], v̄ = max
λ∈∆(Y )

Eλ[v].

DM’s preferences are characterized by a continuous function

ϕ ∶ [v, v̄]→ R

twice differentiable on the open interval (v, v̄) and such that ϕ′ > 0 (ϕ is strictly increasing)
and ϕ′′ ≤ 0 (ϕ is concave). This function ϕ is a kind of second-order utility function:
for each objective expected payoff u(α,σ) (a VNM utility) we may interpret ϕ(u(α,σ)) as
the “second-order utility” of u(α,σ). According to the following criterion a DM with belief
µ ∈ ∆(Σ) and characterized by ϕ wants to maximize the subjective expected value of his
“second-order utility”:

α ≿ β⇔ Eµ[ϕ(u(α,σ))] ≥ Eµ[ϕ(u(β,σ))],

that is,
α ≿ β⇔ ∑

σ∈Σ
µ(σ)ϕ(u(α,σ)) ≥ ∑

σ∈Σ
µ(σ)ϕ(u(β,σ)).

Note that when ϕ′′ = 0 (i.e., ϕ is affine) we obtain the standard SEU criterion: in this
case ϕ(U) =mU + n with m = ϕ′(U) > 0. Therefore, for every α ∈∆(A),

∑
σ∈Σ

µ(σ)ϕ(u(α,σ)) = ∑
σ∈Σ

µ(σ)(mu(α,σ) + n) =m∑
σ∈Σ

µ(σ)u(α,σ) + n

and
α ≿ β⇔ ∑

σ∈Σ
µ(σ)u(α,σ) ≥ ∑

σ∈Σ
µ(σ)u(β,σ).

As we have seen, for a SEU maximizer only the predictive probabilities of states µ̄ ∈∆(S)
matter [where µ̄(s) = ∑σ∈Σ µ(σ)σ(s)] and the indifference sets in RS are hyperplanes with
normal vector µ̄. But if ϕ′′ < 0 then the whole belief µ ∈ ∆(Σ) matters and the indifference
sets in RS are smooth surfaces with orientation µ̄ only on the main diagonal and strictly
convex upper contour sets.

To ease notation, let us write σs = σ(s) for the objective probability of s under distribution
σ ∈ Σ, µ̄s = µ̄(s) for the predictive probability of s, and U = (Us)s∈S ∈ RS for a generic vector
of state-contingent expected payoffs. Define,

V (U, µ) = ∑
σ∈Σ

µ(σ)ϕ(∑
s∈S

σsUs)

as the value of state-contingent expected payoff U given belief µ. Along an indifference
surface in RS the value V (U, µ) is constant, hence the differential dV is zero:

dV =∑
s∈S

∂V

∂Us

dUs = 0.
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The orientation of an indifference surface is given by the gradient of V :

∇V = ( ∂V
∂Us

)
s∈S
= (∑

σ∈Σ
ϕ′ (∑

s∈S
σsUs)µ(σ)σs)

s∈S
.

On the main diagonal, i.e., if Us = U for every s and some U ∈ R, the gradient of V is
proportional to the vector µ̄ of predictive probabilities:

∇V = (ϕ′ (U)∑
σ∈Σ

µ(σ)σs)
s∈S
= ϕ′ (U) (µ̄s)s∈S ,

where we used the fact that ∑s∈S σs = 1, hence ∑s∈S σsUs = U , and ∑σ∈Σ µ(σ)σs = µ̄s.
Now consider the two-states case, S = {ℓ, r}. By the implicit function theorem,

dUr

dUℓ

∣
V =const.

= −
∂V
∂Uℓ

∂V
∂Ur

= −∑σ∈Σ ϕ
′(σℓUℓ + σrUr)µ(σ)σℓ

∑σ∈Σ ϕ
′(σℓUℓ + σrUr)µ(σ)σr

< 0

where the denominator is positive if µ(σ)σr > 0 for some σ ∈ Σ, i.e., if ∑σ∈Σ µ(σ)σr = µ̄r > 0
(because ϕ′ > 0). On the 45○-line Uℓ = Ur = U and

dUr

dUℓ

∣
V =const.

= −∑σ∈Σ ϕ
′(U)µ(σ)σℓ

∑σ∈Σ ϕ
′(U)µ(σ)σr

= −∑σ∈Σ µ(σ)σℓ

∑σ∈Σ µ(σ)σr

= − µ̄ℓ

µ̄r

(see Figure 3).

u(⋅, r)

u(⋅, ℓ)1

1

Eµ[ϕ(u(⋅, σ))] = const.

45°
µ(ℓ)
µ(r)

Figure 3: Indifference curves with the smooth criterion

Intuitively, when the expected payoff is independent of the state, then it is also indepen-
dent of the objective distribution σ; therefore the ambiguity aversion caused by uncertainty
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about σ and captured by ϕ does not matter. Hence, in a neighborhood of a point on the
45○-line, the value of an expected payoff vector U = (Us)s∈S is well approximated by the
subjective expected value

∑
σ∈Σ

µ(σ)∑
s∈S

σsUs =∑
s∈S

Us∑
σ∈Σ

µ(σ)σs =∑
s∈S

µ̄sUs.

Finally, we show that, in the two-states case, strict concavity of ϕ implies that the upper
contour sets {U ∶ V (U, µ) ≥ V̄ } are strictly convex as long as DM is uncertain, i.e., if he
assigns strictly positive probability to at least two models (∣suppµ∣ ≥ 2).

First we show that concavity of ϕ implies concavity of V (U, µ) in U for each µ. Then
we derive strict convexity of the upper contour sets in the two-states case.

Take two vectors U′,U′′ ∈ RS and a weight γ ∈ [0,1]. Then

V (γU′ + (1 − γ)U′′, µ) = ∑
σ∈Σ

µ(σ)ϕ(∑
s∈S

σs(γU ′s + (1 − γ)U ′′s ))

= ∑
σ∈Σ

µ(σ)ϕ(γ∑
s∈S

σsU
′
s + (1 − γ)∑

s∈S
σsU

′′
s )

≥ ∑
σ∈Σ

µ(σ)(γϕ(∑
s∈S

σsU
′
s) + (1 − γ)ϕ(∑

s∈S
σsU

′′
s ))

= γ∑
σ∈Σ

µ(σ)(ϕ(∑
s∈S

σsU
′
s)) + (1 − γ)∑

σ∈Σ
µ(σ)(ϕ(∑

s∈S
σsU

′′
s ))

= γV (U′, µ) + (1 − γ)V (U′′, µ),

where the inequality follows from the concavity of ϕ.
Now consider the two-state case and assume that U′ ≠U′′ and 0 < γ < 1. We show below

that ∑s∈S σsU ′s = ∑s∈S σsU ′′s for at most one σ. Since suppµ contains at least two elements,
it follows that there must be at least one σ̂ ∈ suppµ such that

∑
s∈S

σ̂sU
′
s ≠∑

s∈S
σ̂sU

′′
s .

Since ϕ is strictly concave and 0 < γ < 1, then

ϕ(γ∑
s∈S

σ̂sU
′
s + (1 − γ)∑

s∈S
σ̂sU

′′
s ) > γϕ(∑

s∈S
σ̂sU

′
s) + (1 − γ)ϕ(∑

s∈S
σ̂sU

′′
s ) .

Hence, the weak inequality that we proved for the general case must be strict, showing that

V (γU′ + (1 − γ)U′′, µ) >max{V (U′, µ), V (U′′, µ)}.

Thus, the upper contour sets are strictly convex.
Now we give the proof that we postponed, i.e., we prove that there is at most one

distribution σ ∈∆({ℓ, r}) equalizing ∑s∈S σsU ′s and ∑s∈S σsU ′′s . Consider the unique straight
line through U′ and U′′. If it has positive slope, one of the two points dominates the
other and there is no σ ∈ ∆({ℓ, r}) that equalizes ∑s∈S σsU ′s and ∑s∈S σsU ′′s . Otherwise, the
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negative slope identifies the probability ratio σℓ/σr, hence the unique σ ∈∆({ℓ, r}) equalizing
∑s∈S σsU ′s and ∑s∈S σsU ′′s .

More formally, suppose that σ is such that

(1 − σr)U ′ℓ + σrU
′
r = (1 − σr)U ′′ℓ + σrU

′′
r

and assume w.l.o.g. that r has strictly positive probability, i.e., σr > 0. Then

1 − σr

σr

= U ′′r −U ′r
U ′ℓ −U ′r

σr =
U ′ℓ −U ′r

U ′ℓ −U ′r +U ′′r −U ′r
.

Since Σ ⊆∆({ℓ, r}), there is at most one element σ of Σ such that ∑s∈S σsU ′s = ∑s∈S σsU ′′s .
To sum up, in the two-state case, if ϕ is strictly concave and DM is uncertain, then the

upper contour sets are strictly convex and there is always a unique solution to the problem

max
U∈Ā

V (U, µ).

If this solution is not a vertex of the feasible set Ā and if the vectors (u(a, s))s∈S (a ∈ A) are
linearly independent, then DM strictly prefers to randomize (if the vectors were not linearly
independent a solution that is not a vertex might be induced by a pure action).

Our leading example illustrates this. The “North-Est”boundary of the feasible set

Ā = convhull{(0,3), (1,1), (3,0)}

is the segment that joins (0,3) (bottom) to (3,0) (top). Its slope is −1. The unique solution
to problem maxU∈Ā V (U, µ) is the point U∗ on this segment where the marginal rate of
substitution between objective expected utility in state r and in state ℓ is one:

MRSr,ℓ(U∗, µ) ∶=
∂V
∂Uℓ
(U∗, µ)

∂V
∂Ur
(U∗, µ)

= 1.

We know that on the diagonal the marginal rate of substitution is the ratio of the predictive
probabilities:

Uℓ = Ur ⇒MRSr,ℓ(U, µ) = µ̄(ℓ)
µ̄(r)

.

Consider the belief of DM’ and the belief of DM”. The belief of DM’, µ′, assigns proba-
bility 1 to the uniform distribution σ̂ = 1

2δℓ+
1
2δr, thus the predictive is µ̄ = σ̂, the indifference

sets are parallel straight lines with slope −1, DM’ behaves like a SEU maximizer and is
indifferent between all the mixtures of top and bottom.

Now consider the subjectively uncertain decision maker DM”. Although he has the
same predictive µ̄′′ = σ̂, as argued above, his upper contour sets are strictly convex. Since
µ̄′′(ℓ) = µ̄′′(r), the first-order condition MRSr,ℓ(U∗, µ) = 1 is satisfied only on the diagonal,
at point U∗ = (1.5,1.5), which corresponds to the mixed action α∗ = 1

2δt +
1
2δb (see Figure 4).
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Figure 4: Optimal choice with the smooth criterion

6 Uncertainty aversion and selfconfirming equilibrium

In a selfconfirming equilibrium (SCE) each agent best responds to subjective beliefs
confirmed by his personal experience, which in turn depends on his choice. Confirmed
beliefs may be incorrect, therefore in an SCE agents’ choices may be objectively suboptimal,
even if they are subjectively optimizing; see [3, Chapter 5]. In the traditional notion of SCE,
agents are SEU maximizers; but the SCE idea has been extended to allow for uncertainty
aversion (see [4] and [5]).

Here we limit our attention to a DM in a recurrent decision problem who does not know
the true probabilities of states. In a selfconfirming equilibrium his choice is subjectively
optimal given his beliefs and the observed frequencies of consequences given that this choice
is repeated over time match his subjective beliefs. This analysis can be used as a building
block for a game-theoretic definition of SCE.

Let σ○ ∈ ∆(S) denote the true objective distribution (urn composition). In the
recurrent decision problem, the state of nature is determined in each period with an i.i.d.
draw with distribution σ○. DM knows that the draws are i.i.d., but does not know σ○. We
consider an uncertainty averse DM who chooses according to the smooth criterion and is
characterized by a concave second-order utility function ϕ. After each choice, DM obtains
some information feedback, described by a function

f ∶ A × S →M.

Here we assume for simplicity that DM observes ex post the realized consequence y = g(a, s).
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If there are monetary consequences (Y ⊆ R) and the utility of wealth is strictly increasing,
then we can assume w.l.o.g. that the feedback function coincides with the payoff function,
i.e., M = R and f = u. We also assume, again for simplicity, that if DM delegates his choice
to a randomization device, he does not observe the realized action a, he only observes the
payoff u(a, s) determined by the realized action a and by the realized state s.

Suppose that DM repeats the same (randomized) choice α infinitely many times. By the
law of large numbers, the frequencies of monetary payoffs that he observes in the long run
coincide with the probabilities of the lottery λα,σ○ induced by α and σ○. Hence he learns
that the objective expected payoff of α is

u(α,σ○) = ∑
a∈A
∑
s∈S

u(a, s).

But this does not mean that DM can identify the probabilities of states σ○. He finds out
that the true probability distribution belong to the partial identification set

Σ̂(α,σ○) ∶ = {σ ∈∆(S) ∶ λα,σ = λα,σ○}
= {σ ∈∆(S) ∶ û(α × σ) = û(α × σ○)} .

[Recall that, for each function f ∶ X → Y , f̂ ∶ ∆(X) → ∆(Y ) is the corresponding push-
forward function; here û ∶ ∆(A × S) → ∆(Y ) is the pushforward of u ∶ A × S → Y , and
α × σ ∈ ∆(A × S) is the product measure obtained from the marginal measures α ∈ ∆(A)
and σ ∈ ∆(S).] For example, if the expected payoff u(α, s) is independent of state s, i.e., if
there is some constant k such that u(α, s) = k for each s ∈ S, then DM remains in the dark
because in this case Σ̂(α,σ○) =∆(S).

Note that, by definition, expected payoff – as a function of σ – is constant and equal to
u(α,σ○) on the partially identified set Σ̂(α,σ○). Intuitively, a choice-belief pair (α∗, µ) is an
SCE if (1) α∗ is subjectively optimal given µ and (2) µ is consistent with that fact that DM
has “learned” the objective distribution of payoffs.

To give a more formal definition, we must be precise about the feasible set. In the
previous sections we assumed that DM has a very rich commitment technology allowing him
to span the whole set of mixed actions ∆(A). Here we generalize the analysis and assume
that the set of feasible mixed actions is some compact set A, with A ⊆ A ⊆ ∆(A) (note,
we identify A with the set of Dirac measures {δa ∶ a ∈ A}), and we let A ⊆ RS denote the
corresponding set of feasible (expected) payoff vectors. The two extreme cases are A = A
and A = ∆(A), both sets are compact, the second is also convex. With this, we say that
(α∗, µ) is a selfconfirming equilibrium (given A) if

1. (subjective rationality) α∗ ∈ argmaxα∈AEµ[ϕ(u(α,σ))],

2. (confirmed beliefs) suppµ ⊆ Σ̂(α∗, σ○).

Since u(α∗, σ) = u(α∗, σ○) for every σ ∈ Σ̂(α∗, σ○), the confirmed-beliefs condition implies
that

µ ({σ ∶ u(α∗, σ) = u(α∗, σ○)}) = 1.
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Indeed, the confirmed-beliefs condition reflects the informal assumption that DM has “learned”
the probabilities of monetary payoffs induced by choice α∗, and therefore he has also “learned”
the objective expected payoff u(α∗, σ○).

Is this notion of SCE different from the traditional one that assumes SEU maximization
(or ϕ′′ = 0)? This depends on the feasible set A. Indeed, one can use a separation argument
to show that the following result: If A is convex,8 the set of SCEs does not depend on the
degree of ambiguity aversion. More formally, for every pair (α∗, µ), if (α∗, µ) is an SCE for
the concave second-order utility ϕ, then (α∗, µ) is an SCE for every concave ϕ̄, including
every affine ϕ̄.

To gain some intuition for this irrelevance result, suppose that

A = {α ∈ RA ∶ Fk(α) ≤ 0, k = 1, ...K}

where each Fk is a convex function differentiable in a neighborhood of the SCE choice α∗.9

Then subjective optimality at α∗ implies that the following first-order conditions hold:

∀a ∈ A, ∂

∂αa

(Eµ[ϕ(u(α,σ))] −
K

∑
k=1

λkFk(α))∣
α=α∗
= 0

where λk denotes the Lagrangian multiplier of the kth constraint. Now note that

∂

∂αa

u(α,σ) = ∂

∂αa

(∑
a′∈A

αa′u(a′, σ)) = u(a, σ),

therefore
∂

∂αa

(Eµ[ϕ(u(α,σ))])∣
α=α∗
= ∑

σ∈suppµ
µ(σ)ϕ′(u(α∗, σ))u(a, σ).

Since the belief-confirmation condition implies that u(α∗, σ) = u(α∗, σ○) for every σ ∈suppµ ⊆
Σ̂(α∗, σ○), we get

∂

∂αa

(Eµ[ϕ(u(α,σ))])∣
α=α∗
= ϕ′(u(α∗, σ○)) ∑

σ∈suppµ
µ(σ)u(a, σ).

We can further simplify the expression recalling that

∑
σ∈suppµ

µ(σ)u(a, σ) = ∑
σ∈suppµ

∑
s∈S

µ(σ)σ(s)u(a, s)

= ∑
s∈S

u(a, s) ∑
σ∈suppµ

µ(σ)σ(s)

= ∑
s∈S

u(a, s)µ̄(s) = u(a, µ̄).

Therefore
∂

∂αa

(Eµ[ϕ(u(α,σ))])∣
α=α∗
= ϕ′(u(α∗, σ○))u(a, µ̄).

8This sufficient condition is not tight. There are more general sufficient conditions that do not require
the convexity of A.

9These constraints either include the normalization and weak positivity constraints defining ∆(A), or
make some or all of them redundant; whatever the case A ⊆∆(A).
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Hence, we obtain marginal rates of substitution (MRS) that do not depend on ϕ at (α∗, µ):
for all a, b ∈ A

MRSa,b(α∗, µ) ∶=
∂

∂αa
(Eµ[ϕ(u(α,σ))])∣α=α∗

∂
∂αb
(Eµ[ϕ(u(α,σ))])∣

α=α∗
= u(a, µ̄)
u(b, µ̄)

.

The first-order conditions yield, for all a, b ∈ A,

MRSa,b(α∗, µ) =
u(a, µ̄)
u(b, µ̄)

=
∂

∂αa
(∑K

k=1 λkFk(α))∣α=α∗
∂

∂αb
(∑K

k=1 λkFk(α))∣
α=α∗

=∶MRTa,b(α∗).

These MRS=MRT (marginal rate of transformation) conditions are independent of ϕ.
Now we illustrate the SCE analysis with our leading two-states example, where S = {ℓ, r}

and u is given by (5). Suppose that σ○(r) = 3
5 . Thus, the objectively optimal choice is t, top.

First note that if DM plays long enough a mixed action α∗ such that u(α∗, ℓ) ≠ u(α∗, r),
the long-run frequencies of observed payoffs identify σ○. Indeed, the DM observes in the long
run that his expected payoff is u(α,σ) = u(α∗, σ○). Thus

(1 − σ(r))u(α∗, ℓ) + σ(r)u(α∗, r) = u(α∗, σ○).

Since u(α∗, r) − u(α∗, ℓ) ≠ 0, this yields

σ(r) = u(α∗, σ○) − u(α∗, ℓ)
u(α∗, r) − u(α∗, ℓ)

=
3
5u(α∗, r) +

2
5u(α∗, ℓ) − u(α∗, ℓ)

u(α∗, r) − u(α∗, ℓ)
= 3

5
.

Therefore, the only SCE (α∗, µ) with u(α∗, ℓ) ≠ u(α∗, r) (off the main diagonal) is the “Nash
equilibrium” (α∗, µ) = (δt, δσ○).10

If instead u(α∗, ℓ) = u(α∗, r), whether α∗ is a SCE choice or not depends on the “fun-
damentals,” A (“technology”) and ϕ (“tastes”). Suppose, for example, that A = A (no
randomization is feasible); then m is an SCE action for some belief µ provided that ϕ is
sufficiently concave (see Figure 5). If instead ϕ is affine (ϕ′′ = 0), or close to an affine func-
tion, DM chooses as a SEU maximizer, hence he does not choose m, because m is strictly
dominated by the unfeasible mixed action 1

2δt +
1
2δb and hence it is not an SEU-best reply in

A against any predictive belief µ̄.

At the other extreme, if A = ∆(A) the result of irrelevance of the attitudes toward
uncertainty (of function ϕ) applies. Indeed, either the equilibrium choice is revealing (off
the diagonal), and we can only have the Nash equilibrium (α∗, µ) = (δt, δσ○), or it is non-
revealing (on the diagonal). In the second case, the optimality condition implies that α∗

corresponds to the payoff vector at the intersection between the North-East boundary of
A and the diagonal, that is, α∗t = α∗b =

1
2 , u(α∗, ℓ) = u(α∗, r) = 3

2 . The second equality
means that the confirmation condition is satisfied: DM only observes in the long run that
he “wins” (he gets 3 utils) half of the times, which is true under such mixed action α∗ for
every distribution σ. The subjective belief µ that supports such α∗ as an optimal choice

10In a Nash equilibrium each agent best responds to correct beliefs. Hence our terminology makes sense.

20



u(⋅, r)

u(⋅, ℓ)1 2 3

1

3
5

2
5

3

m

t

b

σ0

µ

µ

σ0

®Nash eq.

2
3

µ(ℓ)
µ(r)

Figure 5: If ϕ is sufficiently concave and A = A then m is a SCE choice

(subjective rationality condition) must yield the uniform predictive distribution µ̄(ℓ) = µ̄(r).
To see this, note that the tangency condition at the subjectively optimal choice is just

µ̄(ℓ)
µ̄(r)

= 1,

because for each point on the diagonal the slope of the indifference curve is − µ̄(ℓ)
µ̄(r) , which is

independent of ϕ (see Figure 3). Therefore, if A = ∆(A), every (α∗, µ) such that α∗t = α∗b =
µ̄(r) = 1

2 is an SCE for every concave second-order utility ϕ.
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