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Abstract

This textbook introduces some concepts of the theory of games: ra-
tionality, dominance, rationalizability, and several notions of equilibrium
(Nash, randomized, correlated, self-confirming, subgame perfect, Bayesian
perfect equilibrium). For each of these concepts, the interpretative as-
pect is emphasized. Even though no advanced mathematical knowledge is
required, the reader should nonetheless be familiar with the concepts of
set, function, probability, and more generally be able to follow abstract
reasoning and formal arguments.
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Preface

This textbook provides an introduction to game theory, the formal
analysis of strategic interaction. Game theory now pervades most non-
elementary models in microeconomic theory and many models in the other
branches of economics and in other social sciences. We introduce the neces-
sary analytical tools to be able to understand these models, and illustrate
them with some economic applications.

We also aim at developing an abstract analysis of strategic thinking,
and a critical and open-minded attitude toward the standard game-theoretic
concepts as well as new concepts.

Most of this textbook rely on relatively elementary mathematics. Yet,
our approach is formal and rigorous. The reader should be familiar with
mathematical notation about sets and functions, with elementary linear
algebra and topology in Euclidean spaces, and with proofs by mathematical
induction. Elementary calculus is sometimes used in examples.
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1

Introduction

Game theory is the formal analysis of the behavior of interacting
individuals. The crucial feature of an interactive situation is that the
consequences of the actions of an individual depend (also) on the actions
of other individuals. This is typical of many games people play for fun,
such as chess or poker. Hence, interactive situations are called “games”
and interactive individuals are called “players.” If a player’s behavior is
intentional and he is aware of the interaction (which is not always the
case), he should try and anticipate the behavior of other players. This is
the essence of strategic thinking. In the rest of this chapter we provide a
semi-formal introduction of some key concepts in game theory.

1.1 Decision Theory and Game Theory

Decision theory is a branch of applied mathematics that analyzes the
decision problem of an individual (or a group of individuals acting as a
single decision unit) in isolation. The external environment is a primitive
of the decision problem. Decision theory provides simple decision criteria
characterizing an individual’s preferences over different courses of action,
provided that these preferences satisfy some “rationality” properties, such
as completeness (any two alternatives are comparable) and transitivity (if
a is preferred to b and b is preferred to c, then a is preferred to c). These
criteria are used to find optimal (or rational) decisions.

Game theory could be more appropriately called interactive
decision theory. Indeed, game theory is a branch of applied mathematics
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that analyzes interactive decision problems: There are several individuals,
called players, each facing a decision problem whereby the “external
environment” (from the point of view of this particular player) is given
by the other players’ behavior (and possibly some random variables). In
other words, the welfare (utility, payoff, final wealth) of each player is
affected not only by his own behavior, but also by the behavior of other
players. Therefore, in order to figure out the best course of action each
player has to guess which course of action the other players are going to
take.

1.2 Why Economists Should Use Game Theory

We are going to argue that game theory should be the main analytical
tool used to build formal economic models. More generally, game theory
should be used in all formal models in the social sciences that adhere
to methodological individualism, i.e., try to explain social phenomena as
the result of the actions of many agents, which in turn are freely chosen
according to some consistent criterion.

The reader familiar with the pervasiveness of game theory in economics
may wonder why we want to stress this point. Isn’t it well known that game
theory is used in countless applications to model imperfect competition,
bargaining, contracting, political competition, and, in general, all social
interactions where the action of each individual has a non-negligible effect
on the social outcome? Yes, indeed! And yet it is often explicitly or
implicitly suggested that game theory is not needed to model situations
where each individual is negligible, such as perfectly competitive markets.
We are going to explain why this is —in our view— incorrect: the
bottom line will be that every “complete” formal model of an economic (or
social) interaction must be a game; economic theory has analyzed perfect
competition by taking shortcuts that have been very fruitful, but must be
seen as such, just shortcuts.1

If we subscribe to methodological individualism, as mainstream
economists claim to do, every social or economic observable phenomena
we are interested in analyzing should be reduced to the actions of the

1Our view is very similar to the original motivations for the study of game theory
offered by the “founding fathers” von Neumann and Morgenstern in their seminal book
The Theory of Games and Economic Behavior [68].
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individuals who form the social or economic system. For example, if we
want to study prices and allocations, then we should specify which actions
the individuals in the system can choose and how prices and allocations
depend on such actions: if I is the set of agents, p is the vector of prices, y is
the allocation, and a = (ai)i∈I is the profile2 of actions, one for each agent,
then we should specify relations p = f(a) and y = g(a). This is done in all
models of auctions. For example, in a sealed-bid, first-price, single-object
auction, a is the profile of bids for the object on sale, f(a) = max{ai}i∈I
(the object is sold for a price equal to the highest bid) and g(a) is such
that the object is allocated to the highest bidder,3 who has to pay his bid.
To be more general, we have to allow the variables of interest to depend
also on some exogenous shocks x, as in the functional forms p = f(a, x),
y = g(a, x). Furthermore, we should account for dynamics when choices
and shocks take place over time, as in yt = gt(a1, x1, ..., at, xt). Of
course, all the constraints on agents choices (such as those determined
by technology) should also be explicitly specified. Finally, if we are to
explain choices according to some rationality criterion, we should include
in the model the preferences of each individual i over possible outcomes.
This is what we call a “complete model” of the interactive situation.4 We
call variables, such as y, that depend on actions (and exogenous shocks)
“endogenous.” (Actions themselves are “endogenous” in a trivial sense.)
The rationale for this terminology is that we try to analyze/explain actions
and variables that depend on actions.

At this point, you may think that this is just a trite repetition of some
abstract methodology of economic modelling. Well, think twice! The most
standard concept in the economist’s toolkit, Walrasian equilibrium, is not
based on a complete model and is able to explain prices and allocations
only by taking a two-step shortcut: (1) The modeler “pretends” that prices
are observed and taken as parametrically given by all agents (including all
firms) before they act, hence before they can affect such prices; this is a

2Given a set I of individuals, we always call “profile” a list of elements from a given
set (e.g., a set of actions), one for each individual i.

3Ties can be broken at random.
4The model is still in some sense incomplete: we have not even addressed the issue of

what the individuals know about the situation and about each other. But the elements
sketched in the main text are sufficient for the discussion. Let us stress that what we call
“complete model” does not include the modeler’s hypotheses on how the agents choose,
which are key to provide explanations or predictions of economic and social phenomena.
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kind of logical short-circuit, but it allows to determine demand and supply
functions D(p), S(p). Next, (2) market-clearing conditions D(p) = S(p)
determine equilibrium prices. Well, this can only be seen as a (clever)
reduced-form approach; absent an explicit model of price formation (such
as an auction model), the modeler postulates that somehow the choices-
prices-choices feedback process has reached a rest point and he describes
this point as a market-clearing equilibrium. In many applications of
economic theory to the study of competitive markets, this is a very
reasonable and useful shortcut, but it remains just a shortcut, forced by
the lack of what we call a complete model of the interactive situation.

So, what do we get when instead we have a complete model? As we are
going to show a bit more formally in the next section, we get what game
theorists call a “game.” This is why game theory should be a basic tool
in economic modelling, even if one wants to analyze perfectly competitive
situations. To illustrate this point, we will present a purely game-theoretic
analysis of a perfectly competitive market, showing not only how such an
analysis is possible, but also that it adds to our understanding of how
equilibrium can be reached.

1.3 Abstract Game Models

A completely formal definition of the mathematical object called “(non-
cooperative) game” will be given in due time. We start with a semi-formal
introduction to the key concepts, illustrated by a very simple example,
a seller-buyer mini-game. Consider two individuals, S (Seller) and B
(Buyer). Let S be the owner of an object and B a potential buyer. For
simplicity, consider the following bargaining protocol: S can ask one Euro
(1) or two Euros (2) to sell the object, B can only accept (a) or reject (r).
The monetary value of the object for individual i (i = S,B) is denoted Vi.
This situation can be analyzed as a game which can be represented with
a rooted tree with utility numbers attached to terminal nodes (leaves),
player labels attached to non-terminal nodes, and action labels attached
to arcs; see, for instance, Figure 1.1.

The game tree represents the formal elements of the analysis: the set
of players (or roles in the game, such as seller and buyer), the actions, the
rules of interaction, the consequences of complete sequences of actions and
how players value such consequences.
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Figure 1.1: A seller-buyer mini-game.

Formally, a game form is given by the following elements:

• I, a set of players;

• For each player i ∈ I, a set Ai of actions which could conceivably
be chosen by i at some point of the game as the play unfolds.

• Y , a set of outcomes, or consequences;

• E , an extensive-form structure, that is, a mathematical
representation of the rules saying whose turn it is to move, what
a player knows, i.e., his or her information about past moves and
random events, and what are the feasible actions at each point of the
game; this determines a set Z of possible paths of play (sequences of
feasible actions); a path of play z ∈ Z may also contain some random
events such as the outcomes of throwing dice;

• g : Z → Y , an outcome (or consequence) function which assigns
to each play z a consequence g(z) in Y .

The above elements represent what the layperson would call the “rules
of the game.” To complete the description of the actual interactive situation
(which may differ from how the players perceive it) we have to add players’
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preferences over consequences and—via expected utility calculations—
lotteries over consequences:

• (vi)i∈I , where each vi : Y → R is a von Neumann-Morgenstern
utility function representing player i’s preferences over outcomes
(consequences); preferences over lotteries are obtained via expected
utility comparisons.

With this, we obtain the kind of mathematical structure called “game”
in the technical sense of game theory. This formal description does not
say how such a game would (or should) be played. The description of an
interactive decision problem is only the first step to make a prediction (or
a prescription) about players’ behavior.

To illustrate, the mathematical description of the seller-buyer mini-
game is as follows: I = {S,B}; AS = {1, 2}, AB = {a, r}; Y is a
specification of the set of final allocations of the object and of monetary
payments (for example, Y = {oS , oB}×{0, 1, 2}, where (oi, k) means object
to i and k euros are given by B to S); E is represented by the game
tree, without the utility numbers at endnodes; g is the rule stipulating
that if B accepts the ask price p then B gets the object and gives p
euros to S, if B rejects then S keeps the object and B keeps the money
(g(p, a) = (oB, p), g(p, r) = (oS , 0)); vi is a risk-neutral (quasi-linear)
utility function normalized so that the utility of no exchange is zero for
both players (vS(oB, p) = p − VS , vB(oB, p) = VB − p, vi(oS , 0) = 0 for
i = S,B). Game theory provides predictions on the behavior of S and B
in this game based on hypotheses about players’ knowledge of the rules of
the game and of each other preferences, and on hypotheses about strategic
thinking. For example, B is assumed to accept an ask price if and only
if it is below his valuation. Whether the ask price is high or low depends
on the valuation of S and what S knows about the valuation of B. If S
knows the valuation of B, he can anticipate B’s response to each offer and
how much surplus he can extract.

A caveat on theoretical language It is common in game-theoretic
work to refer to the mathematical structure describing an interactive
situation (the “real game”) as if it were the situation itself. Such abuse
of language is usually innocuous, but sometimes the distinction is lost and
this leads to unclear or confusing language. It is therefore useful to keep
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in mind the distinction between the real world objects and phenomena we
are interested in and the mathematical structures used in the theoretical
analysis. For example, the distinction is important in our analysis and
discussion of games with incomplete or asymmetric information in Section
8.6 of Chapter 8.

1.4 Terminology and Classification of Games

Games come in different varieties and are analyzed with different
methodologies. The same strategic interaction may be represented in a
detailed way, using the mathematical objects described above, or in a much
more parsimonious way. The amount of details in the formal representation
constrains the methods used in the analysis. The terminology used to
refer to different kinds of strategic situations and to different formal
objects used to represent them may be confusing: Some terms that
have almost the same meaning in the daily language, such as “perfect
information” and “complete information,” have very different meanings
in game theory; other terms, such as “non-cooperative game,” may be
misleading. Furthermore, there is a tendency to confuse the substantive
properties of the situations of strategic interaction that game theory aims
at studying and the formal properties of the mathematical structures
used in this endeavour. Here we briefly summarize the terminology and
classification of game theory doing our best to dispel such confusion.

1.4.1 Cooperative vs Non-Cooperative Games

Suppose that the players (or at least some of them) could meet before the
game is played and sign a binding agreement specifying their course of
action (an external enforcing agency—e.g., the courts system—will force
each player to follow the agreement). This could be mutually beneficial
for them and if this possibility exists we should take it into account. But
how? The theory of cooperative games does not model the process
of bargaining (offers and counteroffers) which takes place before the real
game starts; this theory considers instead a simple and parsimonious
representation of the situation, that is, how much of the total surplus
each possible coalition of players can guarantee to itself by means of some
binding agreement. For example, in the seller-buyer situation discussed
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above, the (normalized) surplus that each player can guarantee to itself is
zero, while the surplus that the {S,B} coalition can guarantee to itself (the
“gains from trade”) is the difference between the lowest and the highest
valuation, that is, VB − VS in the standard case where VB ≥ VS . This
simplified representation is called coalitional game. For every given
coalitional game the theory tries to figure out which division of the surplus
could result, or, at least, the set of allocations that are not excluded by
strategic considerations; see, for example, Osborne and Rubinstein [53,
Part IV].

On the other hand, the theory of non-cooperative games assumes
that either binding agreements are not feasible (e.g., in an oligopolistic
market they could be forbidden by antitrust laws), or that the bargaining
process which could lead to a binding agreement on how to play a game
G is appropriately formalized as a sequence of moves in a “larger game”
Γ(G).5 The players cannot agree on how to bargain in Γ(G) and this is
the game to be analyzed with the tools of non-cooperative game theory. It
is therefore argued that non-cooperative game theory is more fundamental
than cooperative game theory. For example, in the seller-buyer situation,
Γ(G) would be represented by the game-tree displayed in Figure 1.1 to
illustrate the formal objects comprised by the mathematical representation
of a game. The analysis of this game reveals that if S knows VB he can use
his first-mover advantage to ask for the highest price below VB. Of course,
the results of the analysis depend on details of the bargaining rules that
may be unknown to an external observer and analyst. Neglecting such
details, cooperative game theory typically gives weaker, but more robust
predictions. Yet, in our view, the main advantage of non-cooperative game
theory is not so much its sharper predictions, but rather the conceptual
clarity of working with explicit assumptions and showing exactly how
different assumptions lead to different results.

Cooperative game-theory is an elegant and useful analytical toolkit.
It is especially appropriate when the analyst has little understanding of
the true rules of interaction and wishes to derive some robust results from
parsimonious information about the outcomes that coalitions of players can

5Here we are using symbol G to represent the actual interactive situation being
modeled. As we move on to the formal analysis of games we will use the same symbol
to denote the mathematical structure representing such situations. The meaning of G
and similar symbols will be either explicit or clear from the context.
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implement. However, non-cooperative game theory is much more pervasive
in modern economics, and more generally in modern formal social sciences.
We will therefore focus on non-cooperative game theory.

One thing should be clear, focusing on this part of the theory does
not mean that cooperation is neglected. Non-cooperative game theory is
not the study of un-cooperative behavior, but rather a method of analysis.
Indeed we find the name “non-cooperative game theory” misleading, but
it is now entrenched and we will conform to it.

1.4.2 Static and Sequential Games

A game is static if each player moves only once and all players move
simultaneously (or at least without any information about other players’
moves). Examples of static games are: Matching Pennies, Stone-Scissor-
Paper, and sealed bid auctions.

A game has a multistage structure if some moves are sequential,
players always know the number of previous moves, and some player
may observe (at least partially) the previous behavior of his or her co-
players. Examples of multistage games are: Chess, Poker, and open outcry
auctions. Not all games with sequential moves have a multistage structure.
We focus on this special case because it is simpler and it covers many
applications.

Games with sequential moves are sometimes analyzed as if the players
moved only once and simultaneously. The trick is to pretend that each
player chooses in advance his strategy, i.e., a contingent plan of action
specifying how to behave in every circumstance that may arise while
playing the game. Each profile of strategies s = (si)i∈I determines a
particular path, viz., ζ(s), hence an outcome g(ζ(s)), and ultimately a
profile of utilities, or “payoffs,” (vi(g(ζ(s))))i∈I . This mapping s 7−→
(vi(g(ζ(s))))i∈I is called the normal form, or strategic form of the
game. The strategic form of a game can be seen as a static game where
players simultaneously choose strategies in advance. For example, in the
seller-buyer mini-game the strategies of S (seller) coincide with his possible
ask prices; on the other hand, the set of strategies of B (buyer) contains
four response rules: SB = {a1a2, a1r2, r1a2, r1r2} where ap (respectively,
rp) is the instruction “accept (resp., reject) price p.” The strategic form is
as follows:
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S \B a1a2 a1r2 r1a2 r1r2

p = 1 1− VS , VB − 1 1− VS , VB − 1 0, 0 0, 0

p = 2 2− VS , VB − 2 0, 0 2− VS , VB − 2 0, 0

Figure 1.2: Strategic form of the seller-buyer minigame.

A strategy in a static game is just the plan to take a specific action, with
no possibility to make this choice contingent on the actions of others, as
such actions are being simultaneously chosen. Therefore, the mathematical
representation of a static game and its normal form must be the same.
For this reason, static games are often called “normal-form games,” or
“strategic-form” games. We are going to avoid this widespread abuse of
language. In a correct language there should not be “normal-form games”;
rather, looking at the normal form of a game is a method of analysis.

1.4.3 Assumptions about Information

Perfect Information and Observable Actions

A multistage game has perfect information if players move one at a time
and each player—when it is his or her turn to move—is informed of all the
previous moves (including the realizations of chance moves). If some moves
are simultaneous, but each player can observe all past moves, we say that
the game has observable actions (or perfect monitoring, or almost
perfect information). Examples of games with perfect information
are the seller-buyer mini-game, Chess, Backgammon, and Tic-Tac-Toe.
An example of a game with observable actions is the repeated Cournot
oligopoly, with simultaneous choice of outputs in every period and perfect
monitoring of past outputs. Note, perfect information is an assumption
about the rules of the game.

Asymmetric Information

A game with imperfect information features asymmetric information if
different players get different pieces of information about past moves and
in particular about the realizations of chance moves. Poker and Bridge are
games with asymmetric information because players observe their cards,
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but not the cards of others. Like perfect information, also asymmetric
information is entailed by the rules of the game.

Complete and Incomplete Information

An event E is common knowledge if everybody knows E, everybody
knows that everybody knows E, and so on for all iterations of “everybody
knows that.” To use a suggestive semi-formal expression: for every
m = 1, 2, ... it is the case that [(everybody knows that)m E is the case].

There is complete information in an interactive decision problem
represented by G = 〈I, A, Y, E , g, (vi)i∈I〉 if it is common knowledge that
the actual interactive situation is the one represented by G. Conversely,
there is incomplete information if for some player i either it is not
the case that [i knows the actual game], or for some m = 1, 2, ...
it is not the case that [i knows that (everybody knows that)m the
actual interactive situation]. Most economic situations feature incomplete
information because either the outcome function (represented by g), or
players’ preferences (represented by the utility functions (vi)i∈I) are not
common knowledge. Note, complete (or incomplete) information is not
an assumption about the rules of the game, it is an assumption on
players’ “interactive knowledge” concerning the rules and preferences. For
example, in the seller-buyer mini-game it can be safely assumed that there
is common knowledge of the outcome function (who gets the object and
monetary transfers), but the valuations VS and VB need not be commonly
known. For some types of objects on sale, Vi is known only to i; for other
types of objects, the seller may know the quality of the object better then
the buyer, so VB could be given by an idiosyncratic component known to
B plus a quality component known to S.

Although situations with asymmetric information about chance moves,
such as Poker, are conceptually different from situations with incomplete
information, we will see that there is a formal similarity which allows
(at least to some extent) to use the same analytical tools to study both
situations.

Examples: In games like chess and poker there is—presumably—
complete information; indeed, the “rules of the game” are common
knowledge, and it may be taken for granted that it is common knowledge
that players like to win. On the other hand, auctions typically feature
incomplete information because the competitors’ valuations of the objects
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on sale are not commonly known.

1.5 Rational Behavior

The decision problem of a single individual i can be represented as follows:
i can take an action in a set of feasible alternatives, or decisions, Di; i’s
welfare (payoff, utility) is determined by his decision di and an external
state ω−i ∈ Ω−i (which represents the realizations of a vector of variables
beyond i’s control, e.g., the outcome of a random event and/or the decisions
of other players) according to the outcome function

g : Di × Ω−i → Y

and the utility function

vi : Y → R.

We assume that i’s choice cannot affect ω−i and that i does not have any
information about ω−i when he chooses beyond the fact that ω−i ∈ Ω−i.
The choice is made once and for all. (We will show in the part on sequential
games how this model can be generalized.) Assume, just for simplicity,
that Di and Ω−i are both finite and let, for notational convenience,
Ω−i = {ω1

−i, ω
2
−i, ..., ω

n
−i}. In order to make a “rational” choice, i has

to assess the probabilities of the different states in Ω−i. Suppose that
his beliefs about ω−i are represented by a probability vector µi ∈ ∆(Ω−i)
where

∆(Ω−i) =

{
µi ∈ Rn+ :

n∑
k=1

µi(ωk−i) = 1

}
.

Then i’s rational decision given µi is to take any alternative that
maximizes i’s expected payoff, i.e., any d∗i such that

d∗i ∈ arg max
di∈Di

Eµi (vi (g (di, ·))) ,

where Eµi denotes the expectation with respect to µi,

Eµi (vi (g (di, ·))) =
n∑
k=1

µi(ωk−i)vi

(
g(di, ω

k
−i)
)
.
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Decision d∗i is also called a best response, or best reply, to µi. The
probability vector could be exogenously given (roulette lottery) or simply
represent i’s subjective beliefs about ω−i (horse lottery, game against
an opponent). The composite function vi ◦ g is denoted ui, that is,
ui(di, ω−i) = vi (g(di, ω−i)); ui is called the payoff function, because in
many interesting games the rules of the decision problem (or game) attach
monetary payoffs to the possible outcomes of the game and it is taken for
granted that the decision maker maximizes his expected monetary payoff.
In the finite case, ui is often represented as a matrix with (k, `) entry
uk`i = ui(d

k
i , ω

`
−i): see Figure 1.3.

ω1
−i ω2

−i . . .

d1
i u11i u12i . . .

d2
i u21i u22i . . .

...
...

...
. . .

Figure 1.3: Matrix representation of the payoff function.

This representation of a decision maker’s choice, of course, fits very
well the case of static games. In this case Di = Ai is simply the set of
feasible actions and Ω−i may be the set A−i of the opponents’ feasible
action profiles (or a larger space if there is incomplete information).

However, it has been argued that the representation is more general:6

Consider a game with sequential moves, e.g., a multistage game. The
rules of interaction specifies all the circumstances under which player i
may have to choose an action and the information i would have in those
circumstances. Then player i can formulate in advance a plan of action,
or strategy, which specifies how he would behave in any such circumstance
given the available information. Assuming that such plan is incentive
compatible, that is, that player i has no incentive to deviate from it,
then player i expects to follow his plan. His uncertainty concerns the
contingent behavior of others, hence the strategies they are going to follow.
Every profile of strategies, when carried out, induces a particular outcome.
Therefore, the planning problem faced by a rational agent is the problem
of selecting an incentive-compatible strategy under uncertainty about the

6See von Neumann and Morgenstern [68].
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strategies used by the opponents (and possibly about other unknowns). In
the part of this textbook devoted to multistage games we will discuss some
subtleties related to the concepts of “strategy” and “plan.”

1.6 Assumptions and Solution Concepts in Game
Theory

Game theory provides a mathematical language to formulate assumptions
about the “rules of the game” and players’ preferences, that is, all the
elements listed in Section 1.3. But such assumptions are not enough
to derive conclusions about how the players behave in a given game.
The central behavioral assumption in game theory is that players are
rational (see Section 1.5). However, without further assumptions about
what players believe about the variables which affect their payoffs, but
are beyond their control (in particular their opponents’ behavior), the
rationality assumption has little behavioral content: we can only say
that a rational player’s choice must be justifiable, i.e., it it must be a
best response to some belief. In most games, this is too little to derive
interesting results.7

Then, how can we obtain interesting results from our assumptions
about the rules of the game and preferences? The standard approach
used in game theory is analogous to the one used in the undergraduate
economics analysis of competitive markets, whereby we formulate
assumptions about preferences and technology and then we assume
that economic agents’ plans are mutually consistent best responses to
equilibrium prices.

As explained in Section 1.2, there is an important difference: the
textbook analysis of competitive markets does not specify a price-
formation mechanism and uses equilibrium market-clearing as a theoretical
shortcut to overcome this problem. On the contrary, in a game-
theoretic model all the observable variables we try to explain depend on
players’ actions (and exogenous shocks) according to an explicitly specified
function, as in auction models.

7There are important exceptions. For example, in many situations where each
individual in a group decides how much to contribute to a public good, it is strictly
dominant to give a minimal contribution (see Example 3 in Chapter 3).
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Yet, there are also similarities with the analysis of competitive markets.
One could say that the role of prices is played (sic) by players’ beliefs since
we assume that they are, in some sense, mutually consistent. The precise
meaning of the statement “beliefs are mutually consistent” is captured by a
solution concept. The simplest and most widely used solution concept in
game theory, Nash equilibrium, assumes that players’ beliefs about each
other strategies are correct and each player best responds to her or his
beliefs; as a result, each player uses a strategy that is a best response to
the strategies used by other players.

Nash equilibrium is not the only solution concept used in game theory.
Recent developments made clear that solution concepts implicitly capture
expressible8 assumptions about players’ rationality and beliefs, and some
assumptions that are appropriate in some contexts are too weak, or simply
inappropriate, in different contexts. Therefore, it is very important to
provide convincing motivations for the solution concept used in a specific
application.

Let us somewhat vaguely define as “strategic thinking” what
intelligent agents do when they are fully aware of participating in an
interactive situation and form conjectures by putting themselves in the
shoes of other intelligent agents. As the title of this book suggests,
we mostly (though not exclusively) present game theory as an analysis
of strategic thinking. We will often follow the traditional “textbook”
game theory and present different solution concepts providing informal
motivations for them, sometimes with a lot of hand-waving. However,
the reader should always be aware that a more fundamental approach is
being developed, where game theorists formulate explicit assumptions not
only about the rules of the game and preferences, but also about players’
rationality and initial beliefs, and also about how beliefs change as the play
unfolds. Implications about choices and observables can be derived directly
from such assumptions, without the mediation of solution concepts. Then,
solution concepts become mere “shortcuts” to characterize the behavioral
implications of assumptions about rationality and beliefs.

For example, a standard solution concept in game theory, subgame
perfect equilibrium, requires players’ strategies to form an equilibrium not

8Roughly, “expressible” means “something that can be expressed in a clear, precise,
and not self-referential language.”
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only for the game itself, but also in every subgame.9 In finite games
with (complete and) perfect information, if there are no relevant ties,
there is a unique subgame perfect equilibrium that can be computed
with a backward induction algorithm. For two-stage games with perfect
information, subgame perfect equilibrium can be derived from simple
assumptions about rationality and beliefs: players are rational and the first
mover believes that the second mover is rational. To illustrate, consider
the seller-buyer mini-game and assume players have complete information.
Specifically, suppose that it is common knowledge that VS < 1and VB > 2.
The assumption of rationality of the buyer B, denoted with RB, implies
that B accepts every price below valuation VB; since VB > 2, the only
strategy consistent with RB is a1a2, that is, to accept both p = 1 and
p = 2. Rationality of the seller S, denoted with RS , implies that S
attaches subjective probabilities to the four strategies of B and chooses
the ask price that maximizes S’s expected utility; if S has deterministic
beliefs, S asks for the highest prices he expects to be accepted, e.g., S asks
p = 1 if he is certain of strategy a1r2. But if S is certain that B is rational,
given the complete information assumption, S must assign probability 1
to strategy a1a2. Then the rationality of S and S’s in the rationality of B
imply that S asks for the highest price, i.e., S uses the bargaining power
derived from the knowledge that VB > 2 and the first-mover advantage.
In symbols, write Bi(E) for “i believes (with probability 1) E,” where E is
some event; then RS ∩ BS(RB) implies that S asks for p = 2; RB implies
that p = 2 is accepted; RS ∩BS(RB)∩RB implies that the action/strategy
of S is p = 2 and the strategy of B is a1a2, which is the subgame perfect
equilibrium obtained via backward induction.

Two-stage games with complete and perfect information are so simple
that the analysis above may seem trivial. On the other hand, the rigorous
analysis of more complicated multistage games based on higher levels of
mutual belief in rationality presents conceptual difficulties that will be
addressed only in the second part of this textbook. Here we further
illustrate strategic thinking with a semi-formal analysis of a static game
representing a perfectly competitive market. We hope this will also have
the side effect to make the reader understand that game theory is useful to

9A precise definition of a subgame will be given in Part II. For the time being, you
should think of a subgame as a “smaller”game that starts with a non-terminal node of
the original game.
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analyze every “complete” model of economic interaction, including models
of perfect competition.

1.6.1 Game Theoretic Analysis of a Perfectly Competitive
Market

Let us analyze the decisions of a large number n of small, identical
agricultural firms producing a crop (say, corn). For reasons that will be
clear momentarily, it is convenient to index firms as equally spaced rational
numbers in the interval (0, 1], that is, I = { 1

n ,
2
n , . . . ,

n−1
n , 1} ⊂ (0, 1] with

generic element i ∈ I. Each firm i decides in advance how much to produce.
This quantity is denoted q(i). The output of corn q(i) will be ready to be
sold only in six months. Markets are incomplete: it is impossible to agree
in advance on a price for corn to be delivered in six months. So, each firm
i has to guess the price p for corn in six months. It is common knowledge
that the demand for corn (not explicitly “micro-founded” in this example)
is given by function D(p) = nmax{(α−βp), 0}, that is, D(p) = n(α−βp)
if p ≤ α

β and D(p) = 0 otherwise. It is also common knowledge that
each firm will fetch the highest price at which the market can absorb the
total output for sale, Q =

∑n
i=1 q(i). Thus, each firm will sell each unit

of output at the uniform price P
(
Q
n

)
= 1

β

(
α− Q

n

)
if Q

n ≤ α and p = 0

if Q
n > α (for notational convenience, we express inverse demand as a

function of the average output Q
n ). Each firm i has total cost function

C(q) = 1
2mq

2, hence the marginal cost function is MC(q) = q
m . Each

firm has obvious preferences, it wants to maximize the difference between
revenues and costs. The technology (cost function) and preferences of each
firm are common knowledge.10

Now, we want to represent mathematically the assumption that each
firm is “negligible” with respect to the (maximum) size of the market α.
Instead of assuming a large, but finite set of firms given by a fine grid I in
the interval (0, 1], we use a quite standard mathematical idealization and
assume that there is a continuum of firms, normalized to the unit interval
I = (0, 1]. Thus, the average output is q =

∫ 1
0 q(i)di instead of 1

n

∑n
i=1 q(i).

Each firm understands that its decision cannot affect the total output and

10The analysis can be generalized assuming heterogeneous firms, where each firm i is
characterized by the marginal cost parameter m(i). Then it is enough to assume that
each i knows m(i) and that the average m = 1

n

∑n
i=1 m(i) is common knowledge.
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the market price.11

Given that all the above is common knowledge, we want to derive
the price implications of the following assumptions about rationality and
beliefs:

R (rationality): each firm has a conjecture about (q and) p and chooses
a best response to such conjecture, for brevity, each firm is rational;12

B(R) (mutual belief in rationality): all firms believe (with certainty)
that all firms are rational;

B2(R) = B(B(R)) (mutual belief of order 2 in rationality): all firms
believe that all firms believe that all firms are rational;

...
Bk(R) = B(Bk−1(R)) (mutual belief of order k in rationality): [all firms

believe that]k all firms are rational;
...
Note, we are using symbols for these assumptions. In a more formal

mathematical analysis, these symbols would correspond to events in a
space of states of the world. Here they are just useful abbreviations.
Conjunctions of assumptions will be denoted by the symbol ∩, as in
R ∩ B(R). It is a good thing that you get used to these symbols, but
if you find them baffling, just ignore them and focus on the words.

What are the consequences of rationality (R) in this market? Let p(i)
denote the price expected by firm i.13 Then i solves

max
q≥0

{
p(i)q − 1

2m
q2

}
which yields

q(i) = m p(i).

Since firms know the inverse demand function P (q) = max{(α− q)/β, 0},
each firm i’s expectation of the price is below the upper bound p0 = α

β :
p(i) ≤ α

β . It follows that

q =

∫ 1

0
mp(i)di = m

∫ 1

0
p(i)di ≤ q1 := m

α

β
,

11This example is borrowed from Guesnerie [39].
12The symbols R, B(R) etc. below should be read as abbreviations of sentences. They

can also be formally defined using mathematics, but this goes beyond the scope of this
textbook.

13This is, in general, the mathematical expectation of p according to the subjective
probabilistic conjecture of firm i.
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where q1 denotes the upper bound on average output when firms are
rational. (We use “:=” to mean “equal by definition”, when this is not
obvious from the context.)

By mutual belief in rationality, each firm understands that q ≤ q1 and
p ≥ max{(α−mα

β )/β, 0}. Ifm ≥ β, this is not very helpful: assuming belief
in rationality does not reduce the span of possible prices and does not yield
additional implications for the endogenous variables we are interested in. It
is not hard to understand that rationality and mutual belief in rationality
of every order yields the same result q ≤ mα

β , where mα
β ≥ α because

m ≥ β.
So, let us assume from now on that m < β. Note, this is the so called

“cobweb stability” condition. Given belief in rationality, B(R), each firm
expects a price at least as high as the lower bound

p1 :=
1

β

(
α− q1

)
=
α

β

(
1− m

β

)
> 0.

Therefore R ∩ B(R) implies that q = m
∫ 1

0 p(i)di ≥ mp1, that is, average
output is above the lower bound

q2 := mp1 = α
m

β

(
1− m

β

)
and hence the price is below the upper bound

p2 :=
1

β
(α− q2) =

α

β

(
1− m

β

(
1− m

β

))
=
α

β

2∑
k=0

(
−m
β

)k
.

By B(R) and B2(R) (mutual belief of order 2 in rationality), each firm
predicts that p ≤ p2. Rational firms with such expectations choose an
output below the upper bound

q3 := mp2 = α
m

β

(
1− m

β

(
1− m

β

))
= α

m

β

2∑
k=0

(
−m
β

)k
.

Thus, R ∩ B(R) ∩ B2(R) implies that q ≤ q3 and the price must be above
the lower bound

p3 :=
1

β
(α− q3) =

α

β

3∑
k=0

(
−m
β

)k
.
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Can you guess the consequences for price and average output of
assuming rationality and common belief in rationality (mutual belief in
rationality of every order)? Draw the classical Marshallian cross of demand-
supply, trace the upper and lower bounds found above and go on. You will
find the answer.

More formally, define the following sequences of upper bounds and
lower bounds on the price:

pL =
α

β

L∑
k=0

(
−m
β

)k
, L even

pL =
α

β

L∑
k=0

(
−m
β

)k
, L odd

It can be shown by mathematical induction that R∩
L−1⋂
k=1

Bk(R) (rationality

and mutual belief in rationality of order k = 1, . . . , L − 1, with L ≥ 2)
implies p ≤ pL if L is even, and p ≥ pL if L is odd. Since m

β < 1,

the sequence p2` = α
β

∑2`
k=0

(
−m
β

)k
is decreasing in `, the sequence

p2`+1 = α
β

∑2`+1
k=0

(
−m
β

)k
is increasing in `, and they both converge to

the competitive equilibrium price p∗ = α
β+m , see Figure 1.4.

A Comment on “Rational” versus “Rationalizable” Expectations

This price p∗ is often called the “rational expectations” price, because
it is the price that the competitive firms would expect if they performed
the same equilibrium analysis as the modeler. We refrain from using
such terminology. Game theory allows a much more rigorous and precise
terminology, the one that we have been using above. In this textbook,
“rationality” is a joint property of choices and beliefs and it means only
that agents best respond to their beliefs. The phrase “rational beliefs,” or
“rational expectations” was coined at a time when theoretical economists
did not have the formal tools to be precise and rigorous in the analysis
of rationality and interactive beliefs. Now that these tools exist, such
phrases as “rational expectations” should be avoided, at least in game
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p

qq2 q∗ q3 q1

p1

p∗

p2

p0

MC(q)

P (q)

•

Figure 1.4: Strategic thinking in a perfectly competitive market.

theoretic analysis. On the other hand, expectations may be consistent
with common belief in rationality (e.g., under common knowledge of the
game), and it makes sense to call such expectations “rationalizable.”
Note well, the fact that there is only one rationalizable expectations price,
p∗, is a conclusion of the analysis, it has not been assumed! Also, this
conclusion holds only under the “cobweb stability” condition m < β. This
contrasts with standard equilibrium analysis, whereby it is assumed at
the outset that expectations are correct, whether or not this follows from
assumptions like common belief in rationality.

What do we learn from this example? First, it shows that certain
assumptions about rationality and beliefs (plus common knowledge of the
game) may yield interesting implications or not according to the given
model and parameter values. Here, rationality and common belief in
rationality have sharp implications for the market price and average output
if the “cobweb stability” condition holds. Otherwise they only yield a very
weak upper bound on average output.

Second, recall that strategic thinking is what intelligent agents do
when they are fully aware of participating in an interactive situation and



22 1. Introduction

form conjectures by putting themselves in the shoes of other intelligent
agents; in this sense, the above is as good an analysis of strategic thinking
as any, and yet it is the analysis of a perfectly competitive market!

Third, the example shows how solution concepts can be interpreted as
shortcuts. Here we presented an iterated deletion of prices and conjectures,
where one deletes prices that cannot occur when firms best respond to
conjectures and delete conjectures that do not rule out deleted prices.
Note, mutual beliefs of order k do not appear explicitly in this iterative
deletion procedure. The procedure is a solution concept of a kind and it can
be used as a shortcut to obtain the implications of rationality and common
belief in rationality. Under “cobweb stability,” the rational expectation
equilibrium price p∗ results. This shows that under appropriate conditions
we can use the equilibrium concept to draw the implications of rationality
and common belief in rationality. This theme will be played time and
again.



Part I

Static Games
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Static Games: Formal
Representation and
Interpretation

A static game, or one-stage game, or simultaneous-moves game, is
an interactive situation where all players move simultaneously and only
once.1 The key features of a static game are formally represented by a
mathematical structure (a list of sets and functions)

G = 〈I, Y, (Ai)i∈I , g, (vi)i∈I〉 ,

where:

• I is the set of individuals or players, typically denoted by i, j;

• Ai is the nonempty set of possible actions for player i; ai, a
∗
i , a

′
i, âi

are alternative action labels we frequently use;

1Sometimes static games are also called “normal-form games” or “strategic-form
games.” As we mentioned in Chapter 1, this terminology is somewhat misleading. The
normal, or strategic form of a game Γ has the same structure of a static game, but
the game Γ itself may have a sequential structure. The normal form of Γ shows the
payoffs induced by any combination of plans of actions of the players, if such plans are
implemented. Some game theorists, including the founding fathers von Neumann and
Morgenstern [68], argue that from a theoretical point of view all strategically relevant
aspects of a game are contained in its normal form. Be as it may, here by “static game”
we specifically mean a game where players move simultaneously.

24
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• g :×i∈I Ai → Y is the outcome (or consequence) function which
captures the essence of the rules of the game, beyond the assumption
of simultaneous moves;

• vi : Y → R is the Von Neumann-Morgenstern utility function of
player i.

Structure 〈I, Y, (Ai)i∈I , g〉, that is, the game without the utility
functions, is called game form. The game form represents the essential
features of the rules of the game. A game is obtained by adding to the
game form a profile of utility functions (vi)i∈I , which represents players’
preferences over lotteries of consequences, according to expected utility
calculations.

From the consequence function g and the utility function vi of player
i, we obtain a function that assigns to each a = (aj)j∈I the utility vi(g(a))
for player i of consequence g(a). This function

ui = vi ◦ g :×
i∈I

Ai → R

is called payoff function of player i. The reason why ui is called payoff
function is that the early work on game theory assumed that consequences
are distributions of monetary payments, or payoffs, and that players are
risk neutral, so that it is sufficient to specify, for each player i, the
monetary payoff implied by each action profile. But in modern game theory
ui(a) = vi(g(a)) is interpreted as the von Neumann-Morgenstern utility of
outcome g(a) for player i. If there are monetary consequences, then

g = (gi)i∈I :×
i∈I

Ai → RI ,

where mi = gi(a) is the net gain of player i when a is played. Assuming
that player i is selfish, function vi is strictly increasing in mi and constant
in each mj with j 6= i (note that selfishness is not an assumption of game
theory, it is an economic assumption that may be adopted in game theoretic
models). Thus, function vi captures the risk attitudes of player i. For
example, i is strictly risk averse if and only if vi is strictly concave.

In some games the outcome function is stochastic, that is, each a =
(aj)j∈I corresponds to a lottery. For example, in a sealed-bid auction the
object on sale is assigned at random to one of the high bidders if there is a
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tie. In the stochastic outcome case, ui has to be interpreted as an expected
payoff: if Y is finite,

ui(a) =
∑
y∈Y

g(a)(y)vi(y),

where g(a)(y) is the probability of outcome y according to lottery g(a).
Games are typically represented in the reduced form

G = 〈I, (Ai, ui)i∈I〉

which shows only the payoff functions. We often do the same. However, it
is conceptually important to keep in mind that payoff functions are derived
from a consequence function and utility functions.

For ease of exposition, we often assume that all the sets Ai (i ∈ I)
are finite; when the sets of actions are infinite, we explicitly say so. This
simplifies the analysis of probabilistic beliefs. A static game with finite
action sets is called a finite static game (or just a finite game, if “static”
is clear from the context). The following assumption is a generalization of
finiteness:

Definition 1. A (reduced form) static game G = 〈I, (Ai, ui)i∈I〉 is
compact-continuous if, for each i ∈ I, Ai is a compact subset of a
Euclidean space Rki and ui :×j∈I Aj → R is continuous.2

We can always assume without loss of generality that, if Ai is finite,
then it is a finite subset of some Euclidean space. Every such set is
compact, and every function with a finite domain is continuous. Therefore,
a finite game is compact-continuous. Most of our results hold for compact-
continuous games. In some cases (for example, to prove the existence of
an equilibrium) we may have to add other assumptions about the actions
sets and the payoff functions.

We call profile a list of objects (xi)i∈I , one object xi from some set
Xi for each player i ∈ I. In particular, an action profile is a list

a = (ai)i∈I ∈ A =×
i∈I

Ai.

2A subset of a Euclidean space is compact if and only if it is closed and bounded. For
most of the results that rely on compactness and continuity, it is sufficient to assume
that each action set Ai is a compact subset of a metrizable topological space.
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The payoff function ui numerically represents the preferences of player
i among the different action profiles a, a′, a′′, . . . ∈ A. The strategic
interdependence is due to the fact that the outcome function g depends
on the entire action profile a and, consequently, the utility that a generic
individual i can achieve depends not only on his choice, but also on those
of other players.3 To stress how the payoff of i depends on a variable
under i’s control as well as on a profile of variables controlled by other
individuals, we denote by −i = I\{i} the set of individuals different from
i, we define

A−i = ×
j∈I\{i}

Aj ,

and we write the payoff of i as a function of the two arguments ai ∈ Ai
and a−i ∈ A−i, that is, ui : Ai ×A−i → R.

In order to be able to reach some conclusions regarding players’
behavior in a game G, we impose two minimal assumptions (further
assumptions will be introduced later on as necessary):

(H1) Each player i knows Ai, A−i and his own payoff function
ui : Ai ×A−i → R;

(H2) Each player is rational (see Chapter 3 for a more formal
definition of rationality).

Assumption (H1) (i knows ui) may seem almost tautological: is it
not obvious that every individual should know his preferences over A?
However, action profiles are not consequences (outcomes). We assume
that each i knows his own preferences over (lotteries of) consequences,

3Note, in our formulation, players’ utility depends only on the consequence
determined by action profile a through outcome function g. Thus, we are assuming a form
of consequentialism. If you think that consequentialism is an obvious assumption, think
twice. Substantial experimental evidence suggests agents also care about other players’
intentions: agent i may evaluate the same action profile differently depending on his
belief about opponents’ intentions. To provide a formal analysis of players’ intentions,
we need to specify what an agent thinks other agents will do, what an agent thinks
other agents think other agents will do, what an agent thinks other agents think other
agents think that other agents will do and so on. Although the analysis of these issues
is beyond the scope of this textbook, the interested reader is referred to the growing
literature on psychological games (see Geanakoplos et al [35], Battigalli and Dufwenberg
[11], Battigalli, Corrao and Dufwenberg [9], and Battigalli and Dufwenberg [12]).
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represented by utility function vi : Y → R, but he may ignore the true
outcome function g : A → Y , hence he may ignore his payoff function
ui = vi ◦ g. The following example clarifies this point.

Example 1. (Knowledge of the utility and payoff functions) Players 1
and 2 work in a team for the production of a public good. Their action is
their effort ai ∈ [0, 1]. The output, Q, depends on efforts according to a
Cobb-Douglas production function4

Q = K(a1)θ1(a2)θ2 .

The cost of effort measured in terms of public good is Ci = (ai)
2. Then,

the outcome function is

g(a1, a2) = (K(a1)θ1(a2)θ2 , (a1)2, (a2)2).

The utility function of player i is vi(Q,C1, C2) = Q − Ci. The payoff
function is

ui(a1, a2) = vi(g(a1, a2)) = K(a1)θ1(a2)θ2 − (ai)
2.

If i does not know all the parameters K, θ1 and θ2 (as well as the functional
forms above), then he does not know the payoff function ui, even if he
knows the utility function vi. N

Example 1 also clarifies the difference between “game” in the technical
sense of game theory, and the “rules of the game” as understood by the
layperson (see the Chapter 1). In the example above, the “rules of the
game” specify the action set [0, 1] and the outcome function

(a1, a2) 7−→ (Q,C1, C2) =
(
K(a1)θ1(a2)θ2 , (a1)2, (a2)2

)
.

In order to complete the description of the game in the technical sense, we
also have to specify the utility functions vi(Q,C1, C2) = Q−Ci (i = 1, 2).5

Also, the example clarifies that the outcome map a 7→ g(a) may depend
on personal features of the agents playing the game: in this case, the

4In some applications players exert effort in a joint project and output q is interpreted
as the probability that the project is successful.

5This specification assumes that players are risk neutral with respect to their
consumption of public good.



29

productivity θi of each agent affects how the pair of efforts (a1, a2) (say,
the hours worked) is mapped to the output Q. Therefore, the outcome
function g is not always fully determined by what we would call “rules of
the game” in the natural language.

Unlike the games people play for fun (and those that experimental
subjects play in most game theoretic experiments), in many economic
games the outcome function may not be fully known. In Example 1, for
instance, it is possible that player i knows his own productivity parameter
θi, but does not know K or θ−i. Thus, assumption (H1) is substantive: i
may not know g and hence he may not know ui = vi ◦ g.

The complete information assumption that we will consider later on
(e.g., in Chapter 4) is much stronger; recall from the Chapter 1 that there
is complete information if the rules of the game and players’ preferences
over (lotteries over) consequences are common knowledge. Although, as we
explained above, the rules of the game may be only partially known, there
are still many interactive situations where it is reasonable to assume that
they are not only known, but indeed commonly known. Yet, assuming
common knowledge of players’ preferences is often far-fetched. Thus,
complete information should be thought of as an idealization that simplifies
the analysis of strategic thinking. Chapter 8 will introduce the formal tools
necessary to model the absence of complete information.
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Rationality and Dominance

In this chapter we analyze static games from the perspective of decision
theory. We take as given the conjecture1 of a player about opponents’
behavior. This conjecture is, in general, probabilistic, i.e., it can be
expressed by assigning subjective probabilities to the different action
profiles of the other players. A player is said to be rational if he maximizes
his expected payoff given his conjecture. The concept of dominance allows
to characterize which actions are consistent with the rationality assumption
without knowing a player’s conjecture.

3.1 Probabilities and Expected Payoff

Payoff function ui, which is a derived utility function, implicitly represents
the preferences of i over different probability measures on A, which induce
corresponding lotteries, that is, probability measures over consequences.
The preferred lotteries are those that yield a higher expected payoff. We
explain this in detail below.

We first introduce some preliminary definitions about sets and
functions. For any set X, we let 2X denote the power set of X, i.e.,
the collection of all subsets of X, including the empty set ∅ and X itself.
If X is finite, then |2X | = 2|X|, where | · | denotes the “cardinality of ·.”
For any pair of nonempty sets X and Y , we let Y X denote the set of

1In general, we use the word “conjecture” to refer to a player’s belief about variables
that affect his payoff and are beyond his control, such as the actions of other players in
a static game.

30
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functions with domain X and codomain Y . If X and Y are both finite,
then |Y X | = |Y ||X|.

The set of probability measures over a generic domain X is denoted by
∆(X). If X is finite2

∆(X) =

{
µ ∈ RX+ :

∑
x∈X

µ(x) = 1

}
.

The definition above is the simplest one for finite domains. But there is
an alternative, equivalent, definition, that can be more easily generalized
to infinite domains. Since sometimes we will consider probability measures
on infinite domains, we present here also the alternative. First consider
the definition above for a finite X, and fix µ ∈ ∆(X). Every subset of
a finite uncertainty space X is called “event.” For each event E ⊆ X, µ
determines the probability of E as follows:

µ(E) =
∑
x∈E

µ(x).

Thus, the map E 7→ µ(E) satisfies the following properties:

• (normalization) µ(X) = 1,

• (additivity) for all E,F ∈ 2X , E∩F = ∅ ⇒ µ(E∪F ) = µ(E)+µ(F ).

Note that additivity implies that µ(∅) = 0, because ∅ ∩ E = ∅, hence
µ(E) = µ(E ∪ ∅) = µ(E) + µ(∅), which implies µ(∅) = 0. These are the
characterizing properties of a probability measure, defined as a function
µ : 2X → [0, 1]. Therefore, the alternative definition of ∆(X) is

∆(X) =
{
µ ∈ [0, 1]2

X
: µ(X) = 1,

∀E,F ∈ 2X , E ∩ F = ∅ ⇒ µ(E ∪ F ) = µ(E) + µ(F )
}
.

When X is infinite, we typically restrict our attention to a sub-
collection X ⊆ 2X of subsets of X, called events (e.g., the Borel sets,
when X is a subset of a Euclidean space, or—more generally—a metric
space), and we strengthen the additivity property as follows:

2Recall that RX+ is the set of nonnegative real-valued functions defined over the
domain X. If X is the finite set {x1, . . . , xn}, RX+ is isomorphic to Rn+, the positive
orthant of the Euclidean space Rn.
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• (countable additivity) if (Ek)
∞
k=1 ∈ XN is a sequence of pairwise

disjoint events and
∞⋃
k=1

Ek ∈ X , then

µ

( ∞⋃
k=1

Ek

)
=
∞∑
k=1

µ(Ek).

Whenever we consider infinite sets, we take for granted that there
is a well-defined collection of events X (such as the Borel subsets of a
metric space) and ∆(X) is the set of functions µ : X → [0, 1] that satisfy
normalization and countable additivity.

Note, X can be regarded as a subset of ∆(X): a point x ∈ X
corresponds to the degenerate probability measure δx, called Dirac
measure (or deterministic, or dogmatic belief), that satisfies δx(E) = 1
if and only if x ∈ E. Hence, with a slight abuse of notation, we can write
X ⊆ ∆(X) (more abuses of notation will follow).3

Definition 2. Consider a probability measure µ ∈ ∆(X), where X is a
finite set. The subset of the elements x ∈ X to which µ assigns a positive
probability is called support of µ and is denoted by

suppµ = {x ∈ X : µ(x) > 0} .

If X is a closed subset of Rm, we define the support of a probability measure
µ ∈ ∆(X) as the intersection of all closed sets C such that µ(C) = 1.4

Suppose that there is a function f : X → Y , where Y is a finite set of
outcomes, or consequences,5 and an individual has a preference relation %
over the set of lotteries ∆(Y ) represented by a Von Neumann-Morgenstern
utility function v : Y → R, that is, for all lotteries λ, λ′ ∈ ∆(Y ),

λ % λ′ ⇔
∑
y∈Y

λ(y)v(y) ≥
∑
y∈Y

λ′(y)v(y).

3If X has at least two elements, the inclusion is strict.
4If X ⊂ Rm is finite, this definition is equivalent to the previous one.
5If X is infinite, then it has to be endowed with a sigma-algebra of events X ⊆ 2X

(see Appendix 3.4) and f has to be X -measurable, that is, f−1 (y) ∈ X for each outcome
y in the finite set Y .
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Then we can derive a corresponding preference relation on X as follows.
First we define the pushforward function f̂ : ∆(X) → ∆(Y ) that
determines the lottery induced, through f , by a probability measure on
X:

f̂(µ)(y) = µ
(
f−1(y)

)
=

∑
x∈f−1(y)

µ(x),

where, of course, the second equality holds when X is finite. With this,
we obtain a preference relation on ∆(X): for all µ, µ′ ∈ ∆(X),

µ % µ′ ⇔
∑
y∈Y

f̂(µ)(y)v(y) ≥
∑
y∈Y

f̂(µ′)(y)v(y).

Consider the particular case where X = A is the set of action profiles
in a game, let f = g : A → Y be the consequence function, and fix any
player i. Then, for all µ, µ′ ∈ ∆(A),

µ %i µ
′ ⇔

∑
y∈Y

ĝ(µ)(y)vi(y) ≥
∑
y∈Y

ĝ(µ′)(y)vi(y).

Since ĝ(µ)(y) = µ
(
g−1(y)

)
) and we have defined the payoff function as

ui = vi ◦ g, we have∑
y∈Y

ĝ(µ)(y)vi(y) =
∑
y∈Y

∑
a∈g−1(y)

µ(a)vi(g(a)) =
∑
a∈A

µ(a)ui(a)

for each µ ∈ ∆(A) (to understand the second equality, note that
{g−1(y)}y∈Y is a partition of A, and recall that ui(a) = vi(g(a))).
Therefore

µ %i µ
′ ⇔

∑
a∈A

µ(a)ui(a) ≥
∑
a∈A

µ′(a)ui(a).

In other words, probability measures on A are ranked according to the
corresponding expected payoffs.

Probabilities and expected payoffs in compact-continuous games
The foregoing analysis can be extended to infinite games.6 In particular,
we focus on compact-continuous games. For any compact subset X of
a Euclidean space, we let X = B (X) be the smallest sigma-algebra

6We elaborate on this topic in Section 3.4.1 of the Appendix.
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containing all the closed subsets of X; ∆ (X) is the set of all the probability
measures µ : B (X) → [0, 1]. Let A =×i∈I Ai and Y be compact subsets
of Euclidean spaces. If outcome function g : A → Y is continuous and
each utility function vi : Y → R (i ∈ I) is also continuous, then〈

I, (Ai, ui)i∈I
〉

=
〈
I, (Ai, vi ◦ g)i∈I

〉
is a compact-continuous game. Since g is continuous, then it is also
measurable, that is, E ∈ B (Y ) implies g−1 (E) ∈ B (A) for each E ⊆ Y .
With this, the pushforward function, ĝ : ∆ (A) → ∆ (Y ), is defined as
follows: for all µ ∈ ∆ (A) and E ∈ B (Y ),

ĝ (µ) (E) = µ
(
g−1 (E)

)
;

more compactly, the pushforward map is described as follows

µ 7→ ĝ (µ) = µ ◦ g−1.

When the probability measures µ, µ′ ∈ ∆ (A) have finite or countable
supports, the expected utility formulas are almost as above, with y ∈ Y
replaced by y ∈ g (suppµ) and y ∈ g (suppµ′) respectively, and a ∈ A
replaced by a ∈suppµ and a ∈suppµ′ respectively. Otherwise, expected
values are expressed as integrals:

Eµ (ui) =

∫
A
ui (a)µ (da) =

∫
Y
vi (y) ĝ(µ) (dy) = Eĝ(µ) (vi) . (3.1.1)

Example 2. To get some intuition about the generalized integrals in
eq. (3.1.1), suppose that player i has only one opponent, whose action
space is an interval A−i =

[
a−i, a−i

]
⊂ R. Also suppose that player i

plans to choose action âi, therefore his belief µ ∈ ∆ (Ai ×A−i) assigns
probability one to the segment {âi} ×

[
a−i, a−i

]
and µ corresponds to a

probability measure µi on the interval
[
a−i, a−i

]
, the “conjecture” of i

about −i. Such probability measures can equivalently be represented by
cumulative distribution functions (cdf). So, let Fµ be the cdf representing
µi; in particular,

Fµ (a−i) = µi
([
a−i, a−i

])
= µ

(
{âi} ×

[
a−i, a−i

])
.

Then Eµ (ui) can be expressed as a Riemann-Stieltjes integral:∫
A
ui (a)µ (da) =

∫ a−i

a−i

ui (âi, a−i) dFµ (a−i) .
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If µi has a finite support, then Fµ is piecewise constant and suppµi is the
set of points where Fµ is discontinuous (from the left). In this case,∫ a−i

a−i

ui (âi, a−i) dFµ (a−i) =
∑

a−i∈suppµi

ui (âi, a−i)µ
i (a−i) .

If instead suppµi is an interval (or a union of intervals) and Fµ is
differentiable with integrable derivative fµ, then the differential formula
dFµ (a−i) = fµ (a−i) da−i applies, and∫ a−i

a−i

ui (âi, a−i) dFµ (a−i) =

∫ a−i

a−i

ui (âi, a−i) fµ (a−i) da−i.

N

3.2 Conjectures

The reason why one needs to introduce preferences over lotteries and
expected payoffs is that player i cannot observe other players’ actions (a−i)
before making his own choice. Hence, he needs to form a conjecture about
such actions. If i were certain of the other players’ choices, then one could
represent i’s conjecture simply with an action profile a−i ∈ A−i. However,
in general, i might be uncertain about other players’ actions and assign a
strictly positive (subjective) probability to several profiles a−i, a

′
−i, etc.

Definition 3. A conjecture of player i is a (subjective) probability
measure µi ∈ ∆(A−i). A deterministic conjecture is a probability
measure µi ∈ ∆(A−i) that assigns probability one to a particular action
profile, that is, µi = δa−i for some a−i ∈ A−i.

Note, we call “conjecture” a (probabilistic) belief about the behavior
of other players, while we use the term “belief” to refer to a more general
type of uncertainty.

Remark 1. The set of deterministic conjectures of player i essentially
coincides with the set of other players’ action profiles, so that we can write
A−i ⊆ ∆(A−i).
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One of the most interesting aspect of game theory consists in
determining players’ conjectures, or, at least, in narrowing down the set of
possible conjectures, combining some general assumptions about players’
rationality and beliefs with specific assumptions about the given game G.
However, in this chapter we will not try to “explain” players’ conjectures.
This is left for the following chapters.

For any given conjecture µi, the choice of a particular action āi
corresponds to the choice of the measure on A that assigns probability
µi(a−i) to each action profile (āi, a−i) (a−i ∈ A−i) and probability zero to
the profiles (ai, a−i) with ai 6= āi. Therefore, if a player i has conjecture µi

and chooses (or plans to choose) action āi, the corresponding (subjective)
expected payoff is

ui(āi, µ
i) = Eµi (ui (āi.·)) ,

where
Eµi (ui (āi.·)) =

∑
a−i∈suppµi

µi(a−i)ui(āi, a−i)

if µi has a finite support.
There are many different ways to represent graphically actions,

conjectures, and preferences when the number of available actions is small.
Let us focus our attention on the instructive case where player i’s opponent
(−i) has only two actions, denoted ` (“left”) and r (“right”). Consider,
for instance, the function ui represented by the payoff matrix in Figure 3.1
for player i.

i\− i ` r

a 4 1

b 1 4

c 2 2

e 4 0

f 1 1

Figure 3.1: Matrix 1.

Given that −i has only two actions, we can represent the conjecture
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µi of i about −i with a single number: µi(r), the subjective probability
that i assigns to r. Each action ai corresponds to a function that assigns
to each value of µi(r) the expected payoff of ai. Since the expected payoff
function (1 − µi(r))ui(ai, `) + µi(r)ui(ai, r) is linear in the probabilities,7

every action is represented by a line, such as aa, bb, cc etc., in Figure 3.2.

µi(`)

µi(r)

1

2

3

4 a

ab

b

c c

e

e

f f

0 1

Figure 3.2: Expected payoff as a function of beliefs.

From Figure 3.2 it is apparent that only actions a, b, and e are
“justifiable” by some conjecture. In particular, if µi(r) = 0, then a and e
are both optimal; if 0 < µi(r) < 1

2 , then a is the only optimal action (the
line aa yields the maximum expected payoff). If µi(r) > 1

2 , then b is the
only optimal action (the line bb yields the maximum expected payoff). If
µi(r) = 1

2 , then there are two optimal actions: a and b.

7More precisely, the expected payoff function ui(ai, µ
i) is affine in µi, that is,

ui(ai, xµ
i + (1− x)νi) = xui(ai, µ

i) + (1− x)ui(ai, ν
i)

for all ai ∈ Ai, µi, νi ∈ ∆ (A−i), and x ∈ [0, 1].
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3.2.1 Mixed Actions

In principle, instead of choosing directly a certain action, a player could
delegate his decision to a randomizing device, such as spinning a roulette
wheel, or tossing a coin. In other words, a player could simply choose the
probability of playing any given action.

Definition 4. A random choice by player i, also called mixed action, is
a probability measure αi ∈ ∆(Ai). An action ai ∈ Ai is also called pure
action.

Remark 2. The set of pure actions can be regarded as a subset of the set
of mixed actions, i.e., Ai ⊆ ∆(Ai) (cf. Remark 1).

It is assumed that (according to i’s beliefs) the random draw of an
action of i is stochastically independent of the other players’ actions. For
example, the following situation is excluded : i chooses his action according
to the (random) weather and he thinks his opponents are doing the same,
so that there is correlation between ai and a−i even though there is no
causal link between ai and a−i (this type of correlation will be discussed
in section 6.2 of Chapter 6). More importantly, player i knows that moves
are simultaneous and therefore by changing his actions he cannot cause
any change in the probability distribution of opponents’ actions. Hence,
if player i has conjecture µi and chooses the mixed action αi, where both
have finite support, the subjective probability of each possible action profile
(ai, a−i) is αi(ai)µ

i(a−i) and i’s expected payoff is

ui(αi, µ
i) = Eαi×µi (ui) =

∑
ai∈suppαi

∑
a−i∈suppµi

αi(ai)µ
i(a−i)ui(ai, a−i)

=
∑

ai∈suppαi

αi(ai)ui(ai, µ
i).

If the opponent has only two feasible actions, it is possible to use a graph to
represent the lotteries corresponding to pure and mixed actions. For each
action ai, we consider a corresponding point in the Cartesian plane with
coordinates given by the utilities that i obtains for each of the two actions
of the opponent. If the actions of the opponents are ` and r, we denote such
coordinates x = ui(·, `) and y = ui(·, r). Any pure action ai corresponds
to the vector (x, y) = (ui(ai, `), ui(ai, r)) (a row in the payoff matrix of
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i). The same holds for the mixed actions: αi corresponds to the vector
(x, y) = (ui(αi, `), ui(αi, r)). The set of points (vectors) corresponding to
the mixed actions is simply the convex hull of the points corresponding to
the pure actions.8 Figure 3.3 represents such a set for the matrix in Figure
3.1.

How can conjectures be represented in such a figure? It is quite
simple. Every conjecture induces a preference relation on the space of
payoff pairs. Such preferences can be represented through a map of iso-
expected payoff curves (or indifference curves). Let (x, y) be the generic
vector of (expected) payoffs corresponding to ` and r respectively. The
expected payoff induced by conjecture µi is µi(`)x+µi(r)y. Therefore, the
indifference curves are straight lines defined by the equation y = u

µi(r)
−

µi(`)
µi(r)

x, where u denotes the constant expected payoff. Every conjecture µi

corresponds to a set of parallel lines with negative slope (or, in the extreme
cases, horizontal or vertical slope) determined by the orthogonal vector
(µi(`), µi(r)). The direction of increasing expected payoff is given precisely
by such orthogonal vector. The optimal actions (pure or mixed) can be
graphically determined considering, for any conjecture µi, the highest line
of iso-expected payoff among those that touch the set of feasible payoff
vectors (the shaded area in Figure 3.3).

Allowing for mixed actions, the set of feasible (expected) payoffs vectors
is a convex polyhedron (as in Figure 3.3). To see this, note that if αi and
βi are mixed actions, then also p · αi + (1 − p) · βi (with 0 ≤ p ≤ 1) is
a mixed action, where p · αi + (1 − p) · βi is the function that assigns to
each pure action ai the weight pαi(ai)+(1−p)βi(ai). Thus, all the convex
combinations of feasible payoff vectors are feasible payoff vectors, once we
allow for randomization. This geometrical intuition can be extended to all
finite games. In general, each mixed action αi corresponds to a vector of
expected payoffs (ui(αi, a−i))a−i∈A−i . Let

U =
{

u ∈ RA−i : ∃αi ∈ ∆ (Ai) ,u = (ui(αi, a−i))a−i∈A−i

}
be the set of feasible payoff vectors when randomization is allowed; then U
is a compact and convex polyhedron in RA−i with extreme points contained

8The convex hull of a set of points X ⊆ Rk is the smallest convex set containing
X, that is, the intersection of all the convex sets containing X.
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ui(·, `)

ui(·, r)

1

2

3

4

1 2 3 4

•

•

•

•

•

{

}µ(r) = 2
3

µ(`) = 1
3

}

{µ(`) = 2
3

µ(r) = 1
3

a

b

c

e

f

Figure 3.3: State-contingent representation of expected payoff.

in the set {
u ∈ RA−i : ∃ai ∈ Ai,u = (ui(ai, a−i))a−i∈A−i

}
of payoff vectors induced by pure actions. For example, in Figure 3.3 U is
the shaded area; the set of extreme points is

{(ui(a, `), ui(a, r)) , (ui(b, `), ui(b, r)) , (ui(e, `), ui(e, r)) , (ui(f, `), ui(f, r))} ,

which is a subset of {(ui(ai, `), ui(ai, r))}ai∈Ai because the vector

(ui(c, `), ui(c, r)) = (2, 2) =
1

3
(1, 1) +

1

3
(4, 1) +

1

3
(1, 4)

=
1

3
(ui(f, `), ui(f, r)) +

1

3
(ui(a, `), ui(a, r)) +

1

3
(ui(b, `), ui(b, r))

lies in the interior of U.
However, the idea that players use coins or roulette wheels to randomize

their choices may seem weird and unrealistic. Furthermore, as illustrated
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by Figure 3.3, for any conjecture µi and any mixed action αi, there is
always a pure action ai that yields the same or a higher expected payoff
than αi (check all possible slopes of the iso-expected payoff curves and
verify how the set of optimal points looks like).9 Hence, a player cannot
be strictly better off by choosing a mixed action rather than a pure action.

The point of view we adopt in this textbook is that expected-utility
maximizing players never randomize (although their choices might depend
on extrinsic, payoff-irrelevant signals, as in Chapter 6, Section 6.2).
Nonetheless, it will be shown that in order to assess the justifiability of a
given pure action it is analytically convenient to introduce mixed actions.
(In Chapter 5, we discuss interpretations of mixed actions that do not
involve randomization.)

3.3 Best Replies and Undominated Actions

Definition 5. A (mixed) action α∗i is a best reply to conjecture µi if

∀αi ∈ ∆(Ai), ui(α
∗
i , µ

i) ≥ ui(αi, µi),

that is

α∗i ∈ arg max
αi∈∆(Ai)

ui(αi, µ
i).

The set of pure actions that are best replies to conjecture µi is denoted
by10

ri(µ
i) = Ai ∩ arg max

αi∈∆(Ai)
ui(αi, µ

i).

The correspondence ri : ∆(A−i) ⇒ Ai is called best reply
correspondence.11 An action ai is called justifiable if there exists a
conjecture µi ∈ ∆(A−i) such that ai ∈ ri(µi).

Note that, even if Ai is finite, one cannot conclude without proof
that the set of pure best replies to a conjecture µi is nonempty, i.e.,
that ri(µ

i) 6= ∅. In principle, it could happen that in order to maximize

9A formal proof of this result will be provided in the next section.
10Recall: we regard Ai is a subset of ∆(Ai) (see Remark 2).
11A correspondence ϕ : X ⇒ Y is a multi-function that assigns to every element x ∈ X

a set of elements ϕ(x) ⊆ Y . A correspondence ϕ : X ⇒ Y can be equivalently expressed
as a function with domain X and codomain 2Y , the power set of Y .



42 3. Rationality and Dominance

expected payoff it is necessary to use mixed actions that assign positive
probability to more than one pure action. However, we will show that
ri(µ

i) 6= ∅ for every µi provided that Ai is finite (or, more generally, that
Ai is compact and ui continuous in ai, two properties that trivially hold if
Ai is finite).

The following result shows, as anticipated, that a rational player does
not need to use mixed actions. Therefore, it can be assumed without loss
of generality that his choice is restricted to the set of pure actions.

Lemma 1. Consider a finite or compact-continuous game. Fix arbitrarily
a player i ∈ I, a conjecture µi ∈ ∆(A−i) and a mixed action α∗i ; then α∗i
is a best reply to µi if and only if every pure action in the support of α∗i is
a best reply to µi, that is

α∗i ∈ arg max
αi∈∆(Ai)

ui(αi, µ
i) ⇔ suppα∗i ⊆ ri(µi).

Proof. We prove the result only for finite games. In the finite case
the proof is quite simple. But since this is the first proof of this textbook,
we will go over it rather slowly.

(Only if) We first show that if suppα∗i is not included in ri(µ
i), then

α∗i is not a best reply to µi (this is the contrapositive of the “only if”
implication).12 Let a∗i be a pure action such that α∗i (a

∗
i ) > 0 and assume

that, for some αi, ui(αi, µ
i) > ui(a

∗
i , µ

i), so that a∗i ∈ suppα∗i \ri(µi).13

Since ui(αi, µ
i) is a weighted average of the values

(
ui(ai, µ

i)
)
ai∈Ai

, there

must be a pure action a′i such that ui(a
′
i, µ

i) > ui(a
∗
i , µ

i). But then
we can construct a mixed action α′i that satisfies ui(α

′
i, µ

i) > ui(α
∗
i , µ

i)
by “shifting probability weight” from a∗i to a′i, which is possible because
α∗i (a

∗
i ) > 0. Specifically, for every ai ∈ Ai, let

α′i(ai) =


0, if ai = a∗i ,
α∗i (a

′
i) + α∗i (a

∗
i ), if ai = a′i,

α∗i (ai), if ai 6= a∗i , a
′
i.

12The contrapositive of p⇒ q is ¬q ⇒ ¬p, where p and q are sentences and ¬ means
“not.” An implication p ⇒ q holds if and only if its contrapositive ¬q ⇒ ¬p holds. In
this case, p says that α∗i ∈ arg maxαi∈∆(Ai) ui(αi, µ

i), q says that suppα∗i ⊆ ri(µi), and
¬q says that there is some a∗i ∈ suppα∗i such that a∗i /∈ ri(µi).

13Recall that X\Y denotes the set of elements of X that do not belong to Y :
X\Y = {x ∈ X : x /∈ Y }.
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α′i is a mixed action since
∑

ai∈Ai α
′
i(ai) =

∑
ai∈Ai α

∗
i (ai) = 1. Moreover,

it can be easily checked that

ui(α
′
i, µ

i)− ui(α∗i , µi) = α∗i (a
∗
i )[ui(a

′
i, µ

i)− ui(a∗i , µi)] > 0,

where the inequality holds by assumption. Thus α∗i is not a best reply to
µi.

(If) Next we show that if each pure action in the support of α∗i is a
best reply, then α∗i is also a best reply. It is convenient to introduce the
following notation:

ûi(µ
i) = max

αi∈∆(Ai)
ui(αi, µ

i).

By definition of ri(µ
i),

∀ai ∈ ri(µ
i), ûi(µ

i) = ui(ai, µ
i) (3.3.1)

∀ai ∈ Ai, ûi(µ
i) ≥ ui(ai, µi). (3.3.2)

Assume that suppα∗i ⊆ ri(µ
i). Then, for every αi ∈ ∆(Ai)

ui(α
∗
i , µ

i) =
∑

ai∈suppα∗i

α∗i (ai)ui(ai, µ
i) =

∑
ai∈ri(µi)

α∗i (ai)ui(ai, µ
i) = ûi(µ

i)

= ûi(µ
i)
∑
ai∈Ai

αi(ai) =
∑
ai∈Ai

αi(ai)ûi(µ
i) ≥

∑
ai∈Ai

αi(ai)ui(ai, µ
i).

The first equality holds by definition, the second follows from suppα∗i ⊆
ri(µ

i), the third holds by eq. (3.3.1), the fourth and fifth are obvious and
the inequality follows from (3.3.2). �

In the matrix of Figure 3.1, for example, any mixed action that
assigns positive probability only to a and/or b is a best reply to the
uniform conjecture µi = 1

2δ` + 1
2δr that assigns probability 1

2 to ` and
r.14 Clearly, the set of pure best replies to the uniform conjecture is
ri
(

1
2δ` + 1

2δr
)

= {a, b}.

Note that if at least one pure action is a best reply among all pure and
mixed actions, then the maximum that can be attained by constraining

14Recall that δx denotes the Dirac probability measure that assigns probability 1 to
point x.
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the choice to pure actions is necessarily equal to what could be attained
choosing among (pure and) mixed actions, i.e.,

ri(µ
i) 6= ∅ ⇒ max

αi∈∆(Ai)
ui(αi, µ

i) = max
ai∈Ai

ui(ai, µ
i).

This observation along with Lemma 1 yields the following:

Corollary 1. Consider a finite or compact-continuous game. Fix
arbitrarily a player i ∈ I and a conjecture µi ∈ ∆(A−i); then

ri(µ
i) = arg max

ai∈Ai
ui(ai, µ

i).

Hence, it is not necessary to use mixed actions to maximize expected
payoff. Moreover, the best reply correspondence is non-empty-valued, that
is, ri(µ

i) 6= ∅ for every µi ∈ ∆(A−i).

Proof. For every conjecture µi, the expected payoff function ui(·, µi) :
∆(Ai)→ R is continuous in αi and the domain ∆(Ai) is compact.15 Hence,
the function has at least one maximizer α∗i . By Lemma 1, suppα∗i ⊆ ri(µi),
so that ri(µ

i) 6= ∅. As we have seen above, this implies that

max
αi∈∆(Ai)

ui(αi, µ
i) = max

ai∈Ai
ui(ai, µ

i)

and therefore ri(µ
i) = arg maxai∈Ai ui(ai, µ

i). �

Recall that, for a given function f : X → Y and a given subset C ⊆ X,

f(C) = {y ∈ Y : ∃x ∈ C, y = f(x)}

denotes the set of images of elements of C. Analogously, for a given
correspondence ψ : X ⇒ Y ,

ψ(C) = {y ∈ Y : ∃x ∈ C, y ∈ ψ(x)}

denotes the set of elements y that belong to the image ψ(x) of some
point x ∈ C. In particular, we use this notation for the best reply

15For the infinite case, see Appendix 3.4. If Ai is finite, ∆ (Ai) is a compact subset of
a Euclidean space.
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correspondence. For example, ri (∆(A−i)) is the set of justifiable actions
of player i (see Definition 5).

A question should spontaneously arise at this point: can we
characterize the set of justifiable actions with no reference to conjectures
and expected payoff maximization? In other words, can we conclude that
an action will not be chosen by a rational player without checking directly
that it is not a best reply to any conjecture? The answer comes from
the concept of dominance. But, even if we are only concerned with the
justifiability of pure actions, we will have to compare them with mixed
actions. To anticipate: a (pure) action is justifiable if and only it is not
dominated by any mixed action.

Definition 6. A mixed action αi dominates a (pure or) mixed action βi
if it yields a strictly higher expected payoff irrespective of the choices of
the other players:

∀a−i ∈ A−i, ui(αi, a−i) > ui(βi, a−i).

The set of pure actions of agent i that are not dominated by any mixed
action is denoted by NDi.

The set of undominated actions can be formally written as follows:

NDi = {ai ∈ Ai : ∀αi ∈ ∆ (Ai) ,∃a−i ∈ A−i, ui(αi, a−i) ≤ ui(ai, a−i)}
= Ai\ {ai ∈ Ai : ∃αi ∈ ∆ (Ai) ,∀a−i ∈ A−i, ui(αi, a−i) > ui(ai, a−i)} .

The proof of the following statement is left as an exercise for the reader.

Remark 3. If a (pure) action ai is dominated by a mixed action αi
then, for every conjecture µi ∈ ∆(A−i), ui(ai, µ

i) < ui(αi, µ
i). Hence, a

dominated action is not justifiable; equivalently, a justifiable action cannot
be dominated.

In the matrix of Figure 3.1, for instance, action f is dominated by c,
which in turn is dominated by the mixed action αi = 1

2δa+ 1
2δb that assigns

probability 1
2 to a and b. Therefore, NDi ⊆ {a, b, e}. Given that a, b, and

e are best replies to at least one conjecture, we have that {a, b, e} ⊆ NDi.
Hence, NDi = {a, b, e}.

The following lemma states that the converse of Remark 3 holds.
Therefore, it provides a complete answer to our previous question about
the characterization of the set of actions that a rational player would never
choose.
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Lemma 2. (Wald [69], Pearce [54]) Fix arbitrarily a player i ∈ I and
an action a∗i ∈ Ai in a finite or compact-continuous game. There exists a
conjecture µi ∈ ∆(A−i) such that a∗i is a best reply to µi if and only if a∗i
is not dominated by any (pure or) mixed action. In other words, the set of
undominated (pure) actions and the set of justifiable actions coincide:

NDi = ri (∆(A−i)) .

Here we provide a proof for the finite case, which relies on an important
result about linear algebra known as Farkas’ lemma.16 Intuitively, the
payoff vector u∗ = (ui (a∗i , a−i))a−i∈A−i corresponding to an undominated
action a∗i must be on the “efficient frontier” of the convex set U of feasible
payoff vectors (the North-East part of the boundary of the shaded area
in Figure 3.3). Therefore we can find an hyperplane H (a line in Figure
3.3) going through u∗ and separating space RA−i in two half-spaces (half-
planes in Figure 3.3), so that one of them contains U. Hyperplane H can
be written as the set of vectors y ∈ RA−i such that y · x∗ = u∗·x∗, where
0 6= x∗ ∈ RA−i . One can use Farkas’ lemma to ensure that, since y∗ is on
the “efficient” part of the boundary, then x∗ is a nonnegative vector, and
therefore it can be normalized so that its elements sum to 1 and it becomes
a conjecture µi ∈ ∆ (A−i). By construction, this conjecture justifies action
a∗i as a best reply.

Lemma 3 (Farkas’ Lemma). Let M be a n × m matrix and c ∈ Rn be
an n-dimensional vector. Then exactly one of the following statements is
true:
(1) there exists a vector x ∈Rm such that Mx ≥ c;
(2) there exists a vector y ∈ Rn such that y ≥ 0, yTM = 0T and yTc > 0.

Proof of Lemma 2. We use Farkas’ Lemma to prove the non-obvious
part of Lemma 2: if an action is undominated then it is justifiable, or—by
contraposition—if it is not justifiable then it is dominated. Fix i and a∗i
arbitrarily. Since the game is finite, let k = |Ai| and m = |A−i|, and label

16In the statement of Farkas’ Lemma and in the related proofs, we use boldface
symbols to denote vectors (i.e., functions from {1, ..., n} to R). When vectors are
represented as matrices, the default intrepretation is that they are columns. Thus,
the inner product y · x =

∑
s ysxs in matrix algebra notation is written as yTx, where

y and x are column vectors and yT is the row vector obtained from y by transposition.
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elements in Ai as {1, 2, ..., k} and elements in A−i as {1, 2, ...,m}.17 Then,
construct a k ×m matrix U in which the (w, z)-th coordinate is given by

Uw,z = ui (a∗i , z)− ui (w, z) .

With this, ∆ (A−i) is a subset of Rm and a∗i is justifiable if and only if we
can find µi ∈ ∆ (A−i) such that Uµi ≥ 0. This condition can be rewritten
as follows: a∗i is justifiable if and only if we can find x ∈ Rm satisfying
inequality:

Mx ≥ c, (3.3.3)

where M is a (k +m+ 1)×m matrix and c is a (k +m+ 1)-dimensional
vector defined as follows:

M =

 U
Im
1T
m

 , c =

 0k
0m
1


(Im denotes the m-dimensional identity matrix, that is an m ×m matrix
having 1s along the main diagonal and 0s everywhere else; 1` and 0` (` = k,
or ` = m) denote the `-dimensional vectors having respectively 1s and 0s
everywhere; from now on, the dimensionality indexes will be omitted). To
see this, note that matrix inequality (3.3.3) can be written as the system
of inequalities 

Ux ≥ 0
x1 ≥ 0, ..., xm ≥ 0∑m

z=1 xz ≥ 1
;

if
∑m

z=1 xz > 1 instead of
∑m

z=1 xz = 1, then x /∈ ∆ (A−i); but this is
immaterial because we can normalize by substituting x = (x1, ..., xm) with

x′ =
(

x1∑m
z=1 xz

, ..., xm∑m
z=1 xz

)
∈ ∆ (A−i) and satisfy inequality (3.3.3), since

Ux ≥ 0 if and only if Ux′ ≥ 0.
Thus, if a∗i is not justifiable, inequality (3.3.3) does not hold and Farkas’
lemma implies that we can find y ∈Rk+m+1 such that

y ≥ 0
yTc > 0
yTM = 0T

.

17Recall that |X| denotes the cardinality of set X.
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By construction, yTc = yk+m+1; thus the second condition can be
rewritten as yk+m+1 > 0. Furthermore, yTM = 0T implies that

k∑
w=1

yw [ui (a∗i , z)− ui (w, z)] = − (yk+z + yk+m+1) < 0

for every z ∈ A−i = {1, 2, ...,m}, where the inequality holds because
yk+m+1 > 0 and yk+z ≥ 0. Since the left hand side is non-zero and the
vector (y1, ..., yk) is nonnegative, we must have yw > 0 for some w ∈ Ai.
Then, we can construct a probability vector

ȳ =

(
y1∑k
w=1 yw

, ...,
yk∑k
w=1 yw

)
∈ ∆(Ai) ⊆ Rk

such that ui (a∗i , z) <
∑k

w=1 ȳwui (w, z) for every z ∈ A−i. We conclude
that a∗i is dominated by mixed action ȳ. �

We can thus conclude that a rational player always chooses
undominated actions and that each undominated action is justifiable as
a best reply to some conjecture.

In some interesting situations of strategic interaction an action
dominates all others. In those cases, a rational player should choose that
action. This consideration motivates the following:

Definition 7. An action a∗i is dominant if it dominates every other
action, i.e., if

∀ai ∈ Ai\ {a∗i } ,∀a−i ∈ A−i, ui(a∗i , a−i) > ui(ai, a−i).

You should try to prove the following statement as an exercise:

Remark 4. Fix an action a∗i arbitrarily. The following conditions are
equivalent:
(0) action a∗i is dominant;
(1) action a∗i dominates every mixed action αi 6= a∗i ;
(2) action a∗i is the unique best reply to every conjecture.

The following example illustrates the notion of dominant action.
The example shows that, assuming that players are motivated by
their material self-interest, individual rationality may lead to socially
undesirable outcomes.
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Example 3. (Linear Public Good Game). In a community composed
of n individuals it is possible to produce a quantity g of a public good
using an input x according to the production function y = kx. Both y and
x are measured in monetary units (say in Euros). To make the example
interesting, assume that the productivity parameter k satisfies 1 > k > 1

n .
A generic individual i can freely choose how many Euros to contribute to
the community for the production of the public good. The community
members cannot sign a binding agreement on such contributions because
no authority with coercive power can enforce the agreement. Let Wi be
player i’s wealth. The game can be represented as follows: Ai = [0,Wi],
ai ∈ Ai is the contribution of i; consequences are allocations of the public
and private good (y,W1−a1, . . . ,Wn−an); agents are selfish,18 hence their
utility function can be written as

vi(y,W1 − a1, . . . ,Wn − an) = y − ai,

which yields the payoff function

ui(a1, . . . , an) = k
n∑
j=1

aj − ai.

It can be easily checked that a∗i = 0 is dominant for any player i: just
rewrite ui as

ui(ai, a−i) = k
∑
j 6=i

aj − (1− k)ai

and recall that k < 1. The profile of dominant actions (0, . . . , 0) is Pareto-
dominated by any symmetric profile of positive contributions (ε, . . . , ε)
(with ε > 0). Indeed, ui(0, . . . , 0) = 0 < (nk − 1)ε = ui(ε, . . . , ε), where
the inequality holds because k > 1

n . Let S(a) =
∑n

i=1 ui(a) be the social
surplus; the surplus maximizing profile is âi = Wi for each i. N

An action could be a best reply only to conjectures that assign zero
probability to some action profiles of the other players. For instance, action
e in Figure 3.1 is justifiable as a best reply only if i is certain that −i does
not choose r. Let us say that a player i is cautious if his conjecture does
not rule out any a−i ∈ A−i. Formally, let

∆o(A−i) =
{
µi ∈ ∆(A−i) : suppµi = A−i

}
18And risk-neutral.
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be the set of such full-support conjectures. In the finite case, we can write
∆o(A−i) as follows:19

∆o(A−i) =
{
µi ∈ ∆(A−i) : ∀a−i ∈ A−i, µi(a−i) > 0

}
.

A rational and cautious player i chooses actions in ri (∆o(A−i)). These
considerations motivate the following definition and results.

Definition 8. A mixed action αi weakly dominates another (pure or)
mixed action βi if it yields at least the same expected payoff for every action
profile a−i of the other players and strictly more for at least one ā−i, that
is,

∀a−i ∈ A−i, ui(αi, a−i) ≥ ui(βi, a−i),
∃ā−i ∈ A−i, ui(αi, ā−i) > ui(βi, ā−i).

The set of pure actions that are not weakly dominated by any mixed action
is denoted by NWDi. Such actions are also called admissible.

The set NWDi of admissible actions can be formally written as
follows:20

NWDi

=

ai ∈ Ai : ∀αi ∈ ∆ (Ai) ,
(∃ā−i ∈ A−i, ui(αi, ā−i) < ui(ai, ā−i))
∨
(∀a−i ∈ A−i, ui(αi, a−i) ≤ ui(ai, a−i))


=

ai ∈ Ai : ∀αi ∈ ∆ (Ai) ,
(∃ā−i ∈ A−i, ui(αi, ā−i) < ui(ai, ā−i))
∨
(∀a−i ∈ A−i, ui(αi, a−i) = ui(ai, a−i))

 ,

which means that ai is not weakly dominated if, for every αi, either (1) ai
yields a strictly higher payoff than αi for at least one a−i, or (2) ai yields
a weakly higher expected payoff than αi for every a−i; if case (1) does not
hold, then ui(αi, a−i) ≥ ui(ai, a−i) for every a−i, and then ai is not weakly
dominated by αi if and only if ai and αi are payoff-equivalent.

The reader should try to prove the following remark as an exercise:

19In the finite case, we can interpret ∆o(A−i) as the relative interior of ∆(A−i), that

is, the intersection of ∆(A−i) with the open set RA−i
++ .

20Symbol ∨ represents the non-exclusive “or.” For example, if c is the proposition
“the weather is cold” and r is the proposition “the weather is rainy,” c∨ r means that
the weather is either cold, or rainy, or both; thus, c ∨ r is false if the weather is both
warm (not cold) and dry (not rainy).
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Remark 5. If an action a∗i in a finite or compact-continuous game is the
unique best reply to some conjecture µi, then it is admissible.

Next we analyze the relationship between admissible actions and the
actions that might be chosen by a rational and cautious player. The
following lemma (proved in the appendix) says that a rational and cautious
player would never choose a weakly dominated action.

Lemma 4. Fix arbitrarily a player i ∈ I and an action a∗i ∈ Ai in a finite
or compact-continuous game. If there exists a full-support conjecture µi

that justifies a∗i , then a∗i is admissible:

ri (∆o(A−i)) ⊆ NWDi.

The following example shows that, if Ai is infinite, the inclusion can
be strict, that is, there can be admissible actions that are not best replies
to any full-support conjecture.

Example 4. Let A1 = [0, 1], A2 = {0, 1},

u1 : A1 ×A2 → R,

(a1, a2) 7→ a2a1 + (1− a2)
√

1− (a1)2,

and u2 is any continuous function in RA1×A2 . Clearly, this is a compact-
continuous game. Let µ ∈ [0, 1] denote the probability of a2 = 1. Then

u1 (a1, µ) = µa1 + (1− µ)

√
1− (a1)2.

This expected payoff function is strictly concave in a1; hence, there is a
unique best reply for each µ ∈ [0, 1]. The first-order condition yields the
best reply function

r1 (µ) =
µ√

1− 2µ+ 2µ2
∈ [0, 1] .

Thus, r1 (0) = 0, r1 (1) = 1, and 0 < r1 (µ) < 1 if 0 < µ < 1, which implies
that 0 /∈ r1 (∆o (A2)) and 1 /∈ r1 (∆o (A2)). Yet, neither 0 nor 1 is weakly
dominated (see Remark 5). N
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This example shows that the exact converse of Lemma 4 does not
hold, because there are infinite compact-continuous games with admissible
actions that cannot be justified as best replies to full-support conjectures.
Yet, the following lemma (proved in the appendix) states that in all
finite games admissibility is equivalent to justifiability by full-support
conjectures.

Lemma 5. (Cf. Wald [69], Pearce [54]) Let G be a finite game. Then,
for every i ∈ I,

NWDi = ri (∆o(A−i)) .

Next we consider an interesting special case:

Definition 9. An action a∗i is weakly dominant if it weakly dominates
every other (pure) action, i.e., if for every other action âi ∈ Ai\{a∗i } the
following conditions hold:

∀a−i ∈ A−i, ui(a
∗
i , a−i) ≥ ui(âi, a−i),

∃â−i ∈ A−i, ui(a
∗
i , â−i) > ui(âi, â−i).

You should prove the following statement as an exercise:

Remark 6. Fix an action a∗i arbitrarily. The following conditions are
equivalent:
(0) a∗i is weakly dominant;
(1) a∗i weakly dominates every mixed action αi 6= a∗i ;
(2) a∗i is the unique best reply to every strictly positive conjecture µi ∈
∆o(A−i);
(3) a∗i is the only action with the property of being a best reply to every
conjecture µi(note that if µi is not strictly positive, µi ∈ ∆(A−i)\∆o(A−i),
then there may be other best replies to µi).

If a rational and cautious player has a weakly dominant action, then
he will choose such an action. There are interesting economic examples
where individuals have weakly dominant actions.

Example 5. (Second Price Auction). An art merchant has to auction
a work of art (e.g., a painting) at the highest possible price. However, he
does not know how much such work of art is worth to the potential buyers.
The buyers are collectors who buy the artwork with the only objective to
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keep it, i.e., they are not interested in what its future price might be.
The authenticity of the work is not an issue. The potential buyer i is
willing to spend at most vi > 0 to buy it. Such valuation is completely
subjective, meaning that if i were to know the other players’ valuations, he
would not change his own.21 Following the advice of W. Vickrey, winner of
Nobel Prize for Economics,22 the merchant decides to adopt the following
auction rule: the artwork will go to the player who submits the highest
offer, but the price paid will be equal to the second highest offer (in case of
a tie between the maximum offers, the work will be assigned by a random
draw). This auction rule induces a game among the buyers i = 1, . . . , n
where Ai = [0,+∞), and

ui(ai, a−i) =


vi −max a−i, if ai > max a−i,

0, if ai < max a−i,
1

1+|arg max a−i|(vi −max a−i), if ai = max a−i,

where max a−i = maxj 6=i (a1, ..., ai−1, ai+1, . . . , an). It turns out that
offering a∗i = vi is the weakly dominant action (can you prove it?). Hence,
if the potential buyer i is rational and cautious, he will offer exactly vi.
Doing so, he will expect to make some profits. In fact, being cautious, he
will assign a positive probability to event [max a−i < vi]. Since by offering
vi he will obtain the object only in the event that the price paid is lower
than his valuation vi, the expected payoff from this offer is strictly positive.
N

3.3.1 Comparative Risk Aversion and Justifiability

In this section we study the impact of risk aversion on the set of justifiable
actions. In general, attitudes toward risk are captured by players’ von
Neumann-Morgenstern utility functions vi : Y → R (i ∈ I), where Y is
the set of outcomes, or consequences. Assuming monetary consequences

21If a buyer were to take into account a potential future resale, things might be rather
different. In fact, other potential buyers could hold some relevant information that
affects the estimate of how much the artwork could be worth in the future. Similarly, if
there were doubts regarding the authenticity of the work, it would be relevant to know
the other buyers’ valuations.

22See Vickrey [66].
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and selfish preferences, Y = RI and vi

(
(yj)j∈I

)
= υi (yi).

23 In this case,

risk aversion is captured by the concavity of υi. In comparative terms,
the preferences over monetary lotteries represented by υ̂i exhibit more
risk aversion than the preferences represented by υi if υ̂i is a concave and
strictly increasing transformation of υi, that is, there is a concave and
strictly increasing function ϕ such that υ̂i = ϕ ◦ υi.

The same comparative criterion can be directly applied to the payoff
functions ui. Consider again the case of monetary outcomes and selfish
preferences and let g = (gi)i∈I : A → RI , where gi : A → R is the
monetary outcome for player i ∈ I. Then the payoff function of i is

ui = υi ◦ gi : A → R,
a 7→ υi (gi (a)) .

Thus, ûi = υ̂i ◦ gi exhibits more risk aversion than ui = υi ◦ gi if there is a
concave and strictly increasing function ϕ such that

ûi = υ̂i ◦ gi = (ϕ ◦ υi) ◦ gi = ϕ ◦ (υi ◦ gi) = ϕ ◦ ui.

This motivates the following:

Definition 10. Fix two games in reduced form G = 〈I, (Ai, ui)i∈I〉 and
Ĝ = 〈I, (Ai, ûi)i∈I〉 and a player i ∈ I, we say that i is more risk averse
in Ĝ than in G if there exists a concave and strictly increasing function
ϕ : R→ R such that ûi = ϕ ◦ ui.

We show that, for players who rank actions according to subjective
expected utility theory, higher risk aversion weakly expands, in the sense
of set inclusion, the set of justifiable actions.24 At first, the result may look
counterintuitive: indeed, higher risk aversion of the decision maker, let us
say player i, would increase the attractiveness of the “safer” actions, that
is, actions ai ∈ Ai such that ui(ai, a−i) is somewhat low for each profile
a−i ∈ A−i, but does not change much with the choice of a−i ∈ A−i.
On the other hand, “unsafe” actions ai that are best replies to some
deterministic conjectures may become instead less attractive. How can
the set of justifiable actions change monotonically?

23We use the slightly different symbols vi and υi because vi is defined on RI while υi
is defined on R.

24See Weinstein [73] and Battigalli et al. [17, Proposition 1].
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The key to understand the result intuitively is to note that the set
of justifiable actions expands with risk aversion if and only if, for every
action ai which is justifiable with low risk aversion, the nonempty set{
µi ∈ ∆ (A−i) : ai ∈ ri (µi)

}
of conjectures justifying ai does not become

empty when risk aversion is higher. In particular, if an “unsafe” action
is justified by a deterministic conjecture, an increase in risk aversion
cannot make such actions unjustifiable, because the set of best replies to
deterministic conjectures is invariant to strictly increasing transformations
of the payoff function ui. The following example illustrates: as risk aversion
increases, safe actions become easier to justify, in the sense that the set of
justifying conjectures becomes larger; in particular, the set can be empty
with low risk aversion and nonempty with higher risk aversion; on the
other hand, if an unsafe action is—despite being unsafe—justifiable, then
the set of justifying conjectures shrinks as risk aversion increases, but it
cannot become empty.

Example 6. Consider the following game form with monetary outcomes,
where I = {1, 2}, A1 = {t,m, b}, A2 = {`, r}, and outcome function
g : A → RI ; player 1’s component of the outcome function g1 : A → R is
represented in Figure 3.4.

` r

t 0 1

m 1/3 1/3

b 1 0

Figure 3.4: Function g1 which represents monetary gains of player 1.

If player 1 is risk neutral, i.e., v1 : RI → R is defined by v1(x, y) = x and
u1 = v1 ◦ g = g1, then action m is not justifiable. Indeed, for every belief
µ1 ∈ ∆(A2), we have

Eµ1 (u1(m, · )) =
1

3
<

1

2
≤ max

{
Eµ1 (u1(t, · )) ,Eµ1 (u1(b, · ))

}
.

Then, let us suppose that the utility function v1 is replaced by v1,θ :
RI → R defined by

v1,θ(x, y) = x1/θ,
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where θ ≥ 1 parametrizes risk aversion. Then, the payoff function is
defined by u1,θ(a) = (g1(a))1/θ for all a ∈ A.

It is not difficult to check that the set of justifiable actions of player 1
is

r1,θ (∆(A−1)) =


{t, b}, if θ ∈ [1, log2 3),

{t,m, b}, if θ ∈ [log2 3,∞).

Therefore, the collection of justifiable actions expands as θ increases. On
the other hand, notice that the set of beliefs justifying actions b and t
shrinks as θ increases above the threshold θ = log23, see Figure 3.5. N

u1,θ( · , `)

u1,θ( · , r)

1/3 2/3

1/3

2/3

•

•

•

t

m(=1

b
u1,θ( · , `)

u1,θ( · , r)

1/3 2/3

1/3

2/3

•

•

•

t

m(>(̄

b

Figure 3.5: As θ increases, the set of beliefs justifying b and t shrinks.

Lemma 2 can be used to prove the following result:

Theorem 1. Let G = 〈I, (Ai, ui)i∈I〉 and Ĝ = 〈I, (Ai, ûi)i∈I〉 be two finite
or compact-continuous games in reduced form, and suppose that player
i ∈ I is more risk averse in Ĝ than in G. Then

ri (∆(A−i)) ⊆ r̂i (∆(A−i)) .

Proof. By assumption, there exists a concave and strictly increasing
function ϕ : R→ R such that ûi = ϕ ◦ ui. Let us fix any justifiable action
of i in G, that is, ai ∈ ri (∆(A−i)). We must show that ai ∈ r̂i (∆(A−i)),
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where r̂i is the best reply correspondence associated to payoff function ûi.
By Lemma 2, ai is not dominated in G by any mixed action αi ∈ ∆(Ai):

∀αi ∈ ∆(Ai),∃a−i ∈ A−i, ui(ai, a−i) ≥ ui(αi, a−i).

Therefore, for every mixed action αi ∈ ∆(Ai), there exists a profile
a−i ∈ A−i such that

ûi(ai, a−i) = ϕ (ui(ai, a−i)) ≥ ϕ (ui(αi, a−i)) = ϕ (Eαi(ui( · , a−i)))
≥ Eαi(ϕ(ui( · , a−i))) = Eαi(ûi( · , a−i)) = ûi(αi, a−i),

that is, ai is not dominated in Ĝ. Here, the first inequality follows from
the monotonicity of ϕ and the second follows from Jensen’s inequality.25

Hence, again by Lemma 2, action ai belongs to r̂i (∆(A−i)). �

3.3.2 Best Replies and Undominated Actions in Nice
Games

Many models used in applications of game theory to economics and other
disciplines have the following features: players choose actions in compact
(closed and bounded) intervals of the real line, their payoff functions are
continuous, and the payoff function of each player is strictly concave, or—
at least—strictly quasi-concave,26 in his own action. Such games are called
“nice;” see Moulin [48].

Definition 11. A static game G = 〈I, (Ai, ui)i∈I〉 is nice if, for every
player i ∈ I, Ai is a compact interval [ai, āi] ⊂ R, the payoff function
ui : A→ R is continuous (that is, jointly continuous in all its arguments),
and the function ui(·, a−i) : [ai, āi] → R is strictly quasi-concave for each
a−i ∈ A−i.

25The concave transformation of the expectation of a random variable is larger than
the expectation of the concave transformation of that random variable, see Aliprantis
and Border [3, Theorem 11.24].

26A function f : X → R with convex domain is strictly quasi-concave if for every
pair of distinct points x′, x′′ ∈ X and every t ∈ (0, 1),

f(tx′ + (1− t)x′′) > min{f(x′), f(x′′)}.
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Remark 7. Let Ai = [ai, āi] ⊂ R and fix a−i ∈ A−i. Function
ui(·, a−i) : [ai, āi]→ R is strictly quasi-concave if and only if the following
two conditions hold: (1) there is a unique best reply ri(a−i) ∈ [ai, āi] and
(2) ui(·, a−i) is strictly increasing on [ai, ri(a−i)] and strictly decreasing on
[ri(a−i), āi].

Example 7. Consider Cournot’s oligopoly game with capacity constraints:
I is the set of firms, ai ∈ [0, āi] is the output of firm i and āi is its capacity.
The payoff function of firm i is

ui(a) = aiP

ai +
∑
j 6=i

aj

− Ci(ai),
where P : [0,

∑
i āi] → R+ is the downward-sloping inverse demand

function and Ci : [0, āi] → R+ is i’s cost function. The Cournot game
is nice if P (·) and each cost function Ci(·) are continuous and if, for each
i and a−i, P (ai +

∑
j 6=i aj)ai −Ci(ai) is strictly quasi-concave. The latter

condition is easy to satisfy. For example, if each Ci is strictly increasing
and convex, and P (

∑
j∈I aj) = max{0, p̄ − β

∑
j∈I aj}, then strict-quasi

concavity holds (prove this as an exercise).27 N

Nice games allow an easy computation of the sets of justifiable actions
and of dominated actions. We are going to compare best replies to
deterministic conjectures, uncorrelated conjectures, correlated conjectures,
pure actions not dominated by mixed actions, and pure actions not
dominated by other pure actions. First note that, by definition, for every
player i the following inclusions hold:28

ri(A−i) ⊆ ri(I∆(A−i)) ⊆ ri(∆(A−i)) ⊆ NDi

⊆ {ai ∈ Ai : ∀bi ∈ Ai, ∃a−i ∈ A−i, ui(ai, a−i) ≥ ui(bi, a−i)},

27But strict concavity does not hold. Can you see why? Consider the neighborhood
of a point where P (

∑
j∈I aj) becomes zero.

28If you do not know how to deal with probability measures on infinite sets, just
consider the simple ones, i.e., those that assign positive probability to a finite set of
points. The set of simple probability measures on an infinite domain X is a subset of
∆(X), but under the assumptions considered here it is possible to restrict one’s attention
to this smaller set.
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where

I∆(A−i) =

µi ∈ ∆(A−i) : ∃(µij)j∈I\{i} ∈ ×
j∈I\{i}

∆(Aj), µ
i =

∏
j 6=i

µij


is the set of product probability measures on A−i, that is, the set of beliefs
that satisfy independence across opponents. In words, the set of best
replies to deterministic conjectures in A−i is contained in the set of best
replies to probabilistic independent conjecture, which is contained in the
set of best replies to probabilistic (possibly correlated) conjectures, which
is contained in the set of actions not dominated by mixed actions, which is
contained in the set of (pure) actions not dominated by other pure actions.
In each case the inclusion may hold as an equality. The following technical
results imply that—in nice games—all these (weak) inclusions indeed hold
as equalities. We start by providing conditions under which the best reply
correspondence is actually a continuous function.

Lemma 6. Consider a compact-continuous game such that, for each i ∈ I,
each Ai is convex and ui(·, a−i) is strictly quasi-concave for each a−i ∈ A−i.
Then each player i has a well-defined and continuous best reply function
on the domain A−i.

Proof. By convexity of Ai and strict quasi-concavity of ui, the set
arg maxai∈Ai ui(ai, a−i) is a singleton for each a−i. To prove this, it is
sufficient to show that, if a′i 6= a′′i and ui(a

′
i, a−i) = ui(a

′′
i , a−i), then

ui(a
′
i, a−i) < maxai∈Ai ui(ai, a−i). To see this, let a′i and a′′i be as above.

By convexity of Ai, for each t ∈ (0, 1), ta′i + (1− t)a′′i ∈ Ai; by strict quasi-
concavity of ui, ui(ta

′
i+(1−t)a′′i , a−i) > min{ui(a′i, a−i), ui(a′′i , a−i)}. Since

ui(a
′
i, a−i) = ui(a

′′
i , a−i) the result follows.

Next we show that the function ri(a−i) = arg maxai∈Ai ui(ai, a−i) is
continuous, that is, for any sequence

(
ak−i
)
k∈N such that limk→∞ a

k
−i = ā−i

the corresponding sequence of best replies
(
ri(a

k
−i)
)
k∈N converges to ri(ā−i)

[limk→∞ ri(a
k
−i) = ri(ā−i)]. Note first that, since the sequence

(
ri(a

k
−i)
)
k∈N

is contained in the compact set Ai, it must have at least one accumulation

point āi ∈ Ai.29 Therefore, there exists a subsequence
(
ak`−i

)
`∈N

such that

29By the Bolzano–Weierstrass’ theorem, every bounded sequence of real numbers has
a convergent subsequence; see, e.g., Ok [52, Chapter A, p.52].
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lim`→∞ ri(a
k`
−i) = āi. The definition of best reply implies

∀ai ∈ Ai, ∀` ≥ 1, ui(ri(a
k`
−i), a

k`
−i) ≥ ui(ai, a

k`
−i).

Taking the limit for `→∞ on both sides for any given ai, the continuity
of ui yields

∀ai ∈ Ai, ui(āi, ā−i) ≥ ui(ai, ā−i).
Hence, āi is a best reply to ā−i. Since the best reply is unique, āi = ri(ā−i).
This is true for every accumulation point. Therefore, the sequence(
ri(a

k
−i)
)
k∈N has only one accumulation point, ri(ā−i), which is equivalent

to say that limk→∞ ri(a
k
−i) = ri(ā−i), as desired. �

Lemma 6 implies that the set of best replies to deterministic conjectures
is connected, which in turn yields the following convenient result:

Corollary 2. In every nice game, the set of best replies of each player i
to deterministic conjectures is a compact interval:

ri (A−i) = [min ri (A−i) ,max ri (A−i)] .

Proof. Since ri (·) is a continuous function and A−i is convex (hence,
connected) and compact, ri (A−i) ⊆ R is convex and compact,30 hence it
is a compact interval. �

We can now state and prove the main result of this section.

Lemma 7. In every nice game, the set of best replies of each player i to
deterministic conjectures coincides with the set of actions not dominated
by other pure actions, and therefore it also coincides with the set of best
replies to independent or correlated probabilistic conjectures, and with the
set of actions not dominated by mixed actions:

ri(A−i) = ri(I∆(A−i)) = ri(∆(A−i)) = NDi

= {ai ∈ Ai : ∀bi ∈ Ai,∃a−i ∈ A−i, ui(ai, a−i) ≥ ui(bi, a−i)}.

Proof. Let NDi,p ⊆ Ai denote the set of player i’s pure actions not
dominated by other pure actions. We prove that NDi,p ⊆ ri(A−i), that is,
Ai\ri(A−i) ⊆ Ai\NDi,p. Since we already noticed that

ri(A−i) ⊆ ri(I∆(A−i)) ⊆ ri(∆(A−i)) ⊆ NDi,p,

30See Proposition 2 in Ok [52, D.2].
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this implies the thesis. By Corollary 2,

ri (A−i) = [min ri (A−i) ,max ri (A−i)] .

Therefore, it is enough to show that all the actions below min ri (A−i)
or above max ri (A−i) are dominated. Fix any ai < min ri (A−i). Thus,
for each a−i ∈ A−i, ai < min ri (A−i) ≤ ri (a−i) . By definition, ui(·, a−i)
attains its maximum at ri (a−i); thus, by strict quasi-concavity, ui(·, a−i)
is strictly increasing on [ai, ri (a−i)]. It follows that

∀a−i ∈ A−i, ui(ai, a−i) < ui(min ri (A−i) , a−i) ≤ ui(ri (a−i) , a−i).

Therefore, every ai < min ri (A−i) is strictly dominated by min ri (A−i). A
similar argument shows that every ai > max ri (A−i) is strictly dominated
by max ri (A−i). �

3.3.3 Supermodular Nice Games

Best reply correspondences in nice games are continuous real-valued
functions, which in general may not be monotone. We now consider a class
of nice games where best reply correspondences are increasing functions,
the so-called supermodular nice games, in which players have “strategic
complementarities.”31 A game exhibits strategic complementarities if each
player’s incentive to increase his action becomes stronger for higher
conjectured actions of the co-players. For example, if firms i and j are
competing on prices and firm i thinks that j is going to increase its price,
then firm i has a stronger incentive to increase (or, equivalently, a weaker
incentive to decrease) its own price as well; see also Example 8 below. The
notion of strategic complementarities is captured by the “supermodularity”
of the payoff functions, which we define below for the special case of nice
games.

We first introduce some notation. Let J be a finite index set, e.g.,
J = {1, . . . , n}, or J = I, the player set in a game. Since RJ (the set of all
functions from J to R) is isomorphic to the Euclidean space R|J |, we call
“vectors” the elements of RJ . For each x, y ∈ RJ , we say that x ≤ y if and
only if xi ≤ yi for each i ∈ J ; this is the usual coordinatewise incomplete

31Here we restrict our attention to nice games for the sake of simplicity, but the theory
of supermodular games is much more general. See Topkis [65].



62 3. Rationality and Dominance

order on Euclidean spaces. Accordingly, for each x, y ∈ RJ , we define the
order box [x, y] ⊆ RJ as

[x, y] = {z ∈ RJ : x ≤ z ≤ y}.

Note that [x, y] is non-empty if and only if x ≤ y, and [x, y] is the usual
compact interval if x, y ∈ R.

Given a non-empty order box [x, y] ⊆ RJ , a function f : [x, y] → R is
said to be supermodular if, for all a, b ∈ [x, y],

f(a) + f(b) ≤ f(max (a, b)) + f(min (a, b)), (3.3.4)

where max (·, ·) and min (·, ·) denote the following binary operations on
vectors:32

(a, b) 7→ (max{ai, bi})i∈J ,

(a, b) 7→ (min{ai, bi})i∈J .

Definition 12. A nice game G = 〈I, (Ai, ui)i∈I〉 is supermodular if, for
each i ∈ I, the payoff function ui : A→ R is supermodular.

Note that the above definition is meaningful, because in nice games A is
indeed an order box in RI . The idea behind the notion of supermodularity
can be better understood by rewriting inequality (3.3.4) as

f(max (a, b))− f(a) ≥ f(b)− f(min (a, b)), (3.3.5)

or also
f(max (a, b))− f(b) ≥ f(a)− f(min (a, b)), (3.3.6)

which suggests a property of “increasing differences.” To see this, consider
the following example represented in Figure 3.6. Let a = (2, 1) and
b = (1, 2) be points in the order box X = [(1, 1), (2, 2)], and fix a
supermodular function f : X → R. Then, horizontal arrows represent
inequality (3.3.5), while vertical arrows represent inequality (3.3.6).

32When a, b ∈ R then max (a, b) = max{a, b}. But in the general case a, b ∈ RJ ,
max (a, b) is the maximal element of the binary set {a, b} if and only if, either ai ≥ bi
for all i ∈ J , or bi ≥ ai for all i ∈ J ; otherwise, max (a, b) does not even belong to
{a, b}. A similar observation holds for min (a, b). In the more general framework of
partially ordered sets, these binary operations are denoted by a∨b (maximum) and a∧b
(minimum).
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•

• •

•

b

amin(a, b)

max(a, b)

1 2

1

2

Figure 3.6: Increasing differences in a supermodular game.

Suppose that X = A1 × A2 and let f (a1, a2) = u1 (a1, a2) be the
payoff function of player 1 in a two-person game. Then the “increasing
differences” property says that player 1 gains more (or loses less) from
increasing his action when the action of player 2 is higher.

We now make the connection with supermodularity more precise.
Given non-empty order boxes [x, y] ⊆ RJ1 and [a, b] ⊆ RJ2 , a function
f : [x, y] × [a, b] → R is said to have increasing differences in [a, b] if,
for all c ≤ d in [a, b], the function f̃ : [x, y]→ R defined by

z 7→ f̃(z) = f(z, d)− f(z, c)

is weakly increasing. Equivalently, f̃(z) ≤ f̃(w) for all z, w ∈ [x, y] such
that z ≤ w.

The following result provides a useful criterion to check whether a
function is supermodular:

Topkis’ Characterization Theorem. (Topkis [65]) Let [x, y] =

×i∈I [xi, yi] ⊆ RI be an order box. Then a function f : [x, y] → R is
supermodular if and only if f has increasing differences in×j∈I\{i}[xj , yj ]

for all i ∈ I. Additionally, if f is twice differentiable,33 then f is

33To avoid details involving boundary conditions, we stipulate that a function defined
on an order box is differentiable if it has a differentiable extension defined on an open
set containing the box.
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supermodular if and only if the second-order partial derivatives ∂2f/∂xi∂xj
are nonnegative for all 1 ≤ i < j ≤ n.

The second part of the Topkis’ Characterization Theorem has an
intuitive explanation. Indeed, if f is differentiable, then f has increasing
differences if and only if ∂f/∂xi is increasing in xj for all i 6= j. It follows
that, if f is also twice differentiable, then f has increasing differences if
and only if ∂2f/∂xi∂xj is a nonnegative function for all i 6= j.

Example 8. Consider a price-setting duopoly with differentiated
products, so that I = {1, 2} and A1 = A2 = [0, p̄], for some sufficiently
large p̄ > 0. The joint demand function D = (D1, D2) : A→ R2 is defined
by

(p1, p2) 7→ (−d1p1 + e12p2 + f1,−d2p2 + e21p1 + f2)

for some collection of parameters di, eij , fi > 0 (i, j ∈ {1, 2}, i 6= j). Such
system of demand functions can be derived from quite standard preferences
of consumers (see, for example, Motta [51]).

Each firm i has constant marginal cost ci < p̄. Since firms compete in
prices, each firm i chooses pi so as to maximize its payoff (profit)

ui(pi, pj) = (pi − ci)Di(pi, pj) = (pi − ci) (−dipi + eijpj + fi) .

It follows from Topkis’ Characterization Theorem that this is a
supermodular nice game:

∂ui
∂pi

(pi, pj) = −2dipi + dici + eijpj + fi,

thus
∂2ui
∂pi∂pj

(p1, p2) = eij > 0.

This means that each firm has the incentive to increase the price of its own
product if the other firm is doing so. In particular, we verify that the best
reply functions are weakly increasing, and indeed strictly increasing when
they attain an interior solution. From the first-order condition ∂ui

∂pi
= 0

for interior solutions, and taking into account that ∂2ui
∂p2
i

= −2di < 0, we

obtain the best reply function

ri (pj) = min

{
1

2

(
ci +

eijpj + fi
di

)
, p̄

}
,
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that is, the best reply function is strictly increasing up to the point where
it attains the upper bound p̄. N

The following noteworthy lemma clarifies that the monotonicity result
of Example 8 is a general property of supermodular nice games.

Lemma 8. Let G = 〈I, (Ai, ui)i∈I〉 be a supermodular nice game. Then,
for each i ∈ I, the best reply correspondences ri are weakly increasing
continuous functions. Moreover, if the payoff functions ui are twice
differentiable and ∂2ui

∂a2
i
< 0, ∂2ui

∂ai∂aj
> 0 for all i, j ∈ I, j 6= i, then the

restriction of each ri to the subset

{a−i ∈ A−i : minAi < ri(a−i) < maxAi}

where it attains interior values is a strictly increasing function.

Proof. We prove here the second part of the result, while the first
part is proved in Appendix 3.4.2. Fix any i ∈ I and note that, by
Lemma 6, ri is a continuous function. Pick any a−i ∈ A−i such that
minAi < ri(a−i) < maxAi (recall that Ai = [minAi,maxAi] because G
is nice). Since ri (a−i) is an interior solution and ui is twice differentiable,
ri (a−i) satisfies the first and second-order conditions:

∂ui
∂ai

(ri(a−i), a−i) = 0,

∂2ui
∂a2

i

(ri(a−i), a−i) < 0,

where the inequality is strict by assumption.34 Hence, by the Implicit
Function theorem, we obtain

∂ri
∂aj

(a−i) = −
∂
∂aj

(
∂ui
∂ai

(ri(a−i), a−i)
)

∂
∂ai

(
∂ui
∂ai

(ri(a−i), a−i)
) = −

∂2ui
∂ai∂aj

(ri(a−i), a−i)

∂2ui
∂a2
i

(ri(a−i), a−i)
> 0

for each j 6= i. The last inequality follows from the hypothesis that
∂2ui
∂ai∂aj

> 0 for all i 6= j and from the second-order condition. �

34Strict quasi-concavity of ui in ai implies that ∂2ui

∂a2
i
≤ 0 at an interior maximum,

but it does not imply that ∂2ui

∂a2
i
< 0. Consider, for example, a two-person game with

ui(ai, a−i) = − (ai − a−i)4. This payoff function is strictly concave (hence, strictly

quasi-concave) in ai, but ∂2ui

∂a2
i

= 0 at ai = a−i.
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3.4 Appendix: Compact-Continuous Games

In this appendix, we add technical details about the analysis of compact-
continuous games and we prove the general version of Lemma 2 (on best
replies and dominance) and related results. The proof of Lemma 4 is
similar. We first need some preliminaries about probability measures. We
provide the necessary concepts to understand the analysis of mixed actions
and probabilistic conjectures in the context of compact-continuous games.
These preliminaries should be enough to allow the reader to understand
the aforementioned proofs, but to fully master the mathematical concepts
involved, the reader should consult appropriate primary sources, such
as Aliprantis and Border [3]. In particular, the remarks stated in this
Appendix are not proved; the reader should first try to prove them by
herself or himself and then check on primary sources.

3.4.1 Probability Measures on Compact Sets and Expected
Values

Sigma-Algebras and Probability Measures We expand on what
we already explained in Section 3.1. For the reader’s convenience, we
repeat some concepts already introduced there. The following introductory
discussion is heuristic.

To model uncertainty with an infinite state space X, we do not
necessarily consider all the subsets of X as “events.” We think of events
as subsets of elements of X that verify some statements, which in turn
can be obtained as negations, conjunctions, and disjunctions of simpler
statements. For example, we may be uncertain about which point x is
going to be selected, by an agent, or by a random device, in the compact
interval [0, 1]. Then, the open sub-interval (a, b) of [0, 1] corresponds to
the statement “x is larger than a and smaller than b,” which in turn is the
conjunction of the two statements “x is larger than a” and “x is smaller
than b.” It is natural to assume that we can assign a probability to such
elementary statements; with this, it is also natural to assume that we are
able to assign a probability to their conjunction, i.e., to the open interval
(a, b).

The negation of the conjunction “x is larger than a and smaller than
b” is logically equivalent to the disjunction “either x is at most a, or x is
at least b,” which corresponds to the set [0, a] ∪ [b, 1] = [0, 1]\(a, b). Of
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course, if we assign a probability p to a statement s, then we also assign
probability 1−p to the negation of s. If statement s corresponds to set E,
then the negation of s corresponds to the complement of E. Hence, if we
can assign probability p to E, we also assign probability 1 − p to Ec, the
complement of E. In our example, we can assign probabilities to (a, 1],
[0, b), and (a, b), therefore we also assign probabilities to [0, a], [b, 1], and
[0, a] ∪ [b, 1] respectively.

Finally, suppose we can assign a probability to each statement sn,
corresponding to event En. It is then quite natural to assume that we can
also assign a probability to the statement “sn holds for at least one n ∈ N.”
For example, since we can assign probability to each statement “x is at
most (n − 1)/(2n),” then we can also assign probability to the statement
“for at least one n ∈ N, x is at most 1

2
n−1
n .” Each elementary statement

corresponds to the compact interval
[
0, 1

2
n−1
n

]
and “for at least one n ∈ N,

x is at most 1
2
n−1
n ” corresponds to

∞⋃
n=1

[
0,

1

2

n− 1

n

]
=

[
0,

1

2

)
.

With this in mind, we abstract from the particular meaning of the
statements and their representation as subsets of X and we identify the
essential properties of the collection of subsets of X to which we are willing
to assign a probability. A sigma-algebra on a set X is a collection of
subsets X ⊆ 2X called events such that

1. X ∈ X ,

2. for each E ∈ X , also the complement of E belongs to X , i.e.,
Ec = X\E ∈ X ,

3. for each sequence of subsets En in X , i.e., (En)∞n=1 ∈ XN, also their

union belongs to X , that is,
∞⋃
n=1

En ∈ X .

Remark 8. Let X be a sigma-algebra on X. Properties 1 and 2 imply
that ∅ ∈ X . For every sequence of subsets (En)∞n=1,( ∞⋃

n=1

En

)c
=

∞⋂
n=1

(En)c ;
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if follows that, by properties 2 and 3, if (En)∞n=1 ∈ XN then
∞⋂
n=1

En ∈ X .

Example 9. The collections {X, ∅} and 2X are sigma-algebras on X
respectively called the trivial and the discrete sigma-algebra. N

Remark 9. Let J be an arbitrary index set and consider the indexed family
{Xj}j∈J of sigma-algebras on X. Then also the intersection

⋂
j∈J
Xj is a

sigma-algebra on X.

A pair (X,X ) where X is a sigma-algebra on X is called a measurable
space. A probability measure on a measurable space (X,X ) is a
function µ : X → [0, 1] such that

• µ (X) = 1,

• for every sequence (En)∞n=1 ∈ XN of pairwise disjoint events

µ

( ∞⋃
n=1

En

)
=
∞∑
n=1

µ (En) .

Remark 10. For every probability measure µ on a measurable space
(X,X ) the following holds:
(1) µ (∅) = 0;
(2) if (En)∞n=1 ∈ XN is monotone increasing (En ⊆ En+1 for every n ∈ N),
then

µ

( ∞⋃
n=1

En

)
= lim

n→∞
µ (En) ;

(3) if (En)∞n=1 ∈ XN is monotone decreasing (En+1 ⊆ En for every n ∈ N),
then

µ

( ∞⋂
n=1

En

)
= lim

n→∞
µ (En) .

Borel Sigma-Algebras and Probability Measures Let X ⊆ Rm be
a nonempty compact subset.35 In this case, the natural sigma-algebra of

35All the definitions and results stated in this appendix for compact subsets of
Euclidean spaces also apply for compact subsets of metric spaces.
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events to be considered is the so called Borel sigma-algebra, that is, the
intersection of all the sigma-algebras containing all the closed subsets of
X (or, equivalently, all the sets of the form X\C with C closed). Since
2X is a sigma-algebra containing all the closed subsets, such intersection is
well defined. We let B(X) denote the Borel sigma-algebra on any compact
subset X of a Euclidean space. Whenever we consider a compact subset
X of a Euclidean space, it is understood that the relevant measurable
space is (X,B (X)) and that the relevant probability measures are those
with domain B (X), i.e., the Borel probability measures. The set of Borel
probability measures on X is denoted ∆ (X).

For every µ ∈ ∆ (X), with X ⊆ Rm, we can define the corresponding
cumulative distribution function (cdf) Fµ : Rm → [0, 1] as follows:

∀x̂ ∈ Rm, Fµ (x̂) = µ ({x ∈ X : x1 ≤ x̂1, ..., xm ≤ x̂m}) .

Given Fµ, we can recover µ starting with the probability of events of the
form E = X ∩×m

j=1[xj , xj ], that is

µ (E) =

∫ x1

x1

· · ·
∫ xm

xm

dFµ (x1, . . . , xm) ;

then, intuitively, one can compute the probabilities of the unions,
intersections, and complements of events whose probability has already
been obtained.

Example 10. Let X = [0, 1]. When the probability assigned to every
interval is its length, so that—for example—µ ((a, b]) = b − a, then
we obtain the uniform probability measure, or Lebesgue measure. If
µ ((a, b]) = F (b)−F (a) for some right-continuous non-decreasing function
F : R→ [0, 1], then µ = µF is the probability measure generated by cdf F ,
and F = Fµ is the cdf generated by µ. If F is differentiable with integrable
derivative f , then

µ ((a, b]) =

∫ b

a
f(x)dx.

N

Expected Values and Convergence of Sequences of Probability
Measures For every continuous function ϕ : X → R defined on a
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compact subset X of a Euclidean space and every measure µ ∈ ∆ (X),
the expected value of ϕ given µ

Eµ (ϕ) =

∫
X
ϕ (x)µ (dx)

is the Riemann-Stieltjes integral

Eµ (ϕ) =

∫
ϕ (x) dFµ.

Fix a sequence of measures (µn)∞n=1 ∈ [∆ (X)]N and a measure µ̄; we
say that µn converges (weakly) to µ̄, written µn → µ̄, if

lim
n→∞

Eµn (ϕ) = Eµ̄ (ϕ)

for every continuous (hence bounded) function ϕ : X → R.

Example 11. Let X = [0, 1]. Then µn → µ̄ if and only if
limn→∞ Fµn (x) = Fµ̄ (x) for every x at which Fµ̄ is continuous. N

With this, we can define closed sets in ∆ (X) and a notion of continuity
of real-valued functions defined on ∆ (X). First, we stipulate that a subset
C ⊆ ∆ (X) is closed if it contains the limits of all converging sequences
of measures in C; that is, for all (µn)n∈N ∈ [∆ (X)]N and µ̄ ∈ ∆ (X) such
that µn → µ̄ and {µn}n∈N ⊆ C, µ̄ ∈ C. We say that ψ : ∆ (X) → R is
continuous if ψ−1 (C) is closed for every closed subset C ⊆ R. This is
equivalent to requiring that limn→∞ ψ (µn) = ψ (µ̄) for every converging
sequence µn → µ̄. (See Aliprantis and Border [3, Theorem 15.11] and
related material.) Note, when we consider the subset of all the Dirac
measures {µ ∈ ∆ (X) : ∃x ∈ X,µ = δx}, which can be identified with X,
we obtain the usual notions of closed sets in X and continuity of real-valued
functions defined on X.

A set D ⊆ ∆ (X) is open if X\D is closed. We say that a collection of
open sets O covers ∆ (X) if the union of all such subsets contains ∆ (X):

∆ (X) ⊆
⋃
O.

∆ (X) endowed with its collection of open subsets is compact in the
following sense: for every collection of open subsets O that covers ∆ (X)



3.4. Appendix: Compact-Continuous Games 71

there is a finite sub-collection F ⊆ O that also covers ∆ (X). Furthermore,
∆ (X) is a metrizable space: this means that there exists a function
d : ∆ (X) ×∆ (X) → R+, called compatible metric (or distance), such
that

• for all µ′, µ′′ ∈ ∆ (X), d (µ′, µ′′) = 0 if and only if µ′ = µ′′;

• for all µ′, µ′′, µ′′′ ∈ ∆ (X), d (µ′, µ′′′) ≤ d (µ′, µ′′) + d (µ′′, µ′′′);

• for all (µn)∞n=1 ∈ [∆ (X)]N and µ̄ ∈ ∆ (X), µn → µ̄ if and only if
for every ε > 0 there is some nε ∈ N such that d (µn, µ̄) < ε for all
n ≥ nε.36

Given nonempty compact subsets of Euclidean spaces X and Y , we can
now define in a natural way notions of openness of subsets of ∆ (X)×∆ (Y )
and X ×∆ (Y ), and of (joint) continuity for real-valued functions defined
on ∆ (X)×∆ (Y ) and X ×∆ (Y ). We omit the details.

3.4.2 Best Replies in Compact-Continuous Games

As explained in Section 3.4.1, for every compact subset X of a Euclidean
space (more generally, for every compact subset of a metric space), the
set of Borel probability measures ∆ (X) is metrizable and compact; see
[3, Theorem 15.11]. Every sequence in a compact metrizable space has
a convergent subsequence. Also recall that, by definition of convergence
in ∆ (X), for every continuous function f : X → R, if µn → µ then
Eµn (f)→ Eµ (f). Therefore:

Lemma 9. Let X ⊆ Rm be compact and let f : X → R be continuous.
For every sequence (µn)∞n=1 ∈ [∆ (X)]N there is a convergent subsequence
(µnk)∞k=1 and limk→∞ Eµnk (f) = Eµ̄ (f), where µ̄ = limk→∞ µnk .

Also recall from Section 3.4.1 that if X and Y are compact subsets
of Euclidean spaces, then X × ∆ (Y ), or—equivalently—∆ (X) × Y , is a
compact metrizable space. With this, we prove an important property of
the best reply correspondence.

36Compactness of the metrizable space ∆ (X) implies that it is also complete (every
Cauchy sequence converges) and separable (∆ (X) contains a countable subset D such
that, for every µ ∈ ∆ (X) there is a sequence (µn)∞n=1 ∈ D

N such that µn → µ); see,
e.g., Aliprantis and Border [3, Theorem 3.28].
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Lemma 10. Fix a compact-continuous game G. For every player i ∈ I,
and every closed subset C−i ⊆ A−i, the restriction ri|∆(C−i) of the best
reply correspondence to ∆ (C−i) is non-empty-valued, has a closed graph,
and a closed image, that is,

∀µi ∈ ∆ (C−i) , ri
(
µi
)
6= ∅,

the set

Gr
(
ri|∆(C−i)

)
=
{(
µi, ai

)
∈ ∆ (C−i)×Ai : ai ∈ ri

(
µi
)}

is closed in the compact metrizable space ∆ (A−i) × Ai, and the set
ri (∆ (C−i)) ⊆ Ai is closed.

Proof. Fix µi ∈ ∆ (C−i) arbitrarily. Since ui is continuous
on A, ui

(
·, µi

)
: Ai → R is continuous. By compactness of Ai,

arg maxai∈Ai ui
(
ai, µ

i
)
6= ∅. Since ri

(
µi
)

= arg maxai∈Ai ui
(
ai, µ

i
)

(Corollary 1), ri
(
µi
)
6= ∅.37 Hence ri is non-empty-valued.

To prove that Gr
(
ri|∆(C−i)

)
is closed, we show that, for every

convergent sequence contained in Gr
(
ri|∆(C−i)

)
, the limit of the sequence

belongs to Gr
(
ri|∆(C−i)

)
: Suppose that

(
µin, ai,n

)
→

(
µ̄i, āi

)
, where

µin ∈ ∆ (C−i) and ai,n ∈ ri
(
µin
)

for every n ∈ N, so that the range of
the sequence is included in Gr

(
ri|∆(C−i)

)
. Then,

∀ai ∈ Ai, ∀n ∈ N, ui
(
ai,n, µ

i
n

)
≥ ui

(
ai, µ

i
n

)
.

By continuity of ui, taking the limit as n→∞ for each fixed ai, we obtain

∀ai ∈ Ai, ui
(
āi, µ̄

i
)
≥ ui

(
ai, µ̄

i
)

.

Therefore āi ∈ ri
(
µ̄i
)

and µ̄i ∈ ∆ (C−i) (since ∆ (C−i) is a closed subset
of ∆ (A−i)), that is,

(
µ̄i, āi

)
∈ Gr

(
ri|∆(C−i)

)
. To see that ri (∆ (C−i)) is

closed, fix arbitrarily a convergent sequence (ai,n)∞n=1 such that ai,n → āi
and {ai,n}∞n=1 ⊆ ri (∆ (C−i)). We must show that āi ∈ ri (∆ (C−i)). For
every n ∈ N there is some conjecture µin ∈ ∆ (C−i) that justifies ai,n as a
best reply: ai,n ∈ ri

(
µin
)
. Since C−i is a closed subset of a compact set,

C−i is compact. Hence also ∆ (C−i) is compact and the sequence
(
µin
)∞
n=1

37Recall that we defined ri
θ
µi
)

as the set of mixed actions αi that maxmize ui
θ
·, µi

)
:

∆ (Ai)→ R and are also Dirac measures, hence belong to Ai as well.
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has a convergent subsequence
(
µink
)∞
k=1

, with limk→∞ µ
i
nk

= µ̄i ∈ ∆ (C−i)

(Lemma 9). Since Gr (ri) is closed, limk→∞
(
µink , ank

)
∈ Gr (ri), that is,

lim
k→∞

ank = lim
n→∞

an = āi ∈ ri
(
µ̄i
)
.

Since µ̄i ∈ ∆ (C−i), we conclude that āi ∈ ri (∆ (C−i)) as desired. �

3.4.3 Proof of the Duality Lemma of Wald and Pearce

The structure of the argument is as follows: We first observe that a mixed
action ᾱi is justifiable if and only if

0 ≥ min
µi∈∆(A−i)

max
αi∈∆(Ai)

[
ui
(
αi, µ

i
)
− ui

(
ᾱi, µ

i
)]
.

Then we invoke the maxmin theorem, which states that we can invert the
min and max operations in the expression above without changing the final
value. Next we note that in the max-min formula the second operation can
be replaced with a minimization with respect to deterministic conjectures,
that is, co-players’ action profiles. This finally yields the equivalence with
the fact that ᾱi is not dominated by any mixed action.

Since finite games can be regarded as compact-continuous, the proof
applies to all finite games. Considering the case of finite games, the
reader can understand the core of the argument without the distraction of
measure-theoretic considerations.

For any given conjecture µi, mixed action ᾱi, and alternative
mixed action αi,

[
ui
(
αi, µ

i
)
− ui

(
ᾱi, µ

i
)]

represents the strength of the
“incentive to deviate” from ᾱi to αi. Thus, ᾱi is justifiable if and only if
the maximal incentive to deviate is non-positive for at least one µi, that
is, the minimum of the maximal incentive to deviate is not positive. The
following result and proof make the previous argument more formal.

Lemma 11. Let G = 〈I, (Ai, ui)i∈I〉 be a compact-continuous game. Then,
for every i ∈ I and ᾱi ∈ ∆(Ai), the following are equivalent:

(J) ∃µ̄i ∈ ∆ (A−i) , ∀αi ∈ ∆ (Ai) , ui
(
ᾱi, µ̄

i
)
≥ ui

(
αi, µ̄

i
)
,

(ND) 0 ≥ minµi∈∆(A−i) maxαi∈∆(Ai)

[
ui
(
αi, µ

i
)
− ui

(
ᾱi, µ

i
)]

.
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Proof. Preliminary observations:38 Let X ⊆ Rm be compact, and let
the function f : X → R be continuous. Then ∆ (X) is compact metrizable
and the map µ 7→ Eµ (f) is continuous. Therefore

sup
x∈X

f(x) = max
x∈X

f(x), sup
µ∈∆(X)

Eµ (f) = max
µ∈∆(X)

Eµ (f) .

If X and Y are compact subsets of Euclidean spaces and ϕ : ∆ (X) ×
∆ (Y ) → R is continuous on ∆ (X) × ∆ (Y ) (a product of compact
metrizable spaces), then the maps µ 7→ maxν∈∆(X) ϕ(ν, µ) and ν 7→
minµ∈∆(Y ) ϕ(ν, µ) are continuous.39 Finally, recall that the payoff function
ui is extended to ∆ (Ai)×∆ (A−i) as follows:

ui(αi, µ
i) = Eαi×µi(ui (·, ·)).

Now, a probability measure µi ∈ ∆ (A−i) is such that ui
(
αi, µ

i
)
≤

ui
(
ᾱi, µ

i
)

for all αi ∈ ∆ (Ai), if and only if

0 ≥ sup
αi∈∆(Ai)

[
ui
(
αi, µ

i
)
− ui

(
ᾱi, µ

i
)]

= max
αi∈∆(Ai)

[
ui
(
αi, µ

i
)
− ui

(
ᾱi, µ

i
)]

.

Since the right-hand side is continuous in µi on the compact set ∆ (A−i),
there is a conjecture µi that makes it non-positive if and only if its
minimum with respect to µi is non-positive. Hence, (J) holds if and only
if

0 ≥ min
µi∈∆(A−i)

max
αi∈∆(Ai)

[
ui
(
αi, µ

i
)
− ui

(
ᾱi, µ

i
)]

,

that is, if and only if (ND) holds. �

We wish to relate justifiability (condition J) to lack of dominance. To
make this connection, we are going to use an important result that can be
proved independently, the maxmin theorem:

Maxmin Theorem. (Sion [61]) Let X and Y be compact subsets of
Euclidean spaces, and let f : X × Y → R be continuous on X × Y ; then

min
µ∈∆(X)

max
ν∈∆(Y )

Eµ×ν (f) = max
ν∈∆(Y )

min
µ∈∆(X)

Eµ×ν (f) .

We can now prove the duality lemma of Wald and Pearce stating that
an action is justifiable if and only if it is not dominated:

38To be skipped when considering finite games.
39See Aliprantis and Border [3, Theorem 17.31].
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Lemma 12. (Wald [69], Pearce [54]) Let G be a compact-continuous game.
Then, for every i ∈ I and ᾱi ∈ ∆(Ai), the following are equivalent:

(J) ∃µ̄i ∈ ∆ (A−i) , ∀αi ∈ ∆ (Ai) , ui
(
ᾱi, µ̄

i
)
≥ ui

(
αi, µ̄

i
)
,

(MM) ∀αi ∈ ∆ (Ai) ,∃a−i ∈ A−i, 0 ≥ ui (αi, a−i)− ui (ᾱi, a−i).

Proof. By Lemma 11, (J) is equivalent to

0 ≥ min
µi∈∆(A−i)

max
αi∈∆(Ai)

[
ui
(
αi, µ

i
)
− ui

(
ᾱi, µ

i
)]
. (3.4.1)

By the Maxmin Theorem,

min
µi∈∆(A−i)

max
αi∈∆(Ai)

[
ui
(
αi, µ

i
)
− ui

(
ᾱi, µ

i
)]

= max
αi∈∆(Ai)

min
µi∈∆(A−i)

[
ui
(
αi, µ

i
)
− ui

(
ᾱi, µ

i
)]
.

Therefore, (3.4.1) is equivalent to

∀αi ∈ ∆ (Ai) , 0 ≥ min
µi∈∆(A−i)

[
ui
(
αi, µ

i
)
− ui

(
ᾱi, µ

i
)]

. (3.4.2)

Since
[
ui
(
αi, µ

i
)
− ui

(
ᾱi, µ

i
)]

is affine in µi,

min
µi∈∆(A−i)

[
ui
(
αi, µ

i
)
− ui

(
ᾱi, µ

i
)]

= min
a−i∈A−i

[ui (αi, a−i)− ui (ᾱi, a−i)]

for every αi ∈ ∆ (Ai). Therefore, (3.4.2) is equivalent to

∀αi ∈ ∆ (Ai) , 0 ≥ min
a−i∈A−i

[ui (αi, a−i)− ui (ᾱi, a−i)] ,

which is equivalent to condition (MM). The previous chain of equivalences
proves the claim. �

3.4.4 Cautiously Justifiable and Admissible Actions

Proof of Lemma 4. We must prove that, in a compact-continuous game,
ri (∆o (A−i)) ⊆ NWDi. By way of contraposition, we show that if a∗i is
weakly dominated, then it is not a best reply to any full-support conjecture,
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that is, a∗i /∈ ri (∆o(A−i)). Thus, suppose that a∗i is weakly dominated by
some αi ∈ ∆(Ai), that is,

∀a−i ∈ A−i, ui(αi, a−i) ≥ ui(a∗i , a−i), (3.4.3)

∃ā−i ∈ A−i, ui(αi, ā−i) > ui(a
∗
i , ā−i).

Let ε = ui(αi, ā−i)− ui(a∗i , ā−i) > 0. Continuity of ui implies that the
function

a−i 7→ ui(αi, a−i)− ui(a∗i , a−i),

is continuous as well. Therefore, there exists η > 0 such that

∀a−i ∈ A−i, d (a−i, ā−i) < η ⇒ ui(αi, a−i)− ui(a∗i , ā−i) >
ε

2

(d denotes the standard Euclidean distance). Note that the (relatively)
open set O−i = {a−i ∈ A−i : d (a−i, ā−i) < η} is assigned strictly positive
probability by every full-support probability measure µi.

So, fix any µi ∈ ∆o(A−i). Then, the definition of O−i and eq.s (3.4.3)
yield

ui(αi, µ
i)− ui(a∗i , µi) =

∫
A−i

[ui(αi, a−i)− ui(a∗i , a−i)]µi (da−i)

=

∫
O−i

[ui(αi, a−i)− ui(a∗i , a−i)]µi (da−i)

+

∫
A−i\O−i

[ui(αi, a−i)− ui(a∗i , a−i)]µi (da−i)

≥
∫
O−i

[ui(αi, a−i)− ui(a∗i , a−i)]µi (da−i)

>
ε

2
µi(O−i)

> 0,

that is, ui(αi, µ
i) > ui(a

∗
i , µ

i). Since µi is arbitrary, we conclude that
a∗i /∈ ri (∆o(A−i)). �

Proof of Lemma 5. The inclusion ri (∆o(A−i)) ⊆ NWDi holds by
Lemma 4. We prove that if an action a∗i of player i is not weakly dominated
by any mixed action, then it is cautiously justifiable, i.e., justifiable by a
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full-support conjecture. With an argument similar to the proof of Lemma
2, we use Farkas’ lemma to prove this statement by contraposition, that
is, if a∗i is not cautiously justifiable, then it is weakly dominated.

Fix i and a∗i arbitrarily. Since the game is finite, we let k = |Ai| and
m = |A−i|, and we label elements in Ai as {1, 2, ..., k} and elements in
A−i as {1, 2, ...,m}. Then, we construct a k ×m matrix U in which the
(w, z)-th coordinate is given by

Uw,z = ui (a∗i , z)− ui (w, z) .

With this, ∆o (A−i) is a subset of Rm++, the strictly positive orthant of Rm,
and a∗i is cautiously justifiable if and only if there exists µi ∈ ∆o (A−i) such
that Uµi ≥ 0. This condition can be rewritten as follows: a∗i is cautiously
justifiable if and only if, for some p > 0, we can find x ∈ Rm satisfying

Mx ≥ c, (3.4.4)

where M is a (k +m+ 1)×m matrix and c is a (k +m+ 1)-dimensional
vector40 defined as follows:

M =

 U
Im
1T
m

 , c =

 0k
pm
1

 .

Here, Im denotes the m-dimensional identity matrix, that is an m × m
matrix having 1s along the main diagonal and 0s everywhere else; 1` and
0` (` = k, or ` = m) denote the `-dimensional vectors having respectively
1s and 0s everywhere; pm denotes the m-dimensional vector having p > 0
everywhere; from now on, the dimensionality indexes will be omitted.

To see why a∗i is cautiously justifiable if and only there exists x ∈ Rm
such that (3.4.4) holds, note that matrix inequality (3.4.4) can be written
as the system of inequalities

Ux ≥ 0
x1 ≥ p, ..., xm ≥ p∑m

z=1 xz ≥ 1
.

Note that, if
∑m

z=1 xz > 1 instead of
∑m

z=1 xz = 1, then x /∈ ∆o (A−i);
but this is immaterial because we can normalize by substituting x =

40Recall that, in matrix calculus, an n-dimensional vector is represented as an n × 1
matrix (column vector), and by transposition we obtain a 1× n matrix (row vector).
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(x1, ..., xm) with x′ =
(

x1∑m
z=1 xz

, ..., xm∑m
z=1 xz

)
∈ ∆o (A−i) and satisfy

inequality (3.4.4), since Mx ≥ 0 if and only if Mx′ ≥ 0.
Thus, if a∗i is not cautiously justifiable, inequality (3.4.4) does not hold
and Farkas’ lemma implies the existence of some y ∈Rk+m+1 such that

y ≥ 0
yTc > 0
yTM = 0T

.

By construction,

yTc = p

m∑
z=1

yk+z + yk+m+1 > 0. (3.4.5)

Furthermore, yTM = 0T implies that

k∑
w=1

yw [ui (a∗i , z)− ui (w, z)] = − (yk+z + yk+m+1) ≤ 0 (3.4.6)

for every z ∈ A−i = {1, 2, ...,m}, where the inequality holds because
yk+m+1 ≥ 0 and yk+z ≥ 0. Since y ≥ 0 and p > 0, (3.4.5) implies
that there exists z′ ∈ {1, 2, ...,m+ 1} such that yk+z′ > 0. If z′ = m + 1,
then the left-hand side of (3.4.6) is non-zero for every z ∈ {1, 2, ...,m}. If
z′ ∈ {1, 2, ...,m}, then the left-hand side of (3.4.6) is non-zero for z = z′.
Since the vector (y1, ..., yk) is nonnegative, we must have yw > 0 for some
w ∈ Ai. Then, we can construct a probability vector

ȳ =

(
y1∑k
w=1 yw

, ...,
yk∑k
w=1 yw

)
∈ ∆(Ai) ⊆ Rk

such that ui (a∗i , z) <
∑k

w=1 ȳwui (w, z) for at least one z ∈ A−i, and

ui (a∗i , z) ≤
∑k

w=1 ȳwui (w, z) for every z ∈ A−i. We conclude that a∗i is
weakly dominated by mixed action ȳ. �

3.4.5 Increasing Best Reply Functions

We conclude this appendix by providing the proof of the first part of
Lemma 8. The proof follows from an important result on supermodular
functions:
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Topkis’ Maximum Theorem. (Topkis [65]) Let X ⊆ R and Y ⊆ Rn
be non-empty order boxes, and fix a continuous supermodular function
f : X × Y → R.

Then, for each y ∈ Y , the set arg maxx∈X f(x, y) has a greatest and
a least element, which we denote by Mf (y) and mf (y), respectively. In
addition, the functions Mf and mf are weakly increasing.

Proof. By assumption, X is an order box of R, i.e., it is a (nonempty)
compact interval. Let f̂ : Y ⇒ R be the correspondence defined by

y 7→ f̂(y) = arg max
x∈X

f(x, y).

Since f is continuous, then standard arguments (see the proof of Lemma
10) show that, for each y ∈ Y , the set f̂(y) is a closed (hence compact)
subset of X ⊆ R. Therefore Mf (y) = max f̂(y) and mf (y) = min f̂(y) are
well defined.

It remains to show that Mf (a) ≤ Mf (b) for all a, b ∈ Y such that
a ≤ b. Define ā = Mf (a) and b̄ = Mf (b) so that, in particular, we have
f(ā, a) ≥ f(min(ā, b̄), a). Since f is supermodular on X × Y , we obtain

f(ā, a) + f(b̄, b) ≤ f(max(
(
(ā, a), (b̄, b)

)
+ f(min

(
(ā, a), (b̄, b)

)
)

= f(max(ā, b̄), b) + f(min(ā, b̄), a).

By the previous observation, it follows that f(b̄, b) ≤ f(max(ā, b̄), b), so
that max(ā, b) ∈ f̂(b). Therefore the conclusion that ā ≤ b̄ follows from
the fact that b̄ is the greatest element of f̂(b). The proof for mf is similar.
�

Proof of the First Part of Lemma 8. Recall that, according
to Remark 7, the best-reply correspondence ri is actually a continuous
function for each i ∈ I. The claim follows from Topkis’ Maximum
Theorem: it is enough to set f = ui, X = Ai, and Y = A−i, so that
ri = Mf , which is weakly increasing. �
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Rationalizability and
Iterated Dominance

The analysis, so far, has been based on a set of minimal epistemic
assumptions:1 every player knows the sets of possible actions and his own
payoff function. From this analysis we derived a basic, decision-theoretic
principle of rationality: A rational player should not choose those actions
that are dominated by mixed actions. This principle of rationality can be
interpreted in a descriptive way (assuming that a rational player will not
choose dominated actions), or in a normative way (a player should not
choose dominated actions).

The concept of dominance is sufficient to obtain interesting results
in some interactive situations: those where it is not necessary to guess
the other players’ actions in order to make a correct decision. Simple
social dilemmas, like the Prisoners’ Dilemma or contributing to a public
good, have this feature. But when we analyze strategic reasoning, the
decision-theoretic rationality principle is just a starting point: thinking
strategically means trying to anticipate the co-players’ moves and plan
a best response, taking into account that also the co-players are intelligent
individuals trying to do just the same.

Strategic thinking is based on knowledge of the rules of the game

1We call “epistemic” the assumptions about knowledge, conjectures, and beliefs of
players.

80
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and preferences, knowledge of the other players’ knowledge of rules and
preferences, and so on and so forth. As a starting point, we assume that
players have complete information, i.e., common knowledge of the rules of
the game and everybody’s preferences. In Example 1 complete information
implies that the functional forms and the parameters K, θ1, θ2 are common
knowledge: both players know them, both players know that both players
know them, and so on and so forth.

The complete information assumption is sufficiently realistic for some
economic situations in which the consequences of players’ actions are purely
monetary outcomes and players are selfish and risk neutral.2 The complete
information assumption is also a useful simplification in that it allows to
focus on other aspects of strategic thinking than players’ knowledge of the
game and of the knowledge of other players. Later on, we will introduce
strategic thinking in games with incomplete information and we will show
that the techniques developed for games with complete information can be
extended to the more general case.

4.1 Assumptions about Players’ Beliefs

The analysis will proceed in a series of steps. After introducing the concept
of rationality and its behavioral consequences, we will characterize which
actions are consistent not only with rationality, but also with the belief
that everybody is rational. Then we will characterize which actions are
consistent not only with the previous assumptions, but also with the
further assumption that each player believes that each other player believes
that everybody is rational; and so on. Thus, at each further step we
characterize more restrictive assumptions about players’ rationality and
beliefs.

Such assumptions can be formally represented as events, i.e., as
subsets of a space Ω of “states of the world” where every state ω ∈ Ω is
a conceivable configuration of actions, conjectures, and beliefs concerning
other players’ beliefs. This formal representation provides an expressive
and precise language that allows to make the analysis more rigorous

2Recall that what matters are players’ preferences over lotteries of consequences,
hence also their risk attitudes. But in some cases (for instance, some oligopolistic
models) risk attitudes are irrelevant for the strategic analysis and risk neutrality can
therefore be assumed with no loss of generality.
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and transparent.3 However, it calls for the preliminary introduction of
some rather complex material, which is not strictly needed to understand
the basics. Therefore we opt for a compromise. On the one hand, in
order to make the presentation more transparent and to avoid verbose
sentences, we use symbols to denote the assumptions concerning players’
behavior and beliefs; we refer to these assumptions as “events” and
denote a conjunction of assumptions by the symbol of intersection between
events. On the other hand, rather than providing an explicit definition
for such events, we only define mathematically the sets of actions (and
conjectures) that are consistent with them. Of course, we can afford to
do this precisely because we know how to represent assumptions about
rationality and beliefs as events and how to derive characterizations of
behavior based on increasingly sophisticated strategic thinking by means
of rigorous mathematical methods. We ask you, the reader, to trust us
on this derivation. Since the results are quite intuitive, we hope you will
not object. (If you do object, perhaps you are ready for the complete
mathematical analysis of strategic thinking: good news for us!)

To see what we mean, consider the rationality assumption. We denote
by Ri the event “player i is rational,” whereas R =

⋂
i∈I

Ri denotes the event

“everybody (in the game) is rational.” In the previous chapter we saw that

×i∈I NDi (where NDi is the set of undominated actions of i) is the set of
action profiles consistent with R (rationality).

The rationality assumption simply establishes a relation between
conjectures (beliefs about the behavior of other players) and actions. This
relation is represented by the best reply correspondence. Now we proceed
introducing some assumptions concerning players’ beliefs about each other
beliefs, also called “interactive beliefs.”

Denote by E a generic event about players’ actions and beliefs (for
example, E = R). We represent with the symbol B(E) the event
“everybody believes E,” meaning “everybody assigns probability one
to E.” Further, we write B(B(E)) = B2(E) (“everybody believes that
everybody believes E”), and more generally Bk(E) = B(Bk−1(E)) for any
integer k > 1.

Consider the conjunction of the following assumptions: R, B(R),
B2(R), . . . ,Bk(R), etc. Is it possible to provide a characterization in terms

3See, for example, Battigalli and Bonanno [8], and Dekel and Siniscalchi [26].
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of actions? In other words, what sets of action profiles are consistent with

assumptions R∩B(R), R∩B(R)∩B2(R), . . . , R∩
(⋂K

k=1 Bk(R)
)

, etc.? In

order to answer this question, it is useful to introduce a mapping, which
is derived from the best reply correspondence and assigns to any “cross-
product” subset C of A a subset of action profiles that are “rationalized,”
or “justified” by C.

4.2 The Rationalization Operator

Fix some finite set X and a collection C of subsets of X, i.e., C ⊆ 2X (we
postpone the analysis of the case of an infinite X). In this textbook we
call “operator” a map from C to itself, that is, a mapping that associates
with each subset of X in C another subset of X in C.4

As a matter of notation, for a fixed set X−i (for instance, X−i = A−i)
and a subset Y−i ⊆ X−i, we denote by ∆(Y−i) the subset of probability
measures on X−i that assign probability one to Y−i:

∆(Y−i) = {µi ∈ ∆(X−i) : µi(Y−i) = 1}

(another slight abuse of notation).

In particular, we are going to consider the set X = A =×i∈I Ai of
action profiles, and the collection C of all “Cartesian” subsets of A, i.e.,
subsets with the cross-product form C =×i∈I Ci, where Ci ⊆ Ai for every
i. Then, if the game is finite,

C = {C ∈ 2A : ∃ (Ci)i∈I ∈×
i∈I

2Ai , C =×
i∈I

Ci}.

Let C−i =×j∈I\{i}Cj . We define the following sets:

ρi(C−i) =
{
ai ∈ Ai : ∃µi ∈ ∆(C−i), ai ∈ ri(µi)

}
= ri(∆(C−i)),

ρ(C) =×
i∈I

ρi(C−i).

4In mathematics, the term “operator” is mostly used for maps from a space of
functions to a space of functions (possibly the same). But sets can always be represented
by functions (e.g., indicator functions). Therefore the present use of the term “operator”
is consistent with standard mathematical language.
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The interpretation is as follows: ρ(C) is the set of action profiles that
could be chosen by rational players if every i is certain that the co-players
choose in C−i. Therefore, we say that ρ(C) is the set of action profiles
“rationalized” (or “justified”) by C and we call the mapping ρ : C → C
“rationalization operator.”5 Note that ρ(∅) = ∅.

` c r

T 3, 2 0, 1 0, 0

M 0, 2 3, 1 0, 0

B 1, 1 1, 2 3, 0

Figure 4.1: A 3× 3 game.

Example 12. In a 3× 3 game like the one in Figure 4.1, each player has
23 = 8 subsets of actions (including the empty set). Hence, the collection of
subsets C contains 8× 8 = 64 elements, 7× 7 = 49 of them are nonempty
(since ρ(∅) = ∅, we may ignore the empty subsets). It would be very
tedious to determine ρ(C) for each (nonempty) C ∈ C. We give just a few
examples:

ρ({T,M,B} × {`, c, r}) = {T,M,B} × {`, c},
ρ({T,M,B} × {`, c}) = {T,M} × {`, c},
ρ({T,M} × {`, c}) = {T,M} × {`},
ρ({M,B} × {`, c}) = {T,M} × {`, c},
ρ({T,M} × {`}) = {T} × {`},
ρ({T,M} × {r}) = {B} × {`},

ρ({T} × {`}) = {T} × {`},
ρ({B} × {r}) = {B} × {c}.

To see this, check the best replies to deterministic conjectures, note that
r is strictly dominated by l and c, next note that B is strictly dominated
by α1 = 1

2δT + 1
2δM in the smaller game obtained by deleting the right

5The rationalization operator represents an example of justification operator, a
concept which was first explicitly presented by Milgrom and Roberts [46].
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column r. This shows that, in general, we may have ρ(C) ⊆ C, C ⊆ ρ(C)
(here this inclusion holds as an equality for C = {T}×{l}), ρ(C)  C and
C  ρ(C).6 N

Remark 11. Lemma 2 implies that ρi(A−i) is the set of undominated
actions for player i. Hence, ρ(A) =×i∈I NDi.

Remark 12. The rationalization operator is monotone: for every pair of
subsets E,F ∈ C, if E ⊆ F then ρ(E) ⊆ ρ(F ). To see this note that,
for every i, E−i ⊆ F−i implies ∆(E−i) ⊆ ∆(F−i), which in turn implies
ρi(E−i) = ri(∆(E−i)) ⊆ ri(∆(F−i)) = ρi(F−i).

Since the domain and codomain of ρ coincide, it makes sense to define
the k-th iteration of ρ (the k-fold composition of ρ with itself) recursively
as follows. For each C ∈ C, define ρ0(C) = C for convenience; then for
each k ≥ 1,

ρk(C) = ρ(ρk−1(C)).

Note that we are using the standard definition of the iteration of a self-map
f : X → X, that is, f0 = IdX (the identity function on X) by convention,
and fk = f ◦ fk−1 for each k ≥ 1. In this case X = C and f = ρ.

Rationalization in Infinite Games The analysis extends seamlessly
from finite to compact-continuous games. To be completely general, we
should define the rationalization operator for all the (Borel) measurable
Cartesian subsets of A. But we can restrict our attention to the closed
Cartesian subsets of A. In fact, compactness of A and continuity of
the payoff functions imply that, for every i ∈ I and every closed subset
C−i ⊆ A−i, the set of conjectures ∆ (C−i) =

{
µi ∈ ∆ (A−i) : µi (C−i) = 1

}
is well defined7 and that the set of best replies ri (∆ (C−i)) is closed (see
Lemma 14 in Appendix 4.7). Note that a Cartesian product C =×i∈I Ci
is closed if and only if each “factor” Ci is closed. Therefore, whenever
C =×i∈I Ci is closed, also ρ (C) =×i∈I ri (∆ (C−i)) is closed, and the
same holds for each ρk(C) (k ∈ N). For each i ∈ I, let KAi ⊆ 2Ai denote
the collection of closed (hence compact) subsets of Ai, including Ai itself.

6Symbol “ ”means “not weakly included in.”
7Because the closed C−i is necessarily measurable, hence the probability µi (C−i) is

well defined.
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With this, define the collection of closed Cartesian products

C =

{
C ∈ 2A : ∃ (Ci)i∈I ∈×

i∈I
KAi , C =×

i∈I
Ci

}
.

Then, for each C ∈ C, ρ (C) = ×i∈I ri (∆ (C−i)) is well defined and
ρ (C) ∈ C. Therefore, ρ : C → C is a well-defined self-map.

4.3 Rationalizability: The Powers of ρ

The set of action profiles consistent with R (rationality of all the players)
is ρ(A). Therefore, if every player is rational and believes R, only those
action profiles that are rationalized by ρ(A) can be chosen. It follows that
the set of action profiles consistent with R ∩ B(R) is ρ(ρ(A)) = ρ2(A).
Iterating the procedure one more step, it is relatively easy to see that the
set of action profiles consistent with R∩B(R)∩B2(R) is ρ(ρ2(A)) = ρ3(A).
The general relationship between events about rationality and beliefs and
corresponding sets of action profiles is given by the Table 4.1.

Table 4.1: Behavioral implications of assumptions on rationality and beliefs.

Assumptions about rationality and beliefs Behavioral implications

R ρ(A)

R ∩ B(R) ρ2(A)

R ∩ B(R) ∩ B2(R) ρ3(A)

... ...

R ∩
(⋂K

k=1 Bk(R)
)

ρK+1(A)

... ...

Note that, as one should expect, the sequence of subsets (ρk(A))∞k=1

is weakly decreasing, i.e., ρk+1(A) ⊆ ρk(A) (k ∈ N). This fact can
be easily derived from the monotonicity of the rationalization operator:
by definition, ρ1(A) = ρ(A) ⊆ A = ρ0(A); if ρk(A) ⊆ ρk−1(A), the
monotonicity of ρ implies ρk+1(A) = ρ(ρk(A)) ⊆ ρ(ρk−1(A)) = ρk(A). By
the induction principle ρk+1(A) ⊆ ρk(A) for every k. Every monotonically
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decreasing sequence of subsets has a well-defined limit: the intersection of
all the sets in the sequence. Therefore it makes sense to define:

ρ∞(A) =
⋂
k≥1

ρk(A).

Example 13. In the game of Example 12, iterating ρ starting from A we
delete one action at each step and we stop after 4 steps with one action
left for each player:

ρ(A) = ρ({T,M,B} × {`, c, r}) = {T,M,B} × {`, c},
ρ2(A) = ρ({T,M,B} × {`, c}) = {T,M} × {`, c},
ρ3(A) = ρ({T,M} × {`, c}) = {T,M} × {`},
ρk(A) = ρ({T,M} × {`}) = {T} × {`}, (∀k ≥ 4).

N

It is easy to see that ρ∞(A) may contain more than one element:

b s c

B 4, 3 0, 2 0, 0

S 0, 1 3, 4 0, 0

C 1, 1 1, 2 5, 0

Figure 4.2: A modified Battle of the Sexes.

Example 14. Here is a story for the payoff matrix in Figure 4.2: Rowena
and Colin have to decide independently of each other whether to go to a
Bach concert, a Stravinsky concert, or a Chopin concert. Rowena likes
Bach more than Stravinsky, she loves Chopin, but she prefers to go to
another concert with Colin rather than listening to Chopin alone. Colin
hates Chopin, he likes Stravinsky more than Bach, but he prefers Bach
with Rowena to Stravinsky alone. This is a variation on the “Battle of the
Sexes.” Iterating ρ from A = {B,S,C} × {b, s, c} we get

ρ(A) = ρ({B,S,C} × {b, s, c}) = {B,S,C} × {b, s},
ρ2(A) = ρ({B,S,C} × {b, s}) = {B,S} × {b, s},
ρk(A) = ρ({B,S} × {b, s}) = {B,S} × {b, s}, (∀k ≥ 3).
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Strategic thinking leads Rowena to avoid the Chopin concert, but it does
not allow to solve the Bach-Stravinsky coordination problem. N

We argued informally that an action profile a is consistent with
rationality and common belief in rationality if and only if a ∈ ρ∞(A).
Such action profiles are called “rationalizable”:

Definition 13. (Bernheim [21], Pearce [54]) An action profile a ∈ A is
rationalizable if a ∈ ρ∞(A).

In finite games, the set of rationalizable action profiles is obtained in
a finite number of steps (the number depends on the game). In infinite
games with compact action spaces and continuous payoff functions the set
of rationalizable profile is obtained with countably many steps (i.e., finitely
many, or a denumerable sequence of steps).

Theorem 2. (a) If G is a finite game, then there exists a positive integer
K such that ρK+1(A) = ρK(A) = ρ∞(A) 6= ∅. (b) If G is a compact-
continuous game, then the set of rationalizable action profiles, ρ∞(A), is
nonempty, compact, and satisfies ρ∞(A) = ρ (ρ∞(A)).

Proof. For the proof of part (b), which contains measure-theoretic
arguments, see Appendix 4.7. Here we prove only part (a). If Ai is finite,
for every conjecture µi the set of best replies ri(µ

i) is nonempty. Then for
each nonempty Cartesian set C ⊆ A, ρ(C) is nonempty (for every i, there
exists at least a conjecture µi ∈ ∆(C−i) with ∅ 6= ri(µ

i) ⊆ ρi(C−i)). Thus,
ρk(A) 6= ∅ implies ρk+1(A) 6= ∅. Since A 6= ∅, it follows by induction that
ρk(A) 6= ∅ for every k.

The sequence of subsets (ρk(A))∞k=1 is weakly decreasing. Also, if
ρk(A) = ρk+1(A), then ρk(A) = ρ`(A) for every ` ≥ k. Given that
A is finite, the inclusion ρk+1(A) ⊆ ρk(A) can be strict only for a
finite number of steps K (in particular, K ≤

∑
i∈I(|Ai| − 1), where

|Ai| denotes the number of elements of Ai: when ρk+1(A) ⊂ ρk(A), at
least one action for at least one player i is eliminated, but at least one
action for each player is never eliminated). All the above implies that
ρK+1(A) = ρK(A) = ρ∞(A) 6= ∅. �

It is possible to give an alternative and useful characterization of
rationalizable actions. Consider the following:

Definition 14. A set C ∈ C has the best reply property if C ⊆ ρ(C).
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Remark 13. By Theorem 2, the set ρ∞(A) of rationalizable action profiles
of a finite or compact-continuous game has the best reply property.

We leave the proof of the following as an exercise:

Remark 14. For every pair of subsets E,F ∈ C, if both E and F have the
best reply property then also C =×i∈I(Ei∪Fi) has the best reply property.

Theorem 3. In every finite or compact-continuous game, an action profile
a ∈ A is rationalizable if and only if a ∈ C for some subset C ∈ C with the
best reply property.

Proof. (Only if) If a is rationalizable then a ∈ ρ∞(A) = ρ (ρ∞(A)),
where the equality follows from Theorem 2. Hence, a belongs to a set with
the best reply property, viz., ρ∞(A).

(If) Let a ∈ C ⊆ ρ(C) for some C ∈ C. We will prove by induction that
C ⊆ ρk(C) ⊆ ρk(A) for each k. Therefore a ∈ C ⊆

⋂
k∈N

ρk(A) = ρ∞(A),

i.e., a is rationalizable.
Basis step. Since C ⊆ ρ(C), C ⊆ A and ρ is monotone, it follows that

C ⊆ ρ1(C) ⊆ ρ1(A).
Inductive step. Suppose that C ⊆ ρk(C) ⊆ ρk(A). By monotonicity

ρ(C) ⊆ ρ(ρk(C)) ⊆ ρ(ρk(A)).

Since C ⊆ ρ(C) and ρ(ρk(·)) = ρk+1(·), we obtain

C ⊆ ρk+1(C) ⊆ ρk+1(A).

�

Remark 15. The proof of Theorem 3 clarifies that, in every finite or
compact-continuous game, for every C ∈ C with the best reply property,
C ⊆ ρ∞(A). Since Theorem 2 implies that ρ∞(A) has the best reply
property, then ρ∞(A) must be the largest set with the best reply property.8

We gave a definition of rationalizability based on iterations of the
rationalization operator ρ because it is the most intuitive. An alternative

8More precisely, given the partially ordered collection (C,⊂), ρ∞(A) is the unique
maximal set with the best reply property. In other words, ρ∞(A) is the unique set C ∈ C
such that C ⊆ ρ (C) and, for every D ∈ C, C ⊂ D implies D * ρ (D).
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definition of rationalizability is suggested by Theorem 3: a is rationalizable
if it belongs to some set C ∈ C with the best reply property. This second
definition is equivalent to the first one for all games where ρ∞(A) =
ρ (ρ∞(A)). But there are some “badly behaved” infinite games where
ρ (ρ∞(A)) ⊂ ρ∞(A) (where ⊂ means strict inclusion). The second
definition of rationalizability is valid for those games too, while the first
one only gives a necessary condition. For the purposes of these lectures,
this “technicality” can be neglected. We used the first definition because
we find it more intuitive.

4.4 Comparative Risk Aversion and
Rationalizability

We have shown in Theorem 1 of Chapter 3 that higher risk aversion
implies a larger set of justifiable actions. An inductive argument extends
such monotonicity result to the set of rationalizable action profiles: a
weak increase in risk aversion for all players weakly expands the set of
rationalizable actions of each player.9 The interesting novelty is that the
set of rationalizable actions of a player may expand just because the risk
aversion of another player increases as shown by the following example:

Example 15. Consider the following two-person game form with
monetary consequences:

g1, g2 : b′ b′′

a′ 0, 1 1, 0

a′′ 1
3 ,0 1

3 ,1

a′′′ 1, 1 0, 0

Let uθ,1 = g
1
θ
1 , where θ ≥ 1 parametrizes risk aversion, and let u2 = υ2 ◦ g2

for any continuous and strictly increasing υ2 (the risk attitudes of player
2 are immaterial). We consider the rationalizability correspondence θ 7→
ρ∞θ (A). Note that every action of player 2 is a best response to some
belief, and the set of rationalizable actions of player 2 is {b′, b′′} if a′′ is

9See Weinstein [73], who also consider other solution concepts. For an analogous
result about “ambiguity aversion” see the working paper version of Battigalli et al. [17,
Proposition 1].
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justifiable for player 1, and {b′} if a′′ is unjustifiable. In the latter case,
the only rationalizable action of player 1 is a′′′, the best reply to b′. With
this, the calculations of Example 6 imply

ρ∞θ (A) = ρ3
θ (A) =

{
{(a′′′, b′)}, if 1 ≤ θ < log2 3,

A1 ×A2, if θ ≥ log2 3.

N

Theorem 4. Let G = 〈I, (Ai, ui)i∈I〉 and Ĝ = 〈I, (Ai, ûi)i∈I〉 be two
compact-continuous games, and suppose every player i ∈ I is more risk
averse in Ĝ than in G. Then the set of rationalizable profiles of G is
included in the set of rationalizable profiles of Ĝ.

Proof. Let Aki and Âki respectively denote the sets of k-step
rationalizable actions of i in G and Ĝ. We prove by induction that Aki ⊆ Âki
for every i ∈ I and k ∈ N.

Basis step. By Theorem 1, A1
i = ri (∆ (A−i)) ⊆ r̂i (∆ (A−i)) = Â1

i for
every i ∈ I, where r̂i is i’s best reply correspondence in game Ĝ, that is,
according to payoff function ûi.

Inductive Step. Suppose, by way of induction, that Akj ⊆ Âkj for every

j ∈ I and fix any i ∈ I, then Ak−i ⊆ Âk−i. Since Ak+1
i = ri

(
∆
(
Ak−i

))
and

Âk+1
i = r̂i

(
∆
(
Âk−i

))
, we must show that ri

(
∆
(
Ak−i

))
⊆ r̂i

(
∆
(
Âk−i

))
.

By Theorem 1, ri
(
∆
(
Ak−i

))
⊆ r̂i

(
∆
(
Ak−i

))
. Since Ak−i ⊆ Âk−i by the

inductive hypothesis, then also ∆
(
Ak−i

)
⊆ ∆

(
Âk−i

)
and r̂i

(
∆
(
Ak−i

))
⊆

r̂i

(
∆
(
Âk−i

))
. Therefore ri

(
∆
(
Ak−i

))
⊆ r̂i

(
∆
(
Ak−i

))
⊆ r̂i

(
∆
(
Âk−i

))
,

which implies ri
(
∆
(
Ak−i

))
⊆ r̂i

(
∆
(
Âk−i

))
. �

4.5 Iterated Dominance

The equivalence between best replies and undominated actions allows us
to characterize the actions that survive the iterated dominance procedure.
In order to give the precise definition of this procedure, we first define the
concept of dominance within a subset of action profiles.
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Definition 15. Fix a nonempty Cartesian subset C of A: ∅ 6= C ∈ C.
An action ai is dominated in C if ai ∈ Ci and there is a mixed action
αi ∈ ∆(Ci) such that

∀a−i ∈ C−i, ui(ai, a−i) < ui(αi, a−i).

We denote by NDi(C) ⊆ Ai the set of actions in Ci that are not dominated
in C and let ND(C) =×i∈I NDi(C) ⊆ A denote the set of undominated
action profiles in C.

Remark 16. Operator ND is not monotone (can you explain why?).

Using the standard notation for iterations (k-fold composition) of self-
maps, we can represent the iterated dominance procedure through the
following sequence of sets ND(A), ND(ND(A)) = ND2(A), ..., NDk(A),
... . Essentially, the idea is to first eliminate all dominated actions, thus
obtaining ND(A). Then one moves on to eliminate all dominated actions
in the restricted game with set of action profiles ND(A), thus obtaining
ND2(A), then eliminate all the dominated actions from the restricted game
with set of action profiles ND2(A), thus obtaining ND3(A), and so on.

Definition 16. a ∈ A is a profile of iteratively undominated actions
if a ∈ ND∞(A) =

⋂
k≥1 NDk(A).

Theorem 5. (Pearce [54]) Fix a finite or compact-continuous game; for
every k = 1, 2, ..., ρk(A) = NDk(A). Therefore, an action profile is
rationalizable if and only if it is iteratively undominated.

We first prove a quite simple preliminary result about the sequence
of subsets

(
ρk(A)

)∞
k=1

. For any nonempty subset Ci ⊆ Ai define the
constrained best reply correspondence ri(·|Ci) : ∆(A−i)⇒ Ci as

ri(µ
i|Ci) = arg max

ai∈Ci
ui(ai, µ

i).

Recall that ri(µ
i) = arg maxai∈Ai ui(ai, µ

i). Therefore, for each µi ∈
∆(A−i),

∅ 6= ri(µ
i) ⊆ Ci ⇒ ri(µ

i) = ri(µ
i|Ci); (4.5.1)

in words, if there is at least one best reply (as is the case in all finite, or
compact-continuous games) and all the best replies satisfy the constraint of
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being in Ci, then constrained and unconstrained best replies must coincide
(check you can prove this; more generally, prove that ri(µ

i) ∩ Ci 6= ∅ ⇒
ri(µ

i|Ci) ⊆ ri(µi)).10 For each C ∈ C and i ∈ I, let

ρi(C) = ri(∆(C−i)|Ci) =
⋃

µi∈∆(C−i)

arg max
ai∈Ci

ui(ai, µ
i);

ρ(C) =×
i∈I

ρi(C).

Since ρi(C) is obtained by constrained maximization, it follows that
ρ(C) ⊆ C for every C. The rationalization operator ρ, instead, does
not satisfy this property (if C, for instance, is the set of dominated action
profiles, then ρ(C) ∩ C = ∅). Also, like ND, operator ρ is not monotone,
whereas ρ is monotone. Yet, ρ and ρ̄ coincide whenever the constraint
“does not bite”:

Remark 17. Suppose that ri(µ
i) 6= ∅ for each i ∈ I and µi ∈ ∆(A−i).

Then,

∀C ∈ C, ρ(C) ⊆ C ⇒ ρ(C) = ρ̄(C). (4.5.2)

Proof. Suppose that ρ(C) ⊆ C. Since ρ(C) = ×i∈I ri(∆(C−i)),
ri(µ

i) ⊆ ri(∆(C−i)) ⊆ Ci for each i and µi ∈ ∆(C−i) (the first
inclusion holds by definition, the second by assumption). Under the
stated assumptions ri(µ

i) 6= ∅ for every i and µi. Therefore, by (4.5.1),
ri(µ

i) = ri(µ
i|Ci) for every i and µi ∈ ∆(C−i), which implies ρi(C−i) =

ri(∆(C−i)) = ri(∆(C−i)|Ci) = ρ̄i(C) for each i, that is, ρ(C) = ρ̄(C). �

This implies that if ρ and ρ̄ are iterated starting from the set A of all
action profiles, the same sequence of subsets obtains:

Lemma 13. In a finite or compact-continuous game, for every k = 1, 2, ...,
ρk(A) = ρk(A).11

Proof. By definition ρ0(A) = ρ0(A). Suppose by way of induction
that ρk(A) = ρk(A). As already shown, the monotonicity of ρ implies

10In some infinite games, for some i, µi, and Ci, ri(µ
i) = ∅ and ri(µ

i|Ci) 6= ∅. See
Example 16.

11As should be clear from the proof, the lemma holds for all games where the best
reply correspondences are non-empty-valued.
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ρ(ρk(A)) = ρk+1(A) ⊆ ρk(A); hence ρ(ρk(A)) = ρ(ρ̄k(A)) ⊆ ρk(A). Under
the compactness-continuity assumption, ri(µ

i) 6= ∅ for each i ∈ I and
µi ∈ ∆(Ai). Therefore eq. (4.5.2) applies and yields ρ(ρ̄k(A)) = ρ̄(ρ̄k(A)).
Thus, ρk+1(A) = ρ(ρk(A)) = ρ̄(ρ̄k(A)) = ρ̄k+1(A). �

The lemma can be reformulated as follows. Say that an action ai is
iteratively justifiable if (1) it is justifiable (2) it is justifiable in the
reduced game G1 obtained by elimination of all the non justifiable actions,
(3) it is justifiable in the reduced game G2 obtained by the elimination of
all non justifiable actions in G1, and so on. The actions that are iteratively
justifiable are exactly those obtained by iterating the operator ρ. Hence,
Lemma 13 states that, for every player, the set of rationalizable actions
coincides with the set of iteratively justifiable actions.

Example 16. Here is an example that violates the compactness-continuity
hypothesis of Theorem 2 and where, as a consequence, ri(µ

i) may be empty
and the thesis of Lemma 13 does not hold: I = {1, 2}, A1 = {0, 1},
A2 = {1 − 1

k : k = 1, 2, ...} ∪ {1}, the payoff functions are given by the
infinite bi-matrix in Figure 4.3.

1\2 0 ... 1− 1
k ... 1

0 1, 0 ... 1, 1− 1
k ... 1, 0

1 0, 0 ... 0, 0 ... 0, 1

Figure 4.3: A countably infinite game.

Thus, u2

(
1− 1

k , µ
2
)

= µ2(0)
(
1− 1

k

)
, u2(1, µ2) = µ2(1) = 1− µ2(0). If

µ2(1) ≥ 1
2 the best reply is a2 = 1. If µ2(1) < 1

2 , then u2(1 − 1
k , µ

2) >
u2(1, µ2) for k sufficiently large, but there is no best reply because
u2(1 − 1

k , µ
2) is strictly increasing in k. Note also that a1 = 0 strictly

dominates a1 = 1. Clearly ρ(A) = ρ(A) = {0} × {1} and ρ2({0}) = ∅,
ρ2({0} × {1}) = {1}. Therefore ρ2(A) = ∅ 6= {0} × {1} = ρ2(A). How
is compactness-continuity violated? A1 is finite, hence compact; A2 is a
closed and bounded subset of the real line (A2 contains the limit of the
sequence (1− 1

k )∞k=1), hence it is also compact; but u2 is discontinuous at
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(0, 1): limk→∞ u2

(
0, 1− 1

k

)
= 1 6= 0 = u2(0, 1).12 N

Theorem 5 follows quite easily from Lemma 13: indeed Lemma
2 implies that the iteratively undominated actions coincide with the
iteratively justifiable ones, and by Lemma 13 the iteratively justifiable
actions coincide with the rationalizable actions. The details are as follows:

Proof of Theorem 5. Basis step. Lemma 2 implies that ρ(A) =
ND(A).

Inductive step. Assume that ρk−1(A) = NDk−1(A) (inductive
hypothesis) and consider the game Gk−1 where the set of actions
of each player i is ρk−1

i (A), and the payoff functions are obtained
from the original game by restricting their domain to ρk−1(A). The
inductive hypothesis implies that the set of undominated action profiles
in Gk−1 is ND(ρk−1(A)) = ND(NDk−1(A)) = NDk(A). By Lemma 2,
ND(NDk−1(A)) = ρ(NDk−1(A)). The inductive hypothesis and Lemma
13 yield ρ(NDk−1(A)) = ρ(ρk−1(A)) = ρ(ρk−1(A)) = ρk(A). Hence
NDk(A) = ρk(A). �

So far, we have considered a procedure of iterated elimination which
is maximal, in the sense that at any step all the dominated actions of
all players are eliminated (where dominance holds in the restricted game
that resulted from previous iterated eliminations). However, one can show
that to compute the set of action profiles that are iteratively undominated
(and therefore rationalizable) it is sufficient to iteratively eliminate some
actions which are dominated for some player until in the restricted game so
obtained there are no dominated actions left. To simplify the exposition,
we restrict the analysis of non-maximal iterated dominance procedures to
finite games.13

Definition 17. An iterated dominance procedure is a sequence
(Ck)Kk=0 ∈ CK+1of nonempty Cartesian subsets of A such that (i) C0 = A,
(ii) for each k = 1, . . . ,K, ND(Ck−1) ⊆ Ck ⊂ Ck−1 (⊂ is the strict
inclusion), and (iii) ND(CK) = CK .

12For the mathematically savy: it is easy to change the example so that A2 is not
compact and u2 is trivially continuous, just endow A2 with the discrete topology.

13For an extension to infinite, compact-continuous games see Dufwenberg and
Stegeman [29], who also provide counterexamples when compactness-continuity fails.
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In words, an iterated dominance procedure is a sequence of steps
starting from the full set of action profiles (condition i) and such that
at each step k, for at least one player, at least one of the actions that
are dominated given the previous steps is eliminated (condition ii); the
elimination procedure can stop only when no further elimination is possible
(condition iii).

Theorem 6. Fix a finite game. For every iterated dominance procedure
(Ck)Kk=0, CK is the set of rationalizable action profiles.

Proof. Fix an iterated dominance procedure, i.e., a sequence of subsets
(Ck)Kk=0 that satisfies (i)-(ii)-(iii) of Definition 17.

Claim. For each k = 0, 1, . . . ,K,

ρk+1(A) ⊆ ρ(Ck) = ND(Ck).

The proof of the claim is by induction:

Basis step. By Lemma 2 ρ(A) = ND(A); by (i) C0 = A. Therefore
ρ1(A) ⊆ ρ(C0) = ND(C0) (the weak inclusion actually holds as an
equality).

Inductive step. Suppose that ρk+1(A) ⊆ ρ(Ck) = ND(Ck). By (ii),
ND(Ck) ⊆ Ck+1 ⊂ Ck. By monotonicity of ρ and the inductive hypothesis,

ρk+2(A) ⊆ ρ(ND(Ck)) ⊆ ρ(Ck+1),

and

ρ(Ck+1) ⊆ ρ(Ck) = ND(Ck) ⊆ Ck+1.

Since the game is finite, there is at least one best reply to every conjecture
and eq. (4.5.2) holds; thus,

ρ(Ck+1) = ρ̄(Ck+1) = ND(Ck+1),

where the second equality follows from Lemma 2. Collecting inclusions
and equalities, ρk+2(A) ⊆ ρ(Ck+1) = ND(Ck+1). �

The claim implies that ρK+1(A) ⊆ ρ(CK) = ND(CK). By (iii),
CK = ND(CK). Therefore ρ∞(A) ⊆ ρ(CK) = CK , that is, every
rationalizable profile belongs to CK , and CK has the best reply property.
By Theorem 3, CK must be the set of rationalizable profiles. �
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4.6 Rationalizability and Iterated Dominance in
Nice Games

Recall that in a nice game the action set of each player is a compact
interval in the real line, payoff functions are continuous and each ui is
strictly quasi-concave in the own action ai (see Definition 11). Therefore,
nice games are compact-continuous. It turns out that the analysis of
rationalizability and iterated dominance in nice games is nice indeed! The
analysis, however, requires some technicalities.

Recall that, for the games under considerations, C denotes the
collection of closed subsets of A with a cross-product form C =×i∈I Ci.
Define the following operators on C: for every C ∈ C,

r(C) = ×
i∈I

ri(C−i), ιρ(C) =×
i∈I

ri(I∆(C−i)),

NDp(C) = ×
i∈I
{ai ∈ Ci : ∀bi ∈ Ci, ∃a−i ∈ C−i, ui(ai, a−i) ≥ ui(bi, a−i)},

where I∆(C−i) is the set of product probability measures on C−i, or
independent (uncorrelated) conjectures (see Section 3.3.2). Note that r
and ιρ are self-maps on C, because ri(C−i) and ri(I∆(C−i)) are closed for
every closed set C−i (see the Appendix 4.7). Similarly, for every C ∈ C,
NDp(C) is closed; hence, also NDp is a self-map on C. In fact, for every
i ∈ I and bi ∈ Ci, since ui is continuous, the set

{ai ∈ Ci : ∃a−i ∈ C−i, ui(ai, a−i) ≥ ui(bi, a−i)}

is closed. Therefore, also the intersection of such sets⋂
bi∈Ci

{ai ∈ Ci : ∃a−i ∈ C−i, ui(ai, a−i) ≥ ui(bi, a−i)}

= {ai ∈ Ci : ∀bi ∈ Ci, ∃a−i ∈ C−i, ui(ai, a−i) ≥ ui(bi, a−i)}

is closed.
Iterating ιρ from A yields a solution procedure called independent

rationalizability,14 which is what obtains if (a) players are rational, (b)

14This was the solution originally called “rationalizability” by Bernheim [21] and
Pearce [54] before the epistemic analysis proved that the cleaner and more basic concept
is the “correlated” version ρ∞(A).
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they hold independent (i.e., non correlated) conjectures, and (c) there is
common belief of (a) and (b).

Iterating r from A yields a solution procedure called point-
rationalizability, see Bernheim [21]. This procedure has no autonomous
conceptual interest,15 because there is no good reason to assume at the
outset that players hold deterministic conjectures. Point rationalizability
is just an ancillary solution concept that turns out to be convenient in the
analysis of special games, including nice games.

Iterating NDp from A yields the iterated deletion of (pure) actions
strictly dominated by (pure) actions. In general games with compact
action sets and continuous payoff functions, NDk(A) ⊆ (NDp)

k(A) for
all k.16 Clearly ((NDp)

k(A))∞k=1 is a much simpler procedure than
(NDk(A))∞k=1, but it is weaker and it does not have a satisfactory
conceptual foundation. So, in general, it should be regarded as an ancillary
algorithm that allows to simplify the analysis of compact-continuous
games.

As an exercise, use monotonicity to prove the following statements:

Remark 18. For each k, rk(A) ⊆ ιρk(A) ⊆ ρk(A). Hence r∞(A) ⊆
ιρ∞(A) ⊆ ρ∞(A).

Remark 19. For each C ∈ C, if C ⊆ r(C) (C ⊆ ιρ(C)), then C ⊆ r∞(A)
(C ⊆ ιρ∞(A)).

Thus, if r∞(A) 6= ∅, then ιρ∞(A) 6= ∅ and ρ∞(A) 6= ∅. Also,
suppose that there is some C ∈ C that contains at least two elements
and has the “deterministic” best reply property C ⊆ r(C). Then, the
results above imply that there is a multiplicity of rationalizable (and
independent rationalizable) action profiles. These simple results show why
point rationalizability is a useful solution concept even though it does not
have an interesting conceptual foundation. One nice feature of nice games
is that Lemma 7 yields

15Point rationalizability obtains if (a) players are rational, (b) they hold deterministic
conjectures, and (c) there is common belief of (a) and (b).

16The result holds more generally for games with compact actions sets, where the
payoff functions are jointly continuous in the opponents’ actions and upper semi-
continuous in the own action.
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Theorem 7. In every nice game, for every k ∈ N,

rk(A) = ιρk(A) = ρk(A) = NDk(A) = (NDp)
k(A)

and each set is a product of closed intervals; hence

r∞(A) = ιρ∞(A) = ρ∞(A) = ND∞(A) = (NDp)
∞(A)

and, again, each set is a product of closed intervals.

Proof. The second statement follows easily from the first, which
is trivially true for k = 0. Suppose, by way of induction, that the
first statement holds for a given k. By the inductive hypothesis the set
C = rk(A) is a product of closed intervals. Then Lemma 7 and Corollary
2 (applied to the restricted action sets Ci, i ∈ I) yield

r(rk(A)) = ιρ(rk(A)) = ρ(rk(A)) = ND(rk(A)) = NDp(r
k(A)).

By the inductive hypothesis

rk+1(A) = ιρk+1(A) = ρk+1(A) = NDk+1(A) = (NDp)
k+1(A).

�

Example 17. As an application, consider the market for a crop analyzed
in Chapter 1 (Section 1.6.1), but this time suppose that there is a finite
number n ≥ 2 of firms who decide how much to produce of a crop to be
sold on the market 6 months later at the highest price that allows demand
to absorb total output; thus, they compete à la Cournot.17 Each firm has
cost function

C(qi) =
1

2m
(qi)

2, qi ∈
[
0,

4α

β

]
(4α
β is a capacity constraint given by the available land).18 Market demand

is given by the function D(p;n) = max{0, n(α − βp)} with 0 < β < 2;
therefore price as a function of average quantity is

P

(
1

n

n∑
i=1

qi

)
= max

{
0,

1

β

(
α− 1

n

n∑
i=1

qi

)}
.

17The following analysis is adapted from Boergers and Janssen [25].
18The capacity constraint is loose enough to simplify the calculations.
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It is interesting to relate the analysis of rationalizable oligopolistic behavior
to the standard competitive equilibrium for these market fundamentals.
(1) First, verify that the game is nice. The payoff function of each firm i
is the profit function

πi(qi, q−i) =

{
qi
β

(
α− qi

n −
1
n

∑
j 6=i qj

)
− 1

2m(qi)
2, if nα > qi +

∑
j 6=i qj ,

− 1
2m(qi)

2, if nα ≤ qi +
∑

j 6=i qj .

This function is clearly continuous.19 Now, fix q−i arbitrarily. If
∑

j 6=i qj ≥
nα then πi(qi, q−i) = − 1

2m(qi)
2, which is strictly decreasing in qi. If∑

j 6=i qj < nα, then πi is initially increasing in qi up to the point ri(q−i)
where marginal revenue equals marginal cost (see below), and then it
becomes strictly decreasing.20

(2) The best reply function is easily obtained from the first-order conditions
when α > 1

n

∑
j 6=i qj , in the other case the best reply is the corner solution

qi = 0:

ri(q−i) = max

{
0,
m(α− 1

n

∑
j 6=i qj)

β + 2m
n

}
.

(3) The monopolistic output is

qn,M := ri(0, . . . , 0) =
mα

β + 2m
n

.

19Note that qi
β

(
α− qi

n
− 1

n

∑
j 6=i qj

)
− 1

2m
(qi)

2 = − 1
2m

(qi)
2 if nα = qi +

∑
j 6=i qj .

20There is a kink at q̂i = nα −
∑
j 6=i qj , but this is immaterial. Note also that πi is

not concave in qi: in the left neighborhood of the kink point q̂i the derivative is

∂πi
∂qi

(qi, q−i) = P

qi
n

+
1

n

∑
j 6=i

qj

+
qi
n
P ′

qi
n

+
1

n

∑
j 6=i

qj

− qi
m

≈ q̂i
n
P ′

 q̂i
n

+
1

n

∑
j 6=i

qj

− q̂i
m
< − q̂i

m

where the approximation holds because qi is close to q̂i and P
(
qi
n

+ 1
n

∑
j 6=i qj

)
≈ 0,

and the inequality holds because P ′ < 0. In a right neighborhood of q̂i,
∂πi
∂qi

(qi, q−i) =

− qi
m
≈ − q̂i

m
. Therefore, for ε > 0 small enough,

∂πi
∂qi

πi(q̂i − ε, q−i) <
∂πi
∂qi

πi(q̂i + ε, q−i),

which implies that πi is not concave.
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If every competitor produces at maximum capacity, 1
n

∑
j 6=i qj > α

(because β < 2 and capacity is 4α/β), so the best reply is

ri

(
4α

β
, . . . ,

4α

β

)
= 0.

Since the game is nice, ρ(A) =
[
0, qn,M

]n
. If this set has the best reply

property, this is also the set of rationalizable profiles. To check this, it is
enough to verify whether the best reply to the most pessimistic conjecture
consistent with rationality is zero, that is ri(q

n,M , ..., qn,M ) = 0; in the
affirmative case

[
0, qn,M

]n
has the best reply property. The condition for

this is n−1
n

mα
β+ 2m

n

≥ α, or

β ≤ m
(
n− 3

n

)
.

Therefore, if β < m there is n̄ large enough so that, for each n > n̄,[
0, qn,M

]n
has the best reply property, hence there is a huge multiplicity

of rationalizable outcomes. Conversely, if β > m, then

β > m

(
n− 3

n

)
for every n; hence, in this case the set

[
0, qn,M

]n
does not have the best

reply property whatever the number n of firms. Furthermore, it can be
shown that if β > m there is a unique rationalizable outcome.21 By
symmetry, each firm has the same rationalizable output qn,∗ which must

solve q =
m(α−n−1

n
q)

β+ 2m
n

, because the singleton {(qn,∗, . . . , qn,∗)} has the best

reply property. Therefore

qn,∗ =
mα

β +mn+1
n

with corresponding rationalizable price

pn,∗ := P

(
mα

β +mn+1
n

)
=

α+ m
n
α
β

β +mn+1
n

21If β > m, the joint best reply function

(qi)
n
i=1 7→ (ri(q−i))

n
i=1

is a contraction, which implies that the sequence
θ
ρk(A)

)
k∈N shrinks to a point.
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(of course, this is the Cournot-Nash equilibrium).
(4) Finally, the competitive equilibrium price with these market
fundamentals is

p∗ :=
α

β +m
,

with average output

q∗ :=
mα

β +m
.

As pointed out in Section 1.6.1 of the Chapter 1, β > m is the “cobweb
stability” condition. Under this condition, the unique rationalizable output
is qn,∗ = mα

β+mn+1
n

. Of course,

lim
n→∞

qn,∗ = lim
n→∞

mα

β +mn+1
n

=
mα

β +m
= q∗,

lim
n→∞

pn,∗ = lim
n→∞

α+ m
n
α
β

β +mn+1
n

=
α

β +m
= q∗.

To sum up, under the “cobweb stability” condition β > m, the
rationalizable outcome is unique and approximates the so called “rational
expectations equilibrium.” N

4.7 Appendix: Compact-Continuous Games

4.7.1 Preliminaries on the Rationalization Operator

Recall that, for the case of compact-continuous games, we defined C as the
collection of closed Cartesian subsets of A. In light of the results presented
in Section 3.4.2, we can show that ρ is a self map from C to C.

Lemma 14. For every C ∈ C, ρ (C) ∈ C; furthermore, if C 6= ∅ then
ρ (C) 6= ∅.

Proof. Let C = ×i∈I Ci ∈ C. Since C is closed and ρ (C) =

×i∈I ri (∆ (C−i)), Lemma 10 implies that the Cartesian set ρ (C) is also
closed; hence ρ (C) ∈ C; furthermore, if C 6= ∅, Lemma 10 implies that
ρ (C) 6= ∅. �

For future reference, we record an important property of compact sets:
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Lemma 15. (Finite-intersection property of compact sets) Let X be
compact and let {Cj}j∈J be an indexed family of closed subsets of X
such that, for every finite F ⊆ J , the finite indexed subfamily {Cj}j∈F
has nonempty intersection:

⋂
j∈F

Cj 6= ∅. Then also {Cj}j∈J has nonempty

intersection:
⋂
j∈J

Cj 6= ∅.

4.7.2 Proof of Theorem 2 (b)

We must prove that ρ∞ (A) is nonempty, compact, and satisfies ρ∞ (A) =
ρ (ρ∞ (A)). Recall that we defined ρ0 (A) = A for convenience. We
first prove by induction on k ∈ N0 (where N0 is the set of nonnegative
integers) that ρk (A) 6= ∅ for every k ≥ 0. The basis step is trivial:
ρ0 (A) = A where A 6= ∅ by assumption. Now assume by way of induction
that ρk (A) ∈ C is nonempty for some k. Then Lemma 14 implies that
ρk+1 (A) = ρ

(
ρk (A)

)
6= ∅. Next we show that ρ∞ (A) 6= ∅. Since the

sequence
(
ρk (A)

)∞
k=1

is weakly decreasing,

∀` ∈ N,
⋂̀
k=1

ρk (A) = ρ` (A) 6= ∅.

Then, the finite-intersection property of compact sets applied to the
indexed family {ρ`(A)}`∈N (Lemma 15) implies that

ρ∞ (A) =
∞⋂
`=1

ρ` (A) 6= ∅.

Since ρ∞ (A) is an intersection of closed set, it is closed. Since A is
compact, the closed subset ρ∞ (A) is compact.

Finally, we prove that ρ∞ (A) = ρ (ρ∞ (A)). The inclusion ρ (ρ∞ (A)) ⊆
ρ∞ (A) follows from the monotonicity of ρ: For every k ∈ N0, ρ∞ (A) ⊆
ρk (A). Since ρ is monotone,

ρ (ρ∞ (A)) ⊆
∞⋂
k=0

ρ
(
ρk (A)

)
=
∞⋂
`=1

ρ` (A) = ρ∞ (A) .

Next we show that ρ∞ (A) ⊆ ρ (ρ∞ (A)). Pick any profile (ai)i∈I ∈ ρ∞ (A).
For every k, let Aki denote the set of “k-rationalizable” actions of player
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i, so that ρk (A) =×i∈I A
k
i and ρ∞ (A) =

∞⋂
k=1
×i∈I A

k
i . With this, for

each i ∈ I, we can find a sequence of conjectures
(
µin
)∞
n=0

such that

µin ∈ ∆
(
An−i

)
⊆ ∆ (A−i) and ai ∈ ri

(
µin
)

for every n ∈ N0. By
Lemma 9,

(
µin
)∞
n=0

has a convergent subsequence
(
µink
)∞
k=1

with limit

µink → µ̄i ∈ ∆ (A−i). By Lemma 10, ai ∈ ri
(
µ̄i
)

for each i ∈ I. To prove

that (ai)i∈I ∈ ρ (ρ∞ (A)), we only have to show that µ̄i
( ∞⋂
n=1

An−i

)
= 1 for

each i ∈ I. Note that, for every n, there is some k such that nk ≥ n, so
that µink

(
An−i

)
= 1 because Ank−i ⊆ An−i. Therefore, by the portmanteau

theorem [3, Theorem 15.3], for every An−i (a closed set)

µ̄i
(
An−i

)
≥ lim sup

k→∞
µink

(
An−i

)
= 1,

that is, µ̄i
(
An−i

)
= 1. Since µ̄i is countably additive, it must be

continuous.22 Therefore,

µ̄i

( ∞⋂
n=1

An−i

)
= lim

n→∞
µ̄i
(
An−i

)
= 1.

�

22This means that µ̄i
(
∞⋂
k=1

Ek

)
= limk→∞ µ̄

i (Ek) for every weakly decreasing

sequence of measurable sets (Ek)∞k=1, and µ̄i
(
∞⋃
k=1

Fk

)
= limk→∞ µ̄

i (Fk) for every

weakly increasing sequence of measurable subsets (Fk)∞k=1.
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Pure Equilibrium

In Chapter 4, we analyzed the behavioral implications of rationality and
common belief in rationality when there is complete information, that is,
common knowledge of the rules of the game and of players’ preferences.
There are interesting strategic situations where these assumptions about
rationality, belief and knowledge imply that each player can correctly
predict the opponents’ behavior, e.g., many oligopoly games. But this
is not the case in general: whenever a game has multiple rationalizable
profiles there is at least one player i such that many conjectures µi are
consistent with common belief in rationality, but at most one of them can
be correct. In this chapter, we analyze situations where players’ predictions
are correct, and we discuss why predictions should (or should not) be
correct. Let us give a preview.

We start with Nash’s classic definition of equilibrium (in pure actions):
An action profile a∗ = (a∗i )i∈I is an equilibrium if each action a∗i is a best
reply to the actions of the other players a∗−i.

Nash equilibrium play follows from the assumptions that players are
rational and hold correct conjectures about the behavior of other players.
But why should this be the case? Can we find scenarios that make the
assumption of correct conjectures compelling, or at least plausible? We will
discuss two types of scenarios: (1) those that make Nash equilibrium an
“obvious way to play the game,” and (2) those that make Nash equilibrium
a steady state of an adaptive process. In each case, we will point out
that Nash equilibrium is justified under rather restrictive assumptions, and
that weakening such assumptions suggests interesting generalizations of the

105
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Nash equilibrium concept whereby players form probabilistic conjectures
about the behavior of co-players. We then analyze these generalizations in
Chapter 6 on “probabilistic equilibria.”

More specifically, Nash equilibrium may be the “obvious way to
play the game” under complete information either as the outcome of
sophisticated strategic reasoning, or as the result of a non-binding pre-play
agreement. If it were obvious how the game should be played, then each
player i could predict the obvious way to play of the co-players, viz. a∗−i,
and play the best reply a∗i . Yet, if sophisticated strategic reasoning is given
by rationality and common belief in rationality, then Nash equilibrium is
obtained only in those games where rationalizable actions and equilibrium
actions coincide. This coincidence is implied by some assumptions about
action sets and payoff functions that are satisfied in several economic
applications, but in general the relevant concept under this scenario is
rationalizability, not Nash equilibrium.

What about pre-play agreements? True, a non-binding agreement to
play a particular action profile a∗ has to be a Nash equilibrium, otherwise
the agreement would be self-defeating. But it will be shown in Chapter
6 that more general “probabilistic agreements” that make behavior
depend on some extraneous random variables may be more efficient.
Such probabilistic agreements are called “correlated equilibria” and
generalize the Nash equilibrium concept.

Next we turn to adaptive processes. The general scenario is that a
given game is played recurrently by agents that each time are drawn at
random from large populations corresponding to different players/roles in
the game (e.g., seller and buyer, or male and female). The agents drawn
from each population are matched, play among themselves, and then are
separated. If each player’s conjecture about the opponents’ behavior in the
current play is based on his observations of the opponents’ actions in the
past and this player best responds, we obtain a dynamic process in which
at each point in time some agent switches from one action to another. If
the process converges so that each agent playing in a given role ends up
choosing the same action over and over, the steady state must look like a
Nash equilibrium: indeed the experience of those playing in role i is that
the opponents keep playing some profile a∗−i and thus they keep choosing
a best reply, say, a∗i .

1 Since this is true for each i, (a∗i )i∈I must be a Nash

1Suppose for simplicity that there is only one best reply.
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equilibrium.

But it is possible that the process converges to an heterogeneous
situation: a fraction q1

i of the agents in the population i choose some
action a1

i , another fraction q2
i of agents choose action a2

i and so on. If
the process has stabilized, (q1

j , q
2
j , . . .) will (approximately) represent the

observed frequencies of the actions of those playing in role j, and i will
conjecture that a1

j , a
2
j , . . . are played with probabilities q1

j , q
2
j , . . .. If each

action a1
i , a

2
i , . . . is a best reply to such conjecture, given a bit of inertia, i

will keep choosing whatever he was choosing before and the heterogeneous
behavior within each population will persist. In this case, the steady state
is described by mixed actions whose support is made of best responses
to the mixed actions of the opponents. This is called “mixed (Nash)
equilibrium.” It turns out that a mixed equilibrium formally is a Nash
equilibrium of the extended game where each player i chooses in the set
∆(Ai) of mixed actions and payoffs are computed by taking expected values
(under the assumption of independence across players). Indeed, this is the
standard definition of mixed equilibrium.

The analysis above relies on the assumption that, when a game is
played recurrently, each agent can observe the frequency of play of different
actions. But often the information feedback is poorer. For example, one
may observe only a variable determined by the players’ actions, such as
the number of customers of a firm in a price-setting oligopoly. In such
a context, it may happen that players’ conjectures are wrong and yet
they are confirmed by players’ information feedback, so that they keep
best responding to such wrong conjectures and the system is in a steady
state which is not a Nash (or mixed Nash) equilibrium. A steady state
whereby players best respond to confirmed (non contradicted) conjectures
is called “conjectural equilibrium,” or “self-confirming equilibrium.”
Since correct conjectures (conjectures that correspond to the actual
behavior of the other players) are necessarily confirmed, every Nash
equilibrium is necessarily self-confirming.

To sum up, a serious effort to provide reasonable justifications for
the Nash equilibrium concept leads us to think about scenarios where
strategic interaction would plausibly lead to players best responding to
correct conjectures about the opponents. But for each such scenario we
need additional assumptions (on the payoff functions, or on information
feedback) to justify Nash play. Without such additional assumptions we
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are left with interesting generalizations of the Nash equilibrium concept.

The rest of the chapter is organized as follows. In Section 5.1, we define
(pure) Nash equilibrium and provide sufficient conditions for its existence.
In Section 5.2 we focus on symmetric equilibria of nice games and provide a
simple existence proof. In Section 5.3 we analyze nice games with strategic
complementarities and show in these games there is a tight relationship
between Nash equilibrium and rationalizability. Finally, in Section 5.4 we
go back to the interpretation of the Nash equilibrium concept, paving the
way for the generalizations analyzed in Chaper 6.

5.1 Nash Equilibrium

A Nash2 equilibrium is a situation in which every player is rational and
holds correct conjectures about the actions of the other players.

Definition 18. An action profile a∗ = (a∗i )i∈I is a Nash equilibrium
if, for every i ∈ I, a∗i ∈ ri(a∗−i).

Remark 20. An action profile a∗ is a Nash equilibrium if and only if the
singleton {a∗} has the best reply property. Hence, by Theorem 3, every
Nash equilibrium is rationalizable; if there is a unique rationalizable action
profile, then it is necessarily the unique Nash equilibrium.

By inspection of simple games, such as “Matching Pennies,” it is
obvious that not all games have Nash equilibria. The following classic
theorem provides sufficient conditions for the existence of at least one
Nash equilibrium.

Theorem 8. Consider a compact-continuous game G = 〈I, (Ai, ui)i∈I〉.
If, for every player i ∈ I, Ai is convex and, the function ui(·, a−i) : Ai → R
is quasi-concave for every a−i ∈ A−i, then G has a Nash equilibrium.

2John Nash, who has been awarded the Nobel Prize for Economics (joint with John
Harsanyi and Reinhard Selten) in 1994, was the first to give a general definition of this
equilibrium concept. Nash analyzed the equilibrium concept for the mixed extension of
a game, and proved the existence of mixed equilibria for all games with a finite number
of pure actions (see Definition 12 and Theorem 7).

Almost all others equilibrium concepts used in non-cooperative game theory can be
considered as generalizations or “refinements” of the equilibrium proposed by Nash.
Perhaps, this is the reason why the other equilibrium concepts that have been proposed
do not take their name after one of the researchers who introduced them in the literature.
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The proof of this Theorem 8 follows from preliminary results of
independent interest. The first one states that the graph of the best-reply
correspondence is closed:

Closed-Graph Lemma If A is compact and ui : A → R is
continuous, then the restriction of the best reply correspondence to sub-
domain A−i, ri|A−i : A−i ⇒ Ai, is nonempty valued and its graph

Gr
(
ri|A−i

)
= {(a−i, ai) ∈ A−i ×Ai : ai ∈ ri (a−i)}

is closed.

The closed-graph property is a special case of Lemma 10 in Appendix
4.7, which considers best replies to probabilistic conjectures. Since the
proof of Lemma 10 involves measure-theoretic arguments, it is useful to
provide a separate proof for this simpler case (see also the proof of Lemma
6).

Proof of the Closed-Graph Lemma. Since ui is continuous, for
each a−i ∈ A−i, the section ui (·, a−i) : Ai → R is also continuous,
therefore, it attains a maximum on the compact set Ai. Thus, ri(a−i) 6= ∅
for each a−i ∈ A−i.

To show that Gr
(
ri|A−i

)
is closed, we prove that the limit of every

convergent sequence in Gr
(
ri|A−i

)
also belongs to Gr

(
ri|A−i

)
. Let(

an−i, a
n
i

)∞
n=1

∈ Gr
(
ri|A−i

)N
be such that limn→∞

(
an−i, a

n
i

)
= (ā−i, āi).

By definition of Gr
(
ri|A−i

)
, ani is a best reply to an−i for each n, thus,

∀ai ∈ Ai, ∀n ∈ N, ui
(
ani , a

n
−i
)
≥ ui

(
ai, a

n
−i
)

. (5.1.1)

Since ui is continuous, taking the limit of each side of (5.1.1) as n → ∞
for each ai, we obtain

∀ai ∈ Ai, ui (āi, ā−i) ≥ ui (ai, ā−i) ,

that is, āi ∈ ri (ā−i). Therefore (ā−i, āi) ∈ Gr
(
ri|A−i

)
. �

Next we report without proof an important fixed-point theorem:3

3For a proof, see Ok [52], pp. 331.
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Fixed-Point Theorem of Kakutani Let X be a nonempty, convex,
and compact subset of Rn and let ϕ : X ⇒ X be a correspondence such
that the graph Gr (ϕ) = {(x, y) ∈ X ×X : y ∈ ϕ (x)} is closed and, for
each x ∈ X, ϕ(x) is nonempty and convex; then ϕ has a fixed point, i.e.,
there is some x∗ ∈ X such that x∗ ∈ ϕ(x∗).

Proof of Theorem 8. To ease notation, we use the symbol ri also for
the restriction of the best-reply correspondence to sub-domain A−i. By
the Closed-Graph Lemma, each ri is nonempty valued and has a closed
graph. Fix a−i arbitrarily and let u∗i (a−i) = maxai∈Ai ui(ai, a−i) denote
the maximum payoff of i given a−i. By quasi-concavity of ui, for every
a−i ∈ A−i and every real number y ∈ R, the set {ai ∈ Ai : ui(ai, a−i) ≥ y}
is convex. In particular, the set {ai ∈ Ai : ui(ai, a−i) ≥ u∗i (a−i)} is convex.
Since

ri(a−i) = {ai ∈ Ai : ui(ai, a−i) ≥ u∗i (a−i)}

(where the weak inequality holds as an equality), it follows that ri(a−i)
is convex. Now define the joint best reply correspondence r : A ⇒ A as
follows:

∀a ∈ A, r(a) =×
i∈I

ri (a−i) .

Since ri : A−i ⇒ Ai is nonempty and convex valued with a closed graph
for each i ∈ I, the same holds also for the joint best reply correspondence
r : A ⇒ A. Then, by the Fixed-Point Theorem of Kakutani, there exists
a∗ ∈ A such that a∗ ∈ r(a∗), that is, a∗i ∈ ri(a

∗
−i) for each i ∈ I. Such

fixed point is a Nash equilibrium. �

5.2 Equilibrium in Nice Symmetric Games

As one can see from the proof of Theorem 8, rather advanced mathematical
tools are necessary to prove a relatively general existence result. Here, we
analyze the more specific case in which all players are in a symmetric
position and have unidimensional action sets. This allows us to use more
elementary tools to show that, under convenient simplifying assumptions,
there exists an equilibrium in which all players choose the same action.
The fact that all players choose the same action is not part of the thesis
of Theorem 8, which did not assume symmetry. Therefore the next result
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is not a special case of Theorem 8.4 Before we state the theorem, we
must formally spell out the definition of symmetric game and symmetric
equilibrium.

Definition 19. A static game G = 〈I, (Ai, ui)i∈I〉 is symmetric if the
players have the same set of actions, denoted by Â (hence, for every i ∈ I,
Ai = Â) and

ui (a) = uπ(i)

(
a ◦ π−1

)
for every player i ∈ I, every action profile a : I → Â, and every bijection
(permutation) π : I → I. A Nash equilibrium a∗ of a symmetric game G
is symmetric if a∗ : I → Â is constant, that is, if a∗i = a∗j for all i, j ∈ I.

Note that, if a = (ai)i∈I then a′ = a ◦ π−1 =
(
aπ−1(i)

)
i∈I . In words, if

j = π(i), then the action a′j played by j in the permuted profile a′ is the
action ai = aπ−1(j) played by i in the original profile a. Hence, symmetry
requires

ui

(
(aj)j∈I

)
= uπ(i)

((
aπ−1(j)

)
j∈I

)
so that player π(i) plays the same action in profile a′ = a ◦ π−1 as player
i in profile a.

Example 18. The Cournot oligopoly game of Example 7 is symmetric
if all firms have the same capacity constraint and total cost function: for
some k > 0, and C : [0, k] → R, āi = k and Ci(·) = C(·) for all i ∈ I. To
see this, fix a = (aj)j∈I ∈ [0, k]I = ÂI arbitrarily and let π : I → I be a
bijection, or permutation, then

ui (a) = aiP

∑
j∈I

aj

− Ci(ai)
= aπ−1(π(i))P

∑
j∈I

aπ−1(j)

− Cπ(i)(aπ−1(π(i)))

= uπ(i)

((
aπ−1(j)

)
j∈I

)
= uπ(i)

(
a ◦ π−1

)
,

where the second equality holds because π−1 (π(i)) = i, summations are
commutative, and Ci = C = Cπ(i) by assumption. N

4However, by adding symmetry to the hypotheses of Theorem 8, one can prove the
existence of a symmetric Nash equilibrium.
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Recall that a game is nice if the action set of each player is a compact
interval in the real line, payoff functions are continuous, and each player’s
payoff function is strictly quasi-concave in his own action.

Theorem 9. Every symmetric nice game has a symmetric Nash
equilibrium.

Proof. To ease notation, we assume without loss of generality that the
common action set is the interval Â = [0, 1], which is just a normalization.
Since ui is continuous and strictly quasi-concave in ai, there exists one
and only one best reply to every (deterministic) conjecture a−i. Let
r̂i (x) ∈ [0, 1] denote the unique best reply to the symmetric (deterministic)
conjecture a−i such that aj = x for each j ∈ I\{i}. Since the game is
symmetric, r̂i(x) must be independent of i. Thus, we let r̂ : [0, 1] → [0, 1]
denote the common best reply function for symmetric conjectures.
By Lemma 6, each ri (·) is a continuous function; therefore, r̂(·) must be
continuous.

Now, let us introduce an auxiliary function f : [0, 1] → R as follows:
f(x) = x − r̂(x). Function f is continuous5 with f(0) ≤ 0 and f(1) ≥ 0.
It follows from the Intermediate Value Theorem6 that there exists a point
x∗ ∈ [0, 1] such that f(x∗) = 0, that is, x∗ = r̂(x∗). For each player i ∈ I,
action a∗i = x∗ is a best reply to the symmetric conjecture a∗−i such that
a∗j = x∗ for each j 6= i. This means that the profile (a∗i )i∈I with a∗i = x∗

for each i ∈ I is a symmetric Nash equilibrium. �

The reason why we considered symmetric nice games is that they are
often used in applied theory and we could use elementary results in real
analysis to prove the existence of a symmetric equilibrium. A key step
in the proof is that every continuous function r̂ : [0, 1] → [0, 1] has a
fixed point x∗ = r̂(x∗). This is an elementary special case of the Fixed-
Point Theorem of Kakutani, because r̂ : [0, 1]→ [0, 1] is continuous if and
only if the singleton-valued correspondence x 7→ {r̂(x)} (which is trivially
non-empty and convex-valued) has a closed graph.

5If ϕ,ψ : [0, 1] → R are continuous functions, then, for every k ∈ R, (ϕ + kψ) :
[0, 1]→ R (x 7→ ϕ(x) + kψ(x)) is also continuous.

6See, for example, Binmore [22], p. 88.
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5.3 Rationalizability and Equilibrium in
Supermodular Nice Games

In Section 3.3.3, we have seen that best reply correspondences in
supermodular nice games are weakly increasing functions (Lemma 8). This
has an important consequence: the set of Nash equilibria has a largest and
a smallest element, and they characterize the set of rationalizable actions
profiles. To articulate and prove this result, we first record in the following
lemma a structural property of the set ρ∞(A) of rationalizable action
profiles in a supermodular nice game, namely, ρ∞(A) is an order box in
RI such that the lowest (respectively, largest) rationalizable action of each
player is the best reply to the lowest (respectively, largest) rationalizable
actions of the co-players.

Lemma 16. Let G = 〈I, (Ai, ui)i∈I〉 be a supermodular nice game, and—
for each i ∈ I—let a0

i and ā0
i respectively denote the smallest and largest

action of player i, that is, Ai = [a0
i , ā

0
i ]. Then, for each n ∈ N,

ρn(A) =×
i∈I

[ani , ā
n
i ] =×

i∈I

[
ri
(
an−1
−i
)
, ri
(
ān−1
−i
)]

.

Therefore,

ρ∞ (A) =×
i∈I

[a∗i , ā
∗
i ] =×

i∈I

[
ri
(
a∗−i
)
, ri
(
ā∗−i
)]

,

where, for each i ∈ I, a∗i = limn→∞ a
n
i and ā∗i = limn→∞ ā

n
i .

Proof. Since G is a nice game, Theorem 7 implies that, for each n ∈ N,
ρn (A) is an order box of best replies to deterministic conjectures, that is,

ρn (A) =×
i∈I

[
min ri

(
[an−1
−i , ā

n−1
−i ]

)
,max ri

(
[an−1
−i , ā

n−1
−i ]

)]
,

where, for each i ∈ I, [an−1
−i , ā

n−1
−i ] is the order box in RI\{i} of the (n− 1)-

rationalizable action profiles of the co-players. By Lemma 8, each ri is a
weakly increasing function; therefore

min ri
(
[an−1
−i , ā

n−1
−i ]

)
= ri

(
an−1
−i
)

,

max ri
(
[an−1
−i , ā

n−1
−i ]

)
= ri

(
ān−1
−i
)

.
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Therefore, ρn(A) =×i∈I [a
n
i , ā

n
i ] =×i∈I

[
ri
(
an−1
−i
)
, ri
(
ān−1
−i
)]

.

Since (ρn (A))∞n=1 =
(×i∈I [a

n
i , ā

n
i ]
)∞
n=1

is a weakly decreasing sequence
of Cartesian subsets, for each i ∈ I, (ani )∞n=1 is weakly increasing and
(āni )∞n=1 is weakly decreasing, therefore these sequences have limits a∗i =
limn→∞ a

n
i and ā∗i = limn→∞ ā

n
i . Thus,

ρ∞ (A) =
∞⋂
n=1

ρn (A) =
∞⋂
n=1

×
i∈I

[ani , ā
n
i ] =×

i∈I
[a∗i , ā

∗
i ] .

By Theorem 2 and 7,

ρ∞ (A) = ρ (ρ∞ (A)) = r

(
×
i∈I

[a∗i , ā
∗
i ]

)
=×

i∈I
ri
([
a∗−i, ā

∗
−i
])

=×
i∈I

[a∗i , ā
∗
i ] .

Again, Lemma 8 implies that

min ri
([
a∗−i, ā

∗
−i
])

= ri
(
a∗−i
)

,

max ri
([
a∗−i, ā

∗
−i
])

= ri
(
ā∗−i
)

for each i ∈ I. Therefore, ρ∞ (A) = ×i∈I [a∗i , ā
∗
i ] =

×i∈I
[
ri
(
a∗−i
)
, ri
(
ā∗−i
)]

. �

Lemma 16 implies the main result of this section:

Theorem 10. For every supermodular nice game G the set of
rationalizable action profiles is an order box ρ∞ (A) = [a∗, ā∗] where a∗

is the smallest Nash equilibrium and ā∗ is the largest Nash equilibrium,
that is, a∗ ≤ a∗ ≤ ā∗ for every Nash equilibrium a∗.

Proof. By Lemma 16,

[a∗, ā∗] =×
i∈I

[a∗i , ā
∗
i ] =×

i∈I

[
ri
(
a∗−i
)
, ri
(
ā∗−i
)]

.

Therefore a∗i = ri
(
a∗−i
)

and ā∗i = ri
(
ā∗−i
)

for each i ∈ I, which implies
that a∗ and ā∗ are Nash equilibria. Fix any Nash equilibrium a∗. Since
a∗ is rationalizable (see Remark 20), it follows that a∗ ∈ [a∗, ā∗], that is,
a∗ ≤ a∗ ≤ ā∗. �
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Corollary 3. Let G = 〈I, (Ai, ui)i∈I〉 be a supermodular nice game with
a unique Nash equilibrium. Then there is a unique rationalizable action
profile, the Nash equilibrium.

Proof. By Theorem 10, the set of rationalizable action profiles is an
order box [a∗, ā∗] where a∗ and ā∗ are Nash equilibria. By uniqueness of
the Nash equilibrium, a∗ = ā∗; therefore [a∗, ā∗] is a singleton. �

For instance, suppose that the (increasing) best reply functions of a
two-player supermodular nice game are represented in Figure 5.1. Then,
there are three Nash equilibria x, y, and z. It follows from Theorem 10
that the set of rationalizable action profiles is the order box [x, z], which
is represented by the thick dashed line.

r1

r2

A1

A2

1 2

1

2

•
x

•
y

• z

Figure 5.1: A supermodular nice game with A1 = A2 = [0, 2].

Finally, we report an additional result which follows from Theorem 10.

Theorem 11. In every symmetric supermodular nice game the set of
rationalizable action profiles has a smallest element a∗ and a largest
element ā∗ and they are symmetric Nash equilibria.
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Part of the proof of Theorem 11 relies on the following lemma, which
shows the symmetry of the equilibrium set in symmetric games.7

Lemma 17. The set of Nash equilibria of a symmetric game is symmetric.

Proof. If the set of Nash equilibria is empty, then the statement
vacuously holds. So, in what follows, we assume that this set is non-
empty. Let a∗ be a Nash equilibrium of a symmetric game. We must show
that, for any permutation π : I → I, a∗ ◦π is also a Nash equilibrium. Let
Â denote the common action set. Since a∗ is an equilibrium

∀i ∈ I, ∀b ∈ Â, ui (a∗) ≥ ui
(
b, a∗−i

)
.

By symmetry

∀i ∈ I, ∀b ∈ Â, ui (a∗ ◦ π) = uπ(i)

(
(a∗ ◦ π) ◦ π−1

)
= uπ(i) (a∗)

≥ uπ(i)

(
b, a∗−π(i)

)
= ui

(
b, (a∗ ◦ π)−i

)
.

Therefore a∗ ◦ π is an equilibrium. �

Proof of Theorem 11. By Theorem 10, ρ∞ (A) = [a∗, ā∗], where a∗

and ā∗ are, respectively, the smallest and largest Nash equilibrium. Lemma
17 shows that the set of Nash equilibria of a symmetric game is symmetric,
that is, for every Nash equilibrium a∗ ∈ ÂI—where Â is the common action
set of each player—and every permutation (bijection) π : I → I, a∗ ◦ π is
also a Nash equilibrium. Now, let Â ⊆ R (as is the case in a symmetric
nice game), fix a = (ai)i∈I ∈ ÂI arbitrarily, and note that a ◦ π ≤ a for
every permutation only if a is symmetric, that is, ai = aj for all i, j ∈ I.
To see this, pick any two players i and j so that ai ≤ aj and let π be any
permutation such that j = π (i); since a ◦ π ≤ a, then aj = aπ(i) ≤ ai.
Since ai ≤ aj and aj ≤ ai, then ai = aj . By a similar argument, if a ≤ a◦π
for every permutation π, then a is symmetric. In particular, by symmetry
of the set of Nash equilibria, a∗ ◦ π is a Nash equilibrium and a∗ ≤ a∗ ◦ π,
ā∗◦π is a Nash equilibrium and ā∗◦π ≤ ā∗; thus, a∗ and ā∗ are symmetric.
�

7Note that also the set of rationalizable profiles of a symmetric game is symmetric.
Since it is a Cartesian product, it must have the form ĈI for some subset Ĉ of the
common action set Â. We could use the symmetry of the rationalizable set, rather than
the symmetry of the equilibrium set, to prove Theorem 11.
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5.4 Interpretations of the Nash Equilibrium
Concept

Nash equilibrium is the most well known and applied equilibrium concept
in economic theory, besides the competitive equilibrium. Indeed, we have
argued in the Introduction that, in principle, any economic situation
(and more generally any social interaction) can be represented as a non-
cooperative game. The property according to which every action is a best
reply to the other players’ actions seems to be essential in order to have
an equilibrium in a non-cooperative game.

Nonetheless, we should refrain from accepting this conclusion without
further reflection. Why does the Nash equilibrium represent an
interesting theoretical concept? When should we expect that the actions
simultaneously chosen by the players form an equilibrium? Why should
players hold correct conjectures regarding each other’s behavior?

We propose a few different interpretations of the Nash equilibrium
concept, each addressing the questions above. Such interpretations can
be classified in two subgroups: (1) a Nash equilibrium represents “an
obvious way to play,” (2) a Nash equilibrium represents a stationary
(stable) state of an adaptive process. In some cases, we will also
introduce a corresponding generalization of the equilibrium concept which
is appropriate under the given interpretation and will be analyzed in
Chapter 6.

(1) Equilibrium as an “obvious way to play”: Assume complete
information, i.e., common knowledge of the interactive situation
represented by G (recall from Chapter 1, G is a mathematical structure
reperesenting the interactive situation; yet, to ease language, in this
discussion we also let symbol G denote the situation itself).8 It could
be the case that from such common knowledge and shared assumptions
about behavior and beliefs, or from some prior events that occurred before
the game, the players could positively conclude that a specific action profile
a∗ represents an “obvious way to play” G. If a∗ represents an obvious way
to play, every player i expects that everybody else chooses his action in
a∗−i. Moreover, if a∗ is to be played by rational players, it must be the
case that no player i has incentives to choose an action different from a∗i :

8Complete information is sufficient to justify the considerations that follow, but it is
not strictly necessary.
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if i had an incentive to choose ai 6= a∗i , not only a∗i would not be chosen,
but also the other players would have no reason to believe that a∗ is the
obvious way to play. Hence, a∗ must be a Nash equilibrium. Indeed, in
his PhD thesis, John Nash motivates his solution concept as follows (Nash
[50], p. 23):

“We proceed by investigating the question: what would be
a ‘rational’ prediction of the behavior to be expected of rational
playing the game in question? By using the principles that a
rational prediction should be unique, that the players should be
able to deduce and make use of it, and that such knowledge on
the part of each player of what to expect the others to do should
not lead him to act out of conformity with the prediction, one
is led to the concept of a solution defined before.”

What can make a∗ an obvious way to play?
(1.a) Deductive interpretation: The players analyze G as an interactive

decision problem and look for a rational solution. If such solution exists
and is unique, then it corresponds to an obvious way to play. As an example
of solution of a game, consider the case where G has a unique rationalizable
profile a∗ (this is the case for several models in economic theory, such as
Example 17 in Section 4.6). Then, if all players are rational and their
conjectures are derived from the assumption that there is common belief
in rationality, they will choose exactly the actions in a∗. Moreover, a∗ is
necessarily the unique Nash equilibrium of the game (Remark 20).

Rationalizability captures deductive strategic thinking in a compelling
way, and it justifies Nash equilibrium as an obvious way to play when
there is a unique rationalizable outcome. But what about games where
Nash equilibrium action profiles are a strict subset of rationalizable action
profiles? If we insist in the deductive interpretation, perhaps we should
just stick to rationalizability.

(1.b) Non-binding agreement: Suppose that the players are able to
communicate before playing the game and that they reach an agreement to
choose the actions specified in the action profile a∗. Suppose also that such
agreement is not legally binding for the parties, it is simply a “gentlemen
agreement” based on players honoring their words. Further, players attach
little value to honoring their words: if i believes that a different action
yields him a higher utility, he will not choose a∗i . All players are perfectly
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aware of this. Therefore, the agreement is credible, or “self-enforcing” only
if no player has an incentive to deviate from the agreement, i.e., only if a∗

is a Nash equilibrium.
Is it really necessary that players agree on a specific action profile?

Perhaps they could agree on making the action profile actually played (for
instance, the way they coordinate in a “Battle of the Sexes” game) depend
on some exogenous random variable, such as the weather. In some cases,
this would allow to reach, in expectation, fairer outcomes. We will go back
to this point in the next chapter.

(2) Equilibrium as a stationary state of an adaptive process.9 When
introductory economic textbooks explain why in a competitive market the
price should reach the equilibrium level that equates demand and supply,
they almost inevitably rely on informal dynamic justifications. They argue,
for instance, that if there is an excess demand the sellers will realize
that they are able to sell their goods for a higher price; conversely, if
there is an excess supply the sellers will lower their prices to be able to
sell the residual unsold goods. Essentially, such arguments rely more or
less explicitly on the existence of a feedback effect that pushes the prices
towards the equilibrium level. These arguments cannot be formalized in
the standard competitive equilibrium model, where market prices are taken
as parametrically given by the economic agents and then determined by the
demand=supply conditions. They nonetheless provide an intuitive support
to the theory.

Similar arguments can be used to explain why the actions played in
a game should eventually reach the equilibrium position. In some sense,
the conceptual framework provided by game theory is better suited to
formalize this kind of arguments. As explained in the Introduction, in
a game model every variable that the analyst tries to explain, i.e., any
“endogenous” variable, is directly or indirectly determined by the players’
actions, according to precise rules that are part of the game (unlike prices
in a competitive market model, where the price-formation mechanism is
not specified). Assuming that the given game represents an interactive
situation that players face recurrently, one can formulate assumptions
regarding how players modify their actions taking into account the

9To go deeper on this topic the reader can start with the survey by Battigalli et al.
[15]. In the already mentioned paper by Milgrom and Roberts [46], the connections
between the concept of rationalizability and adaptive processes are explored.
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outcomes of previous interactions, thus representing formally the feedback
process.

One can distinguish two different types of adaptive dynamics: learning
and evolutionary dynamics. Here, we will present only a general and brief
description.10

(2.a) Learning dynamics. Assume that a given game G is played
recurrently and that players are interested in maximizing their current
expected payoff (a reason for this may be that they do not value the future
or that they believe that their current actions do not affect in any way
future payoffs). Players have access to information on previous outcomes.
Based on such information, they modify their conjectures about their
opponents’ behavior in the current period. Let a∗ be a Nash equilibrium.
If in period t every player i expects his opponents to choose a∗−i, then a∗i
is one of his best replies. It is therefore possible that i chooses a∗i . If this
happens, what players observe at the end of period t will confirm their
conjectures, which then will remain unchanged for the following period.
So even a small inertia (that is a preference, coeteris paribus, to repeat the
previous action) will induce players to repeat in period t+ 1 the previous
actions a∗. Analogously, a∗ will be played also in period t + 2 and so on.
Hence, the equilibrium a∗ is a stationary state of the process.

We just argued that every Nash equilibrium is a stationary state of
plausible learning processes (we presented the argument in an informal way,
but a formalization is possible). (i) Do such processes always converge to
a steady state? (ii) Is it true that, for any plausible learning process, every
stationary state is a Nash equilibrium? It is not possible, in general, to give
affirmative answers. First, one has to be more specific about the dynamics
of the recurrent interaction. For instance, one has to specify exactly what
players are able to observe about the outcomes of previous interactions: is
it the action profile of the other players? Is it some variables that depend
on such actions? Is it only their own payoffs? Another relevant issue is
whether game G is played always by the same agents, or in every period
agents are randomly matched with “strangers.” An exact specification of
these assumptions shows that the process does not always converge to a
stationary state. Moreover, as we will see in the next section, there may
be stationary states that do not satisfy the Nash equilibrium condition

10In Chapter 7, we present an elementary analysis of learning dynamics relating their
long-run behavior to equilibrium concepts and rationalizability.
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of Definition 18. There are two reasons for this: (a) Players’ conjectures
can be confirmed by observed outcomes even if they are not correct. (b) If
players are randomly drawn from large populations, then the state variable
of the dynamic process is given by the fractions of agents in the population
that choose each action. But then it is possible that in a stationary state
two different agents, playing in the same role, choose different actions.
Even though no agent actually randomizes, such situations look like “mixed
equilibria,” in which players choose randomly among some of the best
replies to their probabilistic conjectures, and such conjectures happen to
be correct. We analyze notions of equilibrium corresponding to situations
(a) and (b) in the next chapter.

(2.b) Evolutionary dynamics. In the analysis of adaptive processes in
games, the analogy with evolutionary biology has often been exploited.
Consider, for instance, a symmetric two-person game. In every period two
agents are drawn from a large population. Then they meet, they interact,
they obtain some payoff and finally they split. Individuals are compared
to animals, or plants, whose behavior is determined by a genetic code
transmitted to their offsprings. If action a is more successful than b, then
the agents programmed to play a reproduce themselves faster than those
programmed to play b, and therefore the ratio between the fraction of
agents playing a and the fraction of agents playing b increases.

In evolutionary biology this theoretical approach based on game theory
has been highly successful and has allowed to explain phenomena that
appeared as paradoxical within a more naive evolutionary framework.11

In the social sciences, evolutionary dynamics are used as a metaphor to
represent, at an aggregate level, learning phenomena such as imitation, in
which agents modify the way they play not on the basis of their direct
personal experiences alone, but also observing the behavior of others in
the same circumstances. Behaviors that turn out to be more successful are
imitated and spread more rapidly.

As for learning dynamics, although Nash equilibria represent stationary
states of evolutionary dynamics, the process need not always converge to
a stationary state. Furthermore, there may be stationary states that do
not satisfy the best reply property of Definition 18. Indeed, in this context
a state is represented by the fractions in the population that use different
actions. It may be the case that in a stationary state distinct agents of the

11See the monograph by Maynard Smith [45].
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same population do different things.12

These considerations motivate the definition of more general
equilibrium concepts whereby players may hold probabilistic, rather than
deterministic conjectures about the opponents’ behavior. For this reason
we refer to these more general concepts—analyzed in Chapter 6—as
“probabilistic equilibria.”

12See the monographs by Weibull [71] and Sandholm [60].
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Probabilistic Equilibria

Up to now we considered mixed actions only with reference to dominance
relations: if a (pure) action is dominated by a mixed action, then a rational
player should not choose it. We already noticed (Lemma 1), though, that
an expected utility maximizer has no strict incentive to choose a mixed
action. If there were a small cost for tossing a coin or spinning a roulette
wheel, then no expected utility maximizer would choose a mixed action.

We adopt the point of view that (rational) players do not actually
choose mixed actions. Nevertheless, it is possible to reconcile this
point of view with an interpretation of mixed actions that makes them
relevant independently of the equivalence results stated in Lemma 2 and
Theorem 5. Specifically, in Section 6.1 we adopt the so-called “mass-
action interpretation” of mixed actions put forward by John Nash in his
thesis (Nash 1950): the individuals playing a given game G are drawn at
random from large populations of agents and matched to play G; mixed
actions represent statistical distributions of actions in populations; random
matching implies that the share of population i playing a particular action
aj determines the probability that aj is played in G; in a “mixed (Nash)
equilibrium,” any other player i correctly estimates this probability. In
Section 6.2, we go back to the interpretation of an equilibrium as a non-
binding self-enforcing agreement and notice that players may want to agree
on probabilistic decision rules that link their behavior to the realization
of extraneous random variables; such probabilistic agreements typically
induce a spurious correlation between the actions of different players and
are thus called “correlated equilibria.” Finally, in Section 6.3 we interpret

123
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equilibria as the steady states of adaptive process whereby the game
is played recurrently and players learn from their personal experience;
this requires a specification of players’ information feedback; in a steady
state, called “self-confirming equilibrium,” each agent holds a probabilistic
conjecture confirmed by (i.e., consistent with) the feedback he receives and
chooses a best reply; whether a steady state is a (mixed) Nash equilibrium
depends on the properties of feedback.

6.1 Mixed Equilibrium

Consider the following game between home owners and thieves. Each
owner has an apartment where he stores goods worth a total value of V .
Owners have the option to keep an alarm system, which costs c < V .1 The
alarm system is not detectable by thieves. Each thief can decide whether to
attempt a theft (burglary) or not. If there is no alarm system, the thieves
successfully seize the goods and resell them to some dealer, making a profit
of V/2. If there is an alarm system, the attempted burglary is detected
and the police is automatically alerted. The thieves in such event need to
leave all goods in place and try to escape. The probability they get caught
is 1

2 and in this case they are sanctioned with a monetary fine P and then
released.2

If the situation just described were a simple game between one owner
and one thief, it could be represented using the matrix below:

O\T Burglary No

Alarm V − c,−P
2 V − c, 0

No 0, V2 V, 0

Figure 6.1: Matrix 2

It is easy to check that Matrix 2 has no equilibria according to
Definition 18.

1We assume for simplicity that c represents the cost of installing an alarm system as
well as the cost of keeping it active. Furthermore, we neglect the possibility to insure
against theft.

2Prisons do not exist. If thieves cannot pay the amount P , they are inflicted an
equivalent punishment.
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However, the game between owners and thieves is more complex. There
are two large populations, and we assume for simplicity that they have the
same size: the population of owners (each one with an apartment) and
the population of thieves. Thieves randomly distribute themselves across
apartments. For any given owner, the probability of an attempted burglary
is equal to the fraction of thieves that decide to attempt a burglary. From
the thieves’ perspective, the probability that an apartment has an alarm
system is given by the overall fraction of owners keeping an alarm system.

Assume that the game is played recurrently. The fractions of agents
that choose the different actions evolve according to some adaptive process
with the following features. At the end of each period it is possible to
access (reading them on the newspapers) the statistics of the numbers
of successful and unsuccessful burglaries. Players are fairly inert in that
they tend to replicate the actions chosen in the previous period. However,
they occasionally decide to revise their choices on the basis of the previous
period statistics. Since in each period only a few agents revise their choices,
such statistics change slowly.

An owner not equipped with an alarm system decides to install it if and
only if the expected benefit is larger than the cost, i.e., if the proportion of
attempted burglaries is larger than c/V . Conversely, an owner equipped
with an alarm system will decide to get rid of it if and only if the proportion
of attempted burglaries is lower than c/V . The proportion of attempted
burglaries changes only slowly and the owners equate the probability of
being robbed today with the one of the previous period. The probability
that makes an owner indifferent between his two actions is c/V . When
indifferent, an owner sticks to the previous period action.

Analogously, a thief that was active in the previous period decides not
to attempt a burglary in the current period if and only if the fraction of
apartments equipped with an alarm system (which is also the fraction of
unsuccessful burglaries) is larger than V/(V + P ). A thief that was not
active in the previous period attempts a burglary in the current one if and
only if the fraction is lower than V/(V + P ).

The state variables of this process are the fraction α of installed alarm
systems and the fraction β of attempted burglaries. It is not hard to see
that α grows (resp., decreases) if and only if β > c

V (resp. β < c/V ).
Similarly, β grows (resp., decreases) if and only if α < V/(V + P ) (resp.,
α > V/(V + P )). If α = V/(V + P ) and β = c/V, then the state of the
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system does not change, i.e., (α, β) = (V/(V + P ), c/V ) is a stationary
state, or rest point, of the dynamic process. Whether this rest point is
stable depends on details that we have not specified. The mixed action
pair (α1, α2) = (V/(V +P ), c/V ) is said to be a mixed (Nash) equilibrium
of the matrix game above.

In this example, we have interpreted the mixed action of j, say αj , both
as a statistical distribution of actions in population j and as a conjecture
of the agents of population i about the action of the opponent. In a
stable environment every conjecture about j, αj , is correct in the sense
that it corresponds to the statistical distribution of actions in population
j. Furthermore, αj is such that every agent in population i is indifferent
among the actions that are chosen by a positive fraction of agents.

Next, we present a general definition of mixed equilibrium and then
show that it is characterized by the aforementioned properties. To simplify
the analysis, we restrict our attention to finite games, but the following
concepts and results can be extended to compact-continuous games.

Definition 20. The mixed extension of a finite game G =
〈I, (Ai, ui)i∈I〉 is a game G = 〈I, (∆(Ai), ui)i∈I〉 where

ui(α) =
∑

a=(aj)j∈I∈A

ui(a)
∏
j∈I

αj(aj),

for all i and α = (αi)i∈I ∈×i∈I ∆(Ai).

Note, the payoff functions of the mixed extension are obtained
calculating the expected payoff corresponding to a vector of mixed actions
under the assumption that the actions of different players are statistically
independent.

Definition 21. (Nash [49]) Fix a finite game G. A mixed action profile
α is a mixed equilibrium of game G if α is a Nash equilibrium of the
mixed extension of G.

Note that every (pure) Nash equilibrium (a∗i )i∈I corresponds to a mixed
equilibrium (α∗i )i∈I such that each α∗i assigns probability one to a∗i : mixed
equilibrium is a generalization of (pure) Nash equilibrium.

Theorem 12. Every finite game G has at least one mixed equilibrium.3

3The same holds for any compact-continuous game.
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Proof. It is easy to verify that the mixed extension G of a finite
game G satisfies all the assumptions of Theorem 8: for each i, ∆(Ai) is a
nonempty, convex and compact subset of RAi , ui is a multi-linear function
and therefore it is both continuous in α and weakly concave, indeed linear,4

in αi. �

When we introduced mixed actions in Chapter 3, we said that, even
if we do not assume that players randomize, mixed actions still play
an important technical role. The space of mixed actions is convex and
expected payoff is multi-linear in the mixed actions of different players. In
Chapter 3, such convexity-linearity structure was exploited to characterize
the set of justifiable (pure) actions (Lemma 2). In Theorem 12, the
convexification-linearization allowed by the mixed extension of a game
yields existence of an equilibrium.

The following result introduces an alternative characterization of mixed
equilibria, which is not based on the mixed extension of the game. With a
small abuse of notation, we let ri(α−i) denote the set of best replies to the
conjecture µα−i ∈ ∆(A−i) obtained as a product of the marginal measures
αj (j 6= i), that is, ri(α−i) = ri(µ

α−i) where

∀α−i ∈×
j 6=i

∆(Aj),∀a−i ∈ A−i, µα−i(a−i) =
∏
j 6=i

αj(aj).

Theorem 13. A mixed action profile (αi)i∈I is a mixed equilibrium if and
only if, for every i ∈ I, suppαi ⊆ ri(α−i) (in the finite case, every action
played with positive probability is a best reply to the mixed action profile
played by the opponents).

Proof. The statement follows directly from the definition of mixed
equilibrium and from Lemma 1. �

Corollary 4. All actions played with positive probability in a mixed
equilibrium are rationalizable.

4More precisely, for each α−i, the section of ūi at α−i, ūi,α−i : ∆(Ai)→ R, is affine:
for all αi, βi ∈ ∆(Ai) and λ ∈ [0, 1],

ūi,α−i(λαi + (1− λ)βi) = λūi,α−i(αi) + (1− λ)ūi,α−i(βi).
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Proof. By Theorem 13, the set C =×i∈Isuppαi has the best reply
property. Hence, Theorem 3 implies that every action played with positive
probability is rationalizable. �

The reader should verify by example that the converse of Corollary 4
does not hold: there are (finite) games with rationalizable actions that are
not played with positive probability in any mixed equilibrium.

Theorem 12 and Corollary 4 provide a linear programming algorithm
to compute all mixed equilibria of finite two-person games. In such games
the payoff function of player i can be represented by a matrix with generic
entry uk`i . Player 1 chooses the rows (indexed by k) and player 2 the
columns (indexed by `).

Step 1: Eliminate all iteratively dominated actions (by Theorem 5 and
Corollary 4 such actions are played with zero probability in equilibrium).
The order of elimination is irrelevant (Theorem 6).

Step 2: For any pair of nonempty subsets A∗1 ⊆ A1 and A∗2 ⊆ A2,
compute the set of mixed equilibria, (α1, α2), such that suppα1 = A∗1 and
suppα2 = A∗2. This set, which could be empty, is computed as follows
(we consider the non trivial case in which each set contains at least two
actions). To simplify the notation, assume that A∗1 = {1, ...,K} and
A∗2 = {1, ..., L} and denote by αk1 (respectively, α`2) the probability of
action k (resp. `) of player 1 (resp. 2). Solve the following systems of
linear equations and inequalities with unknown α1 = (α1

1, ..., α
K
1 ) ∈ ∆(A∗1)

and α2 = (α2, ..., α
L
2 ) ∈ ∆(A∗2):

K∑
k=1

uk`2 α
k
1 =

K∑
k=1

uk1
2 α

k
1 , ` = 2, ..., L, (6.1.1)

K∑
k=1

uk`2 α
k
1 ≤

K∑
k=1

uk1
2 α

k
1 , ` = L+ 1, ..., |A2|;

L∑
`=1

uk`1 α
`
2 =

L∑
`=1

u1`
1 α

`
2, k = 2, ...,K, (6.1.2)

L∑
`=1

uk`1 α
`
2 ≤

L∑
`=1

u1`
1 α

`
2, k = K + 1, ..., |A1|.
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The equations in (6.1.1) determines the set of mixed actions of player
1 that make player 2 indifferent between the actions in subset A∗2. The
inequalities determines the set of mixed actions of player 1 that make
a2 = 1 (and so all the actions in A∗2) weakly preferred to the actions that
do not belong to A∗2. For any α1 that satisfies (6.1.1), player 2 has no
incentive to “deviate” from any mixed action with support A∗2. Similar
considerations hold for system (6.1.2). Such system determines the set
of mixed actions of player 2 that make player 1 indifferent among all the
actions in A∗1 and at the same time make such actions weakly preferred to
all the others. Therefore, the indifference conditions for player 1 determine
the equilibrium randomization(s) of player 2, the indifference conditions for
player 2 determine the equilibrium randomization(s) of player 1.

In the previous example (Owners and Thieves) the equilibrium is
determined as follows: First, note that the best reply to a deterministic
conjecture is unique. However, no pair of pure actions is an equilibrium.
Hence, the equilibrium is necessarily mixed (existence follows from
Theorem 12). An equilibrium with support A∗1 = {Alarm,No}, A∗2 =
{Burglary,No} is given by the following (we are writing α = α1(A) and
β = α2(B)):

Indifference condition for i = 1 (Owner):

V − c = V (1− β).

Indifference condition for i = 2 (Thief):

V

2
(1− α)− P

2
α = 0.

Solving the system, α = V
V+P , β = c

V , which is the stationary state
identified by the (informal) analysis of a plausible dynamic process.

6.2 Correlated Equilibrium

Mixed equilibria can be interpreted as statistical distributions over action
profiles that are in some sense stationary. Such distributions are obtained
as a product of the marginal distributions corresponding to the equilibrium
mixed actions: if (α∗i )i∈I is a mixed equilibrium, then the probability of
any profile (ai)i∈I is

∏
i∈I α

∗
i (ai); this means that actions are statistically
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independent across players. Statistical independence is justified by the
interpretation of mixed equilibrium as a stationary vector of statistical
distributions of actions in |I| populations whose agents are randomly
matched with the agents of the other populations to play the game G.

Now we present a different concept of probabilistic equilibrium
that, formally, generalizes the concept of mixed equilibrium by allowing
correlated distributions over players’ action profiles. The interpretation
of this equilibrium concept given here is rather different from the one
proposed for the mixed equilibrium.5

Let us consider once again the case in which players are able to
communicate and sign a non-binding agreement before the game is played.
If this agreement simply prescribes to play a certain profile a∗, then—
as noted earlier—a∗ must be a Nash equilibrium, otherwise it would
not be self-enforcing. However, players could reach more sophisticated
self-enforcing agreements, in which the chosen actions depend on the
realizations of extraneous random variables that do not directly affect the
payoffs. We first illustrate this idea with a simple example.

B S

B 3, 1 0, 0

S 0, 0 1, 3

Figure 6.2: Matrix 3.

Matrix 3 represents the classic Battle of the Sexes (BoS): Rowena (row
player) and Colin (column player) would like to coordinate and go to the
same concert, either Bach or S travinsky, but Rowena prefers Bach and
Colin prefers Stravinsky. Suppose that Rowena and Colin have to agree on
how to play the BoS the next day, when no further communication between
them will be possible. There exists two simple self-enforcing agreements,
(B,B) and (S, S). However, the first favors Rowena, the second favors
Colin, and neither player wants to give up. How to sort this out? Colin
can make the following proposal that would ensure in expected values a
fair distributions of the gains from coordination: “If tomorrow’s weather is
bad then both of us choose Bach, if instead it is sunny then we both choose
S travinsky.” Notice that the weather forecasts are uncertain: there is a

5Proposition 19 of Chapter 7 offers an adaptive interpretation.
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50% probability of bad weather and 50% of sunny weather. The agreement
generates an expected payoff of 2 for both players. Rowena understands
that the idea is smart. Indeed, the agreement is self-enforcing as both
players have an incentive to respect it if they expect the other to do the
same. For instance, if Rowena expects that Colin sticks to the agreement
and waking up she observes that the weather is bad, then she expects that
Colin will go to the Bach concert and she wants to play B. Similarly, if
she observes that the weather is sunny, she expects that Colin will go to
the S travinsky concert and she wants to play S.

In other words, a sophisticated agreement can use exogenous and
not directly relevant random variables to coordinate players beliefs and
behavior. In such an agreement the conjecture of a player about the
behavior of others (and so their best replies) depends on the observed
realization of such random variables and the actions of different players
are correlated, albeit spuriously.

Clearly, it is not always possible to condition the choice on some
commonly observable random variable. Furthermore, even if this were
possible, players could still find it more convenient to base their respective
choices on random variables that are only partially correlated. Consider,
for example, the following bi-matrix game:

a b

a 6, 6 2, 7

b 7, 2 0, 0

Figure 6.3: Matrix 4.

If Rowena and Colin rely on a commonly observed random variable
to design a self-enforcing agreement, they can only achieve a probability
distribution over pure Nash equilibria. Actually this is true in every
game: suppose that the agreement says “if x is (commonly) observed,
each j ∈ I must take action σj(x),” then when i observes x he infers
that each co-player j will take action σj(x), and—in order to make the
agreement self-enforcing—σi(x) must be a best reply to σ−i(x), thus
(σi(x))i∈I must be a Nash equilibrium.6 The two pure equilibria of the

6One can generalize and obtain distributions over mixed equilibria if players choose
mixed actions according to the observed realization x.
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game in Matrix 4 yield the payoff pairs (7, 2) and (2, 7). So, the sum of the
expected payoffs attainable with self-enforcing agreements that rely on a
commonly observed random variable is µ× (2 + 7) + (1−µ)× (7 + 2) = 9,
where µ is the probability of observing a realization x that yields (a, b)
(µ = P ({x : σ1(x) = a, σ2(x) = b})).

If instead Rowena and Colin rely on different (but correlated) random
variables, they can do better. For example, suppose that Rowena observes
whether X = a or X = b, and Colin observes whether Y = a or
Y = b, where (X,Y ) is a pair of random variables with the following
joint distribution:

X\Y a b

a 1/3 1/3

b 1/3 0

They agree that each one should play a when she or he observes a,
and b when she or he observes b. It can be checked that this agreement
is self-enforcing. Suppose that Rowena observes X = a, then she assigns

the same (conditional) probability, 1
2 =

1
3

1
3

+ 1
3

, to actions a and b by Colin;

thus, the expected payoff of choosing a is 4, while the expected payoff of
choosing b is only 3.5. If she observes X = b, then she is sure that Colin
observes Y = a and plays a; so she best responds with b. A symmetric
argument applies to Colin. Therefore no player wants to deviate, whatever
she or he observes. The sum of the expected payoffs in this agreement is
1
3(6 + 6) + 1

3(2 + 7) + 1
3(7 + 2) = 10.

This rather informal discussion motivates the following definitions and
results. As we did for mixed equilibria, for the sake of simplicity we restrict
the analysis to finite games.

Definition 22. (see Aumann [5] and [6]) A probabilistic self-enforcing
agreement, or correlated equilibrium, is a structure 〈Ω, p, (Ti, τi, σi)i∈I〉,
where (Ω, p) is a finite probability space (p ∈ ∆(Ω)), the sets Ti are finite7

7Finiteness is just a simplification without substantial loss of generality when A is
finite. If Ω and Ti are infinite, they must be endowed with sigma-algebras of events,
probability measure p is defined on the sigma-algebra of Ω, and all the functions τi and
σi must be measurable.
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and the functions τi : Ω→ Ti and σi : Ti → Ai are such that,

∀i ∈ I, ∀ti ∈ Ti,∀ai ∈ Ai, if p
({
ω′ : τi(ω

′) = ti
})

> 0 then∑
ω

p(ω|ti)ui (σi(ti), σ−i(τ−i(ω))) ≥
∑
ω

p(ω|ti)ui (ai, σ−i(τ−i(ω))) .

In the above definition τi represents the random variable, also called
signal, observed by player i, whereas σi represents the strategy, or
decision function, imposed by the agreement on player i;

p(ω|ti) =

{
p(ω)/p ({ω′ : τi(ω′) = ti}) , if τi(ω) = ti,
0, if τi(ω) 6= ti,

is the probability of state ω conditional on observing ti (which is well
defined if the probability of ti is positive)8 and

σ−i(τ−i(ω)) = (σj(τj(ω)))j 6=i

is the action profile chosen by the other players (according to the
agreement) if state ω occurs.

The definition requires that players have no incentive to deviate from
the behavior prescribed by the agreement, whatever the realization of
their signals. Thus, conditional on every possible observation, the expected
payoff of a deviation cannot be higher than the expected payoff obtained by
sticking to the agreement. The inequalities expressing these conditions are
sometimes called incentive compatibility constraints.

Clearly, a correlated equilibrium induces a probability measure over
players’ action profiles, µ ∈ ∆(A), where

∀a ∈ A, µ(a) = p ({ω : ∀i ∈ I, σi(τi(ω)) = ai}) . (6.2.1)

Formally, measure µ ∈ ∆(A) is the image of measure p ∈ ∆(Ω) through
the pushforward given by the composite function σ ◦ τ : Ω → A, that is,

8This is the special case of the standard definition of conditional probability:

p(F ) > 0⇒ p(E|F ) =
p(E ∩ F )

p(F )
.

If E = {ω} (a singleton) and F = {ω′ : τi(ω
′) = ti}, then the formula in the main text

obtains.
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µ = p ◦ (σ ◦ τ)−1, where τ = (τi)i∈I : Ω → T and σ = (σi)i∈I : T → A;
more explicitly,

µ(E) = p((σ ◦ τ)−1 (E)) =
∑

ω:σ(τ(ω))∈E

p(ω)

for each subset of action profiles E ⊆ A. To analyze the properties of
such induced probability measures we introduce the notion of “canonical”
correlated equilibrium:

Definition 23. A self-enforcing probabilistic agreement 〈Ω′, p′, (τ ′i , σ′i)i∈I〉
where
(1) Ω′ = A,
(2) p′ ∈ ∆(A),
(3) ∀i ∈ I, ∀a = (ai)i∈I ∈ A, τ ′i(a) = ai (τ ′i = projAi is the projection
function from A onto Ai),
(4) ∀i ∈ I, ∀ai ∈ Ai, σ′i(ai) = ai (σ′i = IdAi is the identity function on Ai),
is called canonical correlated equilibrium.

Although, formally, it is the whole structure 〈Ω′, p′, (τ ′i , σ′i)i∈I〉 that
forms a canonical correlated equilibrium, it is standard to call “canonical
correlated equilibrium” just the distribution p′ ∈ ∆(A), as all the other
elements of the structure are trivially determined by the given game G.

Theorem 14. If 〈Ω, p, (Ti, τi, σi)i∈I〉 is a correlated equilibrium, then
p′ = µ, where µ satisfies (6.2.1), is a canonical correlated equilibrium
distribution.

A canonical correlated equilibrium with distribution µ can be
interpreted as the following mechanism. An action profile is chosen at
random according to the “agreed upon” probability measure µ ∈ ∆(A).
Then a “mediator” observes the realized profile a = (ai)i∈I and privately
suggests to each player i to play action ai. Then player i chooses freely
any action a′i ∈ Ai, but he has no incentive to deviate from the suggested
action ai.

Proof of Theorem 14. Let 〈Ω, p, (Ti, τi, σi)i∈I〉 be a correlated
equilibrium; fix arbitrarily a player i and an action ai with strictly positive
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marginal probability:

µ(ai) := (margAiµ)(ai) =
∑

a−i∈A−i

µ(ai, a−i) = p ({ω : σi(τi(ω)) = ai}) > 0,

where the second equality follows from the definition of marginal
probability, and the third one from eq. (6.2.1). We must show that i
has no incentive to deviate from the “mediator’s suggestion” ai, that is

∀a′i,
∑

a−i∈A−i

µ(a−i|ai)
[
ui(ai, a−i)− ui(a′i, a−i)

]
≥ 0,

where

µ(a−i|ai) := (margA−iµ(·|ai))(a−i) =
p ({ω : σ(τ(ω)) = (ai, a−i)})
p ({ω : σi(τi(ω)) = ai})

.

Since µ(ai) > 0, the previous system of inequalities is equivalent to

∀a′i, µ(ai)
∑

a−i∈A−i

µ(a−i|ai)
[
ui(ai, a−i)− ui(a′i, a−i)

]
≥ 0.

Since µ(ai, a−i) = µ(a−i|ai)µ(ai), the incentive compatibility constraints
for µ can be expressed as

∀a′i,
∑

a−i∈A−i

µ(ai, a−i)
[
ui(ai, a−i)− ui(a′i, a−i)

]
≥ 0. (6.2.2)

Hence it is sufficient to show that (6.2.2) holds. This system of
inequalities will be derived from the incentive compatibility constraints of
the correlated equilibrium 〈Ω, p, (Ti, τi, σi)i∈I〉 that induces µ, thus proving
the result.

For all ti ∈ σ−1
i (ai) such that p ({ω : τi(ω) = ti}) > 0 (there must be

at least one ti like this), the incentive compatibility constraints yield

∀a′i,
∑

ω:τi(ω)=ti

p(ω|ti)[ui (ai, σ−i(τ−i(ω)))− ui
(
a′i, σ−i(τ−i(ω))

)
] ≥ 0.

Multiplying each inequality by p ({ω : τi(ω) = ti}), taking into account
that p(ω|ti)p ({ω : τi(ω) = ti}) = p(ω) for each ω ∈ τ−1

i (ti), and taking
the summation w.r.t. the ti’s in σ−1

i (ai) yields

∀a′i,
∑

ω:σi(τi(ω))=ai

p(ω)[ui (ai, σ−i(τ−i(ω)))− ui
(
a′i, σ−i(τ−i(ω))

)
] ≥ 0.

(6.2.3)
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Since ui depends only on actions, the terms in (6.2.3) can be regrouped
to obtain

∀a′i,
∑
a−i

∑
ω∈(σ◦τ)−1(ai,a−i)

p(ω)[ui (ai, a−i)− ui
(
a′i, a−i

)
] (6.2.4)

=
∑
a−i

[ui (ai, a−i)− ui
(
a′i, a−i

)
]

∑
ω∈(σ◦τ)−1(ai,a−i)

p(ω) ≥ 0,

where σ = (σj)j∈I : T → A, τ = (τj)j∈I : Ω → T , σ ◦ τ : Ω → A is the
composition of σ and τ , and (σ ◦ τ)−1(ai, a−i) is the set of pre-images in
Ω of action profile (ai, a−i).

By definition of µ,
∑

ω∈(σ◦τ)−1(ai,a−i)
p(ω) = µ(ai, a−i). Therefore

(6.2.4) yields (6.2.2) as desired. �

The first part of the proof yields the following:

Remark 21. A distribution µ ∈ ∆(A) is induced by a correlated
equilibrium (hence, by Theorem 14, it is a canonical correlated equilibrium)
if and only if it satisfies the following system of linear inequalities in the
probabilities (µ(a))a∈A:

∀i ∈ I, ∀ai, a′i ∈ Ai,
∑

a−i∈A−i

µ(ai, a−i)
[
ui(ai, a−i)− ui(a′i, a−i)

]
≥ 0.

Hence, the set of measures µ ∈ ∆(A) induced by a correlated equilibrium
(the set of canonical correlated equilibria) is a convex and compact
polytope.9 The same holds for the set of expected payoff profiles induced
by correlated equilibria.

The following observation, the proof of which is elementary, clarifies
that the correlated equilibrium concept generalizes the mixed equilibrium
concept:

Remark 22. Fix a mixed action profile α and let µα ∈ ∆(A) be the
measure defined by µα(a) =

∏
i∈I αi(ai) for every a ∈ A. Then α is a

mixed equilibrium if and only if µα is a canonical correlated equilibrium.10

9A polytope in R2 is just a polygon, a polytope in R3 is a polyhedron. “Polytope” is
the generalization of these geometrical objects to Rn.

10The word “correlated”here may be a bit misleading, as we are considering the case
where players’ actions are mutually independent. Nonetheless, this is a special case of
the general definition of correlated equilibrium.
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Like pure and mixed Nash equilibrium, also correlated equilibrium is a
refinement of rationalizability:

Theorem 15. If µ is a canonical correlated equilibrium, then every action
to which µ assigns a positive marginal probability is rationalizable.

Proof. For every i, let Ci =
{
ai :

∑
a−i

µ(ai, a−i) > 0
}

be the set of

i’s actions to which µ assigns a positive marginal probability. It will be
shown that C =×i∈I Ci is a set with the best reply property. By Theorem
3, this implies that every action ai ∈ Ci is rationalizable, as desired. We
write marginal and conditional probabilities using an obvious and natural
notation: µ(ai), µ(a−i|ai), µ(aj |ai).

For every i and ai, if ai ∈ Ci, then (by definition of Ci) µ(ai) > 0, and
the conditional probability µ(·|ai) ∈ ∆(A−i) is well defined. Also, for every
j 6= i and aj , µ(aj |ai) > 0 only if µ(aj) > 0. Hence, suppµ(·|ai) ⊆ C−i.
Finally, given that µ is a canonical correlated equilibrium it must be the
case that

∀a′i ∈ Ai,
∑

a−i∈A−i

µ(a−i|ai)ui(ai, a−i) ≥
∑

a−i∈A−i

µ(a−i|ai)ui(a′i, a−i),

that is, ai ∈ ri (µ(·|ai)). Since this is true for each player i, it follows that
C has the best reply property. �

The concept of correlated equilibrium can be generalized assuming
that different players can assign different probabilities to the states ω ∈
Ω. This generalization is called subjective correlated equilibrium
(Brandenburger and Dekel [24]). It can be shown that an action ai is
rationalizable if and only if there exists a subjective correlated equilibrium
in which ai is chosen in at least one state ω (see Section 8.5.5 of Chapter
8).

6.3 Self-Confirming Equilibrium

We conclude this section on probabilistic equilibria introducing another
generalization of the Nash equilibrium concept. In Section 5.4 we
mentioned the possibility of interpreting an equilibrium as the stationary
state of a learning process and we noted that such stationary states need
not satisfy the Nash property. Consider the following simple example.
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1\2 ` r

t 2, 0 2, 1

b 0, 0 3, 1

Figure 6.4: Matrix 5.

The game in Matrix 5 has a unique rationalizable outcome, and so a
unique Nash equilibrium (and a unique degenerate mixed equilibrium that
coincides with the pure strategy equilibrium). If Rowena (player 1) knew
the payoff function of Colin (player 2) and were to believe that Colin is
rational, then she would expect him to play action r and would play the
best reply b.

Instead, we assume the following: (i) information may be incomplete,
each player knows his payoff function, but does not necessarily know the
opponent’s payoff function; (ii) the game is played recurrently and, at the
end of each round, each player observes his realized payoff, but he does
not observe directly the opponent’s action; (iii) in every period players
form probabilistic conjectures on the opponents’ actions that are revised
according to previous observations; consistently with Bayesian updating,
when players observe something that was expected with probability one
they do not revise their conjectures. Also, we assume for simplicity that
(iv) players maximize the current expected payoff without worrying about
the impact of current choices on future payoffs.

The situation of Colin is very simple: he will always chooses his
dominant action r. Conversely, the situation of Rowena is not so simple.
If in any given period t she expects ` with probability larger than 1

3 ,
then she best responds with t. In this case Rowena’s payoff is equal to
2 independently of the choice made by Colin, hence she is not able to
infer Colin’s choice from observing the realization u1 = 2, rather she
observes something that she was expecting with certainty (to obtain a
payoff of 2) and thus she does not revise her probabilistic conjecture.
Hence also in period t + 1 she repeats the same choice t and according
to the same reasoning her conjecture remains unaffected. This shows that
if the starting conjecture of Rowena assigns a sufficiently high probability
to ` the process is stuck in (t, r), which is therefore a stationary state, even
if it is not an equilibrium in the sense of Definitions 18 (Nash equilibrium)
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or 21 (mixed equilibrium).11

The example just described illustrates a situation in which players best
respond to their conjectures and the information obtained ex post does
not induce them to change their conjectures, even if they are incorrect.
Situations of this kind are known as “self-confirming equilibria,” or
“conjectural equilibria.”12

6.3.1 Pure Self-Confirming Equilibrium

As it is apparent from the previous example, in order to verify whether
a certain situation is a self-confirming equilibrium, it is necessary to
specify what players are able to observe ex post. We represent this
information with a feedback function, fi : A → Mi, where Mi is a
set of “messages” that i could receive at the end of each period. Let
fi,ai : A−i →Mi denote the section of fi at ai. Assuming that i remembers
his choice, if i receives message mi after he has chosen action ai, he
infers that the opponents must have played an action profile from the set
f−1
i,ai

(mi) = {a−i : fi(ai, a−i) = mi} (In the previous example, f1(.) = u1(.),
M1 = {0, 2, 3}, mi means “You got mi euros,” {a2 : f1(t, a2) = 2} = {`, r},
{a2 : f1(b, a2) = 0} = {`}, {a2 : f1(b, a2) = 3} = {r}). Suppose
that i’s conjecture is µi, i chooses the best reply a∗i ∈ ri(µ

i) and then
observes mi; suppose also that µi assigns probability one to the set
f−1
i,a∗i

(mi) = {a−i : fi(a
∗
i , a−i) = mi}; then the conjecture of i is confirmed

(he observes what he expected with probability one), he sticks to it and
keeps choosing a∗i .

This preliminary discussion shows that in order to ascertain the
stability of behavior under learning from personal experience, we must

11One could object to that if Rowena is patient, then she will want to experiment with
action b so as to be able to observe (indirectly) Colin’s behavior, even if that implies an
expected loss in the current period. The objection is only partially valid. It can be shown
that for any “degree of patience”(discount factor) there exists a set of initial conjectures
that induce Rowena to choose always the safe action a rather than experimenting with
b. It is true, however, that the more Rowena values future payoffs, the less it is plausible
that the process will be stuck in (t, r).

12Both terms (“conjectural” and “self-confirming”) have been used in the literature
with reference to the same idea (see, for example, the literature review in [16]). For an
analysis of how this concept has originated and its relevance for the analysis of adaptive
processes in a repeated-iteration context see the survey by Battigalli et al. [15] and
Chapter 7.
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enrich the standard definition of “game” with an ex post information
structure that specifies what players can learn after any round of a
recurrent game has been played. We do so by adding to the static game
(in reduced form) G = 〈I, (Ai, ui)i∈I〉 a profile of feedback functions
f = (fi : A → Mi)i∈I . We call the pair (G, f) game with feedback.
Differently from the analysis of mixed and correlated equilibria, here we
consider both finite and infinite games.

Definition 24. A game with feedback (G, f) is compact-continuous if
G is compact-continuous and, for each player i, the message space Mi is
a compact subset of a Euclidean space R`i and the feedback function fi is
continuous.

With this, we can define the self-confirming equilibrium concept (also
called “conjectural equilibrium”), which captures with a static definition
the possible steady states of learning dynamics. We start with equilibria in
pure actions, which capture stability in a game recurrently played by the
same set of individuals. Then we will generalize to distributions of pure
actions.

Definition 25. Fix a game with feedback (G, f). A profile of actions
and conjectures (a∗i , µ

i)i∈I ∈×i∈I (Ai ×∆(A−i)) is a self-confirming
equilibrium of (G, f) if, for every player i ∈ I, the following conditions
hold:
(1) ( rationality) a∗i ∈ ri(µi),
(2) ( confirmed conjectures) µi

(
f−1
i,a∗i

(fi(a
∗))
)

= 1.

(a∗i )i∈I is a self-confirming equilibrium action profile of (G, f) if there is
some profile of conjectures (µi)i∈I such that (a∗i , µ

i)i∈I is a self-confirming
equilibrium of (G, f).

Note that the feedback obtained with non-justifiable actions is
irrelevant for the set of self-confirming equilibria. Indeed, the
rationality condition (1) implies that self-confirming equilibrium actions
are necessarily justifiable; hence, the confirmed conjecture condition (2)
actually applies only to justifiable actions. On the other hand, unlike Nash
equilibria, in the analysis of self-confirming equilibria one cannot ignore
the unjustifiable actions, because a self-confirming equilibrium action can
be justified by a confirmed conjecture that (wrongly) assigns positive
probability to an unjustifiable action of a co-player.
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For example, in the game of Matrix 5 the action profile (t, r) is a self-
confirming equilibrium pair if each player observes only his own payoff
(fi = ui, i = 1, 2): Pick any (µ1, µ2) with µ1(`) ≥ 1

3 and note that t ∈
r1(µ1), {a2 : u1(t, a2) = u1(t, r)} = A2, {a1 : u2(a1, r) = u2(t, r)} = A1.
If instead µ1 (`) < 1

3 , then r1

(
µ1
)

= {b}. Therefore, t is justified by
a confirmed conjecture µ1 only if µ1 assigns positive probability to the
unjustifiable action ` of player 2.

Remark 23. Every Nash equilibrium a∗ is a self-confirming equilibrium
action profile for every profile of feedback functions f (let µi(a∗−i) = 1
for each i). If, for every player i ∈ I and every justifiable action
ai ∈ ri (∆ (A−i)), the section fi,ai : A−i → Mi is one-to-one (injective),
then the sets of Nash equilibrium and self-confirming equilibrium profiles
of actions coincide.

6.3.2 Self-Confirming Equilibrium with Anonymous
Interaction

The Nash equilibrium concept has been generalized to allow for
randomization, thus obtaining the mixed equilibrium concept. We
motivated mixed equilibrium as a characterization of stationary patterns of
behavior in situations of recurrent anonymous interaction, i.e., situations
where a game is played recurrently and every role (e.g., the role of the row
player) is played by agents drawn at random from large populations. A
similar generalization can be applied to the self-confirming equilibrium
concept. Again, we will interpret a mixed action αi ∈ ∆(Ai) as a
representation of the fractions of agents in population i playing the
different actions ai ∈ Ai. Since different agents in population i may hold
different conjectures, the extension should allow for some heterogeneity:
in a stationary state different agents of the same population may choose
different actions that are justified by different conjectures. This stands in
stark contrast with the mixed Nash equilibrium concept, which relies on
the assumption that conjectures are correct, hence common to all agents
in any given population i. We will assume for the sake of simplicity that
all the agents playing the same action hold the same conjecture. This
restriction is without loss of generality.

Consider an agent from population i who holds conjecture µi and keeps
playing a best reply ai ∈ ri(µ

i). In the case of anonymous interaction,
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what an agent playing in role i observes at the end of the game depends
on the behavior of the agents playing in the other roles, but these agents
are drawn at random; therefore, each message mi will be observed, in
the long run, with a frequency determined by the fraction of agents in
population(s) −i choosing the actions that (together with ai) yield message
mi. Conjecture µi is confirmed if the subjective probabilities that µi

assigns to each message given ai, that is (µi(f−1
i,ai

(mi))mi∈Mi , coincide with
the observed long-run frequencies of these messages.

The following example clarifies this point:

1\2 ` r

t 2, 3 2, 1

b 0, 0 3, 1

Figure 6.5: Matrix 6.

Example 19. Consider the game in Matrix 6 and assume that feedback
and payoff functions coincide. Suppose that 25% of the column agents
choose ` and 75% choose r. Then the probability that a row agent receives
the message “You got zero euros” when he chooses b is 1

4 . Row agents
do not know this fraction and could, for instance, believe that ` occurs
with probability 1

2 , which would induce them to choose t; alternatively, a
probability of 1

5 would induce them to play b. It may happen, for instance,
that half of the row agents believe that P(`) = 1

2 and the other half believe
P(`) = 1

5 . The former ones choose t, the latter ones b. If the fractions
of column agents playing ` and r remain 25% and 75% respectively, then
those who play b will observe “Zero euros” 25% of the times and “Three
euros” 75% of the times. They will then realize that their beliefs were not
correct and will keep on revising them until eventually they will coincide
with the objective proportions, 25%:75%. These row agents will continue
to play b. The other half of the row agents, those that believe that P(`) = 1

2
and choose t, do not observe anything new and therefore keep on believing
and doing the same things. But is it possible that the fractions of column
agents playing ` and r stay constant? Indeed it is. Suppose that 25%
of them believe that P(t) = 2

5 and the rest believe that P(t) = 1
5 . The

former ones will choose ` (expected payoff: 6
5 > 1), the latter ones will

choose r (as 1 > 3
5). Those choosing r do not receive any new information
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and keep on doing the same thing. Those choosing ` half of the times
observe “Three euros,” and the other half “Zero Euros.” Their conjectures
are not confirmed, but they will keep revising upward the probability of t
and best replying with `, until their conjectures converge to the long-run
frequencies 50%-50%, i.e., the actual proportions of row agents choosing
t and b. Then there is a stable situation characterized by the following
fractions, or mixed actions: α1(t) = 1

2 , α2(`) = 1
4 . These fractions do not

form a mixed Nash equilibrium, because the indifference conditions for a
mixed Nash equilibrium yield α∗1(t) = 1

3 and α∗2(`) = 1
3 . N

It should be clear from the discussion that here, as in our interpretation
of the mixed equilibrium concept, mixed actions are interpreted as
statistical distributions of pure actions in populations of agents playing
in the same role.

Let us move to a general definition. Denote by Pfi
ai,µi

(mi) the
probability of receiving message mi determined by action ai and conjecture
µi, given the feedback function fi: in the finite case,

Pfi
ai,µi

(mi) =
∑

a−i:fi(ai,a−i)=mi

µi(a−i).

Similarly, Pfiai,α−i (mi) is the probability of mi determined by ai and the
mixed action profile α−i, given fi:

Pfiai,α−i (mi) =
∑

a−i:fi(ai,a−i)=mi

∏
j 6=i

αj(aj).

In general, Pfi
ai,µi

(·) ∈ ∆ (Mi) and Pfiai,α−i(·) ∈ ∆ (Mi) are, respectively,

the probability measures on Mi obtained as pushforward of µi and µα−i

through fi,ai : A−i →Mi, the section of i’s feedback function at ai:
13

Pfi
ai,µi

(·) = µi ◦ f−1
i,ai

, Pfiai,α−i(·) = µα−i ◦ f−1
i,ai

.

13If A−i is infinite, it is endowed with a sigma-algebra of subsets A−i ⊆ 2A−i

containing all the singletons {a−i} (a−i ∈ A−i), conjectures are sigma-additive functions
µi : A−i → [0, 1], and each section fi,ai of the feedback function is assumed to be A−i-
measurable, so that—in particular— f−1

i,ai
(mi) ∈ A−i for each message mi. These

assumptions are satisfied in compact-continuous games with feedback.
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Definition 26. Fix a game with feedback (G, f). A profile of mixed actions
and conjectures (αi, (µ

i
ai)ai∈suppαi)i∈I is an anonymous self-confirming

equilibrium of (G, f) if for every role i ∈ I and action ai ∈ suppαi the
following conditions hold:
(1) ( rationality) ai ∈ ri(µiai),
(2) ( confirmed conjectures) Pfi

ai,µiai
(·) = Pfiai,α−i(·).

α = (αi)i∈I is an anonymous self-confirming equilibrium profile if there is
a profile of conjectures ((µiai)ai∈suppαi)i∈I such that (αi, (µ

i
ai)ai∈suppαi)i∈I

is an anonymous self-confirming equilibrium.

Remark 24. Every mixed Nash equilibrium of G is an anonymous self-
confirming equilibrium profile for every f .

Remark 25. Every pure self-confirming equilibrium (a∗i )i∈I is a degenerate
anonymous self-confirming equilibrium, which can be interpreted as a
symmetric equilibrium where all agents of the same population i play the
same action a∗i .

Since the anonymous version of the self-confirming equilibrium concept
is more general, from now on we refer to it simply as “self-confirming
equilibrium” without further qualifications.

Example 20. It can be checked as an exercise that the game in Matrix 6,
assuming that the players observe ex post only their own payoff (fi = ui),
admits three types of anonymous self-confirming equilibrium:

1. t is chosen by all the agents in population 1: α2 can take any value
since the conjecture of 1 is necessarily “confirmed” (1, choosing t,
does not receive new information); α1(t) = 1, µ1

t (`) ≥ 1
3 , 0 ≤ α2(`) ≤

1, µ2
` (t) = 1, µ2

r(t) ≤ 1
3 ;

2. r is chosen by all agents in population 2: α1 can take any value since
the conjecture of 2 is necessarily “confirmed” (2, choosing r, does
not receive new information); 0 ≤ α1(t) ≤ 1, µ1

t (`) ≥ 1
3 , µ1

b(`) = 0,
α2(`) = 0, µ2

r(t) ≤ 1
3 ;

3. all actions are chosen by a positive fractions of agents: the beliefs of
those who choose “informative” actions (b for i = 1 and ` for i = 2)
are correct; 1

3 ≤ α1(t) ≤ 1, 0 < α2(`) ≤ 1
3 , µ1

t (`) ≥ 1
3 , µ1

b(`) = α2(`),
µ2
` (t) = α1(t), µ2

r(t) ≤ 1
3 .
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Notice that the equilibria of type 1 include the Nash equilibrium (t, `),
those of type 2 include the Nash equilibrium (b, r), and those of type 3
include the mixed equilibrium α∗1(t) = 1

3 , α∗2(`) = 1
3 . N

Beliefs about Distributions

In the definition of anonymous self-confirming equilibrium we check
whether actions played by a positive fraction of agents are justified by
confirmed conjectures. This definition is adequate because a subjective
expected utility maximizer ultimately cares only about the probabilities of
the actions of his co-players. Yet, what an agent is uncertain about in a
population game is the actual distribution of actions of the co-players, that
is—in a two-population game—, the true α−i ∈ ∆(A−i).

14 Thus, an agent
in population i has a belief νi ∈ ∆ (∆ (A−i)). Suppose that an agent with
such belief νi keeps playing ai and that the true distribution of actions
in the other population is α−i, then his belief is confirmed if νi assigns
probability one to the set of α′−i that yield the same frequency distribution
of messages as α−i given ai. Using the “pushforward” notation, the
confirmation condition is

νi
({
α′−i ∈ ∆ (A−i) : α′−i ◦ f−1

i,ai
= α−i ◦ f−1

i,ai

})
= 1.

Belief νi ∈ ∆ (∆ (A−i)) yields a corresponding conjecture µi ∈ ∆ (A−i)
by taking the subjective averages, according to νi, of the objective
probabilities α−i(a−i):

15

µi(a−i) =

∫
∆(A−i)

α−i(a−i)ν
i (dα−i) .

With this, the definition of anonymous self-confirming equilibrium
given above is equivalent to requiring that each action played by a
positive fraction of agents be justified by the conjecture derived from a
confirmed belief over distributions of opponents actions. However, such
equivalence holds only under the assumption of subjective expected utility

14With more than one co-player drawn at random from different populations, one has
to take into account that draws are independent across populations, which makes the
analysis slightly more complex.

15These subjective averages are also called the “predictive probabilities” implied by
belief νi.
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maximization. With more general rationality criteria one has to use the
conceptually more precise definition involving beliefs about distributions.16

6.3.3 Properties of Feedback, Nash and Self-Confirming
Equilibria

In simultaneous-moves games, if it is possible to perfectly observe ex post
the opponents’ actions, then a self-confirming equilibrium is necessarily
a Nash equilibrium. Indeed, in this case, conjectures are confirmed if
and only if they are correct (Remark 23).17 However, simultaneous-
moves games are also used as reduced forms to analyze the equilibria
of corresponding dynamic games. Specifically, it will be shown that
each dynamic game admits a “strategic-form” representation whereby
it is assumed that players choose in advance and simultaneously the
contingent plans (strategies) that will determine their actions in every
possible situation that may arise as the play unfolds (see Section 1.4.2 of
the Introduction, and Section 9.3 of Chapter 9). In dynamic games, even
if, at the end of the game, it is possible to observe all the actions that have
actually been taken, it is not possible to observe how the opponents would
have played in circumstances that did not occur. Hence, it is impossible,
at least for some player, to observe the strategies of other players. For this
reason, in dynamic games it is easier to find self-confirming equilibria that
do not correspond to Nash equilibria of the strategic form.

Next we provide conditions on feedback that imply the equivalence of
self-confirming equilibria and mixed equilibria. First we define the ex post
information partition of A−i corresponding to a given action ai. Recall that
fi,ai = fi(ai, ·) : A−i →Mi is the section at ai of the feedback function fi.
The section fi,ai shows how the feedback received by player i depends on
the opponents’ actions given ai. For each i ∈ I and ai ∈ Ai, we let

F−i(ai) = {C−i ∈ 2A−i : ∃mi ∈Mi, C−i = f−1
i,ai

(mi)}

16See Battigalli et al. [16]. Furthermore, if we model explicitly the learning process
of agents who experiments rationally, the relevant beliefs are those about distributions
(see, e.g., Fudenberg and Levine [33]).

17In the case of anonymous interaction, we can consider at least two scenarios: (a) the
individuals observe the statistical distribution of the actions in previous periods, (b) the
individuals observe the long-run frequencies of the opponents’ actions. In both cases we
can say that a conjecture is correct if it corresponds to the observed frequencies.
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denote the partition of A−i given by the pre-images of function fi,ai . For
example, the game in Matrix 6 with fi = ui (i = 1, 2) has the following ex
post partitions, for each player and action:

F−1(t) = {A2}, F−1(b) = {{`}, {r}},
F−2(`) = {{t}, {b}}, F−2(r) = {A1}.

Definition 27. Feedback function fi satisfies own-action independence
of feedback about others relative to payoff function ui if all the
justifiable actions induce the same partition of A−i, that is,

∀a′i, a′′i ∈ ri (∆ (A−i)) , F−i(a′i) = F−i(a′′i ). (6.3.1)

Game with feedback (G, f) satisfies own-action independence if
condition (6.3.1) holds for each player i ∈ I.

Note that condition (6.3.1) applies only to justifiable actions because,
as explained above, only the feedback about such actions matters for the
determination of self-confirming equilibria. It is easily checked that the
game in Matrix 6 with feedback fi = ui (i = 1, 2) does not satisfies
own-action independence of feedback about others.

Definition 28. Feedback function fi satisfies observable payoffs relative
to payoff function ui if for every action of i the feedback received by i
determines the payoff of i, that is,

∀ai ∈ Ai,∀a′−i, a′′−i ∈ A−i, fi(ai, a′−i) = fi(ai, a
′′
−i)⇒ ui(ai, a

′
−i) = ui(ai, a

′′
−i).

(6.3.2)
Game with feedback (G, f) satisfies observable payoffs if condition
(6.3.2) holds for each player i ∈ I.

Note that the same condition can be expressed as

ui(ai, a
′
−i) 6= ui(ai, a

′′
−i)⇒ fi(ai, a

′
−i) 6= fi(ai, a

′′
−i).

In other words, the observable payoff condition says that for each player
i ∈ I there is a function πi : Ai × Mi → R such that ui (ai, a−i) =
πi (ai, fi (ai, a−i)) for every profile (ai, a−i).

18 The following example
illustrates both properties of feedback.

18In a more compact and abstract form, ui,ai = πi,ai ◦ fi,ai for every ai.
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Example 21. Let G be a Cournot oligopoly. Suppose each firm i ∈ I
knows its own total cost function Ci (·) and the inverse market demand
function P (·), and that it observes ex post only the market price:

fi(ai, a−i) = P

ai +
∑
j 6=i

aj

 ,

where aj is the output of firm j. The utility of firm i is its profit:19

ui (ai, a−i) = πi (ai, fi (ai, a−i)) = aiP

ai +
∑
j 6=i

aj

− C (ai) .

Of course, the observable payoffs condition holds for this game with
feedback. Furthermore, if P (·) is invertible, also own-action independence
holds. Indeed, each firm i observes ex post the total output of the
competitors independently of its own output choice, because∑

j 6=i
aj = P−1 (p)− ai

for each ai and observed price p. Next suppose instead that each firm i
only observes the revenue

fi (ai, a−i) = Ri (ai, a−i) = aiP

∑
j∈I

aj


fetched for its output ai, but it does not observe the unit price. In this
case, the observable payoffs property still holds, because

ui (ai, a−i) = πi (ai, fi (ai, a−i)) = Ri (ai, a−i)− C (ai) .

But own-action independence holds if and only if producing no output
(ai = 0) is not justifiable. Indeed, if ai = 0, then i’s revenue is zero for
every output profile of the competitors and i cannot recover

∑
j 6=i aj . If

instead ai > 0, then i can back out from its revenue the unit price

p = P

∑
j∈I

aj

 = Ri (ai, a−i) /ai

19If firm i is owned by a possibly risk averse agent, then ui = vi ◦ πi, where vi is
concave and strictly increasing.
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and the total output of the competitors:∑
j 6=i

aj = P−1

(
Ri (ai, a−i)

ai

)
− ai.

Whether ai = 0 is justifiable or not depends on details of the oligopoly
model that we did not specify here. For example, if Ci (ai) = cai and there

is some competitors’ output profile â−i such that P
(∑

j 6=i âj

)
< c, then

ai = 0 is justifiable as a best response to â−i and own-action independence
does not hold. N

Comment on Own-Action Independence The example clarifies that
own-action independence of feedback about others may hold even if, for
some or all i, feedback function fi depends on ai: market price in a
quantity-setting oligopoly depends on own output, but the observation
of market price gives feedback about the output of others that does not
depend on own output.

Comment on Payoff Observability As the example suggests,
observability of payoffs holds in many applications: what we call “payoff”
in game theory is a player’s “utility” expressed as a function of all players’
actions, and it seems obvious that a player should observe how much
utility he gets. Yet, payoff observability is not a tautological assumption.
Suppose, for example, that players have other-regarding preferences. This
means that they do not only care about the consequences of interaction
for themselves, but also for (some) other players. In particular, they
may care about the consumption of other players. If player i cares
about his own income yi and the incomes of other players y−i, then
his utility is a function of the form vi(yi, y−i). The outcome function
is y = (yj)j∈I = (gj(a))j∈I = g(a). Assume that i observes only his
own income; then fi(a) = gi(a) and ui(a) = vi(fi(a), g−i(a)). Hence, we
may have fi(a

′) = fi(a
′′) and yet ui(a

′) 6= ui(a
′′). Intuitively, ui(a) is

not necessarily a utility “experienced”—hence observed—by i, it is a way
of ranking action profiles according to the preferences over the induced
income allocations. But player i observes only his own component of the
income allocation; hence, he cannot know if the realized allocation is one
he ranks highly or not.
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The following lemma says that under own-action independence and
payoff observability, an action can be justified by a confirmed conjecture
if and only if it is a best reply to the true distribution of actions of the
co-players.

Lemma 18. Let (G, f) be a finite or compact-continuous game with
feedback; fix any i ∈ I and suppose that fi satisfies own-action
independence of feedback about others and observable payoffs relative to ui.
Then, for all a∗i ∈ Ai and α−i ∈×j 6=i ∆(Aj) the following are equivalent:

(1) there is a conjecture µi ∈ ∆ (A−i) such that a∗i ∈ ri
(
µi
)

and Pfi
a∗i ,µ

i(·) =

Pfia∗i ,α−i(·),
(2) a∗i ∈ ri (α−i).

Proof. We prove the result for finite games.20 Fix a∗i and α−i. It is
obvious that (2) implies (1): let µi (a−i) =

∏
j 6=i αj (aj) for all a−i ∈ A−i,

then (1) holds.
To prove that (1) implies (2), first note that observability of payoffs

implies that, for each action ai ∈ Ai, the section of the payoff function of
i at ai, ui,ai : A−i → R, is constant on each cell of the ex post information
partition F−i(ai). Indeed, fix any C−i ∈ F−i(ai) and a′−i, a

′′
−i ∈ C−i.

By definition of F−i(ai), a′−i and a′′−i yield the same message given ai:
fi(ai, a

′
−i) = fi(ai, a

′′
−i); hence, observability of payoffs implies ui(ai, a

′
−i) =

ui(ai, a
′′
−i). With this, we write ui(ai, C−i) for the common value of ui(ai, ·)

on cell C−i ∈ F−i(ai). Similarly, we write fi(ai, C−i) for the common
feedback message on cell C−i ∈ F−i(ai) given ai.

21 Thus,

∀ai ∈ Ai, ūi(ai, α−i) =
∑

C−i∈F−i(ai)

ui(ai, C−i)
∑

a−i∈C−i

∏
j 6=i

αj(aj). (6.3.3)

Let (1) hold for µi ∈ ∆ (A−i). Then, in particular, a∗i is justifiable, that
is, a∗i ∈ ri (∆ (A−i)). The set of “objective best replies” ri (α−i) contains
at least one action aoi , which is necessarily justifiable. We are going to

20The proof for compact-continuous games is left as an exercise for the mathematically
savvy reader. Consider that, in this (more general) case, feedback functions are
measurable because they are continuous, and best reply correspondences are non-empty
valued. The proof shows that the result can be further generalized (cf. Battigalli et al.
[18]).

21The message is constant on C−i ∈ F−i(ai) by definition of F−i(ai), whether or not
payoffs are observable.
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prove that ūi(a
∗
i , α−i) ≥ ūi(a

o
i , α−i). Since aoi ∈ ri (α−i), this implies (2):

a∗i ∈ ri (α−i).
Since both a∗i and aoi are justifiable, own-action independence implies

the common-feedback condition F−i(aoi ) = F−i(a∗i ). Common feedback
and eq. (6.3.3) yield

ūi(a
o
i , α−i) =

∑
C−i∈F−i(a∗i )

ui(a
o
i , C−i)

∑
a−i∈C−i

∏
j 6=i

αj(aj). (6.3.4)

The confirmed-conjecture condition stated in (1) implies that the objective
and subjective probabilities of each message fi(a

∗
i , C−i) coincide:

∀C−i ∈ F−i(a∗i ),
∑

a−i∈C−i

∏
j 6=i

αj(aj) =
∑

a−i∈C−i

µi(a−i). (6.3.5)

Eqs. (6.3.4)-(6.3.5) yield

ūi(a
o
i , α−i) =

∑
C−i∈F−i(a∗i )

ui(a
o
i , C−i)

∑
a−i∈C−i

µi(a−i) = ui(a
o
i , µ

i).

Eqs. (6.3.3)-(6.3.5) yield

ūi(a
∗
i , α−i) =

∑
C−i∈F−i(a∗i )

ui(a
∗
i , C−i)

∑
a−i∈C−i

µi(a−i) = ui(a
∗
i , µ

i).

Since a∗i ∈ ri
(
µi
)
, the foregoing equalities imply

ūi(a
∗
i , α−i) = ui(a

∗
i , µ

i) ≥ ui(aoi , µi) = ūi(a
o
i , α−i).

Hence, a∗i ∈ ri (α−i). �

Theorem 16. Let (G, f) be a compact-continuous game with feedback that
satisfies own-action independence and observable payoffs. Then the sets
of mixed Nash equilibria and self-confirming equilibrium profiles of mixed
actions coincide.

Proof. Every mixed Nash equilibrium is also self-confirming (see
Remark 24). To prove the converse, fix any selfconfirming equilibrium
(αi, (µ

i
ai)ai∈suppαi)i∈I . By definition, for each player i ∈ I and action
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ai ∈ suppαi, we have ai ∈ ri
(
µiai
)

and Pfi
ai,µiai

(·) = Pfiai,α−i(·). Thus,

Lemma 18 implies that suppαi ⊆ ri (α−i) for each i ∈ I. Hence, by
Theorem 13, (αi)i∈I is a mixed Nash equilibrium. �

Although observability of payoffs is not tautological, it is common
in economic applications. Therefore the above theorem says that the
key property for the comparison between (anonymous) self-confirming
and (mixed) Nash equilibrium is own-action dependence/independence of
feedback.

6.3.4 Comparative Statics for Self-Confirming Equilibrium

Here we analyze how the set of self-confirming equilibria is affected by
changes in the informativeness of feedback and in risk aversion. We show
that coarser feedback and higher risk aversion expand the set of self-
confirming equilibria.22 This means that the long-run outcome of learning
is less predictable and less likely to coincide with Nash equilibrium when
feedback is less informative or players are more risk averse.

Coarseness of Feedback By inspection of the definition of self-
confirming equilibrium it is easily checked that if the feedback functions
fi,ai are constant for all i and ai, that is, if there is no feedback about
co-players’ actions, then every profile (αi)i∈I that assigns positive weight
only to justifiable actions is a self-confirming equilibrium profile of mixed
actions. This suggests that poor feedback yields a large set of self-
confirming equilibria. We can make this intuition precise. First recall
that a partition F̄ is coarser than a partition F if each cell of F̄ is a union
of cells of F .

Definition 29. We say that game with feedback
(
G, f̄

)
has coarser

feedback than (G, f) if, for every i ∈ I and ai ∈ Ai, F̄i (ai) is coarser
than Fi (ai).

The following result says that making feedback coarser expands the set
of self-confirming equilibria.

22In the case of risk aversion, the result only refers to the set of pure, or non-anonymous
self-confirming equilibria of games with obvervable payoffs.
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Theorem 17. Fix two compact-continuous games with feedback (G, f)
and

(
G, f̄

)
. If

(
G, f̄

)
has coarser feedback than (G, f), then every

self-confirming equilibrium of (G, f) is also a selfconfirming equilibrium
of
(
G, f̄

)
.

Proof. We prove the result for finite games.23 Fix a self-confirming
equilibrium (αi, (µ

i
ai)ai∈suppαi)i∈I of (G, f). Since (G, f) and

(
G, f̄

)
differ

only with respect to the feedback functions, the given profile satisfies the
best response property (1) of Definition 26 in both games with feedback;
therefore, we only have to show that the confirmed conjectures property
(2) is satisfied also for

(
G, f̄

)
. Fix i ∈ I and ai ∈suppαi arbitrarily. Since

the justifying conjecture µiai is confirmed in (G, f), then

∀C−i ∈ Fi (ai) , µiai (C−i) =
∑

a−i∈C−i

∏
j 6=i

αj (a−i) .

Since F̄i (ai) is coarser than Fi (ai),

∀C̄−i ∈ F̄i (ai) , C̄−i =
⋃

C−i∈Fi(ai):C−i⊆C̄−i

C−i.

By additivity of µiai ,

∀C̄−i ∈ F̄i (ai) , µiai
(
C̄−i

)
=

∑
C−i∈Fi(ai):C−i⊆C̄−i

µiai (C−i) =
∑

a−i∈C̄−i

∏
j 6=i

αj (a−i) .

Thus µiai is confirmed in
(
G, f̄

)
as well. �

Risk Aversion Using Jensen’s inequality and Lemma 2 (the duality
result of Wald and Pearce), we have shown that an increase in risk aversion
expands the set of rationalizable actions (Theorems 1 and 4). A simpler
argument relying only on Jensen’s inequality shows that an increase in
risk aversion expands the set of non-anonymous (i.e., pure) self-confirming
equilibria of games with observable payoffs.24 The intuition is quite

23Again, the proof for compact-continuous games is left as an exercise for the
mathematically savvy reader. Furthermore, the result holds for more general games
(cf. Battigalli et al. [18]).

24See Battigalli et al. [16, Theorem 1] for a similar result about mixed self-
confirming equilibria and “ambiguity aversion”. See Weinstein [73] for results about
Nash equilibrium and risk aversion.
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simple: under payoff observability, in a pure self-confirming equilibrium
each player is certain about the payoff of his equilibrium action, but he
may be uncertain about the payoff of deviations; keeping conjectures fixed
as we increase risk aversion, deviations with uncertain payoffs become less
attractive. Therefore, the same profile of actions and conjectures is a self-
confirming equilibrium also with higher risk aversion. On the other hand,
higher risk aversion may make “safe” actions more attractive and thus
yield new self-confirming equilibria. The following example illustrates.

Example 22. Consider again the game form with monetary payoffs of
Example 15 and assume that feedback functions coincide with monetary
payoff functions:

g1 = f1, g2 = f2 : b′ b′′

a′ 0, 1 1, 0

a′′ 1
3 ,0 1

3 ,1

a′′′ 1, 1 0, 0

The ex post information partitions are

F1

(
a′
)

= F1

(
a′′′
)

=
{
{b′}, {b′′}

}
, F1

(
a′′
)

= {A2},
F2(b′) = F2(b′′) =

{
{a′, a′′′}, {a′′}

}
.

In particular, action a′′ does not allow to observe ex post whether player
2 chose b′ or b′′. Under risk neutrality a′′ is not justifiable, hence it
cannot be part of a self-confirming equilibrium. If instead risk aversion is
sufficiently high, the uniform conjecture on A2 justifies a′′ and is confirmed,
which implies that (a′′, b′′) is a pure self-confirming equilibrium action pair.

Assume v1(m1) = (m1)1/θ (the risk attitudes of player 2 are immaterial).
The pure (non-anonymous) equilibrium correspondence is

pSCEθ =

{
{(a′′′, b′)}, if 1 ≤ θ < log2 3,
{(a′′′, b′), (a′′, b′′)}, if θ ≥ log2 3.

(Compare with Examples 6 and 15.) N

Theorem 18. Suppose game with feedback (G, f) satisfies observable
payoffs and let players in Ĝ be more risk averse than in G, then every
pure self-confirming equilibrium of (G, f) is also a pure self-confirming

equilibrium of
(
Ĝ, f

)
.
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Proof. Fix arbitrarily a self-confirming equilibrium
(
a∗i , µ

i
)
i∈I of

(G, f) and a player i ∈ I. Then a∗i ∈ ri
(
µi
)

and µi is confirmed (given
profile a∗); since payoffs are observable, ui

(
a∗i , µ

i
)

= ui
(
a∗i , a

∗
−i
)
; therefore,

∀ai ∈ Ai, ui
(
a∗i , µ

i
)

= ui
(
a∗i , a

∗
−i
)
≥ ui

(
ai, µ

i
)

= Eµi (ui,ai) , (6.3.6)

where Eµi(ui,ai) is just the explicit expression of ui
(
ai, µ

i
)

as an
expectation. We must show that

(
a∗i , µ

i
)
i∈I is a self-confirming equilibrium

of
(
Ĝ, f

)
. Since we keep the feedback functions fixed, conjecture µi

is confirmed in
(
Ĝ, f

)
as well; therefore, we only have to show that

a∗i ∈ r̂i
(
µi
)
, where r̂i is the best reply correspondence of i in Ĝ, that

is, given payoff function ûi. Payoff observability holds for
(
Ĝ, f

)
as well:

Let ϕ be the concave and strictly increasing function such that ûi = ϕ◦ui,
then

fi(ai, a
′
−i) = fi(ai, a

′′
−i)⇒ ui(ai, a

′
−i) = ui(ai, a

′′
−i)

⇒ ϕ
(
ui(ai, a

′
−i)
)

= ϕ
(
ui(ai, a

′′
−i)
)
⇒ ûi(ai, a

′
−i) = ûi(ai, a

′′
−i).

Therefore,
ûi
(
a∗i , µ

i
)

= ûi
(
a∗i , a

∗
−i
)

.

With this,

∀ai ∈ Ai, ûi
(
a∗i , µ

i
)

= ûi
(
a∗i , a

∗
−i
)

= ϕ
(
ui,a∗i

(
a∗−i
))

≥ ϕ
(
Eµi (ui,ai)

)
≥ Eµi (ϕ ◦ ui,ai) = Eµi (ûi,ai) = ûi

(
ai, µ

i
)

where the first inequality follows from eq. (6.3.6) and the monotonicity of
ϕ, and the second is Jensen’s inequality, which follows from the concavity
of ϕ. Since i was fixed arbitrarily, this proves that the given profile

satisfies the best-reply and confirmed-conjectures properties in
(
Ĝ, f

)
and

is therefore a self-confirming equilibrium of the latter. �

As is clear from the proof, the result can be generalized as follows:
whenever a pure or mixed action profile yields sure payoffs to the players
and is a self-confirming equilibrium, then it still is a self-confirming
equilibrium with more risk averse players. The following example shows
that when equilibrium payoffs are uncertain, or risky, an equilibrium may
disappear when risk aversion increases.
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Example 23. Consider the game form with monetary outcomes in the
following matrix:25

g1, g2 ` r

t 6, 0 0, 1

m 4, 1 2, 1

b 3, 1 3, 0

(I) First assume that each player observes his monetary payoff, that is,
fi = gi (i = 1, 2). It can be checked that if player 1 is risk neutral
then

(
m, 1

2δ` + 1
2δr
)

is a mixed (Nash and self-confirming) equilibrium
profile where player 1 gets 3 dollars on average. Note that player 1 is
indifferent among his actions in this equilibrium, despite the fact that m is
chosen with probability 1. If player 1 is risk averse this profile cannot
be an equilibrium, because the safe action b becomes more attractive
given the former equilibrium conjecture. (II) Next assume that player
2 observes his monetary payoff, but player 1 observes nothing. Under
risk neutrality

((
m,µ1 (`) = 1

2

)
,
(
r, µ2 (m) + µ2 (t) = 1

))
gives a set of

self-confirming equilibria (parameterized by µ2(m) ∈ [0, 1]), but these
equilibria disappear under risk aversion, which makes b more attractive
given conjecture µ1 (`) = 1

2 . N

25The risk attitudes of player 2 are immaterial.



7

Learning and Solution
Concepts

So far we avoided the details of learning dynamics. The analysis of such
dynamics requires the use of mathematical tools whose knowledge we do
not take for granted in this textbook (differential equations, difference
equations, stochastic processes). Nonetheless, it is possible to state some
elementary results about learning dynamics by addressing the following
question: When is it the case that a trajectory, that is, an infinite sequence
of action profiles (at)∞t=1 (with at = (ati)i∈I ∈ A), is consistent with adaptive
learning? We start with a qualitative answer.

Consider a finite game G that is played recurrently. Assume that all
actions are observable and consider the point of view of a player i that
observes that a given profile a−i has not been played for a very long time,
say for at least T periods. Then it is reasonable to assume that i assigns
to a−i a very small probability. If T is sufficiently large, and a−i was
not played in the periods t̂, t̂+ 1, . . . , t̂+ T , then the probability of a−i in
t > t̂ + T will be so small that the best reply to i’s conjecture in t will
also be the best reply to a conjecture that assigns probability zero to a−i.
In other words, i will choose in t > t̂+ T only those actions that are best
replies to conjectures µi such that suppµi ⊆

{
aτ−i : t̂ ≤ τ < t

}
, that is, only

actions in the set ri
(
∆
({
aτ−i : t̂ ≤ τ < t

}))
.1 Notice that this argument

1Ai is finite and ui(ai, µ
i) is continuous (in fact linear) with respect to probabilities

(µi(a−i))a−i∈A−i . It follows that if a∗i is a best reply to a conjecture that assigns a
“sufficiently small” probability to a−i, then a∗i is a best reply also to a slightly different

157



158 7. Learning and Solution Concepts

assumes only that i is able to compute best replies to conjectures. The
argument is therefore consistent with a high degree of incompleteness of
information.

7.1 Perfectly Observable Actions

Building on this intuition, one can use the rationalization operator ρ to
define the consistency of a trajectory (at)∞t=1 with adaptive learning under
the assumption that the opponents’ actions are perfectly observable.2

Recall that, for any set C =×i∈I Ci ⊆ A we let ρi(C−i) = ri(∆(C−i)),
which gives the set of profiles “justified” or “rationalized” by C: ρ(C) =

×i∈I ρi(C−i). Now, the set of action profiles chosen in a given interval of
time is not, in general, a Cartesian product. For this reason, it is useful to
generalize the definition of ρ as follows. For C−i ⊆ A−i (not necessarily a
product set) let ρi(C−i) = ri(∆(C−i)). Then, let C ⊆ A, and define

ρ(C) =×
i∈I

ρi(projA−iC),

where projA−iC = {a−i : ∃ai ∈ Ai, (ai, a−i) ∈ C} is the set of the other
players’ action profiles that are consistent with C. (If C is a product
set, the usual definition obtains.) Note that, even with this more general
definition, the ρ operator is monotone: E ⊆ F implies ρ(E) ⊆ ρ(F ).

According to the reasoning developed above, suppose that players base
their conjectures on past observations and they maximize their expected
payoffs in each period. Then, if for a “very long”time only action profiles
in C are observed, the current profile of best replies must be in ρ(C). This
explains the following definition.

Definition 30. A trajectory (at)∞t=1 is consistent with adaptive
learning (when opponents’ actions are perfectly observable) if for every
t̂ there exists a T such that, for all t > t̂+ T , at ∈ ρ

({
aτ : t̂ ≤ τ < t

})
.

Next we define when a trajectory (at)∞t=1 generates a “limit
distribution”µ ∈ ∆(A).

conjecture that assigns probability zero to a−i.
2The following results are adapted from Milgrom and Roberts [46].
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Definition 31. µ ∈ ∆(A) is the limit distribution of (at)∞t=1 if for every
a ∈ A

(i) lim
t→∞

| {τ : 1 ≤ τ < t, aτ = a} |
t

= µ(a)

(ii) if µ(a) = 0, then ∃t̂ : ∀t > t̂, at 6= a.

This definition requires that the “long-run frequency”of every a is µ(a),
and furthermore that if µ(a) = 0 there exists a time starting from which
the profile a is no longer chosen. Convergence of a trajectory to an action
profile a∗ is a special case: let µ(a∗) = 1 in the definition, then (at)∞t=1

converges to a∗, written at → a∗, if there exists a time t̂ such that, for every
t > t̂, at = a∗ (this is the standard notion of convergence for discrete spaces,
that are formed by isolated points). Also, notice that not all trajectories
admit a limit distribution.

The following lemma points out some properties necessarily satisfied
by limit distributions.

Lemma 19. If µ is the limit distribution of (at)∞t=1, then for every t̂, there
exists T such that, for every t > t̂+ T ,

at ∈ suppµ ⊆ {aτ : t̂ ≤ τ < t}.

Proof. Let µ be the limit distribution of (at)∞t=1 and fix any given
time t̂ and profile a. If a is never chosen from t̂ onwards, that is if
a /∈

{
aτ : t̂ ≤ τ < t

}
for every t > t̂, then, by Definition 31 (i),

µ(a) = lim
t→∞

| {τ : 1 ≤ τ < t, aτ = a} |
t

≤ lim
t→∞

t̂

t
= 0,

i.e., a /∈ suppµ. Therefore, for every a ∈ suppµ there exists a time T ′a such
that, for every t > t̂ + T ′a, a ∈

{
aτ : t̂ ≤ τ < t

}
. Let T ′ = maxa∈suppµ T

′
a

(this is well defined because A is finite). Then, for every t > t̂ + T ′,
suppµ ⊆

{
aτ : t̂ ≤ τ < t

}
. Moreover, if µ(a) = 0 there exists a T ′′a such

that ∀t > t̂ + T ′′a , at 6= a (Definition 31 (ii)). Let T ′′ = maxa∈A\suppµ T
′′
a ,

then ∀t > t̂+ T ′′, at ∈ suppµ. Let T = max {T ′, T ′′}, then

∀t > t̂+ T , at ∈ suppµ ⊆
{
aτ : t̂ ≤ τ < t

}
.

�
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Note that the membership relation means that, from a certain t
onwards, only action profiles in the support of the limit distribution occur.
The inclusion states that all action profiles in the support occur infinitely
often.

It is now possible to present a few elementary results that relate
adaptive learning with the solution and equilibrium concepts introduced
earlier. The first result identifies a sufficient condition for consistency with
adaptive learning.3

Theorem 19. Let (at)∞t=1 be a trajectory. If the limit distribution of
(at)∞t=1 (provided that it exists) is a canonical correlated equilibrium, then
(at)∞t=1 is consistent with adaptive learning.

Proof. Let µ be the limit distribution of (at)∞t=1 and fix an arbitrary
t̂. It follows from Lemma 19 and the monotonicity of ρ that there exists
T such that, for every t > t̂+ T , at ∈ suppµ and

ρ(suppµ) ⊆ ρ(
{
aτ : t̂ ≤ τ < t

}
).

Suppose that µ is a canonical correlated equilibrium. Then suppµ ⊆
ρ(suppµ) (the proof is almost identical to the one of Theorem 15). The
claim follows. �

The next two results show that, in the long run, adaptive learning
induces behavior consistent with the “complete-information” solution
concepts of earlier chapters, even if consistency with adaptive learning
does not require complete information.

Theorem 20. Let (at)∞t=1 be a trajectory consistent with adaptive learning.
Then (1)

∀k ≥ 0,∃tk, ∀t ≥ tk, at ∈ ρk(A), (7.1.1)

so that only rationalizable actions are chosen in the long run; (2) if
at → a∗, then a∗ is a Nash equilibrium.

Proof. (1) First recall that since A is finite there exists a K such
that ρk(A) = ρ∞(A) for every k ≥ K. Then, (7.1.1) implies that from
some time tK onwards only rationalizable actions are chosen. The proof of
(7.1.1) is by induction. The statement trivially holds for k = 0. Suppose

3See Definition 22 and Remark 14.
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by way of induction that the statement is true for a given k. By consistency
with adaptive learning, there exists a Tk such that

∀t > tk + Tk, a
t ∈ ρ({aτ : tk ≤ τ < t}).

By the inductive assumption, τ ≥ tk implies aτ ∈ ρk(A). Hence,

{aτ : tk ≤ τ < t} ⊆ ρk(A).

By monotonicity of ρ,

ρ({aτ : tk ≤ τ < t}) ⊆ ρ(ρk(A)) = ρk+1(A).

Taking tk+1 = tk + Tk + 1, the above inclusions yield

∀t ≥ tk+1, at ∈ ρ({aτ : tk ≤ τ < t}) ⊆ ρk+1(A)

as desired.
(2) If at → a∗, then there exists a t̂ such that at = a∗ for every t > t̂.

Consistency of (at)∞t=1 with adaptive learning implies that there exists T
such that

∀t > t̂+ T , a∗ = at ∈ ρ(
{
aτ : t̂ ≤ τ < t

}
) = ρ({a∗}).

Since a∗ ∈ ρ({a∗}), a∗ is a Nash equilibrium. �

7.2 Imperfectly Observable Actions

The definition of consistency with adaptive learning needs to be modified
when players cannot perfectly observe the actions previously chosen by
their opponents. Assume that if an action profile a = (aj)j∈I is chosen
player i only observes a signal (or message) mi = fi(a). As in the
section on self-confirming equilibria (Section 6.3), the profile of functions
f = (fi : A→Mi)i∈I is a primitive element of the analysis.

Take a trajectory (at)∞t=1. The set of signals observed by player i from
time t̂ (included) to time t (excluded) is

{
mi : ∃τ, t̂ ≤ τ < t,mi = fi(a

τ )
}

.
From i’s perspective, the set of other players’ action profiles that could
have been chosen in the same time interval is{

a−i : ∃τ, t̂ ≤ τ < t, fi(a
τ ) = fi(a

τ
i , a−i)

}
.

This motivates the following definition:
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Definition 32. A trajectory (at)∞t=1 is f -consistent with adaptive learning
if for every t̂ there exists a T such that, for every t > t̂ + T and i ∈ I,
ati ∈ ρi

({
a−i : ∃τ, t̂ ≤ τ < t, fi(a

τ ) = fi(a
τ
i , a−i)

})
.

Remark 26. Imperfect observability implies that, in general, two players
i and j obtain different information about the past actions of a third player
k. This is the reason why the rationalization operator ρ could not be used to
define the property of f -consistency with adaptive learning. If each section
of feedback function fi,ai is injective (i ∈ I, ai ∈ Ai), then there is perfect
observability of other players’ previous actions and the definition of the
previous section (Definition 30) is obtained.

It is now possible to generalize the results that relate consistency with
adaptive learning and equilibrium. Given the discussion of Section 6.3,
it should not be surprising that the relevant equilibrium concept for this
scenario is the self-confirming equilibrium.4

Theorem 21. Fix a game with feedback (G, f) and a trajectory (at)∞t=1.
If (at)∞t=1 has a limit distribution which is part of an anonymous self-
confirming equilibrium of (G, f), then (at)∞t=1 is f -consistent with adaptive
learning.

Proof. Fix an anonymous self-confirming equilibrium
(αi, (ν

i
ai)ai∈suppαi)i∈I . By the confirmed conjectures condition, for every

i ∈ I and ai ∈ suppαi, f̂i,ai(ν
i
ai) = f̂i,ai(α−i), where f̂i,ai : ∆ (A−i) →

∆ (Mi) is the pushforward induced by the section fi,ai : A−i → Mi of i’s
feedback function at ai. This implies fi,ai(suppνiai) = fi,ai(suppα−i) and

therefore suppνiai ⊆ f−1
i,ai

(fi,ai(suppα−i)), which can be rewritten more
explicitly as

suppνiai ⊆ {a−i ∈ A−i : ∃â−i ∈ suppα−i, fi(ai, a−i) = fi(ai, â−i)}.
(7.2.1)

In words, the conjecture that justifies a given action in a self-confirming
equilibrium deems possible only (but possibly not all) the action profiles
of the opponents that are consistent with the feedback generated by some
of the profiles that actually occur with positive probability. This fact will
be used in the proof of the proposition, which we are about to undertake.

4The following results are adapted from Gilli [38].
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Before we delve into the mathematical details, we can provide the
intuition behind the result. Recall that, starting from a certain period,
say t, the only profiles of actions that occur are those in the support
of the limit distribution—provided that it exists—and all such profiles
occur infinitely often. If such limit distribution is an anonymous self-
confirming equilibrium, then every agent, from t onwards, plays only
actions in the support of the equilibrium distribution and keeps playing
each of them infinitely often. Thus, the set of messages that every player
receives starting from t coincides with the set of messages that are possible
according to a justifying conjecture, and all such messages occur infinitely
often. This implies that the given trajectory is f -consistent with adaptive
learning.

Assume that product measure
∏
i∈I αi of the self-confirming

equilibrium is the limit distribution of trajectory (at)∞t=1, which implies
that αi is the limit distribution of (ati)

∞
t=1 for each i ∈ I. Throughout, let

t̂ be fixed but arbitrary.

Fix i ∈ I. For every ai ∈ suppαi, by the rationality condition, we have
ai ∈ ri(νiai). If we denote by Cai−i the set on the right hand side of (7.2.1),
we have νiai ∈ ∆(Cai−i), and thus

ai ∈ ri(∆(Cai−i)) = ρi(C
ai
−i).

Next, we show that there exists T ′i such that, for every ai ∈ suppαi
and t > t̂+ T ′i ,

ρi(C
ai
−i) ⊆ ρi

(
{â−i ∈ A−i : ∃τ, t̂ ≤ τ < t, fi(a

τ ) = fi(a
τ
i , â−i)}

)
. (7.2.2)

By monotonicity of ρi, it is sufficient to show

Cai−i ⊆ {â−i ∈ A−i : ∃τ, t̂ ≤ τ < t, fi(a
τ ) = fi(a

τ
i , â−i)}. (7.2.3)

Assume â−i ∈ Cai−i, that is, there exists a−i ∈ suppα−i such that

fi(ai, â−i) = fi(ai, a−i) (7.2.4)

(i.e., â−i and a−i generate the same feedback given ai). Since both ai
and a−i are in the support of the actual mixed strategies in the limit
(product) distribution, the profile a = (ai, a−i) is also played with positive
probability, that is, a ∈ suppα. Thus, a occurs infinitely often in the
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trajectory (at)∞t=1 and there exists τ∗ > t̂ such that aτ
∗

= a, which
also implies fi(a

τ∗) = fi(a) = fi(ai, â−i). Taking T ′i,ai > τ∗ − t̂, it is
immediately verified that â−i belongs to the right hand side of (7.2.3) for
every t > t̂ + T ′i,ai (τ∗ is the integer τ whose existence is required in the
specification of the set). Thus, max{T ′i,ai}ai∈suppαi is the desired T ′i . It

follows that, for every t > t̂+ T ′i

suppαi ⊆
⋃

ai∈suppαi

ρi(C
ai
−i) ⊆ ρi

(
{â−i ∈ A−i : ∃τ, t̂ ≤ τ < t, fi(a

τ ) = fi(a
τ
i , â−i)}

)
.

By Lemma 19, there exists T ′′i such that, for every t > t̂ + T ′′i ,
ati ∈ suppαi. Choosing Ti > max{T ′i , T ′′i } and T > max{Ti}i∈I , we get:

∀t > t̂+T, ∀i ∈ I, ati ∈ ρi
(
{â−i ∈ A−i : ∃τ, t̂ ≤ τ < t, fi(a

τ ) = fi(a
τ
i , â−i)}

)
.

Since t̂ is arbitrary, this complete the proof. �

The following result is a partial converse:

Theorem 22. Fix a game with feedback (G, f) and a trajectory (at)∞t=1.
If (at)∞t=1 is f -consistent with adaptive learning and at → a∗ then a∗ is a
self-confirming equilibrium profile.

Proof. If at → a∗, then there exists t̂ such that at = a∗ for every
t > t̂. By f -consistency of (at)∞t=1 with adaptive learning, it follows that
there exists T such that, for every t > t̂+ T and for every i ∈ I,

a∗i = ati ∈ ρi
({
a−i : ∃τ, t̂ ≤ τ < t, fi(a

τ ) = fi(a
τ
i , a−i)

})
= ρi

({
a−i : fi(a

∗
i , a
∗
−i) = fi(a

∗
i , a−i)

})
.

Hence, for every player i there exists a belief µi such that: (1) a∗i ∈ ri(µi),
(2) µi

({
a−i : fi(a

∗
i , a
∗
−i) = fi(a

∗
i , a−i)

})
= 1, which means that (a∗i , µ

i)i∈I
is a self-confirming equilibrium. �
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Games with Incomplete
Information

Let G = 〈I, (Ai, ui)i∈I〉 be a static game where the payoff functions
ui : A → R are derived from an outcome function g : A → Y and
utility functions vi : Y → R, that is, ui = vi ◦ g, i ∈ I. To make
sense of the strategic analysis of the game, it is typically assumed that
G is common knowledge, or—in other words—that there is complete
information. The reason is apparent for “deductive” solutions concepts,
such as rationalizability, that characterize the set of action profiles
consistent with common knowledge of the game, rationality and common
belief in rationality. Also the interpretation of the Nash equilibrium
concept (or more generally of correlated equilibrium) as a “self-enforcing
agreement” makes more sense under the complete information assumption.
To see this, suppose that before the game is played the players agreed to
play some Nash equilibrium profile a∗. Then, nobody has an incentive to
deviate if he expects that the others comply with the agreement. But why
should the players expect that the agreement is complied with? If the
payoff functions of others are unknown, a player could suspect that some
other player has an incentive to deviate and hence he may want to deviate
too.

In some games the incentive to deviate when there is a small chance
that the opponent might not honor the agreement is very strong. For
example, consider the Pareto efficient agreement (a, c) of the following
payoff matrix:

165
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c d

a 100, 100 0, 99

b 99, 0 99, 99

If Rowena does not know Colin’s payoff function, she may suspect—for
example—that d is dominant for Colin, and hence switch to her safe action
b provided she assigns to d a probability above 1%. A similar argument
applies to Colin. Now suppose that payoff functions are mutually known,
but Rowena is not sure that Colin knows her payoff function. Then she
assigns a positive probability to Colin playing his safe action d instead of
the agreed upon action c, and again she would go for the safe action, b,
provided she assigns to d a probability above 1%. Continuing like this it
can be shown that even a high degree of mutual knowledge of the game
does not ensure that the agreement will be honored. On the other hand,
common knowledge of the game makes the agreement self-enforcing.1

8.1 Games with Payoff Uncertainty

How can we represent a game with incomplete information? The problem
can be viewed as follows: the outcome function g : A→ Y and the utility
functions vi : Y → R depend on a vector of parameters θ which is not
commonly known. Hence, the payoff functions ui = vi ◦ g depend on
a parameters vector which is not commonly known.2 To represent this
uncertainty, payoff functions can be written in a parameterized form

ui : Θ×A→ R,

where Θ is the set of values of θ that are not excluded by what is commonly
known among the players.

In order to represent what a player knows about θ, we assume for
simplicity that θ is decomposable into subvectors θj , with j ∈ {0}∪ I, and
that each player i ∈ I knows the true value of θi, whereas θ0 represents

1Vice versa, recall that the interpretation of a Nash equilibrium (pure or mixed) as a
stationary state of an adaptive process does not require common knowledge, nor mutual
knowledge of the game.

2The set of the opponents’ actions could be unknown as well. We omit this source of
uncertainty for the sake of simplicity.
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residual uncertainty that would persist even if the players could credibly
share their private information. To further simplify the analysis, we will
sometimes assume that there is no such residual uncertainty (in many
cases, this assumption is rather innocuous). In this case Θ0 is a singleton
and it makes sense to omit it from the notation, writing θ = (θi)i∈I .

Example 24. Consider again the team of two players producing a public
good (Example 1). Now we express the production function and cost-of-
effort functions in a slightly different parametric form. The parameterized
production function is

Q = θ0(a1)θ
q
1(a2)θ

q
2 .

The parameterized cost of the effort of player i measured in terms of output
is

Ci =
1

2θci
(ai)

2.

The parameterized consequence function specifies a triple (Q,C1, C2) as a
function of (θ, a1, a2):

g(θ, a1, a2) =

(
θ0(a1)θ

q
1(a2)θ

q
2 ,

1

2θc1
(a1)2,

1

2θc2
(a2)2

)
.

The commonly known utility function of player i is vi(Q,C1, C2) = Q−Ci.
The parameterized payoff function is then

ui(θ, a1, a2) = vi(g(θ, a1, a2)) = θ0(a1)θ
q
1(a2)θ

q
2 − 1

2θci
(ai)

2.

It is assumed to be common knowledge that θ0 ∈ Θ0 ⊆ R+ and θi =
(θqi , θ

c
i ) ∈ Θi ⊆ R2

+ where the sets Θ0, Θ1 and Θ2 are specified by the
given model. Each player i knows his efficiency parameter θi = (θqi , θ

c
i )

and nobody knows θ0, unless Θ0 is a singleton. N

In Example 24 the set Θ = Θ0×Θ1×Θ2 only includes parameters that
directly affect the payoff functions of players and, for this reason, we call
them payoff-relevant (θq1 and θq2 are output elasticities with respect to
agents’ actions, θc1 and θc2 are coefficients of the cost functions, and θ0 is
a “total factors productivity” parameter). However, parameter vector θi
can also include payoff-irrelevant information, namely information that
does not directly affect payoffs. As we are going to show in this chapter,
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even payoff-irrelevant parameters may affect the strategic analysis. For
instance, a player may believe that some payoff-irrelevant information that
he or other players observe is correlated with parameters affecting payoffs.

Unlike θi (i ∈ I), the parameter θ0 that captures residual uncertainty
may be assumed to affect the payoff of at least one player: since it is
common knowledge that players ignore θ0 and cannot condition their
behavior on θ0, there is no reason to include payoff-irrelevant components
in θ0. Formally, it may be assumed without any loss of generality that,
whenever θ′0 6= θ′′0 , there must be some player j, information profile (θi)i∈I ,
and action profile a = (ai)i∈I such that uj(θ

′
0, (θi)i∈I , a) 6= uj(θ

′′
0 , (θi)i∈I , a).

Example 25. Consider the following Cournot oligopoly game with
incomplete information: The market inverse demand function is

P (θ0, Q) = max{0, θ0 −Q}, with Q =
n∑
i=1

qi.

The cost function of each firm i is given by

Ci(θi, qi) =
1

2θci
(qi)

2.

Then

ui(θ, q1, ..., qn) = qi max

{
0, θ0 −

n∑
i=1

qi

}
− 1

2θci
(qi)

2. (8.1.1)

Thus, θ0 is an (unknown) shift parameter that captures market conditions,
while θci parametrizes the cost function of firm i. Obviously, θ0 and (θci )i∈I
are payoff relevant. Further, assume that each firm has a marketing
department which performs a market analysis and issues a score to
summarize its report; in particular, for every i ∈ I, let θmi = θ0 + εi,
where εi is normally distributed with mean 0 and precision τi and εi, εj
are independent for every i, j with i 6= j, conditional on θ0.3 The payoff
function of each firm i, given by eq. (8.1.1), is independent of (θmj )j∈I ;
thus, each θmi (i ∈ I) is payoff-irrelevant. Nevertheless, θmi may play a role
in the strategic analysis: (1) firm i can condition its behavior on θmi , (2)

3Assume, for simplicity, that the marketing department operational cost is equal to
0.
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firm j 6= i may believe that i will condition its behavior on θmi and try to
exploit the correlation between θmj , θ0 and θmi to make infererence about
the behavior of i, and so on. N

In the previous narrative, θ is mostly interpreted as a fixed parameter
vector imperfectly and asymmetrically known by the players. To stress this
interpretation we sometimes call θ state of nature. However, in many
models, either the whole θ, or some of its components, are intepreted as
the realization of an exogenous random variable. To illustrate, in Example
25 the shift parameter θ0 may represent the realization of a demand
shock. The specific interpretation of θ (or some of its components) as
a fixed parameter or the realization of an exogenous random variable is
more important for extensions of the Nash and selfconfirming equilibrium
concepts to enviroments with incomplete and asymmetric information.
Thus, we will consider it again as we discuss these extensions in Sections
8.6 and 8.7.

8.1.1 Private and Interdependent Values

In general, player i’s payoff function, ui, may depend on the whole profile
θ = (θj)j∈I , and not just on θi (see Example 24). However, the analysis
is simpler when the consequence function g is commonly known and
uncertainty only concerns the utility functions vi : Y → R. In this
case, each player i knows his own payoff function ui = vi ◦ g (given that
g is commonly known and vi represents i’s preferences over lotteries of
consequences). To represent other players’ ignorance of i’s utility (and
payoff) function, such a function can be written in parameterized form
vi(θi, y), where θi is known only to player i. This yields parameterized
payoff functions ui(θi, a) = vi(θi, g(a)), where i knows θi. Whenever ui
varies only with θi (and a) the game is said to have private values.

Suppose now that the consequence function g is not common
knowledge. Uncertainty about the consequence function can be expressed
by representing g in the parameterized form g(θ, a). Then, θi identifies not
only i’s preferences, but also i’s private information about the consequence
function. Payoff functions have the general parameterized form ui(θ, a) =
vi(θi, g(θ, a)). Since ui depends on the whole parameter vector θ, the game
is said to have interdependent values, meaning that ui may vary with
θj (j 6= i).
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Finally, we say that there is distributed knowledge of θ if parameter
θ can be identified by pooling the information of all the players. More
formally, let θ = (θ0, (θi)i∈I) and let Θj denote the set of possible values
of θj (j ∈ {0} ∪ I). Then there is distributed knowledge of θ when Θ0

is a singleton.

Example 26. Consider again Example 25. Then, there is distributed
knowledge of θ if the (inverse) demand function is commonly known, i.e.,
Θ0 = {θ̄0}. In this case, the model also features private values. N

Example 27. In the game of Example 24 there is distributed knowledge
of θ if and only if there is only one possible value, say θ̄0, of the total
productivity parameter, i.e., Θ0 = {θ̄0}. There are private values if and
only if there is distributed knowledge of θ, hence common knowledge of
total productivity θ̄0, and moreover there is common knowledge of the
output elasticities with respect to players’ actions, θ̄q1 and θ̄q2, that is,
Θi = {θ̄qi } × Θc

i (i = 1, 2). Otherwise there are interdependent values.
N

To summarize, a strategic environment with incomplete information
can be simply described by the following mathematical structure

Ĝ = 〈I,Θ0, (Θi, Ai, ui : Θ×A→ R)i∈I〉 ,

where all the sets Θj (j ∈ I ∪ {0}) and Ai (i ∈ I) are nonempty,
Θ0 is the space of residual uncertainty, Θi the set of parameter values
that i’s opponents consider possible, and—as usual—Θ =×i∈I∪{0}Θi,

A = ×i∈I Ai. We call θi, i’s private information about parameter θ,
the information-type of i (the term “type” will be used later for a
more complex object). We call Ĝ “game with payoff uncertainty”
rather than “game with incomplete information;” the latter terminology,
although perfectly legitimate, is often used to indicate a game endowed
with a description of the possible beliefs of players about θ — see Section
8.4. We assume that all the sets and functions specified by structure Ĝ are
commonly known. Otherwise, it would mean that some aspects of players’
uncertainty have been omitted from the formal representation.

Note, the “size” of Θj measures the ignorance of each player i 6= j
about θj . It is important to specify how ignorant each player is. Even if
the modeler knew the true value of θ, say θ̄, he should still put the sets
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Θj in the formal model. This is true even in the private value case. Why?
Because in the strategic analysis of the game each player i puts himself
in the shoes of each other player j and considers how j would behave for
each information-type θj that i deems possible.

We can extend to games with payoff uncertainty some properties
defined earlier.

Definition 33. A game with payoff uncertainty Ĝ is compact-
continuous if all the sets Θj (j ∈ I ∪ {0}) and Ai (i ∈ I) are compact
subsets of Euclidean spaces, and every payoff function ui is continuous
(i ∈ I).

Definition 34. A game with payoff uncertainty Ĝ is nice if (1) it is
compact-continuous, (2) all the sets Θj (j ∈ I ∪ {0}) are convex subsets
of Euclidean spaces,4 and, (3) for every player i ∈ I, Ai is a compact
interval in R, and the section of his payoff function ui,θ,a−i : Ai → R is
strictly quasi-concave for all (θ, a−i) ∈ Θ×A−i.

The games of Examples 24 and 25 are nice if all the parameter sets and
action sets are convex and compact.

8.2 Rationalizability and Payoff Uncertainty

The specification of a game with payoff uncertainty is sufficient to obtain
some results about the outcomes of strategic interaction that are consistent
with rationality and standard assumptions about players’ beliefs (for
instance, some degrees of mutual belief in rationality). Consider the
following examples:

Example 28. There are two possible payoff functions for each player i,
ui(θ

a, ·) and ui(θ
b, ·). Player 1 (Rowena) knows the true payoff functions

while player 2 (Colin) does not know them. The situation can be
represented with two matrices, corresponding to the two possible values of

4It is enough to assume that each Θj is connected, i.e., it is not contained in a union
of disjoint open sets. Every convex set is connected. A subset of R is connected if and
only if it is convex, but a connected subset of Rk may be nonconvex. What matters for
our analysis is that, for every continuous function f : X → R (X ⊆ Rk), if X is convex,
or connected, then f (X) is an interval.
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the parameter θ, assuming that Rowena knows the true payoff matrix.5

Action a dominates b in payoff matrix θa, while b is justifiable (not
dominated) in matrix θb.

Ĝ1 :

θa c d

a 4, 0 2, 1

b 3, 1 1, 0

θb c d

a 2, 0 0, 1

b 0, 1 1, 2

Consider the following epistemic assumptions: R1, R2, B1(R2), B2(R1),
B1(B2(R1)).6 Obviously the implications of such hypotheses for Rowena’s
choice depend on the true value of θ (which is known only to her). As
theorists, we do not make any assumption about θ, but rather we want
to explain what may happen (consistently with the above mentioned
assumptions) for each possible value θ ∈ Θ.
R1 implies that Rowena chooses a if θ = θa (a is dominant in matrix θa).
R2 ∩ B2(R1) implies that Colin chooses d. Indeed, B2(R1) implies that
Colin is certain that Rowena would choose a if θ = θa. Hence, Colin assigns
probability zero to the pair (θa, b). Also, notice that d is “dominant” when
the set of possible pairs is restricted to

{
(θa, a), (θb, a), (θb, b)

}
.

R1 ∩ B1(R2) ∩ B1(B2(R1)) implies that Rowena expects d and as a
consequence chooses b if θ = θb.
To sum up, the aforementioned assumptions imply that the outcome is
(a, d) if θ = θa and (b, d) if θ = θb. Note, the set of i’s actions consistent
with rationality and these epistemic assumptions can depend only on what
i knows. Then, in this case, the set of possible actions of Colin (the
singleton {d}) is independent of θ. N

Example 29. Players 1 and 2 receive an envelope with a money prize
of k thousands Euros, with k = 1, ...,K. It is possible that both players
receive the same prize. Every player knows the content of her own envelope
and can either offer to exchange her envelope with that of the other
player (action OE=Offer to Exchange), or not (action N=do Not offer to

5In this case, we can drop indexes from θ as only player 1 has private information and
therefore there is a one-to-one correspondence between Θ and Θ1. Thus, Θ1 =

{
θa1 , θ

b
1

}
,

Θ2 =
{
θ̄2

}
, Θ =

{
θa, θb

}
with θa = (θa1 , θ̄2) and θb = (θb1, θ̄2).

6The meaning of these symbols is explained in Chapter 4.
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exchange). The OE/N actions are taken simultaneously and the exchange
takes place only if it is offered by both. In order to offer an exchange a
player has to pay a small transaction cost ε. The players’ payoff is given
by the amount of money they end up with at the end of the game. For
this example, Θi = {1, ...,K} and ui(θ, a) is given by the following table:

ai\aj OE N

OE θj − ε θi − ε
N θi θi

Therefore, a necessary condition for i to offer to exchange is that he
assigns a positive probability to event [θj > θi] ∩ [aj = OE]. It can be
shown that the assumptions of rationality and common belief in rationality
imply that i keeps his envelope, whatever the content. Let us consider, for
simplicity, only the case K = 3 (the general result can be obtained by
induction):
Ri implies that i keeps the envelope if θi = 3, since by offering to exchange
he could obtain at most 3− ε.
Ri ∩Bi(Rj) implies that i keeps the envelope if θi ≥ 2. Indeed, i is certain
that j would not offer to exchange if θj = 3; hence i is certain that by
offering to exchange he would obtain at most 2− ε.
Ri ∩ Bi(Rj) ∩ Bi(Bj(Ri)) implies that i keeps the envelope whatever the
value of θi. Indeed i is certain that j could offer to exchange only if θj = 1;
hence i is certain that by offering to exchange he could obtain at most
1− ε. N

Intuitive, step-by-step solutions such as those of the previous examples
can be obtained by a simple extension of the rationalizability solution
concept from games with complete information to games with payoff
uncertainty. In general, we deem “rationalizable” any outcome consistent
with the assumptions of rationality and common belief in rationality,
which we denote using the symbol R ∩ CB(R),7 given the common
background knowledge. Rationalizability in games of complete information,
for instance, identifies the choices that are consistent with assumptions
R ∩ CB(R) given that the game is common knowledge.

7Recall that CB(R) =
⋂
k≥1 Bk(R) denotes common probability-one belief in

rationality.
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In the analysis of strategic interaction with incomplete information, it is
interesting to address the following question: What behavior is consistent
with R ∩ CB(R) given that the features of strategic interaction encoded
by structure Ĝ = 〈I,Θ0, (Θi, Ai, ui)i∈I〉 are common knowledge? The
intuitive solutions of the previous examples suggest how to obtain the
answer: eliminate, step by step, the pairs (θi, ai) such that ai is not a best
reply to any probabilistic conjecture µi ∈ ∆(Θ0×Θ−i×A−i) that assigns
probability zero to every (θ−i, a−i) eliminated in the previous steps. By
Lemma 2, in a given step of the elimination procedure one has to delete
the pairs (θi, ai) such that, for θi, ai is dominated by some mixed action
αi given the previous steps of elimination.

More formally, this solution procedure can be defined via a
generalization of the rationalization operator. Consider a finite or
compact-continuous Ĝ. First we extend the definition of best reply
correspondence to the payoff-uncertainty setup: for every µi ∈ ∆(Θ0 ×
Θ−i ×A−i) and θi ∈ Θi, let

ri(µ
i, θi) = arg max

ai∈Ai
Eµi (ui,θi,ai) , (8.2.1)

where ui,θi,ai : Θ0 × Θ−i × A−i → R is the section of i’s parameterized
payoff function at (θi, ai). When conjecture µi has a finite support, the
expected utility formula is

Eµi (ui,θi,ai) =
∑

(θ0,θ−i,a−i)∈suppµi

ui (θ0, θi, θ−i, ai, a−i)µ
i (θ0, θ−i, a−i) .

As usual, we slightly abuse notation and write ∆(Θ0 ×C−i) for the set of
probability measures on Θ0 × (×j 6=i Θj × Aj) that assign probability one
to Θ0×C−i. The following lemma says that the best reply correspondence
(µi, θi) 7→ ri(µ

i, θi) defined above is “well behaved,” that is, it is nonempty
valued and it has a closed graph:8

Lemma 20. If Ĝ is a compact-continuous game with payoff uncertainty,
for every i ∈ I, and every nonempty closed subset C0,−i ⊆ Θ0×Θ−i×A−i,

Gr
(
ri|∆(C0,−i)×Θi

)
=
{(
µi, θi, ai

)
∈ ∆ (C0,−i)×Θi ×Ai : ai ∈ ri

(
µi, θi

)}
8The mathematical meaning of “closed” in the lemma is clear when Θ0 ×Θ−i ×A−i

is finite, which implies that ∆ (Θ0 ×Θ−i ×A−i) is a compact (and convex) subset of
RΘ0×Θ−i×A−i . For the more general compact-continuous case see Section 4.7 and, in
particular, Lemma 10.
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is closed, and ri
(
µi, θi

)
6= ∅ for all

(
µi, θi

)
∈ ∆ (C0,−i)×Θi.

Let C denote the collection of closed Cartesian subsets of the form

C = Θ0 ×

(
×
i∈I

Ci

)
⊆ Θ×A,

where Ci ⊆ Θi ×Ai for each i ∈ I, and let

C0,−i = Θ0 ×

(
×
j 6=i

Cj

)
.

With this, define the rationalization operator ρ : C → C as follows: for
each C ∈ C,

ρi(C0,−i) =
{

(θi, ai) ∈ Θi ×Ai : ∃µi ∈ ∆(C0,−i), ai ∈ ri(µi, θi)
}
,

ρ(C) = Θ0 ×

(
×
i∈I

ρi(C0,−i)

)
.

Intuitively, we keep the whole residual uncertainty space Θ0 as is, because
strategic thinking can rule out some pairs (θi, ai) for some player i, but
cannot rule out any possible θ0. Formally, one can reinterpret θ0 as the
information type of an inactive player 0, so that A0 is a singleton.

Remark 27. ρ is monotone, that is, E ⊆ F implies ρ (E) ⊆ ρ (F ) for all
E,F ∈ C; therefore, the sequence

(
ρk (Θ×A)

)∞
k=1

is (weakly) decreasing.

With this, we can extend the definition of rationalizability from games
with complete information to games with payoff uncertainty.9

Definition 35. A profile
(
θ0, (θi, ai)i∈I

)
is rationalizable if(

θ0, (θi, ai)i∈I
)
∈ ρ∞ (Θ×A) =

⋂
k∈N

ρk (Θ×A) ;

an action ai is rationalizable for information-type θi if the pair (θi, ai)
is part of a rationalizable profile, that is,

(θi, ai) ∈ projΘi×Aiρ
∞ (Θ×A) .

9See Battigalli [7].
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A proper formalization of events (like rationality, R) and belief
operators (like Bi(·) and B(·)) would allow to derive the following table,
where it is implicitly assumed that there is common knowledge of the game
with payoff uncertainty Ĝ.

Assumptions about rationality and beliefs Behavioral implications

R ρ(Θ×A)

R ∩ B(R) ρ2(Θ×A)

R ∩ B(R) ∩ B2(R) ρ3(Θ×A)

... ...

R ∩
(⋂K

k=1 Bk(R)
)

ρK+1(Θ×A)

... ...

In Example 28 ρ3(Θ × A) =
{

(θa, a), (θb, b)
}
× {d}. In Example 29

ρK(Θ × A) = (Θ1 × {N}) × (Θ2 × {N}) (after K steps, where K is the
number of possible prizes, only the pairs (θi, N) survive).

The results about rationalizability in games with complete information
can be extended to games with payoff uncertainty:

Theorem 23. If Ĝ is a finite or compact-continuous game with payoff
uncertainty, then

projΘρ
k (Θ×A) = Θ

for all k ∈ N ∪ {∞}, and

ρ (ρ∞ (Θ×A)) = ρ∞ (Θ×A) ;

furthermore, for every C ∈ C,

C ⊆ ρ (C)⇒ C ⊆ ρ∞ (Θ×A) .

The first part follows from Lemma 20 and says that we cannot eliminate
any information-type θi, we can only eliminate pairs (θi, ai) such that ai is
not rationalizable given θi; this implies that the set of rationalizable actions
is nonempty for every information-type of every player. The second part
says that restarting the iterations from the set of rationalizable profiles
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cannot further reduce it. The third part says that every set C ∈ C with
the best reply property is contained in the set of rationalizable profiles.
The proof is a rather straightforward extension of the proofs of Theorems
2 and 3.

Furthermore, also the equivalence between rationalizability and
iterated dominance can be extended to the payoff-uncertainty setup. For
any C ∈ C, let Ci,θi = {ai ∈ Ai : (θi, ai) ∈ Ci} denote the θi-section of Ci.

Definition 36. Fix C ∈ C, i ∈ I, ai ∈ Ai, αi ∈ ∆ (Ai) in a game with
payoff uncertainty Ĝ; mixed action αi dominates ai given θi within C,
written αi �(θi,C) ai, if suppαi ⊆ Ci,θi and

∀(θ0, θ−i, a−i) ∈ Θ0 × C−i, Eαi(ui,θ0,θi,θ−i,a−i) > ui(θ0, θi, θ−i, ai, a−i),

where ui,θ,a−i : Ai → R is the section of i’s parameterized payoff function
at θ = (θ0, θi, θ−i, a−i).

When mixed action αi has a finite support, the expected utility formula
is

Eαi(ui,θ0,θi,θ−i,a−i) =
∑

a′i∈suppαi

ui
(
θ0, θi, θ−i, a

′
i, a−i

)
αi
(
a′i
)

.

This is like the standard notion of dominance by a mixed action (within a
restricted set of possible profiles), but it is extended to take into account
i’s private information and i’s uncertainty about (θ0, θ−i). Next define the
set of undominated profiles given C ∈ C, that is ND(C), as follows:

NDi(C) = Ci\
{

(θi, ai) ∈ Ci : ∃αi ∈ ∆(Ci,θi), αi �(θi,C) ai
}

,

ND(C) = Θ0 ×

(
×
i∈I

NDi(C)

)
.

As in the complete-information case, ND : C → C is not monotone. Lemma
2 can be restated as follows:

Lemma 21. Let Ĝ be a finite or compact-continuous game with payoff
uncertainty. For each C ∈ C, i ∈ I and (θi, a

∗
i ) ∈ Ci, the following

statements are equivalent:
(1) there is no mixed action αi such that αi �(θi,C) a

∗
i ,

(2) there is a conjecture µi ∈ ∆(Θ0 × C−i) such that a∗i ∈
arg maxai∈Ci,θi Eµi (ui,θi,ai).
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By a straightforward extension of the methods of Chapter 4, one can
use Lemma 21 to prove the following result:

Theorem 24. If Ĝ is a finite or compact-continuous game with payoff
uncertainty, then ρk(Θ×A) = NDk(Θ×A) for all k ∈ N ∪ {∞}.

Therefore a profile of information-types and actions ((θi, ai))i∈I is
rationalizable if and only if it survives the iterated elimination of those
pairs (θi, ai) such that ai is dominated given θi within the set of profiles
that survived the previous rounds of elimination.

Finally, in the case of nice games with payoff uncertainty,
rationalizability is characterized by the iterated deletion of pairs (θi, ai)
such that either ai is not a best reply to any deterministic conjecture,
or ai is dominated by another pure action. We can formally state this
result by extending the definition of operators r and NDp from games with
complete information (cf. Section 4.6) to games with payoff uncertainty.
For each C ∈ C, let ri(C0,−i) denote the set of pairs (θi, ai) such that ai is
a best reply for θi to a deterministic conjecture in C0,−i, that is,

ri(C0,−i) =
⋃
θi∈Θi

ri (C0,−i × {θi})

=
{

(θi, ai) ∈ Θi ×Ai : ∃
(
θ0, (θj,aj)j 6=i

)
∈ C0,−i, ai ∈ ri

((
θ0, (θj , aj)j 6=i

)
, θi

)}
,

where (with the usual abuse of notation) we identify C0,−i ⊆ Θ0×Θ−i×A−i
with the set of Dirac measures on Θ0 ×Θ−i ×A−i supported by points in
C0,−i, and let

r (C) = Θ0 ×

(
×
i∈I

ri (C0,−i)

)
.

The iterations of operator (self-map) r give rise to an extension of the
point rationalizability concept to games with payoff uncertainty. For
each C ∈ C, let

NDp,i(C) = Ci\
{

(θi, ai) ∈ Ci : ∃a′i ∈ Ci,θi , a
′
i �(θi,C) ai

}
and

NDp(C) = Θ0 ×

(
×
i∈I

NDp,i(C)

)
.
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The iterations of operator NDp (self-map) yield a simple notion of iterated
dominance by pure actions. With these definitions of the operators r and
NDp, we have:

Theorem 25. If Ĝ is a nice game with payoff uncertainty, then

rk (Θ×A) = ρk (Θ×A) = NDk
p (Θ×A)

for all k ∈ N ∪ {∞}.

The proof is based on a straightforward extension of Lemma 7.

8.3 Directed Rationalizability

According to the previous analysis of rationalizability, restrictions on
players’ conjectures are only derived from strategic thinking, while
restrictions on players’ beliefs about the parameter profile θ do not play any
role. To see this more formally, let ρ∞j (Θ×A) = projΘj×Ajρ

∞ (Θ×A)
denote the set of rationalizable pairs (θj , aj) of player j. By Theorem
23, an action ai is rationalizable for information-type θi if and only if
it is a best reply to some conjecture µi that assigns probability 1 to

Θ0 ×
(
×j 6=i ρ

∞
j (Θ×A)

)
, where projΘjρ

∞
j (Θ×A) = Θj for each co-

player j (for each type, the set of rationalizable actions is nonempty).
Therefore, the marginal beliefs about residual uncertainty and co-players’
information-types are not in any way restricted by rationalizability, the
restrictions concern only the relationship between information-types and
actions implied by rationality and common belief in rationality.

Yet, when we analyze strategic interaction in environments with
incomplete information, it may be natural to assume that some contextual
restrictions on players beliefs about θ hold, and that it is common belief
that they hold. For example, when two sellers compete they may have
statistical information about the distribution of valuations among buyers.
If this statistical information is common, we obtain a common restriction
on sellers’ beliefs about buyers’ valuations.10

To simplify our informal terminology, let us say that some event E is
transparent if E is true and there is common belief of E, in symbols, if

10If buyers are modeled as non-strategic agents rather than players, this is a common
restriction on beliefs about θ0.
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E ∩CB(E) is the case. We are interested in characterizing the behavioral
implications of rationality and common belief in rationality under the
assumption that some features of players’ conjectures are transparent.
Specifically, we present an extension of the notion of rationalizability
for games with payoff uncertainty whereby some restrictions on players’
conjectures are posited and assumed to be transparent, thereby “directing”
the result of the solution procedure toward a subset of outcomes. For this
reason, we call this more flexible approach “directed rationalizability.” To
gain intuition on what we mean and how this procedure works, we first
look at an example.

Example 30. Consider a modification of the game in Example 28. There
are two possible payoff functions for each player i, ui(θ

a, ·) and ui(θ
b, ·).

Player 1 (Rowena) knows the true payoff functions, while player 2 (Colin)
does not know them. We represent this situation with two matrices,
corresponding to the two possible values of the parameter θ.

θa c d

a 4,0 2,1

b 3,1 1,0

θb c d

a 2,1 0,0

b 0,0 1,1

In this game,

ρ∞(Θ×A) = ρ1(Θ×A) =
{

(θa, a), (θb, a), (θb, b)
}
× {c, d} .

Indeed, action a is dominant for information-type θa, while both a and
b are justifiable for θb. Moreover, both actions for Colin are justifiable.
The procedure ends at the first step because, as it can be verified, action c
(resp. d) is optimal for Colin if he thinks that θb (resp. θa) is more likely
than θa (resp. θb).

Let p = µ2 ({θa} ×A1) denote the probability that Colin assigns to
information-type θa. Assume now that it is transparent that p > 1

2 . Given
such restriction, consider the following epistemic assumptions (we are not
making the transparency of p > 1

2 explicit in the notation): R, R ∩ B(R)
and R ∩ B(R) ∩ B2(R).
R implies that Rowena chooses a if θ = θa (a is dominant in matrix θa).
R ∩B(R) implies that Colin chooses d. Indeed, B2(R1) implies that Colin
is certain that Rowena would choose a if θ = θa. Hence, Colin assigns
probability zero to (θa,b), which implies µ2 (θa, a) = p. Since p > 1

2 ,
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action d yields a strictly higher expected payoff than c. To see this, let
q = µ2

(
θb, b

)
denote the probability that Colin assigns to the pair (θb,b).

The expected payoff of choosing d is

µ2 (θa, a) + µ2
(
θb, b

)
= p+ q ≥ p > 1

2
,

and the expected payoff of choosing c is

µ2
(
θb, a

)
≤ 1− p < 1

2
.

Since it is transparent that p > 1
2 , R ∩B(R)∩B2(R) implies that Rowena

expects d and she chooses b if θ = θb.
Summing up, the aforementioned assumptions imply that the outcome is
(a, d) if θ = θa and (b, d) if θ = θb. N

The example has two features that make it very simple. First, there
is no residual uncertainty and only one player is uninformed. Second,
we only posited a restriction on beliefs about the co-player’s information-
type. It follows that there is no room for a possible dependence of the
posited belief restriction on the own information-type of a player: in
Example 30 there is only one possible information-type of Colin. Yet,
there are reasons to make the analysis more flexible. For example, in
many economic applications a player’s information-type represents private
information about an unknown statistical distribution. To consider a more
specific example, when a couple splits and they have to agree on who is
going to keep their house and pay a compensation to the other, it may be
common belief who values the house more among the two of them, but not
exactly by how much. This can be modeled as a type-dependent restriction
on beliefs about θ: let i be the high-valuation player, if i’s type/valuation
is θi, then player i is certain that θ−i < θi.

It may also be reasonable to posit joint restrictions concerning the
subjective probabilities assigned to information-types and actions of co-
players, such as (without residual uncertainty) the independence restriction

µi (θ−i, a−i) =
∏
j 6=i

µi (θj , aj) .
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Next we present an example of a different kind. It may be plausible to
assume that the following is transparent in a two-person game with no
residual uncertanity about θ: player i assigns strictly positive probability
to every type of j, and that if a certain action a∗j is weakly dominant for
a type θ∗j , then player i assigns strictly positive probability to a∗j given

θ∗j . Thus, it is also transparent that µi
(
θ∗j , a

∗
j

)
= µi

(
a∗j |θ∗j

)
µi
(
θ∗j

)
> 0.

This seemingly innocuous assumption may have a significant impact.

Example 31. Consider the Envelope Game of Example 29 without
transaction costs, that is, with ε = 0. Suppose that the only transparent
features of players’ conjectures are as follows: (a) if i’s prize (information-
type) is θi, then player i assigns strictly positive probability to every prize
θ−i ≤ θi of the co-player, and (b) if the co-player had the lowest prize,
absent transaction costs, he would offer to exchange (weakly dominant
action) with strictly positive probability. Then, an “unraveling” argument
quite similar to the one offered in Example 29 shows that no type above the
lowest offers to exchange. Note that the assumed restriction is plausible
and consistent with strategic reasoning, but it does not derive from
strategic reasoning. Indeed, if the posited restrictions are transparent,
rationality and common belief in rationality imply the following: if a player
has the lowest prize, then he is certain that—whatever he does—he ends
up with the same prize; hence, he is indifferent. As a consequence, offering
to exchange would be rationalizable for every type, because a player could
assign probability 1 to the event that the co-player does not exchange. N

With this in mind, for each information-type θi of each player i, we posit
a subset of conjectures in ∆(Θ0 × Θ−i × A−i). To simplify the analysis,
we assume that all the sets Θj (j ∈ I ∪ {0}) and Ai (i ∈ I) are finite.11

For each i ∈ I and θi ∈ Θi, we let ∆i,θi ⊆ ∆(Θ0 × Θ−i × A−i) denote
the restricted set of conjectures for information-type θi of player i. We
maintain throughout this section that ∆i,θi 6= ∅ for each i and θi. To
illustrate, in Example 30 player 2 has no private information and

∆2 =

{
µ2 ∈ ∆ (Θ1 ×A1) : µ2 ({θa} ×A1) >

1

2

}
,

11This simplification is relatively innocuous. The analysis can be extended to compact-
continuous games with a modicum of additional technicalities.
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whereas ∆1,θa = ∆1,θb = ∆ ({c, d}) (no restrictions for any information-
type of player 1); in Example 31

∆i,θi =

{
µi :

∀θ−i ∈ {1, ..., θi} , µi ({θ−i} ×A−i) > 0,
µi (1,OE) > 0

}
.

For a given profile ∆ = (∆i,θi)i∈I,θi∈Θi
, define the ∆-rationalization

operator ρ∆ : C → C as follows: for each C ∈ C,

ρi,∆(C0,−i) =
{

(θi, ai) ∈ Θi ×Ai : ∃µi ∈ ∆(C0,−i) ∩∆i,θi , ai ∈ ri(µ
i, θi)

}
,

ρ∆(C) = Θ0 ×

(
×
i∈I

ρi,∆(C0,−i)

)
.

It can be verified that, for any fixed ∆, the operator ρ∆ is monotone,
that is, E ⊆ F implies ρ∆ (E) ⊆ ρ∆ (F ) for all E,F ∈ C. There
is also another noteworthy form of monotonicity. Consider two profiles

∆ = (∆i,θi)i∈I,θi∈Θi
and ∆′ =

(
∆′i,θi

)
i∈I,θi∈Θi

, and write ∆ ⊆ ∆′ if

∆i,θi ⊆ ∆′i,θi for each i ∈ I and θi ∈ Θi. The proof of the following
statement is left as an exercise for the reader.

Remark 28. Fix two profiles of restrictions, ∆ and ∆′. If ∆ ⊆ ∆′, then
ρ∆(C) ⊆ ρ∆′(C) for each C ∈ C.

For a fixed profile ∆, we define the k-th iteration of ρ∆ recursively. For
each C ∈ C, let ρ0

∆(C) = C, and, for each k ≥ 1, let ρk∆(C) = ρ∆(ρk−1
∆ (C)).

Definition 37. Fix a profile ∆ = (∆i,θi)i∈I,θi∈Θi
of restricted sets of

conjectures. A profile
(
θ0, (θi, ai)i∈I

)
is ∆-rationalizable if(

θ0, (θi, ai)i∈I
)
∈ ρ∞∆ (Θ×A) =

⋂
k∈N

ρk∆ (Θ×A) ;

an action ai is ∆-rationalizable for information-type θi if the pair
(θi, ai) is part of a ∆-rationalizable profile, that is,

(θi, ai) ∈ projΘi×Aiρ
∞
∆ (Θ×A) .

First note that we obtain the previous definition of rationalizability for
games with payoff uncertainty when we let ∆i,θi = ∆(Θ0×Θ−i×A−i) for
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every i and θi, that is, when no restrictions are assumed. Second, the set
ρ∞∆ (Θ×A) of ∆-rationalizable profiles depends on the specific profile ∆
of restricted sets; different specifications of ∆ may yield different solution
sets. In Example 30, if it is transparent that Colin deems θa strictly more
likely than θb, the solution is

ρ∞∆ (Θ×A) = ρ3
∆ (Θ×A) =

{
(θa, a) ,

(
θb,b

)}
× {d} ;

if instead Colin may also deem θb at least as likely as θa (that is, if there
are no restrictions for Colin), the solution is

ρ∞∆ (Θ×A) = ρ1
∆ (Θ×A) =

{
(θa, a) ,

(
θb, a

)
,
(
θb,b

)}
× {c, d} .

This inclusion result (with respect to the restrictions represented by ∆) is
not a coincidence: the reader can use Remark 28 to prove by induction the
following statement.

Remark 29. Fix two profiles of restrictions, ∆ and ∆′. If ∆ ⊆ ∆′, then
ρ∞∆ (Θ×A) ⊆ ρ∞∆′ (Θ×A).

We call “directed rationalizability” the map ∆ 7→ ρ∞∆ (Θ×A) when we
refer to the final result, and the map ∆ 7→

(
ρk∆ (Θ×A)

)∞
k=1

when we refer
to the iterated elimination procedure.

It can be shown that, for each profile ∆, ρ∞∆ (Θ×A) charaterizes the
behavioral implications of rationality and common belief in rationality
when it is transparent that players’ conjectures satisfy the restrictions
represented by ∆. Of course, since ρ∆ is monotone, the sequence(
ρk∆ (Θ×A)

)∞
k=1

is (weakly) decreasing. Thus, the abstract analysis
of directed rationalizability is similar to the analysis of the simpler
“undirected” version. But there is a conceptual difference: if the
(transparent) restrictions represented by ∆ also concern conjectures about
co-players’ behavior, then they may turn out to be inconsistent with
implications of strategic thinking, that is, of the assumptions R, R∩B(R),
R ∩ B(R) ∩ B2(R),...; then, the set of ∆-rationalizable actions is empty.
This is the case in the Envelope game of Example 29 (i.e., with positive
transaction costs) if it is transparent that the lowest type offers to exchange
with strictly positive probability, because rationality and common belief
in rationality imply that no type offers to exchange. We now show that if,
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instead, the ∆-restrictions only concern beliefs about θ, then the solution
is nonempty. This requires some preliminary notations and definitions.

Recall that, given a probability measure µ on a space X × Y , we let
margXµ denote its marginal on X, that is, margXµ (E) = µ (E × Y ) for
every E ⊆ X. We say that ∆ = (∆i,θi)i∈I,θi∈Θi

is a profile of restrictions

on exogenous beliefs12 if, for each i ∈ I and each θi ∈ Θi, there is a
nonempty set ∆̄i,θi ⊆ ∆(Θ0 ×Θ−i) such that

∆i,θi =
{
µi ∈ ∆ (Θ0 ×Θ−i ×A−i) : margΘ0×Θ−iµ

i ∈ ∆̄i,θi

}
.

With this, we obtain the following extension of Theorem 23.

Theorem 26. Let Ĝ be a finite game with payoff uncertainty. Consider a
profile ∆ = (∆i,θi)i∈I,θi∈Θi

of restrictions on exogenous beliefs. Then

projΘρ
k
∆ (Θ×A) = Θ

for all k ∈ N ∪ {∞}, and

ρ∆ (ρ∞∆ (Θ×A)) = ρ∞∆ (Θ×A) ;

furthermore, for every C ∈ C,

C ⊆ ρ∆ (C)⇒ C ⊆ ρ∞∆ (Θ×A) .

Like the proof of Theorem 23, also the proof of Theorem 26 is left to
the reader as an exercise. The key additional step is to show (by induction)
that, for each step k and for all i and θi there is at least one conjecture

µi ∈ ∆i,θi such that µi
(

Θ0 ×
(
×j 6=i projΘj×Ajρ

k−1
∆ (Θ×A)

))
= 1. This

is so because the latter condition only concerns conjectures about the
behavior of co-players’ given their information-types, while the former only
restricts the probabilities of their information-types.

12Recall that we call “exogenous” something that we are not trying to explain as game
theorists: we are not trying to explain (θ0, θ−i) nor—more generally—any beliefs about
exogenous things.
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8.4 Equilibrium and Beliefs: The Simplest Case

The directed rationalizability approach allows for the introduction of
some restrictions on exogenous beliefs, i.e., beliefs about parameters or
exogenous variables. In this section and the next we argue that an
extension of the traditional Nash equilibrium approach requires the precise
specification of exogenous beliefs.

In examples 28 and 29 the repeated elimination of dominated actions
selects a unique outcome for each θ. In the complete information case
we proved that if there is a unique rationalizable profile, this must be the
unique equilibrium. Also in the present incomplete-information context we
can interpret the rationalizable mapping from information-types to actions,
if it is unique, as a unique equilibrium of the following kind. For every
player i and every information-type θi there is a corresponding choice,
which in general can be denoted by σi(θi)—in Example 28 σ1(θa) = a,
σ1(θb) = b, and σ2 = d; in Example 29 σi(θi) = N. The unique profile of
rationalizable decision functions σ = (σi : Θi → Ai)i∈I has the following
property: there exists no player i, no information-type θi and no belief
over Θ0×Θ−i, such that i has an incentive to deviate from σi(θi) provided
that i expects every other player j to act according to the decision function
σj(·); furthermore, σ is the unique profile of decision functions with this
property.

A decision function of player j can be interpreted as the conjecture of
player i about how j would behave as a function of his information-type θj .
Then, one can tentatively define an equilibrium in this context as a profile
of decision functions such that every player, given his information-type,
chooses a best reply to his conjecture about other players, and furthermore
this conjecture is correct, i.e., it corresponds to how each co-player chooses
as a function of his own information-type.

The problem of this tentative definition is that it is silent on the belief
of each player i over Θ0 × Θ−i. But in many games it is not possible to
ascertain whether a profile of decision functions (σi)i∈I has the property
that no player i has incentives to unilaterally deviate from σi (i.e., what the
others expect him to choose) without further assumptions about players’
beliefs about θ. This is shown by the following example.

Example 32. Consider the following variation of game Ĝ1 (Rowena knows
the true payoff matrix, Colin does not):
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Ĝ2 :

θa c d

a 4, 0 2, 1

b 3, 1 1, 0

θb c d

a 1, 1 0, 0

b 0, 1 2, 0

How can we determine whether d is a best reply to the decision function
(σ1(θa), σ1(θb)) = (a,b)? It all depends on the probability that player 2
(Colin) assigns to θa and θb. If Colin thinks that θa is more likely than
θb, P2 (θa) ≥ 1

2 , then d is a best reply, otherwise it is not. Suppose that
P2 (θa) < 1

2 . In an “equilibrium” (σ1, σ2), we must have σ1(θa) = a,
because a is dominant for information-type θa of Rowena.13 In matrix
θb Colin’s payoff is independent of Rowena’s action; thus, if P2 (θa) < 1

2 ,
whatever the value of σ1(θb), Colin’s best reply to the decision function σ1

is c (indeed, c yields expected payoff 1−P2 (θa) > 1
2 , while d yields expected

payoff P2 (θa) < 1
2). Rowena’s best response to c in matrix θb is a. Then, if

P2 (θa) < 1
2 , the equilibrium profile should be σ1(θa) = σ1(θb) = a, σ2 = c.

N

The example shows that equilibrium analysis requires a specification
of beliefs about other players’ information-types. In general, in order to
define equilibrium behavior, it is necessary to enrich the mathematical
structure Ĝ with the probabilistic beliefs of every player i about the
residual uncertainty parameter θ0 and his co-players’ information-types
θ−i = (θj)j∈I\{i}. We denote such beliefs by pi ∈ ∆(Θ0 ×Θ−i). It is then
natural to ask: How is pi determined? What does player j (j 6= i) know or
believe about pi? If pi is just a subjective probability, then it does not seem
very plausible to assume that j “knows” pi, and it is even less plausible to
assume that the belief profile (pi)i∈I is “common knowledge.” Then, even
though by fixing a belief profile (pi)i∈I we can determine whether each
action σi(θi) (θi ∈ Θi) is a best reply to the profile of decision functions
σ−i = (σj)j 6=i, it is not clear whether this best reply property is sufficient
to ensure that there is no incentive to deviate. How can i be confident that
j will follow his prescribed choice σj(θj) if i does not know pj and therefore
cannot know whether each σj(θj) (θj ∈ Θj) is in turn a best reply to σ−j?

Actually, if we are to use a rigorous language, the word “knowledge”
should only be used for a true belief determined by direct observation or

13Of course, “equilibrium” has yet to be defined in this context. The formal definition
will follow.
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logical deduction. As long as we assume that players cannot peer into
other players’ minds, we have to exclude that they can know anything
about the beliefs of others. However, a player may know facts that,
according to some psychological hypotheses, imply that the co-players’
beliefs have some features, or maybe completely pin down the co-players’
beliefs about unknown parameters, beliefs about such beliefs, and so on.
If the psychological hypotheses are correct, this player’s beliefs about the
beliefs of others are also correct. In general, as we did in Section 8.3, we
say that some event E is transparent if E is true and there is common
belief of E. Then, the correctly posed question is whether the belief profile
(pi)i∈I is transparent. In the affirmative case, we can carry out a relatively
simple equilibrium analysis with incomplete information.

Next, we consider a scenario where it is plausible to assume that (pi)i∈I
is transparent.14 For each player/role i ∈ I there is a large population of
agents that can play in that role. Each one of them is characterized by an
information-type θi (for instance, his preferences, his ability, his strength).
Let qi ∈ ∆(Θi) denote the statistical distribution of θi within population
i: qi(θi) is the fraction of agents in the population i with information-
type θi. Furthermore, assume that θ0 is determined through a random
experiment whose probabilities are fixed and transparent (for instance,
assume that θ0 depends on the color of a ball extracted from an urn
whose composition has been publicly announced in front of all players at
the same time); let the probability of θ0 according to this experiment be
q0 (θ0). If players are randomly chosen from the corresponding populations,
then the probability of meeting opponents characterized by the profile
of information-types θ−i = (θj)j 6=i is

∏
j∈I\{i}

qj(θj).
15 If these statistical

distributions are commonly known, then it is reasonable to assume that,
for all i and θ−i, p

i(θ0, θ−i) =
∏

j∈{0}∪I\{i}
qj(θj) and that the profile of

“objective” beliefs (pi)i∈I is transparent. Thus, we obtain a structure

BGs =
〈
I,Θ0, (Θi, Ai, ui, p

i)i∈I
〉

called simple Bayesian game with type-independent beliefs (in the
following section we consider a more general definition of Bayesian game).

14This is what Harsanyi (1967-68) calls the “prior lottery model”.
15As usual, we are assuming that every Θj is finite. The generalization to the infinite

case, though conceptually trivial, requires the use of measure theoretic concepts.
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Assuming that all the features of the interactive situation described by
BGs are transparent, we can meaningfully define as equilibrium a profile
of decision functions (σi)i∈I ∈×i∈I A

Θi
i such that, for each i and θi,

σi(θi) ∈ arg max
ai∈Ai

∑
θ0,θ−i

pi(θ0, θ−i)ui(θ0, θi, θ−i, ai, σ−i(θ−i)), (8.4.1)

where σ−i(θ−i) = (σj(θj))j∈I\{i}.
16 Note, for any fixed conjecture σ−i

about the decision functions of the co-players, the expected payoff being
maximized in eq. (8.4.1) is well defined because we have specified an
exogenous belief pi. Without such specification (for each player), we
could not ascertain whether a profile of decision functions (σi)i∈I is an
equilibrium.

Example 33. (First Price Auctions with independent private values) A
given object is put on sale by means of an auction. The set of participant
is I = {1, ..., n}, the monetary value of the object for participant i is θi.
Therefore the model has private values. The set of possible valuations
is Θi = [0, 1] and the profile (θ1, ..., θn) is uniformly distributed on [0, 1]n.
(This means that each bidder i believes that his competitors’ valuations are
mutually independent, uniform random variables.) The object is assigned
to the player that makes the highest offer. In case of a draw, it is randomly
assigned among the highest bidders. Whoever is given the object has to
pay his bid (First Price rule). The resulting payoff function is:

ui(θ, a) =

{
(θi − ai) 1

| arg maxj aj | , if ai = maxj aj ,

0, if ai < maxj aj .

It turns out that this game has a symmetric equilibrium in which each
player bids σi(θi) = n−1

n θi.
How can we guess that these functions form an equilibrium? Consider the
following heuristic derivation. If θi = 0 it does not make sense (indeed,
it is weakly dominated) to offer more than zero. Now assume θi > 0. If
bidder i conjectures that each competitor bids according to the linear rule

16Furthermore, even if the structure BGs were not transparent (perhaps because the
statistical distributions are not commonly known), the definition of equilibrium given in
the text could perhaps be motivated as a steady state of an adaptive process. This is
certainly the case under private values.
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σj(θj) = kθj , where k ∈ (0, 1) is a coefficient that we have to determine,
then i believes that, if he bids ai, the probability of winning the object is

P
(

[∀j 6= i, σj(θ̃j) < ai]
)

= P
([
∀j 6= i, θ̃j <

ai
k

])
(θ̃j denotes the random valuation of j from i’s viewpoint; we can neglect
ties because, for each competitor j, the probability of event [ãj = ai] is
zero). Since we assumed independent and uniform distributions of values,
we have

P
([
∀j 6= i, θ̃j <

ai
k

])
=

{ (
ai
k

)n−1
, if ai

k < 1,
1, if ai

k ≥ 1.

Thus, if bidder i is rational he offers the smallest of the following numbers:
arg max0≤ai<k

(
ai
k

)n−1
(θi − ai) = n−1

n θi and k,17 that is

ai = min

{
k,
n− 1

n
θi

}
.

In a symmetric equilibrium each player has a correct conjecture about the
bidding functions of the competitors and each player has the same (best
reply) bidding function, therefore k = n−1

n . This implies

min

{
k,
n− 1

n
θi

}
= min

{
n− 1

n
,
n− 1

n
θi

}
=
n− 1

n
θi.

Therefore, the optimal bid when the symmetric conjecture of i about each
j is σj(θj) = n−1

n θj turns out to be precisely ai = σi(θi) = n−1
n θi. N

The best method to compute the equilibria of a simple Bayesian game
depends on the specific game. In Example 33 we followed a “conjecture and
verify” method to compute the symmetric equilibrium. For finite games,
one can adopt the method of constructing the so called “strategic form”
of the game and compute its Nash equilibria. We describe this method
formally in our analysis of general Bayesian games.

17To compute the maximizer in [0, 1) use the first order condition:

(n− 1)

k

(ai
k

)n−2

(θi − ai)−
(ai
k

)n−1

= 0.



8.5. The General Case: Bayesian Games 191

8.5 The General Case: Bayesian Games

In order to provide a more general definition of equilibrium in games with
incomplete information it is necessary to consider the case in which the
beliefs of a generic player i on Θ0 × Θ−i are not known to his co-players
−i. This means that i is not characterized by his private information θi
alone, and the belief pi has to be separately specified. From j’s point of
view the pair (θi, p

i) ∈ Θi ×∆(Θ0 ×Θ−i) is unknown. Why should j care
about pi? The problem, from j’s point of view, is that j’s payoff depends
on i’s choice ai which in turn depends on θi and pi. Thus, in order to
extend the equilibrium concept to this more general case it is necessary to
specify j’s beliefs about (θi, p

i).

According to the subjective formulation, known as the Bayesian
approach, a decision maker forms probabilistic beliefs over all the relevant
variables that are unknown to him. In our example j has probabilistic
beliefs about (θi, p

i).

To simplify the exposition, we first focus on the two-person case
with distributed knowledge of parameter θ (Θ0 is a singleton): the only
opponent of i is j and viceversa. The beliefs of j about θi and pi are
therefore a joint probability measure qj ∈ ∆(Θi ×∆(Θj)) from which the
beliefs pj ∈ ∆(Θi) can be recovered by computing the marginal distribution
on Θi. The beliefs qj are called second-order beliefs, whereas the beliefs
pj are called first-order beliefs: second-order beliefs are beliefs about
the primitive uncertainty and the opponent’s first-order beliefs. Hence,
first-order beliefs can be derived from second-order beliefs.

For some applications there is no need to go beyond second-order
beliefs. Suppose, for example that Θi = {θ0

i , θ
1
i }, i = 1, 2. Then we

may think of pi as i’s subjective probability of θ1
j : ∆(Θj) is isomorphic

to [0, 1]. Suppose that it is transparent that the second-order beliefs of
each player j have the form qj = pj × qj where qj is given by the uniform
distribution on [0, 1], which is the set of possible values of the subjective
probability pi(θ1

j ) (recall: by “transparent” we mean that second-order
beliefs do indeed have this form and furthermore it is common belief that
they have this form). Then each first-order belief pj also pins down the
second-order belief qj = pj × qj and there is no need to explicitly consider
beliefs of higher order.

However, since beliefs are subjective, we have to allow for more
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general situations where second-order beliefs are not pinned down by first-
order beliefs. Since behavior may depend on second-order beliefs, it is
necessary to introduce third-order beliefs rj ∈ ∆(Θi×∆(Θj)×∆(Θj ×
∆(Θi))),

18 from which the first and second-order beliefs can be recovered
by marginalization. At this point, the formalism is already quite complex.
Furthermore, there is no compelling reason to stop at third-order beliefs.
How should we proceed? Is it possible to use a formal and compact
representation of strategic interactions with incomplete information which
is not too complex, but at the same time allows a representation of beliefs
of arbitrarily high order and a meaningful definition of equilibrium? The
answer is Yes.

8.5.1 Bayesian Games

The solution relies on the adoption of a more abstract and self-referential
approach proposed by John Harsanyi [40].19 Starting from the game
with payoff uncertainty 〈I,Θ0, (Θi, Ai, ui)i∈I〉, let us consider a richer
structure with a set of “states of the world” Ω (assumed finite for
the sake of simplicity). A state of the world ω characterizes each
player’s knowledge and “interactive beliefs.” This can be formalized
mathematically introducing functions τi : Ω → Ti and ϑi : Ti → Θi

for each player i, a function ϑ0 : Ω → Θ0 and a probability measure
pi ∈ ∆(Ω). It is also implicitly assumed that the situation of strategic
interaction represented by these elements is transparent.

To grasp the meaning of the above functions we follow Harsanyi and
present a metaphor.20 Imagine an ex ante state in which all players are
equally ignorant. Each player i is endowed with a prior (subjective)
probability measure pi ∈ ∆(Ω). Before choosing an action, each player
i receives a “signal” ti about the state of the world. From signal ti player
i infers that θi = ϑi(ti) and ω ∈ τ−1

i (ti) = {ω′ : τi(ω′) = ti} ⊆ Ω. Assume

18Clearly, the symbol rj used here is not to be confused with the symbol denoting the
best reply correspondence.

19This fundamental contribution led to the award to John Harsanyi of the 1994 Nobel
Prize for Economics, jointly with John Nash and Reinhard Selten.

20This is what Harsanyi calls the “random vector model” of the Bayesian game. The
only difference is that such model (not his general analysis of incomplete information)
posits a common prior (pi = p ∈ ∆(Ω) for every i ∈ I), which represents an objective
probability distribution.
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for simplicity that pi assigns positive probability to all signals that i could
conceivably receive,21 i.e.,

pi
(
τ−1
i (ti)

)
=

∑
ω:τi(ω)=ti

pi(ω) > 0

for all ti ∈ Ti.
22 Then, for each ti ∈ Ti, the corresponding conditional

probability measure pi (·|ti) is well defined:

∀E ⊆ Ω, pi (E|ti) =
pi
(
E ∩ τ−1

i (ti)
)

pi
(
τ−1
i (ti)

) .

With this, the beliefs of player i at state of the world ω are given by
probability measure pi (·|τi(ω)) ∈ ∆(Ω). Since τi and pi are common
knowledge, the function ω 7→ pi (·|τi(ω)) is also common knowledge. It
follows that a state of the world determines a player’s beliefs about the
parameter θ and about other players’ beliefs about it. To verify this claim,
let us focus on the case of two players and distributed knowledge of Θ
(this is done only to simplify the notation) and let us derive the beliefs of
i about tj given signal ti:

∀tj ∈ Tj , pi (tj |ti) = pi

(
τ−1
j (tj)|ti

)
,

where τ−1
j (tj) = {ω : τj (ω) = tj}. Next we derive the first-order beliefs

about θ (since i knows θi, his beliefs about θ are determined by his beliefs
about Θj):

∀θj ∈ Θj , p
1
i (θj |ti) = pi

(
ϑ−1
j (θj)|ti

)
,

where ϑ−1
j (θj) = {tj : ϑj(tj) = θj}. The functions tj 7→ p1

j (·|tj) ∈ ∆(Θi)
(j ∈ {1, 2}) are also common knowledge. Hence, we can derive the second-
order beliefs about θ, that is, the joint belief of a player about θ and
about the opponent’s first-order beliefs about θ:

∀(θj , p1
j ) ∈ Θj ×∆(Θi), p

2
i

(
θj , p

1
j |ti
)

=
∑

tj :ϑj(tj)=θj ,p1
j (·|tj)=p1

j

pi (tj |ti) .

21It can be shown that this comes without substantial loss of generality provided that
we allow the subjective priors of different players to be different.

22We denote by pi (·) and pi (·|·), respectively, the prior and conditional probabilities
of events. For instance, pi (t−i|ti) is the probability that event {ω : τ−i(ω) = t−i} occurs
conditional on the event {ω : τi(ω) = ti} .
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[It can be verified that

∀θj ∈ Θj , p
1
i

(
θj |ti

)
=

∑
p1
j :∃tj∈Tj ,p1

j (·|tj)=p1
j

p2
i

(
θj , p

1
j |ti
)

,

in words, p1
i (·|ti) is the marginal on Θj of the joint distribution p2

i (·|ti) ∈
∆(Θj ×∆(Θi)).]

It should be clear by now that it is possible to iterate the argument
and compute the functions that assign to each type the corresponding
third-order beliefs about θ, fourth-order beliefs about θ, and so on. To
sum up, we can conclude that the information and beliefs of all orders
of player i about θ are determined by ti according to the function
ti 7→ (ϑi(ti), p

1
i (·|ti) , p2

i (·|ti) , ...). Signal ti is called the type23 of player
i. Sequence (p1

i (·|ti) , p2
i (·|ti) , ...) is called the hierarchy of beliefs of

type ti. The information and beliefs of each player i in a given state
of the world ω are those corresponding to the type ti = τi(ω). The
information-type of player i, θi = ϑi(ti), is just one component of
his overall type ti, which also specifies i’s beliefs about all the relevant
exogenous variables/parameters, θ−i, p

1
−i, p

2
−i, etc.

Definition 38. A (finite) Bayesian Game is a structure

BG = 〈I,Ω,Θ0, ϑ0, (Θi, Ti, Ai, τi, ϑi, pi, ui)i∈I〉

where each set in BG is finite; for every player i ∈ I, pi ∈ ∆(Ω),
ϑ0 : Ω → Θ0, τi : Ω → Ti, ϑi : Ti → Θi, pi(ti) = pi

(
τ−1
i (ti)

)
> 0 for

all ti ∈ Ti,24 and ui : Θ×A→ R.

The analysis of solution concepts for Bayesian games will clarify that
only the beliefs pi (·|ti) (i ∈ I, ti ∈ Ti) really matter. The priors pi are just
a convenient mathematical tool to represent the beliefs of each type.

In what follows, we will often use the phrase “type ti chooses ai” to
mean that if player i were of type ti he would choose action ai.

Transparent Restrictions on First-Order Exogenous Beliefs

It is worth noting that Harsanyi’s self-referential and implicit
representation of hierarchical exogenous beliefs allows—in principle—
to model the transparent restrictions on exogenous (first-order) beliefs

23The expression “type à la Harsanyi” is also used.
24This condition implies that τi : Ω→ Ti is onto.
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considered in Section 8.3. Fix a game with payoff uncertainty Ĝ =
〈I,Θ0, (Θi, Ai, ui)i∈I〉. To obtain a Bayesian game, we append to Ĝ a
belief structure 〈Ω, ϑ0, (Ti, τi, ϑi, pi)i∈I〉 as per Definition 38. Fix a profile
∆̄ =

(
∆̄i,θi

)
i∈I,θi∈Θi

, where ∆̄i,θi ⊆ ∆ (Θ0 ×Θ−i) for each i and θi. With

a slight abuse of language, we say that ∆̄ is transparent to mean that it is
true and commonly believed that, if the information type of player i is θi,
then his first-order exogenous beliefs belong to set ∆̄i,θi .

25 Belief structure
〈Ω, ϑ0, (Ti, τi, ϑi, pi)i∈I〉 yields the transparency of ∆̄ if the implied first-
order beliefs satisfy these restrictions, that is, for every i ∈ I , θi ∈ Θi

and ti ∈ ϑ−1
i (θi), we have p1 (·|ti) ∈ ∆̄θi . If, additionally, there is some

ti ∈ ϑ−1
i (θi) such that p1 (·|ti) ∈ ∆̄θi for every i ∈ I and θi ∈ Θi, then

the given belief structure exactly captures the transparency of ∆̄.26 Our
analysis of the connection between Harsanyi’s approach and the Directed
Rationalizability approach in Section 8.5.5 relies on this observation.

8.5.2 Bayesian Equilibria

In general, players’ choices depend not only on their private information
on θ, but also more generally on their types. In equilibrium, each player
has a correct conjecture about the dependence of each opponent’s choice
on his type, and maximizes his expected payoff given his type:

Definition 39. A Bayesian equilibrium is a profile of decision
functions (σi : Ti → Ai)i∈I such that

∀i ∈ I, ∀ti ∈ Ti, σi(ti) ∈ arg max
ai∈Ai

Epi,σ−i(ui,ϑi(ti),ai |ti),

where

Epi,σ−i(ui,ϑi(ti),ai |ti)

=
∑
ω∈Ω

p(ω|ti)ui(ϑ0(ω), ϑi(ti), ϑ−i(τ−i(ω)), ai, σ−i(τ−i(ω)))

(for every ω and t−i, τ−i(ω) = (τj(ω))j 6=i, ϑ−i(t−i) = (ϑj(tj))j 6=i,
σ−i(t−i) = (σj(tj))j 6=i).

25We call this a “slight abuse of language” because we defined transparency as a
property of events, while profile ∆̄ is not in itself an event. However, ∆̄ corresponds to
an event concerning players’ exogenous first-order beliefs, as explained in the text.

26If at least one set ∆̄θi is infinite, then the beliefs structure has to be infinite as well,
which requires some technical conditions.
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Note that the expected payoff of type ti of player i choosing action ai
can be re-written as

Epi,σ−i(ui,ϑi(ti),ai |ti) =
∑

(θ0,t−i)∈Θ0×T−i

p(θ0, t−i|ti)ui(θ0, ϑi(ti), ϑ−i(t−i), ai, σ−i(t−i)),

where p (θ0, t−i|ti) is the probability that event

{ω : ϑ0 (ω) = θ0, τ−i(ω) = t−i}

occurs conditional on the event {ω : τi(ω) = ti}. Again, as in we did in
Section 8.4, we stress that without the specification of the belief structure
(that is, of a specific exogenous belief for each Harsanyi type ti of each
player i), we cannot determine the expected payoff function maximized
for each type ti for some given conjecture σ−i about co-players’ decision
functions. Thus, such specification is necessary to ascertain whether a
profile of decision functions (σi : Ti → Ai)i∈I is an equilibrium.

Example 34. We illustrate the concepts of Bayesian game and equilibrium
elaborating on game Ĝ2 of Example 32. Suppose that Rowena does not
know Colin’s first-order beliefs. From her point of view such beliefs can
assign either probability 1

3 or 3
4 to θa. The two possibilities are regarded as

equally likely by Rowena and all this is common knowledge. This situation
can be represented by the following Bayesian game:

Ω = {α, β, γ, δ} ,

Θ1
∼= Θ =

{
θa, θb

}
, T1 =

{
ta1, t

b
1

}
,

τ1(α) = τ1(β) = ta1, τ1(γ) = τ1(δ) = tb1, ϑ1(ta1) = θa, ϑ1(tb1) = θb,

∀ω ∈ Ω, p1(ω) =
1

4
,

Θ2 =
{
θ̂2

}
, T2 =

{
t′2, t

′′
2

}
,

τ2(α) = τ2(γ) = t′2, τ2(β) = τ2(δ) = t′′2,

p2(α) =
3

8
, p2(β) =

1

6
, p2(γ) =

1

8
, p2(δ) =

1

3
,

and where the functions ui are as in Ĝ2. The probabilistic structure is
described in the table below:
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t′2 t′′2

θa, ta1 α, 1
4 ,

3
8 β, 1

4 ,
1
6

θb, tb1 γ, 1
4 ,

1
8 δ, 1

4 ,
1
3

To verify that this Bayesian game represents the situation outlined
above we compute the following:

p1
2

(
θa|t′2

)
= p2

(
ta1|t′2

)
=

p2(α)

p2(α) + p2(γ)
=

3/8

3/8 + 1/8
=

3

4
,

p1
2

(
θa|t′′2

)
= p2

(
ta1|t′′2

)
=

p2(β)

p2(β) + p2(δ)
=

1/6

1/6 + 1/3
=

1

3
,

p1

(
t′2|ta1

)
= p1

(
t′2|tb1

)
=

1

2
.

This means that in every state of the world Rowena believes that the two
events [Colin assigns probability 3

4 to θa] and [Colin assigns probability
1
3 to θa] are equally likely. We now derive the Bayesian equilibria. Let
σ = (σ1, σ2) be an equilibrium. Since a is dominant when Rowena knows
that θ = θa, σ1(ta1) = a. Hence, the equilibrium expected payoff accruing
to type t′2 if he chooses c is

p2

(
ta1|t′2

)
u2(θa, a,c) + p2

(
tb1|t′2

)
u2(θb, σ1(tb1), c) =

3

4
× 0 +

1

4
× 1 =

1

4
;

the equilibrium expected payoff for t′2 if he chooses d is

p2

(
ta1|t′2

)
u2(θa, a,d) + p2

(
tb1|t′2

)
u2(θb, σ1(tb1), d) =

3

4
× 1 +

1

4
× 0 =

3

4
.

It follows that in equilibrium σ2(t′2) = d. The expected payoffs for the two
actions of type t′′2 are

p2

(
ta1|t′′2

)
u2(θa, a,c) + p2

(
tb1|t′′2

)
u2(θb, σ1(tb1), c) =

1

3
× 0 +

2

3
× 1 =

2

3
,

p2

(
ta1|t′′2

)
u2(θa, a,d) + p2

(
tb1|t′′2

)
u2(θb, σ1(tb1), d) =

1

3
× 1 +

2

3
× 0 =

1

3
.
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Since the maximizing choice for type t′′2 is c, σ2(t′′2) = c. We can now
determine the equilibrium choice for type tb1:

p1

(
t′2|tb1

)
u1(θb, a,d) + p1

(
t′′2|tb1

)
u1(θb, a,c) =

1

2
× 0 +

1

2
× 1 =

1

2
,

p1

(
t′2|tb1

)
u1(θb, b,d) + p1

(
t′′2|tb1

)
u1(θb, b,c) =

1

2
× 2 +

1

2
× 0 = 1.

Therefore, σ1(tb1) = b. N

8.5.3 Bayesian Equilibrium and Nash Equilibrium

The concept of Bayesian equilibrium for a game of incomplete information
BG can be restated in an equivalent way as a Nash equilibrium of two
games with complete information that are associated with the original
game: the ex ante strategic form and the interim strategic form.

The ex ante strategic form refers to the metaphor that was previously
introduced to explain the elements of the Bayesian game: if there is an
ex ante stage in which all players are “ignorant,” then at such stage each
player i can make a contingent plan of action, or strategy, σi : Ti → Ai,
that specifies the action to take for every possible signal ti that player i
might receive. If i believes that the other players follow the strategy profile
σ−i, the expected payoff of strategy σi is

Ui(σi, σ−i) = Epi,σi,σ−i (ui) , (8.5.1)

where (in a finite game)

Epi,σi,σ−i (ui)

=
∑
ω∈Ω

pi(ω)ui(ϑ0 (ω) , ϑi(τi(ω)), ϑ−i(τ−i(ω)), σi(τi(ω)), σ−i(τ−i(ω)))

=
∑
ti∈Ti

pi (ti)
∑

(θ0,t−i)∈Θ0×T−i

pi (θ0, t−i|ti)ui(θ0, ϑi(ti), ϑ−i(t−i), σi(ti), σ−i(t−i)).

Let Σi = ATii (recall, this is the set of functions with domain Ti and
codomain Ai). The ex ante strategic form of BG is the static game

AS(BG) = 〈I, (Σi, Ui)i∈I〉 ,

where Ui is defined by (8.5.1). The reader should be able to prove the
following result by inspection of the definitions and using the assumption
that each type ti is assigned positive probability by the prior pi.
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Remark 30. A profile (σi)i∈I is a Bayesian equilibrium of BG if and only
if it is a Nash equilibrium of the game AS(BG).

The interim strategic form is based on a different metaphor. Assume
that for each role i in the game there is a set of potential players Ti.
Assume for notational simplicity that Ti ∩ Tj = ∅ for each i, j ∈ I, i 6= j
(this is just a matter of labelling). A potential player ti is characterized
by the payoff function ui(ϑi(ti), ·, ·, ·) : Θ0 ×Θ−i × A→ R and the beliefs
pi (·, ·|ti) ∈ ∆(Θ0 × T−i). In the event that ti is selected to play the game
in the role of agent i, he will assign probability pi (θ0, t−i|ti) to the event
that the residual uncertainty is θ0 and that he is facing exactly the profile
of “opponents” t−i = (tj)j 6=i. The set of actions available to ti is Ai, that
is, Ati = Ai (i ∈ I, ti ∈ Ti). If each potential player tj ∈ Tj chooses the
action atj ∈ Atj , ti’s expected payoff is computed as follows:

uti((atj )j∈I,tj∈Tj ) = Epi,−→a −i
(
ui,ati |ti

)
, (8.5.2)

where −→a −i =
(
atj
)
tj∈Tj ,j 6=i

and (in a finite game)

Epi,−→a −i
(
ui,ati |ti

)
=

∑
(θ0,t−i)∈Θ0×T−i

pi (θ0, t−i|ti)ui(θ0, ϑi(ti), ϑ−i(t−i), ati , (atj )j 6=i).

The interim strategic form of BG is the following static game with∑
i∈I |Ti| players:

IS(BG) =

〈⋃
i∈I

Ti, (Ati , uti)i∈I,ti∈Ti

〉
,

where uti is defined by (8.5.2). The reader should be able to prove the
following result by inspection of the definitions:

Remark 31. A profile (σ∗i )i∈I is a Bayesian equilibrium of BG if and
only if the corresponding profile (a∗ti)i∈I,ti∈Ti such that a∗ti = σ∗i (ti) (i ∈ I,
ti ∈ Ti) is a Nash equilibrium of the game IS(BG).

Example 35. Consider the simple Bayesian game of Example 32, where
T1 = Θ1

∼= Θ = {θa, θb} = Ω, τ1(θ) = θ for each θ (player 1 knows θ),
τ2(θa) = τ2(θb) (player 2 does not know θ). To ease notation, assume
p1 = p2 (this does not affect the strategic analysis of the game), and let
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p = pi (θa). The ex ante strategic form of the game is a 4× 2 matrix game
(a.a means “a for each type,” a.b means “a if θa and b otherwise,” b.a
means the opposite, etc.).

σ1\σ2 c d

a.a 3p+ 1, 1− p 2p, p

a.b 4p, 1− p 2, p

b.a 2p+ 1, 1 p, 0

b.b 3p, 1 2− p, 0

If p < 1/2, the unique equilibrium of the matrix game is (σ1, σ2) =
(a.a, c), which can be obtained by iterated dominance: first note that a.a
dominates b.a, and a.b dominates b.b, then the computation unravels. The
interim strategic form is formally a three-person game, where the prior
probability p = p2 matters only to compute the payoffs of (the unique
type of) player 2. By Remark 31, if p < 1/2, this three-person game has
a unique equilibrium where both players/types θa and θb choose a, and
player 2 chooses c. Also in this case, the equilibrium can be obtained by
iterated dominance: one starts noticing that b is dominated by a for type
θa, then the computation unravels (see the analysis in Example 32). N

In the previous example, iterated dominance in the ex ante strategic
form gives the same result as iterated dominance in the interim strategic
form. This is not always true. In the Appendix of this chapter, we analyze
in detail the relationships between iterated dominance in the ex ante and
interim strategic form and different notions of rationalizability for Bayesian
games.

8.5.4 Bayesian Equilibrium and Correlated Equilibrium

Even though it may seem counter-intuitive, the definition of Bayesian game
admits as a special case that there is common knowledge of the payoff
functions and yet there are multiple types for some players. This is the
case when there are functions ūi ∈ RA (i ∈ I) such that ui(θ, ·) = ūi for
each θ and i.27 In other words, we can define a Bayesian game with many

27When the sets Θ0 and Θi are all singletons we obtain a special case of this special
case!
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types even starting from a game with complete information! An even more
special case can be analyzed: the one in which, besides having complete
information, all players are characterized by the same prior belief (pi = p
for each i ∈ I), which we refer to as “common prior.” What can we say
about Bayesian equilibria of a game with complete information?

To make the exposition more precise, we have to introduce some
terminology and notation: given a complete-information game G =
〈I, (Ai, ūi)i∈I〉 we call Bayesian elaboration of G any Bayesian game

BG = 〈I,Ω,Θ0, ϑ0, (Θi, Ti, Ai, τi, ϑi, pi, ui)i∈I〉

such that, Θ0 and every Θi (i ∈ I) contain a single element, say θ̄0 and θ̄i
(i ∈ I). Thus, for every profile a ∈ A, we can write ui(θ̄, a) = ūi(a). The
following remark follows directly from the definitions:

Remark 32. Let BG be a Bayesian elaboration of a finite game with
complete information G and suppose that there is a common prior. Then,
every Bayesian equilibrium of BG corresponds to a correlated equilibrium
of G.28

8.5.5 Bayesian Equilibrium and Rationalizability

The equivalence between the correlated equilibria of a game with complete
information G and the Bayesian equilibria of its Bayesian elaboration
BG holds under the assumption that players share a common prior.
Removing this common prior assumption, one obtains the notion of
subjective correlated equilibrium: a subjective correlated equilibrium
of a complete-information game G is a Bayesian equilibrium of a Bayesian
elaboration of G.

Theorem 27. An action profile (ai)i∈I of the finite complete-information
game G is rationalizable if and only if it is selected in a subjective correlated
equilibrium, that is, if and only if there are a Bayesian elaboration BG of
G, an equilibrium (σi)i∈I of BG, and a state of the world ω in BG such
that ai = σi(τi(ω)) for every i ∈ I.

Proof. (If) Let σ be an equilibrium of a Bayesian elaboration of
G =

〈
I, (Ai, ui)i∈I

〉
. To show that every image of σ is a profile of

28In a way, one could say that Harsanyi [40] had implicitly defined the correlated
equilibrium concept before Aumann [5], but without being aware of it!
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rationalizable actions, define the sets Ci = σi(Ti) = σi (τi (Ω)) (i ∈ I). We
are going to verify that the cross-product C =×i∈I Ci has the best reply
property C ⊆ ρ (C), which implies that each action profile of σ (τ (Ω)) ⊆ C
is rationalizable in G (Theorem 3).29 For any i, a∗i ∈ Ci = σi (Ti) and
ti ∈ σ−1

i (a∗i ), let µti = pi (·|ti) ◦ (τ−i ◦ σ−i)−1 ∈ ∆ (A−i) denote the
conjecture induced by the beliefs on Ω of type ti given σ−i. More explicitly,

∀a−i ∈ A−i, µti(a−i) = pi

(
(σ−i ◦ τ−i)−1 (a−i) |ti

)
=

∑
ω:σ−i(τ−i(ω))=a−i

pi (ω|ti) .

By construction, ui
(
ai, µ

ti
)

= Epi,σ−i (ui,ai |ti) for all ai ∈ Ai (recall that
ui is independent of θ). Since σ is an equilibrium,

a∗i = σi (ti) ∈ arg max
ai∈Ai

Epi,σ−i (ui,ai |ti) = arg max
ai∈Ai

ui
(
ai, µ

ti
)

.

Furthermore, again by construction, suppµti ⊆ σ−i (T−i) = C−i. Thus,
Ci ⊆ ri (∆ (C−i)) for each i ∈ I, that is, C ⊆ ρ (C).

(Only if) It is sufficient to show that there exists a subjective canonical
correlated equilibrium in which every rationalizable profile is played in
some state of the world. Let C = ρ∞(A) be the set of rationalizable
profiles. Then C = ρ(C) (Theorem 2), and for every i ∈ I and ai ∈ Ci there
exists a conjecture µai ∈ ∆(C−i) such that ai ∈ ri(µai). We construct the
Bayesian elaboration of G as follows. Types are “copies” of rationalizable
actions (they can be interpreted as “suggested actions”); if the type of i
is a copy of action ai, then the belief of i is derived from the justifying
conjecture µai . Formally, Ω = C = T ; for every i ∈ I, Ti = Ci and
τi is the identity function, τi = IdCi ; for every rationalizable action/type
ti ∈ Ci = Ti, let the interim belief be pi (·|ti) = µti ;30 define the prior belief
of i as follows: for every t = (tj)j∈I ∈ C = T = Ω, pi(t) = 1

|Ci|pi (t−i|ti).
Then, the profile of identity functions (for every i ∈ I and for every
ai ∈ Ti = Ai, σi(ai) = ai) is an equilibrium of this Bayesian elaboration.31

�

29Note that, for each i, Ci = projAi
σ (τ (Ω)) because τi is onto; but σ (τ (Ω)) may be

not Cartesian. Hence, in general, σ (τ (Ω)) ⊆ C.
30Recall that µti ∈ ∆ (C−i) = ∆ (T−i).
31The “type” ti = ai is not to be interpreted as the action that i necessarily has to

play, but rather as a specification of i’s belief about the opponents and of the best reply
to such belief, a best reply that i freely chooses in equilibrium.
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This result can be generalized. Fix a game with payoff uncertainty

Ĝ = 〈I,Θ0, (Θi, Ai, ui : Θ×A→ R)i∈I〉 ;

a Bayesian game based on Ĝ is a Bayesian game obtained by appending a
state space, signal functions etc. to Ĝ, that is,

BG = 〈I,Ω,Θ0, ϑ0, (Θi, Ti, Ai, τi, ϑi, pi, ui)i∈I〉 .

Using arguments that generalize the proof of Theorem 27, one can
prove the following result.

Theorem 28. A profile of information-types and actions (θi, ai)i∈I is
rationalizable in the game with payoff uncertainty Ĝ if and only if there is
a Bayesian game BG based on Ĝ, an equilibrium σ of BG and a state of
the world ω in BG such that (θi, ai)i∈I = (ϑi(τi (ω)), σi(τi(ω)))i∈I .

These results show that, without restrictions on players’ exogenous
beliefs, the Bayesian equilibrium assumption that players best respond
to correct conjectures about their opponents’ decision functions has no
behavioral implications beyond those that can be derived from rationality
and common belief in rationality.32 In a sense, rationalizability gives the
“robust” implications of Bayesian equilibrium analysis.

Suppose that the modeler is confident that contextual considerations
make some restrictions on exogenous first-order beliefs transparent. Then
the robust implications of Bayesian equilibrium are captured by Directed
Rationalizability. More formally, consider a Bayesian game BG obtained
by appending to game with payoff uncertainty Ĝ a belief structure
〈Ω, ϑ0, (Ti, τi, ϑi, pi)i∈I〉. Say that BG yields the restrictions on exogenous
beliefs ∆ if, for all i ∈ I, θi ∈ Θi, and ti ∈ ϑ−1

i (θi), there is some µi ∈ ∆i,θi

such that p1
i (·|ti) =margΘ0×Θ−iµ

i (see Section 8.5.1). With this, we obtain
a variation of the previous result.

Theorem 29. Fix a profile ∆ = (∆i,θi)i∈I,θi∈Θi
of restrictions on

exogenous beliefs. A profile of information-types and actions (θi, ai)i∈I
is ∆-rationalizable in the game with payoff uncertainty Ĝ if and only if
there is a Bayesian game BG based on Ĝ that yields the restrictions on
exogenous beliefs ∆, an equilibrium σ of BG, and a state of the world ω
in BG such that (θi, ai)i∈I = (ϑi(τi (ω)), σi(τi(ω)))i∈I .

32See Brandenburger and Dekel [24], and Battigalli and Siniscalchi [14].
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8.6 Incomplete Information and Asymmetric
Information

Recall from Chapter 1 that is important to distinguish between the
mathematical structure used to represent a real world interactive decision
situation33 and the situation itself. With this in mind, let us go back to
Harsanyi’s metaphor, presented in Section 8.5.1: the information players
have, the residual uncertainty and players’ payoffs depend on a random
variable, or chance move.34 Let ω ∈ Ω denote a typical realization of this
random variable and assume that this realization occurs before players
make their choices. For example, ω may be the order of cards in a deck
before some of these cards are distributed to the players. The payoff
of player i is determined by a function ûi : Ω × A → R, that is, how
payoffs depend on actions is determined by the initial chance move. Let
pi ∈ ∆(Ω) denote the subjective probability measure of i over the possible
realizations. Each player first receives a signal regarding the initial chance
move, then chooses an action ai ∈ Ai simultaneously to the other players.
Let τi : Ω→ Ti denote player i’s signal function. The prior belief and signal
function of each player i are such that pi

(
τ−1
i (ti)

)
> 0 for all ti ∈ Ti. We

call such interactive situation a game with asymmetric information
about an initial move by chance.

In this context, it may make sense to suppose the subjective priors pi
coincide with an objective probability measure p ∈ ∆(Ω) and that this is
commonly believed. More generally, even if the priors do not coincide, it
is assumed that the profile of subjective measures (pi)i∈I is transparent.35

An equilibrium of such game with asymmetric information is a
strategy profile (σi : Ti → Ai)i∈I such that the strategy of each player
is a best reply to the strategy profile of the other players. More explicitly,
define the payoff function in strategic form

Ui((σi)i∈I) =
∑
ω∈Ω

pi(ω)ûi(ω, (σj(τj(ω)))j∈I).

An equilibrium of a given game of asymmetric information is a Nash

33Or a class of situations of the same kind.
34As in Section 8.5.4, it is also interesting to consider the possibility that payoffs do

not depend on the random variable.
35In line with our definition of “transparency” in Section 8.3, this means that it is

true and commonly believed that, for each i ∈ I, the subjective prior belief of i is pi.



8.6. Incomplete Information and Asymmetric Information 205

equilibrium of the corresponding game in strategic form 〈I, (Σi, Ui)i∈I〉,
where Σi = ATii for each i ∈ I.

At this point, one may ask: How is this different from a game of
incomplete information, modeled as a Bayesian game? If we just look at
the mathematical formulation without considering how it is supposed to
map to the real world, the two situations may seem indistinguishable. At
the interim stage of the asymmetric information game in which all players
have received their private signals about the chance move, the interactive
situation is indeed very similar to one with incomplete information: the
way payoffs depend on actions is not commonly known, and each player
has private information about such dependence, along with probabilistic
beliefs regarding the private information and (implicitly) the beliefs of
other players.

We can establish an explicit formal relationship between the two
models, deriving a Bayesian game as per Definition 38 from the
mathematical structure representing a game with asymmetric information
about the realization of an initial chance move. For the sake of simplicity,
we restrict our attention to the case in which the joint signal function
τ = (τi)i∈I : Ω → ×i∈I Ti is one-to-one (injective), that is, ω′ 6= ω′′

implies that there is at least one player i for whom τi (ω′) 6= τi (ω′′). Such
simplification rules out any residual uncertainty about payoffs. With this,
we formally obtain a Bayesian game by defining Θi = Ti, letting ϑi be
the identity function on Ti, so that τ (Ω) ⊆ Θ =×i∈I Θi, and defining
state-dependent payoffs as follows:

∀θ ∈ τ (Ω) , ui(θ, a) = ûi(τ
−1 (θ) , a). (8.6.1)

Note that this is enough, because it is common belief that realizations
θ outside τ (Ω) are impossible, therefore, the definition of ui on Θ\τ (Ω)
is irrelevant for expected payoff computations. Keeping in mind Remark
30, it is easy to verify that a profile of functions (σi)i∈I is a Bayesian
equilibrium of this Bayesian game if and only if it is an equilibrium of the
asymmetric information game.

Recall that in order to introduce the constituent elements of the
Bayesian game structure we used the metaphor of the ex ante stage in
describing interactive situations with incomplete information. The use of
such metaphor and the formal similarity between Bayesian games and the
mathematical description of games with asymmetric information (about an
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initial chance move) has induced many scholars to neglect the differences
between games with incomplete information and games with asymmetric
information. We should stress, however, that they are indeed different
situations. In games with incomplete information the ex ante stage does
not exist, it is just a useful theoretical fiction: Ω only represents a set
of possible states of the world, where by “state of the world” we mean
a configuration of payoff state, information, and subjective exogenous
beliefs.36 The profile (pi)i∈I ∈ [∆ (Ω)]I of so called prior beliefs is simply
a useful mathematical tool to determine (along with the functions ϑi and
τi) players’ interactive beliefs in a given state of the world. Instead, in the
interactive decision problems that we just called “games with asymmetric
information” the ex ante stage is real and the players’ priors represent the
expectations they hold at that stage.

These differences in the interpretation of the formal structure are
not innocuous. Indeed, the interpretation (asymmetric information
vs. incomplete information) determines to what extent some given
assumptions are meaningful and plausible, and what solution concepts
are appropriate. For instance, for the case of asymmetric information
about the realization of an initial chance move, it is meaningful and
often plausible to assume that there exists a common prior given by
an objective distribution over Ω. On the other hand, in the case of
incomplete information the meaning of the common prior assumption is
not obvious and its plausibility is even less obvious. Furthermore, we will
see that different notions of self-confirming equilibrium are appropriate for
situations with incomplete information and for situations with asymmetric
information about an initial chance move, even though the two situations
can be represented by the same mathematical structure. In the appendix of
this chapter, we show that similar considerations apply to the appropriate
notion rationalizability for Bayesian games, as long as one is willing to
assume some independence restrictions on players’ conjectures.

36Recall, we called “state of nature” the configuration θ =
θ
θ0, (θi)i∈I

)
of payoff state

and private information interpreted as a fixed imperfectly known parameter. A “state
of the world” also include a specification of subjective beliefs.
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8.7 Self-Confirming Equilibrium and Incomplete
Information

As previously argued, the self-confirming (or conjectural) equilibrium
concept characterizes patterns of behavior that are stable with respect
to learning processes in situations of recurrent interaction, taking into
account players’ information feedback. The appropriate definition of self-
confirming equilibrium for games with incomplete information depends
on the relevant scenario, and in particular on the interpretation of the
mathematical structure we use to represent incomplete information.

The first question to address is whether the set of interacting
players and their characteristics are (a) fixed once and for all (long-run
interaction), or (b) randomly determined in each period via draws from
large populations (anonymous recurrent interaction). In both cases it is
necessary to specify what information players are able to obtain ex post
about the actions and characteristics of co-players. As in Section 6.3, we
describe this with feedback functions. As we did earlier, we assume for the
sake of simplicity that the players’ goal is to maximize the expected payoff
of the current period, without worrying about future payoffs.

8.7.1 Long-Run Interaction

This is the easiest case to analyze. It is sufficient to consider the game
with payoff uncertainty

Ĝ = 〈I,Θ0, (Θi, Ai, ui : Θ×A→ R)i∈I〉 .

The state of nature (profile of parameters) θ is fixed once and for all;
obviously, we continue to assume that every player i knows only θi, that
the sets of possible values for θ is Θ = Θ0 ×

(×i∈I Θi

)
, and that ex post

i gets further information about θ0, θ−i and a−i according to a feedback
function fi. In general, the signal received may depend also on θ, that is
fi : Θ× A→ Mi; for instance, the signal could be the payoff obtained by
the player.37 Every player i holds a belief µi ∈ ∆(Θ0×Θ−i×A−i) about the
residual uncertainty θ0 and the opponents’ information-types and actions.

37However, we need to be aware that the payoff ui does not necessarily represent a
material gain which can be cashed. Therefore in the theoretical analysis we are not
forced to assume that the realization of ui is observed by i (observable payoffs).
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The question is whether, for any given θ, a profile of actions and beliefs
(ai, µ

i)i∈I ∈ ×i∈I (Ai ×∆(Θ0 ×Θ−i ×A−i)) satisfies the conditions of
rationality and confirmed conjectures. These conditions can be obtained
as a simple generalization of Definition 25. As in Section 6.3, we give the
definition of self-confirming equilibrium for games with payoff uncertainty
and feedback (Ĝ, f), where f = (fi)i∈I is the profile of feedback functions.

Definition 40. Fix a game with payoff uncertainty and feedback
(Ĝ, f) and a state of nature θ∗ ∈ Θ. A profile of actions and
beliefs (a∗i , µ

i)i∈I ∈×i∈I (Ai ×∆(Θ0 ×Θ−i ×A−i)) is a self-confirming
equilibrium (SCE) at θ∗ if for every i ∈ I:38

(1) ( rationality) a∗i ∈ ri(µi, θ∗i ),
(2) ( confirmed conjectures):

µi ({(θ0, θ−i, a−i) : fi(θ0, θ
∗
i , θ−i, a

∗
i , a−i) = fi(θ

∗, a∗)}) = 1.

(a∗i )i∈I is an SCE action profile at θ∗ if there is some profile of conjectures
(µi)i∈I such that (a∗i , µ

i)i∈I is an SCE at θ∗.

In what follows, for each game with payoff uncertainty

Ĝ = 〈I,Θ0, (Θi, Ai, ui : Θ×A→ R)i∈I〉

and state of nature θ ∈ Θ, we let Ĝθ denote the game

Ĝθ = 〈I, (Ai, ui,θ : A→ R)i∈I〉 .

Thus, for a game with payoff uncertainty and feedback (Ĝ, f) (where
fi : Θ × A → Mi for each i ∈ I) and fixed θ, (Ĝθ, fθ) denotes the “true”
game with feedback at state of nature θ.

Remark 33. Fix a game with payoff uncertainty Ĝ. For each state
of nature θ∗ ∈ Θ and each profile of feedback functions f , every Nash
equilibrium of Ĝθ∗ is an SCE action profile at θ∗ of the game with payoff
uncertainty and feedback (Ĝ, f).

38Recall that ri(µ
i, θi) is the set of actions of i that maximize her expected payoff

given θi and µi.
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The following remark highlights the fact that in the private-values
case (when ui does not depend on θ0 and θ−i) we get the notion of self-
confirming equilibrium already introduced in Section 6.3, coherently with
the claim made there according to which the self-confirming equilibrium
concept only presumes that a player knows her own payoff function, not
those of the co-players.

Remark 34. Fix a game with payoff uncertainty and feedback (Ĝ, f), a
state of nature θ∗ and an action profile a∗, and suppose that the game with
payoff uncertainty Ĝ has private values. Then a∗ is an SCE action profile
at θ∗ if and only if a∗ is an SCE action profile of the game with feedback
(Ĝθ∗ , fθ∗).

8.7.2 Anonymous Recurrent Interaction

Assume for simplicity that the given game with payoff uncertainty is
finite and consider the following scenario: There are n heterogeneous
populations, i ∈ I = {1, ..., n}; the fraction of agents with characteristic
θi is qi(θi) > 0; n agents are drawn at random, one from each population
i, and play a static game with payoffs determined by the parameterized
functions ui : Θ × A → R (i ∈ I), where Θ0 represents a set of possible
values of a random shock that affect agents’ utility: each time agents play
the game, θ0 ∈ Θ0 is drawn with probability q0 (θ0) > 0 independently of
previous plays. This is precisely the scenario that motivated the definition
of equilibrium for a “simple” Bayesian game (with type-independent
beliefs)

BG = 〈I,Θ0, q0, (Θi, qi, Ai, ui)i∈I〉 (8.7.1)

where q0 ∈ ∆ (Θ0) , qi ∈ ∆(Θi), ui : Θ×A→ R (i ∈ I).

In this case, however, it is only assumed that each agent in each
population i knows θi and ui,θi : Θ0 ×Θ−i ×A→ R, while the interactive
situation represented by BG is not assumed to be common knowledge.
Agents play the game recurrently, each time with a different θ0 drawn
from Θ0 and with different co-players randomly drawn from the respective
populations. If the play stabilizes, at least in a statistical sense, for every
j, θj , aj , the fraction of agents in sub-population j with characteristic θj
that choose action aj remains constant. Let αj(aj |θj) denote this fraction
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and write

α−i = (αj(·|θj))j 6=i,θj∈Θj ∈×
j 6=i

∆ (Aj)
Θj

to denote the profile of fractions for the populations different from i. By
random matching (and the law of large numbers), the long-run frequency
of each profile (θ0, θ−i, a−i) is q0 (θ0)

∏
j 6=i αj(aj |θj)qj(θj).

The ex post information feedback of an agent playing in role i is
described by a feedback function fi : Θ × A → Mi. Hence, in a steady
state, an agent of population i with characteristic θi that (always) chooses
ai, observes that the long-run frequency of each message mi is

Pfiai,α−i,q−i (mi|θi) :=
∑

(θ0,θ−i,a−i):fi(θ0,θi,θ−i,ai,a−i)=mi

q0 (θ0)
∏
j 6=i

αj(aj |θj)qj(θj).

Given θi and ai, conjecture µi ∈ ∆(Θ0×Θ−i×A−i) assigns to each message
mi the probability

Pfi
ai,µi

(mi|θi) :=
∑

(θ0,θ−i,a−i):fi(θ0,θi,θ−i,ai,a−i)=mi

µi(θ0, θ−i, a−i).

A conjecture is confirmed in the long run for a player of type θi who keeps
playing ai if the subjective probability of each message is equal to the
observed frequency. If ai ∈ ri(µi, θi) and µi is confirmed, then the agents
of type θi choosing ai have no reason to switch to another action. In the
following definition we let µiθi,ai denote a conjecture that justifies action ai
for an agent with characteristic (information-type) θi.

Definition 41. Fix a simple Bayesian game with feedback (BG, f). A
profile of mixed actions and conjectures:(

αi(·|θi), (µi(ai,θi))ai∈suppαi(·|θi)

)
i∈I,θi∈Θi

(a mixed action αi(·|θi) for each i and θi, and a conjecture for each i, θi
and ai ∈ suppαi(·|θi)) is an anonymous self-confirming equilibrium
of (BG, f) if for every i ∈ I, θi ∈ Θi, ai ∈ Ai, the following conditions
hold:
(1) ( rationality) if αi(ai|θi) > 0, then ai ∈ ri(µi(ai,θi), θi),
(2) ( confirmed conjectures) Pfi

ai,µi
(·|θi) = Pfiai,α−i,q−i (·|θi) .
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Remark 35. The definition needs to be modified and made more stringent
if the distributions qj are known. In this case equilibrium conjectures must
be consistent with q = (qj)j∈I0. For instance, in the two-person case,
margΘjµ

i = qj.
39

Remark 36. The definition of self-confirming equilibrium at θ∗

(Definition 40) is obtained as a special case when q(θ∗) = 1.

Remark 37. Every mixed equilibrium of the interim strategic form of BG
is a self-confirming equilibrium profile of mixed actions.

Adapting in the obvious way the definitions of observable payoffs
and own-action independence of feedback of Section 6.3, we obtain the
analog of Theorem 16: if (BG, f) satisfies observable payoffs and own-
action independence of feedback, then every (anonymous) self-confirming
equilibrium profile of mixed actions (αi(·|θi))i∈I,θi∈Θi

is also a mixed Bayes-
Nash equilibrium of BG, therefore the two equilibrium concepts coincide
under these assumptions about feedback.

Analogous considerations apply to defining SCE in games with
asymmetric information about the realization of an initial chance move.
Also in this case, the confirmed-conjectures condition must require that,
for each player, the observed distribution of messages coincides with the
subjectively expected distribution of messages.

8.8 Appendix

The cleanest and easiest extension of the rationalizability idea
to incomplete-information environments is the notion of (directed)
rationalizability for games with payoff uncertainty studied in Section
8.2 (and 8.3). However, most theorists have analyzed incomplete
information restricting their attention to Bayesian games. Therefore, the

39A special case of equilibrium of this kind obtains when actions are observed
(fi(θ, a) = a) and conjectures are “naive” as they do not take into account that
opponents’ actions depend on their type. For example in the two-agents case without
residual uncertainty, µi(θj , aj) = qj(θj)ν

i(aj) for some νi ∈ ∆(Aj). This is called cursed
equilibrium. Such behavior may explain, for example, the so called “winners’ curse” in
common value auctions. This refinement of self-confirming equilibrium was proposed by
Eyster and Rabin [31], although the link to the self-confirming equilibrium concept was
not made explicit.
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rationalizability idea has been first extended to such games. Thus, rather
than defining what is rationalizable for an information-type θi, theorists
first tried to define what is rationalizable for a Harsanyi type ti; but
the meaning of “action ai is rationalizable for type ti” is not entirely
transparent, because Harsanyi’s notion of “type” is self-referential, hence
elusive. Let us make a preliminary observation. Often the Bayesian games
considered in applications conflate Harsanyi types ti with information-
types θi. Formally, this means that, for each player i, Θi = Ti and the
information-type map ϑi is the identity on Θi (equivalently, Θi and Ti are
isomorphic, so that ϑi is a bijection). For such simple Bayesian games, we
just have to consider a special case of Directed Rationalizability: for each
i and each θi, let

∆i,θi =
{
µi ∈ ∆ (Θ0 ×Θ−i ×A−i) : margΘ0×Θ−iµ

i = p1
i (·|θi)

}
,

where p1
i (·|θi) is the exogenous first-order belief of type θi. Let ∆ =

(∆i,θi)i∈I,θi∈Θi
denote the corresponding profile of belief restrictions. With

this, we compute what actions are ∆-rationalizable for each type θi of each
player i.

What we explain below applies instead to general Bayesian games. We
first delve into the conceptual subtleties of defining rationalizability for
Bayesian games and then we illustrate the concepts with the so called
“electronic mail game.” To simplify the analysis, we restrict our attention
to games with finite action sets and finite or countable type sets.

8.8.1 Rationalizability in Bayesian Games

A game with payoff uncertainty, i.e., the mathematical structure

Ĝ = 〈I,Θ0, (Θi, Ai, ui)i∈I〉 ,

does not specify the exogenous interactive beliefs of players, that is, their
beliefs about private information and beliefs of the opponents (recall that
we call such beliefs “exogenous” because they are not explained, nor
partially determined, by strategic reasoning). A specification of exogenous
beliefs is necessary to extend the traditional definition of equilibrium due
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to Nash.40 The richer structure

BG = 〈I,Ω,Θ0, ϑ0, (Θi, Ti, Ai, τi, ϑi, pi, ui)i∈I〉 ,

known as “Bayesian game,” was introduced with this purpose, allowing
the definition of Bayesian equilibrium.

It was also pointed out that, for traditional equilibrium analysis,
it makes no difference whether the given mathematical structure BG
represents a game situation where there is no common knowledge of the
payoff functions (incomplete information), or a situation where there is
asymmetric information about an initial chance move. The interpretation
of BG may make some specific assumptions about interactive beliefs more
or less plausible (think about the common prior assumption), but the
computation of equilibria is not affected.41

However, the interpretation seems to matter when it comes to define
the appropriate concept of rationalizability, assuming that the interactive
situation represented by BG is transparent to the players. The crucial
point is the following: in an incomplete information game, the rationality
and strategic reasoning of a player need to be evaluated according to his
type. Specifically, we consider the so called interim stage and, for each
action ai and type ti, we ask: Is ai a justifiable choice for ti?

42 On the
other hand, in a game with asymmetric information about an initial chance
move, rationality and strategic reasoning need to be assessed at the ex ante
stage. For each decision function σi : Ti → Ai, we ask: Is σi a justifiable
decision function for player i? By answering these different questions, game
theorists obtained two different concept of rationalizability for Bayesian
games.

Definition 42. Let BG be a Bayesian game. An action ai ∈ Ai is interim
rationalizable for type ti ∈ Ti of player i ∈ I, if ai is rationalizable for ti
in the interim strategic form IS(BG). A decision function σi : Ti → Ai is
ex ante rationalizable if σi is a rationalizable decision function of the ex
ante strategic form AS(BG).

40As we argue in Section 8.7, this does not hold for other definitions of equilibrium
that characterize the rest points of adaptive processes.

41As we pointed out, this is not true for self-confirming equilibrium.
42Recall that we say that a choice is “justifiable” if it is a best reply to some belief. A

choice is “rationalizable” if it survives the iterated elimination of non justifiable choices.
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Lemma 22. If a decision function σ∗i is justifiable in the ex ante strategic
form, then for every type ti the action a∗ti = σ∗i (ti) is justifiable in the
interim strategic form.

Proof. First observe that, for each type ti, according to eq. (8.5.2),
the actions of the other types t′i of player i are completely irrelevant
for the determination of the interim payoff. Hence, one can re-define
the conjecture of type ti in the interim strategic form as a probability
distribution over the action profiles of the types of players j 6= i. Notice
that such action profiles coincide with the profiles of decision functions of
the opponents of player i in the ex ante strategic form:

(atj )j 6=i,tj∈Tj ∈×
j 6=i

(
ATj

)
=×

j 6=i
Σj = Σ−i.

Hence, the set of conjectures of any type/player ti in the interim strategic
form coincides with the sets of conjectures of player i in the ex ante
strategic form. To be consistent with the notation used for games of
complete information, we denote by Ui(σi, µ

i) and uti(ai, µ
i) the expected

payoffs of player i and of type ti in the corresponding strategic forms, given
conjecture µi ∈ ∆(Σ−i).

Let us fix arbitrarily a decision function σ∗i and a conjecture µi. We
now prove that σ∗i is a best reply to µi if and only if, for every type ti ∈ Ti,
action σ∗i (ti) is a best reply to µi. This implies the thesis. Fix µi ∈ ∆(Σ−i).
For every decision function σi, the expected payoff of σi given µi is

Ui(σi, µ
i) =

∑
σ−i

µi(σ−i)Ui(σi, σ−i)

=
∑
σ−i

µi(σ−i)
∑
ti

pi (ti)
∑
θ0,t−i

pi (θ0, t−i|ti)ui(θ0, ϑi(ti), ϑ−i(t−i), σi(ti), σ−i(t−i))

=
∑
ti

pi (ti)
∑
σ−i

µi(σ−i)
∑
θ0,t−i

pi (θ0, t−i|ti)ui(θ0, ϑi(ti), ϑ−i(t−i), σi(ti), σ−i(t−i))

=
∑
ti

pi(ti)uti(σi(ti), µ
i).

Recall: pi (ti) > 0 for each ti ∈ Ti. It follows that

σ∗i ∈ arg max
σi

Ui(σi, µ
i) = arg max

σi

∑
ti

pi (ti)uti(σi(ti), µ
i)
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if and only if

∀ti ∈ Ti, σ∗i (ti) ∈ arg max
ai

uti(ai, µ
i).

The average of the expected payoffs for the different types of i is maximized
if and only if43 the expected payoff of every type of i is maximized. �

Corollary 5. If a decision function σi ∈ Σi is rationalizable in the ex ante
strategic form, then for every type ti ∈ Ti the action σi(ti) is rationalizable
for ti in the interim strategic form.

From the previous considerations it looks like interim rationalizability is
the appropriate solution concept if we interpret the mathematical structure
BG as an interactive situation with incomplete information, where the ex
ante stage is only a useful notational device and therefore the states ω
represent only possible configurations of private information and beliefs.
Ex ante rationalizability is instead the appropriate solution concept if we
interpret BG as an interactive situation with asymmetric information over
some initial chance move (which directly affects the payoffs only through
the payoff-relevant components of θ).

Corollary 5 states that ex ante rationalizability is at least as strong a
solution concept as interim rationalizability. It can be shown by example
that it is actually stronger. The formal reason may be understood already
from the proof of Lemma 22. Assume that, for every ti, action σ∗i (ti)
is justifiable. Then there exists a profile of conjectures (µti)ti∈Ti (with
µti ∈ ∆(Σ−i)) such that σ∗i (ti) is a best reply to µti for each ti. But this
does not imply that there exists a unique conjecture µi ∈ ∆(Σ−i) such that
σ∗i (ti) is a best reply to µi for every ti. The difference between the two
solutions concept is clearly illustrated by the following numerical example.

Example 36. Let Ω = {ω′, ω′′}; player 1 (Rowena) knows the true state,
τ1(ω′) 6= τ1(ω′′), whereas player 2 (Colin) does not, τ2(ω′) = τ2(ω′′), and
considers the two states equally likely: p2(ω′) = p2(ω′′) = 1

2 . The payoff
functions are as in the matrixes below (note that the payoff of Rowena is
independent of the state, this simplifies the example):

43Of course, the “only if” part holds because we assume that pi (ti) > 0 for each
ti ∈ Ti.
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ω′ c d

a 3, 3 0, 2

m 2, 0 2, 2

b 0, 0 3, 2

ω′′ c d

a 3, 0 0, 2

m 2, 0 2, 2

b 0, 3 3, 2

First, observe that every action by Colin is justifiable. In particular, c
is justifiable by the conjecture that Rowena chooses a if ω′ and b if ω′′. It
is easy to verify that for each type of Rowena all the actions are justifiable
by some conjecture about Colin. Hence, if choices are evaluated at the
interim stage it is not possible to exclude any action, everything is interim
rationalizable. Instead if choices are evaluated at the ex ante stage, then
the decision function σ1(ω′) = a, σ1(ω′′) = b, denoted by ab, can be
excluded. Indeed, since Rowena’s payoff does not depend on the state, ab
could be a best reply to some conjecture µ1 only if both a and b were
best replies to µ1. But if Rowena believes µ1(c) ≥ 1

2 , then b is not a best
reply; if Rowena believes µ1(c) ≤ 1

2 , then a is not a best reply. Therefore
ab is not justifiable by any µ1. The same argument shows that ba is not
justifiable either. The ex ante justifiable decision functions of Rowena
are: aa,am,ma,mm,bb,bm,mb.44 Given any belief µ2 such that µ2(ab) = 0,
action c yields an expected payoff less or equal than 3

2 (check this); action
d instead yields 2 > 3

2 . Then, the only rationalizable action for Colin in the
ex ante strategic form is d. It follows that the only rationalizable decision
function of Rowena in the ex ante strategic form is bb. N

Although the gap between ex-ante and interim rationalizability was
at first just accepted as a fact, it should be disturbing. Conceptually,
rationalizability is meant to capture the assumptions of rationality (i.e.,
expected utility maximization) and common belief in rationality given
the background transparency of the Bayesian Game BG. Since both
strategic forms are based on the same Bayesian game and since ex-ante
maximization is equivalent to interim maximization,45 why does not ex-

44Given that Row’s payoff does not depend on ω, those decision functions that
select different actions for the two states are justifiable only by beliefs that make Row
indifferent between these two actions; the decision functions am and ma are among the
best replies to the conjecture µ1(c) = 2

3
, the decision functions bm and mb are among

the best replies to the conjecture µ1(c) = 1
3
.

45This equivalence holds under the assumptions that for every player i, all types ti
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ante rationalizability coincide (in terms of behavioral predictions) with
interim rationalizability? Which features of the strategic form create
the gap highlighted in Example 36? Before providing an answer to
these questions, we introduce another puzzling feature of rationalizability
in Bayesian environments: the dependence of interim rationalizability
on apparently irrelevant details of the state space. To understand this
problem, consider the following example.

Example 37. [Dekel et al. [28]] Rowena and Colin are involved in a
betting game. Each player can decide to bet (action B) or not to bet
(action N ). There is an unknown parameter θ0 ∈ Θ0 = {θ′0, θ′′0} and players
have no private information (Θi =

{
θ̄i
}

for every agent i). Rowena (Colin)
wins if both players bet and θ0 = θ′0 (θ0 = θ′′0). The decision to bet entails
a deadweight loss of $4 independently of the opponent’s action; if both
agents bet, the loser gives $12 to the winner. The corresponding game
with payoff uncertainty Ĝ can be represented as follows:

θ′0 B N

B 8,−16 − 4, 0

N 0,−4 0, 0

θ′′0 B N

B − 16, 8 − 4, 0

N 0,−4 0, 0

Let us assume that there is common belief that each agent assigns
probability 1

2 to each payoff state. Thus, each player i has only one
hierarchy of beliefs about θ0.
The simplest state space representing this situation is the following:
Ω = {ω′, ω′′} ,,ϑ0 (ω′) = θ′0, ϑ0 (ω′′) = θ′′0 and for every agent i, Ti = {t̄i},
functions ϑi and τi are trivially defined and pi (ω′) = 1

2 . In this case, the
ex-ante and the interim strategic forms coincide and are represented by
the following game:

B N

B − 4,−4 − 4, 0

N 0,−4 0, 0

have positive probability.



218 8. Games with Incomplete Information

It is immediate to see that betting is not rationalizable. Thus, N is
the only interim rationalizable action.
Now, consider an alternative state space: Ω =

{
ω1, ω2, . . . , ω8

}
,

ϑ0 (ω) =


θ′0, if ω ∈

{
ω1, ω2, ω3, ω4

}
,

θ′′0 , if ω ∈
{
ω5, ω6, ω7, ω8

}
,

for every agent i, Ti = {t′i, t′′i }, ϑi is trivially defined,

τ1 (ω) =


t′1, if ω ∈

{
ω1, ω2, ω5, ω6

}
,

t′′1, if ω ∈
{
ω3, ω4, ω7, ω8

}
,

τ2 (ω) =


t′2, if ω ∈

{
ω1, ω3, ω5, ω7

}
,

t′′2, if ω ∈
{
ω2, ω4, ω6, ω8

}
,

and p1 = p2 = p:

State of the world, ω ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

p [ω] 1
4 0 0 1

4 0 1
4

1
4 0

One can easily check that this common prior induces a distribution over
residual uncertainty and types which can be represented as follows:

θ′0 t′2 t′′2

t′1
1
4 0

t′′1 0 1
4

θ′′0 t′2 t′′2

t′1 0 1
4

t′′1
1
4 0

and that for both types of both players the following holds: (i) the player
has no private information, (ii) he assigns probability 1

2 to each state θ0,
and (iii) there is common belief of this. Thus, this second state space
represents exactly the same belief hierarchies than the former one: each i
assigns probability 1

2 to each θ0, each i is certain that −i assigns probability
1
2 to each θ0, and so on. If we write down the ex-ante strategic form derived
from this state space, we get the following game:
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BB BN NB NN

BB − 4,−4 − 4,−2 − 4,−2 − 4, 0

BN −2,−4 1,−5 −5, 1 −2, 0

NB −2,−4 −5, 1 1,−5 −2, 0

NN 0,−4 0,−2 0,−2 0, 0

Notice that, in this game, strategy NB (BN ) is a best response for
Rowena to the conjecture that Colin is playing NB (BN ), while NB (BN )
is Colin’s best response to the conjecture that Rowena is playing BN
(NB). Thus, the set {BN,NB}×{BN,NB} has the best response property
and, consequently, betting is ex-ante and, thanks to Corollary 5, interim
rationalizable. N

In Example 37, the two state spaces generate two different Bayesian
Games representing the same information and belief hierarchies over Θ;
thus, they seem to represent the same background common knowledge
and beliefs concerning the game with payoff uncertainty Ĝ. Then, should
not we expect them to lead to the same interim rationalizable prediction?
Why is this intuition false? Why does the choice of one type space over
the other matter?

It turns out that these two puzzles are related: they both depend on
independence assumptions that are implicitly made in the construction of
the strategic forms. Once these assumptions are removed and the proper
(ex ante and interim) notions of correlated rationalizability are defined, the
puzzles disappear: (i) the set of interim correlated rationalizable actions
is not affected by the choice among different state spaces representing the
same information and belief hierarchies over Θ, and (ii) there is no gap
between interim correlated and ex-ante correlated rationalizability.

First, let us focus on the puzzle highlighted by Example 37. Consider
the second state space and recall that in such state space each player has
two types representing the same belief hierarchy over Θ.46 In this case,
if type t′1 conjectures that t′2 plays B and t′′2 plays N, this conjecture,
together with the common belief prior p, will lead t′1 to believe that
Colin will bet only when the residual uncertainty is θ′0; this belief

46In Example 37, players have no private information.
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will justify the decision of type t′1 to bet.47 To put it differently, in
this state space, Rowena’s types hold beliefs in which Colin’s type is
correlated with residual uncertainty and this can, in turn, introduce
correlation between Colin’s behavior, σ2 (·), and residual uncertainty,
θ0. On the contrary, this correlation is not possible with the first state
space in which each belief hierarchy is represented only by one type;
this happens because the construction of the interim strategic form
imposes an implicit independence constraint on players’ beliefs: each
player has to regard his opponents’ behavior, σ2 (·), as independent of the
residual uncertainty, θ0, conditional on the opponents’ types. If there are
relatively few types representing the same information and belief hierarchy,
this independence constraint may bind, preventing players from holding
correlated beliefs and restricting the set of rationalizable actions.48 To
address this problem, Dekel et al. [28] define a solution concept, Interim
Correlated Rationalizability, in which beliefs are explicitly allowed to
exhibit correlation between opponents’ actions and residual uncertainty.
Since the independence restriction imposed by the construction of the
interim strategic form is not related to the assumption of rationality,
we can immediately conclude that interim correlated rationalizability
represents a step forward in the search for a solution concept characterized
by Rationality and Common Belief in Rationality (RCBR) given the
background transparency of the given Bayesian game BG. Actually, it
can be shown that interim correlated rationalizability fully characterizes
the behavioral implications of these epistemic assumptions. To provide a
formal definition of this solution concept, fix a Bayesian Game BG =
〈I,Ω,Θ0, ϑ0, (Θi, Ti, Ai, τi, ϑi, pi, ui)i∈I〉 . Then, for every i, ti and µi ∈
∆ (Ω×A−i) let

ri
(
ti, µ

i
)

= arg max
ai∈Ai

∑
ω,a−i

µi (ω, a−i)ui (ϑ0 (ω) , ϑi (ti) , ϑ−i (τ−i (ω)) , ai, a−i) .

The set of interim correlated rationalizable actions is iteratively defined

47It is easy to see that a similar reasoning holds for any other type.
48This problem would not arise if for every player i and every information and belief

hierarchy he may hold, there were at least |Ai| types representing this information and
belief hierarchy. Stricter requirement can be provided, but this would go beyond the
scope of this textbook.
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as follows: for every i and ti, let ICR0,BG
i (ti) = Ai and for each k ≥ 1, let

ICRk,BGi (ti) =


ai ∈ Ai : ∃µi ∈ ∆ (Ω×A−i) , ∃ϕ−i : Θ0 × T−i → ∆ (A−i) ,

1) ai ∈ ri
(
ti, µ

i
)

2) ∀ (θ0, t−i) , ϕ−i (θ0, t−i) (a−i) > 0⇒ a−i ∈ ICRk−1,BG
−i (t−i)

3) ∀ (ω, a−i) , µ
i (ω, a−i) = p (ω|ti) · ϕ−i (ϑ0 (ω) , τ−i (ω)) (a−i)

 ,

where ICRk−1,BG
−i (t−i) =×j 6=i ICR

k−1,BG
j (tj) .

In the previous definition, function ϕ−i (θ0, t−i) represents the
conjecture of player i concerning the behavior of his opponents given their
types are t−i and residual uncertainty is θ0. Since such functions depend
both on θ0 and on t−i, representing conjectures with such functions allows
to introduce correlation between a−i and θ0 even after conditioning on t−i;
this correlation is not allowed by interim rationalizability.49

Definition 43. Fix a Bayesian game BG. For player i ∈ I, action
ai ∈ Ai and type ti ∈ Ti, ai is interim correlated rationalizable for ti if
ai ∈ ICRBGi (ti) =

⋂
k≥0

ICRk,BGi (ti).

Since interim correlated rationalizability allows for correlation between
opponents’ behavior and residual uncertainty, it does not impose any
implicit independence restriction and it captures the assumptions of
players’ rationality and common belief in rationality given the transparency
of the Bayesian game BG (as usual, the k-th step in the iterative definition
of interim correlated rationalizability corresponds to the k − 1-th level of
mutual beliefs in rationality). As a consequence, given a game with payoff
uncertainty Ĝ, the set of interim correlated rationalizable actions of type
ti depends only on the information and belief hierarchy entailed by ti.
From now on, the latter will be denoted by p̂i (ti). The following Theorem
formalizes this result.

Theorem 30. Fix Ĝ =
〈
I,Θ0, (Θi, Ai, ui)i∈I

〉
and consider two Bayesian

Games based on it: BG′ = 〈I,Ω′,Θ0, ϑ
′
0, (Θi, T

′
i , Ai, τ

′
i , ϑ
′
i, p
′
i, ui)i∈I〉 and

BG′′ = 〈I,Ω′′,Θ0, ϑ
′′
0, (Θi, T

′′
i , Ai, τ

′′
i , ϑ

′′
i , p
′′
i , ui)i∈I〉. Let t′i ∈ T ′i and

t′′i ∈ T ′′i . Then, if p̂i (t′i) = p̂i (t′′i ) , ICR
BG′
i (t′i) = ICRBG

′′
i (t′′i ) .

49Indeed, it is possible to show that the set of interim rationalizable actions for type
ti is equivalent to the set of actions obtained through an iterative construction similar
to the one we just described, but in which ϕ−i : T−i → ∆ (A−i) .
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Proof. Take t′i ∈ T ′i and t′′i ∈ T ′′i and suppose p̂i (t′i) = p̂i (t′′i ) .
We will prove by induction that, for every i and for every k ≥ 0,

ICRk,BG
′

i (t′i) = ICRk,BG
′′

i (t′′i ). To simplify notation, we will not specify
the dependence of the set of interim correlated rationalizable actions on
Bayesian Game (notice that this is also justified by the statement of the
Theorem). The result is trivially true for k = 0. Now, suppose that
ICRsi (t′i) = ICRsi (t′′i ) for every s ≤ k − 1. We need to show that
ICRki (t′i) = ICRki (t′′i ).

Take any ai ∈ ICRki (t′i) . By definition, we can find µit′i
∈ ∆ (Ω′ ×A−i)

and ϕt′i : Θ0 × T ′−i → ∆ (A−i) such that (i) ai ∈ ri

(
t′i, µ

i
t′i

)
, (ii)

ϕt′i (θ0, t−i) (a−i) > 0 implies a−i ∈ ICRk−1
−i (t−i) and (iii) for every pair

(ω, a−i),

µit′i
(ω, a−i) = p

(
ω|t′i

)
· ϕt′i

(
ϑ′0 (ω) , τ ′−i (ω)

)
(a−i) .

Let

P k−1
−i =

{(
ϑ′j (tj) , p

k−1
j (tj)

)
j 6=i

: tj ∈ T ′j
}

be the set of possible profiles of private information and (k − 1)-th order
beliefs that agents other than i can have. For every θ0 ∈ Θ0, π

k−1
−i ∈ P

k−1
−i

and a−i ∈ A−i, define50

[θ0]BG′ =
{

(ω, a−i) ∈ Ω′ ×A−i : ϑ0 (ω) = θ0

}
,

[a−i]BG′ =
{(
ω, a′−i

)
∈ Ω′ ×A−i : a′−i = a−i

}
,

and[
πk−1
−i

]
BG′

=

{
(ω, a−i) ∈ Ω′ ×A−i :

(
ϑ′j (τj (ω)) , pk−1

j (τj (ω))
)
j 6=i

= πk−1
−i

}
.

To ease notation, we also write[
θ0, π

k−1
−i , a−i

]
BG′

= [θ0]BG′ ∩
[
πk−1
−i

]
BG′
∩
[
a′−i
]
BG′

,[
θ0, π

k−1
−i

]
BG′

= [θ0]BG′ ∩
[
πk−1
−i

]
BG′

,

50As in the previous sections, we let symbols in square brackets denote corresponding
events in the relevant state space.
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and [
θ0, a

′
−i
]
BG′

= [θ0]BG′ ∩
[
a′−i
]
BG′

.

Finally, for every ω ∈ Ω′, let

π̂k−1,BG′

−i (ω) =
(
ϑ′j
(
τ ′j (ω)

)
, pk−1
j

(
τ ′j (ω)

))
and, similarly, for every ω ∈ Ω′′, let

π̂k−1,BG′′

−i (ω) =
(
ϑ′′j
(
τ ′′j (ω)

)
, pk−1
j

(
τ ′′j (ω)

))
.

Then for every θ0 ∈ Θ0 and πk−1
−i ∈ P

k−1
−i , define

µt′i

([
θ0, π

k−1
−i

])
=

∑
(ω,a−i)∈[θ0,πk−1

−i ]
BG′

µt′i (ω, a−i) .

µt′i

([
θ0, π

k−1
−i

])
is the probability that type t′i assigns to the event “θ0 is

the case and other agents have private information and (k − 1)-th order

beliefs given by πk−1
−i .” If µt′i

([
θ0, π

k−1
−i

])
> 0, let

ϕti

(
θ0, π

k−1
−i

) [
a′−i
]

=

∑
(ω,a−i)∈[θ0,πk−1

−i ,a′−i]BG′
µt′i (ω, a−i)

µt′i

([
θ0, π

k−1
−i

]) ;

if µti

([
θ0, π

k−1
−i

])
= 0, take any t′−i =

(
t′j

)
j 6=i

∈ T ′−i such that(
ϑ′j

(
t′j

)
, pk−1
j

(
t′j

))
j 6=i

= πk−1
−i and let

ϕt′i

(
θ0, π

k−1
−i

)
(a−i) =


1

|ICRk−1
−i (t′−i)|

, if a−i ∈ ICRk−1
−i

(
t′−i
)
,

0, otherwise

(by the inductive hypothesis, the definition of ϕt′i does not depend on the
actual choice of t′−i).
For every (ω, a−i) ∈ Ω′′ ×A−i define:

µt′′i (ω, a−i) = p
(
ω|t′′i

)
ϕt′i

(
ϑ′′0 (ω) , π̂k−1,BG′′

−i (ω)
)

(a−i) ,
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where the previous expression is well defined since BG′ and BG′′ are based
on the same Ĝ and p̂i (t′i) = p̂i (t′′i ) . Moreover, since p̂i (t′i) = p̂i (t′′i ):

µt′i

([
θ0, π

k−1
−i

])
=

∑
(ω,a−i)∈[θ0,πk−1

−i ]
BG′

µt′i (ω, a−i)

= p
({
ω ∈ Ω′ : ϑ′ (ω) = θ0, π̂

k−1,BG′

−i (ω) = πk−1
−i

}
|t′i
)

= p
({
ω ∈ Ω′′ : ϑ′′ (ω) = θ0, π̂

k−1,BG′′

−i (ω) = πk−1
−i

}
|t′′i
)

.

Then, for every
(
θ0, a

′
−i
)
, we have∑

(ω,a−i)∈[θ0,a′−i]BG′′

µt′′i (ω, a−i) =
∑

ω:ϑ′′0 (ω)=θ0

p
(
ω|t′′i

)
ϕt′i

(
ϑ′′0 (ω) , π̂k−1

−i
(
τ ′′−i (ω)

)) (
a′−i
)

=
∑

πk−1
−i ∈P

k−1
−i

p
({
ω : ϑ′′0 (ω) = θ0, π̂

k−1,BG′′

−i (ω) = πk−1
−i

}
| t′′i
)
ϕt′i

(
θ0, π

k−1
−i

) (
a′−i
)

=
∑

πk−1
−i ∈P

k−1
−i

µt′i

([
θ0, π

k−1
−i

]) ∑(ω,a−i)∈[θ0,πk−1
−i ,a′−i]BG′

µti (ω, a−i)

µt′i

([
θ0, π

k−1
−i

])
=

∑
(ω,a−i)∈[θ0,a′−i]BG′

µt′i (ω, a−i) ,

where the definition of [θ0, a−i]BG′′ is analogous to the one of [θ0, a−i]BG′ .
Thus, µt′ and µt′′ have the same marginal distribution over Θ0 × A−i

implying that ai ∈ ri

(
t′′i , µ

i
t′′i

)
. Furthermore we already constructed a

function ϕ−i : Θ0 × T ′′−i → ∆ (A−i) (namely, ϕt′i) such that for every

(ω, a−i) , µ
i
t′′i

(ω, a−i) = p (ω|t′′i )ϕ−i
(
ϑ′′0 (ω) , τ ′′−i (ω)

)
(a−i). Finally, by

construction and by the inductive hypothesis, µt′′i (ω, a−i) > 0 implies

a−i ∈ ICRk−1
−i

(
τ ′′−i (ω)

)
. We conclude that ai ∈ ICRki (t′′i ). The statement

of the Theorem follows by induction. �

Notice that, by definition, the conditional independence restriction
implicit in the construction of the interim strategic form has no bite
when there is distributed knowledge of the state (Θ0 is a singleton); in
this case it is easy to verify that interim correlated rationalizability is
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equivalent to interim rationalizability. On the contrary, suppose that there
is some residual uncertainty (|Θ0| > 1) and that we insist on using interim
rationalizability. A natural question arises: can we at least provide an
expressible characterization of this solution concept and, in particular, of
the independence restriction implied by it? A characterization is deemed
expressible if it can be stated in a language based on primitives (that is,
elements contained in the description of the game with payoff uncertainty,
Ĝ) and terms derived from them (such as, hierarchies of beliefs over these
primitives).

The answer to the previous question is affirmative only in some
particular cases and the reason goes to the very heart of Harsanyi’s
approach. To understand why, recall that interim rationalizability requires
players to regard opponents’ actions as independent of the residual
uncertainty conditional on their types. But what is a type? A type
is a self-referential object: it is a private information and a belief over
residual uncertainty and other players’ types. Thus, unless we can establish
a one-to-one mapping between types and agents’ information and belief
hierarchies over primitives, the conditional independence assumption is not
expressible. Obviously, in order to assess the existence of such a mapping,
we can use both payoff-relevant and payoff-irrelevant primitives. Thus,
even though two types represent the same private information and belief
hierarchy over payoff-relevant parameters, they can still be distinguished
by the information and beliefs hierarchies over payoff-irrelevant elements
that they capture. Whenever this is the case, the conditional independence
assumption is expressible and we can show that, given the transparency of
BG, interim rationalizability characterizes the behavioral implications of
the following epistemic assumptions: (R) players are rational, (CI) their
beliefs satisfy independence between of the opponents’ behavior and the
residual uncertainty conditional on the information and belief hierarchy
over primitives of the opponents, and (CB(R∩CI)) there is common belief
of R and CI.

Notice that, insofar players may believe that (i) their opponents’
behavior may depend on payoff-irrelevant information, and (ii) this
information is correlated with θ0, the information and belief hierarchies
over payoff-irrelevant parameters may still be strategically relevant. For
instance, in Example 37, Rowena may be “superstitious” and believe
that the payoff-relevant state, θ0, is correlated with a particular dream
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Colin may have had (payoff-irrelevant information), which could also affect
Colin’s decision to bet. Similarly, in Example 26, a firm may believe
that the quantity produced by its competitor depends on the analysis
carried out by its marketing department and that this (payoff-irrelevant)
information may be correlated with the actual position of the demand
function (θ0).

As a special case, in which interim rationalizability admits an
expressible characterization, we can consider simple Bayesian Games.51

Definition 44. Fix a game with payoff uncertainty

Ĝ = 〈I,Θ0, (Θi, Ai, ui)i∈I〉 .

A Bayesian Game

BG = 〈I,Ω,Θ0, ϑ0, (Θi, Ti, Ai, τi, ϑi, pi, ui)i∈I〉

based on Ĝ is simple if Ti = Θi for each i ∈ I.52 In this case, the functions
(ϑi (·) : Ti → Θi)i∈I are trivially defined: ϑi = IdΘi for each i ∈ I.

Focusing on simple Bayesian games, one can show that interim
rationalizability characterizes the behavioral implications of the following
epistemic assumptions: (R) rationality, (CIPI) independence between
players’ actions and residual uncertainty conditional on players’ private
information, and (CB(R∩CIPI)) common belief of R and CIPI. Besides
being interesting per se, simple Bayesian games are also widely used in
the study of many relevant problems in information economics, such as
adverse selection, moral hazard, mechanism design.

Now, let us turn to the other puzzling result: the gap between ex-ante
and interim rationalizability. As already pointed out, the gap highlighted
by Example 36 arises because the interim strategic form regards different
types as different agents and, as a consequence, different types playing in
Rowena’s role may hold different beliefs concerning Colin’s behavior (one of
Rowena’s type can believe Colin will play c with probability greater than 1

2 ,
while the other type can believe that this will happen only with probability

51They are slight generalization of “simple Bayesian games with type-independent
beliefs” of Section 8.4 because, in the latter, beliefs about θ−i are independent of θi,
whereas in a simple Bayesian game pi ∈ ∆ (Θ) and pi (·|θi) may depend on θi.

52More formally, the requirement is that Ti and Θi are isomorphic.
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lower than 1
2); since Rowena’s conjecture concerning Colin’s behavior can

vary with her own type, her beliefs can exhibit correlation between the
state of the world, ω (which determines residual uncertainty and players’
type) and Colin’s action. Instead, the ex-ante strategic form implicitly
requires Rowena to regard Colin’s decision function as independent from
the state of the world.53 To understand this, let us analyze the strategic-
form expected payoff of player i when he plays “strategy” σi and holds
conjecture µi ∈ ∆(Σ−i) about the strategies of other players:

Ui(σi, µ
i) =

∑
σ−i∈Σ−i

µi(σ−i)Ui(σi, σ−i)

=
∑

σ−i∈Σ−i

µi(σ−i)
∑
ω∈Ω

pi(ω)ui(ϑ0 (ω) , ϑi(τi(ω)), ϑ−i(τ−i(ω)), σi(τi(ω)), σ−i(τ−i(ω)))

=
∑
ω∈Ω

∑
σ−i∈Σ−i

pi(ω)µi(σ−i)Ūi(ω, σi, σ−i),

where we let Ūi(ω, σi, σ−i) denote the payoff of i when the state of the world
is ω and profile (σi, σ−i) is played. As the formula shows, the expected
payoff of i is computed under the assumption that the probability of each
pair (ω, σ−i) is the product of the marginal probability of ω, pi(ω) and
the marginal probability of σ−i, µ

i(σ−i). This means that i regards ω, the
choice of nature, as independent of σ−i, the choice of −i.

This implicit independence restriction reduces the set of Rowena’s
admissible beliefs and makes ex-ante rationalizability more demanding
(hence, stronger) than interim rationalizability. Battigalli et
al. [19] address this problem by defining Ex-Ante Correlated
Rationalizability, a solution concept that allows correlation, according
to players’ subjective beliefs, between the initial chance move and players’
decision functions. To introduce ex-ante correlated rationalizability,
consider a simple Bayesian game; although such restriction is not necessary
from the mathematical point of view, the ex-ante strategic form interprets
types as actual information received by players concerning the initial
chance move and, consequently, the assumption of simple Bayesian games

53If we interpret ω as the choice made by an external and neutral player called Nature,
the independence restriction on beliefs is equivalent to requiring independence between
the strategy chosen by Colin and the one chosen by Nature.
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is the most, if not the only, reasonable one. For every i and µi ∈
∆ (Ω× Σ−i), let54

ri
(
µi
)

= arg max
σi∈Σi

∑
ω,σ−i

µi (ω, σ−i) ûi (ω, σi (τi (ω)) , σ−i (τ−i (ω))) .

Then we can inductively define the set of ex-ante correlated rationalizable
decision functions as follows: for every i, ACR0,BG

i = Σi and for every
k ≥ 1,

ACRk,BGi =


σi ∈ Σi : ∃µi ∈ ∆ (Ω× Σ−i) ,

1) σi ∈ ri
(
µi
)
, 2) margΩµ

i = p,

3) µi (ω, σ−i) > 0 =⇒ σ−i ∈ ACRk−1
−i

 ,

where ACRk−1
−i =×j 6=iACR

k−1
j .

Definition 45. Fix a simple Bayesian game BG. A decision function
for player i is ex-ante correlated rationalizable if σi ∈ ACRBGi =⋂
k≥0

ACRk,BGi (Σ−i) .

From the iterative definition of ex-ante correlated rationalizability, it
is easy to see that the justifying belief µi introduces correlation between
the state of the world and opponents’ behavior. Since different states ω
can be associated with different types ti = τi (ω) , which can hold different
beliefs about the behavior of the other players, this correlation can also
be introduced by interim correlated rationalizability. On the contrary,
such correlation is not allowed by ex-ante rationalizability that forces
each player to hold the same conjecture over opponents’ decision functions
independently of her type.

Thus, interim correlated rationalizability and ex-ante correlated
rationalizability avoid any independence restriction implicitly entailed by
the interim and ex-ante strategic form; as a consequence, both these
solution concepts are characterized only by the epistemic assumptions of
rationality and common belief in rationality given the background common
knowledge of BG. Then, it should not come as a surprise that, if we use
these solution concepts, the gap highlighted in Example 36 disappears and
the following theorem holds.

54Recall that function ûi : Ω×A→ R was introduced in Section 8.6 to analyze games
with asymmetric information about an initial move by chance and that ûi can be related
to ui according to 8.6.1.
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Theorem 31. Let BG = 〈I,Ω,Θ0, ϑ0, (Θi, Ti, Ai, τi, ϑi, pi, ui)i∈I〉 be a
simple Bayesian game. Then, for every i,

ACRBGi =
{
σi ∈ Σi : ∀ti ∈ Ti, σi (ti) ∈ ICRBGi (ti)

}
.

Proof. We will prove that a stronger result holds, namely that for
every i and every k ≥ 0

ACRk,BGi =
{
σi ∈ Σi : ∀ti ∈ Θi, σi (ti) ∈ ICRk,BGi (ti)

}
.

The result is trivial for k = 0. Now suppose that the result holds for every
s ≤ k − 1; we will show that it holds also for k.

Take an agent i and an arbitrary σi ∈ ACRk,BGi . By definition we
can find a rationalizing belief µi ∈ ∆ (Ω× Σ−i). To ease notation, we
keep denoting with symbols in square brackets corresponding events in the
relevant state space. Thus, let

[θ0] = {(ω, σ−i) : ϑ0 (ω) = θ0} ,

[t] = {(ω, σ−i) : τ (ω) = t} ,

[a−i] = {(ω, σ−i) : σ−i (τ−i (ω)) = a−i} ,

[θ0, t, a−i] = [θ0] ∩ [t] ∩ [a−i] ,

and

p ([θ0, t]) = p ({ω : ϑ0 (ω) = θ0, τ (ω) = t}) .

For every ti ∈ Ti, construct a function ϕti : Θ0 × T−i → ∆ (A−i) in the
following way: if p [θ0, t] > 0 ,

ϕti (θ0, t−i) (a−i) =

∑
(ω,σ−i)∈[θ0,t,a−i]

µ (ω, σ−i)

p ([θ0, t])
;

if p ([θ0, t]) = 0,

ϕti (θ0, t−i) (a−i) =


1∣∣∣ICRk−1,BG

−i (t−i)
∣∣∣ , if a−i ∈ ICRk−1,BG

−i (t−i),

0, if a−i /∈ ICRk−1,BG
−i (t−i).
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For every ti and pair (ω, a−i), let

µ̂ti (ω, a−i) = p (ω|ti) · ϕti (ϑ0 (ω) , τ−i (ω)) (a−i) .

Observe that:∑
(ω,σ−i)∈[θ0,t,a−i]

µ (ω, σ−i) = p ([θ0, t]) · ϕti (θ0, t−i) (a−i)

= p (ti) p (θ0, t−i|ti) · ϕti (θ0, t−i) (a−i) .

Thus:∑
ω,σ−i

µi (ω, σ−i) ûi (ω, σi (τi (ω)) , σ−i (τ−i (ω)))

=
∑

θ0,t,a−i

∑
(ω,σ−i)∈[θ0,t,a−i]

µ (ω, σ−i) ûi (ω, σi (τi (ω)) , σ−i (τ−i (ω)))

=
∑
ti

p (ti)
∑
θ0,t−i

p (θ0, t−i|ti)
∑
a−i

ϕti (θ0, t−i) (a−i)·ui (θ0, ϑi (ti) , ϑ−i (t−i) , σi (ti) , a−i) .

Since σi ∈ ri
(
µi
)

and p (ti) > 0, we conclude that σi (ti) ∈ ri (ti, µ̂ti).
Finally, if p ([θ0, t]) = 0, by construction ϕti (ϑ0 (ω) , t−i) (a−i) > 0 only if

a−i ∈ ICRk−1,BG
−i (t−i). If instead, p ([θ0, t]) > 0, the same result follows

from the definition of ex ante correlated rationalizability and the inductive
hypothesis. Thus, for every ti, we can conclude that σi (ti) ∈ ICRk,BGi (ti)
and, consequently, that:

ACRk,BGi ⊆
{
σi ∈ Σi : ∀ti ∈ Θi, σi (ti) ∈ ICRk,BGi (ti)

}
.

Now we will prove the other inclusion. For every ti ∈ Ti, let (ati , ti) be

a pair such that ati ∈ ICRk,BGi (ti) . Thus for every ati we can find a
rationalizing belief µati ∈ ∆ (Ω×A−i) and a function ϕati : Θ0 × T−i →
∆ (A−i) satisfying the properties stated in the iterative definition of interim
correlated rationalizability. Now construct belief µ̂i ∈ ∆ (Ω× Σ−i) as
follows: for every pair (ω, σ−i),

µ̂i (ω, σ−i) =
p (ω) · ϕaτi(ω)

(ϑ0 (ω) , τ−i (ω)) (σ−i (τ−i (ω)))∣∣∣{σ′−i ∈ ACRk−1,BG
−i : σ′−i (τ−i (ω)) = σ−i (τ−i (ω))

}∣∣∣
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whenever the denominator is positive,55 and µ̂i (ω, σ−i) = 0 otherwise. It

is immediate to see that µ̂i (ω, σ−i) > 0 only if σ−i ∈ ACRk−1,BG
−i . Now,

let
[ω, a−i] =

{(
ω′, σ−i

)
: ω′ = ω, σ−i (τ−i (ω)) = a−i

}
.

With this, if
{
σ′−i ∈ ACR

k−1,BG
−i : σ′−i (τ−i (ω)) = a−i

}
6= ∅, then∑

(ω′,σ−i)∈[ω,a−i]

µ̂i
(
ω′, σ−i

)
=

∑
σ−i∈ACRk−1,BG

−i :σ−i(τ−i(ω))=a−i
p (ω) · ϕaτi(ω)

(ϑ0 (ω) , τ−i (ω)) (a−i)∣∣∣{σ′−i ∈ ACRk−1,BG
−i : σ′−i (τ−i (ω)) = a−i

}∣∣∣ =

p (ω) · ϕaτi(ω)
(ϑ0 (ω) , τ−i (ω)) (a−i) .

Also notice
that for every (ω, a−i) , if

{
σ′−i ∈ ACR

k−1,BG
−i : σ′−i (τ−i (ω)) = a−i

}
=

∅, the inductive hypothesis implies that a−i /∈ ICRk,BG−i (τ−i (ω)) and
consequently ϕaτi (ω) (ϑ0 (ω) , τ−i (ω)) (a−i) = 0. Therefore, for every
(ω, a−i), ∑

(ω′,σ−i)∈[ω,a−i]

µ̂i (ω, σ−i) = p (ω) · ϕaτi(ω)
(ϑ0 (ω) , τ−i (ω)) (a−i)

and∑
σ−i

µ̂i (ω, σ−i) =
∑
a−i

∑
(ω′,σ−i)∈[ω,a−i]

µ̂i (ω, σ−i)

=
∑
a−i

p (ω) · ϕaτi(ω)
(ϑ0 (ω) , τ−i (ω)) (a−i) = p (ω) .

Notice that we have already proved two of the properties in the definition
of ex-ante correlated rationalizability. Finally, for every σi ∈ Σi∑

ω,σ−i

µ̂i (ω, σ−i) ûi (ω, σi (τi (ω)) , σ−i (τ−i (ω)))

=
∑
ω,a−i

p (ω)·ϕaτi(ω)
(ϑ0 (ω) , τ−i (ω)) (a−i)·ui (ϑ0 (ω) , ϑi (τi (ω)) , ϑ−i (τ−i (ω)) , σi (τi (ω)) , a−i) .

55That is, if
{
σ′−i ∈ ACRk−1,BG

−i : σ′−i (τ−i (ω)) = σ−i (τ−i (ω))
}
6= ∅.
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Since p (ti) > 0 for every ti, the decision function σi defined by σi (ti) = ati
for every ti is such that σi ∈ ri

(
µ̂i
)
. We conclude that σi ∈ ACRk,BGi .

Since pairs (att , ti) were chosen arbitrarily, we can write:

ACRk,BGi ⊇
{
σi ∈ Σi : ∀ti ∈ Θi, σi (ti) ∈ ICRk,BGi (ti)

}
.

The statement of the theorem follows by induction. �

8.8.2 The Electronic Mail Game

Consider the following incomplete information game where player 1
(Rowena) knows the true payoff matrix, whereas 2 (Colin) does not know
it. The probabilities and the payoffs are represented in the table below:

(1− λ) :

θα a b

a M,M 1,−L
b −L, 1 0, 0

λ :

θβ a b

a 0, 0 1,−L
b −L, 1 M,M

L > M > 1, λ < 1/2

If we had complete information, (a, a) would be the dominant strategy
equilibrium for matrix θα, and (b, b) would be the Pareto efficient
equilibrium for the matrix θβ. The second matrix has also another
equilibrium, (a, a).

Notice that the game has distributed knowledge; thus, our previous
analysis implies that the set of interim rationalizable actions is equivalent
to the set of interim correlated rationalizable actions. In particular, it can
be easily verified that any Bayesian game representing this situation would
have only one interim rationalizable profile: (aa, a). As a matter of fact,
for type θα of Rowena a is dominant. If Colin believes that Rowena is
rational, so that type θα chooses a, then a2 = a yields a larger expected
utility than a2 = b. More precisely let µ2 ∈ ∆(aa, ab, ba, bb) be Colin’s
conjecture about Rowena’s strategy and let u2(µ2, a2) be the expected
utility of action a2 ∈ {a, b} given conjecture µ2. Since µ2(ba) = µ2(bb) = 0
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(as θα certainly chooses a), we obtain

u2(µ2, a) = (1− λ)u2(θα, a, a) + λµ2(aa)u2(θβ, a, a) + λµ2(ab)u2(θβ, b, a)

≥ (1− λ)M

> −(1− λ)L+ λM

≥ (1− λ)u2(θα, a, b) + λµ2(aa)u2(θβ, a, b) + λµ2(ab)u2(θβ, b, b)

= u2(µ2, b).

Hence, the only rationalizable action for Colin is a. This implies that also
for type θβ the only interim rationalizable choice is a.

Consider now the following more complex variation of the game.56

Obviously the players would find it convenient to communicate and
coordinate on (a, a) if θ = θα and on (b, b) if θ = θβ. Let us then consider
the following form of communication via electronic mail. Rowen and Colin
sit in front of their respective computer screens. If the payoff-type of
Rowena is θβ, her computer, C1, automatically sends a message to the
computer of Colin, C2. Furthermore, if computer Ci receives a message,
it automatically sends a confirmation message to computer C−i. However,
any time a message is sent,it gets lost with probability ε and thus it does
not reach the receiver.

This information structure yields a corresponding Bayesian game. A
generic state of the world is given by a pair of numbers ω = (q, r) where
q = t1 is the number of messages sent by C1 and r = t2 is the number of
messages received (and therefore also sent) by C2. Hence, the set of states
of the world is given by

Ω = {(0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (3, 2), (3, 3), ...}
= {(q, r) ∈ N× N : q = r or q = r + 1} .

If the state is (q, q − 1) it means that the last message (among those
sent either by C1 or by C2) has been sent by C1. If the state is (r, r)
(with r > 0) it means that the last message sent by C1 has reached C2,
but the confirmation by C2 has not reached C1. The signal functions are
τ1(q, r) = q, τ2(q, r) = r. The function that determines θ is ϑ1(0) = θα,
ϑ1(q) = θβ if q > 0.57 There is a common prior given by p(0, 0) = (1− λ),

56See [58] (or the textbook by Osborne and Rubinstein [53], pp. 81-84). The analysis
in terms of interim rationalizability is not contained in the original work.

57Θ2 is a singleton, hence ϑ2 is a constant.
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p(r+ 1, r) = λ(1− ε)2rε, p(r+ 1, r+ 1) = λ(1− ε)2r+1ε for any r ≥ 0 (that
is, p(q, r) = λ(1− ε)q+r−1ε for any (q, r) ∈ Ω\ {(0, 0)}). This information
is summed up in the following table:

t1=q\t2=r 0 1 2 3 4 5 . . .

0, θα 1− λ – – – – – . . .

1, θβ λε λ(1− ε)ε – – – – . . .

2, θβ – λ(1− ε)2ε λ(1− ε)3ε – – – . . .

3, θβ – – λ(1− ε)4ε λ(1− ε)5ε – – . . .

4, θβ – – – λ(1− ε)6ε λ(1− ε)7ε – . . .

5, θβ – – – – λ(1− ε)8ε λ(1− ε)9ε . . .

. . . . . . . . . . . . . . . . . . . . . . . .

The resulting beliefs, or conditional probabilities, are then determined
as follows:

p1[(0|0) = 1,

p1[(r|r + 1) =
λ(1− ε)2rε

λ(1− ε)2rε+ λ(1− ε)2r+1ε
=

1

2− ε
,

p2[(0|0) =
1− λ

1− λ+ λε
,

p2[(r + 1|r + 1) =
λ(1− ε)2r+1ε

λ(1− ε)2r+1ε+ λ(1− ε)2r+2ε
=

1

2− ε
(r > 0).

In other words, any player—having received a certain number of
messages—computes the probability that his confirmation message does
not reach the other computer, which is 1

2−ε >
1
2 .

If ε is very small, the Bayesian game is in some sense “close” to the
game with common knowledge of θ. First, notice that in all states (q, r)
with r > 0 both players know that the true state is θβ. Moreover, for any
n and any δ > 0, there always exists an ε sufficiently small such that, given
θ = θβ, the probability that there exists mutual knowledge of degree n of
the true value of θ is bigger than 1−δ.58 Given that (b, b) is an equilibrium
of the complete information game in which θ = θβ , we could be induced

58For instance, consider n = 2. For any q ≥ 2, in state (q, r) (r = q, or r = q − 1)
every player knows that θ = θβ and every player knows that the other knows it, therefore
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to think that if ε is very small, then action b is interim rationalizable for
some type of Rowena and Colin. But the following result shows that this
intuition is incorrect:

Proposition 1. In the Electronic Mail game there exists a unique interim
rationalizable profile: every type of every player chooses action a.

The crucial point in the proof is to realize that when a player i knows
that θ = θβ, but s/he is sure that −i plays a whenever s/he has not
received her/his last message, then i prefers to play a. On the other
hand, it is easy to show that when i does not know that θ = θβ then a is
the only rationalizable action. It follows by induction that a is the only
rationalizable action in all states. Here is the formal argument:

Proof of Proposition 1. Clearly, the only rationalizable action for
t1 = 0 is a, as this type of Rowena knows that in the true payoff matrix
a is dominant. An argument similar to the one used for the simple case
discussed above shows that the only rationalizable action for t2 = 0 is also
a.

Consider now the rationalizable choices for the types ti = r > 0, that
is for those types for which player i knows that θ = θβ. We first prove two
intuitive intermediate steps:

(i) If the only rationalizable action for type t2 = r − 1 is a, then the
only rationalizable action for type t1 = r is a. Any rationalizable action
for t1 = r needs to be justified by a rationalizable conjecture about Colin
(see Theorem 2). By assumption, such conjecture must assign probability
1 to the set of profiles σ2 ∈ {a, b}T2 such that σ2(r − 1) = a. Hence, the
expected utility for type t1 = r if he chooses a is at least 0 (this value is
realized if type t2 = r also chooses a), whereas the expected utility from
choosing b is at most −p1 (r − 1|r)L+ p1 (r|r)M (this value is realized if
type t2 = r chooses b). Since p1 (r − 1|r) = 1

2−ε >
1
2 and L > M , it follows

that 0 > −p1 (r − 1|r)L+ p1 (r|r)M .
An analogous argument59 shows that:

there is mutual knowledge of degree two of the true payoff matrix. The probability of
being in one of these states conditional on the event θ = θβ is

1− p({(1, 0), (1, 1)})
λ

= 1− 2ε+ ε2.

To guarantee that such probability is larger than 1− δ we need ε < 1−
√

1− δ.
59Just reverse the roles and modify indexes accordingly.
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(ii) If the only rationalizable action for type t1 = r is a, the only
rationalizable action for type t2 = r is also a.

From steps (i) and (ii) it follows that, for every r > 0, if the
only rationalizable profile in state (r − 1, r − 1) is (a, a) then the only
rationalizable profile in state (r, r − 1) is (a, a); if the only rationalizable
profile in state (r, r − 1) is (a, a) then the only rationalizable profile in
state (r, r) is (a, a). Since we have shown that the only rationalizable
profile in state (0, 0) is (a, a), it follows by induction that (a, a) is the only
rationalizable profile in every state. �



Part II

Sequential Games
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In this part we extend the analysis of strategic thinking to interactive
decision situations where players move sequentially. As the play unfolds,
players obtain new information. We consider a world inhabited by
Bayesian players. When a player receives a piece of information that
was possible (had positive probability) according to his previous beliefs,
then he simply updates his beliefs according to the standard rules of
conditional probabilities. When the new piece of information is completely
unexpected, the player forms new subjective beliefs.

The observation of some previous moves by the co-players may provide
information about the strategies they are implementing and/or their type.
How such information is interpreted depends, for example, on beliefs about
the co-players rationality, or whether they are carrying out their plan. This
introduces a new fascinating dimension to strategic thinking.

As in Part I, we first analyze games with complete information and
then move on to games with incomplete information. Chapter 9 provides
a mathematical description of multistage games with observable
actions, i.e., games where at the beginning of each stage all the actions
taken in previous stages are publicly observed and hence are common
knowledge. We then define the central concepts of strategy and strategic
form. Chapter 10 analyzes rational planning for given beliefs about
the behavior of the co-players. For games with finite horizon (i.e.,
games that end in bounded, finite time), we represent rational planning
with the folding back procedure. It turns out that a strategy is
consistent with folding-back if and only if it is sequentially optimal,
and if and only if it satisfies the one-deviation property. Sequential
optimality and the one-deviation property, which are equivalent in finite-
horizon games, can be defined also for games with infinite horizon,
and the equivalence between sequential optimality and the one-deviation
property—called one-deviation principle—extends to a very large class
of “sufficiently regular” infinite-horizon games. Chapter 11 puts forward
notions of rationalizability for multistage games justified by different
assumptions about strategic reasoning. In many games of interest, these
solution concepts admit useful strategic-form characterizations. Chapter
12 analyzes equilibrium concepts. A first definition of equilibrium is
given by the Nash equilibrium of the strategic form. This, however,
is unsatisfactory. The more demanding concept of subgame perfect
equilibrium is based on the details of the sequential representation of
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the multistage game: it requires that the strategy of each player be
sequentially optimal given correct conjectures about the strategies of the
co-players. The one-deviation principle implies that, in finite games where
only one player is active at each stage and payoffs are “generic,” there is
only one subgame perfect equilibrium that can be computed with the so
called backward induction algorithm, a kind of inter-personal folding-
back procedure. In games with finite horizon, one can use a “case-by-
case backward induction” method to find the subgame perfect equilibria.
Chapters 13 and 14 apply the one-deviation principle to the analysis
of repeated games and bargaining games. Chapters 15 and 16 extend
the analysis to sequential games with incomplete information and with
imperfectly observable actions.



9

Multistage Games with
Complete Information

We start by providing a mathematical definition of multistage games
whereby, at the beginning of each stage, all the actions taken in previous
stages are publicly observed, hence are common knowledge (Section 9.1).
In a single stage, actions are chosen simultaneously, but some players may
be inactive. Inactive players will be formally represented as players with
only one feasible action. It is possible that in a given stage all the players
but one are inactive. The set of feasible actions in a given stage may be
endogenous, that is, it may depend on the actions taken in previous stages.
The length of the game may also be endogenous. Armed with such formal
notation, we move on to define strategies and the (reduced) strategic
form of a game (Section 9.3). We can interpret a strategy as (i) the
complete description of the contingent behavior of a player, and (ii) the
contingent plan of a player. The strategic form of a game is based on the
first interpretation. The analysis of rational planning (formally developed
in Chapter 10) considers the second interpretation. For a player who would
always carry out his plan, (i) and (ii) coincide. Any solution concept for
static games can be applied to the strategic form of a multistage game
and thus yields a “candidate solution.” In Section 9.3.1, we will discuss
whether some solutions concepts for static games—such as rationalizability
or Nash equilibrium—make sense as solutions of a multistage game, when
applied to its strategic form. Finally, we extend the analysis by introducing
two different notions of randomized strategic behavior, mixed strategies

240
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and behavior strategies; the latter are better suited to define subgame
perfect equilibrium in randomized strategies, as we will see in Chapter 12.

9.1 Preliminary Definitions

It is useful to start with a preliminary example before we plunge into the
mathematical representation of multistage games with observable actions.

Example 38. Ann (player 1) and Bob (player 2) play the Battle of
the Sexes (BoS) with an Outside Option. Ann first chooses between
playing the BoS with Bob (action in) or not (action out). If she chooses in,
this choice becomes common knowledge and then the simultaneous-move
“subgame” BoS is played. If she chooses out the game ends. Payoff are
displayed in Figure 9.1 below.

1 1\2 B2 S2

B1 3, 1 0, 0

S1 0, 0 1, 3

(2, 2)

in

out

Figure 9.1: Battle of the Sexes with an Outside Option.

The set of feasible actions of a player depends on the position reached:
Ann’s feasible set is {in, out} at the beginning of the game, and it is
{B1, S1} if she moves in. At the beginning of the game, Bob can only
“wait and see” what Ann does; therefore his feasible set is the singleton
{wait}. If Ann moves in, Bob’s feasible set is {B2, S2}. There are 5 possible
plays of the game: either the pair of actions (out,wait) is played and
the game ends, or one of the following 4 sequences of actions pairs is
played: ((in,wait), (B1,B2)), ((in,wait), (B1,S2)), ((in,wait), (S1,B2)) and
((in,wait), (S1, S2)). A pair of payoffs (u1(z), u2(z)) is associated with each
possible play z. N
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A possible play of the game is called terminal history. Possible
partial plays like (in,wait) are called non-terminal (or partial) histories.
The rules of the game specify what sequences of action profiles are
terminal or non-terminal histories. For each terminal history, viz., z,1

the rules of the game specify an outcome (consequence) y = g(z), e.g.,
a distribution of money among the players. Each player i assigns to
each outcome y utility vi(y). As in the first part, vi represents i’s
preferences over lotteries of outcomes (consequences) λ ∈ ∆(Y ) by way of
expected utility calculations. Given the rules and the utility functions, each
terminal history z is mapped to a profile of “payoffs” (induced utilities)
(ui(z))i∈I = (vi (g(z)))i∈I . For example, the payoff pair attached to
terminal history z = ((in,wait), (S1,S2)) is (u1(z), u2(z)) = (3, 1). Under
the complete information assumption, the rules of the game (including the
outcome function g) and players’ preferences over lotteries of consequences
(represented by the utility functions vi, i ∈ I) are common knowledge.
Thus, also the payoff functions z 7→ ui(z) are common knowledge. In
this chapter, we assume complete information and we directly specify the
payoff functions. But, as in the analysis of static games, it is important to
keep in mind that such payoff functions are derived from preferences and
the outcome function g.

When discussing a specific example like the BoS with an Outside Option
it would be simpler to represent the possible plays as sequences like (out),
((in), (B1,B2)), ((in), (B1,S2)), etc. But we use this awkward notation
for a reason. Having each inactive player automatically choose “wait”
simplifies the abstract notation for general games: possible plays of the
game are just sequences of action profiles (a1, a2, ...) where each element
at of the sequence is a profile (ati)i∈I and there is no need to keep track in
the formal notation of who is active. Thus, if A denotes the set of all action
profiles, histories are just sequences of elements from set A. To allow for
the theoretical possibility of games that can go on forever, we also consider
infinite sequences of elements from A. The rules of the game specify which
sequences are possible, i.e., they specify the set of “histories.”

Since sequences of elements from a given domain are a crucial ingredient
of the formal representation of a game, it is useful to introduce some
preliminary concepts and notation about sequences.

1Since z is the last (i.e., terminal) letter of the alphabet, it seems like a good choice
as a symbol to denote terminal histories.
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9.1.1 Sequences and Trees

Fix a set X. The set of finite sequences of length ` of elements from set X
is the `-fold Cartesian product

X` = X × ...×X︸ ︷︷ ︸
` times

.

Such sequences can be thought as functions from the set of the first `
positive integers, {1, ..., `} to X; thus, X` is isomorphic to the set of
functions X{1,...,`}. Now consider the union of all such sets, i.e., the set of
all finite sequences of elements from X, plus the singleton X0 = {∅}
containing only the empty sequence ∅ (a convenient mathematical
object analogous to the empty set ∅).2 With a descriptive notation, such
union is represented by the symbol X<N0 , i.e.,

X<N0 =
⋃
`∈N0

X`

where N0 = {0, 1, 2, ...} is the set of natural numbers including 0. It may
help to think of X as an alphabet for some language Λ. Then, the set
of words in language Λ is a subset of X<N0 . The rules of language Λ
determine which elements of X<N0 are words of Λ.

Similarly, the rules of a given game Γ determine which sequences
of actions profiles are feasible histories. But, unlike words in natural
languages, some histories of games may have an infinite length. This means
that the game does not necessarily end in a finite number of stages. This is
a useful abstraction. Consider, for example, a bargaining game where the
parties go on making offers and counteroffers until they reach a binding
agreement: it is possible that they never agree and hence bargain forever.
Countably infinite sequences of elements from X are like functions from
N = {1, 2, ...} to X. Therefore the set of all such sequences is denoted XN:

XN = {(xk)∞k=1 : ∀k ∈ N, xk ∈ X}.

The set of all finite and infinite sequences from X (empty sequence
included) is

X≤N0 = X<N0 ∪XN.

2Similarly, the power set of X contains the empty set, that is, ∅ ∈ 2X , or equivalently
{∅} ⊆ 2X .
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The histories of a game form a rooted tree, i.e., a partially ordered
subset3 H̄ ⊆ X≤N0 where (i) the order relation x ≺ y is “x is a prefix
(initial subsequence) of y” (by convention, ∅ is a prefix of every sequence(
xk
)`
k=1

, ` = 1, 2, ...,∞), (ii) every prefix of a sequence in H̄ (including
the empty sequence) is also a sequence in H̄, so that the empty sequence
is the root of the tree, and (iii) (in games that may never end) if z ∈ XN

and every (finite) prefix of z is in H̄ then also z ∈ H̄.4

9.2 Multistage Games with Observable Actions

Consider a game that proceeds through stages. At each stage there is
a subset of active players, and this set may depend on previous moves;
each active player chooses an action in a feasible set with two or more
alternatives, and the choices of the active players are simultaneous. The
rules of the game are such that at the beginning of each stage the action
profiles chosen in previous stages become public information. The rules
determine which actions are feasible for each player according to previous
choices of every player. The only feasible action of an inactive player is to
wait, hence his feasible set is a singleton. When the game ends, players
have empty feasible sets: not only they cannot choose between alternatives,
they also stop waiting. The consequences for the players implied by the
rules of the game, in general, may depend on the actions taken since the
game started, and on the order in which they were taken, that is, the
consequences depend on the sequence of action profiles that led to the end
of the game. Game forms with simultaneous moves, or static game forms,
are a special case whereby the first actions profile ends the game.

As we did in the case of simultaneous moves games, we do not
represent the rules directly, but rather we describe the players’ set,
their feasible sets of actions (including how they depend on previous
moves) and the consequences of their actions. We do this by providing

3A set P is partially ordered by the binary relation ≺⊆ P × P if ≺ is transitive
and asymmetric, that is, for all p, q, r ∈ P , (p ≺ q ∧ q ≺ r) implies p ≺ r, and p ≺ q
implies ¬ (q ≺ p). The reflexive closure of ≺ is the relation � given by (≺ ∪ =), that is,
p � q if either p ≺ q or p = q. If ≺ is transitive and asymmetric, then � is transitive,
reflexive, and antisymmetric (which means that p � q ∧ q � p implies p = q). A set P
can be equivalently said to be partially ordered by � if � is transitive, reflexive, and
antisymmetric. See [52, A.1.4].

4Note that (ii) and (iii) do not hold for the words of natural languages.
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an abstract representation of the possible sequences of actions profiles,
called “histories;” from this we obtain a game tree with a set of terminal
histories; then we introduce a consequence map from terminal histories to
collective consequences, thus obtaining a multistage game form, which is
a mathematical description of the rules of the game. Finally, we introduce
players’ preferences and obtain a multistage game. If the rules of the
game and players’ preferences are common knowledge, this provides a
complete mathematical description of those aspects if the game that we
deem relevant for the analysis of strategic interaction.

A multistage game tree with observable actions is a structure

〈I, (Ai,Ai(·))i∈I〉

given by the following components:

• For each i ∈ I, Ai is a nonempty set of potentially feasible
actions.

• Let A = ×i∈I Ai and consider the set A<N0 of finite sequences
of action profiles; then, for each i ∈ I, Ai(·) : A<N0 ⇒ Ai is a
feasibility correspondence that assigns to each finite sequence of
action profiles h` = (at)`t=1 the set Ai(h`) of actions of i that are
feasible immediately after h`. It is assumed that Ai(∅) 6= ∅ and, for
all h ∈ A<N0 , Ai(h) = ∅ if and only if Aj(h) = ∅ for every j ∈ I (the
reason for this assumption will be explained below).

The reason why we say that this structure has observable actions is
that this is the intended interpretation. In particular, if the feasible set
Ai(h) depends on h, the assumption that h is observed as soon as it occurs
implies that player i always knows what his feasible set of action is. Indeed,
we assume more, i.e., that when a history h occurs it becomes common
knowledge that h has occurred. If this were not the case then we would
have to describe what players know about what other players may have
observed.

Let A(h) =×i∈I Ai(h) denote the set of feasible action profiles given
h ∈ A<N0 . A sequence (at)`t=1 (` = 1, 2, ...,∞) is a (feasible) history
if a1 ∈ A(∅) and at+1 ∈ A(a1, a2, ..., at) for each positive integer t < `.
Thus, a history is a sequence of action profiles whereby each action profile
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is feasible given the previous ones. By convention, the empty sequence—
denoted ∅—is a history. Let H̄ ⊆ A≤N0 denote the set of histories. A
history z = (at)`t=1 ∈ H̄ is terminal if either z ∈ AN (i.e., z is an infinite
history) or A(z) = ∅. Let

Z =
{
z ∈ H̄ : z ∈ AN or A(z) = ∅

}
denote the set of terminal histories, and let

H = H̄\Z

denote the set of non-terminal (or partial) histories.5

Consider the restriction to H̄ of the prefix-of relation ≺ on A≤N0 :
let h =

(
a1, ..., ak

)
and h̄ =

(
ā1, ..., ā`

)
, then h ≺ h̄ if k < ` and(

a1, ..., ak
)

=
(
ā1, ..., āk

)
, that is, h̄ =

(
a1, ..., ak, āk+1, ...

)
; in this case

we say that h precedes h̄, or—equivalently—that h̄ follows h. We write
h � h̄ if either h ≺ h̄ or h = h̄, and we say that history h weakly
precedes history h̄ (or that h̄ weakly follows h). We also write h̄ � h
(h̄ � h) to mean that h̄ (weakly) follows h. The following result implies
that H̄ ordered by the precedence relation ≺ (restricted to H̄) is a tree
with distinguished root ∅:

Remark 38. The set of histories H̄ has the following properties:
(1) ∅ ∈ H̄ and, for each h ∈ H̄\{∅}, ∅ ≺ h;
(2) for each sequence h ∈ A<N0 and each history h′ ∈ H̄, if h ≺ h′ then
h ∈ H̄;
(3) for each infinite sequence z ∈ AN, if every predecessor (prefix) of z is
in H̄, then z ∈ H̄.

Proof. (1) holds by convention. To verify (2), fix arbitrarily a

history h′ =
(
at
)`
t=1

∈ H̄. Then, by definition, a1 ∈ A(∅) and
at+1 ∈ A(a1, a2, ..., at) for each positive integer t < `. If h ≺ h′ then

either h = ∅ ∈ H̄, or h =
(
ak
)t
k=1

for some positive integer t < `. In the

latter case, we must have a1 ∈ A(∅) and ak+1 ∈ A(a1, a2, ..., ak) for each
k ∈ {1, ..., t − 1}. Therefore h must be a history as well, i.e., h ∈ H̄. To

5It makes sense to assume that the effective range of the feasibility correspondence
of a player is his action set, that is ∪h∈HAi (h) = Ai. But this is not necessary for our
analysis.
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verify (3), let z =
(
ak
)∞
k=1

be such that h =
(
ak
)`
k=1
∈ H̄ for each ` ∈ N,

i.e., for each prefix of z. Then a1 ∈ A(∅) and at+1 ∈ A(a1, a2, ..., at) for
each t ∈ N, which implies that z ∈ H̄. �

Next we add to our description a set Y of outcomes, or consequences
(e.g., monetary payoffs for all the players), and an outcome (or
consequence) function g : Z → Y , thus obtaining a multistage game
form with observable actions

〈I, Y, g, (Ai,Ai(·))i∈I〉 .

This structure describes the rules of the game, but not how each player
would like this game to end. Even when Y ⊆ RI and g : Z → Y
describes monetary payoffs, it may be the case that players do not just
care about their own money, and even in the latter case, we still lack
a specification of risk attitudes. Thus, in order to analyze interaction
between a specific group of individuals for given rules of the game, we
add their personal preferences over lotteries, represented by a profile of
von Neumann-Morgenstern utility functions (vi : Y → R)i∈I according to
expected utility calculations.

With this, we obtain a multistage game with observable actions

Γ = 〈I, Y, g, (Ai,Ai(·), vi)i∈I〉 .

For each player i ∈ I, the composition

ui = vi ◦ g : Z → R

is called the payoff function of i. As we did for static games, we will often
neglect the specification of the outcome function and utility functions, and
look at a simplified, reduced representation 〈I, (Ai,Ai(·), ui)i∈I〉 showing
only the payoff functions. In this chapter, we maintain the informal
assumption of complete information: the rules of the game and players’
preferences over lotteries are common knowledge. As we have seen for
static games, if there is incomplete information we have to enrich our
description of the game.

We consider both games that end within a given finite time and games
that can last for an arbitrarily long time:
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Definition 46. Game Γ has finite horizon if H̄ ⊆
⋃T
t=1A

t for some
T ∈ N, otherwise Γ has infinite horizon. Game Γ is finite if H̄ is finite,
otherwise Γ is infinite. Game Γ is a static, or simultaneous-move game
if Z = A(∅). Game Γ is compact-continuous if A is a compact subset
of a Euclidean space, H̄ is compact (in the direct-sum product topology)6

and ui is continuous for each i ∈ I.

Remark 39. If Γ is finite, then Γ has finite horizon.

Proof. We prove the result by contraposition, showing that if Γ has
infinite horizon, then Γ is infinite. Suppose that, for each T ∈ N, there

is some history
(
at
)`
t=1
∈ H̄ with length ` > T , where ` ∈ N ∪ {∞}.

Then, there are two (not mutually exclusive) cases: (i) H̄ is not finite,
which means that Γ is not finite, or (ii) H̄ contains an infinite (necessarily
terminal) history, z =

(
at
)∞
t=1

. In the latter case, by Remark 38, the

countably infinite set of predecessors
(
at
)T
t=1

(T ∈ N) of z is included in
H̄ as well; hence Γ is not finite. �

For each h ∈ H̄, we let H(h) and Z(h) respectively denote the set of
non-terminal and terminal histories that weakly follow h:7

H(h) = {h′ ∈ H : h � h′},

Z(h) = {z ∈ Z : h � z}.

Note that the set of histories H(h) ∪ Z(h) and the restriction of the
precedence relation � on H(h) ∪ Z(h) form a sub-tree with root h.

For any non-terminal history h ∈ H, the sub-tree given by H(h)∪Z(h)
and the restriction of g (hence, of each ui) to sub-domain Z (h) determine
the subgame with root h, denoted by Γ (h). The maximal length of
histories in this subgame, called height of Γ (h), is

L(Γ (h)) := max
z∈Z(h)

`(z)− `(h).

6For any t ∈ N ∪ {∞}, we say that hn =
θ
ak,n

)t
k=1

converges to
θ
ak
)t
k=1

(in the

product topology), written hn → h, if ak,n → ak for each k. In the finite-dimentional
case, this is the standard notion of convergence. The set H̄ is closed (in the direct-sum

product topology) if, for every t ∈ N ∪ {∞} and (hn)∞n=1 ∈
θ
At
)N

with {hn}∞n=1 ⊆ H̄,
limn→∞ hn = h implies h ∈ H̄.

7If h ∈ Z, then H(h) = ∅ and Z(h) = {h}.
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For notational convenience, we extend L(Γ (·)) to terminal histories as well:
L(Γ (z)) = 0 for each z ∈ Z.

We illustrate our notation and the definitions with a leading example:
the “Battle of the Sexes (BoS) with Dissipative Action.”

Example 39. The game depicted in the picture below is the Battle of
the Sexes preceded by an observed “money-burning” (dissipative) move
by Bob:8 if Bob chooses the dissipative action Burn, he burns 2 dollars.9

Bob

Ann\Bob L R

U 4, 1 0, 0

D 0, 0 1, 4

Ann\Bob l r

u 4,−1 0,−2

d 0,−2 1, 2

BurnNotburn

The game tree is described by the following elements:
– A(∅) = {w} × {N,B}, A((w,N)) = {U,D} × {L,R}, A((w,B)) =
{u, d} × {l, r}, where A(h) = Aa(h) × Ab(h) for each history/node h,
w is the “wait” action of an inactive player, and we omit one order of
parentheses when this causes no confusion (e.g., we writeA((w,B)) instead
of A(((w,B))) for the feasible action pairs at h = ((w,B)), a sequence of
action pairs of length one);
– H = {∅, ((w,N)), ((w,B))};
– Z = {(w,N)} × A((w,N)) ∪ {(w,B)} × A((w,B)), H̄ = H ∪ Z;
– there are eight maximal chains10 of histories/nodes starting with the root
and ending with a terminal history, the following is an example:

∅ ≺ ((w,B)) ≺ ((w,B), (u, l)) ∈ Z;

on the other hand
((w,N)) 6≺ ((w,B), (u, l)).

8See, e.g., Ben-Porath and Dekel [20].
9Utility is measured in dollars. In the figure, payoff pairs follow the alphabetical

order: the first number is Ann’s payoff.
10A chain in a partially ordered set (X,�) is a subset C ⊆ X that is totally ordered

by �.
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N

Sometimes the definition of games with observable actions takes the set
H̄ as primitive and postulates properties (1)-(3) of Remark 38 (cf. Osborne
and Rubinstein [53, pp 89-90, 102.]). The most common definition of game
with sequential moves takes the tree-structure as primitive, but deals with
simultaneous actions in a somewhat arbitrary and un-intuitive way (see,
e.g., Fudenberg and Tirole [34, pp 80-81]). We will take advantage of
the tree-structure to provide graphical representations of some games, in
particular the games where at each stage t at most one player has at least
two feasible actions; such games are said to have “perfect information”:

Definition 47. Player i is active at history h ∈ H (that is, immediately
after h) if i has at least two feasible actions at h: |Ai(h)| ≥ 2. A multistage
game with observable actions has perfect information if, for each h ∈ H,
at most one player is active at h.

Note, perfect information is a formal property of multistage games, and
it should not be confused with complete information, an assumption with
a different meaning that here we do not express formally.11

9.2.1 Comments

Active and Inactive Players

Our definition of game tree allows for the possibility that all players are
inactive at a given history h. We do not even exclude that along some path
z all players become inactive after some stage k; such path z may even be
infinite. In this case, the path can be truncated at the stage where all
players become inactive, and this may transform a formally infinite game
into a finite one. Of course, such transformations are innocuous.

According to the present notation, when Ai(h) = ∅ for some player i,
it means that the game is over. Therefore it is assumed that Ai(h) = ∅ for
some i if and only if Ai(h) = ∅ for all i. An inactive player in an ongoing
game is a player with only one feasible action, say action “wait.”

One could give a more elegant definition in which there is a set I(h)
of active players at each partial history h and feasible actions are specified

11Recall that a game features complete information is there is common knowledge of
the rules of the game and of players’ preferences over lotteries of outcomes.



9.2. Multistage Games with Observable Actions 251

for active players only. This would have the advantage of simplifying the
notation for perfect information games and also for specific examples of
games. But such a definition would be more complex12 without essential
gains in generality.

Streams of Outcomes and Intertemporal Preferences

As a matter of interpretation, y = g (z) need not be an outcome that
realizes at the end of the game. Indeed, this cannot be literally true when
z is an infinite history (i.e., z ∈ Z ∩ AN). In many applications, y = g (z)
is a sequence, or stream, of outcomes that realize at the end of each time
period with periods being composed by one or more stages. Suppose, for
example, that each stage coincides with a time period; furthermore, to ease
notation suppose that the game has a fixed—finite or infinite—duration
T ∈ N∪{∞}. In this case, g may be derived from a sequence of functions(
gt : At → Yt

)T
t=1

, where and gt
(
a1, ..., at

)
is the period-t outcome, which

in general may depend on the whole history up to period t. With this, we
let Y =×T

t=1 Yt and

g : Z → Y ,(
at
)T
t=1

7→
(
gt
(
(aτ )tτ=1

))T
t=1

,

that is, y = g (z) is the sequence of end-of-period outcomes realized through
terminal history z. For example, gt

(
(aτ )tτ=1

)
∈ RI could be the profile of

period-t profits in an oligopoly with a set of firms I. If y = (yt)
T
t=1 is

a stream of outcomes, vi : Y → R aggregates the outcomes of different
periods and represents the intertemporal preferences of player i. The
most common intertemporal aggregator in economic applications satisfies
time separability and exponential discounting, that is, there are a discount
factor δi ∈ (0, 1) and a sequence of utility functions (vi,t : Yt → R)Tt=1 such

12With this alternative definition, action profiles have the form aJ = (aj)j∈J with
∅ 6= J ⊆ I; and the set of such profiles is

Ā :=
⋃
∅6=J⊆I

(×
i∈J

Ai);

an active players correspondence I(·) : Ā<N ⇒ 2I has to be introduced among the
primitive elements defining the game; the feasibility correspondence Ai(·) is defined on
the subset Hi = {h ∈ Ā<N : i ∈ I(h)}.
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that

∀y ∈ Y , vi (y) =
T∑
t=1

δt−1
i vi,t (yt) .

When periods comprise several stages the explicit description of
histories and outcome functions requires a more complex notation. We
do not pursue this issue here.

9.2.2 Graphical Representation

It is traditional to represent games of perfect information (see Definition
47) as game trees in the sense of graph theory: each h ∈ H̄ is a node;
each z ∈ Z is a terminal node (or leaf); each h ∈ H is a decision node;
each terminal history/node z is associated with payoff profile (ui(z))i∈I ;
each partial history/decision node h is associated with the only active
player, denoted by i = ι(h); if h′ = (h, a) (the concatenation of h and
a), then there is a directed arc (arrow) from h to h′, this directed arc
is associated with action aι(h), the action of the active player in profile
a = (aι(h),wait−ι(h)). Sometimes it is notationally useful to distinguish
between “physically identical” actions if they are taken after different
histories. In this case, there is a 1-1 correspondence between arcs and
actions in perfect information games. The following example illustrates
such graphical representation.

Example 40. Consider the following game Take-it-Or-Leave-it game of
length T between player 1 and player 2. A referee (or mechanical device)
puts a dollar on the table. Player 1 can take it or leave it, player 2 just
observes and waits. If player 1 takes the dollar the game is over, otherwise
the referee puts another dollar on the table, player 2 can take the two
dollars or leave them on the table, player 1 observes and waits. If player 2
takes the dollars the game is over, otherwise the referee puts another dollar
on the table. The game goes on like this until the referee has exhausted
his T dollars or someone has taken the dollars on the table. If there are T
dollars on the table and the active player (player 1 if T is odd) leave them,
they go to the other player. It is common knowledge that players only
care about money and are risk-neutral. The action set of each player i is
Ai = {Take,Leave,Wait}. If T = 4, the game is represented as in Figure
9.2.
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Leave Leave Leave Leave

Take Take Take Take

1 2 1 2

Figure 9.2: Game for T = 4.

We have

H = {∅, ((Leave,Wait)) , ((Leave,Wait),(Wait,Leave)) ,
((Leave,Wait),(Wait,Leave),(Leave,Wait))},

Ai(h) = {Take,Leave} if i is active at h ∈ H and Ai(h) = {Wait}
otherwise. The vertical (respectively, horizontal) directed arcs are labeled
by the action Take (respectively Leave) of the active player. N

In Example 40, we explicitly included the pseudo-action Wait only
to clarify the abstract, general notation introduced above; but, from
now on, we will identify histories with sequences of actions by active
players only. For example, (Leave,Wait) will be simply written as (Leave),
((Leave,Wait),(Wait,Leave)) will be written as (Leave,Leave), etc.

More generally, all games with observable actions can be graphically
represented as game trees. Consider the BoS with an Outside Option of
Example 38: if history (in) occurs, then the four action pairs—that is,
(B1,B2), (B1,S2), (S1,B2), and (S1, S2)—can be represented by directed
arcs (arrows) from (in) to the terminal nodes, where each directed arc
is associated with the corresponding action pair (a1, a2) ∈ A((in)). See
Figure 9.3 below.

Pictures with trees such as in Figure 9.3 are perfectly legitimate
and they faithfully represent the simultaneity of moves at some stages
of games without perfect information, but are not very common in
the game-theoretic literature. The reason is twofold. First, they
are not easily readable. Second, they are not traditional. Indeed,
the traditional approach—which we do not pursue in this chapter—to
represent multistage games without perfect information is to pretend that
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(
2
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in
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Figure 9.3: BoS with an Outside Option as game tree.

simultaneous moves are, instead, sequential, and use so called “information
sets” to make such misrepresentation innocuous.13 Consider again the
BoS with an Outside Option of Example 38. If Ann (player 1) goes in,
then the simultaneous-move “subgame” BoS is played. The approach
via “information sets” is to pretend that, after history (in), one of the
players moves first, and the co-player moves second, but does not observe
the action chosen by the first mover. In Figure 9.4, the representation
of the BoS “subgame” starting after history (in) is that Ann is the first
mover. To represent the assumption that Bob (player 2) cannot observe
Ann’s choice, i.e., that he does not know whether he is at history/node
(in,B1) or (in,S1), a dashed line joins the two decision nodes of Bob. The
set of nodes that a player cannot distinguish is called information set.
That said, we do not follow such approach for the representation of games
with observable actions. Information sets will be useful for the analysis of
multistage games with incomplete information (Chapter 15) or imperfectly
observable actions (Chapter 16).14

13See, in particular, von Neumann and Morgenstern [68] and Kuhn [43], who set the
stage for the following literature on dynamic games.

14Recall that—unfortunately—“(im)perfect information” and “(in)complete
information” have very different meanings in the language of game theory (see Chapters
1.4.3, 8, and Definition 47), despite the fact that they are essentially synonymous in the
natural language.
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Figure 9.4: Alternative representation of BoS with an Outside Option.

9.3 Strategies, Plans, Strategic Form, Reduced
Strategic Form

A strategy is a complete contingent plan which includes “instructions”
contingent on every non-terminal history, including histories where the
opponents make unexpected moves as well as histories inconsistent with
the plan itself. More formally:

Definition 48. A strategy for player i is an element of the product set

×h∈H Ai(h), that is, a function si : H → Ai such that si(h) ∈ Ai(h)
for each h ∈ H. The set of strategies for player i is denoted Si, that is,
Si =×h∈H Ai(h). We let S =×i∈I Si and S−i =×j 6=i Sj.

Remark 40. In a finite game the number of strategies of each player i ∈ I
is |Si| =

∏
h∈H |Ai(h)|.

A typical element of Si is denoted by si = (si(h))h∈H . Note that we
can equivalently define the set of strategies neglecting the histories where
player i is not active: let

Hi = {h ∈ H : |Ai(h)| ≥ 2}

denote the set of histories (nodes of the game tree) where player i is active.
Then×h∈H Ai(h) is isomorphic to×h∈Hi Ai(h) and it makes sense to write
Si =×h∈Hi Ai(h).
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The set of sub-strategies in the sub-tree with root h ∈ H is
denoted by S�hi , that is,

S�hi = ×
h′∈H(h)

Ai(h′).

A generic element of S�hi is denoted by s�hi . The sub-strategy induced by
si ∈ Si in the sub-tree with root h is denoted by

(si|h) = (si(h
′))h′∈H(h) ∈ S�hi .

Given S, it is possible to derive a fictitious static game G = N (Γ),
called the “strategic form,” or “normal form” of Γ, that captures some
important aspects of the game Γ.15 The idea is the following: each player
instructs a trustworthy agent, or writes a computer program for a machine,
so that the agent/machine implements a particular strategy. Thus, each
player commits to (chooses) a strategy, rather than just planning it in his
mind. Each profile of strategies s = (si)i∈I induces a terminal history and
the associated payoff vector. Of course, the players’ choices of strategies
are simultaneous (or, at least, no player can observe anything about the
strategies chosen by the opponents before he chooses his own strategy).

The strategic form of the Take-it-Or-Leave-it game of length T = 4
of Figure 9.2 (henceforth, TOL4) is represented in Figure 9.5. Strategies
are labelled by sequences of letters separated by dots, with the following
convention: the first letter denotes the action to be taken at the first
history where the player is active (∅ for player 1 and h = (Leave)
for player 2), the second letter denotes the action to be taken at the
second history where the player is active (h = (Leave,Leave) for player
1, h = (Leave,Leave,Leave) for player 2). For example, s1 = T.T is the
strategy [Take; Take if (Leave,Leave)] of player 1.

Definition 49. The path function ζ : S → Z associates each strategy
profile s ∈ S with the induced terminal history ζ(s) = (at)Tt=1 (T ∈
N ∪ {∞}) defined recursively as follows:

a1 = (si (∅))i∈I ,

at+1 =
(
si

(
(ak)tk=1

))
i∈I

15According to some theorists—but not ourselves—all the relevant aspects of a game
are captured by this derived representation.
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1\2 T.T T.L L.T L.L

T.T 1, 0 1, 0 1, 0 1, 0

T.L 1, 0 1, 0 1, 0 1, 0

L.T 0, 2 0, 2 3, 0 3, 0

L.L 0, 2 0, 2 0, 4 4, 0

Figure 9.5: Strategic form of ToL4.

for every t ∈ N such that (ak)tk=1 is not terminal. The strategic or
normal form of Γ is the static game

N (Γ) = 〈I, (Si, Ui)i∈I〉

where Ui = ui ◦ ζ : S → R for every i ∈ I.

As stated in Definition 49, “normal form” and “strategic form” are (for
us) synonyms. We use mostly the latter because it is more self-explanatory,
yet symbol N (Γ) refers to the former.

Consider the strategies T.T and T.L of player 1 in TOL4. Both of
them prescribe to take one dollar immediately, an action that terminates
the game. They differ only for the instruction corresponding to the history
h = (Leave,Leave), that is, a history prevented by both strategies. These
two strategies yield the same terminal history, (Take), independently of the
strategy adopted by player 2. A similar observation holds for player 2: the
two strategies T.T and T.L differ only for the instruction corresponding to
the history h = (Leave,Leave,Leave), that both of them prevent. Which
terminal history is reached depends on the strategy of player 1, but does
not depend on which of these two strategies is implemented by player 2.
This is the reason why these strategies correspond to identical rows (player
1) or columns (player 2).

These considerations motivate the following definitions. For every pair
of histories h, h̄ ∈ H̄ with h ≺ h̄, let αi(h, h̄) denote the (unique) action
of i at h that allows h̄, that is, for each ai ∈ Ai(h),

ai = αi(h, h̄)⇔ (∃a−i ∈ A−i(h), (h, (ai, a−i)) � h̄).

With this, the set of non-terminal histories not prevented by si can be
defined as follows:

Hi(si) = {h̄ ∈ H : ∀h ∈ H,h ≺ h̄⇒ si(h) = αi(h, h̄)}.
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In words, Hi(si) is the set of non-terminal histories h̄ such that si selects
the action leading to h̄ at each predecessor h ≺ h̄.

For each strategy si, we can characterize the set Hi(si) as follows.
Formally, history h is not prevented, or is allowed by si if there is a profile
of strategies of the opponents s−i such that (si, s−i) induces h. Since
(si, s−i) induces h if and only if it induces a terminal history preceded
by h, we obtain the following characterization of the set of non-terminal
histories allowed by si.

Lemma 23. Hi(si) = {h̄ ∈ H : ∃s−i ∈ S−i, h̄ ≺ ζ(si, s−i)}.

Proof. Fix h̄ and suppose that h̄ ≺ ζ(si, s−i) for some s−i. Then, by
definition of ζ, αi(h, h̄) = si(h) for each h ≺ h̄, which implies h̄ ∈ Hi(si).
This shows

{h̄ ∈ H : ∃s−i ∈ S−i, h̄ ≺ ζ(si, s−i)} ⊆ Hi(si).

To show that

Hi(si) ⊆ {h̄ ∈ H : ∃s−i ∈ S−i, h̄ ≺ ζ(si, s−i)},

pick h̄ ∈ Hi(si) arbitrarily and construct a strategy profile s−i ∈ S−i as
follows: sj(h) = αj(h, h̄) for each h ≺ h̄ and j 6= i, otherwise sj(h) is
arbitrarily chosen in Aj(h). Since h̄ ∈ Hi(si), we have αi(h, h̄) = si(h) for
each h ≺ h̄. Hence, by construction, (sj(h))j∈I = (αj(h, h̄))j∈I for each
h ≺ h̄. Therefore h̄ ≺ ζ(si, s−i). �

Definition 50. Two strategies si and s′i are realization-equivalent if

∀s−i ∈ S−i, ζ(si, s−i) = ζ(s′i, s−i);

they are behaviorally equivalent if

Hi(si) = Hi(s
′
i) and ∀h ∈ Hi(si), si(h) = s′i(h).

In words, two strategies si and s′i are realization-equivalent if, for every
given strategy profile of the co-players, they induce the same terminal
history. Strategies si and s′i are behaviorally equivalent if they allow
the same non-terminal histories and prescribe the same actions at such
histories.
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Lemma 24. Two strategies are realization-equivalent if and only if they
are behaviorally equivalent.

Proof. We prove both directions of the statement by contraposition.
Suppose first that si and s′i are not realization equivalent, then there is
some s−i such that ζ(si, s−i) 6= ζ(s′i, s−i). We must show that si and s′i are
not behaviorally equivalent. Let h̄ denote the maximal element of the chain
of common predecessors of ζ(si, s−i) and ζ(s′i, s−i) (the chain is not empty
because it contains the root ∅, and it is finite, hence it has a maximal
element); this is the node at which the two paths “bifurcate.” By Lemma
23, h̄ ∈ Hi(si) ∩ Hi(s

′
i). The two strategy profiles (si, s−i) and (s′i, s−i)

specify the same action sj(h̄) at h̄ for each co-player j 6= i; hence, it must
be the case that si(h̄) 6= s′i(h̄) (otherwise, there would be no “bifurcation”
at h̄). Therefore, strategies si and s′i differ at a history not precluded by
either one of them, which implies that they are not behaviorally equivalent.

Now suppose that si and s′i are not behaviorally equivalent. To
show that they are not realization-equivalent, we consider the following
exhaustive cases, and we show that in both cases Lemma 23 implies that
ζ (si, s−i) 6= ζ (s′i, s−i) for some s−i:

1. Hi(si) 6= Hi(s
′
i),

2. Hi(si) = Hi(s
′
i) and si(h) 6= s′i(h) for some h ∈ Hi(si).

In case 1, there is some h ∈ (Hi(si)\Hi(s
′
i)) ∪ (Hi(s

′
i)\Hi(si)). By

Lemma 23, if h ∈ Hi(si)\Hi(s
′
i), there is some s−i such that h ≺ ζ(si, s−i)

and h ⊀ ζ(s′i, s−i), that is, ζ(si, s−i) ∈ Z (h) and ζ(s′i, s−i) ∈ Z\Z (h).
Case h ∈ Hi(s

′
i)\Hi(si) is analogous. Whatever the case, ζ(si, s−i) 6=

ζ(s′i, s−i) for some s−i.
In case 2, there is h ∈ Hi(si) = Hi(s

′
i) such that si(h) 6= s′i(h). By

Lemma 23 there some s−i such that h ≺ ζ(si, s−i) and h ≺ ζ(s′i, s−i).
Since si(h) 6= s′i(h), we have ζ(si, s−i) 6= ζ(s′i, s−i). �

In particular, the proof of Lemma 24 (case 1) shows that if si and
s′i are realization-equivalent they allow for the same histories, that is,
Hi (si) = Hi (s′i) = Hi(si) ∩ Hi(s

′
i). Furthermore, from the first part of

the proof we obtain another characterization of behavioral equivalence:

Remark 41. Two strategies si and s′i are behaviorally equivalent if and
only if si (h) = s′i (h) for every h ∈ Hi(si) ∩Hi(s

′
i).
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The behavioral equivalence relation for player i corresponds to a
partition of Si (the quotient set of Si with respect to the equivalence
relation): two strategies belong to the same cell of the partition if and
only if they are behaviorally equivalent.16

Definition 51. A reduced strategy for player i is an element of the
partition of Si induced by the behavioral equivalence relation.

We let Sri denote the set of reduced strategies of player i, and we
let Sr =×i∈I Sri denote the set of reduced strategy profiles. Note, each
sri ∈ Sri is a subset sri ⊆ Si of behaviorally equivalent strategies. By Lemma
24, we can define a reduced strategic-form path function ζr : Sr → Z as
follows:

ζr((sri )i∈I) = ζ((si)i∈I) if si ∈ sri for each i ∈ I.

Given the payoff functions (ui : Z → R)i∈I , we obtain the reduced-form
payoff functions (U ri = ui ◦ ζr : Sr → R)i∈I , where U ri (sr) = Ui(s) for each
sr∈×j∈I Srj and s ∈ sr.

Definition 52. The reduced strategic (or normal) form of a game Γ is
the static game N r(Γ) = 〈I, (Sri , U ri )i∈I〉.

The reduced strategic form of the TOL4 game is represented in Figure
9.6.

1\2 T L.T L.L

T 1, 0 1, 0 1, 0

L.T 0, 2 3, 0 3, 0

L.L 0, 2 0, 4 4, 0

Figure 9.6: Reduced strategic form of ToL4.

We illustrate the previous concepts and results with the BoS with a
Dissipative Action of Example 39.

16The quotient of a set S with respect to an equivalence relation≈ on S is the collection
of equivalence classes:

S/ ≈:= {s ⊆S : ∀(s, t) ∈ S × S, {s, t} ⊆ s⇔ s ≈ t}.

See Ok [52, A.1.3].
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Example 41. We denote strategies as lists of actions separated by dots, we
denote strategy sets (profiles) as lists (ordered lists) of strategies separated
by commas:

Sa = {U,D} × {u, d} = {U.u, U.d,D.u,D.d},
Sb = {N,B} × {L,R} × {l, r}

= {N.L.l,N.R.l,N.L.r,N.R.r,B.L.l, B.R.l, B.L.r, B.R.r}.

The following are examples of actions leading from a history h to a
successor h̄:

αb(∅, (B, (u, l))) = B, αa((B), (B, (u, l))) = u.

The set of non-terminal histories is

H = {∅, (N), (B)},

and the set of non-terminal histories allowed by sb = N.L.r is

Hb(N.L.r) = {∅, (N)} .

The sub-strategy induced by sb = N.L.r in the subgame with root h = (B)
is s�hb = r;
The terminal history induced by strategy pair (U.d,B.L.r) is

ζ(U.d,B.L.r) = (B, (d, r)).

Finally, the following pairs of strategies of Bob are realization-equivalent:

N.L.l and N.L.r (reduced strategy N.L),

N.R.l and N.R.r (reduced strategy N.R),

B.L.l and B.R.l (reduced strategy B.l),

B.L.r and B.R.r (reduced strategy B.r);
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therefore the reduced strategic form of the game is

a\b N.L N.R B.l B.r

U.u 4,1 0,0 4,-1 0,-2

U.d 4,1 0,0 0,-2 1,2

D.u 0,0 1,4 4,-1 0,-2

D.d 0,0 1,4 0,-2 1,2

N

A reduced strategy is sometimes called “plan of action” (see Rubinstein
[59]). The reason is that “plan of action” corresponds to the intuitive idea
that a player has to plan for all external contingencies, i.e., contingencies
that not depend on his behavior, but he does not have to plan for
contingences that cannot occur if he follows his plan. For example, in the
TOL4 game, T.T and T.L are realization-equivalent and they correspond to
the reduced strategy, or “plan” T , that is, “take at the first opportunity.”

We avoid this terminology, and stick to the more neutral “reduced
strategy,” because there is a perfectly meaningful notion of “planning” that
yields the specification of a whole strategy, not just a reduced strategy.
To see this, consider the BoS with an Outside Option of Example 38.
Suppose Ann, player 1, believes that, conditional on choosing in, the
probability that Bob chooses B2 is µ1(B2|in) = q. Then Ann can compute
a dynamically optimal plan with the following folding back procedure.
First, she computes the values of choosing, respectively, B1 and S1 given
in:

V q
1 (B1|in) = 3q,

V q
1 (S1|in) = 1− q.

Next, assuming that she would maximize her expected payoff in the
subgame if she chose in, Ann computes the value of in:

V q
1 (in) = max{3q, 1− q} =

{
3q, if q ≥ 1

4 ,
1− q, if q < 1

4 .

This means that Ann “plans” to choose B1 (resp. S1) in the subgame if
q > 1/4 (resp. q < 1/4).17 Finally, Ann compares V q

1 (in) with the value

17If q = 1/4, then Ann is indifferent, and the optimal plan for the subgame is arbitrary.
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of the outside option V1(out) = 2 and “plans” to choose in (resp. out)
if V q

1 (in) > 2 (resp. V q
1 (in) < 2), that is, if q > 2/3 (resp. q < 2/3).

The upshot of all this is that, given her subjective beliefs q, Ann can use
the folding back procedure to form a dynamically optimal plan, which
corresponds to a full strategy, not a reduced strategy:18

s1 =


out.S1, if q < 1

4 ,
out.B1, if 1

4 < q < 2
3 ,

in.B1, if q > 2
3 .

On the other hand, one may object that specifying a complete strategy
is not necessary for rational planning: if q is not high enough, i.e., if
max{3q, 1 − q} < 2, Ann has no need to plan ahead for the subgame, as
she can see that it is not worth her while to reach it. Specifically, she can
look forward for the payoff consequences of choosing out, in and B1, or in
and S1, and her best “forward plan” is just out, a reduced strategy. Since
both notions of rational planning—forward and backward—are meaningful
and intuitive, we are not going to endorse only the second one of them
by calling “plan of action” the reduced strategies. The solution concepts
presented in the next section further clarify why the notion of full strategy
(as opposed to reduced strategy) is important in game theory. We are
going to elaborate on the folding back procedure of dynamic programming
in Chapter 10. While the folding back procedure refers to a single player
and his arbitrarily given subjective beliefs, the standard equilibrium theory
of multistage games looks for “interpersonal” elaborations of the folding
back procedure, see Chapter 12. Yet, as we did in the part on static games,
before moving on to standard equilibrium theory we analyze multistage
versions of the rationalizability solution concept in Chapter 11. The
distinction between full and reduced strategies will be dicussed again in
that context.

We considered above two notions of equivalence between (full)
strategies—behavioral and realization equivalence—that depend only on
the game tree, and we observed in Lemma 24 that they are congruent,
that is, for each i ∈ I, they correspond to the same subset of Si×Si. Now
we consider a weaker equivalence relation that depends on the whole game
Γ as it does not rely on induced behavior, but rather on induced payoffs.

18Again, we ignore ties.
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Definition 53. Two strategies si and s′i are payoff-equivalent, written
si ∼i s′i if, for each strategy profile of the co-players, they yield the same
profile of payoffs:

∀s−i ∈ S−i, (si ∼i s′i)⇐⇒ (∀j ∈ I, Uj(si, s−i) = Uj(s
′
i, s−i)).

Since Uj = uj ◦ ζ (j ∈ I), it is clear that realization equivalence implies
payoff equivalence. Thus, Lemma 24 implies the following:

Remark 42. If two strategies are behaviorally equivalent, then they are
payoff-equivalent.

In the games of Examples 38 and 40, as well as in many other
games, there is no difference between payoff-equivalence and behavioral
equivalence. A difference may arise only if the game features some
ties between payoffs at distinct terminal histories, that is, if there are
z, z′ ∈ Z such that z 6= z′ and yet (ui(z))i∈I = (ui(z

′))i∈I . Such ties
are “structural” when z and z′ yield the same outcome, g(z) = g(z′),
e.g., the same allocation of resources; otherwise, they are due to “non
generic” ties between utility profiles. This happens if, for some z, z′ ∈ Z,
g(z) 6= g(z′) and (vi(g(z)))i∈I = (vi(g(z′)))i∈I . Unfortunately, the outcome
function g is mostly overlooked in game theory and all ties between payoffs
at distinct terminal histories are called “non generic.” Therefore, this
terminology has to be taken with a grain of salt.

Comment: The most common definition of “reduced strategic form”
refers to classes of payoff -equivalent strategies, rather than realization-
equivalent strategies. This is fine if one is only interested in computing
equilibria (or other solutions) of the strategic form. Instead, we are
interested in the strategic form N (Γ) only as an auxiliary tool that
(sometimes) helps analyzing Γ itself (as we will see in Section 9.3.1).
Therefore we chose to emphasize the concept of realization-equivalence
and reduced strategy, which is based on a meaningful notion of plan, and
the corresponding concept of reduced strategic form.

9.3.1 Old Wine in New Bottles: Applying Solution
Concepts to the Strategic Form

Any solution concept for static games can be applied to the strategic (or
normal) form N (Γ) of a multistage game Γ and thus yields a “candidate
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solution” for Γ. For example, we can find the rationalizable strategies
or the Nash equilibria of N (Γ) and ask ourselves if they make sense as
solutions of Γ.

Consider first the following very stylized Entry Game: a firm, player
1, has the opportunity to enter a (so far) monopolistic market. The
incumbent, player 2, may fight the entry with a price war that damages
both, or it may “acquiesce.” The game is (summarily) represented in Figure
9.7.

◦ •
(

1
1

)

(
0
2

) (−1
0

)

In a

Out f

1 2

Figure 9.7: An “entry game.”

The strategic form of this game is represented in the following table:

1\2 f a

Out 0, 2 0, 2

In -1, 0 1, 1

It is easily checked that every strategy profile of the strategic form of
this game is rationalizable, and there are two Nash equilibria, (Out, f)
and (In, a) (there is also a continuum of mixed equilibria where player 2
plays f with probability larger than 1

2). Yet it should be noted that, under
complete information, if the potential entrant believes that the incumbent
is rational (in an obvious sense), then she should expect acquiescence and
therefore she should enter. So, the only “reasonable” solution should be
(In, a).

Consider now the strategic form of the TOL4 game (Figure 9.5).
Again, it is easily checked that every strategy profile is rationalizable,
and there are multiple Nash equilibria, namely, all the pairs in the set
{T.T, T.L} × {T.T, T.L}. Note that all Nash equilibria “correspond” to
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the unique Nash equilibrium (T, T ) of the reduced strategic form (Figure
9.6), and they induce the terminal history (Take). This should not be
surprising, as strategies T.T and T.L are realization-equivalent. Indeed:

Remark 43. Payoff-equivalences (hence, also realization-equivalences)
induce a trivial multiplicity of Nash equilibria: if a strategy profile s∗ is
a Nash equilibrium, every profile s̄∗ obtained from s∗ by replacing some
strategy s∗i with an equivalent strategy s̄∗i is also a Nash equilibrium. In
other words, to find Nash equilibria we may just look at the equilibria
s∗,r of reduced strategic form and then take into account that any
profile s∗ of the non-reduced form that corresponds to s∗,r is a Nash
equilibrium of the multistage game. Similar considerations apply to
strategic-form rationalizability: if a strategy s∗i is rationalizable in N (Γ)
every payoff-equivalent (hence, every realization-equivalent) strategy s̄∗i is
also rationalizable in N (Γ).

The problem with rationalizability and Nash equilibrium of the
strategic form is that such solution concepts require that players maximize
their expected payoff “on the path,” i.e., along the play induced by the
strategy profile, but they also allow players to “plan” non maximizing
actions at histories that are “off the path.” For instance, in the Nash
equilibrium (Out, f) of the Entry Game player 2 plans to choose a non
maximizing action at the “off the path” history (In). Does this make
sense?

In a multistage game, a player has initial beliefs which he updates as
the play unfolds. Sometimes what he observes may be unexpected (i.e.,
have zero probability) according to his previous beliefs. In this case, he
will not be able to pin down his new beliefs by updating his previous
ones according to the rules of conditional probability, but he will still form
new beliefs about his opponents’ behavior. For example, suppose that in
the TOL4 game of Figure 9.2 player 2 initially expects that player 1 will
immediately take one dollar. If instead player 1 leaves the dollar on the
table, player 2 will revise his beliefs about player 1, because he now knows
that he is implementing one of the following strategies: L.T (Leave, then
Take if also player 2 leaves) or L.L (Leave, then Leave again if also player
2 leaves). The revised beliefs must assign zero probability to every other
strategy of player 1.19

19In this informal discussion we are taking for granted that players actually implement
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We say that a player in a multistage game is rational if he would make
expected utility maximizing choices given his (updated) beliefs for every
possible history of observed choices of his opponents. Consider ToL4. Can
one say that player 1 is irrational if he leaves three dollars on the table?
No. Player 1 may hope that then player 2 will be “generous” and leave
him four dollars. We might argue that such a belief is not very reasonable,
indeed it is inconsistent with the rationality of player 2; yet, if player 1
had this belief, leaving three dollars on the table would be rational, i.e.,
expected utility maximizing.

In the analysis of static games, one can characterize with a solution
concept the behavioral implications of the following assumptions: all
players are rational and there is common belief of rationality. The solution
concept is rationalizability. Furthermore, an action is rationalizable if and
only if it is iteratively undominated.

What assumptions about rationality and strategic reasoning are worth
considering in the case of multistage games? How should we extend
the notion of rationalizability from static to multistage games so as to
characterize the behavioral implications of such assumptions? How does
such extension relate to rationalizability in the strategic form?

In Chapter 10 we analyze rationality, i.e., the implementation of
strategies obtained by rational planning given conjectures about the
behavior of other players. In Chapter 11 we introduce different forms
of rationalizability for multistage games justified by different assumptions
about strategic reasoning. Of course, these solution concepts have to
coincide with rationalizability in the strategic form N (Γ) when the given
game Γ has only one stage, and therefore is static. But in games with two or
more stages they yield refinements of rationalizability in the strategic form,
that is, some strategies that are rationalizable in the strategic form N (Γ)
are deleted by the appropriate version of the rationalizability concept for
multistage game Γ. Does this mean that the strategic form is useless?
Not exactly: in many games of interest, notions of rationalizability for
multistage games admit a useful characterization that relies only on the
strategic form.

Consider first an elementary example, the Entry Game. It is pretty clear
that if the players are rational in the sense specified above and if the first

the strategies they have in mind, and that this is “transparent.” We will come back to
this point in our analysis of solution concepts for multistage games.
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mover believes that also the opponent is rational, then the “reasonable”
solution (In, a) obtains. Furthermore, (In, a) can be obtained in the
strategic form of the game by first eliminating the weakly dominated
strategies (just f in this case) and then eliminating the (strictly) dominated
strategies (just Out in this case) of the residual strategic form. This
procedure works in all two-stage games with perfect information with “no
relevant ties.”

Now consider more complex games—such as the BoS with an Outside
Option—and the associated strategic forms. We will argue in Chapters
10 and 11 that, in many games of interest, iterated admissibility,
i.e., the iterated deletion of all weakly dominated strategies,20 coincides
with strong rationalizability. The latter is a solution concept for
multistage games which captures the following best rationalization
principle: every player always ascribes to his opponents the highest degree
of “strategic sophistication” consistent with their observed behavior. To
illustrate this point, consider the BoS with an Outside Option (Figure 9.1).
The highest degree of strategic sophistication that Bob can ascribe to Ann
if he observes action “in” is that Ann is rational, because strategy in.B1

is justifiable. On the other hand, strategy in.S1 is not justifiable (indeed,
it is dominated by “out”). Thus, at history (in) Bob should believe that
Ann is rational and that she is going to choose B1 in the subgame. The
best reply to such belief is B2. Anticipating this, Ann implements strategy
in.B1. Hence, the unique solution consistent with the best rationalization
principle is (in.B1,B2).

It can be easily checked that (in.B1,B2) can be obtained in the strategic
form of the game by iterated admissibility. Chapter 11 will provide
a formal definition of strong rationalizability for multistage games with
observable actions. Here we just note that iterated admissibility on the
strategic form is a useful solution concept that yields in many games
“reasonable” solutions capturing the best rationalization principle.

In Chapter 12 we show how to extend Nash’s classical idea that players
best respond to correct conjectures. This will be a rather direct application
of the analysis of rational planning of Chapter 10. The resulting solution
concept is called subgame perfect (Nash) equilibrium (SPE), because
it is characterized by the property of inducing a Nash equilibrium in every

20Iterated admissibility is a maximal iterated elimination procedure, that is, in each
step all the weakly dominated strategies of all players are eliminated.
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“subgame.” For example, the Entry Game has only one SPE, (In, a),
because this is the only strategy pair that is both a Nash equilibrium
of the game and also induces an equilibrium of the (trivial) one-person
game following history (In). The BoS with an Outside Option instead has
two SPEs, (in.B1,B2) and (out.S1,S2), each one of them induces a Nash
equilibrium of the BoS subgame following history (in). The standard way
to compute SPEs relies on all the details of the description of the multistage
game Γ.

What about self-confirming equilibrium (SCE)? Intuitively, a strategy
profile s∗ is a (pure) SCE if each s∗i can be justified as a best reply to
a conjecture about the other players that is confirmed by the evidence
obtained ex post by i if everybody plays according to s∗. Of course, to
give a definition of SCE we have to specify players’ feedback, which can be
described, for each player i, by a function fi : Z →Mi. Given the profile of
feedback functions f = (fi)i∈I , we obtain a multistage game with feedback
(Γ, f). Assume that players recall whatever they observe. In the context
of multistage games with observable actions, it makes sense to assume that
either fi is one-to-one, because players observe ex post each other actions
also at the end of the last stage, or—at least—player i remembers all the
actions played in all stages but the last one, and remembers what he did
in the last stage. Be as it may, the key observation for SCE is that, unlike
SPE, we can analyze the essential aspects of SCE for multistage games
with feedback (Γ, f) by looking at the strategic (or normal) form

N (Γ, f) =
〈
I, (Ui, Fi)i∈I

〉
=
〈
I, (ui ◦ ζ, fi ◦ ζ)i∈I

〉
,

where, for each player i ∈ I, Fi : S → Mi is the strategic-form feedback
function of i. Specifically, any fixed strategy profile s∗ is an SCE of (Γ, f)
if and only if there is an SCE s̄∗ of N (Γ, f) inducing the same terminal
history, i.e., such that ζ (s∗) = ζ (s̄∗).

To get some intuition for this result, let Γ be the Entry Game and
assume (reasonably in this case) that players observe ex post the terminal
history; in particular, if player 1 goes In, he observes ex post whether 2
acquiesces or fights. We argued that, whatever the conjecture of player 2
about 1, the only reasonable “best reply” should be a. Thus, if player 1—
knowing 2’s payoff function—anticipates this, we obtain (In, a). Yet, SCE
does not rely on the idea that players reason strategically given common
knowledge of the game, they only have to best respond to confirmed
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justifying conjectures, given that each i knows his own payoff function
ui and feedback function fi. Therefore, player 1 may be afraid of a fight
and go Out, which makes his fears unverifiable. Hence, there are two
(pure) SCE strategy pairs, (In, a) and (Out, a). The latter is supported
by every conjecture of player 1 assigning at least 50% probability to a fight,
because staying Out is a best reply and, given this, the conjecture—even
if inaccurate—is trivially confirmed. The strategic form feedback is such
that Fi (Out, a) = Out = Fi (Out, f) for each i. Hence, there is a third
(pure) SCE pair in the strategic form, the (imperfect) Nash equilibrium
(Out, f) (player 2 is ex ante indifferent if he is certain of Out), but this
additional strategic-form SCE yields the same terminal history as (Out, a).
Note that the equality between Nash and SCE outcomes in this game is
not a coincidence: indeed, one can show that, in every two-person game
with feedback where players observe ex post the terminal history, pure SCE
and Nash outcomes coincide.21

9.4 Randomized Strategies

In this section we introduce randomization in multistage games with
observable actions. To simplify the probabilistic analysis we focus on finite
games. In the context of multistage games (and more generally of all games
with a sequential structure) one can think of two types of randomization:

(1) player i implements a pure strategy at random according to a
probability measure σi ∈ ∆(Si), which is called a mixed strategy;

(2) for each non terminal history h ∈ H, player i would choose an
action at random according to a probability measure βi(·|h) ∈ ∆(Ai(h));
the array of probability measures βi = (βi(·|h))h∈H is called behavior
strategy.22

Note that we can always regard a pure strategy as a degenerate
randomized strategy : si can be identified with the mixed strategy σi such

21The result extends to the mixed SCEs such that all pure strategies in the support
can be justified by the same confirmed conjecture. See, e.g., Battigalli et al. [15].

22We use Kuhn’s [43] original terminology. Some authors, e.g., Osborne and
Rubinstein [53], say “behavioral strategy.” Kuhn introduced the concept and the
terminology in his analysis of general games with a sequential structure. Obviously,
βi(·|h) is non-trivial only at histories where i is active.
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that σi(si) = 1 and with the behavior strategy βi such that βi(si(h)|h) = 1
for every h ∈ H.

9.4.1 Realization-Equivalence between Mixed and
Behavior Strategies

The literal interpretation of randomized strategies is that players spin
roulette wheels or toss coins and let their actions be decided by the
outcomes of such randomization devices. But this seems a bit farfetched,
especially in the case of mixed strategies. Furthermore, agents who
maximize expected utility have no use for randomization, as pure choices
always do at least as well as randomized choices.

As in static games, a randomized strategy of i can be interpreted as
a representation of the opponents’ beliefs about the pure strategy of i.
For example, suppose that game Γ is played by agents drawn at random
from large populations; let σi(si) be the fraction of agents in population i
(the population of agents that may play in role i) that would implement
strategy si. If j knows the statistical distribution σi, this will also represent
the belief of j about the strategy of i. On the other hand, βi(ai|h) may be
interpreted as the conditional probability assigned by j to action ai given
history h.

This belief interpretation suggests a relationship between mixed and
behavior strategies. Suppose that h has just realized; what does anyone
learn about the pure strategy implemented by i? She learns that i is
implementing a strategy that allows (does not prevent) h. Let Si(h) be
the set of such strategies. Formally,23

Si(h) = {si ∈ Si : ∃s−i ∈ S−i, h ≺ ζ(si, s−i)}.

Next we define the set of strategies of i that allow h and select ai at h:

Si(h, ai) = {si ∈ Si(h) : si(h) = ai}.

Now suppose that βi is derived from the statistical distribution σi under
the “independence-across-players” assumption that what is observed about
the behavior of other players does not affect the beliefs about the strategy

23If the game has chance moves the definition in the text must be adapted by including
in s−i also s0, the “strategy” of the chance player.
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of i. Then the probability of ai given h is just the fraction of agents in
population i implementing a strategy that allows h and selects ai at h,
divided by the fraction of agents in population i implementing a strategy
that allows h (if positive), that is,

∀h ∈ H, σi(Si(h)) > 0⇒ βi(ai|h) =
σi(Si(h, ai))

σi(Si(h))
(9.4.1)

(for every subset X ⊆ Si, we write σi(X) =
∑

si∈X σi(si)). If σi(Si(h)) =
0, βi(·|h) can be specified arbitrarily. Note that (9.4.1) can be written in
a more compact, but slightly less transparent form:

∀h ∈ H, βi(ai|h)σi(Si(h)) = σi(Si(h, ai)).

The formula above, or (9.4.1), says that σi and βi are mutually consistent
in the sense that they jointly satisfy a kind of chain rule for conditional
probabilities.

Definition 54. A mixed strategy σi ∈ ∆(Si) and a behavior strategy
βi = (βi(·|h))h∈H ∈×h∈H ∆(Ai(h)) are mutually consistent if they satisfy
(9.4.1).

Remark 44. If mixed strategy σi is such that σi(Si(h)) = 0 for some h
where player i is active, then there is a continuum of behavior strategies βi
consistent with σi. If σi(Si(h)) > 0 for every h where i is active, then there
is a unique βi consistent with σi. If i is active at more than one history,
then there is a continuum of mixed strategies σi consistent with any given
behavior strategy βi.

The last statement in the remark can be understood with a counting-
dimensionality argument. Let Hi = {h ∈ H : |Ai(h)| ≥ 2} denote
the set of histories where i is active. In a finite game, the number of
elements of Si is |Si| =

∏
h∈Hi |Ai(h)| , thus the dimensionality of ∆(Si)

is |Si| − 1 =
∏
h∈Hi |Ai(h)| − 1. On the other hand, the dimensionality of

the set of behavior strategies is
∑

h∈Hi(|Ai(h)| − 1) =
∑

h∈Hi |Ai(h)| −
|Hi|. It can be shown (by induction on the cardinality of Hi) that∏
h∈Hi |Ai(h)| ≥

∑
h∈Hi |Ai(h)| because |Ai(h)| ≥ 2 for each h ∈ Hi.

24

Thus the dimensionality of ∆(Si) is higher than the dimensionality of

×h∈H ∆(Ai(h)) if |Hi| ≥ 2.

24First note that for every integer L ≥ 1, we have 2L−1 ≥ L. (This can be easily
proved by induction: it is trivially true for L = 1; suppose it is true for some L ≥ 1,
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Example 42. In the game “tree” in Figure 9.8, Rowena (player 1) has
4 strategies, S1 = {out.u, out.d, in.u, in.d}; two of them, out.u and out.d,
are realization-equivalent and correspond to the reduced strategy out. The
figure labels terminal histories: v = (out), w = (in, (u, l)) etc. The set of
non-terminal histories is H = {∅, (in)} (recall that ∅ denotes the initial
history) and S1(∅) = S1, S1(in) = {in.u, in.d}.

1 1\2 l r

u w x

d y z

v

in

out

Figure 9.8: A game “tree.”

Consider the following mixed strategy, parameterized by p ∈ [0, 1]:

σp1(out.u) =
p

2
, σp1(out.d) =

1− p
2

,

σp1(in.u) =
1

6
, σp1(in.d) =

2

6
.

Since no history in H is ruled out by σ1, there is only one behavior strategy
consistent with σ1:

β1(in|∅) =
σ1(S1(in))

σ1(S1)
=

1

6
+

2

6
=

1

2
,

β1(u|in) =
σ1(S1(in.u))

σi (S1(in))
=

1
6

1
6 + 2

6

=
1

3
.

then 2L = 2× 2L−1 ≥ 2× L = L+ L ≥ L+ 1.)
Let nk ≥ 2 for each k = 1, 2, .... We show that

∏L
k=1 nk ≥

∑L
k=1 nk for each

L = 1, 2, .... Let n∗ = max{n1, ..., n`}. Then

L∏
k=1

nk ≥ n∗ × 2L−1 ≥ n∗ × L ≥
L∑
k=1

nk.
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Note also that β1 does not depend on the distribution p : 1 − p of
the probability mass σp1(S1(out)) = 1

2 between the realization-equivalent
strategies out.u and out.d. The reason is that the only difference between
these two strategies is the choice between u and d contingent on in, a
counterfactual contingency if Rowena plans to go out. Now consider the
mixed strategy σp1 with σp1(out.u) = p, σp1(out.d) = 1 − p, which amounts
to the deterministic plan of going out. Since σp1(S1(in)) = 0, there is a
continuum of behavior strategies consistent with σp1, all those in the set

{β1 ∈ ∆({out, in})×∆({u, d}) : β1(out|∅) = 1}.

N

Next suppose that player i does indeed randomize according to
behavior strategy βi. Is there a method to obtain a mixed strategy σi
consistent with βi? Here is an answer: It is natural, if not entirely obvious,
to consider the case where the randomization devices that i would use at
different histories are stochastically independent. We call this assumption
“independence across agents,” as one can regard the contingent choice of
i at each h ∈ H as carried out by an agent (i, h) of i who only operates
under contingency h. A pure strategy si is just a collection (si(h))h∈H of
contingent choices of the agents (i, h), h ∈ H. If the random choices at
different histories are mutually independent, then the probability of pure
strategy si is the product of the probabilities of the contingent choices
si(h), h ∈ H. Therefore one can derive from βi the mixed strategy σi that
satisfies

∀si ∈ Si, σi(si) =
∏
h∈H

βi(si(h)|h). (9.4.2)

It is boring, but rather straightforward to show that such σi is consistent
with βi:

25

Remark 45. For all i ∈ I, σi ∈ ∆(Si), βi ∈×h∈H ∆(Ai(h)), if (9.4.2)
holds, then also (9.4.1) holds, that is, σi and βi are mutually consistent.

Example 43. In the game “tree” of Figure 9.8, the mixed strategy
associated with β1(in|∅) = β1(out|∅) = 1

2 , β1(u|in) = 1
3 , β1(d|in) = 2

3

25This is one part of what is known as Kuhn’s theorem for mixed and behavior
strategies. For a proof, see the appendix.
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under the “independence-across-agents” assumption is σ1:

σ1(out.u) =
1

2
· 1

3
=

1

6
, σ1(out.d) =

1

2
· 2

3
=

2

6
,

σ1(in.u) =
1

2
· 1

3
=

1

6
, σ1(in.d) =

1

2
· 2

3
=

2

6
.

Note that β1 was derived in Example 42 from an arbitrary mixed strategy
with the parametric representation σp1 , whereas here we derived exactly

σ1 = σ
1/3
1 . The reason is that only σp1 with p = 1

3 is consistent with
“independence across agents.” N

Remark 44 says that many behavior strategies may be consistent with
a given mixed strategy and that many mixed strategies may be consistent
with a given behavior strategy, although only one satisfies the assumption
of “independence across agents.” Then why is consistency between mixed
and behavior strategies important? Intuitively, the reason is that mutually
consistent mixed and behavior strategies yield the same probabilities of
histories, which is all that matter to expected payoff maximizing players.
To make the intuition precise, note that a profile of randomized strategies
ξ (ξ = σ = (σi)i∈I or ξ = β = (βi)i∈I) induces a probability measure

ζ̂(·|ξ) ∈ ∆ (Z) on terminal histories, which is determined by the following
formulas (which implicitly assume “independence across players”):

∀z ∈ Z, ζ̂(z|σ) =
∑

s:ζ(s)=z

(∏
i∈I

σi(si)

)
,

∀z ∈ Z, ζ̂(z|β) =

(z)∏
t=1

∏
i∈I

βi(a
t
i(z)|ht−1(z)).

(In the second formula, ati(z) is the action played by i at stage t in history
z, and ht−1(z) is the prefix of length t− 1 of z.)

Theorem 32. (Kuhn)26 For any two profiles of mixed and behavior
strategies σ and β the following statements hold:

26In his seminal article ([43]), Harold Kuhn proved two important results about general
games with a sequential structure (so called “extensive form games”), one concerns the
realization-equivalence of mixed and behavior strategies under the assumption of perfect
recall (a generalization of the observable actions assumption), the other concerns the
existence of equilibria.
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(a) Fix any i ∈ I; if σi and βi satisfy either (9.4.1) or (9.4.2), then

∀s−i ∈ S−i, ζ̂(·|σi, s−i) = ζ̂(·|βi, s−i).

(b) If, for all i ∈ I, σi and βi satisfy either (9.4.1) or (9.4.2), then

ζ̂(·|σ) = ζ̂(·|β).

Example 44. Again, the example of Figure 9.8 illustrates. For Rowena
(player 1) consider the randomized strategies σp1 and β1 of Example
42. Colin (player 2) is active at only one history, hence there is an
obvious isomorphism between his mixed and behavior strategies. Let
σ2(l) = β2(l|in) = q. Then ζ̂(·|β1, l) = ζ̂(·|σ1, l), ζ̂(·|β1, r) = ζ̂(·|σ1, r)
and ζ̂(·|β) = ζ̂(·|σ). In particular

ζ̂(v|β) =
1

2
= ζ̂(v|σ), ζ̂(w|β) =

q

6
= ζ̂(w|σ), ζ̂(x|β) =

1− q
6

= ζ̂(x|σ),

ζ̂(y|β) =
q

3
= ζ̂(y|σ), ζ̂(z|β) =

1− q
3

= ζ̂(z|σ).

N

9.5 Appendix

Proof of Remark 45. Fix i, σi, βi, ĥ ∈ H and âi ∈ Ai(ĥ) (it is
notationally convenient to “put a hat” on the fixed history and action).
Suppose that (9.4.2) holds; it must be shown that σi(Si(ĥ)) > 0 implies
βi(âi|ĥ) = σi(Si(ĥ, âi))/σi(Si(ĥ)). For every h ≺ ĥ, let âi(h) denote the
action taken by i at h to reach ĥ from h (in other words, â(h) = (âj(h))j∈I
is the unique action profile such that (h, â(h)) � ĥ). Then Si(ĥ) = {si :
∀h ≺ ĥ, si(h) = âi(h)} and Si(ĥ, âi) = {si : si(ĥ) = âi, ∀h ≺ ĥ, si(h) =
âi(h)}, so that, for each si ∈ Si(ĥ),

∏
h∈H

βi(si(h)|h) =

 ∏
h∈H:h≺ĥ

βi(âi(h)|h)

 ·
 ∏
h∈H:h⊀ĥ

βi(si(h)|h)

 ,

and for each si ∈ Si(ĥ, âi),∏
h∈H

βi(si(h)|h) =

 ∏
h∈H:h≺ĥ

βi(âi(h)|h)

·βi(âi|ĥ)·

 ∏
h∈H:h�ĥ

βi(si(h)|h)

 .
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Therefore,

σi(Si(ĥ)) =
∑

si∈Si(ĥ)

σi(si) =
∑

si∈Si(ĥ)

∏
h∈H

βi(si(h)|h)

=

 ∏
h∈H:h≺ĥ

βi(âi(h)|h)

 ·
 ∑
si∈Si(ĥ)

∏
h∈H:h⊀ĥ

βi(si(h)|h)

 ,

σi(Si(ĥ, âi)) =
∑

si∈Si(ĥ,ai)

σi(si) =
∑

si∈Si(ĥ,ai)

∏
h∈H

βi(si(h)|h)

=

 ∏
h∈H:h≺ĥ

βi(âi(h)|h)

 · βi(âi|ĥ) ·

 ∑
si∈Si(ĥ,âi)

∏
h∈H:h�ĥ

βi(si(h)|h)

 .

Count the partial histories that do not weakly precede ĥ in any order,
e.g., {h ∈ H : h � ĥ} = {h1, ..., hL}. Now note that there is a canonical

bijection between Si(ĥ) and Ai(ĥ)×
(
×L

k=1Ai(hk)
)

, and between Si(ĥ, âi)

and×L
k=1Ai(hk). Given this, we can re-order terms as follows:∑

si∈Si(ĥ,âi)

∏
h∈H:h�ĥ

βi(si(h)|h) =

L∑
k=1

∑
ai,k∈Ai(hk)

βi(ai,k|hk) = 1,

∑
si∈Si(ĥ)

∏
h∈H:h⊀ĥ

βi(si(h)|h) =
∑

ai∈Ai(ĥ)

βi(ai|ĥ)

L∑
k=1

∑
ai,k∈Ai(hk)

βi(ai,k|hk) = 1.

Then

σi(Si(ĥ)) =
∏

h∈H:h≺ĥ

βi(âi(h)|h),

σi(Si(ĥ, âi)) =

 ∏
h∈H:h≺ĥ

βi(âi(h)|h)

 · βi(âi|ĥ),

and

βi(âi|ĥ)σi(Si(ĥ)) = βi(âi|ĥ)

 ∏
h∈H:h≺ĥ

βi(âi(h)|h)

 = σi(Si(ĥ, âi)).

�
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Rational Planning

In this chapter we analyze rational planning from the perspective of a
single player with a subjective probabilistic conjecture about the behavior
of co-players. We introduce and analyze several dynamic programming
properties for strategies in finite multistage games with observable actions.
In particular, we focus on folding-back optimality as a representation of
rational planning: the decision maker computes his subjectively optimal
strategy starting from the last stage of the game and factoring into the
decision problems of earlier stages the expected payoffs computed for
the later stages. One-Step Optimality is a property of a strategy given
the conjecture: at every history, the decision maker has no incentive
to change the prescribed action, keeping fixed the actions prescribed
for the future stages. Sequential Optimality takes a forward-planning
approach: at every history, the continuation strategy maximizes the
player’s expected payoff conditional on reaching the history. We show
that folding-back optimality is equivalent to One-Step Optimality (Folding-
Back Principle) and to Sequential Optimality (Optimality Principle). It
follows that Sequential Optimality is equivalent to One-Step Optimality
(One-Deviation Principle). In light of these equivalence results, we adopt
Sequential Optimality for at least one conjecture as a notion of justifiability
for multistage games. Extending the analogous result obtained for static
games (Lemma 2 of Chapter 3), we characterize justifiability with the
notion of conditional dominance, according to which a strategy si is
conditionally dominated if there exists a history h (consistent with si)
such that si is dominated conditional on observing h. To simplify the

278
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analysis, we assume that the game tree is finite, that is, there is finite
horizon and the cardinality of each feasible set of actions is finite. This
maintained assumption is not explicitly mentioned in the results below.
The finiteness assumption is removed in Section 10.5, where we show that
the One-Deviation Principle also holds for all games with infinite horizon
that satisfy a regularity property called “continuity at infinity.”

10.1 Conditional Beliefs and Decision Trees

In the analysis of best replies in static games (Chapter 3), we modeled
players’ conjectures as probability measures over the actions of the co-
players. There are at least two conceivable ways to extend the definition
of conjecture to multistage games: (i) Define conjectures as (possibly
correlated) probability measures over the strategies of the co-players,
where such strategies are interpreted as descriptions of how co-players
(would) behave at each non-terminal history. Note that conjectures have
to be updated, or revised, as the play unfolds. (ii) Define conjectures
as arrays of (possibly correlated) probability measures over co-players’
feasible actions sets, one such measure for each non-terminal history. These
two approaches are essentially equivalent. To see this, consider the easier
case of two-person games, where there is only one co-player. Return to
Section 9.4: An array of probability measures βi ∈×h∈H ∆(A−i(h)) can
also be interpreted as a behavior strategy of co-player −i. By Theorem
32, βi is realization equivalent to a probability measure µi ∈ ∆ (S−i). Now
consider any µi ∈ ∆ (S−i) such that every non-terminal history can be
reached with positive probability, that is, µi (S−i (h)) > 0 for every h ∈ H.
Then we can recover a realization-equivalent βi letting

βi (a−i|h) =
µi (S−i (h, a−i))

µi (S−i (h))

for all h ∈ H and a−i ∈ A−i(h).1 If instead µi (S−i (h)) = 0 for some h,
we should assume that upon observing h player i forms a new conjecture,
which can be used to derive βi (·|h). Thus, we obtain βi (·|h) for every

1Recall from Section 9.4 of Chapter 9 that Sj (h, aj) is the set of strategies of player
j consistent with h that select action aj at h. Here, player j is i’s opponent, that is,
j = −i.
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h ∈ H. We omit the details.2

To analyze rational planning, it is easier to model conjectures as
arrays of probability measures over co-players’ feasible actions. Arrays
of probability measures over strategies will be more convenient to analyze
how conjectures are formed through strategic reasoning—we will introduce
them in Section 10.4 before using them in Chapter 11. From now on, we
reserve the term conjecture for a system of conditional beliefs about
co-players’ actions

βi = (βi(·|h))h∈H ∈×
h∈H

∆(A−i(h)),

where βi(a−i|h) denotes the subjective probability of a−i conditional
on h. In this section, we focus on the subjectively optimal behavior of
player i given his conjectures, hence we fix βi. Nonetheless, we make
the dependence on βi explicit, because in a game-theoretic analysis such
conjectures are endogenous, i.e., they must be consistent with the strategic
analysis of the game. With multiple co-players, βi is a kind of “correlated
behavior strategy.”

Let βsii denote the degenerate behavior strategy determined by pure
strategy si according to the obvious rule:

∀h ∈ H,∀ai ∈ Ai(h), βsii (ai|h) = 1⇔ ai = si(h).

The probability of action profile a = (ai, a−i) conditional on h given
strategy si and conjecture βi is

Psi,β
i
(a|h) := βsii (ai|h)βi(a−i|h) =

{
0, if ai 6= si(h),
βi(a−i|h), if ai = si(h).

(10.1.1)
Equation 10.1.1 can be interpreted in two ways. The first is that player i
will certainly implement his plan si. The second is that si is an objective
description of how player i would behave conditional on reaching each
history h. In this chapter we adopt the first interpretation, from the
viewpoint of player i: he is certain that he is going to implement his plan si;
therefore, for the continuation of the game, he assigns probability 1 to the

2The key assumption is that player i updates or revises his beliefs in compliance with
the chain rule of conditional probabilities. See below.
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actions precribed by si. Using the chain rule of conditional probabilities,3

we can define the subjective probability of h′ conditional on prefix h
(h ≺ h′), given that si is played from h onward: let h = (a1, ..., a`(h)),
h′ = (a1, ..., a`(h), ..., a`(h

′)); then4

Psi,β
i
(h′|h) =

`(h′)∏
t=`(h)+1

βsii (ati|h, ..., at−1)βi(at−i|h, ..., at−1). (10.1.2)

Recall from Section 9.3 that S�hi is the set of continuation strategies in the

subgame with root h, and that (si|h) ∈ S�hi is the continuation strategy

implied by si (that is, the projection of si onto S�hi ). With this, note that
the above conditional probability is well defined and meaningful even if
si precludes h, because Psi,βi(h′|h) only depends on (si|h) ∈ S�hi , i.e., it
depends only on how si behaves in the sub-tree with root h. The subjective
unconditional probability of reaching h′ given si is

Psi,β
i
(h′) = Psi,β

i
(h′|∅).

Comment: If −i is just one player, then βi—as a mathematical
object—is a behavior strategy. For example, −i = 0 may be the Chance
player,5 in this case βi = π0 represents the objective probabilities of chance
moves in a decision tree; or −i = 0 may be Nature6 and then βi = β0

represents the subjective conditional probabilities assigned by i to moves
by Nature. Such subjective probabilities may be obtained via updating
from some prior µ0 ∈ ∆

(×h∈H ∆(A0(h))
)

on objective probability models:

3The chain rule of conditional probabilities states that, given a chain of three events
D ⊆ E ⊆ F ,

P(D|F ) = P(D|E)P(E|F ).

Here we can look at chains of events in Z corresponding to chains of histories: if
h ≺ h′ ≺ h′′, then Z(h′′) ⊆ Z(h′) ⊆ Z(h).

4Equation 10.1.2 and other equations in the continuation of this chapter contain the
following abuse of notation: When t = `(h) + 1, we have at−1 = a`(h), which is already
included in h, therefore h, ..., at−1 shall be read as just h.

5A pseudo-player choosing some moves with known objective probabilities.
6A pseudo-player selecting a state of nature with unknown objective probabilities.



282 10. Rational Planning

for example, if suppµ0 = {π1
0, ..., π

K
0 } and no h is ruled out by µ0,7 then

∀h ∈ H, ∀a0 ∈ A0(h), β0(a0|h) =

∑K
k=1 Psi,π

k
0 (h, (si(h), a0))µ0(πk0 )∑K

k=1 Psi,π
k
0 (h)µ0(πk0 )

for every si consistent with h.8

The structure
〈
(H̄,�), ui, β

i
〉

forms a subjective decision tree for
player i: (H̄,�) is the tree, ui : Z → R is the payoff function of i, and βi

is a subjective assessment of the probabilities of actions not controlled by
i.

Example 45. The BoS with Dissipative Action is a two-person game;
therefore a conjecture of player i is—as a mathematical object—a behavior
strategy of the co-player −i. We will focus on the following examples of
conditional beliefs (they are not meant to form an equilibrium):

βb : βb(U |N) =
3

4
, βb(u|B) =

1

4
;

βa : βa(N |∅) = 1, βa(L|N) = 0, βa(l|B) = 1;

hence βa corresponds to the pure strategy sb = N.R.l of Bob. Next we
give a few examples of realization probabilities, where sb, β

b and βa are
specified above:

Psb,β
b
(B, (u, l)) = 0 = Psb,β

b
(N, (U,L)),

Psb,β
b
(N, (U,R)) =

3

4
,

PD.u,β
a
(B, (u, l)) = 0, PD.u,β

a
(B, (u, l)|B) = 1.

N

7That is,
∑K
k=1 P

si,π
k
0 (h)µ0(πk0 ) > 0 for every h ∈ H and si consistent with h. This

is true, for example, if there is at least one model πk0 ∈suppµ0 such that πk0 (a0|h̄) > 0
for every h̄ ∈ H and a0 ∈ A0(h̄).

8Recall that strategy si is consistent with history h if h � ζ (si, s−i) for some
s−i ∈ S−i. The set of such strategies is denoted by Si(h) (see Section 9.4).
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10.2 Subjective Values

For all si ∈ Si, βi ∈×h∈H ∆(A−i(h)) and h ∈ H, we can determine the
subjective value of h given that si is followed from h onward:

V si,β
i

i (h) :=
∑

z∈Z(h)

ui(z)Psi,β
i
(z|h).

Like Psi,βi(z|h), also V si,β
i

i (h) is well defined and meaningful even if si
precludes h, because it depends only on (si|h), the sub-strategy induced
by si in the sub-tree with root h. Therefore, it makes sense to write (with

a slight abuse of notation) V si,β
i

i (h) = V
(si|h),βi

i (h), and to write V ti,β
i

i (h)

for any ti ∈ S�hi ; that is, V ti,β
i

i (h) is the value of playing sub-strategy ti
in the decision sub-tree with root h.

Similarly, for every ai ∈ Ai(h) we can define the value of taking
action ai at h given that si will be followed from the next stage:

V si,β
i

i (h, ai) :=
∑

a−i∈A−i(h)

βi(a−i|h)V si,β
i

i (h, (ai, a−i)).

Finally, the ex ante value of playing si is

V si,β
i

i (∅) :=
∑
z∈Z

ui(z)Psi,β
i
(z).

Note: since βsii (ai|h) = 1 if ai = si(h) and βsii (ai|h) = 0 otherwise, by
inspection of the definitions we have

V si,β
i

i (h, si(h))

=
∑

(ai,a−i)∈A(h)

V si,β
i

i (h, (ai, a−i))β
si
i (ai|h)βi(a−i|h)

=
∑

(ai,a−i)∈A(h)

βsii (ai|h)βi(a−i|h)
∑

z∈Z(h,(ai,a−i))

ui(z)Psi,β
i
(z|h, (ai, a−i))

=
∑

z∈Z(h)

ui(z)Psi,β
i
(z|h) = V si,β

i

i (h)

(the second to last equality follows from the fact that Z (h) =
⋃

a∈A(h)

Z(h, a)

and from the chain rule). Thus we obtain:

Remark 46. For every si ∈ Si and h ∈ H, V si,β
i

i (h, si(h)) = V si,β
i

i (h).
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10.3 Rational Planning

The values defined above take a particular strategy as given. Next we
define recursively the subjective value of reaching a history h and of taking
an action ai at h, under the presumption that the behavior of player i will

be subjectively rational in the following stages. We use the symbol V̂ βi

i to
denote such values to emphasize that they are optimal given conjecture βi.

The recursion is based on L(Γ (h)), the height of the subgame starting
at h ∈ H̄:9

• If L(Γ (h)) = 0 (that is, h ∈ Z) let

V̂ βi

i (h) = ui(h).

• Suppose V̂ βi

i (h′) has been defined for every h′ with L(Γ (h′)) ≤ k.
Then if L(Γ (h)) = k + 1 let

V̂ βi

i (h, ai) =
∑

a−i∈A−i(h)

V̂ βi

i (h, (ai, a−i))β
i(a−i|h),

V̂ βi

i (h) = max
ai∈Ai(h)

V̂ βi

i (h, ai). (10.3.1)

This determination of optimal values by backward recursion is often
called “folding back” in the literature on dynamic programming. We can
interpret folding back as a method (an algorithm) to compute an optimal
plan, which “collects” actions that solve the maximization problems of
equation (10.3.1) at every history. We call a strategy obtained in this way
folding-back optimal.

Definition 55. A strategy s̄i ∈ Si is folding-back optimal given βi if

∀h ∈ H, V̂ βi

i (h, s̄i(h)) = max
ai∈Ai(h)

V̂ βi

i (h, ai) = V̂ βi

i (h).

For every conjecture there is a folding-back optimal strategy: by
finiteness of the game, the maximization problem of equation (10.3.1) has
a solution at every history.

9Recall, L(Γ (h)) := maxz∈Z(h) `(z)− `(h).
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Remark 47. There exists at least one folding-back optimal strategy for
any given βi.

Of course, there can be more than one folding-back optimal strategy
given the same conjecture. This happens whenever the maximazion
problem of equation (10.3.1) has more than one solution at a history.
When there are multiple solutions at more than one history, a natural
question arises: is every combination of optimal actions a folding-back
optimal strategy? The answer is affirmative, because folding back only
depends on the maximal expected payoff computed at the future histories,
not on the specific maximizers.

Remark 48. For every two folding-back optimal strategies s̄i, s̄
′
i given βi,

and for every strategy s̄′′i such that s̄′′i (h) ∈ {s̄i(h), s̄′i(h)} for each h ∈ H,
s̄′′i is folding-back optimal given βi.

Remark 48 contrasts with Example 49, where we will show that the
set of strategies that are optimal given some conjecture does not feature
every combination of actions that are prescribed by some strategy in the
set.10

Next we move to alternative notions of optimal planning. One step-
optimality takes the strategy s̄i as given and makes sure that at every
history h player i has no incentive to deviate to an action ai 6= s̄i(h) given
βi. Sequential optimality is a notion of forward planning: conditional
on every history, the continuation strategy must maximize the expected
payoff given βi. Under this idea of forward planning, it makes sense to
introduce the weaker notion of weak sequential optimality, which only
considers the histories that can be reached given the plan. Finally, we
introduce ex-ante optimality, which only requires optimality from the
viewpoint of the initial history.

Definition 56. A strategy s̄i ∈ Si is

• one-step optimal given βi if

∀h ∈ H, V s̄i,β
i

i (h, s̄i(h)) = max
ai∈Ai(h)

V s̄i,β
i

i (h, ai); (10.3.2)

10By Remark 48, the set of folding-back optimal strategies given βi can be written as
the intersection over all histories h of the sets of strategies that prescribe a folding-back
optimal action at h given βi, and an intersection of Cartesian sets is Cartesian. By
contrast, the union over all conjectures βi of the Cartesian sets of folding-back optimal
strategies given βi need not be Cartesian.
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• sequentially optimal given βi if

∀h ∈ H, V s̄i,β
i

i (h) = max
ti∈S�hi

V ti,β
i

i (h); (10.3.3)

• weakly sequentially optimal given βi if11

∀h ∈ Hi(s̄i), V
s̄i,β

i

i (h) = max
ti∈S�hi

V ti,β
i

i (h); (10.3.4)

• ex ante optimal given βi if

s̄i ∈ arg max
si∈Si

V si,β
i

i (∅). (10.3.5)

We will sometimes omit the phrase “given βi” when the reference to
a specific conjecture is clear from the context. We will sometimes refer
to the maximization property at h for a strategy s̄i that satisfies one-step
optimality as the local optimality of s̄i at h.

Ex-ante optimality implies that the strategy is optimal not just from
the viewpoint of the initial history, but also at every history that player i
initially expects to reach with positive probability.

Proposition 2. A strategy s̄i is ex ante optimal if and only if

∀h ∈ H, Ps̄i,β
i
(h) > 0⇒ (s̄i|h) ∈ arg max

ti∈S�hi
V ti,β

i

i (h). (10.3.6)

We will state a more general result for beliefs over strategies in the
next section (Proposition 25), thus we refer the reader to the proof of that
result for an intuition of how to prove Proposition 2.

In the rest of this section, we investigate the relations among the
notions of optimal plan introduced in Definitions 55 and 56. By inspection
of Definition 56 and Remark 46, we immediately obtain the following
relation between sequential optimality and one-step optimality (and ex-
ante optimality as well).

Remark 49. If a strategy is sequentially optimal given βi, then it is
one-step optimal and ex ante optimal given βi.

11Recall from Chapter 9 that Hi (s̄i) is the set of non-terminal histories not precluded
by s̄i.
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The following results show that folding-back optimality and sequential
optimality are equivalent to one-step optimality. First we establish the
equivalence between the two properties defined by local optimization
conditions, that is, folding-back optimality and one-step optimality; this
is called the “Folding Back Principle.” Next we show that folding-back
optimality is equivalent to sequential optimality; this is the so called
“Optimality Principle.” As a corollary we obtain the “One-Deviation
Principle” which states the equivalence between one-step optimality and
sequential optimality.

Proposition 3. (Folding Back Principle)
(I) A strategy s̄i is one-step optimal given βi if and only if

V s̄i,β
i

i (h, ai) = V̂ βi

i (h, ai), (10.3.7)

V s̄i,β
i

i (h) = V̂ βi

i (h)

for every h ∈ H and ai ∈ Ai(h).
(II) A strategy s̄i is folding-back optimal given βi if and only if it is one-step
optimal given βi.

Proof. We prove by induction on the height of subgames that if s̄i
is one-step optimal given βi then (10.3.7) holds for every h ∈ H and
ai ∈ Ai(h). It is easy to show that also the converse of this statement
holds, thus that (I) holds, and that (I) is equivalent to (II). We leave the
proof of these steps as an exercise.

Suppose that s̄i is one-step optimal given βi.

Basis step. Consider any h ∈ H such that L(Γ (h)) = 1. Then
(h, a) ∈ Z for every a ∈ A(h); therefore

V s̄i,β
i

i (h, ai) =
∑

a−i∈A−i(h)

ui(h, (ai, a−i))β
i(a−i|h) = V̂ βi

i (h, ai)

for every ai ∈ Ai(h); hence

V s̄i,β
i

i (h) = V s̄i,β
i

i (h, s̄i(h))
(loc.opt.)

= max
ai∈Ai(h)

V s̄i,β
i

i (h, ai)

= max
ai∈Ai(h)

V̂ βi

i (h, ai) = V̂ βi

i (h),
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where the first equality holds by Remark 46 and the second equality holds
because s̄i is locally optimal (loc.opt.) at h.

Inductive step. Suppose that (10.3.7) holds for each h ∈ H with
L(Γ (h)) ≤ k. Now, fix h with L(Γ (h)) = k + 1. Then L(Γ (h, a)) ≤ k for
each a ∈ A(h). Therefore the inductive hypothesis (I.H.) implies

V s̄i,β
i

i (h, ai) =
∑

a−i∈A−i(h)

V s̄i,β
i

i (h, (ai, a−i))β
i(a−i|h)

(I.H.)
=

∑
a−i∈A−i(h)

V̂ βi

i (h, (ai, a−i))β
i(a−i|h) =: V̂ βi

i (h, ai)

for every ai ∈ Ai(h); hence

V s̄i,β
i

i (h) = V s̄i,β
i

i (h, s̄i(h))
(loc.opt.)

= max
ai∈Ai(h)

V s̄i,β
i

i (h, ai)

= max
ai∈Ai(h)

V̂ βi

i (h, ai) = V̂ βi

i (h),

where the first equality holds by Remark 46 and the second equality holds
because s̄i is locally optimal at h. �

With this, we can prove the Optimality Principle.

Theorem 33. (Optimality Principle) A strategy of player i is sequentially
optimal given βi if and only if it is folding-back optimal given βi.

Proof. To ease notation, in the proof we use the symbols ti, t
′
i to denote

generic sub-strategies.
(If) Let s̄i be folding-back optimal given βi. We will prove by induction

on the height of subgames that

∀h ∈ H, V̂ βi

i (h) ≥ max
ti∈S�hi

V ti,β
i

i (h). (10.3.8)

Since s̄i is folding-back optimal, it satisfies one-step optimality

(Proposition 3 II), therefore V s̄i,β
i

i (h) = V̂ βi

i (h) (Proposition 3 I); this
means that s̄i is sequentially optimal given βi.

Basis step. Let L(Γ (h)) = 1. Then (h, a) ∈ Z for every a ∈ A(h);
therefore

max
ti∈S�hi

V ti,β
i

i (h) = max
ai∈Ai(h)

∑
a−i∈A−i(h)

ui(h, (ai, a−i))β
i(a−i|h);
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furthermore

V̂ βi

i (h) ≥ V̂ βi

i (h, ai) =
∑

a−i∈A−i(h)

ui(h, (ai, a−i))β
i(a−i|h)

for every ai ∈ Ai(h), where both the inequality and the equality hold by
definition. Hence (10.3.8) holds at h.

Inductive step. Suppose that V̂ βi

i (h) ≥ max
ti∈S�hi

V ti,β
i

i (h) for every

h ∈ H with L(Γ (h)) ≤ k. Now fix h with L(Γ (h)) = k + 1. Then
L(Γ (h, a)) ≤ k for each a ∈ A(h), and the inductive assumption (I.H.)
yields

V̂ βi

i (h) ≥ V̂ βi

i (h, ai) =
∑

a−i∈A−i(h)

V̂ βi

i (h, (ai, a−i))β
i(a−i|h)

(I.H.)

≥
∑

a−i∈A−i(h)

max
ti∈S

�(h,(ai,a−i))
i

V ti,β
i

i (h, (ai, a−i))β
i(a−i|h)

for every ai ∈ Ai(h). Therefore, for every sub-strategy t′i ∈ S
�h
i ,

V̂ βi

i (h) ≥ max
ai∈Ai(h)

∑
a−i∈A−i(h)

max
ti∈S

�(h,(ai,a−i))
i

V ti,β
i

i (h, (ai, a−i))β
i(a−i|h)

≥
∑

a−i∈A−i(h)

max
ti∈S

�(h,(t′
i
(h),a−i))

i

V ti,β
i

i (h, (t′i(h), a−i))β
i(a−i|h)

≥
∑

a−i∈A−i(h)

V
t′i,β

i

i (h, (t′i(h), a−i))β
i(a−i|h) = V

t′i,β
i

i (h).

The latter set of inequalities yield

V̂ βi

i (h) ≥ max
t′i∈S

�h
i

V
t′i,β

i

i (h)

as desired.
(Only if) If s̄i is sequentially optimal, then it satisfies one-step

optimality (Remark 49), which in turn implies that it is folding-back
optimal (Proposition 3 II). �

Proposition 3 and Theorem 33 yield the following result, known as the
One-Deviation (OD) Principle:
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Corollary 6. (One-Deviation Principle) A strategy of player i is
sequentially optimal given βi if and only if it is one-step optimal given
βi.

Since folding-back optimality, sequential optimality, and one-step
optimality are equivalent, we can generically refer to any of them as
“rational planning.” The following result relates rational planning to
weak sequential optimality.

Proposition 4. A strategy s̄i is weakly sequentially optimal given βi if
and only if there is a strategy si that is behaviorally equivalent to s̄i and is
sequentially optimal given βi.

Proof. Suppose that s̄i is weakly sequentially optimal. Let s∗i be any
strategy that is folding-back optimal given βi (by finiteness, there is at
least one such strategy). Define si as follows:

si(h) =

{
s∗i (h), if h ∈ H\Hi (s̄i),
s̄i (h), if h ∈ Hi (s̄i).

By construction, si is behaviorally equivalent to s̄i and satisfies V si,β
i

i (h) =

V̂ βi

i (h) for every h ∈ H\Hi (s̄i). Since s̄i is weakly sequentially optimal
and behaviorally equivalent to si,

V si,β
i

i (h) = V s̄i,β
i

i (h) = max
ti∈S�hi

V ti,β
i

i (h) = V̂ βi

i (h)

for every h ∈ Hi (s̄i), where the first equality follows from
behavioral equivalence, which implies realization-equivalence, hence, value-
equivalence, and the third equality follows from the proof of the optimality
principle (Theorem 33). Thus, si is folding-back optimal, because

V si,β
i

i (h) = V̂ βi

i (h) for every h ∈ H. By the optimality principle, si is
also sequentially optimal.

The converse follows by inspection of the definitions. �

The following example illustrates all the notions of optimal plan
introduced in Definitions 55 and 56.
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Example 46. Using the conditional beliefs of Example 45 we obtain the
following values and optimal strategies. First consider Ann:

V̂ βa

a (N,U) = 0, V̂ βa

a (N,D) = 1,

V̂ βa

a (B, u) = 4, V̂ βa

a (B, d) = 0,

V̂ βa

a (N) = 1 = V̂ βa

a (∅), V̂ βa

a (B) = 4.

Strategy D.u of Ann is folding-back, sequentially, and ex ante optimal, and
it satisfies one-step optimality; strategy D.d is ex ante optimal, but it does
not satisfy one-step optimality and is not folding-back, nor sequentially
optimal. The difference between ex ante optimality and the three kinds
of dynamic optimality depends on the fact that Ann initially does not
expect that the subgame with root B can be reached. Since Ann cannot
move more than once, there is no difference between sequential and weakly
sequential optimality in her case. Next consider Bob:

V̂ βb

b (N,L) =
3

4
, V̂ βb

b (N,R) = 1,

V̂ βb

b (B, l) = −7

4
, V̂ βb

b (B, r) = 1,

V̂ βb

b (B) = V̂ βb

b (N) = V̂ βb

b (∅) = 1;

strategies N.R.r and B.R.r of Bob are folding-back, sequentially, and
ex ante optimal, and they satisfy one-step optimality; strategies N.R.l
(realization-equivalent to N.R.r) and B.L.r (realization-equivalent to
B.R.r) are ex ante optimal and weakly sequentially optimal, but do
not satisfy one-step optimality and are not folding-back, nor sequentially
optimal. N

10.4 Conditional Probability and Dominance

We have seen how, in order to plan rationally, player i must form
conjectures about the behavior of the co-players at each non-terminal
history. A deterministic conjecture specifies an action profile a−i ∈
A−i (h) for each h ∈ H. Formally, such specification is an element of
S−i = ×h∈H A−i (h), the set of functions s−i : H → A−i such that
s−i (h) ∈ A−i (h) for each h ∈ H. Elements of S−i may also be interpreted
as profiles of plans in the minds of the co-players, but this is not the
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interpretation used here, because the payoff of i is affected by co-players’
behavior, not by their plans. (Of course, if we assume that plans are
necessarily carried out, the two interpretations are equivalent.) Thus,
a probabilistic conjecture can be expressed by assigning probabilities to
elements of S−i. Such assignments must take into account the information
about s−i revealed by the play as it unfolds, and condition on such
information. This representation in terms of conditional beliefs allows
us to characterize rational planning with a notion of dominance.

At any given history h ∈ H, a probability measure over the elements of
S−i that are consistent with h suffices for our player to solve his decision
problem at h. Then, rational planning is possible if the beliefs at different
histories satisfy natural consistency rules. Recall from Chapter 9 that
S−i (h) is the set of s−i that do not prevent h from occurring, that is, the
s−i such that h ≺ ζ (si, s−i) for some si. Thus, let

H−i = {C−i ⊆ S−i : ∃h ∈ H,C−i = S−i (h)}

denote the collection of “relevant hypotheses” or “conditioning events”
about co-players’ behavior.

Definition 57. A Conditional Probability System is an array of
probability measures µi = (µi(·|C−i))C−i∈H−i ∈ (∆(S−i))

H−i such that:

1. for every C−i ∈ H−i, µi(C−i|C−i) = 1;

2. for all C−i, D−i ∈ H−i with D−i ⊆ C−i, and for every E−i ⊆ D−i,

µi(E−i|C−i) = µi(E−i|D−i) · µi(D−i|C−i).

A Conditional Probability System (henceforth, CPS) is an array of
probability measures over S−i that conditions on information (property 1)
and satisfies the chain rule of conditional probabilities (property 2). The
chain rule imposes coherency between the belief of player i at a history
h and the belief at a future history h′ that player i deems possible at h:
player i should not “change his mind” from h to h′, but just update his
belief. To see this clearly, note that the equality in property 2 is equivalent
to the following condition:

µi(D−i|C−i) > 0⇒ µi(E−i|D−i) =
µi(E−i|C−i)
µi(D−i|C−i)

.
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Considering that C−i and D−i are elements ofH−i, this can also be written
as follows. Let h ≺ h′ and s−i ∈ S−i (h′), then

µi(S−i
(
h′
)
|S−i (h)) > 0⇒ µi(s−i|S−i

(
h′
)
) =

µi(s−i|S−i (h))

µi(S−i (h′) |S−i (h))
,

because S−i (h′) ⊆ S−i (h). Given a CPS µi, at every history h that player
i initially deems possible (i.e., µi(S−i(h)|S−i) > 0, where S−i = S−i (∅)),
player i simply updates the initial belief µi(·|S−i) using the standard rule
of conditional probabilities. Instead, at a history h that was deemed
impossible (i.e., µi(S−i(h)|S−i) = 0), player i has to come up with a new
belief µi(·|S−i (h)). Then, player i starts updating this new belief exactly
as he was doing with the initial one, until also this new belief is “falsified”
by the observed behavior of the co-players, and so on. To ease notation,
from now on we write

µi (·|S−i (h)) = µi (·|h) ,

and we let ∆H(S−i) denote the set of all CPSs of player i on S−i.
12

We now redefine rational planning with respect to a CPS. Of the
different representations of rational planning provided for conjectures,
we seek to adapt to CPSs the definition of weak sequential optimality,
for two reasons. First, sequential optimality is easier to define than
folding-back optimality with respect to a CPS, because a sequentially
optimal strategy is defined via a comparison of continuation plans at each
history, and the belief specified by the CPS for the history suffices for this
comparison. Second, we look for just weakly sequentially optimal strategies
because, under the assumption that players always execute their plans, they
are indistinguishable from the realization-equivalent sequentially optimal
strategies, based on the observation of co-players’ behavior. (We will
elaborate on this issue in the next chapter.)

Given the belief µi (·|h) that player i holds at history h, and given a
strategy si that is consistent with h, we can compute the probability of
reaching a terminal history z ∈ Z(h) as follows:

Psi,µ
i
(z|h) =

{
0, if si 6∈ Si(z),
µi(S−i(z)|h), if si ∈ Si(z).

12Note that, for all µi ∈ ∆H (S−i) and h′, h′′ ∈ H, S−i (h′) = S−i (h′′) implies
µi (·|h′) = µi (·|h′′). In other words, beliefs about co-players depend only on what the
history reveals about their behavior, and do not depend on what it reveals about own
behavior.
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With this, we can recompute the subjective value of reaching h when si is
followed from h onwards as follows:

V si,µ
i

i (h) =
∑

z∈Z(h)

ui(z)Psi,µ
i
(z|h).

Then, we can adapt to CPSs the definition of weak sequential optimality
provided for conjectures. Recall that Hi (s̄i) is the set of non-terminal
histories consistent with (not precluded by) playing strategy s̄i.

Definition 58. A strategy s̄i is weakly sequentially optimal given µi

if13

∀h ∈ Hi(s̄i), V
s̄i,µ

i

i (h) = max
si∈Si(h)

V si,µ
i

i (h). (10.4.1)

Condition (10.4.1) must hold at every history not precluded by s̄i, but
given the coherency between beliefs at different histories imposed by the
chain rule, it is sufficient to check that it holds at the histories that are
deemed impossible by player i until they are actually reached.

Lemma 25. Fix any strategy s̄i. For all h, h′ ∈ Hi(s̄i) such that h ≺ h′

and µi (S−i (h′) |S−i (h)) > 0, if

V s̄i,µ
i

i (h) = max
si∈Si(h)

V si,µ
i

i (h) (10.4.2)

then

V s̄i,µ
i

i (h′) = max
si∈Si(h′)

V si,µ
i

i (h′).

Proof. Fix si ∈ Si(h
′). Define s′i ∈ Si(h

′) as s′i(h̃) = s̄i(h̃) for

each h̃ 6� h′, and s′i(h̃) = si(h̃) for each h̃ � h′. Then, we have
ζ(s′i, s−i) = ζ(si, s−i) for each s−i ∈ S−i(h

′), and ζ(s′i, s−i) = ζ(s̄i, s−i)

13We have previously defined the continuation value at h given a conjecture βi

considering the continuation strategies in S�hi . To ease notation, here we define the
continuation value at h given a CPS µi for the strategies that are consistent with h, that
is, Si(h). The two representations are equivalent because µi(S−i(h)|h) = 1, therefore
only the actions prescribed by each si ∈ Si(h) from h onwards matter for the expected
payoff.
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for each s−i 6∈ S−i(h′). Hence,∑
s−i∈S−i(h)\S−i(h′)

ui(ζ(s′i, s−i))µ
i(s−i|h) (10.4.3)

=
∑

s−i∈S−i(h)\S−i(h′)

ui(ζ(s̄i, s−i))µ
i(s−i|h),

∑
s−i∈S−i(h′)

ui(ζ(s′i, s−i))µ
i(s−i|h) (10.4.4)

=
∑

s−i∈S−i(h′)

ui(ζ(si, s−i))µ
i(s−i|h).

By (10.4.2) and (10.4.3), we get∑
s−i∈S−i(h̄′)

ui(ζ(s′i, s−i))µ
i(s−i|h) ≤

∑
s−i∈S−i(h̄′)

ui(ζ(s̄i, s−i))µ
i(s−i|h),

so by (10.4.4),∑
s−i∈S−i(h̄′)

ui(ζ(si, s−i))µ
i(s−i|h) ≤

∑
s−i∈S−i(h̄′)

ui(ζ(s̄i, s−i))µ
i(s−i|h).

Finally, dividing both sides by µi(S−i(h
′)|h), we get∑

s−i∈S−i(h̄′)

ui(ζ(si, s−i))µ
i(s−i|h′) ≤

∑
s−i∈S−i(h̄′)

ui(ζ(s̄i, s−i))µ
i(s−i|h′),

as desired. �

Now we state and prove formally the equivalence between weak
sequential optimality given a CPS and weak sequential optimality given
the conjecture derived from the CPS. Recall that, for all h ∈ H and
a−i ∈ A−i(h), we let S−i (h, a−i) denote the set of all s−i ∈ S−i(h) such
that s−i(h) = a−i.

Proposition 5. For each CPS µi ∈ ∆H(S−i), define the corresponding
conjecture βi ∈×h∈H ∆(A−i(h)) as follows:

∀h ∈ H, ∀a−i ∈ A−i(h), βi(a−i|h) = µi (S−i (h, a−i) |h) .

Then, a strategy is weakly sequentially optimal given µi if and only if
it is weakly sequentially optimal given βi.
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Proof. A strategy s̄i ∈ Si is weakly sequentially optimal given βi if

∀h ∈ Hi(s̄i), V
s̄i,β

i

i (h) = max
si∈Si(h)

V si,β
i

i (h),

where
V si,β

i

i (h) =
∑

z∈Z(h)

ui(z)Psi,β
i
(z|h).

Thus, we have only to show that, for all si ∈ Si, h ∈ Hi(si), and z ∈ Z(h),

Psi,µ
i
(z|h) = Psi,β

i
(z|h).

Since h is a prefix of every z ∈ Z(h), there is some n ≥ 1 and some
(a1, ..., an) such that (h, a1, ..., an). Case n = 1 is trivial. This, suppose
that n ≥ 2. Previously, we defined

Psi,β
i
(z|h) = Psi,β

i (
a1|h

) n∏
t=2

Psi,β
i (
at|(h, a1, ..., at−1)

)
,

where, for each h̃ ∈ H and a = (ai, a−i) ∈ A(h̃),

Psi,β
i
(
a|h̃
)

=

{
0, if ai 6= si(h̃),

βi(a−i|h̃), if ai = si(h̃).

Suppose first that si 6∈ Si(z). Since si ∈ Si(h), there exists t such that
ati 6= si(h). Then we have

Psi,β
i
(z|h) = 0 = Psi,µ

i
(z|h).

If si ∈ Si(z), then ati = si(h) for every t = 1, ..., n. So we have

Psi,β
i
(z|h) = βi(a1

−i|h)

n∏
t=2

βi
(
at−i|(h, a1, ..., at−1)

)
. (10.4.5)

By the chain rule, we can write

Psi,µ
i
(z|h) = µi(S−i(z)|h)

= µi(S−i((h, a
1))|h) · µi(S−i(z)|(h, a1))

= µi(S−i((h, a
1))|h) · µi(S−i((h, a1, a2))|(h, a1)) · µi(S−i(z)|(h, a1, a2))

= ...

= µi(S−i((h, a
1))|h) ·

n∏
t=2

µi(S−i((h, a
1, ..., at))|(h, a1, ..., at−1)).(10.4.6)
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For each h̃ ∈ H and a = (ai, a−i) ∈ A(h̃), by definition we have
βi(a−i|h̃) = µi(S−i(h̃, a−i)|h̃), and obviously S−i(h̃, a−i) = S−i(h̃, a).
Hence, (10.4.5) and (10.4.6) coincide, as desired. �

Weak sequential optimality given a conjecture is weaker than sequential
optimality, which in turn is equivalent to folding-back optimality by the
optimality principle (Theorem 33). Hence, the existence of a folding-back
optimal strategy guarantees the existence of a weakly sequentially optimal
strategy given the conjecture derived from the CPS; thus, by Proposition
5, we obtain the existence of a weakly sequentially optimal strategy given
the CPS. Therefore, we can adopt weak sequential optimality for at least
one CPS as our extension of the notion of justifiability of Chapter 3 to
multistage games.

Definition 59. A strategy s̄i is justified by a CPS µi if it is weakly
sequentially optimal given µi. We will say that a strategy is justifiable if
it is justified by some CPS.

We let
ri : ∆H(S−i)⇒ Si

denote the correspondence that assigns to each CPS µi the set of strategies
justified by µi. With this, the set of justifiable strategies is

ri
(
∆H(S−i)

)
=

⋃
µi∈∆H(S−i)

ri
(
µi
)

.

The set of strategies justified by a CPS satisfies the following property,
which we will use in the next chapter. Fix a CPS µi. If a history h
is consistent with some weakly sequentially optimal strategy and with a
strategy s̄i that satisfies Condition (10.4.1) at h, then there is a weakly
sequentially optimal strategy that is consistent with h and prescribes s̄i(h).
(We omit the proof.)

Lemma 26. For each h ∈
⋃

si∈ri(µi)
Hi(si) and s̄i ∈ Si(h) such that

V s̄i,µ
i

i (h) = max
si∈Si(h)

V si,µ
i

i (h),

there exists s′i ∈ ri(µi) ∩ Si(h) such that s′i(h) = s̄i(h).
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In Chapter 3, we stated and proved an equivalence result relating
(un)justifiability and strict dominance (Lemma 2). Here, we extended
the notion of justifiability to multistage games. Can we extend the notion
of strict dominance to multistage games in such a way to preserve the
equivalence between justifiability and not being dominated? The answer
is yes.

Definition 60. A strategy s̄i is conditionally dominated if there exist
a history h ∈ Hi(s̄i) and a mixed strategy σi ∈ ∆(Si) with σi(Si(h)) = 1
such that

∀s−i ∈ S−i(h),
∑

si∈Si(h)

σi(si)ui(ζ(si, s−i)) > ui(ζ(s̄i, s−i)). (10.4.7)

The set of strategies of agent i that are not conditionally dominated is
denoted by NCDi.

A strategy s̄i is conditionally dominated if there exists a mixed strategy
that yields a higher expected payoff conditional on reaching some history
consistent with s̄i, no matter what the co-players do. We restrict attention
to histories that are consistent with the strategy itself, because we want
to relate conditional dominance to weak sequential optimality.14 We can
state the equivalence result.

Lemma 27. A strategy is justifiable if and only if it is not conditionally
dominated, that is, ri

(
∆H(S−i)

)
= NCDi.

Proof. Fix a strategy s̄i. Suppose first that s̄i is justifiable. Then
there exists µi ∈ ∆H(S−i) such that

∀h ∈ Hi(s̄i), V
s̄i,µ

i

i (h) = max
si∈Si(h)

V si,µ
i

i (h),

which means that

∀h ∈ Hi(s̄i), s̄i ∈ arg max
si∈Si(h)

∑
s−i∈S−i(h)

ui(ζ(si, s−i))µ
i(s−i|h). (10.4.8)

14One can establish an analogous equivalence between sequential optimality and a
notion of conditional dominance that also considers the histories that are precluded by
the dominated strategy (focusing on the continuation strategy).
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Next, fix any h ∈ Hi(s̄i). Consider an auxiliary simultaneous-move game
with, for each j ∈ I, action set Ahj = Sj(h) and payoff function

vj :×k∈I A
h
k → R
s 7→ uj(ζ(s)).

By (10.4.8), s̄i is a best reply to the conjecture νi ∈ ∆(S−i(h)) such that
νi(s−i) = µi(s−i|h) for each s−i ∈ S−i(h). Then, by Lemma 2, no mixed
action σi ∈ ∆(Si(h)) dominates s̄i. Since this is true for every h ∈ Hi(s̄i),
it follows that s̄i is not conditionally dominated.

Conversely, suppose that s̄i is not conditionally dominated. Fix any
h ∈ Hi(s̄i) and construct an auxiliary simultaneous-move game as above.
Thus, s̄i is not dominated by any mixed action in this game. Then, by
Lemma 2, s̄i is a best reply among the strategies in Si(h) to some conjecture
νi,h ∈ ∆(S−i(h)). Order the conjectures (νi,h)h∈Hi(s̄i) in such a way that

if history h precedes history h′ in the game, νi,h comes before νi,h
′

in the
ordering. Next, fix some residual measure ν ∈ ∆(S−i) such that ν(s−i) > 0
for every s−i ∈ S−i. With this, define µi = (µi(·|h))h∈H ∈ (∆(S−i))

H as
follows. For each h ∈ H, derive µi(·|h) by considering prefixes h̄ of h and
conditioning the first νi,h̄ in the ordering such that νi,h̄(S−i(h)) > 0, if
any ; otherwise, derive µi(·|h) by conditioning the residual measure ν.

First we check that µi is a CPS. Fix C−i, D−i ∈ H−i and h, h′ ∈ H
such that D−i ⊆ C−i, C−i = S−i(h), D−i = S−i(h

′), and h 6= h′. Suppose
that µi(D−i|h) > 0. If µi(·|h) was derived by conditioning ν, so was
µi(·|h′), therefore condition 2 of a CPS is satisfied. If µi(·|h) was derived by
conditioning some νi,h̄, µi(D−i|h) > 0 implies νi,h̄(D−i) > 0. Moreover, for

each νi,h̃ that precedes νi,h̄ in the ordering, we must have νi,h̃(S−i(h)) = 0,
otherwise µi(·|h) could not be derived from νi,h̄. Hence, µi(·|h′) was derived
by conditioning νi,h̄ as well, and condition 2 of a CPS is satisfied.

Now we want to show that s̄i is weakly sequentially optimal under
µi. We want to show that, for each h ∈ Hi(s̄i), s̄i satisfies (10.4.1). For
every h̃ ∈ Hi(s̄i) with h̃ 6� h and h 6� h̃, there is no s−i ∈ S−i such that
h̃ ≺ ζ(s̄i, s−i) and h ≺ ζ(s̄i, s−i). Hence, S−i(h̃) ∩ S−i(h) = ∅ and µi(·|h)

cannot be derived by conditioning νi,h̃. So, since νi,h(S−i(h)) = 1, µi(·|h)
is derived by conditioning some νi,h̄ with h̄ � h and νi,h̄(S−i(h)) > 0. Note
that µi(·|h̄) = νi,h̄, therefore s̄i satisfies (10.4.1) at h̄. Then, by Lemma
25, s̄i satisfies (10.4.1) at h. �
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To better understand conditional dominance, it is useful to compare it
to strict dominance and weak dominance applied to the strategic form
of the game. Strict dominance in the strategic form clearly implies
conditional dominance. Indeed, if a strategy is strictly dominated, then it
is conditionally dominated given the empty (initial) history h = ∅, because
S−i (∅) = S−i.

Remark 50. If a strategy is strictly dominated in the strategic form of the
game, then it is conditionally dominated.

Furthermore, conditional dominance implies weak dominance: if s̄i is
worse than some mixed strategy σi from some history h onwards, then we
can construct a mixed strategy that imitates σi from h onwards and s̄i
everywhere else, so that it is equivalent to s̄i if h is not reached.

Proposition 6. If a strategy is conditionally dominated, then it is weakly
dominated in the strategic form of the game.

Proof. We use Lemma 5: a strategy is weakly dominated if (and only
if) it is not a best response to any conjecture assigning strictly positive
probability to every profile s−i. Suppose that s̄i is conditionally dominated
at some history h̄. Pick any conjecture µi ∈ ∆(S−i) such that µi(s−i) > 0
for each s−i ∈ S−i, and let νi be the conjecture over S−i(h̄) obtained from
µi by conditioning. Now, focus on the auxiliary simultaneous-move game
where the action set of each player j coincides with the subset of strategies
of the multistage game Sj(h̄), and for each profile of actions s the payoff
of j is given by uj(ζ(s)). We can view νi as a conjecture of player i in this
game. Since s̄i is conditionally dominated at h̄ in the multistage game, it
is dominated in this simultaneous-move game, therefore by Lemma 2 it is
not a best reply to νi. It follows that there exists si ∈ Si(h̄) such that∑

s−i∈S−i(h̄)

ui(ζ(s̄i, s−i))ν
i(s−i) <

∑
s−i∈S−i(h̄)

ui(ζ(si, s−i))ν
i(s−i).

Now go back to the multistage game. Define s̃i as s̃i(h) = si(h) for all
h � h̄ and s̃i(h) = s̄i(h) for all h 6� h̄. Hence,∑

s−i∈S−i(h̄)

ui(ζ(s̃i, s−i))ν
i(s−i) =

∑
s−i∈S−i(h̄)

ui(ζ(si, s−i))ν
i(s−i),
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∀s−i ∈ S−i\S−i(h̄), ζ(s̃i, s−i) = ζ(s̄i, s−i).

Thus, we obtain∑
s−i∈S−i

ui(ζ(s̄i, s−i))µ
i(s−i)

= µi(S−i(h̄))
∑

s−i∈S−i(h̄)

ui(ζ(s̄i, s−i))ν
i(s−i) +

∑
s−i∈S−i\S−i(h̄)

ui(ζ(s̄i, s−i))µ
i(s−i)

< µi(S−i(h̄))
∑

s−i∈S−i(h̄)

ui(ζ(s̃i, s−i))ν
i(s−i) +

∑
s−i∈S−i\S−i(h̄)

ui(ζ(s̃i, s−i))µ
i(s−i)

=
∑

s−i∈S−i

ui(ζ(s̃i, s−i))µ
i(s−i).

This argument proves that s̄i is not a best reply to any strictly positive
conjecture in the strategic form of the multistage game. Therefore, by
Lemma 5, si is weakly dominated. �

The reason why weak dominance does not imply conditional dominance
can be seen in a simultaneous-move game, where conditional dominance
coincides with strict dominance. However, it is often the case that all
the weak dominance relations in the strategic form of a multistage game
imply a strict dominance relation from some history h onwards, as in the
definition of conditional dominance. For example, in all leader-follower
games15 a strategy of the follower is weakly dominated in the strategic
form of the game if and only if it does not select a best reply for at least
one action of the leader, and it is therefore conditionally dominated given
this action. Indeed, in a large class of games, weak dominance in the
strategic form coincides with conditional dominance. Next we quantify
how large this class is.

Suppose that a mixed strategy σ̄i weakly dominates strategy s̄i in
the strategic form of the game. Fix a history h ∈ Hi(s̄i) such that (i)
σ̄i(Si(h)) = 1 and (ii) σ̄i(si) > 0 for some si with si(h) 6= s̄i(h). By weak
dominance, σ̄i does weakly better than s̄i against every s−i ∈ S−i(h).
Now decrease by ε > 0 the (only) payoffs of player i associated with
terminal histories that are consistent with s̄i. Then, by (ii), σ̄i now

15Formally, a leader-follower game is a two-person, two-stage game with perfect
information such that the first-mover cannot move again in the second stage.
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does strictly better than s̄i against every s−i ∈ S−i(h), and thus s̄i is
conditionally dominated. So, if s̄i is not conditionally dominated in the
original game, it is conditionally dominated in “neighboring games” with
the same tree and slightly different payoffs. The bottom line is that games
where weak dominance in the strategic form does not imply conditional
dominance represent “an exception” from a mathematical perspective, as
long as it makes sense to slightly modify the payoffs of some terminal
histories and not others, which is certainly the case when the outcome
function g : Z → Y is one-to-one. We formalize this concept using
the notion of Lebesgue measure. In Rn, the Lebesgue measure is the
generalization of the notions of length, area, and volume for R1, R2, and
R3, respectively. Recall that the set RZ of all payoff functions ui : Z → R
is essentially the same as the Euclidean space R|Z|: fix arbitrarily a
bijection n : Z → {1, ..., |Z|}, then ui ∈ RZ corresponds to the vector(
ui
(
n−1 (1)

)
, ..., ui

(
n−1 (|Z|)

))
∈ R|Z|.

Lemma 28. Fix a finite multistage game tree. The closure16 of the
set of payoff vectors (ui(z))z∈Z such that some strategy of player i is
weakly dominated in the strategic form but not conditionally dominated
has Lebesgue measure zero in RZ .

The proof of Lemma 28 is in the appendix of Chapter 11, where we
provide a more general version of this result.

In words, we will say that a statement (such as the equivalence between
conditional dominance and weak dominance) holds generically when,
given every multistage game tree, it is true for all payoff vectors except
possibly for a subset with zero-measure closure. Now we provide the
intuition for Lemma 28 with an example.

Example 47. Consider a modified version of the Battle of the Sexes
of Example 38, where Bob’s payoff at terminal history ((in), (B1,B2)) is
substituted by a parameter v ∈ R. Strategy B2 of Bob is conditionally
dominated if and only if v < 0. If v < 0, then B2 is conditionally dominated
by S2 at history (in). If v ≥ 0, then B2 is not conditionally dominated: for
every mixed strategy σ2 ∈ ∆({S2,B2}), we have

σ2(S2)u2(ζ(in.B1, S2)) + σ2(B2)u2(ζ(in.B1,B2)) = σ2(B2) · v (10.4.9)

≤ v = u2(ζ(in.B1,B2)),

16The closure of a set is the smallest closed set that contains it.
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therefore condition (10.4.7) is not satisfied for s1 = in.B1 (at either
non-terminal history).

Strategy B2 is weakly dominated in the strategic form of the game
if and only if v ≤ 0. If v ≤ 0, then B2 is weakly dominated by S2—note
that B2 is not strictly dominated because the two strategies yield the same
payoff if Ann plays out. If v > 0, then B2 is not weakly dominated, because
then inequality (10.4.9) is strict.

So, for v 6= 0, B2 is weakly dominated if and only if it is conditionally
dominated. There is only one value of v in the entire real line, v = 0, such
that B2 is weakly dominated but not conditionally dominated. N

10.5 Infinite Horizon and Continuity at Infinity

Although the previous analysis is focused on finite games, it applies more
generally to games with finite horizon.17 In games with infinite horizon,
folding-back planning does not apply, because there is no last stage from
which the computation can start. However, the OD Principle still holds
under a mild regularity property, called “continuity at infinity,” implied
by compactness-continuity of the game.

For any history h = (a1, a2, ...) ∈ H̄ and number of stages t ∈ N, let ht

denote the prefix of h of length t if `(h) > t (recall that ` (h) is the length
of h, and `(h) = ∞ if h is an infinite history), otherwise let ht = h; that

is, if h =
(
ak
)`(h)

k=1
, then ht =

(
ak
)min{`(h),t}
k=1

.

Definition 61. Game Γ is continuous at infinity if, for every player
i ∈ I,

lim
t→∞

[
sup

{∣∣∣ui(h)− ui(h̃)
∣∣∣ : h, h̃ ∈ Z, ht = h̃t

}]
= 0

where we let sup ∅ = 0 by convention.

Note that every game with finite horizon is trivially continuous at
infinity. Indeed, let T < ∞ denote the horizon, then for every t ≥ T ,
ht = h̃t implies h = h̃, hence the limsup must be 0. Thus, Γ is continuous

17In infinite games with finite horizon, the optimization problems defining the dynamic
programming properties studied above may not have a solution, but the main equivalence
results (Folding-Back Principle, Optimality Principle, OD Principle) still hold. Other
results, such as Proposition 4, do not hold for all infinite games, even if they have finite
horizon.



304 10. Rational Planning

at infinity if and only if either Γ has finite horizon, or Γ has infinite horizon
and for all ε > 0 there is some sufficiently large positive integer Tε such
that, for all t ≥ Tε and all pairs of histories h, h̃ ∈ Z satisfying ht = h̃t,

we have
∣∣∣ui(h)− ui(h̃)

∣∣∣ < ε. This means that what happens in the distant

future has little impact on overall payoffs.

Remark 51. Every compact-continuous game is continuous at infinity.

Proof. Let Γ be compact-continuous and fix a terminal history h ∈ Z
arbitrarily; we must show that

lim
t→∞

[
sup

{∣∣∣ui(h)− ui(h̃)
∣∣∣ : h̃ ∈ Z, ht = h̃t

}]
= 0.

The equality holds trivially if h is finite. Suppose that h is infinite.
For every t ∈ N, the set of infinite continuations of the prefix ht,{
h̃ ∈ Z : ht = h̃t

}
, is compact; therefore, by continuity of ui, there is some

terminal history h̃t ∈
{
h̃ ∈ Z : ht = h̃t

}
such that

sup
{∣∣∣ui(h)− ui(h̃)

∣∣∣ : h̃ ∈ Z, ht = h̃t
}

=
∣∣∣ui(h)− ui(h̃t)

∣∣∣ <∞.

By construction, the sequence of terminal histories
(
h̃t

)∞
t=1

converges to h,

because h̃`t = h` for ` ≤ t, therefore limt→∞ h̃
`
t = h` for each ` ∈ N, which

implies limt→∞ h̃t = h. By continuity of ui, limt→∞ ui

(
h̃t

)
= ui (h), which

implies the claim. �

Example 48. Suppose that the game has infinite horizon and, at every
stage, all the action profiles in the Cartesian set A =×i∈I Ai are feasible,
that is, H = A<N0 and Z = AN. For every i ∈ I and t = 1, 2, ...,
there is a period-t (istantaneous, or flow) payoff function ui,t : At → R.18

Furthermore, there is some v ∈ R such that for all i ∈ I,

sup
ht∈At

|ui,t(ht)| ≤ v.

18The period-t payoff functions ui,t may be the composition of period-t outcome
functions gt : At → Yt and period-t utility functions vi,t : Yt → R, that is,
ui,t = vi,t ◦ gt : At → R. See the discussion in Section 9.2.1.
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Payoffs are assigned to terminal histories as follows: for each player i there
is a discount factor δi ∈ (0, 1) such that

ui(h
∞) = (1− δi)

∞∑
t=1

(δi)
t−1ui,t(h

t)

for all h∞ ∈ Z, where ht denotes the length-t prefix of h∞. One can
verify that such games are continuous at infinity. Infinitely repeated games
with discounting are a special case where ui,t(a

1, ..., at−1, at) = ui(a
t) is

independent of
(
a1, ..., at−1

)
. N

Theorem 34. (OD Principle with continuity at infinity). Suppose
that Γ is continuous at infinity. Then, for every si ∈ Si and βi ∈
×h∈H ∆(A−i(h)), the following conditions are equivalent:
(1) si is sequentially optimal given βi;
(2) si is one-step optimal given βi.

Proof. (1) implies (2) by Remark 49. To show that (2) implies (1), we
prove the contrapositive: if si is not sequentially optimal given βi, then
there must be incentives for one-step deviations. If βi is non-deterministic,
the proof requires some measure-theoretic technicalities. Therefore we
provide the proof for the deterministic case: for some s−i ∈ S−i and every
h ∈ H, βi (s−i (h) |h) = 1.19 Thus, we replace βi with s−i in the formulas,
and we have V

si,s−i
i (h) = ui (ζ (si, s−i|h)), where ζ (si, s−i|h) denotes the

terminal history induced by (si, s−i) starting from h, which depends only
on (si|h) ∈ S�hi and (s−i|h) ∈ S�h−i .

Suppose that si is not sequentially optimal given some s−i ∈ S−i, that
is, there are h ∈ H, ŝi ∈ Si and ε > 0 such that

ui (ζ (si, s−i|h)) = ui (ζ (ŝi, s−i|h))− ε. (10.5.1)

For every positive integer T and for every strategy profile s ∈ S, let

us define the auxiliary “truncated” game ΓT,s =
〈
I, (ATi (·), uT,si )i∈I

〉
with

horizon T derived from Γ as follows:

• ATi (h′) = Ai(h′) if `(h′) < T and ATi (h′) = ∅ otherwise, so that
H̄T = {h′ ∈ H̄ : `(h′) ≤ T} and ZT = {h′ ∈ H̄T : either `(h′) = T ,
or `(h′) < T and h′ ∈ Z},

19The proof of this special case is sufficient for the analysis of pure equilibria in games
without chance moves.
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• for all h̄ ∈ Z ∩ ZT , uT,si (h̄) = ui(h̄),

• for all h̄ ∈ ZT \Z, uT,si (h̄) = ui
(
ζ
(
si, s−i|h̄

))
.

Intuitively, the game is truncated so that it has at most T stages. If a
terminal history h′ of a truncated game ΓT,s is not terminal for the original
game Γ, then the imputed payoffs are those that would obtain in Γ if the
players followed the given strategy profile s after history h′.

By continuity at infinity there is a “large enough” T (which depends
on ε) such that, for all h̃, ĥ ∈ Z, if h̃T = ĥT (i.e., if these two histories
coincide in the first T stages) then

|ui(h̃)− ui(ĥ)| < ε.

Let s̃i be the strategy that behaves as si after T and as ŝi before T . More
precisely:

s̃i(h
′) =

{
si(h

′), if `(h′) > T ,
ŝi(h

′), if `(h′) ≤ T .

Let ĥ = ζ (ŝi, s−i|h) and h̃ = ζ (s̃i, s−i|h). Then

ui (ζ (s̃i, s−i|h)) = ui(h̃) > ui(ĥ)− ε = ui (ζ (ŝi, s−i|h))− ε

(the equalities hold by definition and the inequality by choice of T and by
construction). Taking (10.5.1) into account, we obtain

V
s̃i,s−i
i (h) = ui (ζ (s̃i, s−i|h)) > ui (ζ (si, s−i|h)) = V

si,s−i
i (h) .

This means that the restriction of si to H̄T+1 is not sequentially optimal
given s−i in the finite horizon game ΓT+1,s. Thus, by Corollary 6,20

strategy si is not one-step optimal given s−i. By definition of ΓT+1,s,
this implies that also in game Γ player i has an incentive to make one-step
deviations after history h. �

20Corollary 6 pertains to finite games, but the result can be extended to games with
finite horizon.
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Rationalizability in
Multistage Games

In this chapter we analyze the behavior of rational players who form their
subjective beliefs about the behavior of co-players by means of strategic
thinking. As we did in Chapter 4 for simultaneous-move games, the
cornerstone of players’ reasoning is the belief of a rational player that
the co-players are rational as well. Therefore, we seek to extend the
idea of rationalizability for simultaneous-move games to multistage games.
However, there is no obvious way to do so. The reason is that, as the
game unfolds, the initial belief about the co-players may be falsified by
the observed behavior. Depending on how players revise their beliefs after
unexpected moves, we will define two notions of belief in the rationality
of co-players, and, correspondingly, two notions of rationalizability for
multistage games. Initial rationalizability captures the idea that players
believe in the rationality of co-players at the beginning of the game and
form a belief about their (present and future) behavior accordingly; yet, if
this belief is falsified, they are free to entertain the possibility that their
co-players are not rational, even if their past behavior does not contradict
their rationality. Strong rationalizability, instead, captures a principle
of best rationalization: players always ascribe to their co-players the
highest level of strategic sophistication that is consistent with the observed
behavior. In particular, they believe in the rationality of the co-players
as long as the evidence is consistent with this hypothesis. A similar
assumption holds for higher levels of strategic sophistication. This idea

307
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is used to rationalize unexpected moves of co-players and predict their
future moves accordingly—an instance of “forward-induction reasoning.”
We assume throughout this chapter that the given multistage game Γ is
finite.1

11.1 Rationality in Multistage Games

Before dealing with interactive beliefs about rationality, we have to be
clear about the notion of rationality we adopt. We want “rationality”
to mean two things: (i) players make “rational plans;” and (ii) they
actually implement what they planned. In Chapter 10 we introduced
different, but equivalent notions of rational planning for multistage
games: sequential optimality, folding-back optimality, and one-step
optimality. We also introduced the behaviorally equivalent notion of weak
sequential optimality, and we adapted its definition to the case in which
players’ beliefs about co-players’ behavior are represented by conditional
probability systems (CPSs). As anticipated, in this chapter we adopt CPSs
and weak sequential optimality.

The reason for choosing weak sequential optimality is the following.
We assume to be transparent (i.e., always commonly believed) that each
player i always executes his plan. Thus, when a co-player j observes
a deviation from the expected behavior of i, he does not believe that
player i committed a mistake in execution and will revert to his original
plan, but rather that player i has a different plan in his mind and is
executing this different plan. Accordingly, there is no need to specify
the moves that a player’s strategy prescribes after deviations from the
strategy itself. In fact, the whole analysis of this chapter goes through
verbatim with reduced strategies in place of strategies, as the elimination
procedures we will consider do not make any distinction between any
two behaviorally-equivalent (hence, realization-equivalent) strategies. It
is worth stressing that other ways of reasoning in a multistage game
(which we do not illustrate in this chapter)—such as so called “backwards
rationalizability”—are based on the opposite idea: upon observing a

1The analysis can be extended to all simple multistage games, whereby the set of
feasible actions of each player is finite for all histories except, possibly, those of height 1,
for which the set of feasible actions must be, if not finite, at least compact. This implies
that the set H of non-terminal histories is finite or at least countable. See Battigalli [7].
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deviation from the expected plan of i, the co-players believe that player i
committed a mistake and will revert to his original plan.

The reason for working with CPSs is that, when a player reasons
strategically about the game, the “external state” he is interested in is
“how the co-players would play conditional on the moves I can make,” and
this is conveniently described by strategies (see the discussion in Section
10.4 of Chapter 10). Just keeping track of the actions the co-players
could play at different histories and directly taking conjectures over such
actions would ultimately expand the set of conjectures our player may
have, introducing additional optimal strategies. Here is an example.

Example 49. Consider the common interest game with perfect
information in Figure 11.1 (the numbers at terminal nodes represent the
common payoff).

We want to compute the set of justifiable strategies of Ann. (As usual,
we omit action “wait” from the description of players’ strategies.)
I Consider first any sa ∈ Sa such that sa(∅) = out; then sa is justified by
any CPS µa such that µa({m} × Sc|∅) = 1.
I Strategy in.b.b′ is justified by a CPS µa such that µa((`, d.d′)|∅) = 1
and µa((r, d.d′)|(in, r)) = 1.
I Strategy in.b.a′ is justified by a CPS µa such that µa((`, d.d′)|∅) = 1
and µa((r, d.c′)|(in, r)) = 1.
I Strategy in.a.b′ is justified by a CPS µa such that µa((r, d.d′)|∅) = 1
and µa((`, c.c′)|(in, `)) = 1.
I Strategy in.a.a′ is not justifiable. To see this, observe that in.a.a′ is
conditionally dominated by out at the root of the game: with in.a.a′ Ann
obtains payoff 1 for sure, with out she obtains 2. Therefore, by Lemma 27,
in.a.a′ is not justifiable.

Thus, every action of Ann is prescribed by at least one justifiable
strategy. However, not every combination of these actions is a justifiable
strategy.

Take now the viewpoint of Bob at history (in) with a belief over the
justifiable strategies of Ann and Colin that are consistent with (in). Hence,
Bob assigns probability one to d.d′ and to strategies of Ann that prescribe
either b, or b′, or both. With this, we obtain a conjecture of Bob that
assigns probability at least 1/2 to either b or b′. Therefore, his optimal
action can be ` or r, but never m. Consider now instead a conjecture
of Bob that, at each history of the game, assigns probability 1 to the
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3 3

0 Colin Colin 0
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Figure 11.1: A common interest game.

actions of Ann and Colin that are prescribed by some justifiable strategy
consistent with the history. Such a conjecture can assign probability one
to a at (in, `) and to a′ at (in, r). So, Bob could optimally choose m.
The problem just described arises because, if we pick for each history h
an action ai,h consistent with i’s rationality (the action “wait” if i is not
active) and we form the strategy si = (ai,h)h∈H , it is possible that si is
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inconsistent with i’s rationality. This is the case for strategy in.a.a′ of
Ann.2 N

Finally, we provide a characterization of weak sequential optimality
that will come in handy later in this chapter.

Lemma 29. Fix a player i ∈ I and a CPS µi ∈ ∆H(S−i). Consider a
nonempty subset of strategies Ci ⊆ Si such that

ri(µ
i) ⊆ Ci. (11.1.1)

A strategy s̄i ∈ Ci is justified by µi if and only if

∀h ∈ Hi(s̄i), V
s̄i,µ

i

i (h) = max
si∈Ci∩Si(h)

V si,µ
i

i (h). (11.1.2)

Proof. The “only if” part is obvious. The proof of the “if” part is by
induction on the length of histories. Fix any s̄i ∈ Ci such that (11.1.2)
holds. We want to show that, for every h ∈ Hi(s̄i),

V s̄i,µ
i

i (h) = max
si∈Si(h)

V si,µ
i

i (h). (11.1.3)

At the initial history we have

V s̄i,µ
i

i (∅)
(11.1.2)

= max
si∈Ci

V si,µ
i

i (∅)
(11.1.1)

= max
si∈Si

V si,µ
i

i (∅).

Now, fix n > 0 and h′ ∈ Hi(s̄i) of length n. Suppose by way of induction
that for every h ∈ Hi(s̄i) of length smaller than n, ri(µ

i) ∩ Si(h) 6= ∅ and
condition (11.1.3) holds. Now let h be the immediate predecessor of h′.
Then, by Lemma 26, there exists s̃i ∈ ri(µi)∩Si(h) such that s̃i(h) = s̄i(h),
thus s̄i ∈ Si(h′). Hence,

V s̃i,µ
i

i (h′) = max
si∈Si(h′)

V si,µ
i

i (h′).

2In other words, the set of justifiable strategies

ri
(

∆H (S−i)
)
⊆ Si =×

h∈H

Ai (h)

is not the Cartesian product of its projections onto set sets Ai (h) for h ∈ H. Strategy
in.a.a′ belongs to the Cartesian product of the projections of ra

θ
∆H (S−a)

)
, but

in.a.a′ /∈ ra
θ
∆H (S−a)

)
.
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By (11.1.1), we have s̃i ∈ Ci, therefore

max
si∈Si(h′)

V si,µ
i

i (h′) = max
si∈Ci∩Si(h′)

V si,µ
i

i (h′). (11.1.4)

So

V s̄i,µ
i

i (h′)
(11.1.2)

= max
si∈Ci∩Si(h′)

V si,µ
i

i (h′)
(11.1.4)

= max
si∈Si(h′)

V si,µ
i

i (h′).

�

11.2 Initial Rationalizability

The first natural extension of common belief in rationality from
simultaneous-move games to multistage games is common initial belief
in rationality. At the beginning of the game, players believe that co-
players are rational; believe that co-players believe that everybody else is
rational; and so on. To derive the behavioral implications of rationality and
common initial belief in rationality, as we did in Chapter 4, we introduce
a rationalization operator that characterizes the behavioral implications
for rational players of each step of this reasoning procedure. Consider the
collection C of all Cartesian subsets of S. For each C =×i∈I Ci ∈ C, and
for each i ∈ I, we define

∆H
∅ (C−i) =

{
µi ∈ ∆H(S−i) : µi(C−i|∅) = 1

}
,

ρi(C−i) =
{
si ∈ Si : ∃µi ∈ ∆H

∅ (C−i), si ∈ ri(µi)
}

= ri(∆
H
∅ (C−i)),

ρ(C) =×
i∈I

ρi(C−i).

The set ∆H
∅ (C−i) is the subset of CPSs such that player i initially believes

C−i, i.e., C−i is assigned probability one at the initial history. Given
this, ρi(C−i) is the set of strategies of i that are justified by a CPS
in ∆H

∅ (C−i). Finally, ρ(C) is the set of strategy profiles that can be
“rationalized,” i.e., justified, by a CPS with initial belief in C−i for each
player i ∈ I. We use the same symbols ri and ρi we used for best replies
and the rationalization operator in simultaneous-move games, because we
are considering an extension of these notions to multistage games: when
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the game has simultaneous moves, ∆H
∅ (C−i) coincides with ∆(C−i), and

weakly sequentially optimal strategies coincide with best replies.

Equipped with the operator ρ : C → C, we define initial rationalizability
with the standard iteration of a self-map as in Chapter 4. Let ρ0(S) = S,
and for each k > 0, let ρk(S) = ρ(ρk−1(S)). Note that whenever C ′ ⊆ C,
we also have ∆H

∅ (C ′−i) ⊆ ∆H
∅ (C−i) for each i ∈ I. Then, ρ is monotone.

Therefore, since ρ0(S) = S,
(
ρk(S)

)∞
k=0

must be a weakly decreasing
sequence, and it makes sense to define:3

ρ∞(S) =
⋂
k≥1

ρk(S).

Definition 62. A strategy profile s ∈ S is initially rationalizable if
s ∈ ρ∞(S).

At every step of reasoning, initial rationalizability preserves the
strategies of each player that are justified by a CPS assigning probability
1 at the initial history to the co-players’ strategies that survived the
previous steps. So, for instance, the strategies that survive step 2 are
justified by a CPS that, at the initial history, assigns probability 1 to the
justifiable strategies of the co-players. Then, the belief in the rationality
of the co-players is maintained at all histories that a player deems possible
given the initial belief. However, at histories that are deemed subjectively
impossible, initial rationalizability does not impose any restriction on the
beliefs over co-players’ strategies, even if such histories are consistent with
some or all steps of the algorithm—Example 50 below is case in point.

Leveraging on the monotonicity of operator ρ, one can prove
that extensions of Theorems 2 and 3 of Chapter 4 hold for initial
rationalizability in multistage games. Also, in Chapter 4 we reformulated
rationalizability as a reduction procedure, by iterating a reduction operator
ρ that only considers the strategies in the reduced game as candidate best
replies. Can we do the same with initial rationalizability? The answer
is again yes, and a possible way to construct the reduction procedure
is identical to that in Chapter 4, once the set of conjectures over the
reduced set of co-players’ action is replaced by the set of CPSs that initially
believe in the reduced set of co-players’ strategies. We leave these proofs
as exercises.

3Compare with Chapter 4.
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In Chapter 10, Lemma 27, we have shown that weak sequential
optimality for some CPS is characterized by the notion of conditional
dominance. With this, it is relatively easy to see that initial
rationalizability can be given the following dominance characterization.
The first step coincides with deletion of all conditionally dominated
strategies. The following steps coincide with the iterated deletion of
strategies that are strictly dominated at the initial history, or equivalently,
with iterated strict dominance in the residual strategic form obtained
after the deletion of conditionally dominated strategies. To formalize,
let NCD = ×i∈I NCDi denote the set of profiles of conditionally
undominated (not conditionally dominated) strategies. Also, let ND (C)
denote the set of profile of strategies that are not dominated (by mixed
strategies) in the restricted Cartesian set C ⊆ S, i.e., the undominated
profiles in the restricted strategic form

〈
I, (Ui|C , Ci)i∈I

〉
. As in Chapter

4, ND : C → C is a restriction operator: ND (C) ⊆ C for every C ∈ C. As
such, it yields a decresing sequence of subsets

(
NDk

(
S̄
))
k∈N starting from

any subset S̄. With this, we can state our result.

Proposition 7. ρ∞(S) = ND∞(NCD).

We omit the proof. Note the order of elimination: first one has to
delete all the conditionally dominated strategies of the multistage game
Γ, obtaining the subset NCD ⊆ S, then one continues with the iterated
deletion of dominated strategies starting from NCD. Inverting the two
operations is not possible: the elimination of the conditionally dominated
strategies does not yield the strategic form of a multistage game. This is
because, as shown by Example 49, the set of justifiable strategies is not the
Cartesian product of subsets of actions at the different histories, therefore
it cannot be represented as a game tree.

Finally, we illustrate initial rationalizability in the BoS with an outside
option (Example 38).

Example 50. Consider the BoS with an Outside Option. We omit action
“wait” from the description of player 2’s strategies, and we illustrate
the steps of initial rationalizability. For player 1, we have r1(µ1) =
{out.B1, out.S1} for each CPS µ1 such that µ1(S2|∅) = 1, and r1(µ1) =
{in.B1} for each µ1 ∈ ∆H(S2) such that µ1(B2|∅) = 1. For player 2,
we have r2(µ2) = {B2} for each CPS µ2 such that µ2(in.B1|∅) = 1, and
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r2(µ2) = {S2} for each CPS µ2 such that µ2(in.S1|∅) = 1. Thus,

ρ1(S) = {out.B1, out.S1, in.B1} × {B2,S2} .

At second step, no strategy for player 1 is deleted. For player 2, we
have r2(µ2) = {B2} for each CPS µ2 such that µ2(in.B1|∅) = 1, and
r2(µ2) = {S2} for each CPS µ2 such that µ2({out.B1, out.S1} |∅) = 1 and
µ2(in.S1|(in)) = 1. Hence,

ρ2(S) = {out.B1, out.S1, in.B1} × {B2,S2} .

No strategy has been eliminated with the second step of the procedure.
Therefore

ρ∞(S) = {out.B1, out.S1, in.B1} × {B2,S2} .

N

Note that, in Example 50, the set of initially rationalizable strategies
of player 1 includes in.B1 but not in.S1. Despite this, the set of initially
rationalizable strategies of player 2 includes not only B2 but also S2.
This is so because player 2 can assign probability 1 to the initially
rationalizable strategies of player 1 that prescribe action out; if this belief
is contradicted by the observation of in, then player 2 is free to think
that player 1 is not carrying out a rational plan, and that player 1 will
then play S1. The consequence is that both strategies of player 2 remain
justifiable under initial belief in rationality of player 1. Thus, in this game,
initial rationalizability yields the same strategies as rationalizability in the
strategic form of the game (cf. Chapter 9, Section 9.3.1),4 where both B2

and S2 survive simply because the strategy of player 2 is irrelevant for the
outcome when player 1 plays out. In the next section, we will see what
happens if instead player 2 believes that in was part of a rational plan
(and player 1 believes that player 2 reasons in this way).

11.3 Strong Rationalizability

When the initial belief about co-players’ behavior is falsified by
observation, a player may still try to interpret unexpected moves as part

4Rationalizability in the strategic form of the game coincides with the iteration
elimination of strateies that are note ex-ante optimal for some conjecture consisent with
the previous steps—cf. Chapter 10.
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of a rational plan. Obviously, this is not always possible as there may be
observable behavior that is not part of any rational plan of the co-player.
But when possible, this rationalization may narrow down what a player
can expect from the co-players in the continuation of the game. This
activity of looking at past moves to predict future moves is called forward-
induction reasoning. Forward-induction reasoning is enabled precisely by
the hypothesis that past and future moves of a co-player must be part of
the same rational plan, which the co-player does not fail to carry out. An
alternative way of reasoning is to think that the unexpected moves were
mistakes that disrupted the implementation of co-players’ plans; in this
case, the future moves can at best be predicted from their optimality in
the continuation of the game, a form of backward-induction reasoning that
will be analyzed in the next chapter.

Thus, forward-induction reasoning rests on maintaining the belief that
the co-players are rational (i.e., they have a rational plan and implement it)
at all histories that are consistent with their rationality. This persistency
of the belief in an event as long as not contradicted by observation is called
strong belief.

Definition 63. Fix a player i ∈ I, a CPS µi and a subset of co-players’
strategy profiles S−i ⊆ S−i.

We say that µi strongly believes S−i if µi(S−i|h) = 1 for every h ∈ H
such that S−i ∩ S−i (h) 6= ∅.

We let ∆H
sb(S−i) denote the set of CPSs of player i that strongly believe

S−i.

Strong belief in rationality is the cornerstone of strategic reasoning.
Here we represent this as strong belief in the set of co-players’ profiles of
justifiable strategies.5 More generally, we impose a best rationalization
principle: players always ascribe to co-players the highest level of
“strategic sophistication” that is consistent with the observed behavior.
For example, on top of strong belief in rationality, we also require that
each player strongly believes that his co-players are rational and that
they strongly believe in rationality. The latter is the second order of

5Recall that ratonality is a relationship between beliefs and behavior. Yet, here we
represent formally only beliefs about behavior, not beliefs about others’ beliefs. Thus,
we represent belief in rationality as belief in behavior consistent with rationality, i.e.,
belief in justifiable behavior.
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strategic sophistication of co-players. As we consider further iterations
of this form of strategic thinking, we want to study the behavioral
implications of rationality and common strong belief in rationality. Such
behavioral implications are characterized by a solution concept called
strong rationalizability.

Definition 64. Consider the following elimination procedure.

(Step n = 0) For each i ∈ I, let S0
i = Si. Also, let S0

−i =×j 6=i Sj and

S0 = S.

(Step n > 0) For each i ∈ I, let

∆n
i =

⋂n−1

m=0
∆H

sb(Sm−i);

Sni =
{
si ∈ Si : ∃µi ∈ ∆n

i , si ∈ ri(µi)
}

.

Also, let Sn−i =×j 6=i S
n
j and Sn =×i∈I S

n
i .

Finally, for each i ∈ I, let S∞i =
⋂
n>0 S

n
i , and S∞ =×i∈I S

∞
i . For

each i ∈ I, the strategies in S∞i are called strongly rationalizable.

Let us compare strong and initial rationalizability. To ease the
comparison, write the sequence of subsets obtained with the initial
rationalizability procedure as

(
Sn∅
)
n∈N = (ρn (S))n∈N with Sn∅ =×i∈I S

n
i,∅.

Since ∆1
i = ∆H (S−i), the first step (n = 1) of strong rationalizability

eliminates only the strategies of player i that are not justifiable, exactly like
initial rationalizability: S1

i = S1
i,∅. At the second step of reasoning (n = 2),

∆2
i captures strong belief that the co-players are rational, i.e., strong belief

in S1
−i: µ

i(S1
−i|h) = 1 for every h ∈ H such that S1

−i ∩S−i (h) 6= ∅. Strong
belief in an event E−i clearly implies initial belief in E−i, as the initial
history is always consistent with the believed event. Hence,

∆2
i = ∆H

sb

(
S1
−i
)
⊆ ∆H

∅
(
S1
−i
)

= ∆H
∅
(
S1
−i,∅

)
(i ∈ I), so that S2 ⊆ S2

∅ = ρ2 (S). Iterating this argument, we obtain the
following result.

Remark 52. Initial rationalizability is weaker than strong
rationalizability, that is,

Sn ⊆ Sn∅ = ρn (S)

for all n ∈ N∪{∞}.
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Proof. We already know that the inclusion holds for the first two
steps. Suppose, by way of induction, that Sm ⊆ Sm∅ for each m < n (IH).
Then, for each i ∈ I,

∆n
i

(def)
=

n−1⋂
m=0

∆H
sb

(
Sm−i
) (sb−ib)

⊆
n−1⋂
m=0

∆H
∅
(
Sm−i
) (IH,mon)

⊆ ∆H
∅

(
Sn−1
−i,∅

)
,

where the equality holds by definition, the first inclusion holds because
strong belief implies initial belief, and the second holds by the inductive
hypothesis and the monotonicity of initial belief. Thus, for each i ∈ I,

Sni = ri (∆n
i ) ⊆ ri

(
∆H
∅

(
Sn−1
−i,∅

))
= Sni,∅,

which implies Sn ⊆ ρn(S) for all n ∈ N. The latter implies S∞ ⊆ ρ∞(S).
�

Example 51. In Example 50, we have seen that in the BoS with an outside
option the initially rationalizable strategies coincide with the justifiable
strategies. In particular, Bob could play S2 even though in.S1 is not
justifiable for Ann because Bob can initially believe that Ann will rationally
play out, and then think that in has not been played as part of a rational
plan. Strong rationalizability, instead, requires Bob to believe that in has
been played as part of the rational plan in.B1. Therefore, as anticipated
in Chapter 9, the observation of in leads Bob to believe, by forward
induction, that Ann will play B1 next. Thus, we have S2

2 = {B2} = S∞2 .
Moreover, Ann anticipates this, because she (strongly) believes that (i)
Bob is rational, and (ii) Bob strongly believes that she is rational. Thus,
we have S3

1 = {in.B1} = S∞1 . N

A more involved example of forward-induction reasoning captured by
strong rationalizability is provided by the BoS with Dissipative Action.

Example 52. Consider the game in Example 39, Chapter 9, where Bob
(b) is the first-mover. All strategies of Ann (a) are justifiable. Note that
for Bob, given any CPS µb, the weakly sequentially optimal strategies
are entirely determined by µb(·|∅); this is because Bob never plays after
observing an action of Ann, hence Bob never has to revise µb(·|∅) before
the game is over. Now, for any initial belief, it is not optimal for Bob to
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burn and then aim for the least preferred coordination outcome. So, we
have

S1
b = {B.L.r,B.R.r} ∪ {sb ∈ Sb : sb(∅) = N} .

No strategy of Ann can be eliminated at the first step. Hence, no strategy
of Bob can be eliminated at the second step, and so on; therefore we can
focus on just one player at each step of reasoning. For Ann, strong belief
in S1

b entails that playing u at history (B) is suboptimal. So, we have

∆2
a =

{
µa ∈ ∆H(Sb) : µa({B.L.r,B.R.r} |(B)) = 1

}
,

S2
a = {U.d,D.d} .

Then, for Bob, (initial) belief in S2
a guarantees that burning will effectively

signal the intention to coordinate on his preferred outcome. Then, not
burning makes sense for him only if he assigns sufficiently high probability
to Ann playing d also after not burning. Hence, we have

∆3
b =

{
µb ∈ ∆H(Sa) : µb({U.d,D.d} |∅) = 1

}
,

S3
b = {N.R.l,N.R.r,B.L.r,B.R.r} .

So, for Ann, strong belief in S3
b translates into certainty of R at history

(N), on top of certainty of r at history (B). Thus, we have

∆4
a =

{
µa ∈ ∆H(Sb) : µa({B.L.r,B.R.r} |(B)) =

µa({N.R.l,N.R.r} |(N)) = 1

}
,

S4
a = {D.d} = S∞a .

For Bob, (initial) belief in S4
a guarantees that his preferred coordination

outcome can be obtained regardless of his initial move, and then, obviously,
it is optimal for him not to burn:

∆5
b =

{
µb ∈ ∆H(Sa) : µb({D.d} |∅) = 1

}
,

S5
b = {N.R.l,N.R.r} .

Forward-induction reasoning, as captured by strong rationalizability, pins
down a unique path: (N, (R,D)). The mere possibility of burning allows
Bob to induce coordination on his preferred outcome even without actually
using the burning option. N
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11.3.1 Strong Rationalizability as a Reduction Procedure

An attentive reader probably noticed that we have not defined strong
rationalizability with the iterated application of a rationalization operator,
as we did for rationalizability in simultaneous-move games, and for initial
rationalizability. Why is it so? The reason is that the best rationalization
principle requires each player i, at any step of reasoning n > 2, to strongly
believe in all the sets/events Sn−1

−i , ..., S1
−i, not just Sn−1

−i . If instead we were

to impose only strong belief in Sn−1
−i , then ∆n

i would not necessarily be a

subset of ∆n−1
i , and thus we would not have a well-defined elimination

procedure. The point is that strong belief in Sn−1
−i is not a stronger

condition than strong belief in Sn−2
−i : although Sn−1

−i ⊆ Sn−2
−i , the set

∆H
sb(Sn−1

−i ) is not necessarily a subset of ∆H
sb(Sn−2

−i ), because the set of

histories consistent with Sn−1
−i can be a strict subset of those consistent

with Sn−2
−i , and thus strong belief in Sn−1

−i may restrict i’s conditional beliefs

at fewer histories than strong belief in Sn−2
−i . (In general, the smaller an

event, the fewer the contingencies where one can believe the event is true.)

An alternative route is to reformulate strong rationalizability as a
reduction procedure. By focusing on the strategies that survived the
previous steps of elimination, we can impose strong belief in Sn−1

−i only,

and rely on the fact that the strategies in Sn−1
i already capture the best

rationalization principle for the lower orders of belief, i.e., they already
capture strong belief in Sn−2

−i , ..., S1
−i. In this way, we overcome the non-

mononicity of strong belief and we can write the reduction procedure with a
constrained rationalization operator. To this end, fix any C =×i∈I Ci ∈ C
and let

H (C) = {h ∈ H : ∃s ∈ C, h ≺ ζ (s)} = {h ∈ H : S (h) ∩ C 6= ∅}

denote the set of non-terminal histories consistent with some strategy
profile in C. We define a constrained optimality correspondence as follows:
for each i ∈ I and µi ∈ ∆H

sb(C−i), let

ri(µ
i|C) =

{
si ∈ Ci : ∀h ∈ Hi(si) ∩H (C) , V s̄i,µ

i

i (h) = max
si∈Ci∩Si(h)

V si,µ
i

i (h)

}
.

Thus, ri(µ
i|C) is the set of strategies that, among the strategies in Ci,

maximize the continuation value given µi(·|h) at every history h consistent
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with C (and with the strategy itself). The correspondence ri(·|C) would be
well defined also if the domain contained all CPSs, but conceptually (and
for our purpose) the CPSs that strongly believe C−i are the interesting
ones: it is under these CPSs that player i can focus exclusively on the
reduced set C, as long as no deviation from the paths in ζ(C) is observed.

With this, we introduce the constrained rationalization operators:

ρi,sb(C) = ri(∆
H
sb(C−i)|C),

ρsb(C) = ×
i∈I

ρi,sb(C).

Finally, we iterate ρsb(S) in the usual way:

ρ0
sb(S) = S,

∀k > 0, ρksb(S) = ρsb(ρk−1
sb (S)),

ρ∞sb(S) =
⋂
k≥1 ρ

k
sb(S).

We want to prove that the reduction procedure (ρksb(S))∞k=0 coincides
with strong rationalizability. Compared to the analogous result for
rationalizability in Chapter 4, there is here a difficulty: even if ρk−1

sb (S) =

Sk−1, the set of CPSs ∆H
sb(ρk−1

−i,sb(S)) is larger than the set ∆k
i we use in the

definition of strong rationalizability, which is, the set of CPSs that strongly
believe Sk−1

−i , ..., S
0
−i. Nonetheless, the expected equivalence holds.

Proposition 8. For each k ∈ N ∪ {∞}, ρksb(S) = Sk.

Proof. Obviously, ρ0
sb(S) = S0. So, fix k ≥ 0 and suppose by way of

induction that ρksb(S) = Sk. We need to show that, for each i ∈ I,

ri(∆
H
sb(ρk−i,sb(S))|ρksb(S)) = ri(∆

k+1
i );

then, ρk+1
i,sb (S) = Sk+1

i follows by definition.

We first show that ri(∆
k+1
i ) ⊆ ri(∆

H
sb(ρk−i,sb(S))|ρksb(S)). Fix any

si ∈ ri(∆k+1
i ). Then, by definition, there exists µi that strongly believes

Sk−i such that si ∈ ri(µi). By the induction hypothesis, Sk−i = ρk−i,sb(S).

Hence µi ∈ ∆H
sb(ρk−i,sb(S)). Moreover, si ∈ Ski = ρki,sb(S). With this, we

obtain

si ∈ ri(∆H
sb(ρk−i,sb(S))|ρksb(S)).
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We now show the opposite inclusion.
Fix any si ∈ ri(∆

H
sb(ρk−i,sb(S))|ρksb(S)). Then, by definition, there exists

µi that strongly believes ρk−i,sb(S) such that si ∈ ri(µ
i|ρksb(S)). By the

induction hypothesis, Sk−i = ρk−i,sb(S), hence µi strongly believes Sk−i. By

the induction hypothesis, si ∈ Ski . Therefore, there is µ̂i that strongly
believes Sk−1

−i , ..., S
0
−i such that si ∈ ri(µ̂i). Then, we can construct a CPS

µ̄i ∈ ∆k+1
i as follows: for every h ∈ H,

µ̄i (·|h) =

{
µi (·|h), if Sk−i ∩ S−i (h) 6= ∅,
µ̂i(·|h), otherwise.

As µ̄i is a well-defined CPS,6 it remains to show that si ∈ ri(µ̄i). For each
h ∈ Hi(si), we have

V si,µ̄
i

i (h) = max
si∈ρki,sb(S)∩Si(h)

V si,µ̄
i

i (h).

Specifically, if Sk−i ∩ S−i (h) = ∅, this follows from the fact that si ∈ ri(µ̂i)
and µ̄i(·|h) = µ̂i(·|h); if instead Sk−i∩S−i (h) 6= ∅, then the above conclusion
still holds, because (i) ρk−i,sb∩S−i (h) 6= ∅ (by the inductive hypothesis), (ii)

si ∈ ri(µi|ρksb(S)) (by the inductive hypothesis), and (iii) µ̄i(·|h) = µi(·|h).
Using again the inductive hypothesis, we obtain ρki,sb(S) = Ski . Moreover,

µ̄i ∈ ∆k
i . Therefore, ri(µ̄

i) ⊆ ρki,sb(S). Then, by Lemma 29, si ∈ ri(µ̄i). �

11.3.2 Iterated Conditional Dominance

The reformulation of strong rationalizability as a reduction procedure
opens up the opportunity to characterize it with a notion of iterated
dominance. The appropriate notion of dominance is conditional
dominance. In Chapter 10 we have shown that a strategy is conditionally
undominated if and only if it is weakly sequentially optimal under a CPS,
absent any restrictions on players’ CPSs given by strategic reasoning. To
characterize strong rationalizability with iterated conditional dominance,
we need to extend the notion of conditional dominance and its relation
with weak sequential optimality to a “reduced game” C =×i∈I Ci , where

6The chain rule holds: to see this, pick any h′ ∈ H such that Sk−i ∩ S−i(h′) = ∅ and
h ∈ H such that Sk−i ∩ S−i (h) 6= ∅. Then we have µi(S−i(h

′)|h) = 0, as µi strongly
believes Sk−i.
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C−i describes the contingent behavior that each player i expects from the
co-players. For each i ∈ I, say that a strategy s̄i ∈ Ci is conditionally
dominated in C if there exist a history h ∈ Hi(s̄i) ∩H(C) and a mixed
strategy σi ∈ ∆(Ci), with σi(Si(h)) = 1, such that

∀s−i ∈ C−i ∩ S−i(h),
∑

si∈Ci∩Si(h)

σi(si)ui(ζ(si, s−i)) > ui(ζ(s̄i, s−i)).

We say that s̄i ∈ Ci is conditionally undominated in C if it is not
conditionally dominated in C. The set of strategies of player i that are
conditionally undominated (Not Conditionally Dominated) in C is denoted
by NCDi(C).

Lemma 30. Fix C =×i∈I Ci ∈ C. A strategy s̄i ∈ Ci is conditionally
undominated in C if and only if there exists µi ∈ ∆H

sb(C−i) such that
s̄i ∈ ri(µi|C).

Proof. The proof follows the same lines as the proof of Lemma 27 in
Chapter 10. Here we adapt the key steps, and the reader can consult the
proof of Lemma 27 for further details.

Suppose there exists µi ∈ ∆H
sb(C−i) such that s̄i ∈ ri(µi|C). Then, for

every h ∈ Hi(s̄i) ∩H(C),

s̄i ∈ arg max
si∈Ci∩Si(h)

∑
s−i∈S−i(h)

ui(ζ(si, s−i))µ
i(s−i|h),

and since µi strongly believes C−i,

µi(C−i ∩ S−i(h)|h) = 1.

Then, by Lemma 2,7 no mixed action σi ∈ ∆(Ci ∩ Si(h)) dominates s̄i in
(Ci ∩ Si(h))× (C−i ∩ S−i(h)). Thus, s̄i is not conditionally dominated in
C.

Conversely, suppose now that s̄i is not conditionally dominated in C.
Thus, for each h ∈ Hi(s̄i), s̄i is not dominated in (Ci ∩ Si(h)) × (C−i ∩
S−i(h)). Then, by Lemma 2, there exists νi,h ∈ ∆(C−i ∩ S−i(h))

s̄i ∈ arg max
si∈Ci∩Si(h)

∑
s−i∈C−i∩S−i(h)

ui(ζ(si, s−i))ν
i,h(s−i|h)

7Lemma 2 is applied here to the strategic form of the game reduced to C.
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For each h 6∈ Hi(s̄i), fix νi,h ∈ ∆(S−i(h)) such that, if h ∈ H(C−i),
νi,h(C−i) = 1. Then, construct a CPS µi ∈ ∆H

sb(C−i) and check that
s̄i ∈ ri(µi|C) as in the proof of Lemma 27. �

We are now in position to state the equivalence between strong
rationalizability and iterated conditional dominance. Let NCD(C) =

×i∈I NCDi(C) ⊆ S denote the set of conditionally undominated strategy
profiles in C =×i∈I Ci ∈ C. This defines a restriction operator, that is, an
operator NCD : C → C such that NCD (C) ⊆ C for every C ∈ C. As we did
for iterated dominance in Chapter 4, we can represent iterated conditional
dominance through the following sequence of subsets

(
NCDk(S)

)
k∈N,

where—as usual—NCDk = NCD◦NCDk−1 (with NCD0 (C) = C for every
C).

Definition 65. A profile of strategies s ∈ S survives iterated conditional
dominance if s ∈ NCD∞(S) =

⋂
k≥1 NCDk(S).

Theorem 35. For every k = 1, 2, ..., we have Sk = NCDk(S). Therefore,
a strategy profile is strongly rationalizable if and only if it survives iterated
conditional dominance.

Proof. For each k ∈ N ∪ {∞}, it follows from Proposition 8 that
ρksb(S) = Sk. By definition, for every C ∈ C and i ∈ I, we have
ρi,sb(C) = ri(∆

H
sb(C−i)|C). Then, by Lemma 30, ρ1

sb(S) = NCD1(S),

and by a simple inductive argument, Sk = NCDk(S) for every k ∈ N. �

In Chapter 10 we have shown that conditional dominance and weak
dominance in the strategic form of the game are generically equivalent.
In light of this result, strong rationalizability is generically equivalent to
iterated admissibility, i.e., the iterated deletion of all weakly dominated
strategies. To prove this result, we need first to extend Lemma 28 to
conditional dominance within a set of strategy profiles C — the proof is in
the appendix of this chapter. For any Cartesian set C of strategy profiles,
let NWDi (C) denote the set of strategies of player i that are not weakly
dominated in C, that is, are not weakly dominated in the strategic form
restricted to C,

〈
I, (Ui|C , Ci)i∈I

〉
, and let NWD (C) =×i∈I NWDi (C).

Lemma 31. Fix arbitrarily a Cartesian subset of strategy profiles C =

×i∈I Ci. Generically, NCD(C) = NWD (C).
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Proposition 9. Generically, S∞ = NWD∞(S).

Proof. Fix k ≥ 0 and suppose by induction that, generically,
Sk = NWDk(S) (it is trivially true for n = 0). By Theorem 35,
Sk+1 = NCDk+1(S). Let C = Sk. Thus, NCDk+1(S) = NCD(C). By
Lemma 31, we have NCD(C) = NWD(C), except for a subset of payoff
vectors W with zero-measure closure. By the inductive hypothesis, we also
have

NCD(C) = NCD(NWDk(S)) = NWDk+1(S),

except for a subset of payoff vectors W ′ with zero-measure closure. The
union of the closures of W and W

′
has zero measure. Moreover, it is a

closed and contains W ∪W ′. Hence, it contains the closure of W ∪W ′. It
follows that the closure of W ∪W ′ has zero measure. We conclude that,
generically, Sk+1 = NWDk+1(S). Since the game is finite, there exists
M ∈ N such that S∞ = SM and NWD∞(S) = NWDM (S), and we have
proven that, generically, SM = NWDM (S). �

11.3.3 Independent Rationalization and Strategic
Independence

A natural variant of strong rationalizability arises from the observation
that, under the baseline definition, player i is free to believe that all his
co-players are not rational once just one co-player chooses an action that
is not prescribed by any justifiable strategy. To capture the hypothesis
that each player i ascribes to each individual co-player j the highest
level of strategic sophistication that is consistent with j’s behavior, we
introduce the following variation of strong rationalizability, which we call
independent strong rationalizability.

Definition 66. For each i ∈ I, let Ŝ0
i = Si. For each n > 0, let si ∈ Ŝni

if and only if there exists µi ∈ ∆H(S−i) such that:

1. for all j 6= i, m = 0, ..., n− 1, and h ∈ H(Ŝmj ),

µi

(
Ŝmj ×

(
×
k 6=i,j

Sk

)
|h

)
= 1;

2. si ∈ ri(µi).
Finally, let Ŝ∞i =

⋂
n>0 Ŝ

n
i .
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Now the question is: is independent strong rationalizability equivalent
to strong rationalizability? Yes and no. In terms of strategies, this
version of strong rationalizability can yield a different output, but the
induced terminal histories do not change. In this case, we say that the two
procedures are path-equivalent. (The proof is in the appendix.)

Proposition 10. For each n ∈ N ∪ {∞}, ζ(Ŝn) = ζ(Sn).

The intuition behind Proposition 10 is that independent rationalization
( i.e, the belief that each individual co-player has the highest level of
strategic sophistication that is consistent with his own behavior), only
has bite at histories that are not compatible with strategic reasoning for
one or more co-players (but consistent for at least one co-player).

So far, we allowed for the possibility that players have correlated beliefs
about the behavior of different co-players. Sometimes, it makes sense for
a player to assume that, according to his subjective beliefs, the strategies
of different co-players are mutually independent. This means that what
player i believes about co-player j does not depend on the observed
behavior of co-player k 6= j. This assumption on players’ beliefs is called
strategic independence, and it is naturally complemented by independent
rationalization. Here we do not provide the formal definition of strong
rationalizability under strategic independence.

11.3.4 Elimination Orders

From an algorithmic viewpoint, it is interesting to understand whether
“slowing down” the elimination of conditionally dominated strategies may
change the final output of the procedure. For instance, in a two-player
game, it could be convenient to alternate the eliminations for the two
players in the following way: first compute the justifiable strategies S1

1

of player 1 only; then compute directly the strategies S2
2 of player 2

that are justified by a CPS that strongly believes S1
1 ; then let S̃3

1 be
the set of strategies of player 1 that are justified by a CPS that strongly
believes S2

2 , and so on. In Chapter 4, we have seen that—in simultaneous-
move games—the order of elimination of strictly dominated strategies is
immaterial for the final output of iterated strict dominance. Here, the
problem is much complicated by the non-monotonicity of strong belief.
In the procedure above, we have S̃3

1 ⊇ S3
1 , because the set of CPSs that

strongly believe S2
2 are clearly a superset of those that strongly believe
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S2
2 and S1

2 . However, the set of CPSs that strongly believe S̃3
1 is not a

superset of those that strongly believe S3
1 , and at this point S̃4

2 need not
be a superset of S4

2 . Where does this lead to? Fortunately, although the
final output will look different from strong rationalizability in terms of
strategies, the induced terminal histories will be exactly the same. We
omit the details.

11.4 Appendix

Proof of Lemma 31. Fix a strategy s̄i, and let W denote the set of
payoff vectors (ui(z))z∈Z such that s̄i is weakly dominated in the reduced
strategic form with strategy profiles C, but not conditionally dominated in
C. We show that the closure of W , denoted by cl (W ), has zero measure.
Since the number of strategies is finite, this yields the result.

Let Z be the set of all z ∈ Z such that s̄i ∈ Si(z). Fix any z ∈ Z. To
ease notation, for each z ∈ Z, let yz = ui(z). Parameterize the space of
payoff vectors as follows: For each (yz)z∈Z ∈ R|Z|, there is a unique vector
(xz)z∈Z ∈ R|Z| such that{

yz = xz, if z 6∈ Z,

yz = xz + xz, if z ∈ Z.

Now fix (xz)z 6=z ∈ R|Z|−1. Suppose there is at least one value of xz such
that, for some σ̄i ∈ ∆(Si)\ {s̄i} with σ̄i(Ci) = 1,

∀s−i ∈ C−i,
∑
si∈Ci

σ̄i(si)ui(ζ(si, s−i)) ≥ ui(ζ(s̄i, s−i)), (11.4.1)

otherwise s̄i is not weakly dominated in C. Let xs be the supremum
of these values. If xz > xs, then s̄i is not weakly dominated. Now fix
x < xs. By definition of xs, there are x′ ∈ (x, xs] and σ̄i ∈ ∆(Si)\ {s̄i}
with σ̄i(Ci) = 1 such that inequality (11.4.1) is satisfied for xz = x′.
Morever, by condition (11.4.1), there exists a history h ∈ Hi(s̄i) such that
C−i ∩ S−i(h) 6= ∅ and σ̄i(ŝi) > 0 for some ŝi with ŝi(h) 6= s̄i(h). Let h be
such that no earlier history has the second property, so that σ̄i(Si(h)) = 1.
Since ŝi 6∈ Si(z) for any z ∈ Z̄ ∩ Z(h), the payoff from ŝi after h does not
depend on xz. Therefore, for xz = x < x′, we have

∀s−i ∈ C−i ∩ S−i(h),
∑

si∈Ci∩Si(h)

σ̄i(si)ui(ζ(si, s−i)) > ui(ζ(s̄i, s−i)).
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Hence, s̄i is conditionally dominated in C.

We have shown that for each (xz)z 6=z ∈ R|Z|−1, there is at most
one value of xz such that (yz)z∈Z ∈ W . Then, the same applies to
cl (W ): if there were two distinct values x < x′ of xz with corresponding
payoff vectors (yz)z∈Z and (y′z)z∈Z such that (yz)z∈Z , (y

′
z)z∈Z ∈ cl (W ),

there would be neighboring payoff vectors (ỹz)z∈Z , (ỹ
′
z)z∈Z ∈ W such

that (ỹz)z∈Z < (ỹ′z)z∈Z , but then s̄i would be conditionally dominated
under (ỹz)z∈Z (by the argument above), a contradiction. Let 1cl(W ) :

R|Z| → {0, 1} denote the indicator function on cl (W ). So, for each
(xz)z 6=z ∈ R|Z|−1, 1cl(W )((yz)z∈Z) is not zero for at most one value of
xz. We will use this fact below. The Lebesgue measure of cl (W ) is defined
as

λ(cl (W )) =

∫
1cl(W ) ((yz)z∈Z) ·z∈Z dyz.

We evaluate this integral after a change of variables, from (yz)z∈Z to
(xz)z∈Z . The change of variables yields8∫

1cl(W ) ((yz)z∈Z))·z∈Zdyz =

∫
1cl(W )

(
(xz)z∈Z\Z , (xz + xz)z∈Z

)
·2dxzz 6=zdxz.

Using the fact that 1cl(W )

(
(yz)z∈Z

)
is not zero for at most one value of

xz, we obtain

λ(cl (W )) = 2

∫ (∫
1cl(W )

(
(xz)z∈Z\Z , (xz + xz)z∈Z

)
dxz

)
z 6=z

dxz

= 2

∫
0 ·z 6=z dxz = 0.

�

Lemma 28 is a corollary of Lemma 31: just set C = S.

Proof of Proposition 10. The proof is by induction, but we need a
stronger induction hypothesis than the claim we aim to prove. Recall that
H(C) = {h ∈ H : S (h) ∩ C 6= ∅}.

8Beside substituting variables in the integrand, we have to substitute z∈Zdyz with
2 ·z∈Z dxz: since yz = 2xz, a unitary hypercube in the space of the (xz)z∈Z parameters
is mapped to a set of measure 2 in the space of payoffs (yz)z∈Z .
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Induction hypothesis (n): For each i ∈ I and si ∈ Sni (resp.,

ŝi ∈ Ŝni ), there exists ŝi ∈ Ŝni (resp., si ∈ Sni ) such that si(h) = ŝi(h)

for each h ∈ H(Sn) = H(Ŝn).

Basis step (n = 0): Ŝ0
i = S0

i = Si for each i ∈ I.

Inductive step (n + 1): Let H∗ := H(Sn) = H(Ŝn) and Z∗ :=
ζ(Sn) = ζ(Ŝn), where the equalities follow from the induction hypothesis.
We prove that for each i ∈ I and si ∈ Sn+1

i , there is ŝi ∈ Ŝn+1
i such that

si(h) = ŝi(h) for each h ∈ H∗; the proof of the converse is identical. Fix any
µi that strongly believes Sn−i and such that si ∈ ri(µi). By the induction

hypothesis, we can construct a map η : Sn−i → Ŝn−i that associates each

s−i ∈ Sn−i with some ŝ−i ∈ Ŝn−i such that s−i(h) = ŝ−i(h) for every h ∈ H∗.
For each h ∈ H∗, since µi(Sn−i|h) = 1, we can construct µ̂i(·|h) ∈ ∆(Ŝn−i)

as µ̂i(s−i|h) = µi(η−1(s−i)|h) for each s−i ∈ Ŝn−i. It is easy to see that,
by construction, µ̂i(S−i(h)|h) = 1. Moreover, for each h′ ∈ H∗ with
S−i(h

′) ⊆ S−i(h), and for each S−i ⊆ S−i(h′),

µ̂i(S−i|S−i(h)) = µi(η−1(S−i)|S−i(h))

= µi(η−1(S−i)|S−i(h′)) · µi(S−i(h′)|S−i(h))

= µ̂i(S−i|S−i(h′)) · µ̂i(S−i(h′)|S−i(h)),

where the second equality follows from the fact that η−1(S−i) ⊆ S−i(h
′),

while the third equality holds because, for each s−i ∈ Ŝn−i, we have
s−i ∈ S−i(h′) if and only if η−1(s−i) ∈ S−i(h′). For each h′ 6∈ H∗ such that
µ̂i(S−i(h

′)|h) > 0 for some h ∈ H∗, derive µ̂i(·|h′) by conditioning. For
every other h′ 6∈ H∗, let µ̂i(·|h′) = µ̃i(·|h′) for any CPS µ̃i that satisfies
condition 1 in Definition 66. Thus, µ̂i satisfies the chain rule and condition
1 in Definition 66. We are going to show that

∀h ∈ H∗ ∩Hi(si), V si,µ
i

i (h) = max
s′i∈Si(h)

V
s′i,µ̂

i

i (h);

this implies the existence of some ŝi ∈ ri(µ̂
i) ⊆ Ŝn+1

i such that ŝi(h) =
si(h) for all h ∈ H∗, as desired. Fix h ∈ H∗ ∩ Hi(si). Since h ∈ H∗, we
have Ŝni ∩ Si(h) 6= ∅. So, there is at least one ŝi ∈ Ŝni such that

V ŝi,µ
i

i (h) = max
s′i∈Si(h)

V
s′i,µ̂

i

i (h).
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Since si ∈ Sni , ŝi ∈ Ŝni , and µi(Sn−i|h) = µ̂i(Ŝn−i|h) = 1, we have
ζ(si, s−i) ∈ Z∗ and ζ(ŝi, s−i) ∈ Z∗ for each s−i with µi(s−i|h) > 0 or
µ̂i(s−i|h) > 0. By construction, we have µi(S−i(z)|h) = µ̂i(S−i(z)|h) for
each z ∈ Z∗. Hence, both si and ŝi induce the same distribution over
terminal histories under µi(·|h) and µ̂i(·|h). So,

V si,µ
i

i (h) = max
s′i∈Si(h)

V
s′i,µ̂

i

i (h)

as well. �
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Equilibrium in Multistage
Games

In this chapter we analyze subgame perfect equilibrium, a solution concept
that—unlike Nash equilibrium, or iterated admissibility—is based on the
details of the multistage game Γ rather than just its strategic form N (Γ).
Somewhat informally, a subgame perfect equilibrium is a profile of
strategies s∗ = (s∗i )i∈I such that each strategy s∗i is sequentially optimal
given the conjecture that other players behave as specified by s∗−i. In other
words, the ex ante optimality condition of Nash equilibrium is replaced
by the more demanding sequential optimality condition. Indeed, as in
the analysis of rationalizability of Chapter 11, it is not assumed that
strategies are implemented by a machine or a trustworthy agent. Rather, it
is informally assumed that each player makes a plan in advance and, as the
play unfolds, he is free to either choose actions as planned or to deviate
from the plan; therefore, players must not have incentives to deviate at
any history, given that—as is typically assumed in equilibrium analysis—
they have correct conjectures about each other. We will show that in
finite games where only one player is active at each stage and payoffs
are “generic,” there is only one subgame perfect equilibrium that can
be computed with the so called backward induction algorithm, a kind
of “inter-personal folding-back” procedure. Such backward induction may
seem to have a “common-belief-in-rationality flavor;” therefore, we will
discuss the differences and relationships between backward induction and
rationalizability. In more general games with finite horizon, one can use a

331
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“case-by-case backward induction” method to find the subgame perfect
equilibria. Finally, we extend the analysis to account for randomized
strategies and chance moves.

12.1 Subgame Perfect Equilibrium

In Section 9.3.1 we noticed that every solution concept for games with
simultaneous moves can be applied to the strategic form N (Γ) of a
multistage game Γ. This may be a useful first step. Indeed, a strategy
is sequentially optimal given a conjecture only if it is an ex ante best
reply to this conjecture (see Remark 49 and Proposition 2 in Chapter 10).
This implies that strategies that are not rationalizable in N (Γ) cannot be
rationalizable in Γ for whatever extension of the rationalizability concept
from simultaneous to multistage games. Yet, we noticed in Chapter 11
that, in games with at least two stages, rationality entails a stronger form
of justifiability than just being an ex ante best reply to some conjecture
and this yields notions of rationalizability in Γ stronger than mere
rationalizability in the strategic form N (Γ). Similar considerations apply
to traditional equilibrium analysis: there may be Nash equilibria s∗ of
N (Γ) such that the strategy s∗i of some player i is not sequentially optimal
given that i “correctly” expects the co-players to behave as prescribed by
strategy profile s∗−i. The strategy of fighting entry in the Entry Game of
Figure 9.7 is a case in point (see Section 9.3.1). The credibility of such
strategies is questionable. Such considerations induced traditional game
theorists to endorse a refinement1 of the Nash equilibrium concept called
“subgame perfect (Nash) equilibrium” for reasons that will soon be made
clear. As in the case of the Nash equilibrium concept, no formal and general
justification is offered for the “correct-conjectures” assumption underlying
this equilibrium concept. We first focus on equilibria in pure strategies,
then move to randomized equilibria.

1A “refinement” of a solution concept is a different, more demanding solution concept
that, for some games, allows for a strictly smaller set of strategy profiles. For example,
initial rationalizability is a refinement of rationalizability in the strategic form, and
strong rationalizability is a refinement of initial rationalizability.
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12.1.1 Pure Strategies

For any player i and conjecture βi ∈×h∈H ∆ (A−i (h)), let r̂i
(
βi
)

denote
the set of sequentially optimal strategies given βi, or sequential best
replies to βi.2 Suppose that conjecture βi is deterministic because it
corresponds to a pure strategy profile s−i, that is, βi (s−i (h) |h) = 1 for
all h ∈ H; then, with an abuse of notation similar to the one adopted for
static games, we write r̂i (s−i).

Definition 67. A pure strategy profile s∗ = (s∗i )i∈I is a subgame perfect
(Nash) equilibrium (SPE) if, for each i ∈ I, s∗i is sequentially optimal
given the deterministic conjecture corresponding to s∗−i, that is,

∀i ∈ I, s∗i ∈ r̂i
(
s∗−i
)

.

For every strategy profile s ∈ S and history h ∈ H, let ζ (s|h) denote
the terminal history z = (h, s (h) , ...) induced by s starting from h. Note,
if s induces h, that is h ≺ ζ (s), then ζ (s|h) = ζ (s). But ζ (s|h) is well
defined even if s does not induce h, because ζ (s|h) depends only on the
actions prescribed by s at h and the non-terminal histories following h
(if any). For example, in the BoS with an Outside Option of Figure 9.1,
ζ ((Out.B1,B2) | (In)) = (In, (B1,B2)). The following remark explains the
name “subgame perfect (Nash) equilibrium”:

Remark 53. By inspection of Definition 67, it follows that a strategy
profile s∗ = (s∗i )i∈I is an SPE if and only if

∀i ∈ I, ∀h ∈ H,∀si ∈ Si, ui (ζ(s∗|h)) ≥ ui(ζ(si, s
∗
−i|h)).

Thus, for every h ∈ H, an SPE yields a Nash equilibrium in the subgame
Γ (h) starting at h.

Example 53. In the BoS with an Outside Option there are two (pure)
SPEs. Indeed, the BoS subgame starting at (In) has two pure equilibria,
(B1,B2) and (S1,S2). Thus, a SPE must have the form (a1.B1,B2) or
(a1.S1, S2) with a1 ∈ {In,Out}. Furthermore, a1.X1 must be a best reply
to X2 (with X= B or X = S) at the root, because the strategy pair must

2Recall that ri
θ
βi
)

instead denotes the set of weakly sequential optimal strategies
given βi. Thus, r̂i

θ
βi
)
⊆ ri

θ
βi
)

and the inclusion may be strict if player i moves (is
active) at leat twice along some given path.
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be a Nash equilibrium. Only In.B1 is a best reply to B2, while Out.S1 is
the only best reply to S2 or the required form (also Out.B1 is a best reply
to S2 at the root, but it does not have the required form, hence, it is not
a sequential best reply to S2). Thus, we obtain two SPEs: (In.B1,B2) and
(Out.S1, S2). N

We will present a method to find all the SPEs of (finite) two-stage
games. Most methods to compute the SPEs of a game are based on
an equilibrium version of the OD principle. Say that strategy profile
s∗ = (s∗i )i∈I satisfies one-step optimality with correct conjectures
if, for each i ∈ I, strategy s∗i is one-step optimal given the deterministic
conjecture corresponding to s∗−i. With this, Theorem 34 in Section 10.5
yields:

Corollary 7. (OD principle for pure SPE) Suppose that Γ is continuous
at infinity. Then a strategy profile is an SPE if and only if it satisfies
one-step optimality with correct conjectures.

By Remark 51 in Section 10.5, it follows that, for every compact-
continuous game Γ (hence, in particular, for every finite game) a strategy
profile is an SPE if and only if it satisfies one-step optimality with correct
conjectures.

Backward Induction

We now introduce a class of games with perfect information with a unique
SPE that can be computed by a backward calculation called “backward
induction.”

Recall that a game Γ has perfect information (PI) if, for each h ∈ H,
only one player—denoted ι (h)—is active at h:

∀h ∈ H,∃!i ∈ I, |Ai (h)| > 1.

Thus, for each h ∈ H,

|Ai (h)| > 1⇔ i = ι (h) ,

and we can write histories as sequences of actions of active players. Fix
two terminal histories z′, z′′ ∈ Z; if z′ 6= z′′, there is a player who is
decisive, or “pivotal,” for reaching z′ rather than z′′, that is, the player
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who is active at the longest prefix (last common predecessor) of z′ and z′′.
We let π (z′, z′′) denote this player; formally,

π
(
z′, z′′

)
= ι

(
arg max

h∈H:h≺z′,h≺z′′
` (h)

)
.

Definition 68. A game with perfect information Γ has no relevant ties
if the active player is never indifferent between distinct continuation paths;
formally,

∀z′, z′′ ∈ Z, z′ 6= z′′ ⇒ uπ(z′,z′′)

(
z′
)
6= uπ(z′,z′′)

(
z′′
)

.

Now, fix a finite PI game with no relevant ties. For each h ∈ H one
can compute the SPE-action s∗ι(h) (h) and the SPE-value V ∗j (h) for each

j ∈ I of reaching h. This is done by induction on L (Γ (h)), the height of
the subgame starting at h.3 Of course, the value for a player of reaching a
terminal history is just the payoff of that history; therefore, V ∗j (z) = uj (z)
for all j ∈ I and z ∈ Z. With this, backward induction (BI) is the
following recursive procedure:

• If L (Γ (h)) = 1, then
(
h, aι(h)

)
∈ Z for every aι(h) ∈ Aι(h) (h); thus,

– i = ι (h) ⇒ s∗i (h) = arg maxai∈Ai(h) V
∗
i (h, ai) =

arg maxai∈Ai(h) ui (h, ai),

– ∀j ∈ I, V ∗j (h) = V ∗j

(
h, s∗ι(h) (h)

)
.

• Let s∗ι(h) (h) and V ∗j (h) be defined for every h ∈ H̄ such that

L (Γ (h)) ≤ k and every j ∈ I; if L (Γ (h)) = k + 1, then
L
(
Γ
(
h, aι(h)

))
≤ k for every aι(h) ∈ Aι(h) (h); thus,

– i = ι (h)⇒ s∗i (h) = arg maxai∈Ai(h) V
∗
i (h, ai),

– ∀j ∈ I, V ∗j (h) = V ∗j

(
h, s∗ι(h) (h)

)
.

Note that s∗ι(h) (h) is well defined because the given perfect information
game is assumed to be finite and with no relevant ties, which implies that—
at each step of the backward procedure—the active player has only one

3Recall that the height of h is L(Γ (h)) := maxz:h≺z[`(z)− `(h)].
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maximizing action. The procedure can be generalized to other games, e.g.,
some games with more than one active player at each stage, such as the
finitely Repeated Prisoners’ Dilemma.

In words, we start from the last stage of the game: h is such that all
feasible actions terminate the game, that is L (Γ (h)) = 1.4 According to
the algorithm, the active player selects the payoff maximizing action. This
determines a profile of payoffs for all players, denoted (V ∗i (h))i∈I . Then we
go backward to the second-to-last stage, or—more precisely—we consider
histories of height 2: L (Γ (h)) = 2. The value V ∗i

(
h, aι(h)

)
has already

been computed for all histories (h, aι(h)) ∈ H̄, because such histories
correspond to the last stage of the game, or are terminal. According to the
algorithm, the active player ι(h) chooses the feasible action aι(h) = s∗ι(h) (h)

that maximizes V ∗ι(h)

(
h, aι(h)

)
, the reason is that the active player expects

that every following player (possibly himself) would maximize his own
payoff in the last stage. The algorithm continues to go backward in this
way until it reaches the first stage (h = ∅).

Example 54. In the ToL4 of Figure 9.2, let Tk (Lk) denote the action of
taking (leaving) k euros. It can be verified that there are no relevant ties.
We obtain the strategy pair s∗ = (T1.T3,T2.T4) by backward induction
as follows.
I L (Γ (h)) = 1 : The only history h with L (Γ (h)) = 1 is h = (L1,L2,L3)
and ι (L1,L2,L3) = 2. Player 2 maximizes by taking 4 euros; thus,
s∗2 (L1,L2,L3) = T4 and V ∗1 (L1,L2,L3) = 0.
I L (Γ (h)) = 2 : The only history h with L (Γ (h)) = 2 is h = (L1,L2)
and ι (L1,L2) = 1. Player 1 maximizes by taking 3 euros, because
V ∗1 (L1,L2,T3) = 3 > 0 = V ∗1 (L1,L2,L3); thus, s∗1 (L1,L2) = T3 and
V ∗2 (L1,L2) = 0.
I L (Γ (h)) = 3 : The only history h with L (Γ (h)) = 3 is h = (L1) and
ι (L1) = 2. Player 2 maximizes by taking 2 euros, because V ∗2 (L1,T2) =
2 > 0 = V ∗2 (L1,L2); thus, s∗2 (L1) = T2 and V ∗1 (L1) = 0.
I L (Γ (h)) = 4 : The only history h with L (Γ (h)) = 4 is the root
∅ and ι (∅) = 1. Player 1 maximizes by taking 1 euros, because
V ∗1 (T1) = 1 > 0 = V ∗2 (L1); thus, s∗1 (∅) = T1. N

4Recall that which stage is the last, second-to-last and so on may be endogenous.
For example, we may have a game that lasts for two stages if the first mover chooses
Left and three stages if the first mover chooses Right.
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By the OD principle, the BI-strategy profile is the unique SPE of Γ:

Remark 54. For every finite PI game Γ with no relevant ties, the strategy
profile s∗ obtained with the backward induction algorithm is the unique SPE
of Γ.

“Case-by-Case” Backward Induction

For finite games that do not have a unique SPE computable by backward
induction, Corollary 7 still offers a method to compute all the SPEs. We
describe it for two-stage games. Consider a two-stage game Γ. Fix any
first-stage, non-terminal (hence, preterminal) action profile a ∈ A (∅) \Z.5

Consider the second-stage subgame

G2 (a) =
〈
I, (Ai (a) , ui (a, ·))i∈I

〉
.

In other words, the set of feasible actions of player i in G2 (a) is Ai (a) and
his payoff function in G2 (a) is

a′ 7→ ui,a
(
a′
)

= ui
(
a, a′

)
.

For example, in the BoS with an Outside Option A (∅) \Z = {In} and
G2 (In) is the BoS subgame.

Stage 2. LetNE2 (a) denote the set of (pure) Nash equilibria ofG2 (a).
If NE2 (a) = ∅ for some a ∈ A (∅) \Z, then Γ cannot have any (pure) SPE.
Suppose that NE2 (a) 6= ∅ for all a ∈ A (∅) \Z, and consider all possible
selections from the second-stage equilibrium correspondence a 7→ NE2 (a),
that is, all the functions

s2 : (A (∅) \Z)→
⋃

a∈A(∅)\Z

A (a)

such that s2 (a) ∈ NE2 (a) for each a ∈ A (∅) \Z. Note, the set of
such selections is the Cartesian product×a∈A(∅)\Z NE

2 (a), which has

cardinality
∏
a∈A(∅)\Z

∣∣NE2 (a)
∣∣.

5With a small abuse of notation, we do not distinguish between an action profile a
and the sequence of length one (a). Therefore, if (a) ∈ Z, we write a ∈ Z.
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Stage 1. Each selection s2 ∈×a∈A(∅)\Z NE
2 (a) is a “case” to which

we apply a backward induction calculation. Specifically, for each selection
s2, define the auxiliary simultaneous-move game

G1
(
s2
)

=
〈
I,
(
Ai (∅) , u1

i

(
·, s2

))
i∈I

〉
,

where

u1
i

(
a, s2

)
=

{
ui
(
a, s2 (a)

)
, if a ∈ A (∅) \Z,

ui (a), if a ∈ Z.

In words, G1
(
s2
)

specifies the payoffs of each first-stage action profile a
under the hypothesis (commonly believed by the players) that, if a is non-
terminal, the following second-stage profile will be s2 (a). Since s2 (a) is a
Nash equilibrium of G2 (a) for each a ∈ A (∅) \Z, every Nash equilibrium
s1 ∈ A (∅) of G1

(
s2
)

yields an SPE s =
(
s1, s2

)
: specifically, for each

i ∈ I, si (∅) = s1
i and si (a) = s2

i (a) for all a ∈ A (∅) \Z.

Let NE1
(
s2
)

denote the set of (pure) equilibria of the auxiliary
G1
(
s2
)
. Then the number of SPEs of Γ is the summation over “cases”

s2 of number of equilibria in the auxiliary games G1
(
s2
)
:∑

s2∈×a∈A(∅)\ZNE2(a)

∣∣NE1
(
s2
)∣∣ .

Hence, there is only one SPE of Γ if (i) the second-stage equilibrium
correspondence a 7→ NE2 (a) is actually a function s2 (hence

×a∈A(∅)\Z NE
2 (a) is a singleton) and (ii) G1

(
s2
)

has a unique
equilibrium.

Example 55. The BoS with a dissipative move of Example 39 has two
strategically equivalent second-stage BoS subgames, G2 (B) and G2 (N).
The second-stage equilibrium correspondence is B 7→ {(u, l) , (d, r)} and
N 7→ {(U,L) , (D,R)}. Therefore we obtain 2×2 = 4 cases/selections, i.e.,
4 auxiliary games:

G1 ((U,L) , (u, l)) N B

4, 1 4, -1

G1 ((U,L) , (d, r)) N B

4, 1 1, 2

G1 ((D,R) , (d, r)) N B

1, 4 1, 2

G1 ((D,R) , (u, l)) N B

1, 4 4, -1
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By inspection of the equilibria of these auxiliary games, we obtain the set
of SPEs (see the payoffs in bold):

SPE = {(U.u,N.L.l) , (U.d,B.L.r) , (D.d,N.R.r) , (D.u,N.R.l)} .

We may interpret SPE (U.d,B.L.r) as follows: the dissipative action B
is regarded as a signal that Bob is going for his favorite equilibrium in
subgame G2 (B), whereas action N is interpreted as a signal that Bob
“concedes” and just aims at equilibrium (U,L) of G2 (N). N

Properties (i)-(ii) give a sufficient, but not necessary condition for
uniqueness, as the following example shows.

Example 56. Ann and Bob play the following two-stage game Γ, where
every first-stage action pair but (D,R) is terminal, whereas (D,R) leads
to a sort of Battle-of-the-Sexes subgame G2:

a\b L R

U 2, 1 1, 2

D 1, 2 G2

with

G2 l r

u 2, 1 0, 0

d 0, 0 1/2, 2

According to the subgame equilibrium ofG2 we obtain two auxiliary games:

G1 (u, l) L R

U 2, 1 1, 2

D 1, 2 2, 1

G1 (d, r) L R

U 2, 1 1, 2

D 1, 2 1/2, 2

Auxiliary game G1 (u, l) is a kind of “Matching Pennies” and has no
equilibrium; thus, there is no SPE where (u, l) is selected in subgame
G2. Auxiliary game G1 (d, r) instead is dominance solvable and its unique
equilibrium is (U,R). Therefore, Γ has a unique SPE, (U.d,R.r). In this
equilibrium, Ann does not deviate in the first stage because she expects to
be “punished” by the subgame equilibrium of G2—in which she gets only
1/2—if she chooses D. N

12.1.2 Randomized Strategies

The definition of the continuation value of strategies and actions can be
extended to locally randomized strategies, i.e., behavior strategies. To
simplify the probabilistic analysis we focus throughout on finite games.
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For any behavior strategy profile β = (βi)i∈I and histories h =
(a1, ..., a`(h)), h′ = (h, a`(h)+1, ..., a`(h

′)) let

Pβ(h′|h) =

`(h′)∏
t=`(h)+1

∏
i∈I

βi(a
t
i|h, ..., at−1)

denote the probability of reaching h′ from h. Then

V β
i (h) =

∑
z∈Z(h)

ui(z)Pβ(z|h),

V β
i (h, ai) =

∑
a−i∈A−i(h)

V β
i (h, (ai, a−i))β−i(a−i|h),

where β−i(a−i|h) :=
∏
j 6=i βj(aj |h). Obviously V β

i (h) and V β
i (h, ai) depend

only on the behavior of β in the sub-tree with root h.

Definition 69. A behavior strategy profile β∗ = (β∗i )i∈I is an SPE if,
for each i ∈ I,

∀h ∈ H, V β∗

i (h) ≥ max
βi

V
βi,β

∗
−i

i (h);

β∗ satisfies one-step optimality with correct conjectures if, for each
i ∈ I,

∀h ∈ H, suppβ∗i (·|h) ⊆ arg max
ai∈Ai(h)

V β∗

i (h, ai).

The results about dynamic optimality can be extended to behavior
strategies, and in particular they imply the OD Principle for randomized
SPE:

OD Principle for randomized SPE: A behavior strategy profile
is an SPE if and only if it satisfies one-step optimality with correct
conjectures.

As with pure strategies, there is a “case-by-case” backward induction
algorithm to compute the set of SPEs in behavior strategies, which can be
easily spelled out for two-stage games and is very similar to the algorithm
explained above: Just replace the stage-2 pure equilibrium selection s2

with a stage-2 mixed equilibrium selection β2 ∈×a∈A(∅)\ZMNE2 (a),
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where MNE2 (a) denotes the set of mixed Nash equilibria of G2 (a). There
are two important differences with respect to pure strategy equilibria.
First, since every finite simultaneous-move game has always at least
one mixed Nash equilibrium, we have ×a∈A(∅)\ZMNE2 (a) 6= ∅ and

MNE
(
G1
(
β2
))
6= ∅ for each β2; therefore, there is a unique SPE

in behavior strategies if and only if (i)×a∈A(∅)\ZMNE2 (a) = {β2}
is a singleton and (ii) G1

(
β2
)

has a unique mixed equilibrium (that
is, (i)-(ii) give a necessary and sufficient condition for uniqueness of
randomized equilibria). Second, in some rare “nongeneric” games

×a∈A(∅)\ZMNE2 (a) has the power of the continuum and there is a
continuum of “cases” to deal with in the stage-1 analysis.

Example 57. The BoS subgames of Example 39 have a completely
mixed equilibrium on top of the two pure equilibria, that is,(

4
5δU + 1

5δD,
1
5δL + 4

5δR
)

in G2 (N) and
(

4
5δu + 1

5δd,
1
5δl + 4

5δr
)

in G2 (B).
Therefore there are 3 × 3 = 9 second-stage selections β2 with 9
corresponding auxiliary games G1

(
β2
)
. We have already computed the

4 pure selections and corresponding pure SPE’s in Example 55. Without
any actual computation, we can claim that there are at least 5 partially
or totally randomized additional equilibria, that is, at least one for each
non pure selection β2 = s2.6 For example, the selection given by
β2 (N) =

(
4
5δU + 1

5δD,
1
5δL + 4

5δR
)

in G2 (N) and β2 (B) = (d, r) in G2 (B)
yields the auxiliary game

G1
(
β2
)

N B
4
5 , 4

5 1, 2

and the partially randomized equilibrium((
4

5
δU +

1

5
δD

)
.d, B.

(
1

5
δL +

4

5
δR

)
.r

)
,

where βa =
(

4
5δU + 1

5δD
)
.d is the partially randomized strategy of Ann

that would play
(

4
5δU + 1

5δD
)

upon observing N and plays d after B, and
βb = B.

(
1
5δL + 4

5δR
)
.r is the partially randomized strategy of Bob that

plays B in the first stage, would play
(

1
5δL + 4

5δR
)

after the counterfactual
choice N , and plays r after B. N

6If there is a selection β2 that makes Bob (the only first-mover) indifferent between
B and N , then there is a corresponding continuum of randomized SPE’s parameterized
by the probability of burning βb (B|∅).
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The OD Principle allows a relatively simple proof of the existence of
randomized equilibria in finite games:

Theorem 36. (Kuhn) Every finite game has at least one subgame perfect
equilibrium in behavior strategies.

Proof. We provide a recursive construction of a profile β. We start
from histories of height 1, i.e., those immediately preceding the last stage,
and going backward until the first stage.

Basis step. For every history h with height 1, the corresponding
last-stage simultaneous game has at least one mixed equilibrium. Let
β∗(·|h) ∈ ×i∈I ∆(Ai(h)) be one of the mixed equilibria, and consider
the corresponding expected payoff profile (v∗i (h))i∈I , where v∗i (h) :=∑

a∈A(h)

(∏
j∈I β

∗
j (aj |h)

)
ui(h, a).

Inductive step. Suppose that a mixed action profile β∗(·|h) and an
expected payoff profile (v∗i (h))i∈I have been assigned to each history with
height k or less. Then one can assign a mixed action profile β∗(·|h) and
a payoff profile (v∗i (h))i∈I to each history h with height k + 1: just pick a
mixed equilibrium of the game

〈
I, (Ai(h), vi)i∈I

〉
such that, for every i ∈ I

and for every a ∈ A(h), vi(a) = v∗i (h, a) (note that (h, a) has height k or
less, so v∗i (h, a) is well defined).

By construction, the behavior strategy profile β∗ satisfies one-step
optimality with correct conjectures. Thus, by the OD Principle, β∗is a
subgame perfect equilibrium. �

12.2 Strategic Reasoning and Backward
Induction

Let us go back to games that can be uniquely solved by backward
induction, such as the finite PI games with no relevant ties. We call
“outcome” either a terminal history (path) or the corresponding payoff
vector. It is sometimes claimed that the “compelling logic” of the backward
induction solution rules out all the non-backward-induction outcomes as
inconsistent with rationality (R) and common belief of rationality (CBR).

In Chapter 11 we (informally) considered two versions of the CBR
idea: common initial belief in rationality (CIBR) and common strong
belief in rationality (CSBR). We argued that the behavioral implications
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of RCIBR are characterized by the initial rationalizability solution
concept, and the behavioral implications of RCSBR are characterized by
the strong rationalizability solution concept. Therefore, we assess the
aforementioned claim by comparing backward induction with initial and
strong rationalizability in finite PI games with no relevant ties.

Let us first restrict our attention to PI games with two stages,
such as the Entry Game of Figure 9.7. The backward induction
outcome and strategies coincide with those obtained with both versions
of rationalizability, which in this class of games are equivalent. Thus there
is a strong similarity between backward induction and (initial, or strong)
rationalizability in two-stage PI games.7

Now consider games with more than two stages. For such games,
initial rationalizability is weaker than backward induction and strong
rationalizability, that is, it may allow strategies that are ruled out by
either backward induction, or strong rationalizability, or both.

Example 58. Go back to the ToL4 of Figure 9.2. It can be verified in
this game that strong rationalizability “mimics” the steps of the backward
induction procedure: it eliminates the conditionally dominated strategy
L2.L4 in step 1, strategy L1.L3 in step 2, strategy L2.T4 in step 3,
and strategy L1.T3 in step 4. Iterated admissibility yields the same
order of eliminations, illustrating Proposition 9. Initial rationalizability
coincides with strong rationalizability for the first two steps. This is
true by definition for the first step (see Chapter 11). As for the second,
note that L1.L3 is dominated by the reduced strategy T1 once L2.L4

has been eliminated. But it can be verified that initial rationalizability
cannot eliminate any other strategy in the third step. Indeed, no strategy
is dominated in the residual strategic form without L2.T4 and L1.T3

(cf. Proposition 7). Specifically, according to the third step of initial
rationalizability, player 2 may be initially certain that player 1 immediately
takes 1 euro, and upon being surprised by action L1, player 2 may stop
believing that player 1 is rational and (initially) believes in 2’s rationality.
Thus, player 2 can leave 2 euros hoping that player 1 will leave again. N

This shows that backward induction is not based on (rationality and)

7Backward induction may be “slower” than (initial or strong) rationalizability if the
first mover also moves in the second stage, for at least one first stage action, or if the
first mover has an outside option that strictly dominates all other actions. But the end
result is the same.
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common initial belief in rationality. Yet, the example may engender
the intuition that strong rationalizability and backward induction are
essentially equivalent in this class of games. This intuition is only partially
correct. On one hand, it can be shown that strong rationalizability and
backward induction yield the same outcome (the quite complex proof is
omitted).

Theorem 37. In every finite game with perfect information and no
relevant ties, all the strongly rationalizable strategy profiles yield the same
terminal history as the unique subgame perfect equilibrium: ζ (S∞) =
{ζ (s∗)}.

On the other hand, the following example shows that strongly
rationalizable and backward induction strategies may be disjoint.

Example 59. Consider the PI game between Ann (a) and Bob (b)
depicted in Figure 12.1. It can be verified that there are no relevant ties.

a b a b

(
4

0

)

(
3

0

) (
0

1

) (
1

0

) (
0

2

)
D1 D2 D3 D4

C1 C2 C3 C4

Figure 12.1: A PI game with no relevant ties.

The subgame perfect equilibrium is s∗ = (D1.D3, D2.D4). Strategies
C1.D3 and C2.C4 are conditionally dominated. Hence,

S1 = {D1.D3, D1.C3, C1.C3} × {C2.D4, D2.D4, D2.C4}

(recall that strong rationalizability does not distinguish between
behaviorally equivalent strategies). The strongly rationalizable set is S∞ =
S2 = {D1.D3, D1.C3} × {C2.D4}. Thus, s∗ /∈ S∞, because s∗2 6= C2.D4.
Indeed, strong belief in rationality requires that, upon observing C1,
Bob would believe that Ann is implementing the only justifiable (i.e.,
conditionally undominated) strategy that selects C1 at the root, that is,
C1.C3. The weakly sequentially optimal strategy given conjecture C1.C3

is C2.D4. N
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The example shows that backward induction strategies may be
inconsistent with rationality and strong belief in rationality, which makes
Theorem 37 all the more noteworthy.

So, what is the relationship between backward induction and strategic
reasoning based on some form of rationality and common belief in
rationality? We argued that backward induction is not tightly related to
two well understood extensions from simultaneous to sequential games of
the RCBR assumptions, although it yields the same outcome as rationality
and common strong belief in rationality.

We note that there are versions of RCBR for sequential games that
yield a notion of “backwards rationalizability” more tightly connected to
backward induction (see Perea [56] and Battigalli and De Vito [10]). The
analysis of such solution concept is beyond the scope of this textbook.

12.3 Subgame Perfection with Chance Moves

The definition of multistage game can be extended to allow for the
possibility that some events in the game depend on chance. Chance
is modeled as a fictitious player, denoted by 0, that chooses actions
with exogenously given conditional probabilities. This means that the
probability that a particular chance action a0 is selected immediately after
history h is a number β0(a0|h) which is part of the description of the game.

We maintain the convention that at each stage there are simultaneous
moves by all players, including chance. Since the set of active players
(those with more than one feasible action) may depend on time and on
the previous history, this assumption does not entail any loss of generality.
For example, one may model games where chance moves occur before or
after the moves of real players. To minimize on notational changes, we also
ascribe a utility function u0 to the chance player 0, but we assume that it
is constant. This is just another notational trick.

A multistage game with observable actions and chance moves
is a structure

Γ = 〈(Ai,Ai(·), ui)ni=0 , β0〉 .

The symbols Ai, Ai(·), ui have the same meaning as before. From the
feasibility correspondences Ai(·) (i = 0, ..., n) we can derive the set of
feasible histories H̄, the set of terminal histories Z and the set of non-
terminal histories H = H̄\Z (see section 9.1). Functions ui are real-valued
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and have domain Z. The only novelty is player 0, chance: for every z ∈ Z,
u0(z) = 0, and β0 describes how the probabilities of chance moves depend
on the previous history, that is,

β0 = (β0(·|h))h∈H ∈×
h∈H

∆o(A0(h)),

where ∆o(A0(h)) is the set of full-support probability measures on A0(h).8

Next we define the strategic form. To avoid measure-theoretic
technicalities we will henceforth assume that all the sets A0(h) (h ∈ H) are
finite. Let I be the set of the “real” players, i.e., I = {1, ..., n}. The set Si
of strategies of i ∈ I is defined as before. Although “strategies of chance”
are well defined mathematical objects, we disregard them, as chance is not
a strategic player. Thus, the set of strategy profiles is S =×i∈I Si and
similarly S−i =×j∈I\{i} Sj . The presence of chance moves implies that
more than one terminal history may be possible when the players follow
a particular strategy profile s; let Z(s) denote the set of such terminal
histories. The probability of each z ∈ Z(s) depends on the probability of
the chance moves contained in z and is denoted ζ̂(z|s) (if a player, or an
external observer were uncertain about the true strategy profiles, ζ̂(z|s)
would represent the probability of z conditional on the players following
the strategy profile s, which explains the notation). Therefore the path
function when there are chance moves has the form ζ̂ : S → ∆(Z). The
formal definition of Z(s) and ζ̂(·|s) is as follows. Let ati(z) denote the
action of player i at stage t in history z, let ht−1(z) denote the prefix
(initial sub-history) of z of length t, and recall that `(z) is the length of z.
Then

∀s ∈ S, Z(s) = {z ∈ Z : ∀t ∈ {1, ..., `(z)}, ∀i ∈ I, ati(z) = si(h
t−1(z))},

∀z ∈ Z, ζ̂(z|s) =

{ ∏`(z)
t=1 β0(at0(z)|ht−1(z)), if z ∈ Z(s),

0, if z /∈ Z(s).

In words, ζ̂(z|s) is the product of the probabilities of the actions taken by
the chance player in history z.

8Recall that ∆o(X) = {µ ∈ ∆(X) : suppµ = X}, where the superscript o stands for
(relatively) “open” in the hyperplane of vectors whose elements sum to 1.
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A Nash equilibrium of Γ is a strategy profile s∗ such that for every
i ∈ I and for every si ∈ Si,∑

z

ζ̂(z|s∗)ui(z) ≥
∑
z

ζ̂(z|si, s∗−i)ui(z).

In other words, a Nash equilibrium of Γ is an equilibrium of the static game
where players simultaneously choose strategies and have payoff functions
Ui(s) =

∑
z ζ̂(z|s)ui(z) (i ∈ I, s ∈ S).

In order to define subgame perfect equilibria, we first define the
conditional outcome function ζ̂(·|h, s): for each h ∈ H, the set of terminal
histories that can be reached when s is followed starting from h (where h
may be inconsistent with s) is

Z(h, s) = {z ∈ Z : h ≺ z, ∀t ∈ {`(h)+1, ..., `(z)},∀i ∈ I,ati(z) = si(h
t−1(z))};

then

∀z ∈ Z, ζ̂(z|h, s) =

{ ∏`(z)
t=`(h)+1 β0(at0(z)|ht−1(z)), if z ∈ Z(h, s),

0, if z /∈ Z(h, s).

A strategy profile s∗ is a subgame perfect equilibrium if for all h ∈ H,
i ∈ I, and si ∈ Si,∑

z

ζ̂(z|h, s∗)ui(z) ≥
∑
z

ζ̂(z|h, si, s∗−i)ui(z).

Let ζ̂(·|h, ai, s) ∈ ∆(Z) denote the probability measure on Z that
results if s is followed starting from h, except that player i chooses
ai ∈ Ai(h) at h. A strategy profile s satisfies one-step optimality with
correct conjectures if for all h ∈ H, i ∈ I, and ai ∈ Ai(h),∑

z

ζ̂(z|h, s)ui(z) ≥
∑
z

ζ̂(z|h, ai, s)ui(z).

It can be shown that in every game with finite horizon or with continuity
at infinity (hence in every game with discounting) a strategy profile is a
subgame perfect equilibrium if and only if it satisfies one-step optimality
with correct conjectures.
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Repeated Games

A subset of multistage games that has received particular attention in the
literature is the one of repeated games. Loosely speaking, a repeated game
is a strategic environment in which the same players play multiple times
the same static game—the stage game. More generally, we could think
of the repetition of the same static or sequential one-period game; but our
analysis, like most of the literature on repeated games, will be restricted to
the repetition of the same static (i.e., simultaneous-move) games, so that
stages will coincide with periods. See our comments in Section 9.2.1.

Many real-life situations can be modelled as repeated games. Think of
a couple which has to decide every weekend what to do. Or consider the
daily relationship between two colleagues, who must independently decide
whether to exert effort on a common project or to shirk. Or again, suppose
that firms are involved in a cartel and must decide whether to set their
individual price as suggested by the cartel or to undercut such level in
order to reap a larger market share.

In addition to their practical relevance, repeated games are interesting
also from a theoretical point of view. Indeed, given the dynamic nature
of the strategic interaction, players can adjust their future behavior in
order to incentive other players to behave in a certain way. Although this
phenomenon may arise in any multistage game, the specific structure of
repeated games (namely, the fact that the same stage game is repeated
over and over again) makes them the ideal environment to study these
reward and punishment strategies.

Before we delve into the formal analysis, it is useful to introduce some
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taxonomy. First of all, the class of repeated games can be divided in finitely
repeated games and infinitely repeated games depending on whether the
stage game is repeated a finite number of times or infinitely many times.
Furthermore, repeated games can be classified according to the information
feedback that players receive about the behavior of their opponents at
previous stages. Repeated games with perfect monitoring are games in
which each player perfectly observes (and recalls) the actions of all players
in previous rounds. Thus, this class of games is a special case of multistage
games with observable actions. Repeated games with imperfect public
monitoring are games in which players do not directly observe what their
opponents chose in the past. Instead, in each round, they observe (and
recall) a common public stochastic signal, whose realization is affected
by the action profile chosen by players in the previous round. Repeated
games with imperfect private monitoring are games in which players do
not directly observe what their opponents chose in the past, nor do they
observe a common public signal. Instead, each of them observes (and
recalls) a private stochastic signal, whose realization depends on the action
taken by players in the previous round.

One of the main questions addressed by the literature on repeated
games is the following: “To what extent can the repeated strategic
interaction enlarge the set of equilibrium payoffs with respect to those
of the stage game?” An answer to this question is provided by so called
“folk theorems,” namely results with the following flavor.

Informal Folk Theorem. Consider an infinitely repeated game. If
players are very patient and they can statistically detect the behavior
of their opponents, then any payoff profile compatible with individual
optimality (namely, each payoff profile in which players get at least as much
as the worst possible payoff consistent with utility-maximizing behavior)
is achievable in equilibrium.

In this chapter we follow a different approach and we stress the strategic
nature of the repeated interaction. As such, we highlight how dynamic
incentives come at play in repeated games and may enable players to punish
or reward their opponents. As a by-product of this approach, we introduce
the tools needed to prove folk theorems.

Specifically, we will only analyze repeated games with perfect
monitoring. First, we will introduce some basic notation concerning
the one-period game and the associated repeated games. Then, we will
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prove some simple results relating the Nash equilibria of the one-period
game to the subgame perfect equilibria of the corresponding repeated
game for a fixed “degree of patience” (discount factor). Finally, we will
provide a characterization of the set of (pure) SPE payoff profiles in
infinitely repeated games, again, for a fixed “degree of patience.” Since
it is implausible to assume that agents are arbitrarily patient, the latter
kind of results (rather than the “folk theorems”) are those most used in
the applications of the theory of repeated games.

13.1 Repeated Games with Perfect Monitoring

For any static compact-continuous gameG = 〈I, (Ai, vi)i∈I〉, we let Γδ,T (G)
denote the T -stage game with observable actions obtained by repeating G
for T ∈ N∪{∞} times and computing payoffs ui : Z → R (where Z = AT )
as discounted time averages with common discount factor δ ∈ (0, 1);1 that
is, for every terminal history (at)Tt=1 ∈ Z and for every player i,

ui(a
1, a2, ...) =

T∑
t=1

δt−1vi(a
t). (13.1.1)

Note that ui is well defined even if T = ∞, because G is compact-
continuous, and so vi is bounded; therefore, the series of discounted payoffs
has a finite sum. In the analysis of finitely repeated games (T ∈ N) one can
also allow for δ = 1, i.e., no discounting. Also note that the most important
insights of the analysis can be extended to the more general case where G
has bounded payoff functions, e.g., when G is an oligopoly game with price
setting, homogeneous products, and competition à la Bertrand.

In the analysis of infinitely repeated games, it may be convenient to
use an equivalent representation of the payoff associated with an infinite
history:

ūi(a
1, a2, ...) = (1− δ)

T∑
t=1

δt−1vi(a
t), (13.1.2)

which is a discounted time average of the stream of payoffs
(
vi(a

t)
)∞
t=1

.
When the stream of payoffs is constant, e.g., vi(a

t) = vi(ā) for each t, then

1The analysis can be easily extended to allow for heterogeneous discount factors.
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the average (13.1.2) is precisely this constant:

ūi(ā, ā, ...) = (1− δ)
T∑
t=1

δt−1vi(ā) = vi(ā).

In this strategic environment, every history h of length t ∈ N is an
element of At. By convention, A0 = {∅} is the set containing the empty
sequence of action profiles.

Example 60. Consider the Prisoners’ Dilemma in which the set of players
is given by I = {1, 2} and the set of actions available to each player i is
given by “Cooperation” and “Defection,” that is, Ai = {C,D}. Utilities
are represented in the following table.

C D

C 2, 2 0, 3

D 3, 0 1, 1

The repeated game with perfect monitoring Γδ,2 (G) is the multistage game
obtained by repeating the Prisoners’ Dilemma twice. In this case, the set
of non-terminal histories is

H = {∅} ∪A

and the payoff of player i ∈ I at terminal history
(
a1, a2

)
is given by

ui
(
a1, a2

)
= vi

(
a1
)

+ δvi
(
a2
)

.

N

Example 61. There are n firms which produce and sell a homogenous
good: I is the set of firms, qi ∈ [0, q̄i] is the output of firm i and q̄i is its
capacity. The market (inverse) demand function P : [0,

∑
i q̄i] → R+ is

given by

P

∑
j∈I

qj

 = max{0, p̄− β
∑
j∈I

qj}.

Firms compete à la Cournot choosing the quantity to produce in order to
maximize their total profits and keeping into account that the production
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of the good entails a unit cost equal to c. Thus, each firm i maximizes

vi (q1, ...qn) = qiP
(
qi +

∑
j 6=i qj

)
− cqi. Game Γδ,∞ (G) is the infinitely

repeated game in which the set of histories is given by

H̄ = A≤N0 = {∅} ∪

(⋃
t∈N

(
×
i∈I

[0, q̄i]

)t)
∪

(
×
i∈I

[0, q̄i]

)N
,

and the payoff function of firm i is given by

ūi(
(
q1

1, ..., q
1
n

)
,
(
q2

1, ..., q
2
n

)
, ...) = (1− δ)

∞∑
t=1

δt−1

qti max{0, p̄− β
∑
j∈I

qtj} − cqti

 .

N

In the analysis of repeated games with perfect monitoring, we use
subgame perfect equilibrium (SPE) as a solution concept. Notice that since
G is compact-continuous and δ < 1, the repeated game is continuous at
infinity (see Section 10.5) and, consequently, we can use the OD Principle
to characterize SPEs.

13.1.1 Automaton Representation of Strategy Profiles

The equilibrium analysis of repeated games often requires the construction
of strategy profiles that attain a certain payoff. Since the set of histories in
a repeated game may include many different elements, this task can lead
to significant notational complexity. To simplify the analysis, it is often
useful to represent strategy profiles by collecting histories in equivalence
classes with respect to the strategic behavior of players. This approach
underlies the so-called automaton representation of a strategy profile.

Definition 70. An automaton is a profile (Ψ, ψ0, γ, ϕ) where:

• Ψ is a set of states;

• ψ0 ∈ Ψ is the initial state;

• γ : Ψ→ A is a behavioral rule that specifies an action profile for each
state;
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• ϕ : Ψ×A→ Ψ is a transition rule that specifies how the automaton
moves across states based on the current state and by the action
profile chosen by players.

The automaton representation of a strategy profile in a repeated game
with perfect monitoring requires to specify a set of states. Each state
corresponds to a set of histories in the repeated game at which the behavior
of players (under the strategy profile) is constant. Put differently, the
behavior of players under a certain strategy profile is measurable with
respect to the partition of non-terminal histories represented by the states.

Every strategy profile s ∈ S can be represented as an automaton.
To see this, let Ψ = H, ψ0 = ∅ and γ (h) = (si (h))i∈I for every h ∈ H.
Finally, let ϕ (h, a) = (h, a) ∈ Ψ. In general, the automaton representation
we just provided is not the only possible one; indeed it is often possible
to reduce the set of states by grouping histories together—namely, by
coarsening the equivalence classes.

Conversely, given an automaton (Ψ, ψ0, γ, ϕ), we can derive a profile
of strategies as follows. For every ` ≥ 1 and for every h` ∈ A`, define
iteratively function ϕ̃ : Ψ × H\ {∅} → Ψ as follows. For ` = 1, let
ϕ̃
(
ψ0, h

1
)

= ϕ
(
ψ0, a

1
)
. Then, suppose that the map ϕ̃

(
ψ0, h

`−1
)

has been
defined for every h`−1 ∈ A`−1; hence let ϕ̃

(
ψ0, h

`
)

= ϕ
(
ϕ̃
(
ψ0, h

`−1
)
, a`
)
.

So, for every player i ∈ I, we can specify the following strategy:
si (∅) = γ (ψ0) and, for every ` ≥ 1 and for every h` ∈ A`, let
si
(
h`
)

= γ
(
ϕ̃
(
ψ0, h

`
))

.

13.2 Simple Results about the Multiplicity of
Equilibria

We prove three simple results relating the Nash equilibria of G to the
subgame perfect equilibria of Γδ,T (G). We first apply the OD principle to
show a rather obvious, but important result: playing repeatedly a Nash
equilibrium of G is subgame perfect. Actually, playing any fixed sequence
of Nash equilibria of G is subgame perfect (for example, alternating
between the equilibrium preferred by Rowena and the equilibrium preferred
by Colin in the repeated Battle of the Sexes is subgame perfect).

Theorem 38. Let z̄ = (ā1, ā2, ...) ∈ AT be a sequence of Nash equilibria
of G; then the strategy profile s that prescribes to play āt in each stage
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t (irrespective of previous actions) is a subgame perfect equilibrium of
Γδ,T (G).

Proof. Let us show that there are no incentives to make one-shot
deviations from s. By the OD principle, this implies the thesis.

Fix an arbitrary stage t and a player i. The continuation payoff of i if
he chooses ai in stage t and sticks to si afterward (assuming that everybody
else sticks to s−i) is

vi(ai, ā
t
−i) +

T∑
τ=t+1

δτ−tvi(ā
τ ).

Note that the second term in this expression does not depend on ai, because
the equilibria of G played in the future may depend on calendar time, but
do not depend on past actions. Since āt is an equilibrium of G, for every
ai, vi(ai, ā

t
−i) ≤ vi(ā

t
i, ā

t
−i). Therefore i has no incentive to deviate from

āti in stage t. �

By Theorem 38, any set of assumptions that guarantees the existence of
a pure equilibrium of G also guarantees the existence of a subgame perfect
equilibrium (in pure strategies) of Γδ,T (G).

The next result identifies situations in which a subgame perfect
equilibrium must be the repetition of the Nash equilibrium of G.

Theorem 39. Suppose that G is finitely repeated (T < ∞) and has a
unique Nash equilibrium a◦, then Γδ,T (G) has a unique subgame perfect
equilibrium s◦ that prescribes to play a◦ always (for every h ∈ H and for
every i ∈ I, si

◦(h) = ai
◦).

For example, the finitely repeated Prisoners’ Dilemma has a unique
subgame perfect equilibrium: always defect.2

Proof. By Theorem 38, s◦ is a subgame perfect equilibrium. Let s
be any subgame perfect equilibrium. We will show that s = s◦, that is,

2The finitely repeated Prisoners’ Dilemma is a very simple game. Since the Prisoners’
Dilemma has a dominant action equilibrium, the SPE can be obtained by backward
induction. Another result that holds for the finitely repeated Prisoners’ Dilemma is
that, although it has many Nash equilibrium strategy profiles, they are all equivalent,
and hence they all induce the permanent defection path.
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for every t ∈ {0, ..., T − 1}, for every h ∈ At, s(h) = a◦ (by convention,
A0 = {∅} is the set containing the empty sequence of action profiles). The
result will be proved by induction on the number k of stages that still have
to be played.

Basis step. Suppose that a history h ∈ AT−1 has just occurred, i.e., the
game reached the last stage. Since s is subgame perfect it must prescribe
an equilibrium of G at the last stage. But there is only one equilibrium of
G, a◦; thus s(h) = a◦.

Inductive step. Suppose, by way of induction, that s prescribes a◦ in
the last k periods (k ≥ 1), that is, for every period t ∈ {T − k + 1, ...., T}
and every history h′ of length t − 1 (that is, h′ ∈ At−1), s(h′) = a◦. We
show that s prescribes a◦ in period T − k for every history h of length
T − k − 1 (h ∈ AT−k−1), s(h) = a◦. Since s is subgame perfect, it must
be immune to deviations, in particular to one-shot deviations, in period
T − k. Therefore, by the inductive hypothesis, for every h ∈ AT−k−1, for
every i ∈ I and for every ai ∈ Ai,

vi(s(h)) +
k∑
τ=1

δτvi(a
◦) ≥ vi(ai, s−i(h)) +

k∑
τ=1

δτvi(a
◦).

Note that the summation term is the same on both sides of the inequality
because the inductive hypothesis implies that if s is followed in the last
k periods, future payoffs are independent of current actions. Therefore
the action profile s(h) is such that for every i ∈ I, for every ai ∈ Ai,
vi(s(h)) ≥ vi(ai, s−i(h)), implying that s(h) is a Nash equilibrium of G.
But the only Nash equilibrium of G is a◦; thus, s(h) = a◦. �

Comments. First, there is no need to invoke the OD principle to
prove the result above. The principle states that immunity to one-shot
deviations implies immunity to all deviations, which holds under some
(fairly general) assumptions. The proof above used the converse, immunity
to all deviations implies immunity to one-shot deviations, which is trivially
true by definition. Second, when a◦ is a profile of strictly dominant actions
in G (or, more generally, when a◦ is the unique rationalizable profile of
G), then a similar uniqueness result holds for strong rationalizability: by
a result similar to Theorem 37, every profile of strongly rationalizable
strategies of Γδ,T (G) induces path z◦ = (a◦, ..., a◦), or ζ (S∞) = {z◦}.
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If one of the hypotheses of the previous theorem is removed, i.e., if
either T = ∞ or G has multiple equilibria, then the thesis may fail. We
illustrate this with an example and a general result.

Suppose that T < ∞ but G has multiple equilibria. Then the Basis
Step of the proof above does not work anymore, because the last stage
equilibrium may depend on past actions. Consider, for example, the
following variation of the Prisoners’ Dilemma game:

1\2 C D P

C 4, 4 0, 5 − 1, 0

D 5, 0 2, 2 −1, 0

P 0,−1 0,−1 0, 0

Figure 13.1: A modified Prisoners’ Dilemma.

It can be checked that, for δ sufficiently large, the following strategies
support the (4, 4) outcome in all periods but the last one:

• start playing C;

• if you are in stage t < T and no deviation from (C,C) has occurred,
play C;

• if you are in stage t = T and no deviation from (C,C) has occurred,
play D;

• if a deviation from (C,C) has occurred, play P in every stage until
the last one.

The key observation is that in the second-to-last stage players do
not defect because the immediate gain from defection is more than
compensated by the future loss caused by a switch to a worse last-stage
equilibrium.

Next suppose that T = ∞ and δ is “sufficiently high,” then the
repeated game may have many other equilibria beside the repetition of
the stage-game equilibria. We show this for the case in which a stage-
game equilibrium a◦ is strictly Pareto dominated by some other profile
a∗.
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Theorem 40. (Nash reversion, trigger strategy equilibria) Let G =
〈I, (Ai, vi)i∈I〉 be a static game such that there are an equilibrium a◦ and an
action profile a∗ that strictly Pareto-dominates a◦. Consider the repeated
game Γδ,∞(G) and the strategy profile s∗ = (s∗i )i∈I defined as follows:

s∗i (h) =

{
a∗i , if h = ∅ or h = (a∗, ..., a∗),
ai
◦, otherwise.

Then s∗ is a subgame perfect equilibrium if and only if

vi(a
∗) ≥ (1− δ) sup

ai∈Ai
vi(ai, a

∗
−i) + δvi(a

◦), (IC)

that is,

δ ≥
supai∈Ai vi(ai, a

∗
−i)− vi(a∗)

supai∈Ai vi(ai, a
∗
−i)− vi(a◦)

.

Note that by definition supai∈Ai vi(ai, a
∗
−i) ≥ vi(a∗) and by assumption

vi(a
∗) > vi(a

◦). Therefore

0 ≤
supai∈Ai vi(ai, a

∗
−i)− vi(a∗)

supai∈Ai vi(ai, a
∗
−i)− vi(a◦)

< 1.

Strategies such as those defined in the theorem are called trigger
strategies because a deviation from the equilibrium path “triggers” some
sort of punishment.

Proof of Theorem 40. We show that there are no incentives to
make one-shot deviations if and only if condition (IC) holds. By the OD
principle, this implies the result.

There are two types of histories: those for which a deviation from a∗

has not yet occurred and the others. For the latter histories s∗ prescribes to
play a◦ forever after. Since a◦ is an equilibrium of G, Theorem 38 implies
that there cannot be incentives to make one-shot deviations. Suppose now
that no deviation from a∗ has yet occurred. Then s∗ prescribes to play
a∗. Consider the incentives of player i. His continuation payoff if he sticks
to s∗i is vi(a

∗
i ), because i expects to get vi(a

∗
i ) forever (recall that the

continuation payoff is a discounted time average). His continuation payoff
if he deviates and plays ai 6= a∗i is (1 − δ)vi(ai, a∗−i) + δvi(a

◦), because i
expects that his opponents stick to a∗−i in the current stage, and that his
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deviation triggers a switch to a◦ from the following stage (as prescribed by
s∗). Therefore i does not have an incentive to make a one-shot deviation
if and only if condition (IC) holds. �

As an application of Theorem 40 consider, for example, an infinitely
repeated Cournot oligopoly game: a is an output profile, vi(a) is the
one-period profit of firm i, a◦ is the Cournot equilibrium profile, a∗ is
the joint-profit maximizing profile, i.e., the profile that would be chosen
if the firms were allowed to merge and if the merged firm were not
regulated. The trigger-strategy profile s∗may be interpreted as a collusive
agreement to keep the price at the monopoly level. If δ is above the
threshold the collusive agreement is self-enforcing. “Self-enforcing” in this
context does not only mean that there are no incentive to deviate from the
equilibrium path (all Nash equilibria satisfy this property), but also that
the “punishment” or “war” that is supposed to take place after a deviation
is itself self-enforcing, hence “credible,” and this is indeed the case because
playing the Cournot profile in each stage is an equilibrium (Theorem 38).

13.3 Characterization of the Equilibrium Set

In the modified Prisoners’ Dilemma of Figure 13.1, players follow a quite
intuitive punishment (or rewarding) code: if both players coordinate on
(C,C) in the first T−1 stages, such behavior is rewarded by having players
coordinating on the Pareto superior Nash equilibrium. Instead, if one of
the players (or both) plays something other than C in some stage t ≤ T−1,
then players coordinate on the Pareto inferior Nash equilibrium (P, P ) in
every subsequent stage. Notice that the punishment code specified in the
example is self-enforcing as it is based on players playing in the last stage a
Nash equilibrium of the stage game. However, more generally, rewards and
punishments can be supported as, in turn, players adjust their strategic
behavior in subsequent rounds. We now provide a formal discussion of this
issue in the context of infinitely repeated games.

We start making a simple observation that turns out to be extremely
powerful: an infinitely repeated game exhibits a recursive structure.
Indeed, once we rescale payoffs dividing by δ`, the subgame that starts after
any history h` ∈ A` is identical to the original repeated game. Therefore,
a strategy profile of the whole game induces an SPE in the subgame with
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root h` if and only if it is an SPE in the original game. As a result, the
set of SPE payoffs in the subgame with root h` is identical to the one of
the original game.

Definition 71. Let X ⊆ RI . Action profile a∗ = (a∗i )i∈I is enforceable
on X, if there exists a function η : A → X such that for every i ∈ I and
every ai ∈ Ai,

(1− δ) vi (a∗) + δηi (a∗) ≥ (1− δ) vi
(
ai, a

∗
−i
)

+ δηi
(
ai, a

∗
−i
)

,

where ηi (·) is the projection of function η (·) on the i-th dimension. With
this, we say that function η (·) enforces a∗ (on X) and we refer to η (·) as
to the enforcing function.

In words, action profile a∗ is enforceable on X if we can define
“continuation payoff” within subset X in a way that makes action a∗i
incentive compatible for every player i. Furthermore, we say that a payoff
profile is pure-action decomposable on X if the payoff of each player can
be decomposed in a (weighted) sum of the payoff associated with a profile
a∗ enforceable on X and of the associated enforcing function.

Definition 72. Payoff profile v∗ ∈ RI is pure-action decomposable on
X ⊆ RI if there exist a profile a∗ enforceable on X such that for every
i ∈ I,

v∗i = (1− δ) vi (a∗) + δηi (a∗) ,

where η : A→ X enforces a∗ on X.

If payoff profile v∗ is pure-action decomposable, then it can be regarded
as the equilibrium payoff profile of the static game Ĝ =

〈
I, (Ai, v̂i)i∈I

〉
obtained by modifying the payoff function of G =

〈
I, (Ai, vi)i∈I

〉
as follows:

∀i, ∀ai, ∀a−i, v̂i (ai, a−i) = (1− δ) vi (ai, a−i) + δηi (ai, a−i) .

The following definition introduces the important concept of self-
generating set.

Definition 73. A set X ⊆ RI is pure-action self-generating if every
payoff profile in X is pure-action decomposable on X.
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Thus, a set of payoff profiles X is pure-action self-generating if each
payoff profile in such a set can be achieved by playing an action profile
in the stage game and specifying continuation payoffs that (i) enforce the
action profile, and (ii) belong to the set X itself. Note that this last
requirement exploits the recursive structure of the repeated game with
perfect monitoring. Indeed, since continuation payoffs belong to X, they
can be pure-action decomposed as well with continuation values in X. In
turn, these second-degree continuation payoffs can be further decomposed
and so on.

Proposition 11. Let Γδ,∞ (G) be a repeated game with perfect monitoring.
Then the set W ∗ of pure SPE payoffs is the maximal (under set inclusion)
pure-action self-generating set.

Proof. The set of pure SPE payoff profiles is self-generating. Indeed,
by definition, each payoff profile in such a set can be decomposed in a
payoff profile v (a∗) of the stage game and in a payoff profile η (a∗) that
emerges in the subgame that starts after a∗. By definition of subgame
perfection, this payoff profile is also a pure SPE payoff profile.

Thus, we need to show that any pure-action self-generating set is a
subset of W ∗. Consider an arbitrary pure-action self-generating set X,
and pick any v̂ ∈ X. We show that v̂ is a pure SPE payoff profile, that is,
v̂ ∈W ∗. Since v̂ is pure-action decomposable on X, we can find an action
profile av̂ and a function ηv̂ : A→ X such that v̂ = (1− δ) v

(
av̂
)
+δηv̂

(
av̂
)
.

Since ηv̂ (a) ∈ X for every a ∈ A, we can further conclude that there

exists an action profile aη
v̂(a) ∈ A and a continuation payoff function

ηη
v̂(a) : A→ X such that

ηv̂ (a) = (1− δ) v
(
aη

v̂(a)
)

+ δηη
v̂(a)

(
aη

v̂(a)
)

.

Iterating this procedure, we can define for each t ∈ N the following maps
η̄v̂,t : At → X. For every history ht =

(
a1, a2, ..., at

)
=
(
ht−1, at

)
∈ At,

define η̄v̂,1
(
a1
)

= ηv̂
(
a1
)
. Next suppose that the map η̄v̂,t−1 : At−1 → X

has been defined for t ≥ 2; then define η̄v̂,t
(
ht
)

= ηη̄
v̂,t−1(ht−1) (at). Since

the set X is self-generating, we have η̄v̂,t
(
ht
)
∈ X. Hence, for every i ∈ I,

we can construct a strategy sv̂i for player i as follows: define sv̂i (∅) = av̂i and

sv̂i
(
ht
)

= a
η̄v̂,t(ht)
i for every ht ∈ At and t ∈ N. By construction, strategy

profile
(
sv̂1, ..., s

v̂
n

)
induces payoff v̂. Furthermore, after each history h ∈ H,
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the action profile specified by the strategy profile
(
sv̂i
)
i∈I is enforceable on

X. Thus the behavior of each player is incentive compatible given the
enforcing function. We conclude that

(
sv̂i
)
i∈I is an SPE profile. Thus, v̂ is

a pure SPE payoff profile. �

Proposition 11, due to Abreu, Pearce and Stacchetti [2], provides a
characterization of the set of pure SPE payoff profiles in terms of self-
generating sets. Although such characterization sheds light on some key
properties of SPE payoffs, it does not provide any guidance on how to
build a strategy profile that induces a certain equilibrium-payoff profile.

An important result due to Abreu [1] helps in this respect. Loosely
speaking, this result says that to check whether a certain payoff profile is
compatible with equilibrium, we can restrict attention to strategy profiles
that specify an “optimal penal code” for each player. This penal code is
implemented whenever a player unilaterally deviates from the equilibrium
behavior independently of the specific history at which this deviation occurs
(joint deviations are instead ignored). Put differently, the scheme used to
incentivize player i to abide equilibrium behavior is specified independently
of the circumstances in which such deviation occurred. In particular,
the same punishment is implemented regardless on whether the player’s
deviation takes place on or off the equilibrium path.

We start by defining simple strategy profiles.

Definition 74. Fix a path a (0) ∈ AN and a profile of paths aI =

(a (i))i∈I ∈
(
AN
)I

. The simple strategy profile sa(0),aI is the strategy
profile represented by the following automaton (Ψ, ψ0, γ, ϕ):

Ψ = ({0} ∪ I)× N0,

ψ0 = (0, 0) ,

γ (i, t) = at (i) ,

ϕ ((j, t) , a) =

{
(i, 0), if ai 6= ati (j) and a−i = at−i (j),
(j, t+ 1), otherwise,

where at (i) denotes the t-th element of a (i).

A simple strategy profile can be understood as follows. Players start
playing the action profiles according to a (0) and keep doing so as long as
no unilateral deviation is observed. In particular, joint deviations by more
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than one player are ignored. If player i unilaterally deviates in some round
t, namely if ati 6= ati (0) whereas at−i = at−i (0), then players “punish” player
i by beginning to play the profiles in a (i), the “punishment protocol” for
player i. Once players start playing a punishment protocol against player i,
namely once they are playing according to a (i), they keep doing so unless a
unilateral deviation from a (i) is observed (once more, joint deviations are
ignored). If for some t′, player j 6= i unilaterally deviates from the protocol
a (i)—namely, if at

′
j 6= at

′
j (i) whereas at

′
−j = at

′
−j (i)—then players exit

punishment protocol a (i) and start playing the action profiles in protocol
a (j). If the deviator is agent i, then the punishment protocol a (i) starts
again from the beginning.

Profile aI can thus be regarded as a penal code: it specifies, for each
player i ∈ I, a punishment protocol a (i) to be implemented each time
player i unilaterally deviates. In particular, the punishment protocol
against a player is independent of the time at which the deviation occurs
and of its nature.

Two important examples of simple strategy profiles are the Nash-
reversion trigger strategy and the Nash-reversion grim trigger strategy.

Definition 75. Fix an infinitely repeated game Γδ,∞ (G) and a path
a (0) ∈ AN. For every i ∈ I, let a∗ (i) denote the constant path playing
a∗ (i) in every period, where a∗ (i) is a Nash equilibrium of G, and consider
the profile of paths a∗I = (a∗ (i))i∈I .The simple strategy profile sa(0),a∗I

is called the Nash-reversion trigger strategy profile. Furthermore,
if, for every i ∈ I, the Nash equilibrium a∗ (i) satisfies vi (a∗ (i)) =
mina−i∈A−i maxai∈Ai vi (ai, a−i), then the simple strategy profile sa(0),a∗I is
called the Nash-reversion grim trigger strategy profile.

In words, a Nash-reversion trigger strategy profile is a simple strategy
profile in which if player i ∈ I deviates, the punishment protocol
recommends to play a Nash equilibrium of the stage game from there
onwards. Moreover, if the Nash equilibrium also “minmaxes” player i
(namely, it minimizes the utility of the deviator once we take into account
that he is always able to react to the punishment by maximizing his own
payoff), then we have a Nash-reversion grim trigger strategy profile.

Example 62. Let Γδ,∞ (G) be the infinitely repeated game with stage
game G given by the Prisoners’ Dilemma of Example 60. Consider strategy
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profile (s1, s2) such that, for every i ∈ {1, 2},

si (h) =

{
C, if h ∈ {∅} ∪

{
(a1, a2, ...) : ∀t ≥ 1, at ∈ {(C,C) , (D,D)}

}
,

D, otherwise.

This strategy profile is Nash-reversion grim trigger strategy (hence a
trigger strategy) profile. N

Although trigger strategy profiles are easy to describe, they are not, in
general, the best way to incentivize players. Indeed, harder punishments
are possible if we give up the requirement that (i) the punishment must
specify a constant action profile, and (ii) such action profile must be a Nash
equilibrium of the stage game. Once we give up these two requirements,
we can obtain other relevant concepts, such as optimal penal codes. Their
importance relies in the fact that they represent the optimal way to
incentivize players in a repeated game. As such, whenever a payoff profile
is attainable in a pure SPE, it is also attainable with a simple strategy
profile in which deviators are punished according to the optimal penal
code.

Before providing a formal definition of optimal penal codes, it is useful
to prove a preliminary result that has its own relevance.

Lemma 32. Let Γδ,∞ (G) be a repeated game with perfect monitoring.
Then the set W ∗ of pure SPE payoffs is compact.

Proof. We provide the proof for the case in which the stage game G is
finite. In this proof we use the concepts of enforceability and self-generation
introduced above. The proof for the case where G is compact-continuous
can be found in Osborne and Rubinstein [53, Lemma 153.3]. Since the
utility of the players in the stage game is bounded (by finiteness of G) and
the discount factor δ is strictly smaller than 1, the set W ∗ is bounded. So
we have to show that W ∗ is closed. To this end, let cl(W ∗) denote the
closure of W ∗. By definition of closure of a set, we have W ∗ ⊆cl(W ∗).
We will show that cl(W ∗) is pure-action self-generating; by Proposition
11, this will imply cl(W ∗) ⊆ W ∗, and so W ∗ =cl(W ∗), as required. Pick
any v̂ ∈cl(W ∗). We prove that v̂ is pure-action decomposable with action
profile a∗ and enforcing function η∗. First note that, since cl(W ∗) is a
compact subset of a metric space, there exists a sequence (v̂n)n∈N ∈ (W ∗)N

of payoff profiles converging to v̂. Proposition 11 implies that each v̂n is
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a pure-strategy SPE profile and it is pure-action decomposable on W ∗.
Thus, we can define a sequence of action profiles (an)n∈N and a sequence
of (continuous) functions (ηn : A→W ∗)n∈N such that, for every n ∈ N,

v̂n = (1− δ) v (an) + δηn (an) .

Next note that A =×i∈I Ai is finite, hence compact. Moreover (cl (W ∗))A

is a compact metrizable space, and ηn ∈ (cl (W ∗))A for every n ∈ N. It
follows that A × (cl (W ∗))A is compact, and (an, ηn) ∈ A × (cl (W ∗))A

for every n ∈ N. Therefore we can find a subsequence (ank , ηnk)k∈N
of (an, ηn)n∈N such that, as k → ∞, ank converges to a∗ ∈ A and ηnk
converges to a (continuous) function η∗ ∈ (cl (W ∗))A. Furthermore, v (·)
is a continuous function, and so limk→∞ v (ank) = v (a∗). Hence

v̂ = lim
n→∞

v̂n = lim
k→∞

v̂nk = lim
k→∞

((1− δ) v (ank) + δηnk (ank))

= (1− δ) v (a∗) + δη∗ (a∗) .

Therefore, v̂ is pure-action decomposable with action profile a∗ and
enforcing function η∗. �

We are now ready to define optimal penal codes and to prove that they
exist.

Definition 76. An optimal penal code is a profile of strategy profiles
s ∈ SI such that s =

(
sa(i),aI

)
i∈I for some profile of paths aI = (a (i))i∈I ,

where each simple strategy profile sa(i),aI (i ∈ I) is an SPE.

To understand this definition, interpret each a (i) as paths “punishing”
player i. Then, the i-th element of an optimal penal code is the strategy
profile that starts “punishing” player i and, if any player j unilaterally
deviates from such “punishment path,” then “punishes” j with path a (j).

Proposition 12. If repeated game Γδ,∞ (G) has a (pure) subgame perfect
equilibrium, then it has an optimal penal code.

Proof. If there is an SPE, then the set W ∗ of SPE payoff profiles is
non-empty. It follows from Lemma 32 that, for every i ∈ I, the set W ∗i is
non-empty and compact. Define v∗i = minW ∗i and let aI = (a (i))i∈I be
a profile of infinite sequences of actions such that ui (a (i)) = v∗i for every
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i ∈ I. Lemma 32 implies that for every i ∈ I there exists an SPE s [i]
that induces paths a (i), with ui (a (i)) = v∗i . We now show that, for every
i ∈ I, the simple strategy sa(i),aI is an SPE. To this end, recall that for all
i ∈ I and t ∈ N,

uti
(
a1, a2, ...,

)
= (1− δ)

( ∞∑
m=t

δm−tvi (am)

)

is the payoff of player i if path
(
a1, a2, ...,

)
is played. So we have to show

that for all i, j ∈ I, t ∈ N and aj ∈ Aj ,

utj (a (i)) ≥ (1− δ) vj
(
aj , a

t
−j (i)

)
+ δu0

j (a (j)) , (13.3.1)

where at−j (i) is the profile of actions of j’s co-players at time t in sequence
a (i). The SPE conditions imply that for all j ∈ I, t ∈ N and aj ∈ Aj ,

utj (a (i)) ≥ (1− δ) vj
(
aj , a

t
−j (i)

)
+ δud,tj

(
aj , a

t
−j (i)

)
,

where ud,tj

(
aj , a

t
−j (i)

)
is the continuation payoff of player j if he

unilaterally deviates from a (i) at stage t and plays action aj . Since

s [i] is an SPE, we have that ud,tj

(
aj , a

t
−j (i)

)
∈ W ∗ and consequently

ud,tj

(
aj , a

t
−j (i)

)
≥ u0

j (a (j)) = v∗j . We conclude that (13.3.1) holds. �

An immediate corollary of Proposition 12 is the following: Consider a
simple strategy profile such that the punishment protocols are given by an
optimal penal code and the initial path is given by a (0); then such simple
strategy profile is self-supporting as long as a (0) can be supported when
the punishment protocols are prescribed by the optimal penal code. The
following result states that a sequence of action profiles in the repeated
game can be supported in a pure SPE if and only if it can be supported
through simple strategies in which an optimal penal code is used.

Proposition 13. Fix a path a (0) ∈ AN and a profile of paths aI ∈
(
AN
)I

such that s =
(
sa(i),aI

)
i∈I is an optimal penal code. There exists an SPE

s [0] that induces a (0) if and only if the simple strategy profile sa(0),a∗I is
an SPE.
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Proof. The “if” direction is immediate. To prove the “only if”
direction, observe that, by assumption, there exist an SPE s [0] that
induces a (0). Then, we can replicate the proof of Proposition 12 with
s [0] replacing s [i] and prove the result. �



14

Bargaining

Bargaining is a pervasive economic phenomenon. Many relevant economic
settings involve the confrontation between two or more agents with
conflicting interests. Examples abound. A seller and a buyer may bargain
over the terms of trade; unions can bargain with entrepreneurs to attain
a more favorable split of the total surplus; different political parties may
bargain on the allocation of the national budget.

The goal of this Chapter is to introduce the workhorse model used in
economics to analyze bargaining environments, namely the Rubinstein’s
Bargaining Game (Rubinstein [57]).1 In line with this goal, we first
analyze a simpler setting that, strictly speaking, does not involve any
actual bargaining, the Ultimatum Game. The analysis of the Ultimatum
Game will highlight some insights which hold also in more complicated
settings. Then, we will introduce some flavor of bargaining by considering
a twice repeated Ultimatum Game. Finally, we will proceed with the
analysis of the Rubinstein’s game and we will characterize the set of its
equilibria.

14.1 The Ultimatum Game

Two agents, Ann (A) and Bob (B), have to agree on the split of $1, or a
“pie” (surplus) of size 1. Ann moves first and proposes a feasible payoff

1See also chapter 7 in Osborne and Rubinstein [53].

367
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split, namely a pair of non-negative numbers summing up to 1.2 Formally,
define

X =
{

(xA, xB) ∈ [0, 1]{A,B} : xA + xB = 1
}

.

Ann proposes x = (xA, xB) ∈ X, where xB is the share offered to Bob and
xA = 1−xB is the share that Ann demands for herself. Upon observing the
offer, Bob can either accept (action y) or reject (action n). If Bob accepts,
the proposal is implemented and the game ends. If instead Bob rejects, a
default exogenous split (x̄A, x̄B) ∈ X is implemented with a delay of one
period and the game ends.3 Delay captures the idea that disagreement
is costly and Pareto inefficient. We also assume that each default share
is strictly positive, that is, 0 < x̄A < 1. This describes the rules of the
game, also called bargaining protocol. As regards immediate agreements,
players are expected utility maximizers with linear vNM utility indexes
over the total amount of money they receive. But players are impatient
in the following sense: When comparing x in the current period to x̄ in
the following period, each player i weakly (respectively, strictly) prefers x
immediately if and only if xi ≥ δx̄i (respectively, xi > δx̄i), where δ ∈ (0, 1)
is the discount factor.4 The bargaining protocol and players’ preferences
over (lotteries of) consequences are common knowledge.

The environment we just described is a two-stage game with complete
and perfect information. Using our general notation for multistage games,
we have Γ = 〈I, Y, g, (Ai,Ai(·), vi)i∈I〉 with the following elements:

• AA = X ∪ {wait}, AB = {y, n,wait},

• AA (∅) = X, AB (∅) = {wait}, AA ((x,wait)) = {wait},
AB ((x,wait)) = {y,n},5

2More generally, the sum has to be at most 1. Here we apply the resource constraint
with equality to simplify the analysis, as this does not affect the equilibria.

3More generally, the default shares satisfy x̄A ≥ 0, x̄B ≥ 0, and x̄A + x̄B ≤ 1.
4Under risk neutrality, one can equivalently assume that there is no pure time-

discounting, but in case of rejection of the proposal the pie is destroyed with probability
1−δ. Furthermore, all the statements and arguments given here extend seamlessly to the
more general case of players with different discount factors. We omit this generalization
for notational simplicity.

5Recall that ∅ denotes the sequence of length zero, i.e., the root of the game, or
empty history.
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• Y = X × {1, 2} is the set of dated splits, where (x, t) represents a
split x implemented at date t,6

• g ((x,wait) , (wait, y)) = (x, 1), g ((x,wait) , (wait, n)) = (x̄, 2) for all
x ∈ X,

• vi(x, t) = δt−1xi for all (x, t) ∈ Y .

The game features complete information because all of the above
is common knowledge, and it also features perfect information because
players perfectly observe past histories and there is only one active player
at each non-terminal history. We maintain such assumptions about the
information structure hold for all the bargaining games analyzed here.
Henceforth, we ease notation and identify histories with the sequence
of actions taken by the active players, e.g., we write (x,n) instead of
((x,wait) , (wait, n)).

Before we analyze the Ultimatum Game as defined above, it is useful
to consider an approximation with finite action spaces. For any k ∈ N, let

Xk =

{
x ∈ X : xA ∈

{
0,

1

k
, ...,

k − 1

k
, 1

}}
.

For example, if k = 100, the proposer can only offer to the respondent
0%, 1%, 2%, ..., 99%, or 100% of the pie. Let the corresponding game
be denoted by Γ(k). In what follows, we assume k to be “large enough,”
that is, we assume the finite grid of possible offers to be sufficiently fine
to obtain equilibria that approximate the equilibrium of the game with a
continuum of offers.

To analyze the game, we have to identify the minimally acceptable
offer for Bob, considering that a rejection is worth δx̄B to him:

x
(k)
B := min

x∈Xk
{xB : xB ≥ δx̄B} .

By definition, δx̄B ≤ x
(k)
B < δx̄B + 1/k, with δx̄B = x

(k)
B if δx̄B ∈{

0, 1
k , ...,

k−1
k , 1

}
. Thus, limk→∞ x

(k)
B = δx̄B, which implies that x

(k)
B −

δx̄B < 1 − δ for k large enough. There are two possibilities, either

6Recall that Y denotes the space of possible outcomes, or consequences. Do not
confuse Y with “yes.”
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δx̄B ∈
{

0, 1
k , ...,

k−1
k , 1

}
, or not; in the latter case, x

(k)
B > δx̄B. If

x
(k)
B > δx̄B, Bob is strictly better off accepting offer x(k) =

(
1− x(k)

B , x
(k)
B

)
,

and we can use backward induction to find the unique subgame perfect

equilibrium (SPE hereafter): If x
(k)
A > δx̄A (i.e., x

(k)
B − δx̄B < 1− δ, which

holds if k > 1/ (1− δ)), Ann offers x(k) and Bob accepts an offer x ∈ Xk

if and only if xB ≥ x
(k)
B (Ann is better off making Bob accept this offer if

k is sufficiently large). If instead x
(k)
B = δx̄B, Bob is indifferent between

accepting and rejecting the minimally acceptable offer, because the cost
of delay exactly offsets the immediate consumption of a smaller share.
Therefore, we have to use “case-by-case” backward induction to find the
SPEs:

Case 1 When indifferent, Bob accepts; anticipating this,7 Ann offers

x(k) =
(

1− x(k)
B , x

(k)
B

)
; Bob accepts offer x = (xA, xB) if and only if

xB ≥ x(k)
B .

Case 2 When indifferent, Bob rejects; anticipating this, Ann has to
offer slightly more to make him accept. Assuming that k > 1/ (1− δ) (k

large) Ann is better off by offering
(

1− x(k)
B −

1
k , x

(k)
B + 1

k

)
and make Bob

accept. Indeed, x
(k)
B = δx̄B = δ (1− x̄A) and 1 − δ (1− x̄A) − 1

k > δx̄A if
k > 1/ (1− δ); thus, the minimal offer that Bob is willing to accept gives
Ann more than the present values of her default share. To summarize, we
have:

Proposition 14. Suppose that k is large enough, that is, k >
1/ (1− δ). Then, the following is a pure strategy SPE of Γ(k): sA(∅) =(

1− x(k)
B , x

(k)
B

)
and sB(x) =y if and only if xB ≥ x

(k)
B ; this is the unique

SPE if x
(k)
B > δx̄B. If x

(k)
B = δx̄B, there is another pure strategy SPE

of Γ(k): sA(∅) =
(

1− x(k)
B −

1
k , x

(k)
B + 1

k

)
and sB(x) =y if and only if

xB > x
(k)
B .

If x
(k)
B = δx̄B, there is also a continuum of SPEs in partially randomized

behavior strategies, we omit the details. As k → ∞ the grid of possible

offers approximates the continuum ever more finely, x
(k)
B → δx̄B and all

the strategy pairs in the SPE set converge to the pure equilibrium whereby

7Recall that, in a subgame perfect equilibrium, Ann’s conjecture about Bob is correct.
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Ann makes the least acceptable offer and Bob says Yes. It turns out that
this is the unique subgame perfect equilibrium of Γ, the Ultimatum Game
with a continuum of offers, even if we allow for randomized strategies.8

Proposition 15. The Ultimatum Game has a unique SPE (sA, sB),
specifically:

sA (∅) = (1− δx̄B, δx̄B) , sB (xA, xB) =

{
y, if xB ≥ δx̄B,
n, if xB < δx̄B.

Proof. Let (βA, βB) be an SPE in behavior strategies. We will proceed
backwards. Faced with an offer (xA, xB), if Bob accepts this offer, he gets
xB immediately. If he rejects, he gets x̄B one period later, which is worth
δx̄B. Thus, rationality implies that he replies y if xB > δx̄B, n if xB < δx̄B

and either y or n if xB = δx̄B. As a result, the rejection probability
βB (n|x) may be different from 0 and 1 only if xB = δx̄B. To ease notation,
let ρ = βB (n| (1− δx̄B, δx̄B)) denote this rejection probability. With this,
the expected payoff of Ann when she proposes (xA, xB) is

EβB
(vA| (1− xB, xB)) =


δx̄A, if xB < δx̄B,
ρδx̄A + (1− ρ) (1− δx̄B), if xB = δx̄B,
1− xB, if xB > δx̄B.

Now note that
1− δx̄B > δ (1− x̄B) = δx̄A,

which implies that EβB
(vA| (1− xB, xB)) is discontinuous at xB = δx̄B,

with

lim
xB↘δx̄B

EβB
[vA| (1− xB, xB)] = 1−δx̄B > δx̄A = lim

xB↗δx̄B

EβB
(vA| (1− xB, xB)) .

If ρ > 0 then
1− δx̄B > ρδx̄A + (1− ρ) (1− δx̄B) .

If ρ = 0, then EβB
(vA| (1− xB, xB)) attains the supremum 1− δx̄B, which

is therefore a maximum, at offer (1− δx̄B, δx̄B). Hence, the candidate
equilibrium of the statement is indeed a (pure) SPE. If instead ρ > 0, then

8From now, when we claim that a bargaining game has a unique equilibrium, we
mean unique among all the SPEs in behavior strategies, which include those in pure
strategies. It will turn out that the unique equilibrium is always in pure strategies.
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payoff 1 − δx̄B can be approached arbitrarily closely, but not attained by
EβB

(vA| (1− xB, xB)), and Ann does not have a best reply. This shows
that the candidate equilibrium is the unique SPE. �

For future reference, we want to stress a few key implications of
Proposition 15. First, the equilibrium is unique. In particular, in such
equilibrium the respondent is kept at the present value of his disagreement
outcome, δx̄B, while the proposer extracts all the remaining surplus,
1−δx̄B. Second, the equilibrium payoff is determined by the disagreement
share of the (last-stage) respondent or equivalently by the value he can
obtain by rejecting the offer coming from the proposer. Third, the
equilibrium outcome is Pareto efficient, namely the disagreement outcome
((1− δx̄B, δx̄B) , 2), which is inefficient because consumption is delayed,
never arises. In the rest of this note we show that these insights hold true
even if Bob can make counteroffers and bargaining lasts for (infinitely)
many periods.

14.2 2-Period Alternating Offer Game

In the Ultimatum Game, Bob can only accept or reject the offer coming
from Ann and he is prevented from proposing counteroffers. To allow for
the latter, we extend the Ultimatum Game by adding a subgame following
the rejection of Bob. In this subgame, the interaction between the two
agents is a new Ultimatum Game in which the roles of the two agents are
switched. Thus, Bob becomes the proposer and Ann the respondent. We
call this game 2-Period Alternating Offer Game.

As before, suppose that Ann and Bob have to split $1. The bargaining
protocol is described as follows:9

1.P at the beginning of the game Ann makes a proposal x1 =
(
x1

A, x
1
B

)
∈

X;

1.R Bob can either accept (y) or reject (n) offer x1; if Bob accepts, the
proposed split x1 is implemented in period 1 and the game ends; if
Bob rejects, the game moves to period 2;

9We leave to the reader the exercise of representing this bargaining protocol with the
general mathematical notation for dynamic games.
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2.P if the play moves to period 2, Bob makes a proposal x2 =
(
x2

A, x
2
B

)
∈

X;

2.R Ann can either accept (y) or reject (n) offer x2; if Ann accepts,
the proposed split x2 is implemented in period 2; if Ann rejects the
disagreement split (x̄A, x̄B) is implemented in period 3 and the game
ends.

The next proposition states that also the 2-Period Alternating
Offer Game has a unique subgame perfect equilibrium and provides its
characterization.

Proposition 16. The 2-Period Alternating Offer Game has a unique SPE
(sA, sB) determined as follows: for every (x1, x2) ∈ X ×X

sA (∅) = (1− δ (1− δx̄A) , δ (1− δx̄A)) , sB

(
x1
)

=

{
y, if x1

B ≥ δ (1− δx̄A),
n, if x1

B < δ (1− δx̄A),

and

sB

(
x1,n

)
= (δx̄A, 1− δx̄A) , sA

(
x1,n, x2

)
=

{
y, if x2

A ≥ δx̄A,
n, if x2

A < δx̄A.

Proof. As in the Ultimatum Game with a continuum of offers, if
the proposer anticipates that—when indifferent—the respondent says No
(with positive probability), then the reduced-form payoff function of the
proposer cannot be maximized. Thus, the proposer has a best response
to the rational strategy of the respondent only if the respondent accepts
when indifferent. This allows to solve for the unique SPE by a kind of
modified backward induction procedure, whereby the respondent breaks
ties in favour of the proposer.

In particular, the analysis of the second-period game, is the same
as for the Ultimatum Game with reversed roles for Bob (proposer) and
Ann (respondent). This explains the second-period strategies. With this,
we obtain a reduced-form Ultimatum Game where the disagreement split
implemented with one-period delay in case of rejection is the equilibrium
offer of the second period (x̂A, x̂B) = (δx̄A, 1− δx̄A). The solution of the
Ultimatum Game with (delayed) disagreement split (x̂A, x̂B) is that Bob’s
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response strategy is

sB

(
x1
)

=

{
y, if x1

B ≥ δx̂B,
n, if x1

B < δx̂B,

=

{
y, if x1

B ≥ δ (1− δx̄A),
n, if x1

B < δ (1− δx̄A),

and Ann offers

sA(∅) = (1− δx̂B, δx̂B) = (1− δ (1− δx̄A) , δ (1− δx̄A)) .

�

Proposition 16 and its proof show that the equilibrium implications of
the 2-period model are similar to those of the 1-period model (Ultimatum
Game) stated in Proposition 15. First, the equilibrium is unique. Second,
the equilibrium outcome10 is determined by the disagreement share of
the first-round respondent, x̂B. However, differently from the Ultimatum
Game, the disagreement share x̂B is endogenous, as it takes into account
that if Bob rejects the offer, he becomes the new proposer and, in
equilibrium, he “forces” Ann to accept share δx̄A. Third, the equilibrium
outcome is Pareto efficient, because costly disagreement (rejection and
delay) does not occur. Finally, we observe that the strategy of the second-
period respondent depends only on the last offer, i.e., it is independent of
what happened in the first round.

14.3 Bargaining with Infinite Horizon

The analysis developed in the previous Sections can be easily extended
to n-Periods Alternating Offer Games. For this reason, in this section we
will jump to the case in which the bargaining game has an infinite horizon
and agents keep alternating in the role of proposer and respondent until
an agreement is reached. This setting has been studied in an extremely
influential paper by Ariel Rubinstein (Rubinstein [57]) and it has become
a building block of several applied works.

This is the bargaining protocol:

10That is, split (1− δ (1− δx̄A) , δ (1− δx̄A)) in period 1.
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• (First-Step Rule) In period 1 Ann can offer any split x = (xA, xB) ∈
X. Bob can accept (y) or reject (n). If Bob accepts offer
x, the agreement is immediately implemented, i.e., the outcome
(consequence) is (x, 1); if Bob rejects, the play moves to the following
period.

• (Inductive-Step Rule) If no agreement was reached before period
t > 1, the player who rejected the offer in period t − 1 becomes
the proposer in period t. The proposer can offer any split x ∈ X. If
offer x is accepted, the agreement is immediately implemented and
the outcome is (x, t); if it is rejected the play moves to period t+ 1.

Thus, in the Rubinstein’s bargaining game, Ann and Bob keep
switching roles until an agreement is reached. In particular, Ann plays
in the role of the proposer in period t ∈ N if and only if t is odd, and Bob
plays in the role of proposer in period t ∈ N if and only if t is even.

Formally, this strategic environment can be represented as an infinite-
horizon game with perfect information. In particular,11

• The set of non-terminal histories is the union H = HP ∪HR of
the set of histories where a proposer is active,

HP :=
⋃
t∈N

(X × {n})t−1 ,

and the set of histories where a respondent is active

HR :=
⋃
t∈N

(
(X × {n})t−1 ×X

)
.

• For all t ∈ N, h ∈ (X × {n})t−1 and x ∈ X, AA(h) = X, AB(h) =
{wait} = AA(h, x) and AB(h, x) = {y,n} if t is odd, whereas
AB(h) = X, AA(h) = {wait} = AB(h, x) and AA(h, x) = {y,n}
if t is even.

• The set of finite terminal histories—or agreement histories—is

Zy :=
⋃
t∈N

(
(X × {n})t−1 × (X × {y})

)
.

11Recall that N = {1, 2, ...} and that we adopt the convention (X × {n})0 = {∅},
where ∅ is the empty history.
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• The set of infinite terminal histories—or permanent
disagreement histories—is

Zn := (X × {n})∞ ,

the set of terminal histories is therefore Z := Zy ∪ Zn.

• The outcome (or consequence) space is Y = (X × N)∪{D}, where
(x, t) means that agreement on x is reached in period t, and D
conveniently denotes the permanent disagreement outcome; the
outcome (or consequence) function g : Z → Y is

g (z) =

{
(x, t), if z = (h, x,y) ∈ (X × {n})t−1 × (X × {y}),
D, if z ∈ Zn.

• The utility function vi : Y → R of each player i is

∀(x, t) ∈ (X × N) , vi(x, t) = δt−1xi,
vi (D) = 0.

The implied payoff function ui = vi ◦ g : Z → R of each player
i ∈ {A,B} is given by

ui(z) =

{
δt−1xi, if z = (h, x,y) ∈ (X × {n})t−1 × (X × {y}),
0, if z ∈ Zn.

Note that ui satisfies the property of continuity at infinity: for every
ε > 0 there exists a sufficiently large t, such that if two terminal histories
z′ and z′′ have a t-period common prefix, then |ui(z′)− ui(z′′)| ≤ ε.
Indeed, for every t ∈ N, every non-terminal history h ∈ (X × {n})t,
and every pair of terminal continuations of h, viz. z′ = (h, ...) ∈ Z and
z′′ = (h, ...) ∈ Z, we have |ui(z′)− ui(z′′)| ≤ δt. This implies that the
OD principle holds: a strategy si is sequentially optimal given conjecture
βi (possibly a deterministic conjecture s−i) if and only if si is one-step
optimal given βi.12

In the following analysis, it is convenient to partition H into four
subsets according to two binary criteria: whether A or B is the active
player, and whether the active player is a proposer or a respondent. We

12See Section 10.5.



14.3. Bargaining with Infinite Horizon 377

let Hi,P (respectively Hi,R) denote the set of histories where i ∈ {A,B} is
a proposer (respectively, a respondent). Thus

H = HA,P ∪HB,R ∪HB,P ∪HA,R,

with

HA,P =
⋃

t∈{1,3,5,...}

(X × {n})t−1 ,

HB,R =
⋃

t∈{1,3,5,...}

(X × {n})t−1 ×X,

HB,P =
⋃

t∈{2,4,6,...}

(X × {n})t−1 ,

HA,R =
⋃

t∈{2,4,6,...}

(X × {n})t−1 ×X.

The set of strategies in the Rubinstein’s bargaining game allows rather
complex behavior and history-dependence. For instance, an agent may
react to a low offer by rejecting it and by offering an even lower share to
his opponent once he becomes proposer in the following period. However,
we can define a simple subset of strategies, namely stationary strategies.
A strategy for player i is stationary if:

(i) the proposal made by i when he plays in the role of the proposer is
always the same, hence it is independent of the previous history;

(ii) the reply of agent i when he plays in the role of the respondent
depends only on the last offer, hence it is independent of the history
that precedes such an offer.

Formally, a strategy si (i ∈ {A,B}) is stationary if si (h) = si (h′) for
all h, h′ ∈ Hi,P , and si (h, x) = si (h′, x) for all h, h′ ∈ H−i,P , and x ∈ X.13

An SPE is stationary if both players use stationary strategies. Notice
that if each player follows a stationary strategy, each bargaining round
is independent of the past: the proposer does not condition his behavior
on the past history, while the reply of the respondent depends only on
the offer that is currently on the table. Moreover, by their very nature,

13Note that, if h ∈ H−i,P , then (h, x) ∈ Hi,R.
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stationary strategies can be easily described by the proposal that an agent
makes when he plays in the role of the proposer and by a reply function
that specifies how the respondent reacts to any offer x ∈ X.

Since Rubinstein’s game has infinite horizon, its SPE cannot be
computed by backward induction. Nevertheless, we can use a “conjecture-
and-verify” approach that exploits our analysis of the 2-Period Alternating
Offer Game to characterize an SPE.14

In the finite-horizon equilibrium, offers are accepted and reply functions
are “monotone,” that is, every offer that gives the respondent less than the
equilibrium offer is rejected and every offer that gives more is accepted.
However, the sequence of equilibrium offers is not stationary, because as
the deadline comes closer equilibrium offers are more influenced by the
default split.15

In the infinite horizon game there is no deadline and this implies that
the game has a stationary structure. Specifically, for every i ∈ {A,B}
and every pair of histories h, h′ ∈ Hi,P , the subgames starting after
h and h′ look exactly the same: i is the first proposer of an infinite-
horizon alternating-offer game; furthermore, for every offer x ∈ X, the
subgames starting after (h, x) and (h′, x) again look exactly the same: −i
has to respond and—in case of rejection—he will be the first proposer in
an infinite-horizon alternating-offer game. Therefore we conjecture that
there is a stationary SPE whereby equilibrium offers are always accepted
and reply functions are “monotone” in the sense explained above, with
symmetry when the roles of the players are switched, that is, the proposer
always demand the same for herself and the acceptance threshold of the
respondent is what is left for himself by such proposal. Let x∗P denote the
share that the proposer demands for herself. Then we conjecture
that there is a stationary SPE (sA, sB) of the following form: for all
h ∈ HA,P , h

′ ∈ HB,P , x = (xA, xB) ∈ X:

sA (h) = (x∗P , 1− x∗P ) , sA

(
h′, x

)
=

{
y, if xA ≥ 1− x∗P ,
n, if xA < 1− x∗P ,

sB

(
h′
)

= (1− x∗P , x∗P ) , sB (h, x) =

{
y, if xB ≥ 1− x∗P ,
n, if xB < 1− x∗P .

14This approach is borrowed from Gibbons [36].
15We proved this for two periods of barganing, but it is intuitive that the same holds

for finitely many periods.
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With this, we can find the implied value of x∗P relying on the analysis of the
2-Period Alternating Offer Game: according to the candidate equilibrium,
if the play moves to period t = 3 the split (x∗P , 1− x∗P ) is implemented in
that period. Therefore, the first two periods strategies must be determined
by backward induction (breaking ties in favor of the proposer) as in the
2-period model with default split (x̄A, x̄B) = (x∗P , 1 − x∗P ). We have seen
that Ann’s equilibrium offer in such game is

(1− δ (1− δx̄A) , δ (1− δx̄A)) = (1− δ (1− δx∗P ) , δ (1− δx∗P )) .

Therefore, to have a stationary equilibrium of the infinite-horizon game we
must have

x∗P = 1− δ (1− δx∗P ) .

Solving this equation we find

x∗P =
1− δ
1− δ2

=
1− δ

(1− δ)(1 + δ)
=

1

1 + δ
.

To check that the stationary strategies specified above with x∗P =
1/(1 + δ) indeed form an SPE it is enough to verify that each one is one-
step optimal given the conjecture that the opponent follows his strategy
in the candidate equilibrium. We leave this as an exercise.

Proposition 17. Rubinstein’s bargaining game has an SPE in stationary
strategies (sA, sB) determined as follows: for all h ∈ HA,P , h′ ∈ HB,P , and
x = (xA, xB) ∈ X:

sA (h) =

(
1

1 + δ
,

δ

1 + δ

)
, sA

(
h′, x

)
=

{
y, if xA ≥ δ

1+δ ,

n, if xA < δ
1+δ ,

sB

(
h′
)

=

(
δ

1 + δ
,

1

1 + δ

)
, sB (h, x) =

{
y, if xB ≥ δ

1+δ ,

n, if xB < δ
1+δ .

Proposition 18 below establishes that this is the unique SPE of the
Rubinstein’s game.

Proposition 18. The strategy pair of Proposition 17 is the unique SPE
of Rubinstein’s bargaining game.
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Proof. Consider any subgame that starts with player i being active
as the proposer. All these subgames have the same structure up to a
normalization of utilities. In particular, for every h, h′ ∈ Hi,P , the set of
continuation strategies available to agent j (j ∈ {A,B}) in the subgame
with initial node h is isomorphic to the set of continuation strategies
available to agent j in the subgame with initial node h′. The only
difference among these subgames is that the respective payoff functions
can be obtained one from the other by a positive linear transformation,
which does not affect incentives.
To prove our result, it is useful to introduce some additional notation.
Take any h ∈ Hi,P . Let Γhi be the subgame with initial node h in which
we normalize payoffs so that immediate agreement on split x = (xA, xB)
yields payoff xA to Ann (xB to Bob).16 Given this normalization, the sum
of the players’ payoffs at any terminal history of the subgame Γhi is at
most 1. Denote with E

(
Γhi
)

the set of SPE equilibria in subgame Γhi and
with Vj

(
Γhi
)

(j ∈ {A,B}) the set of SPE payoffs of agent j. Since all
subgames where i is the proposer are isomorphic, E

(
Γhi
)

and Vj
(
Γhi
)

are
independent of h ∈ Hi,P , and it makes sense to write E (Γi) and Vj (Γi).
Finally, denote with vj (Γi) and vj (Γi) the infimum and the supremum of
Vj (Γi). By Proposition 17, we know that E (Γi) and Vj (Γi) are nonempty
and that vj (Γi) > 0.
Consider any subgame that starts at period-t history h ∈ (X × {n})t−1 ⊆
HA,P (t odd). At such history Ann is the proposer. Rationality and
the expectation of an equilibrium continuation imply that Bob accepts
any offer x such that xB > δvB (ΓB) and rejects any offer x such that
xB < δvB (ΓB). In words, Bob accepts (respectively, rejects) any offer that
gives him more than the maximum (respectively, less than the minimum)
equilibrium payoff he can get in the subgame that would start after his
rejection. Thus if Ann offers x = (xA, xB) with xB > δvB (ΓB) , the
behavior of players would yield consequence (x, t) and Ann would get a
payoff equal to 1 − xB. As a result, limxB↘δvB(ΓB) (1− x) = 1 − δvB (ΓB)
is a lower bound on the equilibrium payoff that Ann can get in subgame
ΓA. Formally:

vA (ΓA) ≥ 1− δvB (ΓB) . (14.3.1)

Moreover, we have already argued that in equilibrium Bob rejects any offer

16That is, if h ∈ (X × {n})t−1, the payoff function of i in Γhi satisfies uhi (h, x, y) =
xi = δ1−tui(h, x, y).
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x = (xA, xB) with xB < δvB (ΓB). Thus, if Ann offers x = (xA, xB) with
xB < δvB (ΓB), the maximum she can get is smaller than the maximum
sum of payoffs attainable in the subgame starting after the rejection
(which, from the perspective of period t, is equal to δ · 1 = δ) minus the
minimum Bob can get (which, from the perspective of period t, is equal
to δvB (ΓB)). Instead, if Ann offers x = (xA, xB) with xB ≥ δvB (ΓB) ,
the maximum she can obtain is at most 1 − δvB (ΓB). Indeed, if Bob
accepts the offer, Ann would get 1− xB, while if he rejects, the maximum
Ann can get is once more lower than δ (1− vB (ΓB)). Since δ < 1 and
limxB↘δvB(ΓB) (1− x) = 1− vB (ΓB) , we conclude that :

vA (ΓA) ≤ 1− δvB (ΓB) (14.3.2)

By replicating the previous analysis for subgame ΓB, we get:

vB (ΓB) ≥ 1− δvA (ΓA) (14.3.3)

vB (ΓB) ≤ 1− δvA (ΓA) (14.3.4)

Combining (14.3.1) with (14.3.4) and (14.3.2) with (14.3.3), we get:

vA (ΓA) ≥ 1− δ (1− δvA (ΓA))⇒ vA (ΓA) ≥ 1

1 + δ
,

vA (ΓA) ≤ 1− δ (1− δvA (ΓA))⇒ vA (ΓA) ≤ 1

1 + δ
.

By definition, vA (ΓA) ≤ vA (ΓA). Thus, vA (ΓA) = vA (ΓA) = vA (ΓA) =
1

1+δ . Therefore, VA (ΓA) =
{

1
1+δ

}
. Following similar steps, we can get

vB (ΓB) = vB (ΓB) = vB (ΓB) = 1
1+δ , so that VB (ΓB) =

{
1

1+δ

}
. Given

the normalization in the payoffs, we conclude that in every subgame of the
Rubinstein’s game that starts at period-t history h ∈ (X × {n})t−1 ⊆ Hi,P

(t odd for i = A, even for i = B) player i (the proposer) gets a payoff equal
to δt−1 1

1+δ .
Now, consider subgame ΓA from the perspective of Bob. We have just
showed that by rejecting the offer, Bob will obtain δvB (ΓB) = δ

1+δ .
Obviously, Bob can follow a strategy that prescribes to reject all offers
made in period t. Thus, vB (ΓA) ≥ δvB (ΓB) = δ

1+δ . Moreover, the
maximum payoff Bob can get in subgame ΓA is smaller or equal than the
maximum sum of payoffs available (namely, 1) minus the minimum payoff
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Ann can get (by our previous reasoning, we know that vA (ΓA) = vA (ΓA) =
1

1+δ ). Thus, vB (ΓA) ≤ 1−vA (ΓA) = δ
1+δ . By definition vB (ΓA) ≤ vB (ΓA).

We conclude that vB (ΓA) = vB (ΓA) = vB (ΓA) = δ
1+δ and VB (ΓA) ={

δ
1+δ

}
. A similar reasoning implies that vA (ΓB) = vA (ΓB) = vA (ΓB) =

δ
1+δ and VA (ΓB) =

{
δ

1+δ

}
. Thus, in every subgame of the Rubinstein’s

game that starts at period-t history h ∈ (X × {n})t−1 ⊆ Hi,P (t even
for i = A, odd for i = B) player j (the receiver) gets a payoff equal to
δt−1 δ

1+δ .
Now, pick i ∈ {A,B} and consider any subgame with initial node h ∈
(X × {n})t−1 ⊆ Hi,P . By the previous argument, we know that the
sum of players’ equilibrium payoffs in this subgame must be equal to
δt 1

1+δ + δt δ
1+δ = δt. Therefore, the only consequence compatible with

equilibrium payoffs is (x∗, t), where x∗ = (x∗P , x
∗
R) =

(
1

1+δ ,
δ

1+δ

)
and

x∗P (x∗R) is the share the proposer demands for himself (offers to the
respondent). Indeed, any consequence (x, t) with x 6= x∗ would yield
payoffs different from the unique equilibrium payoffs we identified above.
Similarly, any consequence (x, t′) with t′ > t would yield payoffs whose sum
could be at most δt+1 < δt. Obviously, in the subgame that starts with
initial node h ∈ (X × {n})t−1 ⊆ Hi,P , consequence (x, t) is reached if and
only if i proposes x∗ and j accepts at history (h, x∗) . Finally, consider any
history (h, x) with x = (xP , xR) 6= x∗. Rationality and the expectation
of an equilibrium continuation on the respondent’s side imply that in
equilibrium Bob accepts at any history h ∈ (X × {n})t−1×{x} ⊆ Hi,R with
xR > δvB (ΓB) = δ

1+δ , and rejects at any history h ∈ (X × {n})t−1×{x} ⊆
Hi,R with xR < δvB (ΓB) = δ

1+δ . �

Proposition 18 shows that infinite-horizon alternating-offers game
shares the same features that we highlighted in a finitely repeated
Ultimatum Game. In particular, although this game has infinite horizon
and we cannot apply backward induction, the game has a unique subgame
perfect equilibrium, which is stationary and rather simple to describe.17

In this equilibrium, the proposer always asks for himself a fraction 1
1+δ and

17This is in stark contrast with other infinite-horizon games that admit multiple
equilibria and equilibrium outcomes. Such uniqueness is one of the reasons for the
success of Rubinstein’s model for applied work.
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offers to the respondent δ
1+δ . The respondent, in turn, accepts any offer

that gives him at least δ
1+δ and rejects everything else.

The difference 1
1+δ −

δ
1+δ = 1−δ

1+δ can be interpreted as the proposer’s
advantage and it is decreasing in δ. This is not surprising. When players
are impatient, i.e., when δ is low, disagreement is costly and the respondent
will be reluctant to reject the offer. As a result, the proposer will be able
to extract a higher share of the total surplus.

Furthermore, the equilibrium characterization implies that an
agreement is reached in the first period. To put it differently, costly
disagreement never happens. This is a consequence of the fact that
disagreement is costly for both players and that such cost is common
knowledge between them.



15

Multistage Games with
Incomplete Information

In this chapter we extend the analysis of static games with incomplete
information to game forms with a multistage structure. As in Chapter 8,
we first analyze rationalizability in games with payoff uncertainty and then
we move on to the analysis of equilibria in Bayesian games. We observed
in Chapters 9 and 12 that some Nash equilibria of multistage games are
un-intuitive because the strategies of one or more players are “irrational”
in some subgame. This led most game theorists to adopt subgame perfect
equilibrium, a refinement of Nash equilibrium, as the standard solution
concept. Similarly, there are Bayesian equilibria of multistage Bayesian
games that prescribe “irrational” behavior at histories that cannot be
reached in equilibrium. The reaction of most game theorists was to extend
the subgame perfect equilibrium concept to multistage Bayesian games
to refine Bayesian equilibrium and obtain a notion of “perfect Bayesian
equilibrium.” Unlike the complete-information case, however, they could
not agree on a canonical definition, except for simple cases like leader-
follower games. Here we provide the most general definition that satisfies
some basic consistency requirements. Then we focus on a special class of
leader-follower games, the signaling games, where all the definitions in the
literature coincide with ours.

384
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15.1 Multistage Games with Payoff Uncertainty

Consider a multistage game tree with observable actions (see Section
9.2 of Chapter 9), i.e., a structure〈

I, (Ai,Ai(·))i∈I
〉

.

The sets of histories H, Z and H̄ = H ∪Z , where H (respectively, Z) are
non-terminal (respectively, terminal), are defined in the usual way.

A multistage environment with incomplete information is obtained
by adding to the previous structure a set of states of nature and payoff
functions that depend on the state of nature and the terminal history (cf.
Section 8.1 of Chapter 8). A multistage game with payoff uncertainty
and observable actions is given by the following mathematical structure

Γ̂ =
〈
I,Θ0, (Θi, Ai,Ai(·), ui)i∈I

〉
,

where
〈
I, (Ai,Ai(·))i∈I

〉
is a multistage game tree, all the sets Θj (j ∈

I ∪ {0}) are nonempty, Θ0 is the space of residual uncertainty, and Θi the
set of information-types of player i. As usual, we let Θ =×i∈I∪{0}Θi. The
outcome function g : Θ×Z → Y and the utility functions vi : Θi×Y → R
depend on the vector of parameters θ ∈ Θ which is not commonly known.
For each i ∈ I, payoff function ui is written in a parameterized form

ui : Θ× Z → R,
(θ, z) 7→ vi (θi, g (θ, z)).

If the set Θ is a singleton (or, more generally, if each payoff function
ui is independent of θ ∈ Θ), then the game is said to have complete
information.

Note that the definition of Γ̂ requires that each feasible set Ai(h) be
independent of the vector of parameters θ ∈ Θ. In some applications
it makes sense to allow the set of feasible actions of some player i at
some history h to depend on θi. The above definition of Γ̂ can be
generalized as follows: for each i ∈ I, the feasibility correspondence
Ai(·, ·) : Θi × A<N0 ⇒ Ai associates with each information-type θi and
finite sequence of action profiles h = (at)`t=1 a set of actions Ai(θi, h) that
are feasible for θi immediately after h. Note, since player i knows θi he
always knows his feasible actions. Such generalization would not change
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the substance of the results. Furthermore, to simplify the probabilistic
analysis to come, we assume that the game is finite, i.e., H̄ and Θ are
finite.

In line with the genuine incomplete-information interpretation, we
assume that there is no ex ante stage: players are “born” with their private
information. Thus, we do not define strategies as choice rules that depend
on private information and history, but rather as choice rules that only
depend on history. As usual, we let Si =×h∈H Ai(h) denote the set of
pure strategies of player i ∈ I, and we let S =×i∈I Si denote the set of
strategy profiles.

We obtained multistage games with payoff uncertainty by putting
together ideas and concepts related to static games with incomplete
information and multistage games with (observable actions and) complete
information. Both are special cases of this larger class of games. This
transition may appear so seamless that one risks neglecting an important
new issue: if there is incomplete information, some player i does not know
(θ0 or) the information-types θ−i of his co-players. If there were only
one stage, it would be enough to posit exogenous (type-dependent) beliefs
about such exogenous unknowns. But, if there are at least two stages, one
has to consider i’s beliefs about co-players’ information-types conditional
on their observed actions. The key issue is that such beliefs are necessarily
endogenous, because—besides i’s initial exogenous beliefs—they depend
on what i thinks about the relationship between co-players’ information-
types and their behavior. In other words, player i has to update his beliefs
about the information-types of others. To understand this issue, one first
has to go back to probability theory and recall how it models beliefs about
unknown parameters as they are updated upon observing new evidence.

15.2 Intermezzo: Bayes Rule

Consider an agent i who is initially uncertain about two things: a
parameter θ ∈ Θ and a variable (or a vector of variables) with realizations
x ∈ X, where Θ and X are assumed to be finite. In a later stage i observes
x. Even though i cannot observe θ, he is able to assess the probability of
each realization x ∈ X conditional on each θ ∈ Θ, which is denoted by
P(x|θ).

For example, consider an urn of unknown composition. It is only known
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that the urn contains between 1 and 10 balls, which may differ only in the
color, Black or White. A first ball is drawn, its color is observed and then
it is put back into the urn. Then a second ball is drawn (possibly the same
as before) and its color is observed. Let θ denote the proportion of White
balls in the urn. The set Θ of possible values of this parameter is finite:

Θ =

10⋃
n=1

{
θ : ∃k ∈ {0, ..., n} , θ =

k

n

}
.

Let Black draws correspond to number 0 (since black is the absence of
light) and White draws correspond to number 1. Then X = {0, 1}2 and
the probability of x = (x1, x2) conditional on the proportion of white balls
being θ is

P(x|θ) := θx1(1− θ)1−x1θx2(1− θ)1−x2 .

For example, P((1, 0)|θ) = θ(1− θ).
Agent i also assigns a subjective probability P(θ) to all the possible

values of θ. Note that P(x|θ) is well defined even if i assigns probability
0 to θ. For example, for some reason i may be certain that the urn does
not contain more than 5 balls, and hence P

(
θ = 1

10

)
= 0. Yet i thinks that

if θ were 1
10 then the probability of x = (0, 0) would be 9

10 ·
9
10 , that is,

P
(
(0, 0)| 1

10

)
= 81

100 .
Fix any finite uncertainty space Ω (later, we will relate Ω to Θ and

X). The law of conditional probabilities says that for every pair of events
E,F ⊆ Ω,

P(F ) > 0⇒ P(E|F ) =
P(E ∩ F )

P(F )
.

Note that the same condition can be written more compactly as

P(E ∩ F ) = P(E|F )P(F ).

Here we may assume that the space of uncertainty is Ω = Θ × X. Each
realization x corresponds to event E = Θ × {x}, each parameter value θ
corresponds to event F = {θ}×X, each pair (θ, x) is the singleton {(θ, x)}.
Then the joint probability of the pair (θ, x) is

P(θ, x) = P(x|θ)P(θ).

Note that the collection of events {F ⊆ Ω : ∃θ ∈ Θ, F = {θ} ×X}
forms a partition of Ω = Θ×X. This partition of Ω induces a corresponding
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partition of every event E ⊆ Ω, and in particular of events of the
form E = Θ × {x}. Then, we can compute the probability of every
x (that is, event Θ × {x}) starting from the probabilities of the “cells”
{(θ, x)} = (Θ× {x})∩({θ} ×X), where θ ∈ Θ. In turn, these probabilities
can be obtained from the conditional and prior probabilities P(x|θ) and
P(θ), θ ∈ Θ. Thus, we obtain the formula expressing the marginal, or
predictive probability of x as

P(x) =
∑
θ′∈Θ

P(x, θ′) =
∑
θ′∈Θ

P(x|θ′)P(θ′). (15.2.1)

The problem is to derive from these elements P(θ|x), the probability
that i would assign to each θ ∈ Θ upon observing evidence x ∈ X. There
are two possibilities, either P(x) = 0 or P(x) > 0.

If P(x) = 0, then P(θ|x) cannot be derived from the previous
data. This does not mean that i is unable to assess the conditional
probability P(θ|x), it only means that P(θ|x) is not determined by the
other probabilistic assessments expressed above.

If P(x) > 0, then P(θ|x) = P((θ,x))
P(x) . Substituting P(x) with the

expression given by (15.2.1) we obtain

P(θ|x) =
P(x|θ)P(θ)∑

θ′∈Θ P(x|θ′)P(θ′)
. (15.2.2)

Eq. (15.2.2) is known as Bayes Formula, that is, an equation
expressing P(θ|x) as a function of the conditional probabilities P(x|θ′)
and the prior probabilities P(θ′), with θ′ ∈ Θ.

We call Bayes Rule the rule that says that whenever (15.2.2) can be
applied, then it must be applied. Since (15.2.2) can be applied if and only
if P(x) > 0, we may write Bayes Rule in the following compact form:

∀x ∈ X,∀θ ∈ Θ, P(θ|x)

(∑
θ′∈Θ

P(x|θ′)P(θ′)

)
= P(x|θ)P(θ). (15.2.3)

Bayes Rule is not violated if either P(x) = 0 (both sides of (15.2.3)
are zero), or P(x) > 0 and P(θ|x) is computed with (15.2.2). Therefore,
whenever an assessment of prior and conditional probabilities satisfies
(15.2.3), we say that it is consistent with Bayes rule. In particular,
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Bayes rule “holds” if P(x) = 0: another way to express this point is that
if the antecedent in the material implication

P(x) > 0⇒ P(θ|x) =
P((θ, x))∑

θ′∈Θ P(x|θ′)P(θ′)

is false, then the material implication holds.1

15.3 Rational Planning with Incomplete
Information

Before we move on to the analysis of solution concepts for multistage games
with incomplete information, we have to extend the analysis of rational
planning of Chapter 10. Specifically, we need to take into account that
player i, given his (information-)type θi, is uncertain about the types θ−i
of the co-players. To simplify the notation, we assume that there is no
residual uncertainty, that is, Θ0 is a singleton, and we remove θ0 from
formulas.2

Definition 77. Fix player i and type θi in a multistage game with payoff
uncertainty Γ̂. A conjecture is an array of probability measures

βi = (βi(·|θ−i, h))θ−i∈Θ−i,h∈H ∈

(
×
h∈H

∆(A−i(h))

)Θ−i

.

A personal system of beliefs of type θi is an array of probability
measures

µi (·|θi, ·) = (µi(·|θi, h))h∈H ∈ ∆(Θ−i)
H .

A pair
(
βi, µi (·|θi, ·)

)
is called personal assessment of type θi.

As with complete-information games, to ease intuition, it is better to
start thinking about two-person games, so that −i is the co-player other
than i. In this case, βi(·|θ−i, ·) ∈ ×h∈H ∆(A−i(h)) is like a behavior
strategy of −i. Thus, this is a generalization of the notion of conjecture in

1The material implication p ⇒ q is verified if either p is false, or both p and q are
true.

2Alternatively, we could interpret θ−i as including θ0.
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two-person static games with complete information, where we represented
conjectures about −i and mixed actions of −i with the same mathematical
object, a probability measure over A−i. With more than two players, for
some h, βi(·|θ−i, h) ∈ ∆(A−i(h)) may be a correlated proability measure
over×j 6=iAj(h). In the analysis of perfect Bayesian equilibrium of Section

15.7, we will assume that each βi(·|θ−i, h) is the product of the marginal
measures (mixed actions) βj (·|θj , h) ∈ ∆ (Aj (h)), where βj (·|θj , ·) is the
equilibrium behavior strategy of j. Thus, it will make sense to write
βi = β−i.

As a matter of interpretation, conjecture βi is like a family of statistical
models that type θi deems possible. This family is parameterized by θ−i,
the unknown type profile of the co-players (cf. Section 15.2). Thus,
βi(a−i|θ−i, h) is the probability of a−i given θ−i and conditional on
“evidence” h, µi(θ−i|θi, h) is the probability assigned by type θi of i to θ−i
conditional on observing h, and µi (·|θi,∅) is the exogenous initial belief
of type θi.

3

Given Γ̂ and type θi (hence, payoff function ui,θi : Θ−i × Z → R),
personal assessment

(
βi, µi (·|θi, ·)

)
yields a subjective decision tree.

The relevant conditional probabilities are derived as follows.
Suppose that the plan of type θi is described by behavior strategy

βi(·|θi, ·) and fix a personal assessment
(
βi, µi (·|θi, ·)

)
. Let

Pβ(a|θi, θ−i, h) = βi(ai|θi, h)βi(a−i|θ−i, h), (15.3.1)

Pβ
i,µi(a−i|θi, h) =

∑
θ−i∈Θ−i

βi(a−i|θ−i, h)µi(θ−i|θi, h),

Pβ,µi(a|θi, h) =
∑

θ−i∈Θ−i

Pβ(a|θi, θ−i, h)µi(θ−i|θi, h)

for all h ∈ H, a = (ai, a−i) ∈ A (h), and θ−i ∈ Θ−i. We can use the chain

rule to obtain the probability of history h′ =
(
a1, ..., a`(h

′)
)

conditional on

prefix h =
(
a1, ..., a`(h)

)
(with ` (h) < ` (h′)) given type profile θ = (θi, θ−i):

Pβ
(
h′|θ, h

)
=

`(h′)∏
t=`(h)+1

Pβ
(
at|θ,

(
h, ..., at−1

))
, (15.3.2)

3According to the interpretation given above, µi (·|θi,∅) is the “prior” of type θi in
the sense of Bayesian statistics, and each µi (·|θi, h) (with h 6= ∅) is the “posterior” of
θi given evidence h.
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with the convention that Pβ
(
at|θ,

(
h, ..., at−1

))
= Pβ

(
at|θ, h

)
if t − 1 =

`(h). Consistency with Bayes rule requires that, for all type profiles
θ−i ∈ Θ−i and histories (h, a) ∈ H,

Pβ,µi(a|θi, h) > 0⇒ µi(θ−i|θi, (h, a)) =
Pβ(a|θ, h)µi(θ−i|θi, h)

Pβ,µi(a|θi, h)
. (15.3.3)

(Eq. (15.3.3) is a “one-step” Bayes rule; given eq.s (15.3.1) and the chain
rule (15.3.2), eq. (15.3.3) implies the “multi-step” version of Bayes rule.)
Eq.s (15.3.1) and eq. (15.3.3) yield

Pβ,µi(a|θi, h) = βi(ai|θi, h)Pβ
i,µi(a−i|θi, h).

Hence, for every ai ∈suppβi(·|θi, h), eq. (15.3.3) yields a version of Bayes
rule whereby the belief about the co-players’ types depends on what
co-players just did:

Pβ
i,µi(a−i|θi, h) > 0⇒ µi(θ−i|θi, (h, (ai, a−i))) =

βi(a−i|θ−i, h)µi(θ−i|θi, h)

Pβi,µi(a−i|θi, h)
,

or, equivalently,

µi(θ−i|θi, (h, (ai, a−i)))Pβ
i,µi(a−i|θi, h) = βi(a−i|θ−i, h)µi(θ−i|θi, h).

(15.3.4)
Thus, µi(θ−i|θi, (h, (ai, a−i))) is independent of own action ai within subset
suppβi(·|θi, h) ⊆ Ai(h). The following definition of Bayes consistency
requires that eq. (15.3.4) holds within the whole set Ai(h), not just the
subset suppβi(·|θi, h).

Definition 78. Personal assessment
(
βi, µi (·|θi, ·)

)
is Bayes consistent

if (15.3.4) holds for all θ−i ∈ Θ−i and (h, (ai, a−i)) ∈ H.

Under personal Bayes consistency, known results about rational
planning—such as the OD principle—extend to the incomplete information
case. A detailed and formal analysis is provided in the appendix of this
chapter. Here we only specify the elements to be used in the equilibrium
analysis below.

To better connect with the analysis of perfect Bayesian equilibria of
Section 15.7, we consider the possibility that i’s plan, which depends on
his type θi, is a behavior strategy βi (·|θi, ·) ∈ Bi =×h∈H ∆(Ai(h)). To
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ease notation, in the remainder of this section we let βi = βi (·|θi, ·) and
µi = µi (·|θi, ·) ∈ ∆ (Θ−i)

H respectively denote the behavior strategy and
personal system of beliefs of a given type θi of player i.4 Thus, we fix
a type θi who plans according to behavior strategy βi and has personal
assessment

(
βi, µi

)
, and we first define the value for θi of using βi starting

from history h given a type profile θ−i:

V βi,β
i

θi
(θ−i, h) =

∑
z∈Z(h)

Pβi,β
i
(z|θi, θ−i, h)ui (θi, θ−i, z) .

Since type θi does not know θ−i, to obtain the value of using βi from h he
must use the system of beliefs µi:

V βi,β
i,µi

θi
(h) =

∑
θ−i∈Θ−i

µi (θ−i|θi, h)V βi,β
i

θi
(θ−i, h) .

Similarly, the value of choosing action ai at h with future behavior given
by βi is

V βi,β
i,µi

θi
(h, ai)

=
∑

θ−i∈Θ−i

µi (θ−i|θi, h)
∑

a−i∈A−i(h)

βi (a−i|θ−i, h)V βi,β
i

θi
(θ−i, (h, (ai, a−i))) .

Note that these values depend only on the specification of βi and βi at
histories that weakly follow h.

Definition 79. Fix a type θi with personal assessment
(
βi, µi

)
and a

behavior strategy β̄i ∈ Bi. We say that β̄i is

• one-step optimal given
(
βi, µi

)
if

∀h ∈ H, V β̄i,β
i,µi

θi
(h) = max

ai∈Ai(h)
V β̄i,β

i,µi
θi

(h, ai) ; (15.3.5)

• sequentially optimal given
(
βi, µi

)
if

∀h ∈ H, V β̄i,β
i,µi

θi
(h) = max

βi∈Bi
V βi,β

i,µi
θi

(h). (15.3.6)

4This makes sense because feasibility constraints and hard information about co-
players are type-independent. Hence, each type of i has the same set of behavior
strategies Bi and the same exogenous uncertainty space Θ−i.
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The following extension of the OD principle is proved in the appendix.

Proposition 19. (OD principle with incomplete information) Fix a type θi
with personal assessment

(
βi, µi

)
. If

(
βi, µi

)
is Bayes consistent, then one-

step optimality given
(
βi, µi

)
is equivalent to sequential optimality given(

βi, µi
)
.

The following example illustrates how the equivalence between one-step
and sequential optimality depends on Bayes consistency.

2

2

1, θ′

2

2

1, θ′′

( ?

2

) ( ?

0

) ( ?
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(p) (1− p)

(q) (1− q)

Figure 15.1: A subjective decision tree for player 2.

Example 63. Consider the subjective decision tree for player 2 depicted
in Figure 15.1. Player 1 knows the true state of nature (his type) and
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moves first, choosing between U (up) and D (down). Player 2 has no
private information, and his assessment is represented by the numbers in
parentheses. The conjecture of 2 is given by β2 (U |θ′) = 1 = β2 (U |θ′′).
Since he initially expects player 1 to go up (U) with probability 1, his
initial belief about θ cannot affect his conditional beliefs about θ given
(D) and (D,C), because they cannot be pinned down by Bayes rule.
Hence, the initial belief is not shown. The system of beliefs is given
by µ2 (θ′|D) = p and µ2 (θ′|D,C) = q. This assessment of player 2 is
Bayes consistent if and only if p = q, because eq. (15.3.4) implies that
his belief conditional on (D,C) cannot depend on the fact the he chose
C instead of S. Note that the expected value of action L (respectively
R) given (D,C) is 2q (respectively 2 (1− q)). Given Bayes consistency, if
p > 1/2 (respectively, p < 1/2) the unique sequentially optimal strategy of
2 is also the only one that satisfies one-step optimality, C.L (respectively,
C.R). Now suppose that Bayes consistency is violated because p < 1/2
and q > 1/2. Then the unique strategy that satisfies one-step optimality
is S.L: indeed, 2q > 2 (1− q) which justifies going left (L) after (D,C);
furthermore, player 2 predicts that he would go left after (D,C), thus the
expected value of taking action C given D is 2p < 1, which justifies S after
D. With this inconsistent assessment player 2 changes his beliefs about θ
and therefore his preferences over continuation strategies. This makes it
impossible to satisfy sequential optimality, which requires to continue and
go right (C.R) after D and to go left (L) after (D,C). N

15.3.1 Justifiability and Dominance

In Chapter 8 we modeled conjectures as probability measures µi ∈
∆ (Θ−i ×A−i), we considered the sets ri

(
µi, θi

)
of best replies to

conjectures µi for types θi, we called an action ai “justifiable” for a type θi
if ai ∈ ri

(
µi, θi

)
for some µi ∈ ∆ (Θ−i ×A−i), and we related justifiability

and dominance. In Chapter 10 we defined conditional probability systems
(CPSs) µi ∈ ∆H (S−i), we considered the sets of weakly sequential
best replies ri

(
µi
)

to such CPSs, we called a strategy si “justifiable”
if si ∈ ri

(
µi
)

for some µi ∈ ∆H (S−i), and we related justifiability to
conditional dominance. The reason to consider weak sequential optimality
in the definition of justifiability was that it is invariant to behavioral
equivalence, and we took the perspective of an external observer, or a
co-player, who wonders whether i may exhibit some pattern of behavior si
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and who cannot distinguish, nor cares to distinguish between behaviorally
equivalent strategies s′i ≈i s

′′
i , because they are necessarily realization-

equivalent (Lemma 24). Merging these ideas, here we represent how player
i would update or revise his beliefs about the co-players as the play unfolds
with CPSs on Θ−i × S−i, we define justifiability for a type by means of
such CPSs, and we relate it to conditional dominance for a type.

Let

H−i = {C−i ⊆ Θ−i × S−i : ∃h ∈ H,C−i = Θ−i × S−i (h)} .

A CPS on Θ−i × S−i is an array of conditional probability measures

µ̄i =
(
µ̄i (·|C−i)

)
C−i∈H−i

∈ ×
C−i∈H−i

∆(C−i)

such that the chain rule holds, that is, for all C−i, D−i ∈ H−i, and
E−i ⊆ Θ−i × S−i,

E−i ⊆ D−i ⊆ C−i ⇒ µ̄i (E−i|C−i) = µ̄i (E−i|D−i) µ̄i (D−i|C−i) .

As in Section 10.4 of Chapter 10, whenever convenient we ease notation by
writing µ̄i (·|h) = µ̄i (·|Θ−i × S−i (h)), and we let ∆H (Θ−i × S−i) denote
the set of CPSs on Θ−i×S−i. With this, it should be always kept in mind
that if h′ and h′′ differ only because of actions taken by player i, so that
S−i (h′) = S−i (h′′), then µ̄i (·|h′) = µ̄i (·|h′′).

Note that CPSs can be related to Bayes consistent personal
assessments. Recall that

S−i (h, a−i) = {s−i ∈ S−i (h) : s−i (h) = a−i}

is the set of strategies of others allowing h and selecting a−i given h.

Definition 80. Personal assessment
(
βi, µi

)
is consistent with CPS µ̄i

if, for all h ∈ H, θ−i ∈ Θ−i, and a−i ∈ A−i (h),

βi (a−i|θ−i, h)µi (θ−i|h) = µ̄i ({θ−i} × S−i (h, a−i) |h) . (15.3.7)

Note that, taking the summation with respect to co-players’ actions in
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eq. (15.3.7), we obtain

µi (θ−i|h) =
∑

a−i∈A−i(h)

βi (a−i|θ−i, h)µi (θ−i|h)

=
∑

a−i∈A−i(h)

µ̄i ({θ−i} × S−i (h, a−i) |h)

= µ̄i
(
{θ−i} ×

(
∪a−i∈A−i(h)S−i (h, a−i)

)
|h
)

= µ̄i ({θ−i} × S−i (h) |h) ,

because
∑

a−i∈A−i(h) β
i (a−i|θ−i, h) = 1 and ∪a−i∈A−i(h)S−i (h, a−i) =

S−i (h). Furthermore, this implies that if
(
βi, µi

)
is consistent with µ̄i,

then

µ̄i ({θ−i} × S−i (h) |h) > 0⇒ βi (a−i|θ−i, h) =
µ̄i ({θ−i} × S−i (h, a−i) |h)

µ̄i ({θ−i} × S−i (h) |h)
.

Remark 55. For each CPS µ̄i ∈ ∆H (Θ−i × S−i), there is a Bayes
consistent personal assessment that is consistent with µ̄i.

This observation is important because it shows that the only parts
of a personal assessment

(
βi, µi

)
consistent with a CPS µ̄i that are not

determined by eq. (15.3.7) are the conditional probabilities of actions
βi (a−i|θ−i, h) given types deemed negligible conditional on h, and such
probabilities do not determine the conditional values of carrying out
strategies. Thus, we may as well define such values by means of CPSs:
for all θi ∈ Θi, si ∈ Si, µ̄i ∈ ∆H (Θ−i × S−i), h ∈ Hi (si), and z ∈ Z (h),
let

Psi,µ̄
i
(θ−i, z|h) =

{
0, if si /∈ Si (z),
µ̄i ({θ−i} × S−i (z) |h), if si ∈ Si (z),

V si,µ̄
i

θi
(h) =

∑
(θ−i,z′)∈Θ−i×Z(h)

ui
(
θi, θ−i, z

′)Psi,µ̄i(θ−i, z′|h).

Definition 81. Strategy s∗i is weakly sequentially optimal for type θi
given CPS µ̄i, written s∗i ∈ ri

(
µ̄i, θi

)
, if

∀h ∈ Hi (s∗i ) , V
s∗i ,µ̄

i

θi
(h) = max

si∈Si(h)
V si,µ̄

i

θi
(h) .

Strategy s∗i is justifiable for type θi if there exists some CPS µ̄i ∈
∆H (Θ−i × S−i) such that s∗i ∈ ri

(
µ̄i, θi

)
.
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As in Chapter 10, we can give an analogous definition of weak sequential
optimality given a Bayes consistent personal assessment and use Remark
55 to show that it is equivalent to the foregoing definition with CPSs (cf.
Proposition 5).

For any fixed type θi, it is convenient to consider the section
ri,θi : ∆H (Θ−i × S−i) ⇒ Si at θi of the weak sequential optimality
correspondence ri : ∆H (Θ−i × S−i) × Θi ⇒ Si, that is, ri,θi

(
µ̄i
)

=
ri
(
µ̄i, θi

)
for all µ̄i. With this, the set of weakly sequentially optimal

strategies for type θi is ri,θi
(
∆H (Θ−i × S−i)

)
.

Using essentially the same arguments as in Chapter 10, we can relate
justifiability and conditional dominance. To ease notation, let us define
the parameterized normal-form (or strategic-form) payoff function

Ûi : Θ× S → R
(θ, s) 7→ ui (θ, ζ (s)).

For any mixed strategy σi ∈ ∆ (Si), let

Ûi (θ, σi, s−i) = Eσi
(
Ûi,θ,s−i

)
=
∑
si∈Si

Ûi (θ, si, s−i)σi (si) .

Definition 82. Strategy s̄i is conditionally dominated for type θi if
there are h ∈ Hi (s̄i) and σi ∈ ∆ (Si (h)) such that

∀ (θ−i, s−i) ∈ Θ−i × S−i (h) , Ûi (θi, θ−i, s̄i, s−i) < Ûi (θi, θ−i, σi, s−i) .

The set of pairs (si, θi) such that si is not conditionally dominated for θi
is denoted NCDi, and we let NCD =×i∈I NCDi.

Lemma 33. A strategy is not conditionally dominated for a type if and
only if it is justifiable for that type, that is, for each i ∈ I,

NCDi =
⋃
θi∈Θi

{θi} × ri,θi
(
∆H (Θ−i × S−i)

)
.

15.4 Rationalizability

In Section 8.2 of Chapter 8 we analyzed rationalizability in static
games with payoff uncertainty. In Chapter 11 we analyzed initial and
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strong rationalizability in multistage games with complete information,
two legitimate extensions of complete-information rationalizability
characterizing the behavioral implications of a weaker and a stronger
version of the idea of rationality and common belief in rationality. Here we
can take stock of those analyses and merge them to obtain an analysis of
rationalizability in multistage games with payoff uncertainty. Similarly to
Chapter 11, the behavioral implication of mere rationality is justifiability.
As in Section 15.3, to ease notation we assume that there is no residual
uncertainty, that is, Θ0 is a singleton and can be neglected.5

15.4.1 Initial Rationalizability

Initial rationalizability characterizes the behavioral implications of
Rationality and Common Initial Belief in Rationality. Following the same
template of Chapters 8 and 11, we first extend the rationalization operator
to multistage games with payoff uncertainty.

Let C denote the collection of Cartesian subsets C =×i∈I Ci with
Ci ⊆ Θi × Si for each i ∈ I. We interpret a set C ∈ C as type-dependent
restrictions on behavior implied by strategic reasoning and we assume that
each player initially believes that such restrictions hold for the co-players.6

Let
∆H
∅ (C−i) =

{
µ̄i ∈ ∆H (Θ−i × S−i) : µ̄i (C−i|∅) = 1

}
denote the set of CPSs that initially assign probability 1 to C−i. The
initial rationalization operator ρ : C → C is the self-map defined as follows:
for every C ∈ C,

ρ (C) = ×
i∈I

{
(θi, si) : ∃µ̄i ∈ ∆H

∅ (C−i) , si ∈ ri
(
µ̄i, θi

)}
= ×

i∈I

 ⋃
θi∈Θi

{θi} × ri,θi
(
∆H
∅ (C−i)

) .

It can be verified that ρ is monotone, because C ′−i ⊆ C−i implies
∆H
∅
(
C ′−i

)
⊆ ∆H

∅ (C−i). Thus, iterating ρ starting from the whole set of

5Analyzing the more general case does not create any conceptual difficulty.
6The restrictions given by Ci may be type-dependent because the sections of Ci at

different types θ′i and θ′′i (Ci,θ′
i

and Ci,θ′′
i

) may be different. Furthermore, it makes sense
to require that projΘi

Ci = Θi, because types are exogenous and cannot be deleted as
such. But this is not strictly necessary for our analysis.
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profiles of types and strategies we obtain a (weakly) decreasing sequence
of subsets. To ease notation, we write Θ × S instead of×i∈I (Θi × Si),
given the obvious isomorphism between the two sets. Similarly, for games
with more than two players, we identify Θ−i × S−i with×j 6=i (Θj × Sj).
With this, we consider the sequence (ρn (Θ× S))n∈N, where

ρ1 (Θ× S) =×
i∈I

 ⋃
θi∈Θi

{θi} × ri,θi
(
∆H (Θ−i × S−i)

)
contains all the profiles (θi, si)i∈I such that si is justifiable for θi, thus
representing the type-dependent behavioral implications of rationality.
Since (ρn (Θ× S))n∈N is decreasing, we can define

ρ∞ (Θ× S) =
⋂
n∈N

ρn (Θ× S) .

By finiteness of Θ×S, the limit ρ∞ (Θ× S) is attained after finitely many
iterations.

Definition 83. A profile of types and strategies (θi, si)i∈I is initially
rationalizable if (θi, si)i∈I ∈ ρ∞ (Θ× S).

Leveraging on the monotonicity of ρ, one can prove an analog of
Theorem 23. We postpone a discussion of this to Section 15.4.4, where we
present Directed Rationalizability. As in Proposition 7 of Chapter 11, one
can characterize initial rationalizability by means of iterated dominance.
For each Cartesian set C ∈ C, let ND (C) ⊆ C denote the set of profiles
(θi, si)i∈I ∈ C such that si is not dominated within C for θi by any mixed
strategy σi ∈ ∆ (Ci,θi), where Ci,θi = {s′i ∈ Si : (θi, s

′
i) ∈ Ci} is the section

at θi of Ci. In other words, ND (C) is the set of non-dominated profiles
in the restricted strategic form

〈
I, (Ci, Ui|C)i∈I

〉
. The restriction operator

ND: C → C is a self-map that can be iterated starting from any C ∈ C.
Note that, by Lemma 33, ρ (Θ× S) = NCD. Thus, it makes sense to
start the iteration from the set NCD of profiles of types and strategies
such that the latter are not conditionally dominated for the given types.
The proof of the following result is similar to the proof of Proposition 7.

Proposition 20. ρ∞ (Θ× S) = ND∞ (NCD).
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In words, initial rationalizability can be computed by first eliminating
(for every player i) each (θi, si) such that si is conditionally dominated
for θi, and then iteratively eliminating pairs (θi, si) such that si is
dominated for θi in the restricted strategic form obtained from the previous
eliminations. The reason why conditional dominance is used only in the
first step is the same as in Chapter 11: initial rationalizability allows
“surprised” players to abandon their initial belief in the rationality of
the co-players even if the co-players’ observed behavior is consistent with
rationality.
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Figure 15.2: A 3-stage game with payoff uncertainty.

Example 64. In the multistage game with payoff uncertainty depicted
in Figure 15.2, D is dominated by U for type θ′ of player 1, but not for
type θ′′. The reduced strategy S is dominated for (the unique type of)
player 2 by mixed strategy 1

2δC.L + 1
2δC.R conditional on D. The remaining

two strategies C.L and C.R are justifiable. For example, any µ̄2 such that
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µ̄2 (θ′,D|D) = 1
2 justifies both. Thus,

ρ1 (Θ× S) = NCD =
{(
θ′,U

)
,
(
θ′′,U

)
,
(
θ′′,D

)}
× {C.L,C.R} .

Initial rationalizability stops here. If player 2 initially believes that both
types of player 1 would choose U, which is consistent with initial belief in
rationality, then no revised belief about player 1’s type conditional upon
observing D violates the chain rule (or Bayes consistency). In particular,
player 2 may deem θ′ at least as likely as θ′′ conditional on D despite the
fact that D is dominated for θ′ but not for θ′′, thus justifying C.L. If,
instead, player 2 strongly believed in the rationality of 1, then he should
assign probability 0 to θ′ conditional on D. Only C.R is optimal given
such beliefs. Yet, initial rationalizability does not rely on strong belief in
rationality. N

15.4.2 Strong Rationalizability

Strong rationalizability characterizes the behavioral implications of
Rationality and Common Strong Belief in Rationality, which in turn
captures the best rationalization principle: rational players strongly believe
in the rationality of their co-players, and more generally ascribe to them
the highest degree of strategic sophistication consistent with their observed
behavior.

For any nonempty subset C−i ⊆ Θ−i × S−i, let ∆H
sb (C−i) denote the

set of CPSs of player i that strongly believe C−i ⊆ Θ−i × S−i, that is,

∆H
sb (C−i) =

{
µ̄i ∈ ∆H (Θ−i × S−i) :

∀h ∈ H,
(Θ−i × S−i (h)) ∩ C−i 6= ∅ ⇒ µ̄i (C−i|h) = 1

}
.

Note that, letting h = ∅, we obtain Θ−i × S−i (∅) = Θ−i × S−i and
(Θ−i × S−i (∅))∩C−i = C−i. Thus, for every nonempty C−i, strong belief
in C−i implies initial belief in C−i: ∆H

sb (C−i) ⊆ ∆H
∅ (C−i).

With this, we define a (weakly) decreasing sequence of Cartesian
subsets (Cnsb)n∈N representing the type-dependent behavioral implications
of rationality and the strategic reasoning steps reflecting the best
rationalization principle.

Definition 84. Consider the following elimination procedure:
(Step n = 0) For each i ∈ I, let C0

i,sb = Θi × Si, C0
−i,sb = Θ−i × S−i, and
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C0
sb = Θ× S.

(Step n > 0) For each i ∈ I, let

∆n
i =

n−1⋂
m=0

∆H
sb

(
Cm−i,sb

)
,

Cni,sb =
{

(θi, si) ∈ Θi × Si : ∃µ̄i ∈ ∆n
i , si ∈ ri

(
µ̄i, θi

)}
=

⋃
θi∈Θi

{θi} × ri,θi (∆n
i ) ,

Cn−i,sb =×i6=iC
n
j,sb, Cnsb =×i∈I C

n
i,sb.

A profile of types and strategies (θi, si)i∈I is strongly rationalizable if
(θi, si)i∈I ∈ C∞sb =

⋂
n>0

Cnsb, that is, if (θi, si) ∈ C∞i,sb =
⋂
n>0

Cni,sb for each

player i ∈ I.

Note that the sequence (Cnsb)n∈N is indeed (weakly) decreasing because,

by definition, ∆n
i ⊆ ∆n−1

i and thus ri,θi (∆n
i ) ⊆ ri,θi

(
∆n−1
i

)
for every i ∈ I

and θi ∈ Θi.
Let us compare strong and initial rationalizability. To ease the

comparison, write the sequence of subsets obtained with the initial
rationalizability procedure as

(
Cn∅
)
n∈N = (ρn (Θ× S))n∈N with Cn∅ =

×i∈I C
n
i,∅. Since C0

−i,sb = Θ−i × S−i, ∆1
i = ∆H (Θ−i × S−i) and C1

i,sb

is the set of pairs (θi, si) such that si is justifiable for θi. Thus, C1
sb =

ρ (Θ× S) = C1
∅. For n = 2,

∆2
i = ∆H

sb

(
C1
−i,sb

)
⊆ ∆H

∅
(
C1
−i,sb

)
= ∆H

∅
(
C1
−i,∅

)
(i ∈ I), where the inclusion follows from the fact that strong belief implies
initial belief; thus, C2

sb ⊆ C2
∅. In the game of Example 64 (which will be

analyzed in detail below), ∆2
i =

{
µ̄2 : µ̄2 (θ′,D|D) = 0

}
and C2

2,sb = {C.R},
while C2

2,∅ = C1
2,∅ = {C.L,C.R}. The inclusion indeed holds for all

steps n > 1. The proof of the following result is a rather straightforward
extension of the proof of Remark 52 in Chapter 11.

Remark 56. Initial rationalizability is weaker than strong
rationalizability, that is,

Cnsb ⊆ Cn∅ := ρn (Θ× S)

for all n ∈ N∪{∞}.
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Extending the analysis of Chapter 11 to allow for incomplete
information, we could define a restriction operator ρ̄sb : C → C based on
constrained optimization so that Cnsb = ρ̄nsb (Θ× S) for every n ∈ N∪{∞};
we skip the details. This in turn yields a characterization of strong
rationalizability by means of iterated conditional dominance, which we
report below without proof.

Recall that, for any subset Ci ⊆ Θi × Si and type θi, we let Ci,θi ⊆ Si
denote the section of Ci ⊆ Θi×Si at θi. Similarly, we let Ci,θi (h) ⊆ Si (h)
denote the section of Ci ∩ (Θi × Si (h)) at θi, that is,

Ci,θi (h) = {si ∈ Si (h) : (θi, si) ∈ Ci} .

Also, for any nonempty subset C ⊆ Θ× S, let

H (C) = {h ∈ H : ∃ (θ, s) ∈ C, h ≺ ζ (s)}

denote the set of non-terminal histories consistent with C.

Definition 85. Fix a nonempty Cartesian subset C ∈ C, a player i ∈ I,
and a pair (θi, s̄i) ∈ Ci. Strategy s̄i is conditionally dominated in C
for type θi if there are h ∈ Hi(s̄i)∩H(C) and σi ∈ ∆(Ci,θi (h)), such that

∀ (θ−i, s−i) ∈ C−i∩(Θ−i × S−i(h)) , Ûi (θi, θ−i, s̄i, s−i) < Ûi (θi, θ−i, σi, s−i) .

We say that s̄i ∈ Ci.θi is conditionally undominated in C for type
θi if it is not conditionally dominated in C for type θi. With this, we let
NCD(C) denote the set of profiles (θi, si)i∈I such that si is conditionally
undominated in C for θi, for every i ∈ I.

Theorem 41. Cnsb = NCDn (Θ× S) for all n ∈ N∪{∞}.

Example 65. Go back to the multistage game with payoff uncertainty of
Example 64. Strong rationalizability yields a unique solution. We already
know that

C1
sb = NCD (Θ× S) = C1

∅ =
{(
θ′,U

)
,
(
θ′′,U

)
,
(
θ′′,D

)}
× {C.L,C.R} .

Next, note that C1
1,sb∩(Θ1 × {D}) = {(θ′′,D)}. Thus, C.L is conditionally

dominated in C1
sb. No other elimination is possible in Step 2, because U
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is a best reply for θ′′ to C.L, D is a best reply for θ′′ to C.R, and C.R is
sequentially optimal given any µ̄2 such that µ̄2 (θ′,D|D) = 0. Therefore,

C2
sb = NCD2 (Θ× S) =

{(
θ′,U

)
,
(
θ′′,U

)
,
(
θ′′,D

)}
× {C.R} .

Finally, in Step 3 we eliminate (θ′′,U), because D is the unique best reply
to C.R for type θ′′:

C3
sb = NCD3 (Θ× S) =

{(
θ′,U

)
,
(
θ′′,D

)}
× {C.R} .

This leaves only one strategy for each type. Therefore, the elimination
procedure stops at Step 3: C3

sb = C∞sb . N

15.4.3 Rationalizability and Iterated Admissibility

As in Chapter 11, one can establish a tight connection (a generic
equivalence) between conditional dominance and weak dominance in the
strategic form, and move from there to establish a connection between
strong rationalizability and a form of iterated admissibility. Recall that,
for any subset Ci ⊆ Θi × Si, we let Ci,θi ⊆ Si denote its section at θi.

Definition 86. Fix a nonempty Cartesian subset C ∈ C, a player i ∈ I,
and a pair (θi, s̄i) ∈ Ci. Strategy s̄i is weakly dominated for type θi in
C if there is a mixed strategy σi ∈ ∆ (Ci,θi) such that

∀ (θ−i, s−i) ∈ C−i, Ui (θi, θ−i, s̄i, s−i) ≤ Ui (θi, θ−i, σi, s−i) and

∃
(
θ̄−i, s̄−i

)
∈ C−i, Ui

(
θi, θ̄−i, s̄i, s̄−i

)
< Ui

(
θi, θ̄−i, σi, s̄−i

)
.

Strategy s̄i is admissible for θi in C if it is not weakly dominated for θi
in C. We let NWD (C) denote the set of profiles (θi, si)i∈I ∈ C such that
si is admissible in C for θi for every player i ∈ I.

It is relatively straightforward to show that if a strategy s̄i is
conditionally dominated in C for a type θi then it is weakly dominated
for θi in C. By essentially the same arguments used in Chapter 11,
one can show that the converse is true for almost all parameterized
payoff functions. To make this precise, note that appending to structure〈
I, (Θi, Ai,Ai (·))i∈I

〉
a profile of parameterized payoff functions (ui)i∈I ∈

RΘ×Z×I , we obtain a game with payoff uncertainty. Recall that a subset
of a Euclidean space is deemed negligible if its closure has 0 Lebesgue
measure.
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Lemma 34. Fix a finite structure
〈
I, (Θi, Ai,Ai (·))i∈I

〉
and a nonempty

C ∈ C. For all profiles of parameterized payoff functions (ui)i∈I ∈ RΘ×Z×I

except at most a negligible set, NCD (C) = NWD (C).

Using Lemma 34, one can prove that strong rationalizability is
generically equivalent to iterated admissibility, that is, the maximal
iterated removal of pairs (θi, si) such that si is weakly dominated for θi in
the restricted set of profiles not eliminated in previous steps. Furthermore,
initial rationalizability is generically equivalent to the removal of all pairs
(θi, si) such that si is weakly dominated for θi (in Θ× S) followed by the
iterated elimination of pairs (θi, si) such that si is dominated for θi.

Theorem 42. Fix a finite structure
〈
I, (Θi, Ai,Ai (·))i∈I

〉
. For all profiles

u ∈ RΘ×Z×I except at most a negligible set,

Cnsb = NWDn (Θ× S) , ρn (Θ× S) =
(
NDn−1 ◦NWD

)
(Θ× S)

for all n ∈ N∪{∞}.

Example 66. Go back again to the multistage game with payoff
uncertainty of Examples 64 and 65. We can verify that its parameterized
payoffs are “generic” in the sense of Theorem 42, that is, they do not
belong to the negligible set for which strong rationalizability differs from
iterated admissibility. Its (reduced) strategic form can be represented by a
pair of matrices, one for each θ, where player 2 chooses the rows and only
player 1 knows the true matrix (payoffs of player 1 are in bold).

θ′ U D

S 1, v 0, 1

C.L 1, v 0, 3

C.R 1, v 0, 0

θ′′ U D

S 1, w 0, 1

C.L 1, w 0, 0

C.R 1, w 2, 3

Note, in particular, that S is weakly dominated by 1
2δC.L + 1

2δC.R. Then
we obtain

NWD1 (Θ× S) =
{(
θ′,U

)
,
(
θ′′,U

)
,
(
θ′′,D

)}
× {C.L,C.R} = C1

sb,

NWD2 (Θ× S) =
{(
θ′,U

)
,
(
θ′′,U

)
,
(
θ′′,D

)}
× {C.R} = C2

sb,

NWD3 (Θ× S) =
{(
θ′,U

)
,
(
θ′′,D

)}
× {C.R} = C3

sb,

NWD∞ (Θ× S) = NWD3 (Θ× S) = C3
sb = C∞sb .

N
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15.4.4 Directed Rationalizability

Following up on the analysis of Section 8.2 of Chapter 8, we provide
notions of “directed rationalizability” for multistage games with payoff
uncertainty. That is, we provide extensions of the notions of initial and
strong rationalizability to situations where some contextual restrictions
on players’ beliefs are transparent. Let us first clarify the restrictions we
consider and what we mean by “transparent” in the analysis of multistage
games, where conditional beliefs as the game unfolds play a crucial role.

It is natural to consider restrictions concerning initial exogenous beliefs,
that is, assumptions about what each player i would believe about θ−i
at the beginning of the game if he were of type θi (cf. Section 8.3 of
Chapter 8). Such assumptions can be represented by restricted belief
sets ∆̄θi ⊆ ∆ (Θ−i). However, it may be plausible and interesting to
consider also restrictions on initial beliefs about both types and behavior,
and/or restrictions on beliefs conditional on observing some histories of
play. Therefore, we will be more flexible and posit, for each type θi of each
player i, a (possibly) restricted set of CPSs ∆i,θi ⊆ ∆H (Θ−i × S−i).

Given this, how should we extend the meaning of “transparency” to the
present environment? One candidate is a notion of “initial transparency,”
according to which an event is initially transparent if it is true and
commonly believed at the beginning of the game. This is the simplest
extension of the transparency idea from static games to multistage games,
and it is sufficient to motivate and interpret the notion of initial directed
rationalizability presented below. However, initial transparency is not
germane to the idea of strong rationalizability, which captures forward-
induction reasoning. Thus, we consider a strengthening based on the
notion of “common full belief.” We say that a player fully believes an
event E if he assigns probability 1 to E conditional on every history h ∈ H.
We say that event E is transparent if E is true and there is common full
belief of E.

Note that some events cannot be fully believed, hence they cannot
be transparent, because they are contradicted by some non-terminal
history. Here, however, we only consider the transparency of events
concerning what players believe about the state of nature θ and (possibly)
behavior. Events that exclusively concern what players believe cannot be
contradicted by the observation of players’ behavior. Therefore, it is always
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possible to assume that some features of players’ beliefs are transparent.7

Let us start with initial directed rationalizability. This solution concept
posits restrictions on players’ beliefs and characterizes the information-
dependent behavioral implications of (a) Rationality, (b) Common Initial
Belief in Rationality, and (c) (initial) transparency of the posited
restrictions. For each i ∈ I and θi ∈ Θi, let ∆i,θi ⊆ ∆H (Θ−i × S−i)
denote the restricted, nonempty set of CPSs for information-type θi of
player i. For a given profile ∆ = (∆i,θi)i∈I,θi∈Θi

, define the initial
∆-rationalization operator ρ∆ : C → C as follows: for every C ∈ C,

ρ∆ (C) = ×
i∈I

{
(θi, si) : ∃µ̄i ∈ ∆H

∅ (C−i) ∩∆i,θi , si ∈ ri
(
µ̄i, θi

)}
= ×

i∈I

 ⋃
θi∈Θi

{θi} × ri,θi
(
∆H
∅ (C−i) ∩∆i,θi

) .

(Recall that ∆H
∅ (C−i) denotes the set of CPSs that initially assign

probability 1 to C−i.)
For a fixed ∆, self-map ρ∆ is monotone, because C ′−i ⊆ C−i implies

∆H
∅
(
C ′−i

)
⊆ ∆H

∅ (C−i). Thus, as we iterate ρ∆ starting from the whole
set of profiles of types and strategies, we obtain the (weakly) decreasing
sequence of subsets (ρn∆ (Θ× S))n∈N. In particular, ρ1

∆ (Θ× S) =
ρ∆ (Θ× S) contains all the profiles (θi, si)i∈I such that, for each i, si is
justified for θi by some CPS µ̄i ∈ ∆i,θi . Let

ρ∞∆ (Θ× S) =
⋂
n∈N

ρn∆ (Θ× S) .

Definition 87. Fix a profile ∆ = (∆i,θi)i∈I,θi∈Θi
of restricted sets of CPSs.

A profile of types and strategies (θi, si)i∈I is initially ∆-rationalizable
if (θi, si)i∈I ∈ ρ∞∆ (Θ× S).

As a matter of fact, whether the belief restrictions are assumed to be
transparent or only initially transparent does not make any difference here,

7Someone might object that a player’s behavior may reveal something about his
beliefs. But this objection would be based on a misunderstanding. Any inference about
beliefs based on observed behavior relies on an hypothesized link between beliefs and
behavior, such as that chosen actions must maximize subjective expected utility. Thus,
observations about behavior can only contradict the joint hypothesis that a player’s
beliefs have some features and such link holds.
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because initial rationalizability is silent on what players would believe if
they were surprised by the realization of an unexpected history.

Similarly to Section 8.2 of Chapter 8, for each C ∈ C, map ∆ 7→ ρ∆ (C)
is monotone in the following sense: if ∆i,θi ⊆ ∆′i,θi for every i and θi,
written ∆ ⊆ ∆′, then ρ∆ (C) ⊆ ρ∆′ (C). By monotonicity of ρ∆, this
implies that the initial directed rationalizability map ∆ 7→ ρ∞∆ (Θ×A) is
monotone.

Remark 57. Fix two profiles of restrictions, ∆ and ∆′. If ∆ ⊆ ∆′, then
ρn∆ (Θ× S) ⊆ ρn∆′ (Θ× S) for every n ∈ N∪{∞}.

As argued in Section 8.2 of Chapter 8, the special case of restrictions
that only concern exogenous beliefs deserves attention. We say that
∆ = (∆i,θi)i∈I,θi∈Θi

is a profile of restrictions on exogenous beliefs

if, for each i ∈ I and each θi ∈ Θi, there is a nonempty set ∆̄i,θi ⊆ ∆(Θ−i)
such that

∆i,θi =
{
µ̄i ∈ ∆H(Θ−i × S−i) : margΘ−i µ̄

i (·|∅) ∈ ∆̄i,θi

}
,

where margΘ−i µ̄
i (·|∅) denotes the initial marginal belief about θ−i derived

from µ̄i, that is, margΘ−i µ̄
i (θ−i|∅) = µ̄i ({θ−i} × S−i|∅) for each θ−i ∈

Θ−i.
Given the monotonicity of ρ∆, one can prove the following extension

of Theorem 26 in Chapter 8 to the present multistage framework.

Theorem 43. Consider a profile ∆ = (∆i,θi)i∈I,θi∈Θi
of restrictions on

exogenous beliefs. Then

projΘρ
n
∆ (Θ× S) = Θ

for all n ∈ N ∪ {∞}, and

ρ∆ (ρ∞∆ (Θ× S)) = ρ∞∆ (Θ× S) .

Furthermore, for every C ∈ C,

C ⊆ ρ∆ (C)⇒ C ⊆ ρ∞∆ (Θ× S) .

As noticed in Chapter 8, projΘρ
∞
∆ (Θ× S) = Θ implies that, for every

type θi of each player i, the set of initially ∆-rationalizable strategies for
type θi is nonempty.
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The following example illustrates initial directed rationalizability.
Although we neglected the residual uncertainty Θ0 to simplify our abstract
notation, we reintroduce it in this particular case.

Example 67. Consider a leader-follower game, where player 1 (she) is
the leader and player 2 (he) is the follower. Each player has to choose
between two restaurants, one on the left-hand side of the main street8

and one on the right-hand side. Thus, Ai = {`i, ri}, S1 = A1, and

S2 = {`2, r2}{`1,r1}. The unknown state θ0 ∈ Θ0 =
{
θ`0, θ

r
0

}
determines

whether the best restaurant is on the left or on the right. Each player i has
private information θi ∈ Θi =

{
θ`i , θ

r
i

}
, which is believed to be correlated

to the quality of restaurants, but the payoff depends only on the chosen
restaurant and on θ0:

ui (θ, (a1, a2)) =

{
1, if ai = `i and θ0 = θ`0, or ai = ri and θ0 = θr0,
0, otherwise.

It is transparent that player 1 thinks that her private information signals
quality, and that player 2 thinks that player 1 is an expert who has more
accurate information in the following sense: if he knew θ1 he would deem
the state θ0 “signalled” by θ1 more likely than the other independently
of his private information θ2. Formally, we consider the following sets
of CPSs featuring restrictions on exogenous initial beliefs: using obvious
abbreviations for initial, marginal, and conditional beliefs,9 for each “street
side” x ∈ {`, r},

∆1,θx1
=

{
µ̄1 : µ̄1 (θx0 ) >

1

2

}
,

and for each θ2 ∈
{
θ`2, θ

r
2

}
,

∆2,θ2 =

{
µ̄2 : ∀x ∈ {`, r} , µ̄2 (θx0 , θ

x
1 ) > 0, µ̄2 (θx0 |θx1 ) >

1

2

}
.

Then, initial ∆-rationalizability is computed in two steps: it implies that
player 1 follows her private information and player 2 follows the choice of
player 1 independently of his own private information:

ρ2
∆ (Θ× S) = Θ0×

{(
θ`1, `1

)
, (θr1, r1)

}
×{(θ2, s2) : s2 (`1) = `2, s2 (r1) = r2} .

8Given a “canonical direction.”

9For example, µ̄1 (θ0) = µ̄1 ({θ0} ×Θ2 × S2|∅) and µ̄2 (θx0 |θx1 ) =
µ̄2({θx0 ,θx1}×S1|∅)
µ̄2(Θ0×{θx1}×S1|∅)

.
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We leave the formal proof as an exercise. The key insight is that, given
the belief restrictions, if the follower is initially certain of the rationality
of the leader, then he initially assigns strictly positive probability to each
action of the leader; hence, he cannot be “surprised” and, for each action
of the leader, he believes that this action reveals her private information.
Since he “trusts” the private information of the leader more than his own,
he follows suit. N

We now consider strong directed rationalizability. This solution
concept posits restrictions on players’ beliefs and characterizes the
behavioral implications of (a) Rationality, (b) transparency of the posited
restrictions, and (c) Common Strong Belief in (a)-(b). Fix a profile
∆ = (∆i,θi)i∈I,θi∈Θi

. For each i ∈ I and θi ∈ Θi, and for any nonempty

subset C−i ⊆ Θ−i×S−i, we let ∆H
sb,θi

(C−i) denote the set of CPSs in ∆i,θi

that strongly believe C−i ⊆ Θ−i × S−i, that is,

∆H
sb,θi

(C−i) = ∆H
sb (C−i) ∩∆i,θi .

Note that ∆H
sb,θi

(C−i) = ∆i,θi if C−i = Θ−i × S−i.

Definition 88. Fix a profile ∆ = (∆i,θi)i∈I,θi∈Θi
of restricted sets of CPSs.

Consider the following elimination procedure:
(Step n = 0) For each i ∈ I, let C∆,0

i,sb = Θi × Si, C∆,0
−i,sb = Θ−i × S−i, and

C∆,0
sb = Θ× S.

(Step n > 0) For each i ∈ I and θi ∈ Θi, let

∆n
i,θi

=
n−1⋂
m=0

∆H
sb,θi

(
C∆,m
−i

)
,

and for each i ∈ I let

C∆,n
i,sb =

{
(θi, si) ∈ Θi × Si : ∃µ̄i ∈ ∆n

i,θi
, si ∈ ri

(
µ̄i, θi

)}
=

⋃
θi∈Θi

{θi} × ri,θi
(
∆n
i,θi

)
.

Also, let C∆,n
−i,sb =×i6=iC

∆,n
j,sb and C∆,n

sb =×i∈I C
∆,n
i,sb .

A profile of types and strategies (θi, si)i∈I is strongly ∆-rationalizable

if (θi, si)i∈I ∈ C
∆,∞
sb =

⋂
n>0

C∆,n
sb , that is, if (θi, si) ∈ C∆,∞

i,sb =
⋂
n>0

C∆,n
i,sb for

each player i ∈ I.
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Note that the sequence
(
C∆,n

sb

)
n∈N

is (weakly) decreasing because, by

definition, ∆n
i,θi
⊆ ∆n−1

i,θi
and thus ri,θi

(
∆n
i,θi

)
⊆ ri,θi

(
∆n−1
i,θi

)
for every

i ∈ I and θi ∈ Θi. The proof of the following result is left to the reader as
an exercise.

Remark 58. The first steps of the strong and initial directed
rationalizability procedures coincide, but strong directed rationalizability
refines initial directed rationalizability: C∆,1

sb = ρ1
∆ (Θ× S) and C∆,n

sb ⊆
ρn∆ (Θ× S) for every n ≥ 2. If ∆ = (∆i,θi)i∈I,θi∈Θi

is a profile of
restrictions on exogenous beliefs, then

projΘC
∆,n
sb = Θ

for all n ∈ N ∪ {∞}, which implies that, for every type θi of each player i,
the set of strongly ∆-rationalizable strategies is nonempty.

The following example illustrates strong directed rationalizability.

Example 68. Player 1 is a young unemployed person who has to decide
whether to get an education (e) or not (n). There is only one kind of
job, with a fixed wage W , and education is not necessary to apply for the
job. Furthermore, education does not enhance productivity. Player 2 is an
employer who has to decide whether to hire player 1 or not, after observing
his decision.

Player 1 can be a high type θH or a low type θL. Higher types are more
productive, yield more additional revenue if hired (RH > RL), and incur
a lower subjective cost to get an education (cH < cL). Player 1 knows his
type. We assume that 0 < cH < W and RH = R > W > RL = 0. This
game can be represented as in Figure 15.3.

We let x.y denote the strategy of the employer who selects action
x ∈ {j, n} at history (n) and action y ∈ {J,N} at history (e). Let us
first consider strong rationalizability. Note that, for type θL, action n is
dominant. Strong rationalizability yields{(

θH, e
)
,
(
θH, n

)
,
(
θL, n

)}
× {j.J, n.J} .

Indeed, at the second step strategies j.N and n.N are eliminated: strong
belief in rationality implies that, if player 1 gets an education, then player
2 must conclude that his type is high; this entails that J is optimal.
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2 1,θH 2 (−cH
0

)

2 1,θL

(
0
0

)

(
0
0

) 2

(−cL
0

)

(
W−cH
R−W

)

(
W−cL
−W

)(
W
−W
)

(
W

R−W
)

n

n

e

e

J

N

J

N

j

n

j

n

Figure 15.3: A “job market” game.

Assume now that (it is transparent that) at the beginning of the game
player 2 assigns a low probability to the high type. Specifically, every CPS
µ̄2 ∈ ∆2 is such that

µ̄2
({
θH
}
× {n, e} |∅

)
<
W

R
.

(Note that W
R ∈ (0, 1).) With this restriction on the beliefs of player

2 and no restriction on the beliefs of any type of player 1, directed
rationalizability is computed in three steps:

C∆,3
sb =

{(
θH, e

)
,
(
θL,n

)}
× {n.J} .

At the first step,
(
θL, e

)
is eliminated because, as noted above, action

n is dominant for type θL. Strategy j.J is also eliminated at the first
step, because at least one of the two beliefs after observing e and n must
be derived from µ̄2 (·|∅) by conditioning; hence at least one of the two
conditional beliefs cannot assign probability higher than W

R to θH. The
same argument as the one used for strong rationalizability shows that
strategies j.N and n.N are eliminated at the second step. Since both j.J
and j.N were eliminated, at the third step type θH chooses action e. We
leave the formal proof as an exercise. N
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We also note a rather subtle point: unlike initial directed
rationalizability, strong directed rationalizability is not monotone in the
beliefs restrictions. In particular, strong ∆-rationalizability may not
refine strong rationalizability (which is obtained by letting ∆i,θi =
∆H (Θ−i × S−i) for all i and θi). This follows from the fact that the strong
belief set ∆H

sb (C−i) is not monotone in C−i (see the discussion in Section
11.3 of Chapter 11). The following example illustrates this point.

Example 69. Consider the following game. Player 1 moves first, choosing
between In and Out. After Out, the game ends. After In, player 2 moves,
choosing between left, center, and right, then the game ends. Player 1
is privately informed of a payoff-relevant parameter θ1 ∈ {0, 1}. Players’
payoffs depend on the terminal history and on θ1 as follows (see Figure
15.4).

(
1− θ1

1− θ1

) (
θ1

−1

)(
−1
θ1

)

2

1

(
1
2
∗

)

` rc

In

Out

Figure 15.4: A leader-follower game with asymmetric information.

We first analyze the game with strong rationalizability (that is,
without belief restrictions), which can be computed by iterated conditional
dominance. Since r is conditionally dominated, it is eliminated in Step 1.
Given this, in Step 2, In is eliminated for type θ1 = 1. In Step 3, player
2 rationalizes In assuming that it was chosen by type θ1 = 0 (forward
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induction), therefore c is eliminated. Finally, in Step 4, Out is eliminated
for type θ1 = 0. To conclude, Out is the only strongly rationalizable
strategy for type θ1 = 1, In is the only strongly rationalizable strategy for
type θ1 = 0, and ` is the only strongly rationalizable strategy for player 2:

C∞sb = C4
sb = {(0, In) , (1, Out)} × {`} .

Next we consider directed rationalizability assuming that (only) the
following is transparent: player 2 becomes certain of type θ1 = 1 upon
observing In, that is,

∆2 =
{
µ̄2 ∈ ∆H(Θ1 × S1) : µ2((1, In) |(In)) = 1

}
.

Given this, both ` and r are eliminated in Step 1 of directed
rationalizability. Then, in Step 2 In is eliminated for both types of player
1. This makes it impossible to rationalize In in Step 3. Hence, the only
strongly ∆-rationalizable strategy of both types of player 1 is Out, and the
only strongly ∆-rationalizable strategy of player 2 is c:

C∆,∞
sb = C∆,3

sb = {(0, Out) , (1, Out)} × {c} .

N

Note that in Example 69 we considered a restriction on beliefs
conditional on observed behavior, which are endogenous. The reason is
that, if the restrictions ∆ only concern exogenous beliefs, then the set
of strong ∆-rationalizable paths (not the strategies) is monotone in the
posited restrictions ∆.10

15.5 Multistage Bayesian Games

Structure
〈
I,Θ0, (Θi, Ai,Ai(·), ui)i∈I

〉
does not specify the exogenous

interactive beliefs of the players, i.e., their beliefs about each other’s types.
Therefore, it is not rich enough to define traditional notions of equilibrium,
e.g. Bayesian equilibrium and refinements thereof.

As in the case of static games, we should add exogenous interactive
beliefs structures à la Harsanyi to carry out a traditional analysis of

10A proof is available by request.
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games with incomplete information. Since the dynamics involve additional
complications of strategic analysis, we simplify the interactive beliefs
aspect: we assume that the set of types à la Harsanyi Ti coincides with
(more precisely, is isomorphic to) Θi. To emphasize this assumption we
use the phrase “simple Bayesian game” (cf. Section 8.4 of Chapter 8).
Compared to the previous analysis of rationalizability, we allow for the
presence of residual uncertainty, that is, we allow for the possibility that
|Θ0| > 1.11

A multistage Bayesian game with information-types, or simple
multistage Bayesian game (with observable actions), is a (finite)
structure

Γ =
〈
I,Θ0,

(
Θi, Ai,Ai(·), ui, (pi(·|θi))θi∈Θi

)
i∈I

〉
where

•
〈
I,Θ0, (Θi, Ai,Ai(·), ui)i∈I

〉
is a (finite) game with payoff

uncertainty

• for every i ∈ I and θi ∈ Θi, pi(·|θi) ∈ ∆(Θ0 × Θ−i) is the initial
exogenous belief of information-type θi.

Alternatively, we could specify an ex ante belief, or “prior,” Pi ∈ ∆(Θ)
for every player i such that Pi (θi) = Pi (Θ0 × {θi} ×Θ−i) > 0 for each
θi ∈ Θi, and derive the initial belief of each type θi as a conditional
probability, that is,

pi(θ0, θ−i|θi) =
Pi(θ0, θi, θ−i)

Pi(θi)
(15.5.1)

for all (θ0, θ−i) ∈ Θ0 ×Θ−i.
12

11In the analysis of rationalizability, we assumed distributed knowledge of the θ
parameter (that is, |Θ0| = 1) and neglected Θ0 merely for notational simplicity.

12Game theorists use the term “prior” somewhat liberally to mean any kind of
subjective probability measure assigned before receiving any kind of information. In
Bayesian inferential statistics, instead, a prior is a subjective probability measure over
statistical models, e.g., urn models. In the present context, the priors of Bayesian
statistics are the initial beliefs of types pi (·|θi), because they are the starting points of
the Bayesian updating process.
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Note also that for every profile of initial beliefs of types (pi(·|θi))θi∈Θi
we can find a class of ex ante beliefs that generate them according to
(15.5.1): just pick any strictly positive measure λi ∈ ∆◦ (Θi) and compute
the ex ante probability of each (θ0,θi, θ−i) as follows:

Pλi (θ0,θi, θ−i) = pi(θ0, θ−i|θi)λi (θi) .

Since λi is strictly positive,

Pλi (θi) =
∑

(θ0,θ−i)∈Θ0×Θ−i

pi(θ0, θ−i|θi)λi (θi)

= λi (θi)
∑

(θ0,θ−i)∈Θ0×Θ−i

pi(θ0, θ−i|θi) = λi (θi) > 0.

Therefore Pλi is an ex ante belief that generates (pi(·|θi))θi∈Θi
, that is,

Pλi(θ0, θi, θ−i)

Pλi(θi)
=
pi(θ0, θ−i|θi)λi (θi)

λi (θi)
= pi(θ0, θ−i|θi)

for all (θ0, θi, θ−i). If there are at least two information-types for player i,
then there is a continuum of ex ante beliefs that generate (pi(·|θi))θi∈Θi

. If
instead there is only one type of player i, say θ̄i, then there is no essential
difference between i’s ex ante belief and i’s belief given his (unique) type
θ̄i, because Θ = Θ0 ×

{
θ̄i
}
×Θ−i is isomorphic to Θ0 ×Θ−i.

We keep writing pi(·|θi) for the initial exogenous belief of type θi—as if
there were an ex ante stage—for several reasons. First, it is traditional in
much of the applied-theory literature. Second, in some applications, it does
make sense to think of an ex ante stage in which all player have the same
information (i.e., they just know that the set of possible states of nature
is Θ). Third, many formulas involving conditional probabilities are more
easily readable under the “ex-ante interpretation” that θ is determined at
random and each i observes the realization θi (cf. Section 8.6 in Chapter
8).

Simple multistage Bayesian games are traditionally analyzed by means
of a refined notion of Bayesian equilibrium, just like multistage games with
observable actions and complete information are traditionally analyzed
by computing subgame perfect Nash equilibria. The following sections
are devoted to such traditional analysis. However, we point out that
traditional equilibrium analysis is not a must. For example, we can use
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directed rationalizability assuming that there are transparent restrictions
on exogenous beliefs determined by the belief maps θi 7→ pi (·|θi).
Alternatively, one can determine the ex ante strategic form of the Bayesian
game and apply iterated admissibility. Both approaches can be very
insightful.

15.6 Bayesian Equilibrium

We now show how the notion of Bayesian equilibrium given for the static
case (see Section 8.4 of Chapter 8) can be naturally extended to simple
multistage Bayesian games.

Fix a simple multistage Bayesian game Γ. A choice rule, or (extended)
decision function of player i is an element of the set SΘi

i that can be
interpreted as the deterministic conjecture of player j 6= i about i’s
contingent behavior as a function of his information-type θi. For each
i ∈ I, we let

Σi = SΘi
i =

(
×
h∈H
Ai (h)

)Θi

denote the set of all choice rules of player i. A generic element of Σi is
denoted by σi (not to be confused with a mixed strategy). Going back to
the definition of Bayesian equilibrium of Chapter 8 and replacing actions
ai with strategies si, we obtain the following:

Definition 89. A (pure) Bayesian equilibrium of Γ is a profile of choice
rules (σi)i∈I ∈×SΘi

i such that, for all i ∈ I, θi ∈ Θi, and si ∈ Si,∑
(θ0,θ−i)∈Θ0×Θ−i

pi (θ0, θ−i|θi)ui (θ0, θi, θ−i, ζ (σi (θi) , σ−i (θ−i)))

≥
∑

(θ0,θ−i)∈Θ0×Θ−i

pi (θ0, θ−i|θi)ui (θ0, θi, θ−i, ζ (si, σ−i (θ−i))) ,

where σ−i (θ−i) = (σj (θj))j 6=i.

The definition can be extended to allow for randomization, which
requires a suitable notion of randomized choice rules. As in multistage
games with complete information, we can think of players choosing pure
strategies at random (given their type), or players who randomize over
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actions as the play unfolds. The latter notion of randomization is
more convenient. A behavioral (randomized) choice rule, or extended
behavior strategy of player i is an element of the set BΘi

i , where
Bi =×h∈H ∆(Ai(h)) denotes the set of behavior strategies. A generic

element of the set BΘi
i is denoted by

(βi(·|θi, ·))θi∈Θi = (βi(·|θi, h))θi∈Θi,h∈H ,

where βi(ai|θi, h) is the probability of choosing ai given θi and h.
If we define Γ using “priors” Pi ∈ ∆(Θ), we can characterize the set

of Bayesian equilibria of Γ as the Nash equilibria of the ex ante strategic
form. For each i ∈ I, define Ui :×j∈I Σj → R by

Ui(σi, σ−i) =
∑
θ∈Θ

Pi(θ)ui (θ, ζ (σi (θi) , σ−i (θ−i))) ,

where Pi ∈ ∆(Θ) is any ex ante belief generating (pi(·|θi))θi∈Θi
. The ex

ante strategic form of Γ is the static game

AS(Γ) = 〈I, (Σi, Ui)i∈I〉 .

It can be checked that a profile σ is a Bayesian equilibrium of Γ if and
only if it is a Nash equilibrium of AS(Γ). An analogous result holds for
randomized Bayesian equilibria.

As anticipated above, it is convenient to represent randomized Bayesian
equilibria of multistage Bayesian games as profiles of extended behavior
strategies β ∈×i∈I B

Θi
i rather than profiles of (type-dependent) mixed

strategies.13 We can interpret extended behavior strategies as conditional
distributions in heterogeneous populations of agents. To see this, suppose
that πi(θi, si) is the fraction of agents in population i of type θi who play
si.

14 For every Xi ⊆ Si, set πi(θi, Xi) =
∑

si∈Xi πi(θi, si). Next recall
that Si(h) denotes the set of strategies of (population) i that allow (do not
prevent) h, and Si(h, ai) denotes the set of strategies of i that allow h and
select ai given h. Then, let

βi(ai|θi, h) =
πi(θi, Si(h, ai))

πi(θi, Si(h))
if πi(θi, Si(h)) > 0.

13By an incomplete-information version of Theorem 32, the two approaches are
equivalent.

14Milgrom and Weber [47] call πi a “distributional strategy.”



15.7. Perfect Bayesian Equilibrium 419

With this, βi(ai|θi, h) is the fraction of agents in population i taking action
ai at h, among those whose type is θi and whose strategy does not prevent
h.

We can also characterize the Bayesian equilibria of Γ as the Nash
equilibria of the interim strategic form. Assume for notational simplicity
that Θi ∩Θj = ∅ for each i, j ∈ I, i 6= j (this is just a matter of labelling).
The interim strategic form of Γ is the static

(∑
i∈I |Θi|

)
-player game

IS(Γ) =

〈⋃
i∈I

Θi, (Sθi , Uθi)i∈I,θi∈Θi

〉
where

• Sθi = Si for each θi,

• the expected payoff function Uθi :×j∈I S
Θj
j → R is given by

Uθi((sθj )j∈I,θj∈Θj ) =
∑

(θ0,θ−i)∈Θ0×Θ−i

pi(θ0, θ−i|θi)ui
(
θ0, θi, θ−i, ζ(sθi , sθ−i)

)
,

with sθ−i = (sθj )j∈I\{i} ∈ S−i.

It can be checked that a profile σ is a Bayesian equilibrium of Γ if and
only if it is a Nash equilibrium of IS(Γ). An analogous result holds for
randomized Bayesian equilibria.

15.7 Perfect Bayesian Equilibrium

Like Nash equilibrium, Bayesian equilibrium allows for non maximizing
choices at histories that are not supposed to occur in equilibrium. For
multistage games with complete information, this problem was addressed
using the notion of subgame perfect equilibrium. Thus, traditional game
theorists find it natural to try to extend this notion to multistage Bayesian
games and define some kind of “perfect Bayesian equilibrium” (PBE)
concept. Here we define the weakest (i.e., the most general) among the
meaningful versions of the PBE concept.15

15Some versions of PBE found in textbooks are either ambiguously defined, or are
serioulsy flawed because they do not assume that Bayes consistency holds starting from
every history (cf. Definition 78).
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As we did in Section 15.3, to ease notation we neglect residual
uncertainty, that is, we consider a simple multistage Bayesian game Γ
where Θ0 is a singleton and remove θ0 from formulas. It is convenient
to look at randomized equilibria as this makes it more transparent how
the analysis relies on Bayes rule. To connect to the analysis of rational
planning, a candidate equilibrium profile β = (βi)i∈I of extended behavior
strategies yields a “correct conjecture” for (each type of) each player i,
with

βi (a−i|θ−i, h) =
∏
j 6=i

βj (aj |θj , h) (15.7.1)

for all h ∈ H, θ−i ∈ Θ−i, and a−i ∈ A−i (h). Furthermore, we need
to specify a profile (µi(·|θi, h))i∈I,θi∈Θi of personal systems of beliefs, one
for each type of each player, otherwise we cannot compute conditional
expected payoffs. Of course, for each player i ∈ I, the initial belief of each
type θi ∈ Θi about the types of the other players must be the belief pi (·|θi)
exogenously specified in Bayesian game Γ.

Definition 90. A system of beliefs in Γ is a profile µ = (µi)i∈I ∈(
∆(Θ−i)

Θi×H
)I

where each µi(·|θi, ·) ∈ ∆(Θ−i)
H (i ∈ I, θi ∈ Θi) is a

personal system of beliefs such that µi (·|θi,∅) = pi (·|θi). A pair (β, µ)
given by a profile of extended behavior strategies and a system of beliefs is
called assessment.

Clearly, beliefs µ must be related to β and are therefore endogenous.
Hence, a candidate equilibrium cannot be just an extended behavior
strategy profile, it has to be an assessment (β, µ). With this, fix a
candidate equilibrium assessment (β, µ); when can we say that (β, µ) is a
PBE? First note that, for each h ∈ H, beliefs (µi(·|θi, h))i∈I,θi∈Θi define a
(h, µ)-continuation (Bayesian) game Γ (h, µ): consider the set of feasible
continuations of h, {h′ ∈ A≤N : (h, h′) ∈ H̄}, the resulting θ-dependent
payoffs and the interactive beliefs (µi(·|θi, h))i∈I,θi∈Θi . (Of course, the
(∅, µ)-“continuation game” is the Bayesian game itself, Γ (∅, µ) = Γ,
because µi (·|θi,∅) = pi (·|θi) for all i ∈ I, and θi ∈ Θi.) Intuitively,
(β, µ) is a PBE if it satisfies two conditions:

• (Interpersonal) Bayes consistency: the system of beliefs µ and
the behavior strategies β must be related to each other via Bayes
rule (thus, the players use the candidate equilibrium strategies of
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the co-players as conjectures in order to update beliefs via Bayes
rule).

• Continuation equilibrium (often called “sequential rationality”):
for each h ∈ H, β induces a Bayesian equilibrium of the (h, µ)-
continuation game Γ(h, µ).

However, it is not obvious how to specify Bayes consistency. Game
theorists have proposed different definitions. The reason is that, on top
of mere consistency with Bayes rule (see Definition 78), they wanted to
incorporate additional assumptions in the spirit of traditional equilibrium
analysis, such as that players “update in the same way” (differences in
beliefs are only due to differences in information), and that beliefs satisfy
independence across opponents. Unfortunately, it was not very clear which
additional assumptions one was trying to incorporate in the PBE concept,
nor how to exactly express those assumptions in a mathematical language.
Appeals to intuition and references to particular examples dominated the
analysis. Hence the mess: there is no universally accepted, or “canonical,”
notion of PBE despite the fact that many applied papers refer to the
PBE concept as if such a universally accepted notion existed. We consider
below a minimalistic (i.e., general) notion of PBE based only on Bayes
consistency as explained in Section 15.3.

Each player i, given his type θi, is uncertain about the types θ−i of
the co-players. As in the SPE analysis of complete information games, the
candidate equilibrium behavior strategies β are commonly believed to be
complied with, starting from any history h and whatever the number of
deviations from β implied by h.16 Thus, the probabilities of simultaneous
and future actions are always believed to be determined by β given the
players’ types. A new action profile a taken at h is the evidence upon
which player i updates his subjective belief about θ−i.

Definition 91. Assessment (β, µ) is a perfect Bayesian equilibrium
(PBE) of Γ if, for every player i ∈ I and type θi ∈ Θi, (1) personal
assessment

(
βi, µi (·|θi, ·)

)
(with conjecture βi given by eq. (15.7.1)) is

Bayes consistent and (2) behavior strategy βi (·|θi, ·) is sequentially optimal
given

(
βi, µi (·|θi, ·)

)
.

16A deviation from extended behavior strategy βj is detected at history h if h contains
an action aj taken at some earlier history h′ ≺ h such that βj (aj |θj , h′) = 0 for every
θj .
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Note that assessment (β, µ) satisfies condition (2) of Definition 91 if
and only if the continuation of β from each h ∈ H induces a Bayesian
equilibrium in the (h, µ)-continuation game Γ(h, µ). Letting h = ∅ (empty
history), we obtain the intuitive observation that, if (β, µ) is a PBE of Γ,
then β is a Bayesian equilibrium of Γ.17

Let Eβ,µi (ui|θi, h, ai) = V β,µi
θi

(h, ai) denote the conditional expected
payoff for type θi given h and ai, under assessment (β, µ). By an
application of the OD Principle (Proposition 19), we obtain the following
result:

Corollary 8. An assessment (β, µ) such that each type of each player
satisfies Bayes consistency is a PBE if and only if, for all i ∈ I, θi ∈ Θi,
and h ∈ H,

suppβi(·|θi, h) ⊆ arg max
ai∈Ai(h)

Eβ,µ (ui|θi, h, ai) .

The PBE concept of Definition 91 is quite weak. For example, it allows
players who start with the same information and beliefs in a given stage to
update in different ways, although they observe exactly the same evidence,
that is, the actions played at that stage. Also, it allows player i to change
his beliefs about the type of j upon observing the action of some other
player k, as if k had some private signal about the type of j. The reason
is that the interpersonal Bayes consistency requirements bite at histories
with positive probability, but not at histories with 0 probability.

Example 70. Consider the assessment partially shown in Figure 15.5,
where p denotes the belief of player 2 conditional on D and q denotes
the belief of player 3 conditional on (D,C). First of all, since D has
zero probability, even if players 2 and 3 have the same (uniform) prior
and observe the same evidence (action D is taken by player 1), they may
have different beliefs conditional on D, i.e., it is possible that µ3 (θ′|D) 6=
p =: µ2 (θ′|D). In a sense, they can come up with different explanations
of the unexpected move by player 1. Now suppose for the sake of the
discussion that instead they have the same belief given D: µ3 (θ′|D) = p.
If the candidate equilibrium behavior strategy of 2 assigns strictly positive
probability to C—that is, γ =: β2 (C|D) > 0—then Bayes consistency

17We will consider the relationship between PBE and Bayesian equilibrium more in
detail in the analysis of a special case; see Section 15.8.
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Figure 15.5: Assessment in a three-person game.
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implies that 2 and 3 hold the same belief conditional on (D,C), i.e., p = q.
If instead γ = 0 then Bayes consistency only implies µ2 (θ′|D,C) = p, but
it does not imply p = q; in other words, 3 may change his belief about 1’s
type just because he is surprised by 2. Stronger notions of PBE require,
in this example, that µ3 (θ′|D) = p = q. More generally, they require that
players with the same initial beliefs and information update in the same
way and that updated beliefs about a co-player’s type depend only on that
co-player’s actions. N

15.8 Equilibrium in Signaling Games

We now study an easy case widely considered in applications, for which
everybody agrees on the meaning of PBE:

Definition 92. A leader-follower game is a two-person, two-stage
game with observable actions where only one player is active at each stage
and the second mover is different from the first mover, for each non-
terminating action of the first mover. A signaling game (or sender-
receiver game) is a leader-follower game with payoff uncertainty Γ̂ where
the second mover has no private information.

So, a signaling game is a two-stage game with payoff uncertainty and
perfect information (only one active player at stage 1, at most one active
player at stage 2) where only the first mover has private information.18

Thus, we assume that θ is known to player 1, whose action19 a1 ∈ A1

is observed by player 2 before he chooses a2 ∈ A2(a1).20 The possible
parameter values θ ∈ Θ are the types of player 1, the informed player.
The actions of the informed player are also called signals or messages
because they may be thought to reveal her private information. Thus, the
first player is also called “sender” and the second player is also called
“receiver.” Let A2 =

⋃
a1∈A1

A2(a1). The payoffs of sender and receiver

18This is not a crucial assumption, it just allows to simplify the notation. The
extension of the analysis to signaling games with two-sided incomplete information is
conceptually straightforward.

19In some models the set of feasible actions of player 1 depends on θ and is denoted
by A1(θ). The set of potentially feasible actions of player 1 is A1 =

⋃
θ∈Θ

A1(θ).

20If player 2 is not active after action a1, then A2 (a1) is a singleton.
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are given by the functions

u1 : Θ×A1 ×A2 → R,

u2 : Θ×A1 ×A2 → R.

As we notice more generally for multistage games with incomplete
information, a signaling game can be analyzed by some versions of
rationalizability. We have already done this in previous examples of
signaling games, such as those in Examples 68 and 69. Yet, in order to
define the traditional notion of equilibrium we need to add a description
of players’ exogenous beliefs. In particular, to obtain a Bayesian
signaling game Γ, we just have to append to signaling game (with
payoff uncertainty) Γ̂ an initial belief p ∈ ∆(Θ) of the uninformed player,
i.e., of the receiver. We assume for simplicity that p(θ) > 0 for every
θ ∈ Θ. This prior belief is an exogenously given element of the model,
whereas (behavior) strategies have to be determined through equilibrium
analysis. Furthermore, consistently with our interpretation of Bayesian
games, it should be informally assumed that the prior p of the receiver
is “transparent,” that is, the sender is certain that p is the prior of the
receiver, the receiver is certain that the sender is certain of this, etc.

A(n extended) behavior strategy for the sender is an array
of probability measures β1 = (β1(·|θ))θ∈Θ ∈ (∆(A1))Θ: under the
interpretation that the sender is “born” of a given type θ, β1 is not
a strategy in the intuitive sense, but rather a randomized decision rule
expressing how the behavior of the sender depends on his type. A
behavior strategy for the receiver is an array of probability measures
β2 = (β2(·|a1))a1∈A1 ∈×a1∈A1

∆(A2(a1)).
Here the receiver has the role of agent i in Section 15.2 on Bayes rule,

with X = A1. The receiver is initially uncertain about (θ, a1) and has
a prior probability measure on Θ × A with marginal p ∈ ∆ (Θ). In an
equilibrium assessment (β, µ), β1 represents the conjecture of the receiver
about the probability of each action of the sender conditional on each
possible type (parameter value) θ. Thus, the probabilistic assessment of
the receiver is such that

∀θ ∈ Θ, Pβ,µ(θ) = µ (θ|∅) = p(θ),

∀θ ∈ Θ,∀a1 ∈ A1, Pβ,µ(a1|θ) = β1(a1|θ), Pβ,µ(θ, a1) = β1(a1|θ)p(θ),
∀a1 ∈ A1, Pβ,µ(a1) =

∑
θ′∈Θ

β1(a1|θ′)p(θ′).
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Here µ(θ|a1) denotes the probability that the receiver would assign to
θ upon observing action a1 of the sender. Since the receiver chooses a2

after he has observed a1 so as to maximize the expectation of u2(θ, a1, a2),
the system of conditional probabilities µ = (µ(·|a1))a1∈A1

is an essential
ingredient of equilibrium analysis. Applying the terminology of Section
15.7 to the special case of signaling games, µ is called “system of beliefs.”

If the predictive probability of action a1 is positive, Pβ,µ(a1) =∑
θ′∈Θ β1(a1|θ′)p(θ′) > 0, then Bayes formula applies and we must have

µ(θ|a1) =
Pβ,µ(θ, a1)

Pβ,µ(a1)
=

β1(a1|θ)p(θ)∑
θ′∈Θ β1(a1|θ′)p(θ′)

.

Since β1 is endogenous, also the system of beliefs µ is endogenous. Thus,
we have to determine through equilibrium analysis the triple (β1, β2, µ).
As we have explained in Section 15.7, (β1, β2, µ) (a profile of behavior
strategies plus a system of beliefs) is called “assessment.”

For any given assessment (β1, β2, µ) we use the following notation to
abbreviate conditional expected payoff formulas:

Eβ2 (u1 (θ, a1, ·)) =
∑

a2∈A2(a1)

β2(a2|a1)u1(θ, a1, a2),

Eµ (u2 (·, a1, a2)) =
∑
θ∈Θ

µ(θ|a1)u2(θ, a1, a2).

Thus, Eβ2 (u1 (θ, a1, ·)) is the expected payoff for the sender of choosing
action a1 given that his type is θ and assuming that his conjecture about
the behavior of the receiver is given by β2.21 Similarly, Eµ (u2 (·, a1, a2))
is the expected payoff for the receiver of choosing action a2 given that
he has observed a1 and assuming that his conditional beliefs about θ are
determined by µ .

In equilibrium, an action of player i can have positive conditional
probability only if it maximizes the conditional expected payoff of i.
Furthermore, the equilibrium assessment must be consistent with Bayes

21There is no loss of generality in representing a conjecture of player 1 as a behavior
strategy of player 2. If player 1 had a conjecture of the form σ2 ∈ ∆(S2), where S2 is the
set of pure strategies of player 2, then we could derive from σ2 a realization-equivalent
behavior strategy. A similar argument holds for the conjecture of player 2 about player
1.
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rule. Therefore we obtain three equilibrium conditions for the three
components of (β1, β2, µ):

Definition 93. Assessment (β1, β2, µ) is a perfect Bayesian
equilibrium (PBE) of the Bayesian signaling game Γ if it satisfies the
following conditions:

∀θ ∈ Θ, suppβ1(·|θ) ⊆ arg max
a1∈A1

Eβ2 (u1 (θ, a1, ·)) (BR1)

∀a1 ∈ A1, suppβ2(·|a1) ⊆ arg max
a2∈A2(a1)

Eµ (u2 (·, a1, a2)) (BR2)

∀a1 ∈ A1, ∀θ ∈ Θ, µ(θ|a1)
∑
θ′∈Θ

β1(a1|θ′)p(θ′) = β1(a1|θ)p(θ). (CONS)

Thus, from the perspective of an analyst who wants to compute the
set of equilibrium assessments (β1, β2, µ), there are three systems of weak
inequalities and equalities, one for each group of “unknowns” (endogenous
variables) β1, β2, and µ. Note that (CONS)—consistency with Bayes
rule—can also be expressed as

∀a1 ∈ A1, ∀θ ∈ Θ,∑
θ′∈Θ

β1(a1|θ′)p(θ′) > 0⇒ µ(θ|a1) =
β1(a1|θ)p(θ)∑

θ′∈Θ β1(a1|θ′)p(θ′)
.

Each equilibrium condition involves two out of the three groups of
endogenous variables β1, β2 and µ: (BR1) says that each mixed action
β1(·|θ) ∈ ∆(A1) is a best reply to β2 for type θ of the sender (for each
θ ∈ Θ), (BR2) says that each mixed action β2(·|a1) ∈ ∆(A2(a1)) is a best
reply for the receiver to the conditional belief µ(·|a1) ∈ ∆(Θ) (for each
a1 ∈ A1), and (CONS) says that the triple (p, β1, µ) is consistent with
Bayes rule.

As we noticed more generally for multistage Bayesian games, PBE
refines Bayesian equilibrium. Here we provide an explicit proof of this
observation for the special case of signaling games.

Remark 59. Each PBE (β1, β2, µ) of a Bayesian signaling game Γ is such
that the (extended) behavior strategy pair (β1, β2) is a Bayesian equilibrium
of Γ, that is, a (randomized) Nash equilibrium of the ex ante strategic form
of Γ.
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Proof. Fix a PBE (β1, β2, µ). By inspection of the definition of PBE,
the best reply condition for each type of the sender is satisfied. To see that
also the strategic-form best reply condition of the receiver is satisfied note
that the ex ante expected utility of the receiver can be expressed as

Eβ1,β2 (u2) =
∑
θ∈Θ

p (θ)
∑
a1∈A1

β1 (a1|θ)
∑
a2∈A2

β2 (a2|a1)u2 (θ, a1, a2)

=
∑
a1∈A1

∑
θ∈Θ

β1 (a1|θ) p (θ)
∑
a2∈A2

β2 (a2|a1)u2 (θ, a1, a2)

=
∑
a1∈A1

∑
θ∈Θ

µ(θ|a1)P(a1)
∑
a2∈A2

β2 (a2|a1)u2 (θ, a1, a2)

=
∑
a1∈A1

P(a1)
∑
a2∈A2

β2 (a2|a1)
∑
θ∈Θ

µ(θ|a1)u2 (θ, a1, a2)

=
∑
a1∈A1

P(a1)
∑
a2∈A2

β2 (a2|a1)Eµ (u2 (·, a1, a2))

where the third equality follows from Bayes rule. Thus, β2 maximizes
Eβ1,β2 (u2) if and only if each term

∑
a2∈A2

β2 (a2|a1)Eµ (u2 (·, a1, a2))
with P(a1) > 0 is maximized. Since condition (BR2) requires that
each term

∑
a2∈A2

β2 (a2|a1)Eµ (u2 (·, a1, a2)) is maximized (whether or
not P(a1) > 0), it follows that also the best reply condition of the receiver
holds, and (β1, β2) is a Bayesian equilibrium of the signaling game. �

It is worth noting that the equilibrium probability

P(a1) =
∑
θ′∈Θ

β1(a1|θ′)p(θ′)

of some action a1 may be zero. Fix a1 and suppose, for example, that
for each θ ∈ Θ, there is some action aθ1 such that Eβ2

(
u1

(
θ, aθ1, ·

))
>

Eβ2 (u1 (θ, a1, ·)). Then action/signal a1 must have zero probability
because it is not a best reply to β2 for any type θ of the sender. Yet
we assume that the belief µ(·|a1) is well defined and the receiver takes
a best reply to this belief. This is a perfection requirement analogous
to the subgame perfection condition for games with observable actions
and complete information. A perfect Bayesian equilibrium is a Bayesian
equilibrium that satisfies perfection and consistency with Bayes rule.

Furthermore, even if µ(·|a1) cannot be computed with Bayes formula,
it may still be the case that the equilibrium conditions put incentive
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constraints on the possible values of µ(·|a1), because mixed action β2 (·|a1)
has to be a best reply to µ(·|a1). The following example illustrates this
point.

(1, 1) 1 2

(1, 1) 1 2
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Figure 15.6: A signaling game

Example 71. Consider the signaling game depicted in Figure 15.6. The
payoffs of the sender are in bold. The set A2(l) is a singleton and therefore
the action of player 2 after l is not shown. If the sender goes right (r) then
the receiver can go up (u) or down (d), i.e., A2(r) = {u, d}.

Note that action r is dominated for type θ′ of the sender. Therefore
β1(r|θ′) = 0 in every PBE. Now we show that in equilibrium we also have
β1(r|θ′′) = 0. Suppose, by way of contradiction, that β1(r|θ′′) > 0 in a
PBE. Then Bayes formula applies and µ(θ′′|r) = 1. But then the best reply
of the receiver is down, i.e., β2(d|r) = 1, and the best reply of type θ′′ is left,
i.e., β1(l|θ′′) = 1− β1(r|θ′′) = 1, contradicting our initial assumption. We
conclude that, in every PBE, r is chosen with probability zero and µ(·|r)
cannot be determined with Bayes formula. Yet the equilibrium conditions
put a constraint on µ(·|r): in equilibrium d must be (weakly) preferred to
u (if the receiver chooses u after r then type θ′′ chooses r and we have just
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shown that this cannot happen in equilibrium). Therefore

µ(θ′′|r) ≥ 3µ(θ′|r)

or µ(θ′′|r) ≥ 3

4
.

The set of equilibrium assessments is{
(β1, β2, µ) : β1(l|θ′) = β1(l|θ′′) = 1, β2(d|r) = 1, µ(θ′′|r) > 3

4

}
∪
{

(β1, β2, µ) : β1(l|θ′) = β1(l|θ′′) = 1, β2(d|r) ≥ 1

2
, µ(θ′′|r) =

3

4

}
.

N

The PBE assessments in Example 71 are examples of “pooling”
equilibria. A pooling equilibrium is a PBE assessment where all types
of the sender choose the same pure action with probability one, i.e., there
exists a∗1 ∈ A1 such that for every θ ∈ Θ, β1(a∗1|θ) = 1. In this case Bayes
rule implies that the posterior on θ conditional on the equilibrium action
a∗1 is the same as the prior: µ(·|a∗1) = p(·).

The polar case is when different types choose different pure actions: a
separating equilibrium is a PBE assessment such that each type θ of
player 1 chooses some action a1(θ) with probability one (β1(a1(θ)|θ) = 1)
and a1(θ′) 6= a1(θ′′) for all θ′ and θ′′ with θ′ 6= θ′′. A separating equilibrium
may exist only if A1 has at least as many elements as Θ. If A1 and Θ have
the same number of elements (cardinality) then in a separating equilibrium
each action is chosen with ex ante positive probability (because p(θ) > 0
for each θ ∈ Θ) and the action of player 1 perfectly reveals her private
information (if A1 has more elements than Θ then the actions that in
equilibrium are chosen by some type are perfectly revealing, the others
need not be revealing).

We provide an example of a signaling game with a separating
equilibrium.

Example 72. Consider the signaling game depicted in Figure 15.7. The
game can be interpreted as follows: a truck driver (sender) enters in a pub
where an aggressive customer (receiver) has to decide whether to start
a fight (f, upward) or acquiesce (a, downward). There are two types of
truck drivers: 90% of them are surly (θs) and like to eat sausages (s) for
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Figure 15.7: The “sausage-whipped cream” game

breakfast; the remaining 10% are wimps (θw) and prefer a dessert with
whipped cream (w). Each type of truck driver receives an incremental
utility equal to 2 from his favorite breakfast and an incremental utility
equal to 1 from the other breakfast. Furthermore both types incur a loss
of 1 util if they have to fight. The receiver prefers to fight with a wimp
and to avoid the fight with a surly driver.

This game has only one “reasonable” PBE and it is separating.22

Indeed, the payoffs are such that for each type of driver it is weakly
dominant to have his preferred breakfast; thus, iterated deletion of weakly
dominated actions yields the equilibrium β1(s|θs) = 1 = β1(w|θw),
β2(a|s) = 1 = β2(f |w), µ(θs|s) = 1 = µ(θw|w).

The game has also two sets of pooling equilibria (meaning that one
type of player 1 chooses a weakly dominated action). In the first set of
assessments each type has sausages for breakfast and player 2 would fight if
and only he observed a whipped-cream breakfast: β1(s|θs) = 1 = β1(s|θw),
β2(a|s) = 1 = β2(f |w), µ(θs|s) = 9

10 , µ(θw|w) ≥ 1
2 . In the second set

of assessments each type has whipped cream for breakfast and player 2

22Actually, this example is a modification of a well-known game where the cost of
a fight is larger than the marginal benefit from having the preferred breakfast and all
equilibria are pooling.
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would fight if and only if he observed a sausage breakfast: β1(w|θs) = 1 =
β1(w|θw), β2(a|w) = 1 = β2(f |s), µ(θs|w) = 9

10 , µ(θw|s) ≥ 1
2 . N

15.8.1 An Algorithm to Compute Pure PBE’s.

As for other finite-horizon games, also the equilibria of signaling games can
be computed with a “case-by-case backward induction” algorithm. For
simplicity, we focus on pure equilibria, that is, any PBE (β1, β2, µ) such
that β1 and β2 are pure (|suppβ1 (·|θ)| = 1 for each θ, and |suppβ2 (·|a1)| =
1 for each a1). We denote by a1 ∈ AΘ

1 the decision function of the sender,
whereas s2 ∈×a1∈A1

A2 (a1) denotes the pure strategy of the receiver (i.e.,
β1 (a1 (θ) |θ) = 1 for each θ, and β2 (s2 (a1) |a1) = 1 for each a1). Working
backward, we start from the analysis of stage 2 (receiver) and then we
move back to the analysis of stage 1 (sender). The analysis of stage 2, in
turn, is broken down into a preliminary step and a main step.

Stage 2, preliminary step: deletion of dominated actions. For
any a1, an action a2 ∈ A2 (a1) is conditionally dominated given a1 if
there exists some α2 ∈ ∆ (A2 (a1)) such that

∀θ ∈ Θ,
∑

a′2∈A2(a1)

u2

(
θ, a1, a

′
2

)
α2

(
a′2
)
> u2 (θ, a1, a2) ;

otherwise, a2 is conditionally undominated given a1. Denote by
ND (a1) ⊆ A2 (a1) the set of conditionally undominated actions given
a1. An obvious adaptation of Lemma 2 (the Wald-Pearce Lemma) implies
that, for every a1 ∈ A1 and a2 ∈ A (a1),

a2 ∈ ND (a1)⇐⇒
(
∃ν ∈ ∆ (Θ) , a2 ∈ arg max

a′2∈A2(a1)
Eν
(
u2

(
·, a1, a

′
2

)))
(see Lemma 33). In other words, a second-mover action is conditionally
undominated if and only if it is a best reply to some conditional belief about
the types of the first mover given the observed action of the first mover.
With this, it is obvious that the conditionally dominated actions of player 2
are unjustifiable and must have zero probability in equilibrium. Therefore,
the preliminary step requires to delete all the conditionally dominated
actions of the receiver.23

23A similar preliminary step could be applied to player 1, but we do not explicitly
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Stage 2, main step. Pick a strategy s2 ∈×a1∈A1
ND (a1), that is,

pick one action s2 (a1) ∈ ND (a1) among the undominated actions given
each a1. For each a2 ∈ ND (a1), let

J (a2|a1) =

{
ν ∈ ∆ (Θ) : a2 ∈ arg max

a′2∈A2(a1)
Eν
(
u2

(
·, a1, a

′
2

))}
denote the nonempty set of beliefs ν ∈ ∆ (Θ) that justify a2 as a best
reply given a1. A strategy s2 ∈×a1∈A1

ND (a1) (i.e., a selection from
the undominated action correspondence a1 7→ ND (a1)) is a “case.”
Clearly, there are

∏
a1∈A1

|ND (a1)| cases to be considered. For every
such case s2 (by Lemma 2 and Lemma 33), there is a system of beliefs
µ ∈×a1∈A1

J (s2 (a1) |a1) that makes s2 a kind of “stage-2 equilibrium.”24

Stage 1. For each case s2 ∈×a1∈A1
ND (a1), pick a decision function

a1 ∈×θ∈Θ arg maxa1∈A1 u1 (θ, a1, s2 (a1)), that is, pick an action

a1 (θ) ∈ arg max
a1∈A1

u1 (θ, a1, s2 (a1))

for each type θ ∈ Θ. Finally, verify whether there exists a system of beliefs
µ ∈×a1∈A1

J (s2 (a1) |a1) that is consistent with Bayes rule given decision
function a1, i.e., such that, for each a1 ∈ A1,∑
θ′:a1(θ′)=a1

p
(
θ′
)
> 0⇒

(
∀θ ∈ a−1

1 (a1), µ (θ|a1) =
p (θ)∑

θ′:a1(θ′)=a1
p (θ′)

)
,

where ∑
θ′:a1(θ′)=a1

p
(
θ′
)

= p
(
a−1

1 (a1)
)

= Pa1 (a1)

is the probability of action/signal a1 determined by decision function a1.
If such µ exists, then assessment (a1, s2, µ) is a pure PBE; otherwise, there

include such step in the algorithm for the following reason: Suppose that a1 is dominated
for type θ of player 1. Clearly, β1 (a1|θ) = 0 in any equilibrium. But the “deletion”
of such a1 for type θ may induce a naive user of the algorithm to illegitimately
infer that µ (θ|a1) = 0. Such inference is correct and follows from Bayes rule if
β1 (a1|θ′) > 0 for some θ′, but this cannot be presumed. It may be the case that,
in equilibrium, β1 (a1|θ′) = 0 for every θ′; hence, Bayes formula cannot determine the
“off-path” conditional belief µ (·|a1) and there may be an equilibrium assessment such
that µ (θ|a1) > 0.

24An element of×a1∈A1
J (s2 (a1) |a1) ⊆ ∆ (Θ)A1 is indeed a system of beliefs because

it associates a probability measure on Θ with each action a1 of the sender.
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is no µ such that (a1, s2, µ) is a PBE. Note that here we are applying
Bayes rule in the special case where the behavior strategy of the sender
is deterministic, that is, β1 (a1|θ) = 1 if a1 (θ) = a1, and β1 (a1|θ) = 0 if
a1 (θ) 6= a1.

We illustrate the algorithm computing the equilibria of the previous
“sausage-whipped cream” example (Figure 15.7). First note the
preliminary stage-2 step is vacuous because the receiver has no
conditionally dominated action. Since the receiver weakly prefers to fight
if and only if the conditional probability of the surly type is not larger
than 1/2, the sets of justifying beliefs are as follows:

J (f |s) =

{
µ (·|s) ∈ ∆ ({θs, θw}) : µ (θs|s) ≤ 1

2

}
,

J (a|s) =

{
µ (·|s) ∈ ∆ ({θs, θw}) : µ (θs|s) ≥ 1

2

}
,

J (f |w) =

{
µ (·|w) ∈ ∆ ({θs, θw}) : µ (θs|w) ≤ 1

2

}
,

J (a|w) =

{
µ (·|w) ∈ ∆ ({θs, θw}) : µ (θs|w) ≥ 1

2

}
.

Also note that if the expected reply of the receiver does not depend on
the signal—the breakfast of the truck driver—, then the sender eats his
preferred breakfast. Thus, there are 2× 2 possible cases, or undominated
strategies of the receiver (we list first the reply to sausage, second the reply
to whipped cream):

• Case f.f : θs chooses s, θw chooses w, thus µ (θs|s) = 1 and
µ (θs|w) = 0. Since 1 = µ (θs|s) > 1

2 , µ (·|s) /∈ J (f |s) and there
is no PBE where the receiver plays f.f .

• Case a.a: θs chooses s, θw chooses w, thus µ (θs|s) = 1 and
µ (θw|w) = 1. Since 0 = µ (θs|w) < 1

2 , µ (·|w) /∈ J (a|w) and there is
no PBE where the receiver plays a.a.

• Case a.f : θs chooses s, θw is indifferent because eating his preferred
breakfast (whipped cream) would be compensated by the cost of a
fight.
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– Subcase w|θw: θw chooses w. Thus, µ (θs|s) = 1 ≥ 1
2 and

µ (θs|w) = 0 ≤ 1
2 , which implies that µ (·|s) ∈ J (a|s) and

µ (·|w) ∈ J (f |w) as required. We thus obtain the separating
PBE (β1, β2, µ) with β1(s|θs) = β1(w|θw) = 1, β2(a|s) =
β2 (f |w) = 1, µ(θs|s) = µ(θw|w) = 1.

– Subcase s|θw: also θw chooses s. Thus, µ (θs|s) = p (θs) =
9
10 ≥

1
2 , which implies that µ (·|s) ∈ J (a|s); on the other

hand, µ (·|w) is not determined by Bayes rule and we can
pick any µ (·|w) ∈ J (f |w), e.g., µ (θs|w) = 1

3 , to obtain a
set of pure PBE’s (β1, β2, µ) with β1(s|θs) = β1(s|θw) = 1,
β2(a|s) = β2 (f |w) = 1, µ(θs|s) = 9

10 , µ (θs|w) ≤ 1
2 .

• Case f.a: θw chooses w, θs is indifferent because eating his preferred
breakfast (sausage) would be compensated by the cost of a fight.

– Subcase s|θs: θs chooses s. Thus, µ (θs|w) = 0 < 1
2 , µ (·|w) /∈

J (a|w) and there is no PBE where the receiver plays f.a and
the sender eats his preferred breakfast.

– Subcase w|θs: also θs chooses w. Thus, µ (θs|w) = p (θs) =
9
10 ≥

1
2 , which implies that µ (·|w) ∈ J (a|w); on the other

hand, µ (·|s) is not determined by Bayes rule and we can
pick any µ (·|s) ∈ J (f |s), e.g., µ (θs|s) = 1

3 , to obtain a
set of pure PBE’s (β1, β2, µ) with β1(w|θs) = β1(w|θw) = 1,
β2(a|w) = β2 (f |s) = 1, µ(θs|w) = 9

10 , µ (θs|s) ≤ 1
2 .

15.9 Appendix

Here we study an extension of the analysis of rational planning of Chapter
10 to encompass incomplete information. Compared to Chapter 10,
we focus on uncertainty about the true map from terminal histories to
“utils” and on Bayesian updating, while we trim some lengthy arguments
explained in detail there. In what follows, we keep the same notation as

in Section 15.3 and let βi ∈
(×h∈H ∆ (A−i (h))

)Θ−i denote a conjecture of
i about the type-dependent behavior of the co-players, keeping in mind
that in the perfect Bayesian equilibrium analisys such conjectures are
determined by profiles β−i of type-dependent behavior strategies.
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Fix once and for all a type θi of player i. To ease notation we let
µθi = µθi (·|·) ∈ ∆ (Θ−i)

H denote the personal system of beliefs of type θi,
that is, with reference to the notation used for Bayesian games we write
µθi (θ−i|h) instead of µi (θ−i|θi, h) for the probability assigned by type θi
to profile θ−i conditional on h. Hence we write a personal assessment of θi
as a pair

(
βi, µθi

)
. Similarly, we write uθi (θ−i, z) = ui (θi, θ−i, z) (that is,

uθi is the section of ui at θi). With this, we fix a Bayes consistent personal
assessment

(
βi, µθi

)
and analyze the resulting subjective decision problem

for type θi with parameterized payoff function uθi : Θ−i × Z → R.

For a fixed θ−i, the probability of action profile a = (ai, a−i) conditional
on h given strategy si and conjecture βi is

Psi,β
i
(a|θ−i, h) =

{
0, if ai 6= si(h),
βi(a−i|θ−i, h), if ai = si(h).

Using the chain rule of conditional probabilities, we can define the
probability of any history h′ ∈ H conditional on a prefix h (h ≺ h′),
given that si is played from h onward: let h = (a1, ..., a`(h)) and h′ =
(a1, ..., a`(h), ..., a`(h

′)), then

Psi,β
i
(h′|θ−i, h) =

`(h′)∏
t=`(h)+1

Psi,β
i (
at|θ−i,

(
h, ..., at−1

))
,

with the convention that Psi,βi
(
at|θ−i,

(
h, ..., at−1

))
= Psi,βi

(
at|θ−i, h

)
if

t − 1 = `(h). With this, we can determine for all si ∈ Si and h ∈ H the
value for type θi of reaching h given θ−i and given that si is followed from
h onward:

V si,β
i

θi
(θ−i, h) =

∑
z∈Z(h)

Psi,β
i
(z|θ−i, h)uθi(θ−i, z),

which, of course, depends only on the behavior of si at histories that weakly
follow h. Next we define, for all si ∈ Si and h ∈ H, the subjective
value for θi conditional on reaching h given that si is followed from h
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onward:25

V si,β
i,µi

θi
(h) =

∑
θ−i∈Θ−i

µθi (θ−i|h)V si,β
i

θi
(θ−i, h)

=
∑

θ−i∈Θ−i

µθi (θ−i|h)
∑

z∈Z(h)

Psi,β
i
(z|θ−i, h)uθi(θ−i, z),

which—again—depends only on the behavior of si at histories that weakly
follow h. Similarly, for every ai ∈ Ai(h) we define the value of taking
action ai at h given that si will be followed from the next stage:

V si,β
i,µi

θi
(h, ai)

=
∑

θ−i∈Θ−i

µθi (θ−i|h)
∑

a−i∈A−i(h)

βi(a−i|θ−i, h)V si,β
i

θi
(θ−i, (h, (ai, a−i))),

which depends only on the behavior of si at histories that follow h after
taking action ai.

Remark 60. For every si ∈ Si and for every h ∈ H,

V si,β
i,µi

θi
(h, si(h)) = V si,β

i,µi
θi

(h).

25To ease notation, here and in the following formulas we write function symbols like
V and P with µi instead of µθi in the superscript, and with θi as a subscript of the
symbol. Consider the following interpretation: µi : Θi × H → ∆ (Θ−i) is the system
of beliefs of player i before he observes his private information θi. Writing θi in the
subscript of V or P means that we select from µi its section at θi, that is, µθi .
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Proof. By inspection of the definitions we have

V si,β
i,µi

θi
(h, si(h))

=
∑

θ−i∈Θ−i

µθi (θ−i|h)
∑

a−i∈A−i(h)

βi (a−i|θ−i, h)V si,β
i

θi
(θ−i, (h, (si(h), a−i)))

=
∑

θ−i∈Θ−i

µθi (θ−i|h)
∑

a−i∈A−i(h)

βi (a−i|θ−i, h)

·

 ∑
z∈Z(h,(si(h),a−i))

uθi (θ−i, z)Psi,β
i
(z|θ−i, (h, (si(h), a−i)))


=

∑
θ−i∈Θ−i

µθi (θ−i|h)
∑

z∈Z(h)

uθi (θ−i, z)Psi,β
i
(z|θ−i, h)

=
∑

θ−i∈Θ−i

µθi (θ−i|h)V si,β
i

θi
(θ−i, h)

= V si,β
i

i (h)

where the third equality follows from the chain rule. �

As we did in Chapter 10, we define recursively the subjective value of
reaching a history h and of taking an action ai at h, under the presumption
that the behavior of player i will be subjectively rational in the following

stages. We use the symbol V̂ βi,µi
θi

to denote such values to emphasize that

they are optimal given personal assessment
(
βi, µθi

)
. Similarly, for all

h ∈ H and a−i ∈ A−i(h), we let

Pβ
i,µi
θi

(a−i|h) =
∑

θ−i∈Θ−i

βi(a−i|θ−i, h)µθi(θ−i|h) (15.9.1)

denote the probability assigned by type θi to a−i conditional on h according
to personal assessment

(
βi, µθi

)
. With this, the recursion is based on the

height of histories h ∈ H, here denoted by L (h) = maxz∈Z(h) ` (z)−` (h).26

26In Chapter 10, each h ∈ H determined a subgame Γ (h) and the height of h was
written as the maximum length of such subgame, L (Γ (h)) . Here we do not have a
subgame in the same sense as Chapter 10, because payoffs are unknown, but we still
have a subtree, which is all that matters.
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• If L(h) = 1, then (h, a) ∈ Z for every a ∈ A(h). Taking this into
account, for each ai ∈ Ai(h) let

V̂ βi,µi
θi

(h, ai) =∑
θ−i∈Θ−i

µθi(θ−i|h)
∑

a−i∈A−i(h)

βi(a−i|θ−i, h)uθi(θ−i, (h, (ai, a−i))),

and let
V̂ βi,µi
θi

(h) = max
ai∈Ai(h)

V̂ βi,µi
θi

(h, ai).

• Suppose V̂ βi,µi
θi

has been defined for every h with L(h) ≤ k. Then if
L(h) = k + 1 let

V̂ βi,µi
θi

(h, ai) =
∑

a−i∈A−i(h)

Pβ
i,µi
θi

(a−i|h)V̂ βi,µi
θi

(h, (ai, a−i)),

V̂ βi,µi
θi

(h) = max
ai∈Ai(h)

V̂ βi,µi
θi

(h, ai).

Definition 94. A strategy s̄i ∈ Si is

• folding-back optimal given
(
βi, µθi

)
if

∀h ∈ H, V̂ βi,µi
θi

(h, s̄i(h)) = max
ai∈Ai(h)

V̂ βi,µi
θi

(h, ai) = V̂ βi,µi
θi

(h);

• one-step optimal given
(
βi, µθi

)
if

∀h ∈ H, V s̄i,β
i,µi

θi
(h, s̄i(h)) = max

ai∈Ai(h)
V s̄i,β

i,µi
θi

(h, ai);

• sequentially optimal given
(
βi, µθi

)
if

∀h ∈ H, V s̄i,β
i,µi

θi
(h) = max

si∈Si
V si,β

i,µi
θi

(h).

The following result is immediate from Definition 94:

Remark 61. If a strategy is sequentially optimal given
(
βi, µθi

)
, then it

is also one-step optimal given
(
βi, µθi

)
.



440 15. Multistage Games with Incomplete Information

The following results show that, under personal Bayes consistency,
folding-back optimality and sequential optimality are equivalent to one-
step optimality.

Proposition 21. ( Folding Back Principle) Fix a Bayes consistent
assessment

(
βi, µθi

)
. Then

(I) A strategy s̄i is one-step optimal given
(
βi, µθi

)
if and only if

V s̄i,β
i,µi

θi
(h, ai) = V̂ βi,µi

θi
(h, ai), (15.9.2)

V s̄i,β
i,µi

θi
(h) = V̂ βi,µi

θi
(h)

for every h ∈ H and ai ∈ Ai(h).
(II) A strategy s̄i is folding-back optimal given

(
βi, µθi

)
if and only if s̄i is

one-step optimal given
(
βi, µθi

)
.

Proof. We prove by induction on the height of non-terminal histories
that if s̄i is one-step optimal given

(
βi, µθi

)
then (15.9.2) holds for every

h ∈ H and ai ∈ Ai(h). As in the proof of Proposition 3 in Chapter 10,
we omit (and leave to the reader) the proofs that the converse of this
statement holds, that (II) holds, and that (I) is equivalent to (II).

Suppose that s̄i is one-step optimal given
(
βi, µθi

)
.

Basis step. Fix any h ∈ H such that L(h) = 1. Then, for each ai ∈
Ai(h), by inspection of the definitions of V si,β

i,µi
θi

(h, ai) and V̂ βi,µi
θi

(h, ai)
(see the basis step in the recursion) we obtain

V s̄i,β
i,µi

θi
(h, ai)

=
∑

θ−i∈Θ−i

µθi(θ−i|h)
∑

a−i∈A−i(h)

βi(a−i|θ−i, h)ui(θi, θ−i, (h, (ai, a−i)))

= V̂ βi,µi
θi

(h, ai).

Since s̄i is one-step optimal,

V s̄i,β
i,µi

θi
(h) = V s̄i,β

i,µi
θi

(h, s̄i (h)) = max
ai∈Ai(h)

V s̄i,β
i,µi

θi
(h, ai)

= max
ai∈Ai(h)

V̂ βi,µi
θi

(h, ai) = V̂ βi,µi
θi

(h).

Inductive step. Suppose that (15.9.2) holds for each h ∈ H with
L(h) ≤ k. Now, fix any h with L(h) = k + 1. Then L(h, a) ≤ k for
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each a ∈ A(h). Therefore, for every ai ∈ Ai(h),

V s̄i,β
i,µi

θi
(h, ai)

(def.)
=

∑
θ−i∈Θ−i

µθi(θ−i|h)
∑

a−i∈A−i(h)

βi(a−i|θ−i, h)V s̄i,β
i

θi
(θ−i, (h, (ai, a−i)))

=
∑

θ−i∈Θ−i

∑
a−i∈A−i(h)

βi(a−i|θ−i, h)µθi(θ−i|h)V s̄i,β
i

θi
(θ−i, (h, (ai, a−i)))

(15.3.4)
=

∑
θ−i∈Θ−i

∑
a−i∈A−i(h)

µθi(θ−i| (h, (ai, a−i)))P
βi,µi
θi

(a−i|h)V s̄i,β
i

θi
(θ−i, (h, (ai, a−i)))

=
∑

a−i∈A−i(h)

Pβ
i,µi
θi

(a−i|h)
∑

θ−i∈Θ−i

µθi(θ−i| (h, (ai, a−i)))V
s̄i,β

i

θi
(θ−i, (h, (ai, a−i)))

(def.)
=

∑
a−i∈A−i(h)

Pβ
i,µi
θi

(a−i|h)V s̄i,β
i,µi

θi
(h, (ai, a−i))

(I.H.)
=

∑
a−i∈A−i(h)

Pβ
i,µi
θi

(a−i|h)V̂ βi,µi
θi

(h, (ai, a−i))
(def.)

= V̂ βi,µi
θi

(h, ai),

where the first, fifth, and seventh equalities hold by definition, the third
equality follows from eq. (15.3.4) in the definition of Bayes consistency,
the sixth equality follows from the inductive hypothesis, and the remaining
equalities are immediate. To see that the third equality follows from Bayes
consistency, note that eq. (15.3.4) yields

µθi(θ−i| (h, (ai, a−i)))P
βi,µi
θi

(a−i|h) = βi(a−i|θ−i, h)µθi(θ−i|h),

where both sides of the equality represent the probability of (θ−i, a−i) given
h.

Thus we obtain

V s̄i,β
i,µi

θi
(h) = V s̄i,β

i,µi
θi

(h, s̄i(h))
(loc.opt.)

= max
ai∈Ai(h)

V s̄i,β
i,µi

θi
(h, ai)

= max
ai∈Ai(h)

V̂ βi,µi
θi

(h, ai) = V̂ βi,µi
θi

(h),

where the first equality follows from Remark 60 and the second equality
holds because s̄i is locally optimal (loc.opt.) at h. �
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Theorem 44. (Optimality principle) Fix a Bayes consistent assessment(
βi, µθi

)
. A strategy of player i is sequentially optimal given

(
βi, µθi

)
if

and only if it is folding-back optimal given
(
βi, µθi

)
.

Proof. (If) Let s̄i be folding-back optimal given
(
βi, µθi

)
. We will

prove by induction on the height of non-terminal histories that

∀h ∈ H, V̂ βi,µi
θi

(h) ≥ max
si∈Si

V si,β
i,µi

θi
(h).

With this, since s̄i is folding-back optimal, it is one-step optimal

(Proposition 21 II), therefore V s̄i,β
i,µi

θi
(h) = V̂ βi,µi

θi
(h) for every h ∈ H

(Proposition 21 I); this implies that s̄i is sequentially optimal given(
βi, µθi

)
.

Basis step. Fix any h ∈ H such that L(h) = 1. By Proposition 21,

V̂ βi,µi
θi

(h, ai) = V s̄i,β
i,µi

θi
(h, ai) for every ai ∈ Ai(h). Since, starting from h,

every action profile (ai, a−i) ∈ A(h) terminates the game,

max
ai∈Ai(h)

V s̄i,β
i,µi

θi
(h, ai) = max

si∈Si
V si,β

i,µi
θi

(h).

Therefore

V̂ βi,µi
θi

(h) = max
ai∈Ai(h)

V̂ βi,µi
θi

(h, ai)

= max
ai∈Ai(h)

V s̄i,β
i,µi

θi
(h, ai) = max

si∈Si
V si,β

i,µi
θi

(h).

Inductive step. Suppose by way of induction that V̂ βi,µi
θi

(h′) ≥
maxsi∈Si V

si,β
i,µi

θi
(h′) for every h′ ∈ H with L(h′) ≤ k. Now fix any h

with L(h) = k+ 1. Then L(h, a) ≤ k for each a ∈ A(h), and the inductive
assumption (I.H.) yields

V̂ βi,µi
θi

(h)

(def.)

≥ V̂ βi,µi
θi

(h, ai)

(def.)
=

∑
a−i∈A−i(h)

Pβ
i,µi
θi

(a−i|h)V̂ βi,µi
θi

(h, (ai, a−i))

(I.H.)

≥
∑

a−i∈A−i(h)

Pβ
i,µi
θi

(a−i|h) max
si∈Si

V si,β
i,µi

θi
(h, (ai, a−i))
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for every ai ∈ Ai(h). Therefore,

V̂ βi,µi
θi

(h)

≥ max
ai∈Ai(h)

∑
a−i∈A−i(h)

Pβ
i,µi
θi

(a−i|h) max
si∈Si

V si,β
i,µi

θi
(h, (ai, a−i))

= max
ai∈Ai(h)

∑
a−i∈A−i(h)

max
si∈Si

Pβ
i,µi
θi

(a−i|h)V si,β
i,µi

θi
(h, (ai, a−i))

= max
ai∈Ai(h)

max
si∈Si

∑
a−i∈A−i(h)

Pβ
i,µi
θi

(a−i|h)V si,β
i,µi

θi
(h, (ai, a−i))

= max
si∈Si

V si,β
i,µi

θi
(h)

where the first equality is obvious, the second holds because each term
in the summation can be maximized independently of the others, and the
third equality holds because global maximization from h is equivalent to
picking at h an action that yields the largest maximal continuation value.

(Only if) If s̄i is sequentially optimal, then it is one-step optimal
(Remark 61), which in turn implies that it is folding-back optimal
(Proposition 21 II). �

Proposition 21 and Theorem 44 yield the OD principle:

Corollary 9. (One-deviation principle) Fix a Bayes consistent assessment(
βi, µθi

)
. A strategy of player i is sequentially optimal given

(
βi, µθi

)
if

and only if it is one-step optimal given
(
βi, µθi

)
.
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