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Abstract

This note complements Game Theory: Analysis of Strategic Think-
ing, explaining in a concise and systematic way its mathematical lan-
guage. The reader should try to prove all the claims, remarks etc. that
are reported here without proof.

1 Sets, functions, and correspondences

The building blocks of the language used to describe games are sets, func-
tions, correspondences, and mathematical structures, that is, lists of sets,
functions, and (possibly) correspondences. Here we take for granted that the
meaning of “set,”“function,”“correspondence,”and “Cartesian product of
sets”is understood. We also take for granted that standard set-theoretic no-
tation is understood. Despite this, it is worth clarifying how we use arrows
to denote functions, or correspondences.

Functions A function (or map) f from domain X to codomain Y is
denoted f : X → Y . When we want to specify that an element x of X is
associated with an element of Y according to a particular formula expressed
by function f we use the 7→ arrow1 and write

x 7→ f (x) .

The image, or range of f is the set2

f (X) := {y ∈ Y : ∃x ∈ X, f (x) = y} .
1Written “\mapsto” in Latex; hence, the “mapsto arrow.”
2The symbol “:=”means the the left-hand side is defined by (equal by definition to)

the right-hand side. Similarly, the symbol “=:”means that the right-hand side is defined
by the left-heand side.
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Example 1 For example, if f : R→ R is the “square of” function that
associates each real number with its square, we write

f : R → R+

x 7→ x2 ,

where x2 is the formula expressing the “square of” function. The range of
the “square of” function f is f (R) = R+. N

It is sometimes useful to stack the two representations one below the
other to clarify every feature of the given function. In Example 1, f :
R→ R gives us the domain (R), codomain (R), and the label (f) that we
use to denote the “square of” function, whereas x 7→ x2 tells us that we
associate each real number x with its square. When we are concerned with
an abstract analysis of all functions in a given class, we use the general
notation f : X → Y . For example, for any real-valued function f : X →
R, we can define supx∈X f (x) := sup f (X) (least upper bound of f (X))
and infx∈X f (x) := inf f (X) (greatest lower bound of f (X)).3 For every
real-valued and continuous function defined on a compact subset X of a
topological space,4 both maxx∈X f (x) := max f (X) and minx∈X f (x) :=
min f (X) are well defined.

Correspondences A correspondence F that associates each element of
domain X with a subset of codomain Y is written F : X ⇒ Y , where the
multiple arrow ⇒ is meant to remind the reader that the image set F (x)
of x may contain more than one element. However, when we specify with a
formula the set associated with a particular element of the domain, we still
use the 7→ arrow.

Example 2 If F : R2 ⇒ R is the correspondence that associates each pair
of real numbers (a, b) with the closed interval between a and b, we write

F : R2 ⇒ R
(a, b) 7→ {x ∈ R : a ≤ x ≤ b} .

N
3 If f (X) is not bounded above (respectively, below), then sup f (X) = +∞ (respec-

tively, inf f (X) = −∞).
4Such as a closed and bounded subsets of a Rn, or– more generally– a compact subset

of a metric space.
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It is convenient to allow F (x) to be the empty set. For example, the
“argmax”correspondence may be empty-valued.

Example 3 Fix a real-valued function u : X → R and a subset C ⊆ X of
its domain. With this,

arg max
x∈C

u (x) := {x∗ ∈ C : ∀x ∈ C, u (x∗) ≥ u (x)}

is the– possibly empty– set of maximizers of u on the “constraint set” C.
Let correspondence

B : P ⇒ X

denote a parameterization of the constraint.5 Then,

F : P ⇒ X
p 7→ arg maxx∈B(p) u (x)

may be empty-valued if, for example, u is not continuous, or B (p) is not
compact for some p ∈ P . N

Index sets as domains Finally, many examples of functions and corre-
spondences will be defined on a domain X = I that we interpret as an index
set, such as the set of all individuals in a given group. Note that we do not
make any general assumption that I be an ordered set, although it may be
an ordered set in some special cases. Prominent examples of such functions
in game theory are the profiles of actions (or strategies) that associate each
player i ∈ I with an action (or strategy) of i.

1.1 Set of functions (Cartesian products)

Cartesian products are important examples of sets, which can be interpreted
as sets of functions.

Sets of profiles Specifically, consider an index set I, a “universal”set6 Ā
of “alternatives,”and a correspondence i 7→ Ai that associates each element i
of I with a nonempty subset Ai ⊆ Ā. We interpret the Cartesian product

5Correspondence B could be the budget map, which associates each price vector p with
the set of affordable consumption bundles given some endowment ω.

6We are using the term “universal” informally to mean that the set contains all the
objects that we may want to consider in a given problem.
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×i∈IAi as the set of selections from the correspondence i 7→ Ai, that is,
the set of functions

a : I → Ā
i 7→ ai

such that
∀i ∈ I, ai ∈ Ai.

We often write such functions as follows:

a = (ai)i∈I .

When I is interpreted as a set of individuals, functions with domain I are
called “profiles.”

Sequences The set of all functions with domain I and codomain Ā is
denoted ĀI . When I is finite, there are at least |I|! bijections between the
set of functions ĀI and the set of ordered |I|-tuples Ā|I|, one for each strict
order (or permutation) on I.7 Indeed, when I = {1, ..., n}, then ĀI and
Ā|I| = Ān are essentially the same mathematical object under the canonical
bijection

(ai)i∈I ↔ (a1, ..., an) ,

which preserves the order of natural numbers, that is, the set of ordered n-
tuples (finite sequences of length n) of elements of Ā. For example, vectors
of real numbers are a special case where I = {1, ..., n} and Ā = R. Then,
the relevant Cartesian product is R{1,...,n}, or equivalently Rn. (Sometimes
the set of the first n natural numbers is written [n] := {1, ..., n}; thus,
R{1,...,n} = R[n].) Another important example is the set of all countable
sequences of elements of Ā, such as the set RN of all sequences of real
numbers when Ā = R. Such sequences are equivalently denoted by (an)n∈N
or (an)∞n=1.

A comment on sequences It is common in the mathematical literature
to write sequences as follows: {an}∞n=1. Such use of brackets in inconsistent
with the standard notation about sets and may induce the reader to confuse
a sequence with its range. For example, it is not clear whether {(−1)n}∞n=1

denotes the sequence (1,−1, 1,−1, ...), or its range, which is the doubleton
{−1, 1}. Such confusing notation is just a traditional bad habit. Like all
habits, also the bad ones die hard. But this is not a reason to knowingly
indulge in bad habits.

7 |·| denotes the cardinality of a set. Thus, |I| is the number of elements of the finite
set I.
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Cardinalities The following observation further explains why the “power
notation”for sets of functions is explicative and convenient.

Remark 1 If both the index set (domain) I and the set of alternatives
(codomain) Ā are finite, then the number of functions from I to Ā (i.e.,
the cardinality of ĀI) is ∣∣ĀI ∣∣ =

∣∣Ā∣∣|I| .
Cartesian products and products of numbers are related in a similar way.

Remark 2 The number of selections from the correspondence i 7→ Ai, that
is, the number of elements of the Cartesian product ×i∈IAi, is given by the
product formula

|×i∈IAi| =
∏
i∈I
|Ai| .

In words, the cardinality of a Cartesian product of sets is the product of
the cardinalities of such sets.

Power sets Another convenient “power notation” is used to denote the
collection of all subsets of I, including the empty set ∅ and I itself, that is,
the power set 2I .

Remark 3 If I is finite, ∣∣2I ∣∣ = 2|I|.

Indicator functions The natural number 2|I| (with I finite) is also the
cardinality of the set of functions from I to a binary codomain. In particular,
let Ā = {0, 1}, and recall that the indicator function 1J : I → {0, 1} of a
subset J ⊆ I is

1J(i) =

{
1, if i ∈ J ,
0, if i ∈ I\J .

With this, ĀI = {0, 1}I can be interpreted as the set of all indicator functions
of subsets of I. Specifically, for each J ⊆ I, a = 1J if and only if a−1(1) = J .

1.2 Sections and projections

Fix a (nonempty-valued) correspondence i 7→ Ai ⊆ Ā, the corresponding
Cartesian product A = ×i∈IAi and a strict subset J ⊂ I of the index
set. To ease notation, let AJ = ×j∈JAj denote the “sub-product” over
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the index subset J , with typical element aJ . When J = I\{i} for some
i ∈ I, we further simplify and write A−i, with typical element a−i. For all
sub-functions (profiles) aJ = (aj)j∈J ∈ AJ and aI\J = (ak)k∈I\J ∈ AI\J ,
we obtain a function (profile) i 7→ ai denoted by

(
aJ , aI\J

)
, where ai is

determined by aJ if i ∈ J , and by aI\J if i ∈ I\J . Since A = ×i∈IAi is the
set of functions from I to Ā such that ai ∈ Ai for each i, it is clear that(
aJ , aI\J

)
∈ A, because

(
aJ , aI\J

)
is one such function.8

Sections of sets Fix any subset B ⊆ A = ×i∈IAi; hence, B may be a
Cartesian product or not. For each i ∈ I and ai ∈ Ai, the section at ai of
set B is the subset Bai ⊆ A−i of all the profiles a−i that form with ai an
element of B, that is,

Bai := {a−i ∈ A−i : (ai, a−i) ∈ B} .

Example 4 Suppose that A = R3, B is the unit ball centered at (0, 0, 0),
and a3 = 0; then, Ba3 is the unit disk in R2 centered at (0, 0). N

More generally, for each index subset J ⊂ I and aJ ∈ AJ , the section of
B at aJ is

BaJ :=
{
aI\J ∈ AI\J :

(
aJ , aI\J

)
∈ B

}
.

Projections Let A = ×i∈IA be a given and understood Cartesian prod-
uct. The projection function from A = ×i∈IA onto AJ is the map that
associates each profile a =

(
aJ , aI\J

)
with its component aJ ∈ AJ :

projAJ : A → AJ(
aJ , aI\J

)
7→ aJ

.

Recall that, for every function f : X → Y and subset B ⊆ X, the image of
B through f is denoted

f (B) := {y ∈ Y : ∃x ∈ B, f (x) = y} =
⋃
x∈B
{f (x)} .

With this, the projection of set B ⊆ A onto AJ is the image of B through
the projection function projAJ : A→ AJ , that is, the set of profiles aJ such
that

(
aJ , aI\J

)
∈ B for at least one aI\J ∈ AI\J :

projAJ (B) =
{
aJ ∈ AJ : ∃aI\J ∈ AI\J ,

(
aJ , aI\J

)
∈ B

}
.

8Do not be distracted by the fact that aJ is written before aI\J . This is irrelevant,
because we are not assuming any order on I; hence, here the order in which symbols are
written does not matter. What matters and has to be clear is how each i ∈ I is associated
with some element of the universal set of alternatives Ā.
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Often we suppress the parentheses and write projAJB instead of projAJ (B).

Example 5 The projection of the unit ball in R3 centered at (2, 2, 2) onto
R2 is the unit disk centered at (2, 2). N

One can check by inspection of the definitions that the projection of a
set is a union of sections:

Remark 4 projAJB =
⋃

aI\J∈AI\J
BaI\J .

Sections of functions Fix a function f : A→ Y , where A = ×i∈IAi and
Y is an arbitrary codomain, e.g., a set of “outcomes”or “outputs.”For each
i and ai ∈ Ai, we obtain from f a function fai of a−i called the section at
ai of function f :

fai : A−i → Y
a−i 7→ fai (a−i) = f (ai, a−i)

.

Example 6 Consider a Cobb-Douglas production function

f : R{K,L}+ → R+

(k, `) 7→ (k`)
1
2
,

where K and L are respectively the indexes for capital and labor. If capital
is fixed at k = 1 in the short run, then the short-run production function
depends only on labor, and it is the section of f at k = 1:

fk=1 : R+ → R+

` 7→
√
`
.

N

Similarly, for each strict subset J ⊂ I, we can consider the section at
aJ = (aj)j∈J of f :

faJ : AI\J → Y

aI\J 7→ faJ
(
aI\J

)
= f

(
aI\J , aJ

) .
We obtain an important special case when J = I\{i}, that is, when we fix
all the values of profile a except ai.
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The section notation is convenient in several cases. One of them is when
we have a function f : A→ Y , we fix ai and y, and we want to consider all
the a−i such that f (ai, a−i) = y, that is, the set

{a−i ∈ A−i : f (ai, a−i) = y} .

Using the section notation, this set can be compactly written as the inverse
image of y through function fai :

f−1
ai (y) := {a−i ∈ A−i : fai (a−i) = y} = {a−i ∈ A−i : f (ai, a−i) = y} .

Sections of sets and of functions are related. First recall that the graph
of a function f : A→ Y is the set of pairs (a, y) ∈ A×Y such that f (a) = y,
that is,

Graph (f) := {(a, y) ∈ A× Y : f (a) = y} .

Remark 5 The graph of the section of a function is the section of the graph
of such function: Graph (faJ ) = (Graph (f))aJ .

Example 7 In Example 6 (Cobb-Douglas production function), Graph (f)
is {

(k, `, y) ∈ R{K,L,O}+ : y =
√
k`
}
,

where O is the index of output. Then Graph (fk=1) = (Graph (f))k=1 is the
graph of function ` 7→

√
`, that is,{
(`, y) ∈ R{L,O}+ : y =

√
`
}
.

N

2 Games, sets, and functions

As an illustration of the aforementioned mathematical language and nota-
tion, consider the mathematical description of the essential aspects of the
rules of a game with simultaneous-moves.

Game forms A game form is a mathematical structure〈
I, Y, (Ai)i∈I , g

〉
where
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• I is the set of players,

• Y is a set outcomes, or consequences,

• Ai is the set of feasible actions of player i,

• g : ×i∈IAi → Y is the outcome (or consequence) function.

Structure
〈
I, Y, (Ai)i∈I , g

〉
represents the rules of the game under the

implicit assumption that players move simultaneously (if moves were not
simultaneous, then the order of moves should appear in the mathematical
representation). To avoid some measure-theoretic technicalities, here we
assume that the game form is finite, but most of the analysis below does not
depend on this assumption.

Action profiles Let Ā =
⋃
i∈I

Ai denote the set of all actions. The Carte-

sian product ×i∈IAi is the set of action profiles, that is, the set of all
functions

a : I → Ā
i 7→ ai

such that ai ∈ Ai for each i ∈ I. With this, the set of action profiles A is
also the set of all selections from the feasible actions correspondence i 7→ Ai.

Co-players From now on, we will take the perspective of a particular
player i ∈ I. Thus, A−i is the set of action profiles of the opponents of i
(also called “co-players”). This is the set of functions a−i : I\{i} → Ā such
that aj ∈ Aj for each j ∈ I\{i}. Then, it makes sense to write a = (ai, a−i),
which means that action profile a is the function that associates i with ai
and j with aj for each j different from i. Since we think of A as a set of
functions rather than a set of ordered |I|-tuples, it also makes sense to write
A = Ai × A−i. Thus, if we want to emphasize the perspective of player i,
we can write the outcome function as follows:

g : Ai ×A−i → Y .

2.1 Sections, beliefs, and preferences

Here we use the mathematical language introduced so far to express some
ideas from the theory of choice in connection with games.
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Choice under certainty The section of the outcome function g at any
particular a−i, ga−i , shows how i affects the outcome when the actions of
the other players are kept fixed at a−i. For example, if i is certain that
the opponents (or co-players) play a−i, then his conjectured action-outcome
map is ga−i : Ai → Y . If i’s preferences are represented by a utility function
vi : Y → R, then a rational i with such (deterministic) conjecture solves

max
ai∈Ai

vi
(
ga−i (ai)

)
,

a problem of choice under (subjective) certainty. The solution of a problem
of choice under certainty is invariant to strictly increasing transformations
of the utility function.

Remark 6 Let f : vi (R) → R be strictly increasing. Then, for every out-
come function g : A→ Y and co-players’action profile a−i ∈ A−i,

arg max
ai∈Ai

vi
(
ga−i (ai)

)
= arg max

ai∈Ai
(f ◦ vi)

(
ga−i (ai)

)
.

Before we consider choice under risk and/or uncertainty, we recall some
concepts from elementary probability theory.

Probability measures In probability theory, a probability space is a pair
(Ω, µ), where µ is a probability measure on Ω. When Ω is finite, µ can be
equivalently represented either as a function µ : 2Ω → [0, 1] such that (i)
µ (Ω) = 1, and (ii) µ(E′ ∪ E′′) = µ (E′′) + µ (E′′) if E′ ∩ E′′ = ∅, or a
(probability mass) function µ : Ω→ R+ such that

∑
ω∈Ω µ (ω) = 1, letting

µ (E) =
∑
ω∈E

µ (ω) .

(We ignore the complications related to infinite state spaces.) With this, we
let9

∆ (Ω) : ={
µ ∈ [0, 1]2

Ω

: µ (Ω) = 1, ∀E′, E′′ ∈ 2Ω, E′ ∩ E′′ = ∅ ⇒ µ(E′ ∪ E′′) = µ
(
E′′
)

+ µ
(
E′′
)}

∼=
{
µ ∈ RΩ

+ :
∑
ω∈Ω

µ (ω) = 1

}
denote the set of all probability measures on Ω.

9Symbol ∼= means “isomorphic to”. Intuitively, two sets are isomorphic if there is a
bijection between them that preserves all the structures we care about. Roughly speaking,
two isomorphic sets represent the same thing.
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Dirac measures and embedding of Ω in ∆ (Ω) Note that set Ω can
be identified with the set of degenerate probability measures that assign
probability 1 to one element of Ω, also called Dirac measures. Formally,
for each ω ∈ Ω, the Dirac measure δω ∈ ∆ (Ω) is defined as follows: for every
event E,

δω (E) =

{
1, if ω ∈ E,
0, if ω /∈ E.

Obviously, there is a bijection between Ω and the set of Dirac measures.
Therefore, it makes sense to write, with a slight abuse of notation, Ω ⊆
∆ (Ω).10

Expectation functionals A random variable (or random number)
on probability space (Ω, µ) is a real-valued function v : Ω → R. The ex-
pected value of v (given µ) is the weighted average

Eµ (v) =
∑
ω∈Ω

v (ω)µ (ω) .

We can interpret the Eµ (·) notation as a special case of our notation on
functions and sections. For a fixed state space Ω, let us consider all the
probability measures µ ∈ ∆ (Ω) and variables/functions v ∈ RΩ. We call
“functional”a real-valued function whose domain is a set of functions, or–
more generally– a set of n-tuple of functions. The expectation functional

E : RΩ ×∆ (Ω) → R
(v, µ) 7→

∑
ω∈Ω v (ω)µ (ω)

associates each pair (v, µ) with the expected value of v under probability
measure µ. When we fix µ ∈ ∆ (Ω), we obtain the section

Eµ : RΩ → R
v 7→

∑
ω∈Ω v (ω)µ (ω)

,

that is, the expectation functional defined on the set of random variables over
probability space (Ω, µ). (Of course, it also makes sense to define the “dual”
functional µ 7→

∑
ω∈Ω v (ω)µ (ω) for any fixed variable/function v : Ω→ R;

but this is less important here.)

10The inclusion is strict if Ω has at least 2 elements.
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Probability functionals The simplest random variables on probability
spaces (Ω, µ) (µ ∈ ∆ (Ω)) are the indicator functions of events

1E : Ω→ {0, 1} (E ⊆ Ω).

The expected value of 1E given µ is the probability of E given µ. This gives
the probability functional

P : 2Ω ×∆ (Ω) → R
(E,µ) 7→ E (1E , µ) =

∑
ω∈E µ (ω)

.

When we fix µ ∈ ∆ (Ω), we obtain the section

Pµ : 2Ω → R
E 7→

∑
ω∈E µ (ω)

.

Savage acts, choice under uncertainty If we consider the section of
outcome function g at any action ai ∈ Ai, we obtain functions gai : A−i →
Y (ai ∈ Ai). This shows that an action can always be interpreted as a
function from what the decision maker i does not control (in this case, the
actions of other players a−i) to the outcomes, or consequences. In decision
theory, such functions are called acts in the sense of Savage, or Savage
acts. According to the subjective expected utility (SEU) theory of
choice under uncertainty of Savage (1954), i has a preference relation %i⊆
Y A−i ×Y A−i over the set Y A−i of all conceivable acts,11 which contains the
set {

f ∈ Y A−i : ∃ai ∈ Ai, f = gai
}

of all feasible acts.12 If %i satisfies the axioms of SEU theory, there exists a
utility function vi : Y → R (unique, up to positive affi ne transformations)
and a probability measure µi ∈ ∆ (A−i) such that, for all acts f ′, f ′′ ∈
Y A−i ,13

f ′ %i f ′′ ⇔ Eµi
(
vi ◦ f ′

)
≥ Eµi

(
vi ◦ f ′′

)
.

Thus, a rational player i with (probabilistic) conjecture µi chooses one of
the actions in the set

arg max
ai∈Ai

Eµi (vi ◦ gai) :=
{
a∗i ∈ Ai : ∀ai ∈ Ai,Eµi

(
vi ◦ ga∗i

)
≥ Eµi (vi ◦ gai)

}
.

11Recall, a binary relation over a set X is a subset of R ⊆ X ×X. We write x′Rx′′ if
(x′, x′′) ∈ R.
12What we say about acts and subjective expected utility is “in the same spirit” as

Savage (1954). But he considers an uncountable A−i; therefore, his theory does not
exactly apply here.
13Note that, for every f : A−i → Y and µi ∈ ∆ (A−i), function vi ◦ f : A−i → R is a

random variable on the probability space
(
A−i, µ

i
)
.
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For each pair of constants k and m, we denote by (mvi + k) the following
affi ne transformation

(mvi + k) : Y → R
y 7→ mvi (y) + k

.

Uniqueness up to positive affi ne transformations implies the following.

Remark 7 For all (k,m) ∈ R× R++, g ∈ Y A, ai ∈ Ai, and µi ∈ ∆ (A−i),

Eµi ((mvi + k) ◦ gai) = mEµi (vi ◦ gai) + k;

therefore,

arg max
ai∈Ai

Eµi (vi ◦ gai) = arg max
ai∈Ai

Eµi ((mvi + k) ◦ gai) .

Stochastic outcomes Some games have rules that make the outcome
depend on actions only stochastically, that is, with some noise. This can be
represented in two ways:

• There is a “chance player”that chooses a deterministic outcome func-
tion g ∈ Y A at random according to some objective probability mea-
sure γ ∈ ∆

(
Y A
)
. Then, in the finite case, for all a ∈ A and y ∈ Y ,

the probability of outcome y given action profile a is the sum of the
probabilities of all the outcome functions g such that g(a) = y:

ĝ(y|a) =
∑

g∈Y A:g(a)=y

γ (g) .

• There is a “chance player”that, for each a ∈ A, selects the outcome at
random according to an objective probability measure ḡ(a) ∈ ∆ (Y ).
This yields a stochastic outcome function

ḡ : A → ∆(Y )
a 7→ ḡ(a)

.

The connection between ḡ and ĝ is the following:

∀a ∈ A, ∀y ∈ Y , ḡ(a) (y) = ĝ (y|a) .
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Choice under risk Suppose that the game form is stochastic and player i
is certain of a particular action profile a−i. How is i supposed to rank his ac-
tions and choose? In this case each action ai induces an objective probability
measure over outcomes, or lottery, ḡa−i (ai) ∈ ∆ (Y ). According to the ob-
jective expected utility theory of von Neumann and Morgenstern (1947),
i’s preference relation %i⊆ ∆ (Y )×∆(Y ) over the whole set of conceivable
lotteries is such that there is a utility function vi : Y → R (unique up to
positive affi ne transformations) such that, for all lotteries λ′, λ′′ ∈ ∆(Y ),

λ′ %i λ′′ ⇔ Eλ′ (vi) ≥ Eλ′′ (vi) .

Note that, if i is certain of a−i (i.e., his subjective belief is represented by
the Dirac measure δa−i), then he thinks that the set of feasible lotteries is{

λ ∈ ∆ (Y ) : ∃ai ∈ Ai, ḡa−i (ai) = λ
}
,

that is, the set of all lotteries induced by some action of i given conjecture
a−i. Thus, a rational player i with such conjecture chooses one of the actions
in the set

arg max
ai∈Ai

Eḡa−i (ai) (vi) .

Choice under risk and uncertainty What if i is not certain about a−i?
In this case, each action ai induces a function ḡai : A−i → ∆(Y ) that asso-
ciates each a−i with an objective probability measure on Y . Such functions
(the elements of ∆(Y )A−i) are called “Anscombe-Aumann acts,”or AA-
acts. According to the subjective expected utility theory of Anscombe
and Aumann (1963), agent i has a preference relation %i⊆ ∆(Y )A−i ×
∆(Y )A−i over the set of all conceivable AA-acts, where %i has the prop-
erty that there exist a utility function vi : Y → R (unique, up to positive
affi ne transformations) and a subjective probability measure µi ∈ ∆(A−i)
such that, for all f ′, f ′′ ∈ ∆(Y )A−i ,

f ′ %i f ′′ ⇔
∑

a−i∈A−i

µi(a−i)Ef ′(a−i) (vi) ≥
∑

a−i∈A−i

µi(a−i)Ef ′′(a−i) (vi) .

Note that the set of feasible AA-acts is{
f ∈ ∆ (Y )A−i : ∃ai ∈ Ai, f = ḡai

}
.
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Therefore, a rational player i with (probabilistic) conjecture µi chooses one
of the actions in the set

arg max
ai∈Ai

∑
a−i∈A−i

µi(a−i)Eḡai (a−i) (vi)

= arg max
ai∈Ai

∑
a−i∈A−i

µi(a−i)
∑
y∈Y

ḡai(a−i) (y) vi (y) ,

where ḡai(a−i) ∈ ∆ (Y ) is the lottery induced by action ai when the co-
players choose a−i. Uniqueness up to positive affi ne transformation implies
the following.

Remark 8 For all (k,m) ∈ R × R++, ḡ ∈ ∆ (Y )A, ai ∈ Ai and µi ∈
∆ (A−i),

∑
a−i∈A−i

µi(a−i)Eḡai (a−i) (mvi + k) = m

 ∑
a−i∈A−i

µi(a−i)Eḡai (a−i) (vi)

+ k;

therefore,

arg max
ai∈Ai

∑
a−i∈A−i

µi(a−i)Eḡai (a−i) (vi)

= arg max
ai∈Ai

∑
a−i∈A−i

µi(a−i)Eḡai (a−i) ((mvi + k)) .

Mixed actions There is another way to obtain AA-acts and it works even
if the outcome function g is deterministic: Player i can delegate the choice
of his action ai to a randomization device with distribution αi ∈ ∆ (Ai).
By choosing such device, i induces a mixed action αi. Since the induced
mixed action is all that matters, we can think of a set of conceivable choices
∆ (Ai) whereas the set of feasible choices includes Ai (which we identify
with the set of Dirac measures on Ai) and all the non-Dirac measures αi
that are induced by some feasible randomization device.

Each mixed action αi induces a corresponding AA-act:

αi 7→
(
ĝa−i (αi)

)
a−i∈A−i ∈ ∆ (Y )A−i ,

where
ĝa−i : ∆ (Ai) → ∆ (Y )

αi 7→ αi ◦ g−1
a−i

15



is the pushforward function such that

ĝa−i (αi) (E) = αi

(
g−1
a−i (E)

)
= αi

({
ai ∈ Ai : ga−i (ai) ∈ E

})
for each outcome-event E ⊆ Y .

Example 8 Consider the outcome function

g : ` r

t G B

m M M

d B G

and let Ai = {t,m, d} (hence, A−i = {`, r}). Then, the mixed action αi =
1
2δt+

1
2δm– which randomizes

1
2 : 1

2 on t and m– yields the following AA-act
f

f B M G

ĝ`
(

1
2δt + 1

2δm
)

0 1
2

1
2

ĝr
(

1
2δt + 1

2δm
)

1
2

1
2 0

N

Battigalli et al. (2017) show that it is not necessary to consider the
whole set ∆ (Y )A−i of conceivable AA-acts to develop an axiomatic theory
of choice under uncertainty with a subjective EU representation, because
the subset{

f ∈ ∆ (Y )A−i : ∃αi ∈ ∆ (Ai) : f =
(
ĝa−i (αi)

)
a−i∈A−i

}
of AA-acts induced by mixed actions is “suffi ciently rich.”That is, one can
provide an axiomatic theory of choice under uncertainty looking at prefer-
ences over mixed actions, %i⊆ ∆ (Ai)×∆ (Ai).

3 Predicates, sets, and games

Predicate calculus is a branch of mathematical logic that analyzes sentences
about the properties of individual objects and relationships between objects.
A predicate is a statement that some property or relationship holds for an
object, or a tuple of objects. Here we are only interested in the formal
representation of such sentences, how they are used to represent sets, and
some simple rules. We illustrate with examples from the theory of games.
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Games A simultaneous-move game is given by a game form
〈
I, Y, (Ai)i∈I , g

〉
and a profile of utility functions (vi : Y → R)i∈I . For each player i ∈ I , let

ui = vi ◦ g : A→ R

denote the so called “payoff function”of i.14 Then, we can consider a kind
of reduced form

G =
〈
I, (Ai, ui)i∈I

〉
of the game. The basic set of objects under consideration is the set of mixed
actions ∆ (Ai) of a given player i. As explained above, we regard Ai as
a subset of ∆ (Ai): Ai ⊆ ∆ (Ai), because choosing action ai is equivalent
to choosing the degenerate probability measure (Dirac measure) δai that
assigns probability 1 to ai. We also consider the set ∆ (A−i) of conjectures
about the action profiles of the co-players; again, it makes sense to write
A−i ⊆ ∆ (A−i).

Justifiability and dominance Here are two examples of (informally
stated) sentences in predicate calculus:

• “action ai is justifiable”and

• “action ai is dominated.”

Both examples involve the “for all”quantifier ∀ and the “there exists”
quantifier ∃. Specifically, by definition,

• ai is justifiable iff (if and only if) there exists a conjecture µi ∈
∆ (A−i) such that Eµi (ui,ai) ≥ Eµi (ui,bi) for all bi ∈ Ai,15

• ai is dominated iff there exists a mixed action αi such that Eαi
(
ui,a−i

)
>

ui,ai (a−i) for all a−i ∈ A−i.
14 It is somewhat confusing to call “payoff function”the map that associates each action

profile with a player’s utility of the induced outcome. This has a historical origin. The
early work on game theory assumed that outcomes are profiles y = (yi)i∈I ∈ RI of
monetary payoffs and that players are risk neutral, hence they just want to maximize
their own expected monetary payoff. In this case vi (y) = yi, and ui (a) = gi (a), where
gi (a) is i’s “gain”given action profile a.
15Here we take for granted without proof that, for every conjecture, the subjective

expected utility of a mixed action cannot be higher than the largest subjective expected
utility of pure actions. Hence, justifiability can be expressed with reference to pure actions.
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Note, when we state such sentences with logical quantifiers in the natural
language, we sometimes put the “for all” quantification at the end of the
sentence, as in the examples above. Sometimes we put the “there exists”
quantification at the end of the sentence, but with different words, such as
“for some ...”or “for at least one ...”. As long as the meaning is clear, this
is fine.

Predicates about justifiability and dominance However, it is often
convenient to express such sentences with formulas containing ∀ and/or ∃.
Such predicate formulas must be written with all the quantifiers at the begin-
ning and in the correct order. With this, there are simple rules to manipu-
late such formulas according to logical calculus that help us in our reasoning.
Here we focus on the rule to obtain the negation of a sentence in predicate
calculus.

The formula for “ai is justifiable”is

∃µi ∈ ∆ (A−i) , ∀bi ∈ Ai,Eµi (ui,ai) ≥ Eµi (ui,bi) .

The formula for “ai is dominated”is

∃αi ∈ ∆ (Ai) ,∀a−i ∈ A−i,Eαi
(
ui,a−i

)
> ui,ai (a−i) .

Note that the order of quantifiers is crucial, as illustrated by the follow-
ing example.

Example 9 (Justifiability and order of quantifiers) Consider the following
payoff function ui:

ui : ` r

t 0 1

m 1
3

1
3

d 1 0

where Ai = {t,m, d} (ui is obtained by appending utility function vi (G) =
1, vi (M) = 1/3, vi (B) = 0 to the game form of Example 8). It can be
checked that action m is not justifiable: indeed, the special case for this
payoff function and action m of the justifiability formula written above can
be re-written as follows

∃µi ∈ ∆ ({`, r}) ,
(

1

3
≥ µi (r)

)
∧
(

1

3
≥ µi (`)

)
,
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(where ∧ means “and”), which is false because either µi (r) ≥ 1
2 or µ

i (`) ≥
1
2 . Yet, inverting the order of quantifiers in the justifiability formula, we
obtain

∀bi ∈ {t,m, d}, ∃µi ∈ ∆ ({`, r}) ,Eµi (ui,m) ≥ Eµi (ui,bi) ,

which is true, because Eµi (ui,m) ≥ Eµi (ui,t) if µi (r) ≤ 1
3 , and Eµi (ui,m) ≥

Eµi (ui,d) if µi (`) ≤ 1
3 . A similar example applies to dominance.

16 N

Predicate formulas with quantifiers can be used to express sets. For ex-
ample, the set of justifiable actions is

Ji :=
{
ai ∈ Ai : ∃µi ∈ ∆ (A−i) ,∀bi ∈ Ai,Eµi (ui,ai) ≥ Eµi (ui,bi)

}
,

and the set of dominated actions is

Di :=
{
ai ∈ Ai : ∃αi ∈ ∆ (Ai) , ∀a−i ∈ A−i,Eαi

(
ui,a−i

)
> ui,ai (a−i)

}
.

Predicates and negation Is there a relatively simple and explicit way to
write the sets of unjustifiable and undominated actions? Yes, it is enough
to apply the following rule:

• To obtain the negation of a predicate formula with quantifiers, replace
each ∀ with ∃, replace each ∃ with ∀, and replace the predicate in the
formula with its negation (e.g., replace < with ≥).

For example, the negation of the false formula

∀n ∈ N, ∃m ∈ N,m < n

is the true formula
∃n ∈ N, ∀m ∈ N,m ≥ n.

To check that the first formula is false and the second (its negation) is true,
just consider the smallest natural number n = 1.17

16The crucial importance of the order of quantifiers explains why predicate formulas
must list quantifiers on the left, so that their order reflects the reading order from left
to right. Some mathematicians and theorists, casually write the universal quantifier ∀ on
the right, but only in formulas that do not contain quantifier ∃. In particular, this is very
common among decision theorists.
17We use N to denote the set of strictly positive integers. We denote the set of nonneg-

ative integers by N0.
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We can use this simple rule to express the sets of unjustifiable and un-
dominated actions as follows:

Ai\Ji =
{
ai ∈ Ai : ∀µi ∈ ∆ (A−i) , ∃bi ∈ Ai,Eµi (ui,ai) < Eµi (ui,bi)

}
and

Ai\Di =
{
ai ∈ Ai : ∀αi ∈ ∆ (Ai) , ∃a−i ∈ A−i,Eαi

(
ui,a−i

)
≤ ui,ai (a−i)

}
.

Predicates and optimization We can also relate predicate formulas in-
volving inequalities with the sup and inf operations, which become max and
min operations when we can take for granted that the sup and inf are always
attained. For example, given the assumption that the game is finite, we can
express justifiability as follows: ai is justifiable iff, for some conjecture µi,
there is a non-positive incentive to deviate from ai to any action bi, that is,

∃µi ∈ ∆ (A−i) , ∀bi ∈ Ai,Eµi (ui,bi)− Eµi (ui,ai) ≤ 0,

which is equivalent to

min
µi∈∆(A−i)

max
bi∈Ai

(
Eµi (ui,bi)− Eµi (ui,ai)

)
≤ 0.

To see this, note that– for every given µi– Eµi (ui,bi)−Eµi (ui,ai) ≤ 0 for all
bi in the finite set Ai iff

max
bi∈Ai

(
Eµi (ui,bi)− Eµi (ui,ai)

)
≤ 0.

Let H
(
µi
)
denote the above maximum. Then ai is justifiable iffH

(
µi
)
≤ 0

for some µi. By standard arguments, H is a continuous function over the
compact domain ∆ (Ai), therefore minµi∈∆(A−i)H

(
µi
)
is well defined and

H
(
µi
)
≤ 0 for some µi iffminµi∈∆(A−i)H

(
µi
)
≤ 0.

Using arguments of this kind and the celebrated Maxmin Theorem of
von Neumann, one can prove the following lemma of Wald and Pearce:
Ji = Ai\Di (see the Appendix of Chapter 3 of Game Theory: Analysis of
Strategic Thinking).
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