Static Games with Incomplete Information: Payoff Uncertainty

P. Battigalli Bocconi University Game Theory: Analysis of Strategic Thinking

October 9, 2023

P. Battigalli Bocconi University Game TheorStatic Games with Incomplete Information: P

Abstract

Some justifications of solution concepts make sense under the assumption that the rules of the game and players' personal preferences are common knowledge. A situation of strategic interaction features **incomplete information** when this is not the case. We represent this with **games with payoff uncertainty**, whereby the payoff functions depend on a vector of parameters about which players have partial and asymmetric knowledge. The game features **private values** if there is common knowledge of the outcome function, and **interdependent values** otherwise. It is relatively straightforward to extend rationalizability and pure self-confirming equilibrium to allow for payoff uncertainty.

[These slides summarize and complement parts of Sections 8.1-3 and 8.7 of Ch. 8 of GT-AST]

- Whether a solution or equilibrium concept is consistent with incomplete information is a matter of *interpretation*. We must look at the conceptual *motivations*:
- Standard *rationalizability* (iterated deletion of strictly dominated actions) is explicitly motivated as representing the behavioral implications of rationality and common belief in rationality *under complete information* (common knowledge of the payoff functions).
- Nash equilibrium can be motivated as an "obvious way to play the game": See deductive interpretation, and self-enforcing agreement interpretation. Also this makes sense under the complete information assumption.
- *Deductive interpretation of NE*: it makes sense when there is a unique rationalizable outcome, see above.

Incomplete Information and Self-Enforcing Agreements

- Self-enforcing agreement interpretation of NE: Again we need complete information (or maybe something "close" to it) in order to make sense of this interpretation.
- Consider the following game and the Pareto dominant agreement (t, l). The agreement is self-enforcing if there is common belief (or "almost common belief") that there is no incentive to deviate from (t, l).

	ℓ	r
t	100,100	0,99
b	99,0	99,99

- Would Rowena (row player) play t if she is not sure of the payoff function of Colin (column player)? What if she is not sure that Colin is sure of her payoff function? What if...?
- [But **note**: as long as each player knows her/his payoff function, there is *no need to assume complete information to make sense of Nash* equilibrium *as* description of rest points *of adaptive processes*.]

Environments with Incomplete Information

- Rules of the game \Rightarrow outcome/consequence function $g : A \rightarrow Y$.
- Each player $i \in I$ ranks (lotteries over) outcomes according to (the expectation of) a vNM utility function $v_i : Y \to \mathbb{R}$.
- In environments with incomplete information there is *lack of* common knowledge of g (outcome function) and/or (v_i)_{i∈I} (personal preferences).
- Such situation can be described with parameterized payoff functions

$$u_i: \Theta \times A \to \mathbb{R},$$

with

• $\theta \in \Theta$ parameter affecting payoffs,

$$\boldsymbol{\theta} = (\theta_0, (\theta_i)_{i \in I}) \in \boldsymbol{\Theta} = \boldsymbol{\Theta}_0 \times (\times_{i \in I} \boldsymbol{\Theta}_i)$$

• $i \in I$ knows only θ_i =private information of i about payoffs.

Interpretation, Distributed Knowledge

- Intuition: it is common knowledge that θ ∈ Θ, Θ_i represents what is commonly believed possible about i's traits known to him (e.g., tastes, abilities), the "larger" Θ_i the more uncertain are the other players about such traits.
- If Θ_i is a singleton (i ∈ I), that is, Θ_i = {θ_i}, it means that what i knows is common knowledge (it is common knowledge that θ_i = θ_i) and Θ_i can be neglected: indeed, Θ₀ × (×_{j∈I\{i}}Θ_j) and Θ have the same cardinality; hence, they are (intuitively) isomorphic.
- Θ_0 represents the *residual uncertainty* that would remain if the players could pool their private information.
- We often *focus* on the case where Θ_0 is a singleton: there is *no residual uncertainty* after pooling private information (in this case it is said that there is "**distributed knowledge**" of θ). Thus, we will often neglect Θ_0 .

We distinguish between the case of **private values**, where u_i depends only on θ_i , and **interdependent values**, where u_i may depend on the whole θ .

- Private values: Common knowledge of outcome function g, but lack of common knowledge of preferences (v_i)_{i∈I}:
 - (it is common knowledge that) each *i* knows his vNM utility function $v_i \Rightarrow$ parameterized representation $v_i : \Theta_i \times Y \rightarrow \mathbb{R}$.
 - Note: $\{w_i \in \mathbb{R}^Y : \exists \theta_i \in \Theta_i, w_i = v_{i,\theta_i}\}$ is the set of utility functions that each $j \neq i$ thinks *i* might have \Rightarrow get

$$u_i(\theta_i, a) = v_i(\theta_i, g(a))$$

 Note: under private values we may assume w.l.o.g. that there is distributed knowledge of θ (Θ₀ singleton).

Interdependent Values

- Interdependent values: lack of common knowledge of outcome function g, which may depend on θ₀ or on personal traits such as some players' "ability").
 - common knowledge of preferences $(v_i)_{i \in I}$ (simplest case) \Rightarrow parameterized representation $g : \Theta \times A \rightarrow Y$; note: $\{\gamma \in Y^A : \exists \theta \in \Theta, \gamma = g_{\theta}\}$ is the set of possible outcome functions \Rightarrow get

$$u_i(\theta, \mathbf{a}) = v_i(g(\theta, \mathbf{a})).$$

 More generally, if neither the outcome function nor preferences are common knowledge, each v_i is parameterized by θ_i and

$$u_i(\theta, \mathbf{a}) = v_i(\theta_i, g(\theta, \mathbf{a})).$$

• Interdependence: The value for *i* depends on what *j* knows, e.g., a personal trait of *j*.

Cournot oligopoly model (quantity setting): firm i = 1, ..., n produces $q_i \ge 0$ units of homogeneous good

- ▶ Inverse demand $P(Q) = [\bar{p} + \theta_0 Q]_+$ (with $[x]_+ := \max \{0, x\}, Q = \sum_{i=1}^n q_i$)
- ► Cost function of firm i: $C_i(q_i, \theta_i) = \theta_i q_i$, $0 \le q_i \le \bar{q}$ (\bar{q} =common capacity)
- ► Common knowledge of risk neutrality and of sets $\Theta_0, \Theta_1, ..., \Theta_n$
- ▶ Payoff of *i*: $u_i(\theta_0, \theta_i, q_1, ..., q_n) = \left(\left[\bar{p} + \theta_0 \sum_{j=1}^n q_j\right]_+ \theta_i\right)q_i$
- ► There are private values and distributed knowledge of θ if there is common knowledge of market demand (Θ_0 singleton)

Team production: Team agents i = 1, ..., n, i exerts effort $e_i \ge 0$

- ▶ Cost of effort (in units of output) $C_i(e_i, k_i) = k_i e_i^2$, $k_i \in K_i \subseteq \mathbb{R}_+$
- ▶ Production function: $y = \prod_{i=1}^{n} e_i^{p_i}$, $p_i \in P_i \subseteq \mathbb{R}_+$

$$\blacktriangleright \theta_i = (k_i, p_i) \in K_i \times P_i = \Theta_i$$

- ► Common knowledge of (output-)risk neutrality and of sets $\Theta_i = K_i \times P_i$
- ▶ Payoff function of *i*: $u_i(k_1, p_1, ..., k_n, p_n, e_1, ..., e_n) = \frac{1}{n} \prod_{j=1}^n e_j^{p_j} k_i e_i^2$
- ▶ Private values iff sets $P_1, ..., P_n$ are singletons (productivities are common knowledge), otherwise interdependent values

Games with Payoff Uncertainty

• We can represent (simultaneous) strategic interaction under *incomplete information* with the mathematical structure

$$\hat{\mathcal{G}} = ig\langle I, \Theta_0, (\Theta_i, \mathcal{A}_i, u_i: \Theta imes \mathcal{A} o \mathbb{R})_{i \in I} ig
angle;$$

it is assumed that the interactive situation represented by \hat{G} is common knowledge. This is called **game with payoff uncertainty**; θ_i is called the **information-type** of *i*.

- Interpretation: θ₀ affects the payoffs of somebody (if θ'₀ ≠ θ''₀, then ∃i ∈ I, u_i(θ'₀, ·) ≠ u_i(θ''₀, ·)). But part, or all, of i's private information θ_i may be payoff irrelevant. Yet even payoff-irrelevant information may be strategically relevant (e.g., θ_i may be the report to i by an art expert about the autenticity of a painting for sale).
- Take the obvious extension to payoff uncertainty of the definition of "compact-continuous game." To extend "nice game," add to the obvious properties the *convexity* (or connectedness) of each Θ_i.

- Games with payoff uncertainty are sufficient to describe certain aspects of strategic thinking, specifically, *rationality and common belief in rationality*.
- Write $B_i(E)$ for "*i* believes E" (with prob. 1), and $B(E) = \bigcap_{i \in I} B_i(E)$ for "everybody believes E," R_i for "*i* is rational," $R = \bigcap R_i$ for "everybody is rational."
- What actions of *i* are consistent with *R* (rationality), B(R) (mutual belief in rationality), B(B(R)), B(B(R)), B(B(R))) ... $R \cap CB(R)$?

Possible payoff functions given by the following tables. Player 1 (Rowena) knows θ while player 2 (Colin) does not ($\Theta \cong \Theta_1$)

	θ'	ℓ	r	θ''	l	r
$i^{1}:$	t	4,0	2,1	t	2,0	0,1
	b	3,1	1,0	b	0,1	1,2

► $R_1 \Rightarrow [t \text{ if } \theta']$, because t dominates b given $\theta = \theta'$ (recall, Row. knows θ) $\Rightarrow (\theta', b)$ is inconsistent with rationality (delete). ► $R_2 \cap B_2(R_1) \Rightarrow r$, because $u_2(\theta, x, \ell) < u_2(\theta, x, r)$ for all $(\theta, x) \neq (\theta', b)$ (those consistent with R_1). ► $R_1 \cap B_1(R_2) \cap B_1(B_2(R_1)) \Rightarrow$ Row. picks best reply to r given θ $\Rightarrow [b \text{ if } \theta = \theta''].$

Players 1 and 2 receive an envelope. Envelope of *i* contains θ_i Euros, with $\theta_i = 1, ..., K$. Each player can offer to exchange (OE) by paying transaction cost $\varepsilon > 0$ (small). Exchange executed IFF both offer:

	a _i \a _j	OE	No
\hat{s}^2 :	OE	$\theta_j - \varepsilon$	$\theta_i - \varepsilon$
	No	θ_i	θ_i

Note: A rational player *i* offers to exchange only if she assigns positive probability to event $[\theta_j > \theta_i] \cap [a_j = OE]$. $\blacktriangleright R_i \Rightarrow [a_i = No \text{ if } \theta_i = K]$ because OE is dominated in this case. $\blacktriangleright R_i \cap B_i(R_j) \Rightarrow [a_i = No \text{ if } \theta_i = K - 1]$ because ... $\blacktriangleright R_i \cap B_i(R_j) \cap B_i(B_j(R_i)) \Rightarrow [a_i = No \text{ if } \theta_i = K - 2]$ because ... $\blacktriangleright It$ can be shown that: $R \cap CB(R) \Rightarrow (\forall \theta_i, a_i = No \text{ given } \theta_i) (no-trade!).$

Rationalizability in Games with Payoff Uncertainty

- To ease notation, assume distributed knowledge: $\Theta \cong \times_{i \in I} \Theta_i$.
- Given conjecture $\mu^i \in \Delta(\Theta_{-i} \times A_{-i})$ and private information $\theta_i \in \Theta_i$, let

$$r_i(\mu^i, \theta_i) := \arg \max_{a_i \in A_i} \mathbb{E}_{\mu^i}(u_{i, \theta_i, a_i})$$

where $u_{i,\theta_i,\mathbf{a}_i}: \Theta_{-i} \times A_{-i} \to \mathbb{R}$ is the section of u_i at (θ_i, \mathbf{a}_i) ; in the finite support case

$$\mathbb{E}_{\mu^{i}}\left(u_{i,\theta_{i},\mathbf{a}_{i}}\right) = \sum_{\left(\theta_{-i},\mathbf{a}_{-i}\right)\in \mathrm{supp}\mu^{i}} u\left(\theta_{i},\theta_{-i},\mathbf{a}_{i},\mathbf{a}_{-i}\right)\mu^{i}\left(\theta_{-i},\mathbf{a}_{-i}\right)$$

- Let C_i ⊆ Θ_i × A_i (with proj_{Θi} C_i = Θ_i); interpretation: set of "surviving" pairs (see previous examples); C_{-i} = ×_{j≠i}C_j, C collection of (closed) Cartesian products.
- Define the (monotone) rationalization operator $\rho : \mathcal{C} \to \mathcal{C}$.

$$\rho_i(C_{-i}) = \{(\theta_i, \mathbf{a}_i) \in \Theta_i \times A_i : \exists \mu^i \in \Delta(C_{-i}), \mathbf{a}_i \in r_i(\mu^i, \theta_i)\}.$$

$$\rho(C) = \times_{i \in I} \rho_i(C_{-i}).$$

Behavioral Implications of RCBR

Assumptions about behavior and beliefs	Implications for $(\theta_i, a_i)_{i \in I}$		
R	$\rho(\Theta \times A)$		
$R \cap B(R)$	$\rho^2(\Theta \times A)$		
$R \cap B(R) \cap B^2(R)$	$\rho^3(\Theta \times A)$		
$\int R \cap \left(\bigcap_{k=1}^m \mathrm{B}^k(R) \right)$	$ ho^{m+1}(\Theta imes A)$		
$R \cap \left(\bigcap_{k=1}^{\infty} B^{k}(R)\right) = R \cap CB(R)$	$\rho^{\infty}(\Theta \times A)$		

Theorem

If \hat{G} is finite or compact-continuous, then

$$ho^\infty(\Theta imes {\sf A})=
ho\left(
ho^\infty(\Theta imes {\sf A})
ight)\;\;$$
 and ${
m proj}_\Theta
ho^\infty(\Theta imes {\sf A})=\Theta.$

Furthermore, for each $C \in C$, $C \subseteq \rho(C)$ implies $C \subseteq \rho^{\infty}(\Theta \times A)$.

- The previous theorem extends Theorems 2 and 3 of GT-AST from games with complete information to games with incomplete information (payoff uncertainty):
- $\rho^{\infty}(\Theta \times A) = \rho \left(\rho^{\infty}(\Theta \times A) \right)$ is the "fixed set property" of the rationalizable set: after countably many iterations there is no need to re-start the iterated deletion procedure.
- $\operatorname{proj}_{\Theta}\rho^{\infty}(\Theta \times A) = \Theta$ means that, for every $(\theta_i)_{i \in I} \in \Theta$, the set of rationalizable actions for information-type θ_i is not empty.
- C ⊆ ρ (C) ⇒ C ⊆ ρ[∞](Θ × A) means that every (Cartesian) subset of Θ × A with the Best Reply Property is included in the rationalizable set.

Justifiability and Dominance

• Fix Cartesian subset $C = \times_{i \in I} C_i$ with $C_i \subseteq \Theta_i \times A_i$. Let $C_{i,\theta_i} := \{a_i \in A_i : (\theta_i, a_i) \in C_i\}$ (section of set C_i at θ_i).

Definition

Mixed action α_i dominates a_i given θ_i within C, written $\alpha_i \gg_{(\theta_i, C)} a_i$, if $\operatorname{supp} \alpha_i \subseteq C_{i,\theta_i}$ and

$$\forall (\theta_{-i}, \mathbf{a}_{-i}) \in \mathcal{C}_{-i}, \ u_i(\theta_i, \theta_{-i}, \alpha_i, \mathbf{a}_{-i}) > u_i(\theta_i, \theta_{-i}, \mathbf{a}_i, \mathbf{a}_{-i}).$$

Lemma

Fix a finite or compact-continuous \hat{G} ; let $C = \times_{i \in I} C_i$ be non-empty and compact. For all $i \in I$ and $(\theta_i, a_i^*) \in C_i$ the following are equivalent: (1) $\nexists \alpha_i$ s.t. $\alpha_i \gg_{(\theta_i, C)} a_i^*$ (a_i^* undominated given θ_i within C) (2) $\exists \mu^i \in \Delta(C_{-i})$ s.t. $a_i^* \in \arg \max_{a_i \in C_{i,\theta_i}} \mathbb{E}_{\mu^i}(u_{i,\theta_i,a_i})$.

< ロト < 同ト < ヨト < ヨト

Iterated Dominance

- The previous result (with C = Θ × A) extends the Wald-Pearce Lemma on justifiability and dominance to simultaneous-moves games with incomplete information (payoff uncertainty).
- For each $C \in C$ ($\forall i \in I, C_i \subseteq \Theta_i \times A_i$), define ND(C) as follows:

$$\begin{aligned} \mathrm{ND}_i(\mathcal{C}) &= C_i \setminus \left\{ (\theta_i, \mathbf{a}_i) \in C_i : \exists \alpha_i \in \Delta(C_{i,\theta_i}), \alpha_i \gg_{(\theta_i, \mathcal{C})} \mathbf{a}_i \right\}, \\ \mathrm{ND}(\mathcal{C}) &= \times_{i \in I} \mathrm{ND}_i(\mathcal{C}). \end{aligned}$$

 Similarly, dominance by pure actions (very relevant for nice games) gives

$$\begin{aligned} \mathrm{ND}_{p,i}(C) &= C_i \setminus \left\{ (\theta_i, \mathbf{a}_i) \in C_i : \exists \mathbf{a}_i' \in C_{i,\theta_i}, \mathbf{a}_i' \gg_{(\theta_i,C)} \mathbf{a}_i \right\}, \\ \mathrm{ND}_p(C) &= \times_{i \in I} \mathrm{ND}_{p,i}(C). \end{aligned}$$

Extension of the equivalence *"rationalizable IFF iteratively undominated"* to games with payoff uncertainty (r is the point-rationalization operator obtained with deterministic conjectures):

Theorem

If \hat{G} is finite or compact-continuous, for all $m = 1, 2, ..., \infty$, $\rho^m (\Theta \times A) = ND^m (\Theta \times A).$

Theorem

If \hat{G} is nice, point-rationalizability, rationalizability, and pure iterated dominance coincide, that is, for all $m = 1, 2, ..., \infty$, $\mathbf{r}^{m}(\Theta \times A) = \rho^{m}(\Theta \times A) = \mathrm{ND}_{p}^{m}(\Theta \times A)$; furthermore, the projections of these sets onto A (proj_A $\rho^{m}(\Theta \times A)$, $m \in \mathbb{N} \cup \{\infty\}$) are closed order-intervals (products of closed intervals).

Recall: The game is symmetric, the envelope of *i* contains $\in \theta_i$, with $\theta_i = 1, ..., K$. Each player can offer to exchange (OE) by paying a small transaction cost $\varepsilon > 0$. Exchange executed IFF both offer:

Recall: A rational player *i* offers to exchange only if she assigns positive probability to $[\theta_j > \theta_i] \cap [a_j = OE]$. With this, for each *i*: \blacktriangleright OE is dominated for $\theta_i = K$; delete $(\theta_i, a_i) = (K, OE)$. \blacktriangleright Given that (K, OE) is deleted for *j*, OE is dominated for $\theta_i = K - 1$; delete (K - 1, OE). \blacktriangleright ...Given that (θ_j, OE) is deleted for each $\theta_j \in \{K - k + 1, ..., K\}$ $(1 \le k < K)$, OE is dominated for $\theta_i = K - k$; delete (K - k, OE)... \blacktriangleright $\rho^{\infty}(\Theta \times A) = \rho^K(\Theta \times A) = (\{1, ..., K\} \times \{NO\})^2$ (no type trades).

The Cournot model presented above (with n = 2) is a *nice game with payoff uncertainty*. Thus, look at best replies (B.R.) to *deterministic* conjectures.

Assume: $\theta_0 = 0$ commonly known, marg. cost $\theta_i \in [0, 1]$, $\bar{p} > 2$ (highest average cost much lower than \bar{p}), \bar{q} large ($\bar{q} > \bar{p} - 1$). The model has *private values* and is *symmetric*: $A_i = [0, \bar{q}]$, $\Theta_i = [0, 1]$, and each firm *i*'s payoff depends on θ_i and q_{-i} in the same way. Hence, common B.R. function

$$r\left(\theta_{i}, q_{-i}\right) = \left[\frac{\bar{p} - \theta_{i}}{2} - \frac{1}{2}q_{-i}\right]_{+}$$

where $\frac{\bar{p}-\theta_i}{2} = r(\theta_i, 0)$ =monopolistic output for cost-type θ_i .

Rationalizability in a Duopoly with Incomplete Inform., II

Example

(Cont.) Let
$$\underline{r}(q_{-i}) = \left[\frac{\bar{p}-1-q_{-i}}{2}\right]_+$$
, $\bar{r}(q_{-i}) = \left[\frac{\bar{p}-q_{-i}}{2}\right]_+$ be the B.R.
functions of, respectively, the *least efficient* $(\theta_i = 1)$ and *most efficient* $(\theta_i = 0)$ cost-type (see picture at the end).
Look at min and max output at each rationalizability step $k \in \mathbb{N}_0$:
 $\underline{q}(k) = \underline{r}(\bar{q}(k-1))$ and $\bar{q}(k) = \bar{r}(\underline{q}(k-1))$, with
 $\underline{q}(0) = 0, \ \bar{q}(0) = \bar{q}$. Then, $\operatorname{proj}_A \rho^k(\Theta \times A) = \left[\underline{q}(k), \ \bar{q}(k)\right]^2$ with
 $\underline{q}(1) = \underline{r}(\bar{q}) = \left[\frac{\bar{p}-1-\bar{q}}{2}\right]_+ = 0, \ \bar{q}(1) = \bar{r}(0) = \frac{\bar{p}}{2},$
 $\underline{q}(2) = \underline{r}(\frac{\bar{p}}{2}) = \frac{\bar{p}-2}{4}, \ \bar{q}(2) = \bar{r}(0) = \frac{\bar{p}}{2},$
 $\underline{q}(3) = \underline{r}(\frac{\bar{p}}{2}) = \frac{\bar{p}-2}{4}, \ \bar{q}(3) = \bar{r}(\frac{\bar{p}-2}{4}) = \frac{3\bar{p}+2}{8},$
 $\underline{q}(4) = \underline{r}(\frac{3\bar{p}+2}{8}) = \frac{5\bar{p}-10}{16}, \ \bar{q}(4) = \bar{r}(\frac{\bar{p}-2}{4}) = \frac{3\bar{p}+2}{8},$
Show: $\operatorname{proj}_A \rho^\infty(\Theta \times A) = \left[\lim_{\ell \to \infty} (\underline{r} \circ \bar{r})^\ell(0), \ \bar{r}(\lim_{\ell \to \infty} (\underline{r} \circ \bar{r})^\ell(0))\right]^2$
and compute $\underline{q}(\infty) = \underline{r}(\bar{q}(\infty)), \ \bar{q}(\infty) = \bar{r}(\underline{q}(\infty)).$

P. Battigalli Bocconi University Game TheorStatic Games with Incomplete Information: P

Contextual Restrictions on Beliefs

- In many applications it is plausible to assume that the context makes some restrictions on players' beliefs about θ transparent, i.e., true and commonly believed (see examples in the book).
- It may also make sense to assume that restrictions on beliefs about both θ and behavior (i.e., on conjectures) are transparent.
- Such restrictions may depend on the information-type θ_i. We represent them with a restricted set of conjectures
 Δ_{i,θi} ⊆ Δ (Θ_{-i} × A_{-i}) (keep assuming distributed knowledge of θ)
 for each i and θ_i ⇒ profile of restricted sets Δ = (Δ_{i,θi})_{i∈I,θi∈Θi}.
- Modified rationalization operator (monotone!): for each $C \in C$,

$$\rho_{i,\Delta}\left(\mathcal{C}_{-i}\right) = \left\{\left(heta_{i}, \mathbf{a}_{i}\right) : \exists \mu^{i} \in \Delta_{i,\theta_{i}} \cap \Delta\left(\mathcal{C}_{-i}\right), \mathbf{a}_{i} \in r_{i}(\mu^{i}, \theta_{i})
ight\},$$

$$\rho_{\Delta}(C) = \times_{i \in I} \rho_{i,\Delta}(C_{-i}).$$

Directed Rationalizability

- The transparent restrictions (represented by) ∆ "direct" the rationalizability procedure toward some results. Hence, the approach is called "directed rationalizability."
- Say that Δ represents restrictions on exogenous beliefs if, for every i and θ_i there is some Δ_{i,θ_i} ⊆ Δ (Θ_{-i}) s.t.
 Δ_{i,θ_i} = {μⁱ ∈ Δ (Θ_{-i} × A_{-i}) : marg_{Θ_{-i}}μⁱ ∈ Δ_{i,θ_i}}: only beliefs about exogenous θ_{-i} are restricted. Then, for every information-type, the set of rationalizable actions is nonempty (finiteness for simplicity).

Theorem

Fix a finite game with payoff uncertainty \hat{G} and and a profile Δ of restrictions about exogenous beliefs. Then

$$\rho^{\infty}_{\Delta}(\Theta \times A) = \rho_{\Delta}\left(\rho^{\infty}_{\Delta}(\Theta \times A)\right), \text{ proj}_{\Theta}\rho^{\infty}_{\Delta}(\Theta \times A) = \Theta.$$

Furthermore, for each $C \in C$, $C \subseteq \rho_{\Delta}(C)$ implies $C \subseteq \rho_{\Delta}^{\infty}(\Theta \times A)$.

Self-Confirming Equilibrium with Incomplete Info., I

- Intuitively, the SCE concept does not capture sophisticated strategic reasoning. Players' conjectures are only disciplined by long-run evidence. Again, to ease notation, assume Θ ≅ ×_{i∈I}Θ_i (distributed knowledge).
- As long as each player knows her payoff function (private values), we should get the same concept introduced in the previous lecture. We will make this formal.
- Feedback is modeled by functions f_i: Θ × A → M_i (i ∈ I). Recall that f_{i,θi,ai}: Θ_{-i} × A_{-i} → M_i is the section of f_i at (θ_i, a_i). If i observes m_i given (θ_i, a_i), she infers that the unknown profile (θ_{-i}, a_{-i}) must belong to the subset

$$f_{i, heta_{i},\mathbf{a}_{i}}^{-1}\left(m_{i}
ight)=\left\{\left(heta_{-i}^{\prime},\mathbf{a}_{-i}^{\prime}
ight):f_{i}\left(heta_{i}.\mathbf{a}_{i},\mathbf{\theta}_{-i}^{\prime},\mathbf{a}_{-i}^{\prime}
ight)=m_{i}
ight\}.$$

Self-Confirming Equilibrium with Incomplete Info., II

Definition

Fix a game with payoff uncertainty \hat{G} and a profile of feedback functions $f = (f_i : \Theta \times A \to M_i)_{i \in I}$. A profile of actions and conjectures $(a_i^*, \mu^i)_{i \in I}$ is a (pure) **self-confirming equilibrium of** (\hat{G}, f) **at** θ if, for each $i \in I$, (1, B.R.) $a_i^* \in r_i(\mu^i, \theta_i)$ and (2, CONF) $\mu^i(f_{i,\theta_i,a_i^*}^{-1}(f_i(a^*, \theta))) = 1$.

- For any fixed $\theta \in \Theta$, let $(\hat{G}_{\theta}, f_{\theta}) := \langle I, (A_i, u_{i,\theta} : A \to \mathbb{R}, f_{i,\theta} : A \to M_i)_{i \in I} \rangle$ (a game with feedback as in the previous lecture).
- **Observation:** Fix $a^* \in A$ and $\theta^* \in \Theta$ arbitrarily; if \hat{G} has private values, then a^* is part of an SCE of (\hat{G}, f) at θ^* IF AND ONLY IF a^* is part of an SCE of $(\hat{G}_{\theta^*}, f_{\theta^*})$.
- **Proof:** Let $(a_i^*, \mu^i)_{i \in I}$ be an SCE of (\hat{G}, f) at θ^* . For each $i \in I$, let $\bar{\mu}^i = \operatorname{marg}_{A_{-i}} \mu^i \in \Delta(A_{-i})$ (marginal of μ^i onto A_{-i}). Since each u_i is independent of θ_{-i} , $(a_i^*, \bar{\mu}^i)_{i \in I}$ must be an SCE of $(\hat{G}_{\theta^*}, f_{\theta^*})$.

Incomplete Information and Properties of Feedback

- Recall, f_{i,θi,ai}: Θ_{-i} × A_{-i} → M_i and u_{i,θi,ai}: Θ_{-i} × A_{-i} → ℝ are the sections of f_i and u_i at (θ_i, a_i).
- Let $\mathcal{F}_{-i}(\theta_i, a_i)$ denote the "ex post information partition" of $\Theta_{-i} \times A_{-i}$ given (θ_i, a_i) :

$$\mathcal{F}_{-i}\left(\theta_{i}, \mathbf{a}_{i}\right) = \left\{ C_{-i} \in 2^{\Theta_{-i} \times A_{-i}} : \exists m_{i} \in M_{i}, C_{-i} = f_{i,\theta_{i},\mathbf{a}_{i}}^{-1}\left(m_{i}\right) \right\}.$$

- $f_i: \Theta \times A \rightarrow M_i$ satisfies
 - **own-action independence** of feedback about others **(OAI)** if $\mathcal{F}_{-i}(\theta_i, a'_i) = \mathcal{F}_{-i}(\theta_i, a''_i)$ for all θ_i and all a'_i, a''_i justifiable (undominated) for θ_i ;
 - observable payoffs (OP) if $f_{i,\theta_i,a_i}(\theta'_{-i},a'_{-i}) = f_{i,\theta_i,a_i}(\theta''_{-i},a''_{-i}) \Rightarrow$ $u_{i,\theta_i,a_i}(\theta'_{-i},a'_{-i}) = u_{i,\theta_i,a_i}(\theta''_{-i},a''_{-i})$ for all $\theta_i, a_i, \theta'_{-i}, a'_{-i}$ and θ''_{-i}, a''_{-i} (u_{i,θ_i,a_i} is constant on each cell of $\mathcal{F}_{-i}(\theta_i, a_i)$, for all θ_i, a_i).

Properties of Feedback, SCE, and NE

- (\hat{G}, f) satisfies OAI and OP if each f_i does $(i \in I)$.
- Examples:
 - The Envelope Game and Cournot Game with f_i = u_i for each i ∈ I satisfy OP (obviously), but do not satisfy OAI.
 - The Cournot Game with known inverse demand function $P(\cdot)$ and $f_i(\theta, \cdot) = P(\cdot)$ for all *i* and θ satisfies OP and OAI.

Theorem

Suppose that (\hat{G}, f) satisfies OAI and OP and fix $a^* \in A$ and $\theta^* \in \Theta$ arbitrarily; then a^* is part of an SCE at θ^* of (\hat{G}, f) IF AND ONLY IF a^* is a Nash equilibrium of $\hat{G}_{\theta^*} = \langle I, (A_i, u_{i,\theta^*} : A \to \mathbb{R})_{i \in I} \rangle$.

BATTIGALLI, P., E. CATONINI, AND N. DE VITO (2023): *Game Theory: Analysis of Strategic Thinking*. Typescript, Bocconi University.

BATTIGALLI, P. (2023): *Mathematical Language and Game Theory.* Typescript, Bocconi University.

