Rational Planning in Multistage Games

P. Battigalli Bocconi University Game Theory: Analysis of Strategic Thinking

November 3, 2023

Abstract

To make the exposition self-contained, we first summarily recall our definition of multistage games with observable actions. Next we move to rational planning in dynamic decision problems and games. We present the One-Deviation Principle from a decision-making perspective. Focusing on finite games with complete information and taking the perspective of a single player with a subjective probabilistic conjecture about the behavior of co-players, we analyze several dynamic optimality properties for strategies. In particular, we present (i) the Folding-Back Principle: Folding-Back Optimality is equivalent to One-Step Optimality, and (ii) the Optimality Principle: Sequential Optimality is equivalent to Folding-Back Optimality. These two results yield the *One-Deviation Principle:* Sequential Optimality is equivalent to One-Step Optimality. These slides summarize and in part complement Chapter 10 and Section 9.4 of Chapter 9 of GT-AST.]

Preliminaries: Multistage Games

- We first consider a multistage game with observable actions $\langle I, (A_i, A_i(\cdot), u_i)_{i \in I} \rangle$, where:
 - $i \in I$, players;
 - $a_i \in A_i$, potentially feasible **actions** of i;
 - $A = \times_{i \in I} A_i$, $A^t = \underbrace{A \times ... \times A}_{t \text{ times}}$, set of sequences of action profiles of
 - length t; $A^0 := \{\emptyset\}$ where \emptyset is the **empty sequence**;
 - $A_i(\cdot): \bigcup_{t>0} A^t \rightrightarrows A_i$, constraint correspondence of i;
 - derive from $\langle I, (A_i, A_i(\cdot))_{i \in I} \rangle$ the tree (\bar{H}, \preceq) with root \varnothing ; Z (resp., H), set of terminal (resp., non-terminal) histories;
 - $u_i: Z \to \mathbb{R}$, payoff function of i.

Preliminaries: Strategies

- Strategies are **rules of behavior** describing how actions are chosen as a function of the observed history. They may be interpreted as *descriptions* of how a player would behave at each $h \in H$, or *plans* in the mind of the players.
- $s_i \in S_i := \times_{h \in H} A_i(h)$, strategies (pure).
- $s \in S := \times_{i \in I} S_i$, strategy profiles, $s(h) = (s_i(h))_{i \in I} \in \mathcal{A}(h)$ is the action profile selected by s at $h \in H$.
- Path function: $\zeta:S\to Z$

$$\zeta(s) = (s(\varnothing), s(s(\varnothing)), s((s(\varnothing), s(s(\varnothing)))), ...)$$
 until termination.

- Strategies consistent with a history: for each $h \in H$, $S(h) := \{s \in S : h \prec \zeta(s)\} = \times_{i \in I} S_i(h)$, with $S_i(h) := \operatorname{proj}_{S_i} S(h)$, strategies of i that allow (do not prevent) h.
- For $a_i \in A_i(h)$, let $S_i(h, a_i) := \{s_i \in S_i(h) : s_i(h) = a_i\}$, strategies allowing h and choosing a_i at h.

Preliminaries: Randomized Strategies

- Although we are not going to assume that players truly randomize, randomized strategies are convenient theoretical concepts for two reasons (cf. mixed actions in static games):
 - (i) they can be used to characterize the justifiability of pure strategies,
 - (ii) with 2 players, a randomized strategy of the co-player can be interpreted as a probabilistic conjecture about the co-player.
- We consider two notions of randomization:
 - mixed strategies=global ex ante randomizations over pure strategies (not very intuitive),
 - behavior strategies=local randomizations over actions for each non-terminal history.
- $\sigma_i \in \Delta(S_i)$, mixed strategies.
- $\beta_i(\cdot|\cdot) \in B_i := \times_{h \in H} \Delta(\mathcal{A}_i(h))$, behavior strategies: $\beta_i(\cdot|h) \in \Delta(\mathcal{A}_i(h))$ is the *mixed action* planned conditional on reaching $h \in H$.

Connection Between Mixed and Behavior Strategies, I

ullet Assuming "independent local randomization", $eta_i\mapsto\sigma_i$ with

$$\forall s_i \in S_i, \ \sigma_i(s_i) = \prod_{h \in H} \beta_i(s_i(h)|h).$$

• If $\sigma_i(S_i(h)) > 0$ for each $h \in H$, computing conditional probabilities, $\sigma_i \mapsto \beta_i$ with

$$\forall h \in H, \ \forall a_i \in \mathcal{A}_i(h), \ \beta_i(a_i|h) = \frac{\sigma_i(S_i(h,a_i))}{\sigma_i(S_i(h))}.$$

• **Population interpretation**: Statistical distribution σ_i of (pure) strategies of agents in population i. If $\sigma_i \mapsto \beta_i$, β_i ($a_i|h$) is the frequency of a_i conditional on the occurrence of h, that is, considering only agents whose (pure) strategies allow h.

Connection Between Mixed and Behavior Strategies, II

- Let $\mathbb{P}_{s_{-i},\mu_i}(z)$ =prob. of z induced by s_{-i} and μ_i , with $\mu_i = \sigma_i \in \Delta(S_i)$ or $\mu_i = \beta_i \in B_i$; specifically (in finite games):
- $\mathbb{P}_{s_{-i},\sigma_i}(z) = \sum_{s_i:\zeta(s_{-i},s_i)=z} \sigma_i(s_i);$
- let $z=\left(a^{1},...,a^{\ell(z)}\right)$ and $\beta_{-i}^{s_{-i}}(a^{k}|...,a^{k-1})=1$ if $s_{-i}\left(...,a^{k-1}\right)=a_{-i}^{k}$ and $\beta_{-i}^{s_{-i}}(a^{k}|...,a^{k-1})=0$ otherwise, then $\mathbb{P}_{s_{-i},\beta_{i}}(z)=\prod_{k=1}^{\ell(z)}\beta_{-i}^{s_{-i}}(a_{-i}^{k}|...,a^{k-1})\beta_{i}(a_{i}^{k}|...,a^{k-1}).$
- Kuhn's Theorem: If $\sigma_i \mapsto \beta_i$ or $\beta_i \mapsto \sigma_i$, then σ_i and β_i induce the same probabilities of paths independently of the behavior of others, that is,

$$\forall s_{-i} \in S_{-i}, \forall z \in Z, \ \mathbb{P}_{s_{-i},\sigma_i}(z) = \mathbb{P}_{s_{-i},\beta_i}(z).$$

Preliminaries: Conjectures

- Start with 2 players:
 - initial conjecture $\mu^i \in \Delta(S_{-i})$ (same as a mixed strategy of -i), if $\mu^{i}\left(S_{-i}\left(h\right)\right) > 0$, updated conjecture $\mu^{i}\left(\cdot|S_{-i}\left(h\right)\right) \in \Delta\left(S_{-i}\left(h\right)\right)$, with

$$\forall s_{-i} \in S_{-i}(h), \ \mu^{i}(s_{-i}|S_{-i}(h)) = \frac{\mu^{i}(s_{-i})}{\mu^{i}(S_{-i}(h))}.$$

But, what if $\mu^{i}(S_{-i}(h)) = 0$? PI. *i* is "surprised" and needs a "brand new conjecture" (we will come back to this).

- At first, we bypass this problem considering conjectures $\beta'(\cdot|\cdot) \in \times_{h \in H} \Delta(\mathcal{A}_{-i}(h))$ (same as behavior strategies of -i); $\beta^{i}(\cdot|h) \in \Delta(\mathcal{A}_{-i}(h))$ is i's conjecture on -i's actions conditional on h
- With multiple co-players we let conjectures allow for correlation. Thus, if |I| > 2 conjectures are not like profiles of co-players' randomized strategies (cf. static games).
- Connection: If $\mu^{i}(S_{-i}(h)) > 0$, $\beta^{i}(a_{-i}|h) = \frac{\mu^{i}(S_{-i}(h,a_{-i}))}{\mu^{i}(S_{-i}(h))}$.

Sequential Optimality in Finite Games, Values

- Assume that Γ is *finite* (hence, max = sup). Fix strategy $s_i \in S_i$ and conjecture $\beta^i \in \times_{h \in H} \Delta(\mathcal{A}_{-i}(h))$. Then:
 - Let $\mathbb{P}^{s_i,\beta^i}(h'|h)$ be the prob. of reaching h' from $h \prec h'$.
 - Let $Z(h) := \{z \in Z : h \leq z\}$. With this,
- the **value** of reaching *h* is

$$V_i^{s_i,\beta^i}(h) = \sum_{z \in \mathcal{Z}(h)} \mathbb{P}^{s_i,\beta^i}(z|h) u_i(z),$$

• the value of taking action a_i given h is

$$V_i^{s_i,\beta^i}(h,a_i) = \sum_{a_{-i}\in\mathcal{A}_{-i}(h)} \beta^i(a_{-i}|h) V_i^{s_i,\beta^i}(h,(a_i,a_{-i})).$$

Sequential and One-Step Optimality, Definition

Definition

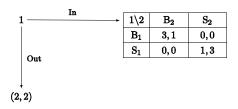
Fix \bar{s}_i and β^i . Strategy \bar{s}_i is **sequentially optimal** given β^i IF

$$\forall h \in H, \ V_i^{\overline{s}_i,\beta^i}(h) = \sup_{s_i \in S_i(h)} V_i^{s_i,\beta^i}(h);$$

 \bar{s}_i is **one-step optimal** given β^i IF

$$\forall h \in H, \ \overline{s}_i(h) \in \arg \sup_{a_i \in \mathcal{A}_i(h)} V_i^{\overline{s}_i,\beta^i}(h,a_i).$$

Example: BoS with Outside Option



- Suppose $\beta^1(B_2|In) = \frac{1}{2}$. What is the best plan \bar{s}_i for pl. 1? Find B.R. in BoS and value of In, then compare with Out:
- Algorithm: Obtain values $\hat{V}_{1}^{\beta^{1}}(h, a_{1}), \hat{V}_{1}^{\beta^{1}}(h)$ for $h \in H$, $a_{1} \in \mathcal{A}_{1}(h)$ and \bar{s}_{i} as follows:
 - $\begin{array}{l} \bullet \ \hat{V}_1^{\beta^1}\left(\mathrm{In},\mathrm{B}_1\right) = 3 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} = \frac{3}{2} > \frac{1}{2} = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \hat{V}_1^{\beta^1}\left(\mathrm{In},\mathrm{S}_1\right) \\ \Rightarrow \overline{s}_1\left(\mathrm{In}\right) = \mathrm{B}_1. \end{array}$
 - $\hat{V}_{1}^{\beta^{1}}\left(\mathrm{In}\right) = \max\left\{\hat{V}_{1}^{\beta^{1}}\left(\mathrm{In},\mathrm{B}_{1}\right),\hat{V}_{1}^{\beta^{1}}\left(\mathrm{In},\mathrm{S}_{1}\right)\right\} = \frac{3}{2} < 2 = \\ = \hat{V}_{1}^{\beta^{1}}\left(\mathrm{Out}\right) \Rightarrow \overline{s}_{1}\left(\varnothing\right) = \mathrm{Out}. \ \text{Note: } \overline{s}_{1} \ \text{satisfies SO and OSO}.$

(□) (률) (불) (불) (불) (일)

Folding-Back Optimality 1: Preliminaries

- We defined values (expected utilities) for pl. i of histories and actions, taking as given that i would choose in future stages (if any) according to a strategy s_i . Hence, such values depend on conjecture β^i and also on strategy s_i : $V_i^{s_i,\beta^i}(h)$, $V_i^{s_i,\beta^i}(h,a_i)$.
- If h is "pre-terminal" [if $(h, a) \in Z$ for each $a \in A(h)$] the dependence on s_i is vacuous, because there is no further choice to make later on.
- Given β^i , we find **optimal values** \hat{V} with a **backward calculation**, starting from the last stage, as we did in the BoSOO.
- We define recursively the **folding-back** (optimal) value $\hat{V}_i^{\beta'}(h)$ of reaching h:
- $\ell(h) =$ length of h [thus, $\ell(\emptyset) := 0$, $\forall (h, a), \ell(h, a) = \ell(h) + 1$)].
- $\Gamma(h) = \langle I, (A_i, A_{i,h}(\cdot), u_{i,h})_{i \in I} \rangle =$ **subgame** starting at h: $A_{i,h}(h') = A_i(h,h'), u_{i,h}(h') = u_i(h,h') \text{ if } (h,h') \in Z.$
- $L(\Gamma(h)) = \max_{z \in Z(h)} \ell(z) \ell(h) = \text{height of } \Gamma(h).$
 - [Recall: $Z(h) := \{z \in Z : h \leq z\}$; in particular, $Z(z) = \{z\}$.]

Folding-Back Optimality 2: Algorithm

- Define a recursive computation based on the height $L(\Gamma(h))$:
- Basis step: $L(\Gamma(h)) = 0 \ (h \in Z), \ \hat{V}_i^{\beta'}(h) := u_i(h).$
- Recursive step: suppose $\hat{V}_{i}^{\beta'}(h')$ is defined for every h' with $L(\Gamma(h')) \leq k$. If $L(\Gamma(h)) = k+1$, then $L(\Gamma(h,a)) \leq k$ for each $a \in \mathcal{A}(h)$; with this, for every $a_i \in \mathcal{A}_i(h)$,

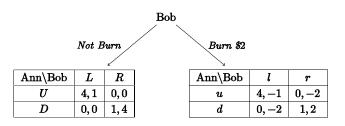
$$\hat{V}_i^{\beta^i}(h,a_i) := \sum_{\substack{a_{-i} \in \mathcal{A}_{-i}(h)}} \beta^i(a_{-i}|h) \hat{V}_i^{\beta^i}(h,(a_i,a_{-i})),$$
 $\hat{V}_i^{\beta^i}(h) := \sup_{\substack{a_i \in \mathcal{A}_i(h)}} \hat{V}_i^{\beta^i}(h,a_i).$

Definition

 \bar{s}_i is **folding-back optimal** given β^i IF, for all $h \in H$,

$$\bar{s}_i(h) \in \arg\sup_{a_i \in \mathcal{A}_i(h)} \hat{V}_i^{\beta^i}(h, a_i).$$

Folding Back in the BoS With Dissipative Action



- Conjecture of Bob: $\beta^b(D|N) = p < \frac{1}{5}$, $\beta^b(d|B) = q > \frac{1}{5}$.
- $\hat{V}_{b}^{p,q}(N) = \max\{(1-p), 4p\} = 1-p \Rightarrow L(p < \frac{1}{5}).$
- $\hat{V}_{b}^{p,q}(B) = \max\{(1-q), 4q\} 2 = 4q 2 \Rightarrow r \ (q > \frac{1}{5}).$
- $\hat{V}_{b}^{p,q}\left(\varnothing\right) = \max\left\{\hat{V}_{b}^{p,q}\left(N\right),\hat{V}_{b}^{p,q}\left(B\right)\right\} = \max\left\{1-p,4q-2\right\} \Rightarrow \left[N \text{ if } 1-p > 4q-2\right].$

Rational Planning (aka Dynamic Programming)

Finite Games

Proposition

(**Folding-Back Principle**) \bar{s}_i is folding-back optimal (given β^i) IFF \bar{s}_i is one-step optimal (given β^i).

Theorem

(**Optimality Principle**) \bar{s}_i is sequentially optimal (given β^i) IFF \bar{s}_i is folding-back optimal (given β^i).

Corollary

(One-Deviation Principle) \bar{s}_i is sequentially optimal (given β^i) IFF \bar{s}_i is one-step optimal (given β^i).

Intuition

- The OD-Principle is obviously implied by the conjunction of the FB-Principle and the Optimality Principle.
 - Folding-Back Principle By inspection the recursive definition of folding-back optimality, it is quite easy to see that it implies one-step optimality. The converse can be proved by induction: The respective maximization conditions are equivalent by definition at histories of height 1 (last stage, basis step). Assuming that the equivalence holds for histories of height k or less (inductive hypothesis), it must hold also for histories of height k+1 (inductive step).
 - Optimality Principle Sequential optimality (by definition) implies one-step optimality, which implies folding-back optimality as argued above. As above, the converse can be proved by induction: The respective maximization conditions are equivalent by definition at histories of height 1 (last stage, basis step). Assuming that the equivalence holds for histories of height k or less (inductive hypothesis), it must hold also for histories of height k + 1 (inductive step).

Perspective

- Folding-back optimality (equivalent to one-step optimality) is the conceptually primitive notion of rational planning: it is a kind of "intra-personal equilibrium" justified by the assumption that player i is introspective, hence able to predict his future behavior, conditional on the realization of every history. (More generally, i.e., for infinite-horizon games, we take the one-step optimality as the definition of rational planning.)
- Sequential optimality is just a characterization of rational planning that holds when i has dynamically consistent preferences, hence with the subjective EU criterion. This is our interpretation of the Optimality Principle.
- The OD Principle (equivalence between the one-step and sequential optimality) also holds for most infinite-horizon games of interest (e.g., infinitely repeated games and bargaining games with standard discounting).

Justifiability 1/2

- We want to understand whether a description s_i of i's behavior is consistent with rationality.
- **Possible answer**: there is some conjecture β^i such that s_i is sequentially (folding-back) optimal given β^i .
- **Problem:** two behaviorally equivalent strategies $s_i' \approx s_i''$ are indistinguishable from the perspective of i's co-players (or of an external observer), because—by the Equivalence Lemma— $\zeta(s_i', s_{-i}) = \zeta(s_i'', s_{-i})$ for all $s_{-i} \in S_{-i}$.
- Solution: Use a notion of justifiability that is invariant under behavioral equivalence (and hence also applies to reduced strategies).

Justifiability 2/2

- Recall that
 - $H_i(s_i) = \{h \in H : s_i \in S_i(h)\}$ is the set of non-terminal histories allowed by s_i .
 - (behavioral equivalence) $s_i \approx \bar{s}_i$ if $(H_i(s_i) = H_i(\bar{s}_i))$ and $(\forall h \in H_i(s_i), s_i(h) = \bar{s}_i(h))$.

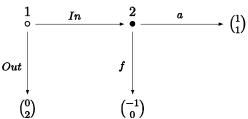
Definition

Strategy \bar{s}_i is **weakly sequentially optimal** given β^i , written $\bar{s}_i \in r_i(\beta^i)$, if $\forall h \in H_i(\bar{s}_i)$, $V_i^{\bar{s}_i,\beta^i}(h) = \sup_{s_i \in S_i(h)} V_i^{s_i,\beta^i}(h)$; \bar{s}_i is **justifiable** if $\exists \beta^i$, $\bar{s}_i \in r_i(\beta^i)$.

- Remark For all s_i, \bar{s}_i and β^i , if $s_i \approx \bar{s}_i$ and
 - s_i is sequentially optimal given β^i , then $\bar{s}_i \in r_i\left(\beta^i\right)$;
 - $\bar{s}_i \in r_i(\beta^i)$, then $s_i \in r_i(\beta^i)$.

Dominance

In static games an action is justifiable IFF it is undominated (by a mixed). In dynamic games undominated strategies may be unjustifiable, e.g., the fighting strategy f=(f if In) in the Entry Game.



• Yet, **f** is dominated conditional on history h = (In), which is allowed by **f** $[h \in H_2(\mathbf{f})]$.

Conditional Dominance

• Recall: $U_i(s) = u_i(\zeta(s))$. With this, the EU of σ_i given s_{-i} is: $U_i(\sigma_i, s_{-i}) = \sum_{s_i \in S_i} U_i(s_i, s_{-i}) \sigma_i(s_i)$.

Definition

Strategy \bar{s}_i is **conditionally dominated** if there are a history $h \in H_i(\bar{s}_i)$ and a mixed strategy $\sigma_i \in \Delta(S_i(h))$ s.t.

$$\forall s_{-i} \in S_{-i}(h), U_i(\sigma_i, s_{-i}) > U_i(\overline{s}_i, s_{-i}).$$

• Remark If a strategy \bar{s}_i is dominated, then \bar{s}_i is also conditionally dominated, but the converse does not hold (see the Entry Game).

Proposition

If a strategy \bar{s}_i is conditionally dominated, then \bar{s}_i is also weakly dominated.

Justifiability and Conditional Dominance

Lemma

A strategy is justifiable **if and only if** it is not conditionally dominated.

Intuition

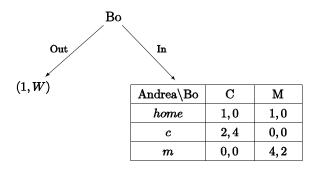
• (Only if) Let $\bar{s}_i \in r_i\left(\beta^i\right)$, fix any $\bar{h} \in H_i\left(\bar{s}_i\right)$. Then \bar{s}_i is a B.R. in $S_i\left(\bar{h}\right)$ to $\mu^i_{\bar{h}} \in \Delta\left(S_{-i}\left(\bar{h}\right)\right)$ derived from β^i as follows

$$\forall s_{-i} \in S_{-i}\left(\overline{h}\right), \ \mu_{\overline{h}}^{i}\left(s_{-i}\right) = \prod_{h \in H: h
eq \overline{h}} \beta^{i}\left(s_{-i}\left(h\right)|h\right)$$

 $[\forall z \in Z(\bar{h}), \forall s_i \in S_i(h), \mathbb{P}_{s_i,\mu_{\bar{h}}^i}(z|\bar{h}) = \mathbb{P}_{s_i,\beta^i}(z|\bar{h})]$. By (easy part of) W-P Lemma, \bar{s}_i is not dominated conditional on \bar{h} . Thus, \bar{s}_i is not conditionally dominated.

• (If) If \bar{s}_i is not conditionally dominated, by (hard part of) W-P Lemma, there is array $(\mu_h^i)_{h \in H_i(\bar{s}_i)} \in \times_{h \in H_i(\bar{s}_i)} \Delta(S_{-i}(h))$ s.t., for every $h \in H_i(\bar{s}_i)$, \bar{s}_i is a B.R. in $S_i(h)$ to μ_h^i . One can derive (with quite a bit of work) β^i s.t. $\bar{s}_i \in r_i(\beta^i)$. \heartsuit

Example of Conditional Dominance



- home is dominated for Andrea in the subgame by mixed action $\frac{1}{2}\delta_c + \frac{1}{2}\delta_m$. Thus, s_a =home= (home if In) is conditionally dominated.
- If W=1, Bo knows u_a and Bo believes that Andrea is rational, Bo goes In, because β^b (home|In) = 0 implies $V_b^{\beta^b}$ (In) > 1 = W.

Infinite games 1: continuity

• Suppose that $A \subseteq \mathbb{R}^n$ is bounded. Fix $\delta \in (0,1)$. For each $T \in \mathbb{N} \cup \{\infty\}$, endow A^T with the following "discounting metric":

$$d_{T}\left(\left(a^{t}\right)_{t=1}^{T},\left(\bar{a}^{t}\right)_{t=1}^{T}\right) = \sum_{t=1}^{T} \delta^{t-1} d\left(a^{t},\bar{a}^{t}\right)$$

(d is the metric in \mathbb{R}^n ; by boundedness and $0 < \delta < 1$, d_T is a metric even if $T = \infty$). Thus, (A^T, d_T) is a metric space. Let $Z_T := Z \cap A^T$ be the set of terminal histories of length T.

Definition

Game Γ is **compact-continuous** if Z_T is compact in metric space (A^T, d_T) for each $T \in \mathbb{N} \cup \{\infty\}$ and u_i is continuous on Z_T for each $T \in \mathbb{N} \cup \{\infty\}$ and $i \in I$.

[A subset K of a metric space is compact if, for every cover of K with open sets, there is a finite sub-cover of K. For $T < \infty$, compact is equivalent to closed and bounded.]

Infinite games 2: Folding Back and One-Step Optimality

- We take folding-back (FB) optimality as our basic notion of rational planning. But, by definition, the FB algorithm cannot be applied to infinite-horizon games.
- If the game has *finite horizon*, but it is infinite (because some feasible actions set $A_i(h)$ is infinite), then maximizations may be impossible (we will study a prominent example concerning bargaining).
- But the definitions (with sup) still apply (as written, if each β^i (·|h) has finite/countable support) and versions of the FB, Optimality, and OD principles hold.
- With this, we take the one-step optimality as our general characterization of rational planning.

Infinite games 3: OD principle

• The following result extends the OD principle (equivalence between one-step and sequential optimality) to compact-continuous games.

Theorem

(**Generalized OD principle**) In every compact-continuous game the OD principle holds, that is, for every i, s_i , and β^i , strategy s_i is seq.lly optimal given conjecture β^i IFF s_i is one-step optimal given β^i .

• Intuition (by contraposition): If s_i is not sequentially optimal given β^i in the compact-continuous game Γ , then we can find a finite-horizon approximation of Γ , viz. $\bar{\Gamma}$, such that the restriction of s_i to $\bar{\Gamma}$ is not sequentially optimal in $\bar{\Gamma}$ given (the restriction of) β^i ; hence (by the OD principle for finite-horizon games), it fails one-step optimality in $\bar{\Gamma}$. Given that $\bar{\Gamma}$ is a sufficiently good approximation of Γ , s_i must fail one-step optimality (given β^i) in Γ . \heartsuit

November 3, 2023

References

- BATTIGALLI, P., E. CATONINI, AND N. DE VITO (2023): Game Theory: Analysis of Strategic Thinking. Typescript, Bocconi University.
- BATTIGALLI, P. (2023): *Mathematical Language and Game Theory*. Typescript, Bocconi University.