Bargaining with Alternating Offers

Pierpaolo Battigalli Bocconi University Game Theory: Analysis of Strategic Thinking

November 17, 2023

Abstract

We present three models of sequential bargaining: the **Ultimatum Game**, **Two-Period Bargaining with Alternating Offers**, and **Infinite-Horizon Bargaining with Alternating Offers**. The first two models can be analyzed with backward induction (of a kind). The subgame perfect equilibrium (SPE) of the infinite-horizon model is obtained *heuristically* relying on the analysis of the two-period model, and then using the OD principle to show that the solution so obtained is indeed an SPE. It turns out that this is the *unique SPE*.

[These slides summarize Chapter 14 of GT-AST]

Introduction

- Bargaining is ubiquitous in economic life:
- Economic interaction (e.g., in production and/or exchange) generates a surplus, and often agents can commit to surplus maximizing behavior and on how to split the surplus.
- Bargaining is the process of offers, replies, and—possibly—counteroffers; this process may terminate, or not, with such an agreement.
- Focusing on the case of a fixed potential surplus, we study bargaining between two agents according to a precise alternating-offers protocol (agents discount future consumption):
 - An **offer** of how to split is made.
 - If the offer is accepted the split is implemented and agents consume immediately their shares. If it is rejected, the process moves on to the next period.
 - In the next period, either agents consume a default shares (exogenous end), or the previous-period responder makes the next offer.

Ultimatum Game: A Discrete Example

 $t = 1 \qquad t = 2 \text{, default split}$ • Ann offers $(x_{\mathrm{A}}, x_{\mathrm{B}})$, Bob: y (immediate consumption), or n

(delayed cons. of default shares). The BI-solution depends on δ .

Pierpaolo Battigalli Bocconi University Game

Ultimatum Game with a Continuum of Offers: Model

- Set of offers $X = \left\{ (x_{\mathrm{A}}, x_{\mathrm{B}}) \in \mathbb{R}_{+}^{\{\mathrm{A},\mathrm{B}\}} : x_{\mathrm{A}} + x_{\mathrm{B}} = 1 \right\}$.
- **Default split** $(\bar{x}_A, \bar{x}_B) \in X$ in case of *disagreement*.
- Set of **outcomes** $Y = X \times \{1, 2\}$, (x, t)=split x in period t.
- Period t = 1:
 - Ann proposes $(x_A, x_B) \in X$;
 - Bob replies yes (y), or no (n);
 - if y, immediate consumption of (x_A, x_B) [outcome $((x_A, x_B), 1)$];
 - if n, go to period t = 2.
- **Period** t=2: consumption of default split (\bar{x}_A, \bar{x}_B) [outcome $((\bar{x}_A, \bar{x}_B), 2)$].
- Intertemporal preferences: $((x_i, 1 x_i), 2) \sim_i ((\delta x_i, 1 \delta x_i), 1)$, with $\delta \in (0, 1)$ discount factor (common, just for simplicity).

Ultimatum Game with a Continuum of Offers: BI-Solution

- Bob:
 - accepts $(x_{\mathrm{A}}, x_{\mathrm{B}})$ if $x_{\mathrm{B}} > \delta \bar{x}_{\mathrm{B}}$,
 - rejects $(x_{
 m A}, x_{
 m B})$ if $x_{
 m B} < \delta ar{x}_{
 m B}$,
 - indifferent if $x_{\rm B}=\delta\bar{x}_{\rm B}$, 2 cases: y and n.
- Ann:
 - case-y: Ann chooses (x_A, x_B) to maximize the value function

$$V_{\mathrm{A}}^{*}\left(x_{\mathrm{A}},x_{\mathrm{B}}\right) = \left\{ egin{array}{ll} x_{\mathrm{A}} & ext{if } x_{\mathrm{A}} \leq 1 - \delta ar{x}_{\mathrm{B}} \ \delta ar{x}_{\mathrm{A}} & ext{if } x_{\mathrm{A}} > 1 - \delta ar{x}_{\mathrm{B}} \end{array}
ight.$$

since
$$\delta \bar{x}_{A} = \delta (1 - \bar{x}_{B}) < 1 - \delta \bar{x}_{B}$$
, Ann offers $(x_{A}, x_{B}) = (1 - \delta \bar{x}_{B}, \delta \bar{x}_{B})$.

case-n: the value function is as above with ≤ (resp. >) replaced by
 < (resp. ≥); hence, no maximum! No SPE in this case!

Comments:

- Non-existence in case-n is just a technicality due to the continuum, it disappears with discrete offers.
- To solve by BI, break responder's indifference (relevant tie) with yes.

Alternating Offers with 2 Periods of Bargaining

- Set of **Outcomes** $Y = X \times \{1, 2, 3\}$, $((x_i, 1 x_i), t + 1) \sim_i ((\delta x_i, 1 \delta x_i), t)$.
- Period t = 1:
 - Ann proposes $x^1 = (x_A^1, x_B^1) \in X$;
 - Bob replies yes (y), or no (n);
 - if y, immediate consumption of x^1 [outcome $(x^1, 1)$];
 - if n, go to period t = 2.
- Period t = 2:
 - Bob proposes $x^2 = (x_A^2, x_B^2) \in X$;
 - Ann replies yes (y), or no (n);
 - if y, immediate consumption of x^2 [outcome $(x^2, 2)$];
 - if n, go to period t = 3.
- **Period** t=3: consumption of default split $\bar{x}=(\bar{x}_A,\bar{x}_B)$ [outcome $(\bar{x},3)$].

Alternating Offers with 2 Periods: BI-Solution

• Period 2:

- Ann accepts iff $x_{\rm A}^2 \geq \delta \bar{x}_{\rm A}$;
- Bob chooses $(x_{\rm A}^2, x_{\rm B}^2)$ to maximize

$$V_{\mathrm{B}}^*\left(\left(x_{\mathrm{A}}^1, x_{\mathrm{B}}^1\right), \mathrm{n}, \left(x_{\mathrm{A}}^2, x_{\mathrm{B}}^2\right)\right) = \left\{\begin{array}{ll} x_{\mathrm{B}}^2 & \text{if } x_{\mathrm{B}}^2 \leq 1 - \delta \bar{x}_{\mathrm{A}} \\ \delta \bar{x}_{\mathrm{B}} & \text{if } x_{\mathrm{B}}^2 > 1 - \delta \bar{x}_{\mathrm{A}} \end{array}\right.$$

and, thus, offers $(\hat{x}_{\mathrm{A}}^2,\hat{x}_{\mathrm{B}}^2)=(\delta \bar{x}_{\mathrm{A}},1-\delta \bar{x}_{\mathrm{A}}).$

Period 1:

- Bob accepts iff $x_{\rm B}^1 \geq \delta \hat{x}_{\rm B}^2 = \delta \left(1 \delta \bar{x}_{\rm A}\right)$, which is the present value of going to t=2;
- Ann chooses (x_A^1, x_B^1) to maximize $V_A^* (x_A^1, x_B^1)$; thus, she offers $(\hat{x}_A^1, \hat{x}_B^1) = (1 \delta (1 \delta \bar{x}_A), \delta (1 \delta \bar{x}_A))$.

Comments

- In the unique SPE agreement is reached immediately, due to impatience and complete information (knowledge of the stingiest acceptable offer).
- Impatience (low δ) yields a first-mover advantage.

Comparison Between SPE and Rationalizability

• We defined strong rationalizability for *finite* multistage games. Thus, consider a *finite*, but *fine-grained grid of offers*:

$$X_k = \left\{ x \in X : x_A \in \left\{ 0, \frac{1}{k}, ..., \frac{k-1}{k}, 1 \right\} \right\} \text{ (e.g., } k = 100).$$

There may be multiple SPEs if responders may be indifferent (relevant ties), which depends of δ and k; but they are close to each other: offers of different SPEs can differ by 1/k at most.

- For every SPE path the first offer is accepted and the responder accepts if indifferent.
- If there are no relevant ties (NRT), there is a unique SPE obtained by BI with path $\hat{z} = \left(\left(\hat{x}_{A}^{1}, \hat{x}_{B}^{1}\right), y\right)$, and this is also the unique strongly rationalizable path (because PI & NRT $\Rightarrow \zeta\left(S^{\infty}\right) = \{\hat{z}\}$).
- If there are relevant ties and there is an SPE path $((\hat{x}_A^1, \hat{x}_B^1), y)$ so that Bob is indifferent, then strong rationalizability allows for delay, i.e., also $((\hat{x}_A^1, \hat{x}_B^1), n, ...)$, because rationalizability does not require an indifferent responder to accept.

Alternating Offers with Infinite Horizon: Model

- Set of outcomes $Y = \{d\} \cup (X \times \mathbb{N})$, d=permanent disagreement, $((x_A, x_B), t) = ((0, 1), t) \sim_A d$ (similarly for B).
- **Period** t odd (t = 1, 3, ...):
 - Ann proposes $x^t = (x_{\mathrm{A}}^t, x_{\mathrm{B}}^t) \in X$;
 - Bob replies yes (y), or no (n);
 - if y, immediate consumption of x^t [outcome (x^t, t)];
 - if n, go to period t+1 (even).
- **Period** t + 1 even (t + 1 = 2, 4, ...):
 - Bob proposes $x^{t+1} = (x_{A}^{t+1}, x_{B}^{t+1}) \in X$;
 - Ann replies yes (y), or no (n);
 - if y, immediate consumption of x^{t+1} [outcome $(x^{t+1}, t+1)$];
 - if n, go to period t + 2 (odd).
- **Period** t + 2 (odd): the bargaining protocol re-starts with Ann proposing (no default split in case of disagreement, keep on bargaining if n).

Alternating Offers with Infinite Horizon: Heuristic Solution

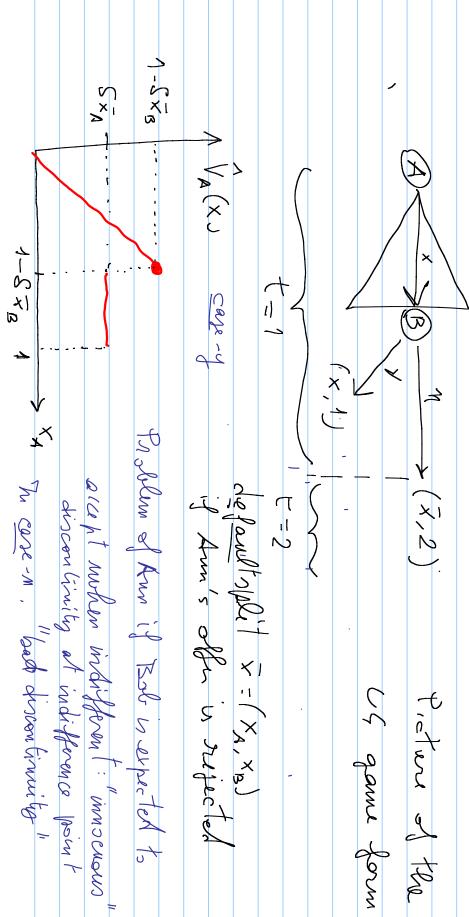
- The model is **stationary**: from every history h at which i has to propose, the "same" infinite-horizon bargaining game starts (similarly, from every history (h, x) at which i has to respond to x, the "same" infinite-horizon subgame starts).
- With this, it is reasonable to look for a **stationary** solution (\hat{s}_A, \hat{s}_B) such that, if i has to propose at h, s/he demands \hat{x}_i for her/himself and the offer is accepted. (In this case, the value for the responder -i of saying no is $\delta \hat{x}_{-i}$, since s/he is the next period proposer and expects to get \hat{x}_{-i} .)
- Thus, replace the default split $(\bar{x}_A, 1 \bar{x}_A)$ of the 2-period model with the yet *unknown* (to us) solution split $(\hat{x}_A, 1 \hat{x}_A)$.
- Obtain as a 2-period solution for A: $\xi_A\left(\hat{x}_A\right):=1-\delta\left(1-\delta\hat{x}_A\right)$ and solve the fixed-point equation $\hat{x}_A=\xi_A\left(\hat{x}_A\right)$ to obtain $\hat{x}_A=1-\delta\left(1-\delta\hat{x}_A\right)=1-\delta+\delta^2\hat{x}_A$.
- Candidate stationary offer: $\hat{x}_A = \frac{1-\delta}{1-\delta^2} = \frac{1-\delta}{(1-\delta)(1+\delta)} = \frac{1}{1+\delta}$.

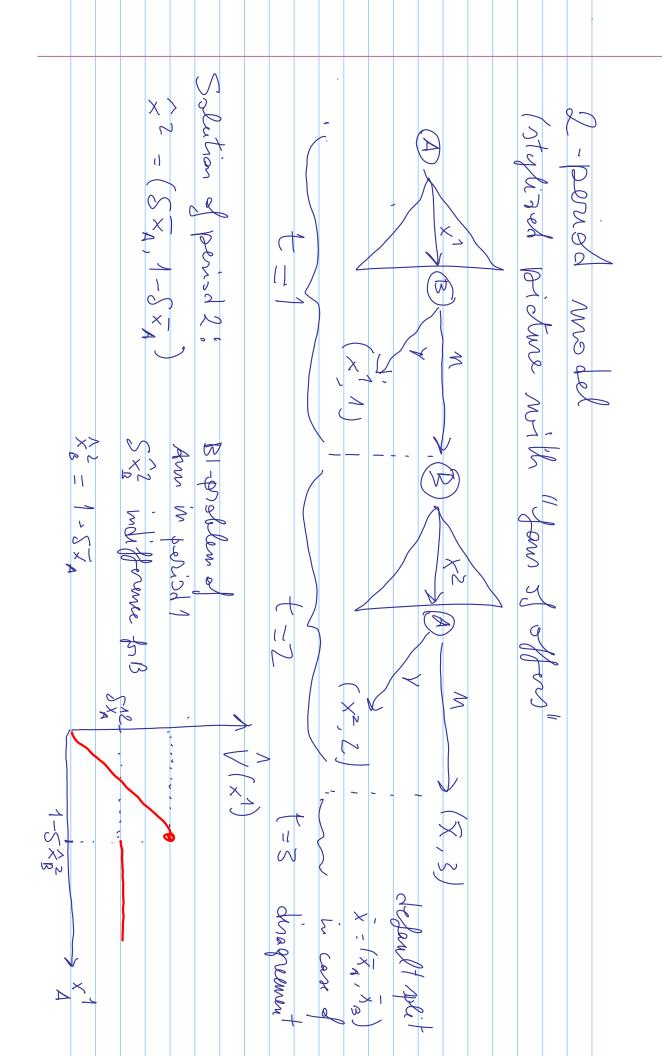
Infinite-Horizon Model: Verification, Uniqueness

- The candidate stationary solution (\hat{s}_A, \hat{s}_B) is:
 - for each h at which A [respectively, B] proposes, $\hat{s}_A(h) = \left(\frac{1}{1+\delta}, \frac{\delta}{1+\delta}\right)$ [respectively, $\hat{s}_B(h) = \left(\frac{\delta}{1+\delta}, \frac{1}{1+\delta}\right)$];
 - for each $h'=(h,(x_A,x_B))$ at which A [respectively, B] responds, $\hat{s}_A(h,(x_A,x_B))=y$ if $x_A\geq \frac{\delta}{1+\delta}$, and $\hat{s}_A(h,(x_A,x_B))=n$ otherwise [respectively, $\hat{s}_B(h,(x_A,x_B))=y$ if $x_B\geq \frac{\delta}{1+\delta}$, and $\hat{s}_B(h,(x_A,x_B))=n$ otherwise].
- Is this an SPE? Yes! The OD principle applies to this game (it is compact-continuous). To prove that (\hat{s}_A, \hat{s}_B) is a SPE it is enough to verify that each \hat{s}_i is One-Step Optimal given \hat{s}_{-i} , which is quite easy :-) [Do it!]
- **Proposition:** (\hat{s}_A, \hat{s}_B) is the unique SPE. [We skip the proof.]
- Comment: Differently from repeated games, the long-but-finite-horizon SPE-solution approximates the infinite-horizon SPE-solution.

References

BATTIGALLI, P. (2023): *Mathematical Language and Game Theory*. Typescript, Bocconi University.





Jobsm methon-00 to find a stationery SPE, posit a stationery saution with There & = (x, x, x, box it or if it were the defeult shell After two rejection, the bangaining protocol starts all over again of the 2-perish model. Them solve $\hat{\chi} = 1 - S(1 - S\hat{\chi})$ t=1,3, (x^{μ}, t) (fragment of game form, with "faw" \ [\] t+1=2,4,... (2+3) (41) (41)Atalianum solution

_

