Repeated Games: An Elementary Analysis

Pierpaolo Battigalli Bocconi University Game Theory: Analysis of Strategic Thinking

November 13, 2023

Abstract

We present and illustrate some elementary results about the uniqueness, or multiplicity of subgame perfect equilibria in a special class of multistage games with observable actions: repeated games with perfect monitoring.

[These slides summarize Chapter 13.1-2 of GT-AST. For the OD Principle in infinite games see Ch. 10.5 of GT-AST.]

Repetition of the Prisoners' Dilemma

• The Prisoners' Dilemma (PD) is the simplest stylized example of social dilemma whereby—unlike perfectly competitive markets without externalities—the pursuit of individual interests leads to a loss for the group (but maybe not for society at large: the group could be a set of firms that try to collude, or even a criminal organization):

	1 \2	С		D	
G :	С	4,	4	0,	5
	D	5,	0	2,	2

- Is defection an inevitable result? It depends:
 - Is the PD played only for a finite (commonly known) number of times, or—at least potentially—infinitely often?
 - The role of time is essential: Here, stages and periods coincide; within periods, instantaneous payoffs are realized. How much do players care about future payoffs?

Finitely Repeated PD

- If the PD game G is played finitely many times (with a commonly known end), with one-period—possibly discounted—payoffs cumulated in time, then BI implies permanent defection:
- In the last period, players must choose the one-period dominant action *D*.
- Suppose players' expect that (D, D) will be played in the last k periods. Then, at each h with $L(\Gamma(h)) = k + 1$, they expect that future payoffs are independent of their current actions. Hence, they choose the one-period dominant action.
- [Note: Strong rationalizability yields the same result.]

Infinitely Repeated PD

- If the PD game G is played infinitely many times (with discounting) and players are sufficiently patient, then there is a multiplicity of SPEs:
- Obviously, "always defect" is a SPE: if future payoffs are expected to be independent of current actions, players choose the one-period best reply, D.
- Consider the symmetric "Nash reversion" strategy pair s^* whereby
 - players start with C, and keep playing C as along as (C, C) was played in the past;
 - if there is (at least one) deviation D, then they switch forever to the one-period dominant action D.
- If δ (discount factor) is high enough, this is a SPE. Key insight: if (C, C) in the past, playing D triggers (D, D) forever.
 - Relevant comparison in expected present value: $4/(1-\delta)$ if C vs $5+\delta\left(2/(1-\delta)\right)$ if D.
 - Such s^* is an SPE iff $\frac{4}{1-\delta} \ge 5 + \delta \frac{2}{1-\delta}$ iff $\delta \ge \frac{1}{3}$.

PD Augmented with Punishments

• Now add to the PD a "punishment" action:

<i>G'</i> :	1 \2	С	D	Р
	С	4, 4	0 , 5	-1 , 0
	D	5 , 0	2 , 2	- 1 , 0
	Р	0 , -1	0 , -1	0 , 0

- Even if G' is finitely repeated, initial cooperation is SPE-possible.
 - Key observation: G' has two (Pareto ranked) equilibria.
 - Start playing (C, C), then play a one-period eq. in the last k periods, play (P, P) forever after a deviation. A "punishing switch" from playing (D, D) to playing (P, P) in the last k periods triggered by a deviation from (C, C) is consistent with SPE in the last k periods.
 - If such switch is expected at histories h with $L(\Gamma(h)) = k+1$, the relevant present-value comparison is $4 + \delta \frac{2(1-\delta^{k+1})}{1-\delta} \gtrless \frac{(\text{if }D)}{5+0}$.

4 D F 4 DF F 4 Z F F Z F VQ

Repeated Games with Discounting

- Fix a static game $G = \langle I, (A_i, v_i)_{i \in I} \rangle$ with v_i bounded for each $i \in I$. The T-repeated game with (perfect monitoring, and) discount factor $\delta \in (0,1)$ (with $T \in \mathbb{N} \cup \{\infty\}$) is the multistage game with observable actions $\Gamma^{\delta,T}(G) = \langle I, (A_i, \mathcal{A}_i(\cdot), u_i)_{i \in I} \rangle$ with
 - $A_i(h) = A_i$ for every $i \in I$ and $h \in A^{\mathbb{N}_0}$ with $\ell(h) < T$;
 - $A_i(h) = \emptyset$ for every $i \in I$ and $h \in A^T$, if $T < \infty$ (hence, $Z = A^T$);
 - $u_i\left(\left(a^t\right)_{t=1}^T\right) = \sum_{t=1}^T \delta^{t-1} v_i\left(a^t\right)$ for every $i \in I$ and $\left(a^t\right)_{t=1}^T \in Z = A^T$.
- **Observations:** To avoid trivialities, let $T \geq 2$; then:
 - Time is key: stages are periods, one-period payoffs realize at the end of each period and are aggregated *via* discounting (each u_i is well defined even if $T = \infty$, because v_i is bounded).
 - $\Gamma^{\delta,T}(G)$ is: meaningless if $\delta=0$; meaningful if $\delta=1$ and $T<\infty$.
 - If G is compact-continuous, so is $\Gamma^{\delta,T}(G)$.
 - The OD principle holds (see below).

Intermezzo I: Infinite Games 1, Continuity

• Consider any multistage game Γ . Suppose that $A \subseteq \mathbb{R}^n$ is bounded. Fix $\delta \in (0,1)$. For each $T \in \mathbb{N} \cup \{\infty\}$, endow A^T with the following "discounting metric":

$$d_{T}\left(\left(a^{t}\right)_{t=1}^{T},\left(\bar{a}^{t}\right)_{t=1}^{T}\right) = \sum_{t=1}^{T} \delta^{t-1} d\left(a^{t},\bar{a}^{t}\right)$$

(d is the metric in \mathbb{R}^n ; by boundedness and $0 < \delta < 1$, d_T is a metric even if $T=\infty$). Thus, (A^T, d_T) is a metric space. Let $Z_T := Z \cap A^T$ be the set of terminal histories of length T.

Definition

Game Γ is **compact-continuous** if Z_T is *compact* in metric space (A^T, d_T) for each $T \in \mathbb{N} \cup \{\infty\}$ and u_i is continuous on Z_T for each $T \in \mathbb{N} \cup \{\infty\}$ and $i \in I$.

• [Recall: A subset K of a metric space is compact if, for every cover of K with open sets, there is a finite sub-cover of K:

Intermezzo I: Infinite Games 2, One-Step Optimality

- We take folding-back (FB) optimality as our basic notion of rational planning. But, by definition, the FB algorithm cannot be applied to infinite-horizon games.
- If the game has *finite horizon*, but it is infinite (because some feasible action set $A_i(h)$ is infinite), then maximizations may be impossible (we will study a prominent example concerning bargaining).
- But the definitions (with sup) still apply (as written, if each β^i (·|h) has finite/countable support) and versions of the FB, Optimality, and OD principles hold.
- With this, we take the one-step optimality (OSO) as our general characterization of rational planning. [Note: OSO is also relevant for sophisticated agents with dynamically inconsistent preferences, e.g., because of non-exponential discounting.]

Intermezzo I: Infinite Games 3, OD Principle

 The following result extends the OD principle to compact-continuous games.

Theorem

(**Generalized OD principle**) In every compact-continuous game the OD principle holds: for every i, s_i , and β^i , strategy s_i is sequentially optimal given conjecture β^i IFF s_i is one-step optimal given β^i .

- **Intuition** (by contraposition): If s_i is not sequentially optimal given β^i in the compact-continuous game Γ , then we can find a finite-horizon approximation of Γ , viz. $\overline{\Gamma}$, such that the restriction of s_i to $\overline{\Gamma}$ is not sequentially optimal in $\overline{\Gamma}$ given (the restriction of) β^i ; hence (by the OD principle for finite-horizon games), it fails one-step optimality in $\overline{\Gamma}$. Given that $\overline{\Gamma}$ is a sufficiently good approximation of Γ , s_i must fail one-step optimality in Γ . \heartsuit
 - Futher generalization: it is enough that Γ satisifes the weaker property of "continuity at infinity" (see book).

Intermezzo II: Strategies and Automata

Back to repeated games: the set of non-terminal histories is

$$H = A^{<\mathbb{N}_0}$$
 if $T = \infty$ and $H = A^{ if $T < \infty$.$

- The set of strategies of i is $S_i = (A_i)^H$. (How many strategies does i have if $\Gamma^{\delta,T}(G)$ is finite?)
- Convenient representation of strategy profiles (and, similarly, strategies), especially if $T=\infty$, with **automata**, i.e., structures $(\Psi,\psi_0,\gamma,\varphi)$ where
 - Ψ is a set of **states** (interpret as players' "moods");
 - $\psi_0 \in \Psi$ is the **initial state**;
 - $\gamma: \Psi \to A$ is the **behavioral rule**;
 - $\varphi : \Psi \times A \rightarrow \Psi$ is the transition function.
- **Example**: The "Nash reversion" strategy pair s^* in the infinitely-repeated PD is represented with $\Psi = \{\mathbf{c}, \mathbf{d}\}, \ \psi_0 = \mathbf{c}, \ \gamma(\mathbf{c}) = (\mathcal{C}, \mathcal{C}), \ \gamma(\mathbf{d}) = (\mathcal{D}, \mathcal{D}), \ \varphi(\mathbf{c}, (\mathcal{C}, \mathcal{C})) = \mathbf{c}, \ \varphi(\mathbf{c}, \mathbf{a}) = \mathbf{d} \text{ if } \mathbf{a} \neq (\mathcal{C}, \mathcal{C}), \ \text{and} \ \varphi(\mathbf{d}, \mathbf{a}) = \mathbf{d}.$

Sequences of One-Period Equilibria and SPE

Theorem

(One-period NEs) Let $(a^t)_{t=1}^T \in NE(G)^T$ and let \bar{s} be defined by $\bar{s}(h) = a^t$ for all t and h with $1 \le t < T$ and $h \in A^{t-1}$. Then \bar{s} is an SPE of $\Gamma^{\delta,T}(G)$.

- Proof: Apply the OD principle. Note: the behavior described by \$\overline{s}\$ may depend on calendar time, but it is independent of past actions
 ⇒ future behavior is expected to be independent of current choice.
 - No incentive to deviate if, for all $1 \le t < T$, $h \in A^{t-1}$, and $i \in I$,

$$\forall a_{i} \in A_{i}, \ v_{i}\left(a^{t}\right) + \sum_{k=t+1}^{T} \delta^{k-t} v_{i}\left(a^{k}\right) \geq v_{i}\left(a_{i}, a_{-i}^{t}\right) + \sum_{k=t+1}^{T} \delta^{k-t} v_{i}\left(a^{k}\right)$$

(where
$$\sum_{k=t+1}^{T} \delta^{k-t} v_i(a^k) = 0$$
 if $t = T < \infty$).

- The 2nd terms of both sides cancel out: $\forall i \in I, \forall a_i \in A_i, v_i(a^t) \ge v_i(a_i, a_{-i}^t)$ satisfied because $a^t \in NE(G)$.
- By the OD principle, s̄ is a SPE.

Unique SPE in Finitely Repeated Games

Theorem

(**Unique SPE**) Suppose that G has a unique Nash equilibrium a° and $T < \infty$; then the unique SPE of $\Gamma^{\delta,T}(G)$ is the profile s° with $s^{\circ}(h) = a^{\circ}$ for every $h \in H$.

- Proof: Recall: by def., sequential optimality⇒One-Step Optimality.
 - By **Theorem One-Period NEs**, s° is a SPE. Prove by induction on $L(\Gamma(h))$ that $(s \text{ SPE}) \Rightarrow s = s^{\circ}$. Let s be a SPE; then each s_i satisfies One-Step Optimality given s_{-i} .
 - Basis step: $L(\Gamma(h)) = 1$ $(h \in A^{T-1})$. By the OSO of each s_i given s_{-i} , $s(h) \in NE(G) = \{a^{\circ}\}$, that is, $s(h) = a^{\circ} = s^{\circ}(h)$.
 - Inductive step: Suppose that $s(h') = a^{\circ}$ for each h' with $L(\Gamma(h')) \leq k$ (IH). Let $L(\Gamma(h)) = k + 1$. By IH and OSO of each s_i given s_{-i} , $\forall i \in I$, $\forall a_i \in A_i$,
 - $v_{i}\left(s\left(h\right)\right) + \sum_{\ell=1}^{k} \delta^{\ell} v_{i}\left(a^{\circ}\right) \geq v_{i}\left(a_{i}, s_{-i}\left(h\right)\right) + \sum_{\ell=1}^{k} \delta^{\ell} v_{i}\left(a^{\circ}\right).$
 - The 2nd terms of both sides cancel out: $\forall i \in I, \forall a_i \in A_i$, $v_i(s(h)) \ge v_i(a_i, s_{-i}(h))$. Thus, $s(h) \in NE(G) = \{a^\circ\}$, that is, $s(h) = a^\circ = s^\circ(h)$.

Multiplicity of SPEs: Examples

- If either assumption of **Theorem Unique-SPE** fails, then there may be a multiplicity of SPEs, where some SPEs s^* prescribe $s^*(h) \notin NE(G)$ at least in early periods, provided players are patient.
- Consider G = PD and $\Gamma^{\delta,\infty}(G)$. Then, if $\delta \geq 1/3$, the strategy pair s^* described by $\Psi = \{\mathbf{c}, \mathbf{d}\}$, $\psi_0 = \mathbf{c}$, $\gamma(\mathbf{c}) = (C, C)$, $\gamma(\mathbf{d}) = (D, D)$, $\varphi(\mathbf{c}, (C, C)) = \mathbf{c}$, $\varphi(\mathbf{c}, a) = \mathbf{d}$ if $a \neq (C, C)$, $\varphi(\mathbf{d}, a) = \mathbf{d}$ for each $a \in A$ is a SPE.
- Consider G' = PD + punishment and $\Gamma^{\delta,2}(G')$. Let $s^*(\varnothing) = (C,C)$, $s^*((C,C)) = (D,D)$, $s^*(a) = (P,P)$ if $a \neq (C,C)$. Then s^* is an SPE if $4 + 2\delta \geq 5$, that is, $\delta \geq 1/2$.

Multiplicity in Infinitely Repeated Games: Nash Reversion

Theorem

(Nash-Reversion) Let G be such that for some $a^{\circ} \in NE(G)$ and $a^{*} \in A$, a^{*} strictly Pareto-dominates a° , that is,

$$\forall i \in I, \ v_i\left(a^*\right) > v_i\left(a^\circ\right).$$

Consider $\Gamma^{\delta,\infty}(G)$ and the profile s^* described by $\Psi=\{\mathbf{c},\mathbf{d}\}$, $\psi_0=\mathbf{c}$, $\gamma(\mathbf{c})=a^*$, $\gamma(\mathbf{d})=a^\circ$, $\varphi(\mathbf{c},a^*)=\mathbf{c}$, $\varphi(\mathbf{c},a)=\mathbf{d}$ if $a\neq a^*$, $\varphi(\mathbf{d},a)=\mathbf{d}$ for each $a\in A$. Then, s^* is an SPE if and only if,

$$\forall i \in I, \ v_i\left(a^*\right) \ge \left(1 - \delta\right) \sup_{a_i \in A_i} v_i\left(a_i, a_{-i}^*\right) + \delta v_i\left(a^\circ\right), \tag{IC}$$

that is, iff

$$\forall i \in I, \ \delta \geq \overline{\delta}_i\left(\mathbf{a}^{\circ}, \mathbf{a}^{*}\right) := \frac{\sup_{a_i \in A_i} v_i\left(a_i, a_{-i}^{*}\right) - v_i\left(\mathbf{a}^{*}\right)}{\sup_{a_i \in A_i} v_i\left(a_i, a_{-i}^{*}\right) - v_i\left(\mathbf{a}^{\circ}\right)}.$$

Comments on Nash-Reversion Theorem

- It is an abstract, general version of the result about the ∞ -repeated PD.
- The hypotheses imply: threshold $\bar{\delta}_i(a^{\circ}, a^*) \in [0, 1)$.
- (The automaton describing) s^* starts with a^* (cooperative state \mathbf{c} , $\gamma(\mathbf{c}) = a^*$) and switches forever to a° as soon as a deviation from a^* occurs (non-cooperative state \mathbf{d} , $\varphi(\mathbf{c}, a^*) = a^*$, $\varphi(\mathbf{c}, a) = \mathbf{d}$ if $a \neq a^*$, $\varphi(\mathbf{d}, a) = \mathbf{d}$ for all a). Thus deviations from a^* "trigger" permanent defection.
- Most economists interpret SPE as a self-enforcement requirement for non-binding, self-enforcing agreements (to play a strategy profile).
- With this, the result is widely used to analyze cooperation, e.g., among sovereign states, collusion among firms, and organized crime.
- *G* is *not* assumed compact-continuous: it may be a Bertrand oligopoly (discontinuous). That is why we write sup instead of max.

Proof of the Nash-Reversion Theorem

- We apply the OD principle (which holds even if G is not compact-continuous, because $\Gamma^{\delta,\infty}(G)$ satisfies continuity at infinity). We only need to check that there are no incentives for one-shot deviations.
- There are two types of finite histories: those without defections, $h = \emptyset$ and $h = (a^*, ..., a^*)$, and the others.
- If a defection occurred in h, then s* (h') = a° for each (finite) h' ≥ h. Thus, no incentive to deviate (see **Theorem One-period NEs**).
- If no defection occured in h, then there is no incentive to deviate iff

$$\forall i \in I, \forall a_i \in A_i, \ \frac{1}{1-\delta}v_i\left(a^*\right) \geq v_i\left(a_i, a_{-i}^*\right) + \frac{\delta}{1-\delta}v_i\left(a^\circ\right),$$

which is equivalent to condition (IC). ■

References

BATTIGALLI, P. (2023): *Mathematical Language and Game Theory*. Typescript, Bocconi University.

Example of automaton with 3 states 4 = 2 2, 5, 5 11 12 p(c,x) -c fr all x $\varphi(\underline{a}, a) = \underline{a}, \varphi(\underline{a}, x) = \underline{b} y \times \underline{t} a$ 6(b, b) = b, p(b, x) = (d, d) q 8/20-0, 8(6)=6, 8/5)=0 D)

a° ∈ NE/G) TRIGGER STRATEGIES 10,10 +(∈ I , 0,10t) > √((a)) $\chi(\zeta) = \alpha^{\star}, \chi(d) = \alpha^{3}$ φ(c, q*)=q* (ρ(e, q)=d y q + a* (d, R) = d