Multistage Games with Payoff Uncertainty: Rational Planning

Pierpaolo Battigalli
Bocconi University

Game Theory: Analysis of Strategic Thinking

November 24, 2023

Abstract

This lecture extends the analysis of rational planning to multistage games with (observable actions and) payoff uncertainty.

[These slides summarize and, in part, complement Section 3 of Chapter 15 of GT-AST.]

Introduction

- We want to study rational planning in multistage games with observable actions and payoff uncertainty.
- With this aim, we extend our representation of i's beliefs about -i:
 - We start with conditional probability systems (CPSs) $\bar{\mu}^i \in \Delta^H \left(\Theta_{-i} \times S_{-i}\right)$ over others' information types θ_{-i} and strategies (ways of behaving) s_{-i} , thus extending the analysis of beliefs used to study rationalizability in multistage games with complete information.
 - Next we derive pairs (β^i, μ_i) assigning conditional probabilities $\beta^i(a_{-i}|\theta_{-i},h)$ to actions and conditional probabilities $\mu_i(\theta_{-i}|h)$ to types. $[\beta^i(\cdot|\theta_{-i},h)]$ is arbitrary if $\mu_i(\theta_{-i}|h)=0$, but this is going to be innocuous.]
 - If (β^i, μ_i) is derived from a CPS, it must satisfy Bayes rule whenever possible and is called "Bayes consistent personal assessment".
- With this, we obtain results about rational planning.

Running Example: (Conditional) Beliefs, 1/2

- Only player **1** (denoted in **bold**) is informed: $\Theta_1 \cong \Theta = \{\theta', \theta''\}$.
 - Payoffs v and w of player 2 do not matter. $H = \{\varnothing, (D), (D, C)\}.$
 - Consider CPS $\bar{\mu}^2 \in \Delta^H (\Theta \times S_1)$, with conditioning events $\Theta \times S_1 (h) (h \in H)$, where $S_1 (\varnothing) = S_1 = \{ U, D \}, S_1 (D) = S_1 (D, C) = \{ D \}$ (C does not reveal anything about pl. 1).
 - **Abbreviations:** We often write $\bar{\mu}^2(\{(\theta, s_1)\} | \Theta \times S_1(h)) =: \bar{\mu}^2(\theta, s_1|h)$, with $h = \emptyset$ omitted.

Running Example: (Conditional) Beliefs, 2/2

- Derive from CPS $\bar{\mu}^2$ a corresponding personal assessment (β^2, μ_2) to obtain a subjective decision tree for pl. 2:
 - $\mu_2(\theta) = \bar{\mu}^2(\{\theta\} \times S_1)$ (prior exogenous belief of pl. 2, here it does not matter). Assume $0 < \mu_2(\theta') < 1$.
 - $\beta^2(D|\theta) = \bar{\mu}^2(\theta, D) / \bar{\mu}^2(\{\theta\} \times S_1) = \bar{\mu}^2(\theta, D) / \mu_2(\theta)$.
 - $\mu_2(\theta|D) = \bar{\mu}^2(\{(\theta,D)\}|\Theta \times S_1(D)) =$ $= \overline{\mu}^2 \left(\left\{ (\theta, \mathbf{D}) \right\} \middle| \Theta \times \mathcal{S}_1 \left(\mathbf{D}, \mathbf{C} \right) \right) = \mu_2 \left(\theta \middle| \left(\mathbf{D}, \mathbf{C} \right) \right).$

Running Example: Rational Planning by Folding Back

$$\begin{pmatrix}
1 \\ v
\end{pmatrix} & \stackrel{\mathsf{U}}{\leftarrow} & \mathbf{1}, \theta' \\ & \mathsf{D} \downarrow \\ \begin{pmatrix}
0 \\ 1
\end{pmatrix} & \stackrel{\mathsf{S}}{\leftarrow} & 2 \\ & \mathsf{C} \downarrow \\ & & & & \downarrow \mathsf{C} \\ & & & & & \downarrow \mathsf{C} \\ & & & & & & \downarrow \mathsf{C} \\ & & & & & & & \downarrow \mathsf{C} \\ & & & & & & & \downarrow \mathsf{C} \\ & & & & & & & & \downarrow \mathsf{C} \\ & & & & & & & & \downarrow \mathsf{C} \\ & & & & & & & & & \downarrow \mathsf{C} \\ & & & & & & & & & & \downarrow \mathsf{C} \\ & & & & & & & & & & & \downarrow \mathsf{C} \\ & & & & & & & & & & & & \downarrow \mathsf{C} \\ & & & & & & & & & & & & & & & & \\ \begin{pmatrix} \mathbf{0} \\ 3 \end{pmatrix} & & & & \begin{pmatrix} \mathbf{0} \\ 0 \end{pmatrix} & & \begin{pmatrix} \mathbf{0} \\ 0 \end{pmatrix} & & \begin{pmatrix} \mathbf{0} \\ 0 \end{pmatrix} & & \begin{pmatrix} \mathbf{0} \\ 3 \end{pmatrix} \\ & & & & & & & & & \\ \begin{pmatrix} \mathbf{0} \\ 3 \end{pmatrix} & & & & & & & & \\ \begin{pmatrix} \mathbf{0} \\ 0 \end{pmatrix} & & & & & & & \\ \begin{pmatrix} \mathbf{0} \\ 0 \end{pmatrix} & & & & & & \\ \begin{pmatrix} \mathbf{0} \\ 0 \end{pmatrix} & & & & & \\ \begin{pmatrix} \mathbf{0} \\ 0 \end{pmatrix} & & & & & \\ \begin{pmatrix} \mathbf{0} \\ 0 \end{pmatrix} & & & & \\ \begin{pmatrix} \mathbf{0} \\ 3 \end{pmatrix} & & & & & \\ \end{pmatrix}$$

- ullet Here, only part μ_2 of 2's personal assessment (eta^2,μ_2) matters.
 - Let $q := \mu_2\left(\theta'|\mathrm{D}\right) = \mu_2\left(\theta'|\left(\mathrm{D},\mathrm{C}\right)\right)$; with this, $q < \frac{1}{2} \Rightarrow \hat{s}_2\left(\mathrm{D},\mathrm{C}\right) = \mathrm{R}, \ q > \frac{1}{2} \Rightarrow \hat{s}_2\left(\mathrm{D},\mathrm{C}\right) = \mathrm{L}, \ q = \frac{1}{2} \Rightarrow \mathrm{indiff}.$
 - $\hat{V}_{2}^{q}((D,C)) = \max\{3q,3(1-q)\} \ge \frac{3}{2}$; thus, $\hat{s}_{2}(D) = C$ for every q, i.e., for every $\bar{\mu}^{2} \in \Delta^{H}(\Theta \times S_{1})$.
 - **Key:** $\mu_2(\theta'|D) = \mu_2(\theta'|(D,C))$, otherwise there may be no sequentially optimal strategy!

Beliefs in Multistage Games with Payoff Uncertainty

- Fix a (finite) multistage game with payoff uncertainty and observable actions $\hat{\Gamma} = \langle I, (\Theta_i, A_i, A_i(\cdot), u_i)_{i \in I} \rangle$.
- To represent strategic thinking as rationalizability:
 - We will merge elements of Ch. 8 (static games with incomplete) information) and Ch. 11 (rationalizability in multistage games with complete information).
 - With this goal, beliefs are conveniently represented as CPSs $\bar{\mu}^i = (\bar{\mu}^i (\cdot | h))_{h \in H} \in \Delta^H (\Theta_{-i} \times S_{-i})$, recalling that, for all $h', h'' \in H$.

$$S_{-i}(h') = S_{-i}(h'') \Rightarrow$$

$$\bar{\mu}^{i}(\cdot|h') = \bar{\mu}^{i}(\cdot|\Theta_{-i}\times S_{-i}(h')) = \bar{\mu}^{i}(\cdot|\Theta_{-i}\times S_{-i}(h'')) = \bar{\mu}^{i}(\cdot|h'')$$

- To represent rational planning (and later, for equilibrium analysis):
 - ullet it is convenient to work with personal assessments $\left(eta^i,\mu_i
 ight)$ satisfying Bayes consistency,
 - ullet which—essentially—follows if $\left(eta^i,\mu_i
 ight)$ is derived from a CPS $ar{\mu}^i.$

Conditional Probability Systems (CPSs)

- In the (rationalizability) analysis of static games with *incomplete* information, we considered conjectures $\mu^i \in \Delta (\Theta_{-i} \times A_{-i})$.
- In the (rationalizability) analysis of multistage games with complete information, we considered CPSs $\mu^i \in \Delta^H(S_{-i})$.
- In the (rationalizability) analysis of multistage games with incomplete information, we can use CPSs $\bar{\mu}^i \in \Delta^H (\Theta_{-i} \times S_{-i})$, where (as before) $S_{-i} = \times_{h \in H} \mathcal{A}_{-i} (h)$ are the co-players' pure strategies (we write $\bar{\mu}^i$ to distinguish from systems of beliefs $\mu_i \in (\Delta(\Theta_{-i}))^H$).
- We can derive a personal assessment (β^i, μ_i) from a CPS $\bar{\mu}^i$: for all $(\theta_{-i}, h) \in \Theta_{-i} \times H$ and $a_{-i} \in \mathcal{A}_{-i}(h)$, $\mu_i(\theta_{-i}|h) = \bar{\mu}^i(\{\theta_{-i}\} \times S_{-i}(h)|h)$ and, if $\bar{\mu}^i(\{\theta_{-i}\} \times S_{-i}(h)|h) > 0$, then

$$\beta^{i}\left(a_{-i}|\theta_{-i},h\right) = \frac{\bar{\mu}^{i}\left(\left\{\theta_{-i}\right\} \times S_{-i}\left(h,a_{-i}\right)|h\right)}{\bar{\mu}^{i}\left(\left\{\theta_{-i}\right\} \times S_{-i}\left(h\right)|h\right)}.$$

Bayes Consistency of Personal Assessments

- If (β^i, μ_i) is derived from a CPS $\bar{\mu}^i$, then it has to be **Bayes** consistent: For all $h \in H$, $a_{-i} \in \mathcal{A}_{-i}(h)$, θ_{-i} , write
 - $\mathbb{P}^{\beta^i}(a_{-i}|\theta_{-i},h) := \beta^i(a_{-i}|\theta_{-i},h), \ \mathbb{P}^{\mu_i}(\theta_{-i}|h) := \mu_i(\theta_{-i}|h),$
 - $\bullet \ \mathbb{P}^{\beta^i,\mu_i}\left(\theta_{-i},a_{-i}|h\right) := \beta^i\left(a_{-i}|\theta_{-i},h\right)\mu_i\left(\theta_{-i}|h\right),$
 - $\mathbb{P}^{\beta^{i},\mu_{i}}(\mathbf{a}_{-i}|\mathbf{h}) = \sum_{\theta'_{-i}} \mathbb{P}^{\beta^{i},\mu_{i}}(\theta'_{-i},\mathbf{a}_{-i}|\mathbf{h}) = \sum_{\theta'_{-i}} \beta^{i}(\mathbf{a}_{-i}|\theta'_{-i},\mathbf{h}) \,\mu_{i}(\theta'_{-i}|\mathbf{h}).$
 - $$\begin{split} \bullet & \text{ If } \mathbb{P}^{\beta^i,\mu_i}\left(a_{-i}|h\right) > 0, \text{ write } \mu_i\left(\theta_{-i}|h,a_{-i}\right) \coloneqq \frac{\mathbb{P}^{\beta^i,\mu_i}\left(\theta_{-i},a_{-i}|h\right)}{\mathbb{P}^{\beta^i,\mu_i}\left(a_{-i}|h\right)} \\ &= \frac{\beta^i\left(a_{-i}|\theta_{-i},h\right)\mu_i\left(\theta_{-i}|h\right)}{\sum_{\theta'_{-i}}\beta^i\left(a_{-i}|\theta'_{-i},h\right)\mu_i\left(\theta'_{-i}|h\right)} \text{ (BR)}. \end{split}$$
 - Bayes consistency: for all $h \in H$ s.t. $L\left(\hat{\Gamma}\left(h\right)\right) > 1$, $a_i \in \mathcal{A}_i\left(h\right)$, $a_{-i} \in \mathcal{A}_{-i}\left(h\right)$, and θ_{-i}

$$\mu_i\left(\theta_{-i}|h,(a_i,a_{-i})\right) = \mu_i\left(\theta_{-i}|h,a_{-i}\right),$$

where $\mu_i(\theta_{-i}|h,a_{-i})$ satisfies (BR) whenever possible. (Hence, $\mu_i(\cdot|h,(a_i,a_{-i}))$ is independent of own-action a_i .)

• If i is the only active player at h, $\mu_i\left(\theta_{-i}|h,a_i\right) = \mu_i\left(\theta_{-i}|h\right)$.

One-Step and Sequential Optimality

- Fix (β^i, μ_i) , θ_i and $\beta_i \in \times_{h \in H} \Delta(\mathcal{A}_i(h))$.
 - For all $h \in H$, $z \in Z(h)$, $a_i \in A_i(h)$, $a_{-i} \in A_{-i}(h)$, θ_{-i} let
 - $\mathbb{P}^{\beta_i,\beta^i}(z|\theta_{-i},h)$ =prob. of z conditional on h given θ_{-i} ,
 - $V_{\theta_i}^{\beta_i,\beta^i}(\theta_{-i},h) = \sum_{z \in Z(h)} u_i(\theta_i,\theta_{-i},z) \mathbb{P}^{\beta_i,\beta^i}(z|\theta_{-i},h),$
 - $V_{\theta_i}^{\beta_i,\beta^i,\mu_i}(h) = \sum_{\theta'_{-i}} V_{\theta_i}^{\beta_i,\beta^i}(\theta'_{-i},h) \mu_i(\theta'_{-i}|h),$
 - $V_{\theta_{i}}^{\beta_{i},\beta^{i},\mu_{i}}(h,a_{i}) = \sum_{\theta' = a'} V_{\theta_{i}}^{\beta_{i},\beta^{i}}(\theta'_{-i},(h,(a_{i},a'_{-i}))) \beta^{i}(a'_{-i}|\theta'_{-i},h) \mu_{i}(\theta'_{-i}|h).$

Definition

Behavior strategy β_i is **one-step optimal** given (β^i, μ_i) if, for all $h \in H$, $\operatorname{supp}\beta_i$ $(\cdot|h) \subseteq \operatorname{arg\,max}_{a_i \in \mathcal{A}_i(h)} V_{\theta_i}^{\beta_i,\beta^i,\mu_i}$ (h,a_i) ; β_i is **sequentially optimal** given (β^i,μ_i) if, for all $h \in H$, $V_{\theta_i}^{\beta_i,\beta^i,\mu_i}$ $(h) = \max_{s_i \in S_i(h)} V_{\theta_i}^{s_i,\beta^i,\mu_i}$ (h).

The One-Deviation Principle

 The results about rational planning can be extended to allow for incomplete information (payoff uncertainty). In particular, one can prove a version of the OD Principle:

Theorem

For all [behavior] strategies s_i [β_i] and Bayes consistent personal assessments (β^i, μ_i), s_i [β_i] is one-step optimal given (β^i, μ_i) IFF it is sequentially optimal given (β^i, μ_i).

• The proof is similar to the complete-information case. The novelty is that we also need a system of beliefs $\mu_i \in (\Delta(\Theta_{-i}))^H$ and that the personal assessment (β^i, μ_i) has to be Bayes consistent.

The Need for Bayes Consistency

$$\begin{pmatrix}
\mathbf{1} \\ \nu
\end{pmatrix} & \stackrel{\mathsf{U}}{\leftarrow} & \mathbf{1}, \theta' \\ & \mathsf{D} \downarrow \\ \begin{pmatrix}
\mathbf{0} \\ 1
\end{pmatrix} & \stackrel{\mathsf{S}}{\leftarrow} & 2 & -- & --- & --- & 2 \\ & & & & \downarrow \mathsf{C} \\ & & & & \downarrow \mathsf{C} \\ & & & & & \downarrow \mathsf{C} \\ & & & & & \downarrow \mathsf{C} \\ & & & & & & \downarrow \mathsf{C} \\ & & & & & & & \downarrow \mathsf{C} \\ & & & & & & & & \downarrow \mathsf{C} \\ & & & & & & & & & \downarrow \mathsf{C} \\ & & & & & & & & & & \downarrow \mathsf{C} \\ & & & & & & & & & & \downarrow \mathsf{C} \\ & & & & & & & & & & & \downarrow \mathsf{C} \\ & & & & & & & & & & & & & \downarrow \mathsf{C} \\ & & & & & & & & & & & & & & \downarrow \mathsf{C} \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & &$$

- If (β^2, μ_2) is derived from a CPS, then it is Bayes consistent, $\mu_2(\theta'|D) = \mu_2(\theta'|(D,C))$, one-step optimality is equivalent to sequential optimality, and the optimal strategies select C if D.
- Suppose (β^2, μ_2) is *not* derived from a CPS and

$$\mu_2\left(\theta'|\mathrm{D}\right) < \frac{1}{3}, \ \mu_2\left(\theta'|\left(\mathrm{D},\mathrm{C}\right)\right) > \frac{1}{2}.$$

Then, one-step optimality yields L if (D, C) and S if D.

Conditional Dominance

- We can extend the definition of conditional dominance to this incomplete-information environment.
- Write: $U_i(\theta, s) := u_i(\theta, \zeta(s))$, and $U_i(\theta, \sigma_i, s_{-i}) = \mathbb{E}_{\sigma_i}(U_i(\theta, \cdot, s_{-i}))$ for $\sigma_i \in \Delta(S_i)$.

Definition

Strategy s_i is **conditionally dominated for type** θ_i if there are $h \in H_i(s_i)$ and $\sigma_i \in \Delta(S_i(h))$ such that

$$\forall \theta_{-i}, \forall s_{-i} \in S_{-i}(h), U_i(\theta_i, \theta_{-i}, s_i, s_{-i}) < U_i(\theta_i, \theta_{-i}, \sigma_i, s_{-i}).$$

• Exercise: Show that (reduced) strategy S of the running example is conditionally dominated.

Justifiability and Conditional Dominance

• As for the complete-information case, we use notions of optimality and justifiability that are invariant w.r.t. behavioral equivalence:

Definition

A strategy \bar{s}_i is weakly sequentially optimal for type θ_i given (β^i, μ_i) , written $\bar{s}_i \in r_i$ $(\theta_i, \beta^i, \mu_i)$, if $V_{\theta_i}^{\bar{s}_i, \beta^i, \mu_i}(h) = \max_{s_i \in S_i(h)} V_{\theta_i}^{s_i, \beta^i, \mu_i}(h)$ for all $h \in H_i(\bar{s}_i)$; \bar{s}_i is justifiable for type θ_i if $\bar{s}_i \in r_i$ $(\theta_i, \beta^i, \mu_i)$ for some Bayes consistent (β^i, μ_i) .

• Remark If $\bar{s}_i \in r_i \left(\theta_i, \beta^i, \mu_i\right)$ and s_i is behaviorally equivalent to \bar{s}_i then $s_i \in r_i \left(\theta_i, \beta^i, \mu_i\right)$. Hence, \bar{s}_i is justifiable for θ_i IFF every behaviorally equivalent s_i is justifiable for θ_i .

Lemma

For every $s_i \in S_i$ and $\theta_i \in \Theta_i$, s_i is justifiable for θ_i IFF it is not conditionally dominated for θ_i .

References

BATTIGALLI, P. (2023): *Mathematical Language and Game Theory*. Typescript, Bocconi University.