Path agreements and off-path uncertainty

Pierpaolo Battigalli and Emiliano Catonini

5th UNIBG Industrial Organization Winter Symposium December 15, 2022

∢ ⊒ ▶

Pre-play, non-binding agreements among players often specify the path to follow, but not the off-path behavior.

Compliance with the agreement may rely more on the aversion to the uncertainty that a deviation entails, rather than on certainty of less advantageous re-coordination. We explore this possibility.

A deviation from the agreed-upon path may be rationalized as an attempt to achieve a higher payoff, a form of forward-induction reasoning.

We elucidate the following question:

as risk or ambiguity aversion increase, can strategically sophisticated players credibly agree on a larger set of paths?

Battigalli, Cerreia-Vioglio, Maccheroni and Marinacci (2015):

the set of self-confirming equilibria (SCE) of essentially simultaneous games expands as ambiguity aversion increases.

Battigalli, Catonini, Lanzani and Marinacci (2019) extend the analysis to sequential games.

We have a different (and partial) source of coordination (agreement vs learning), therefore we use a different solution concept. (Yet, if the path-agreement is credible, it must also be an SCE path.)

Weinstein (2016): the set of rationalizable actions in simultaneous games expands as risk aversion increases.

Battigalli, Cerreia-Vioglio, Maccheroni and Marinacci (2016):

the set of justifiable (and rationalizable) actions expands as risk or ambiguity aversion increase.

For our analysis, we need to extend these results to sequential games under forward-induction reasoning.

□→ < E > < E > < E</p>

Pearce (1984) and Battigalli (1997) capture forward-induction reasoning based on interactive beliefs in rationality with **strong rationalizability** (a.k.a. extensive-form rationalizability).

Battigalli (2003) and Battigalli and Siniscalchi (2003) introduce first-order belief restrictions with the notion of **strong directed rationalizability** (a.k.a. strong Δ -rationalizability).

(See also the references therein on the *epistemic foundations* of this solution concept.)

Catonini (2021) analyses forward induction under non-binding agreements.

Catonini (2020) shows that, for a path-agreement, directed rationalizability is well-suited for the analysis.

We adopt strong directed rationalizability to characterize forward-induction reasoning assuming transparency of the initial belief in the agreed-upon path.

□→ < E > < E > < E</p>

Kohlberg and Mertens (1986) put forward "strategic stability" to capture instances of forward-induction reasoning based on the idea that the deviator is trying to achieve a higher payoff than her equilibrium payoff. Cho and Kreps (1987) and Banks and Sobel (1987) apply this idea to signaling games.

Govindan and Wilson (2009) provide a notion of forward-induction equilibrium that is simpler than strategic stability and retains some crucial properties. All these works focus on FI-refined Nash/sequential equilibrium, whereas we do not "neutralize" off-path uncertainty by assuming a commonly understood continuation equilibrium.

Example - 1: low (zero) risk aversion

In this presentation, we only argue informally that a credible path-agreement remains credible for higher risk/ambiguity aversion, despite non-monotonic changes in rationalizable reactions to deviations.

Suppose that *Ann* and **Bob** agree on a path at the end of which *Ann*'s utility=payoff is 9.

Ann has a unilateral deviation from the path that leads to a subgame with monetary payoffs=utilities as follows:

				a∖b	С	D	Ε	F
z	agreement ←	Ann	$\xrightarrow{\text{dev}}$	G	<i>4</i> , 2	<i>4</i> , 5	4, 16	<i>4</i> , 0
$\pi_a = 9$				Н	<i>4</i> , 2	<i>4</i> , 5	<i>4</i> , 0	<i>4</i> , 16
u				J	<i>0</i> , 2	16, 1	<i>0</i> , 16	<i>O</i> , O
				K	16, 2	<i>0</i> , 1	<i>O</i> , O	<i>0</i> , 16

Ann can profit from the deviation only if Bob plays C or D, but those are dominated (by a mixed action).

The "rationalizable" reactions to the deviation are E and F, and the z-agreement is credible.

Transform all payoffs with the square root: $u_i = \sqrt{\pi_i}$. Ann's on-path utility-payoff is now 3.

				a∖b	С	D	E	F
7	agreement ←	Ann	$\xrightarrow{\text{dev}}$	G	2, $\sqrt{2}$	2, √ 5	<i>2</i> , 4	2, 0
<i>u</i> _a = 3		,		Н	2, $\sqrt{2}$	2, √ 5	2, 0	<i>2</i> , 4
				J	$0, \sqrt{2}$	4, 1	<i>0</i> , 4	<i>O</i> , O
				K	$4, \sqrt{2}$	<i>0</i> , 1	<i>O</i> , O	<i>0</i> , 4

Now only C is dominated for Bob. Therefore, J survives Ann's second step of reasoning (prediction of a justifiable reaction). But Bob's best reply to J is E.

The "best-rationalizable" reaction to the deviation is E, the agreement is still credible.

Transform the payoffs with the square root once more. Ann's payoff on path is now $\sqrt{3}$

$u_2 = \sqrt{3}$	agreement ←	Ann $\xrightarrow{\text{dev}}$	→	a∖b	C	D	E	F
				G	$\sqrt{2}, 2^{\frac{1}{4}}$	$\sqrt{2}$, 5 ¹ / ₄	$\sqrt{2}$, 2	$\sqrt{2}$, 0
				Н	$\sqrt{2}, 2^{\frac{1}{4}}$	$\sqrt{2}$, 5 ¹ / ₄	$\sqrt{2}$, 0	$\sqrt{2}$, 2
u ,			J	0, 2 ¹ / ₄	2, 1	<i>0</i> , 2	<i>O</i> , O	
				K	2, 2 ¹ / ₄	<i>0</i> , 1	<i>0</i> , 0	<i>0</i> , 2

No action is dominated for Bob. Both J and K survive Ann's second step of reasoning. Only D is not a best reply to any belief over J and K. But then, Ann (3rd step) eliminates J. Bob's best reply to K is F.

The z-agreement is still credible, but the "best-rationalizable" reaction to the deviation is F — disjoint from those obtained with lower risk aversion.

프 에 에 프 어 ...

A multistage game with finitely many actions at each stage, observable actions and *finite or infinite horizon*.

Monetary payoffs are common knowledge.

Risk and ambiguity attitudes are either common knowledge, or have commonly known upper bounds.

We represent them with a vNM utility function and a "2nd-order utility" as in the smooth ambiguity model (Klibanoff, Marinacci and Mukherjee 2015).

There are no chance moves, and players cannot delegate their choices to randomization devices \implies no objective randomness \implies risk & ambiguity aversion cannot be disentangled, ambiguity-averse players are dynamically consistent.

We fix an agreed-upon path z and adopt Strong Directed Rationalizability with the following first-order belief restrictions:

every player initially believes that the co-players will not deviate from the agreed-upon path *z*.

Strong-z-rationaliz. captures common strong belief in rationality and the above.

Strong-z-rationalizability yields:

- the empty set, if believing in the path is at odds with strategic reasoning;

- the behavioral consequences of the *z*-agreement, otherwise.

We say that a z-agreement is credible if Strong-z-rationalizability is non-empty.

Theorem

The set of credible paths expands as risk or ambiguity aversion increase.

[The proof is tricky because *strong belief* (believing whenever possible that an event is true) *is non-monotone*, and yet we want to prove a monotonicity result.]

- BANKS J.S. AND J. SOBEL (1987): "Equilibrium selection in signaling games," *Econometrica*, 55(3), 647-661.
- BATTIGALLI P. (1997): "On rationalizability in extensive games," Journal of Economic Theory, 74(1), 40-61.

BATTIGALLI P. (2003): "Rationalizability in Infinite, Dynamic Games of Incomplete Information," *Research in Economics*, 57, 1-38.

- BATTIGALLI P. AND M. SINISCALCHI (2003): "Rationalization and Incomplete Information," *The B.E. Journal of Theoretical Economics*, 3(1), 1-46.
- BATTIGALLI, P., E. CATONINI, G. LANZANI, AND M. MARINACCI (2019): "Ambiguity attitudes and self-confirming equilibrium in sequential games," *Games and Economic Behavior*, 115, 1-29.

BATTIGALLI P., S. CERREIA-VIOGLIO, F. MACCHERONI AND M. MARINACCI (2015): "Self-confirming equilibrium and model uncertainty," *American Economic Review*, 105, 646-677.

BATTIGALLI, P., S. CERREIA-VIOGLIO, F. MACCHERONI, AND M. MARINACCI (2016): "A Note on Comparative Ambiguity Aversion and Justifiability," *Econometrica*, 84, 1903-1916.

- **C**ATONINI, E., (2020): "On non-monotonic strategic reasoning," *Games* and Economic Behavior, 120, 209-224.

CATONINI, E., (2021): "Self-enforcing agreements and forward-induction reasoning," Review of Economic Studies, 88, 610-642.

- GOVINDAN, D. AND R. WILSON (2009): "On forward induction," Econometrica, 77(1), 1-27.
- KLIBANOFF P., M. MARINACCI AND S. MUKERJI (2005): "A smooth model of decision making under ambiguity," *Econometrica*, 73, 1849-1892.
- KOHLBERG, E. AND J.F. MERTENS (1986): "On the strategic stability of equilibria," Econometrica, 54(5), 1003-1037.

- PEARCE, D. (1984): "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, 52, 1029-1050.
 - WEINSTEIN, J. (2016): "The Effect of Changes of Risk Attitudes on Strategic Behavior," Econometrica, 84, 1881-1902.