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Abstract
This pedagogical note relates the self-confirming equilibrium concept for

decision problems with feedback (cf. Battigalli et al., J. Econ. Theory, 183
(2019), 740-785) with the limit behavior of solutions to stochastic control prob-
lems (see Easley and Kiefer, Econometrica, 56 (1988), 1045-1064).

1 Introduction

This pedagogical note relates the self-confirming equilibrium concept for decision
problems with feedback (cf. Battigalli et al., 2015, 2019) with the limit behavior of
solutions to stochastic control problems (see Easley and Kiefer, 1988). This comple-
ments the sections on self-confirming equilibrium of Chapters 6-8 of Game Theory:
Analysis of Strategic Thinking by Battigalli, Catonini, and De Vito.1 Focusing on
stationary decision problems with uncertainty and discounting, we first show that,
if the stochastic process of beliefs and actions of a rational decision maker converges
in finite time, then the rest point reached must be a self-confirming equilibrium of
the static decision problem. This simple result is included for its pedagogical value.
Next, adapting results on stochastic control (e.g., Easley and Kiefer, 1988), we show
that the process of beliefs and actions converges almost surely2 to a self-confirming
equilibrium of the static decision problem. To keep the probability analysis simple,
we focus on finite decision problems where the set of possible probability measures
over states of nature is also finite. A simple example with 2 actions and 2 probability
models illustrates the analysis.

2 Self-confirming equilibrium in decision problems

The self-confirming equilibrium concept (SCE) for static decision problems with feed-
back can be framed by the following list of primitive elements (cf. Battigalli et al.,
2019):

1See also the comments in Chapter 9 on the relevance of SCEs of the appropriately defined
strategic form of a sequential game with feedback.

2In finite or infinite time.
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• a ∈ A, actions;

• s ∈ S, states of nature;

• σ ∈ Σ ⊆ ∆(S), posited set of stochastic models;

• y ∈ Y , consequences (e.g., monetary or consumption consequences);

• g : A× S → Y , consequence function (or game form);

• m ∈M , observed outcomes, or messages;

• f : A× S →M , feedback function;

• v : Y → R, von Neumann-Morgenstern utility function.

Assumptions: We assume for simplicity that all the sets above are finite. Fur-
thermore, we assume that the decision problem with feedback satisfies observed
payoffs (or, observed consequences), that is, there is a function ḡ : A ×M → Y
such that

∀a ∈ A,∀s ∈ S, g(a, s) = ḡ (a, f(a, s)) .

Let u (a, σ) denote the objective expected utility of action a given probability
model σ, that is,

u(a, σ) =
∑
s

v (g (a, s))σ (s) =
∑
s

v (ḡ (a, f(a, s)))σ (s) ,

where the second equality follows from the assumption of observed payoffs. Similarly
we let u (a, µ) denote the subjective expected payoff of a given belief µ ∈ ∆ (Σ):

u (a, µ) =
∑
σ

u(a, σ)µ(σ),

where the expectation can be expressed as a summation because we assumed for
simplicity that Σ is finite.3 Note, each belief µ ∈ ∆ (Σ) yields a “conjecture”σµ
(called “predictive distribution”in statistics) defined by

σµ(s) =
∑
σ

σ(s)µ(σ)

for all s ∈ S. Note that, by definition, u (a, µ) = u (a, σµ).
The reason why we work with beliefs about probability models instead of beliefs

about states (conjectures) is twofold. First, we can write the equilibrium conditions
more explicitly and transparently. Second, if we analyze the repeated decision prob-
lem with i.i.d. draws of states according to the unknown probability model σ∗, then

3For example, if we have an urn with n balls of k colors, the set of possible urn compositions is
finite. If Σ is a compact subset of the simplex ∆ (S), then u(a, µ) =

∫
Σ
u(a, σ)µ (dσ).
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Bayesian learning can be expressed by a random sequence of beliefs over Σ updated
according to Bayes rule.
Finally, for each a ∈ A, recall that fa : S → M denotes the section of f at a

(fa(s) = f(a, s) for all s ∈ S) and that σ 7→ σ ◦ f−1
a denotes the pushforward map

from ∆ (S) to ∆ (M) induced by fa, that is

∀m ∈M , σ ◦ f−1
a (m) = σ ({s ∈ S : f (a, s) = m}) .

Definition: A self-confirming equilibrium (SCE) of the decision problem with
feedback is a triple (a∗, µ∗, σ∗) such that

1. (subjective best reply) a∗ ∈ arg maxa∈A u(a, µ∗),

2. (confirmed belief) µ∗
({
σ ∈ Σ : σ ◦ f−1

a∗ = σ∗ ◦ f−1
a∗
})

= 1.

For each σ∗ ∈ Σ, a self-confirming equilibrium at σ∗ is a pair (a∗, µ∗) such that
(a∗, µ∗, σ∗) is an SCE. We let SCE (σ∗) denote the set of self-confirming equilibria
at σ∗.

Remark 1 If (a∗, µ∗, σ∗) is a self-confirming equilibrium, then a∗ ∈ arg maxa∈A u(a, σµ∗)
and conjecture σµ∗ is confirmed, that is, σµ∗ ◦ f−1

a∗ = σ∗ ◦ f−1
a∗ . Thus, if σµ∗ ∈ Σ,

(a∗, δσµ∗ , σ
∗) is a self-confirming equilibrium as well.

Consider the infinite repetition of the static decision problem, where the sequence
of states of nature is i.i.d. with unknown marginal distribution σ∗; the corresponding
product measure on SN is denoted σ∗,∞. The Decision Maker (DM) is characterized
by discount factor β ∈ [0, 1) and prior belief µ0 ∈ ∆ (Σ). An optimal strategy4 of
DM is one that solves

max
α
Eµ0

( ∞∑
t=0

βtu (aαt ,µ
α
t )

)
,

where α = (αt)t∈N0
is the strategy and (aαt ,µ

α
t )t∈N0

is the sequence of random actions
and Bayes-updated beliefs induced by α given the prior µ0 (in general, we use bold-
face letters to denote random variables). One can show by standard compactness-
continuity arguments that the set of optimal strategies is not empty. Furthermore,
among the optimal strategies there is always at least one such that αt is determined
only by the belief at the beginning of period t, that is µt. For example, α0 depends
on the prior belief µ0, and α1 depends on the updated belief µ1 (·|a0,m0), but– given
this– it does not directly depend on the action a0 and message m0 of the first period.
The strategies that depend only on updated beliefs are called stationary. Thus, if
the optimal strategy given prior µ0 is unique, then it must be stationary.

4A strategy in this case is a sequence α = (αt)t∈N0 with α0 = a0 ∈ A, and αt : (A×M)t−1 → A
for each t ∈ N; that is, αt selects an action in period t as a function of the history of actions taken
and messages observed in previous periods τ = 0, ..., t− 1.
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According to Bayes rule, the belief at the beginning of period t = 1 after DM
chose a0 and observed m0 at the end of period t = 0 is given by the formula

µ1(σ′|a0,m0) =
Pµ0,a0 (m0, σ

′)

Pµ0,a0 (m0)
=

Pµ0,a0 (m0|σ′)Pµ0
(σ′)∑

σ Pµ0,a0 (m0|σ)Pµ0
(σ)

=

(
σ′ ◦ f−1

a0

)
(m0)× µ0(σ′)∑

σ

(
σ ◦ f−1

a0

)
(m0)× µ0(σ)

for each σ′ ∈ Σ, provided that the denominator is positive. Since the observed
message depends on the random state s0, the belief µα1 at the beginning of period
t = 1 is random as well; hence, also the action aα1 =α1 (µ1) is random. In general, for
every realization µ ∈ ∆ (Σ) of the random updated belief µαt , the updated belief of
period t+ 1 given action a and message m is given by the Bayes map

B : ∆ (Σ)× A×M → ∆ (Σ)

defined by

B (µ, a,m) (σ′) =
(σ′ ◦ f−1

a ) (m)× µ(σ′)∑
σ (σ ◦ f−1

a ) (m)× µ(σ)

for each σ′ ∈ Σ. It is immediate to see that B is continuous with respect to its first
argument at every point where the denominator is strictly positive.5

Stationary strategies can be described as functions α : ∆ (Σ) → A. Given a
stationary strategy µt−1 7→ α(µt−1) (t ∈ N), Bayes rule yields a stochastic process
(aαt ,µ

α
t )t∈N0

= (α (µαt ) ,µαt )t∈N0
of actions and beliefs. The objective probabilities

of each finite sequence of actions and beliefs are determined by the true marginal
measure over states. For example, let a0 = α(µ0), then, for each belief µ̄1,

Pσ∗ (µα1 = µ̄1) = σ∗ ({s ∈ S : µ1(·|a0, fa0(s)) = µ̄1}) ;

with this, for each action ā1,

Pσ∗ (aα1 = ā1) = Pσ∗ (ā1) =
∑

µ̄1:α1(µ̄1)=ā1

Pσ∗ (µα1 = µ̄1) .

In general, µαt : S{0,...,t−1} → ∆ (Σ) is a random belief with realizationsµαt (s0, ..., st−1)
whose objective, but unknown probability is

∏t−1
k=0 σ

∗(sk).6

5Pointwise convergence is an immediate consequence of the fact that µt+1(σ′|at,mt) is a ratio
between two compositions of continuos functions of µt. Since µt+1(·|at,mt) is a vector, pointwise
convergence coincides with uniform convergence.

6When we consider random limit beliefs, they are defined as random variables µ∞ : SN0 → ∆ (Σ),
where the set of infinite sequences of states s∞ = (s0, s1, ...) ∈ SN0 is endowed with the smallest
sigma-algebra generated by the collection of subsets{

s∞ ∈ SN0 : s0 = s̄0, ..., st = s̄t
}
, t ∈ N0, (s̄0, ..., s̄t) ∈ St+1

(called elementary “cylinders”).
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We are interested in the limit behavior and beliefs of a rational DM. Suppose,
for the sake of the discussion, that a steady state (a∗, µ∗) is reached in finite time t
along some possible path of the stochastic process (there are non-trivial examples of
decision problems and paths where the steady state is reached in finite time). Then
it must be the case that the Bayes-update of belief µ∗ given action a∗ is the same as
µ∗, that is, for each σ′ ∈Supp(µ∗), and each m that can be observed with positive
subjective probability under µ∗ (i.e., eachm such that

∑
σ

(
σ ◦ f−1

a∗
)

(m)×µ∗(σ) > 0)

B (µ∗, a∗,m) (σ′) =

(
σ′ ◦ f−1

a∗
)

(m)× µ∗(σ′)∑
σ

(
σ ◦ f−1

a∗
)

(m)× µ∗(σ)
= µ∗(σ′).

In this case we say that µ∗ is invariant at a∗.

Lemma 2 Belief µ∗ is invariant at action a∗ if and only if all the stochastic models
in Supp(µ∗) yield the same distribution on M given a∗, that is, σ ◦ f−1

a∗ = σ′ ◦ f−1
a∗

for all σ, σ′ ∈Supp(µ∗).

Proof (If) Condition

∀σ, σ′ ∈ Supp(µ∗), σ ◦ f−1
a∗ = σ′ ◦ f−1

a∗ ,

means that the pushforward map σ 7→ σ ◦ f−1
a∗ is constant on Supp(µ∗). Then, for

each σ′ ∈ Supp(µ∗) and each m ∈M ,∑
σ

(
σ ◦ f−1

a∗
)

(m)× µ∗(σ) =
(
σ′ ◦ f−1

a∗
)

(m)
∑
σ

µ∗(σ) =
(
σ′ ◦ f−1

a∗
)

(m)

(because
∑

σ µ
∗(σ) = 1). Therefore, for eachm such that

∑
σ

(
σ ◦ f−1

a∗
)

(m)×µ∗(σ) >
0, (

σ′ ◦ f−1
a∗
)

(m)× µ∗(σ′)∑
σ

(
σ ◦ f−1

a∗
)

(m)× µ∗(σ)
= µ∗(σ′).

(Only if) Suppose that, for every σ′ ∈Supp(µ∗) and everym such that
∑

σ

(
σ ◦ f−1

a∗
)

(m)×
µ∗(σ) > 0, (

σ′ ◦ f−1
a∗
)

(m)× µ∗(σ′)∑
σ

(
σ ◦ f−1

a∗
)

(m)× µ∗(σ)
= µ∗(σ′).

Since σ′ ∈Supp(µ∗) if and only if µ∗(σ′) > 0,

∀σ′ ∈ Supp(µ∗),
(
σ′ ◦ f−1

a∗
)

(m) =
∑

σ∈Supp(µ∗)

(
σ ◦ f−1

a∗
)

(m)× µ∗(σ),

for every m, which implies that σ 7→ σ ◦ f−1
a∗ is constant on Supp(µ∗). �

Proposition 3 Let α be an optimal strategy. Suppose that µ0(σ∗) > 0 and that
the process (aαt ,µ

α
t )t∈N0

converges in finite time T to (a∗, µ∗) along each path with
prefix (s0, ..., sT−1) such that σ∗ (st) > 0 for all t ∈ {0, ..., T − 1}. Then (a∗, µ∗) is a
self-confirming equilibrium at σ∗.
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Proof Let µt denote the realization of the updated belief at the beginning
of any period t given (s0, ...st−1). Since σ∗ (st) > 0 for all t ∈ {0, ..., T − 1} and
µ0(σ∗) > 0, the Bayesian updating formula implies that µ∗(σ∗) = µT (σ∗) > 0, that
is, σ∗ ∈ Supp (µ∗) (this follows from an easy induction argument, considering that

µt+1(σ∗|at,mt) =

(
σ∗ ◦ f−1

at

)
(mt)× µt(σ∗)∑

σ

(
σ ◦ f−1

at

)
(mt)× µt(σ)

> 0

if µt(σ
∗) > 0). Then, by Lemma 2, σ ◦ f−1

a∗ = σ∗ ◦ f−1
a∗ for all σ ∈Supp(µ∗), that is,

µ∗
({
σ ∈ Σ : σ ◦ f−1

a∗ = σ∗ ◦ f−1
a∗
})

= 1.

Now we have to show that a∗ ∈ arg maxa u (a, µ∗). First note that the normalized
expected value of an optimal strategy at any given period depends only on the belief
µ at the beginning of that period. According to the Bellman equation,

Eµ∗

( ∞∑
t=T

βt−Tu (aαt ,µ
α
t )

)

= V (µ∗) = max
a∈A

u(a, µ∗) + β
∑

m:Pµ∗,a(m)>0

V (B (µ∗, a,m))Pµ∗,a (m)


= u(a∗, µ∗) + β

∑
m:Pµ∗,a∗ (m)>0

V (B (µ∗, a∗,m))Pµ∗,a∗ (m) = u(a∗, µ∗) + βV (µ∗) ,

where the last equality holds because µ∗ is invariant at a∗ = aαT (s1, ..., sT−1), the
action selected by optimal strategy α at time T given the realizations (s0, ..., sT−1).
Thus,

u(a∗, µ∗)

1− β = V (µ∗) .

Suppose, by way of contradiction, that u(a∗, µ∗) < u(ā, µ∗) for some ā ∈ A. The
continuation strategy of choosing ā forever starting from period T would yield the
subjective expected value ∑

σ∈Supp(µ∗)

µ∗ (σ)

∞∑
t=T

βt−Tu (ā, σ)

=
1

1− β
∑

σ∈Supp(µ∗)

µ∗ (σ)u (ā, σ)

=
1

1− βu (ā, µ∗) >
1

1− βu (a∗, µ∗) = V (µ∗) ,

thus contradicting the optimality of α. Therefore, it must be the case that a∗ ∈
arg maxa u (a, µ∗). �

The previous result provides a simple link between SCE and (Bayesian) learning
for a rational DM: if the learning process converges in finite time, then the limit is
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an SCE. Adapting results from the literature on repeated decision problems under
uncertainty (e.g., Easley and Kiefer, 1988), one can prove that (1) the same is true
also when convergence is only “asymptotic,”and (2) convergence is almost sure:7

Theorem 4 Suppose that µ0 (σ∗) > 0 and α : ∆ (Σ) → A is the uniquely optimal
(hence, stationary) strategy given β and µ0. Then the stochastic process (µαt )t∈N0

converges σ∞,∗-almost surely to a random limit µα∞, that is,

Pσ∞,∗
(

lim
t→∞

µαt = µα∞

)
= 1

for some random belief µα∞ : SN0 → ∆ (Σ). Suppose, furthermore, that the static best
reply to the limit belief is σ∞,∗-almost surely unique i.e.,

Pσ∞,∗
(∣∣∣∣arg max

a∈A
u (a,µα∞)

∣∣∣∣ = 1

)
= 1,

then the stochastic process (α (µαt ) ,µαt )t∈N converges σ
∞,∗-almost surely to a self-

confirming equilibrium at σ∗ (i.e., Pσ∞,∗ (limt→∞ (α (µαt ) ,µαt ) ∈ SCE (σ∗)) = 1).

Theorem 4 is proved in the Appendix. Here we sketch the main steps of the
proof. First, we show that the stochastic process (µαt )t∈N0

is a (necessarily bounded)
martingale, that is, the expected value of the next-period subjective probability
of any stochastic model σ is the current subjective probability of σ. Therefore, the
Martingale Convergence Theorem implies the existence of a random limitµα∞ : SN0 →
∆ (Σ) such that Pσ∞,∗-almost surely µαt → µα∞. Next, using Lemma 2 and the
continuity of the Bayes map, we show that, for every path s∞ such that µαt (s∞)→
µα∞ (s∞) and for every action a∞ played infinitely often on this path, it must be
the case that µα∞ is a∞-invariant. Finally, we show that, since the actions played
infinitely often tend to have no experimentation value (because they are invariant at
µα∞) they can only be static best replies to this limit belief. Since by hypothesis the
static best reply is unique, the thesis follows.

3 Example

Consider a DM that can choose between the action Up (U) and Down (D). Action U
is safe, i.e. its consequence does not depend on the realized state of nature, whereas
action D is risky, because it has state-contingent payoffs. Ex-post, the DM only
observes his monetary consequences. The static decision problem with feedback can
be represented as follows:

g, f l r
U 2 2
D 0 3

7In games with strategic opponents part (1) holds, but part (2) may fail.
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Moreover, the DM is uncertain about the stochastic model. Specifically, he has a
2-point prior µ with Σ = Suppµ = {σuni, σr}, where σuni is the uniform model,
whereas σr assigns a higher probability (5

6
) to r. Formally:

Model l r
σuni 1/2 1/2
σr 1/6 5/6

Prior σuni σr

µ µuni 1− µuni

As a consequence, not only action D is objectively risky, but it is also subjectively
ambiguous, that is, it entails risks that are unknown to the DM. Finally, suppose we
assume risk neutrality, that is v (m) = m.
Recall that, without loss of generality, the optimal strategy can be chosen to be

stationary. Therefore, we consider a strategy α∗ ∈ A∆(Σ) that solves

max
α∈A∆(Σ)

Eµ

( ∞∑
t=0

βtu (α (µαt ) ,µαt )

)
= V (µ) = max

a∈A

u (a, µ) + β
∑

m:Pµ,a(m)>0

V (B (µ, a,m))Pµ,a (m)

 ,
(1)

where the second equality follows from Bellman’s equation. The last expression sheds
light on the particular form assumed by the optimal strategy in this example. Indeed,
note that, for every µ, action U does not allow any learning: given U , the DM receive
with probability 1 a payoff (and message) equal to 2 and the posterior coincides with
the prior. Formally:

∀µ ∈ Σ, Pµ,U (m : B (µ, U,m) = µ) = Pµ,U (m = 2) = 1.

Therefore, if for some t the belief µt is such that the optimal strategy α
∗ prescribes

action U , then he will stick to this action forever on, and the value will coincide with
the discounted sum of the constant payoff 2:

α (µ) = U ⇒ V (µ) = u (U, µ) + β
∑

m:Pµ,U (m)>0 V (B (µ, U,m))Pµ,U (m) = u (U, µ) + βV (µ)

V (µ) = 2
1−β .

(2)
In other words, U has no experimentation value. On the other hand, playing action
D has a positive experimentation value, since the different probabilities assigned to
message 3 by models σuni and σr imply that the DM will end up with a posterior
different from his prior.8 As a consequence, we may imagine that the more the DM is
patient (i.e., the more he is willing to trade-off current consumption for information
that is valuable for future choices) the more action D becomes attractive. Indeed,
this intuition is correct.

8Except, of course, for the degenerate cases µ = δx, x ∈
{
σuni, σr

}
.
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Figure1. Graph of the optimal policy.

Figure 1 depicts the optimal strategy as a function of the discount factor β and the
belief in the uniform model µuni (recall that the optimal action for the uniform model
is U). For each β, there is a threshold µ̄ (β) such that it is optimal to experiment
(D) if µuni < µ̄ (β) and it is optimal to stop experimentation (U) if µuni > µ̄ (β).
Thus, U is optimal in the upper region. The threshold function µ̄ (β) is increasing,
because a more patient DM needs a higher belief in the uniform model σuni to stop
experimenting with D. If µuni0 > µ̄ (β), then the optimal strategy plays U forever. If
µuni0 < µ̄ (β), the optimal strategy starts with D. If the first message is m0 = 3, then
µ1 (σuni|D, 3) < µuni0 < µ̄ (β) and the optimal strategy keeps experimenting with D
in period t = 1. If instead the first message is m0 = 0, then µ1 (σuni|D, 3) > µuni0 . If
the belief in the uniform model increases above µ̄ (β), then experimentation stops,
otherwise it continues.
The objective probability of messages 0 and 3 given D depends on the true model

σ. If the true model is σuni experimentation stops in finite time with probability 1
and the DM ends up using the objectively optimal action U even if the long-run
belief does not assign probability 1 to σuni because µt becomes constant as soon as
α (µαt ) = U . To see that in this case experimentation stops with probability 1 in finite
time, suppose– by way of contradiction, that Pσuni (∀t ∈ N0, α (µαt ) = D) > 0, then
the probability that the updated belief converges to the Dirac on σuni is also positive,
that is, Pσuni (limt→∞µ

α
t (σuni) = 1) > 0. Then, Pσuni (∃t,µαt (σuni) > µ̄ (β)) > 0,

which implies that experimentation must stop in finite time with positive probability,
a contradiction.
If instead the true model is σr and µuni0 < µ̄ (β), the optimal strategy starts with
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D and there are two possible limits: either (1) there are suffi ciently many early real-
izations of message 3, experimentation (D) continues forever and limt→∞µ

α
t (σr) =

limt→∞ (1− µαt (σuni)) = 1 because the DM learns the true probabilities observing
the empirical frequencies, or (2) there is a suffi ciently high number of early unlucky
realization of message 0 and eventually µαt (σuni) > µ̄ (β), so that the optimal strat-
egy switches to the objectively suboptimal action U forever and µαt becomes constant
with µαt (σuni) > µ̄ (β).

4 Appendix

Proof of Theorem 4 For technical reasons, to show almost sure convergence of the
random vector of beliefs in the probability space (SN0 ,G, σ∗), where G is the σ-algebra
generated by the elementary cylinders, we have to rely on a derived probability space.
Consider the probability space (SN0 ,G, pµ0

) where pµ0
is the (predictive) measure

obtained from the prior µ0. More specifically, for every E ∈ G

pµ0
(E) =

∑
σ∈Σ

σ∞ (E)µ0 (σ) .

(Step 1: the belief process is a martingale) We show that, for every σ̄ ∈ Σ,
(µαt (σ̄) ,Ft)t∈N0

is a martingale in this probability space, where Ft is the sigma-
algebra generated by the random variables (µα0 (σ̄) , ...,µαt (σ̄)).

(Proof of Step 1) By definition, (Ft)t∈N0
is a filtration and (µαt (σ̄))t∈N0

is adapted
to (Ft)t∈N0

. Moreover, for all t ∈ N0, we have 0 ≤ Epµ0
(µαt (σ̄)) ≤ 1. Therefore, it

only remains to show that for every t ∈ N0, we want to show that with probability
Ppµ0

almost surely
Epµ0

(
µt+1 (σ̄) |Ft

)
= µt (σ̄) .

Given the finiteness of S, for every t ∈ N0, there is a finite number of values that
the random belief µt takes with positive probability. So, it is enough to show that
contingent of the realization of any such µt, the expected value of µt+1 is µt. Fix any
µt in the support of the random belief µt: Ppµ0

(µt = µt) > 0. Recall that the Bayes
map yields

(µt, α (µt) ,m) 7→ B (µt, α (µt) ,m) (σ̄) =
µt (σ̄)

((
σ̄ ◦ f−1

α(µt)

)
(m)

)
∑

σ

((
σ ◦ f−1

α(µt)

)
(m)

)
µt(σ)

for each m deemed possible according to µt given action α (µt), that is, each m such
that the denominator is positive. With this,

Epµ0

(
µt+1 (σ̄) |µt

)
=
∑
m

Ppµ0
(mt = m|µt)B (µt, α (µt) ,m) (σ̄)
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=
∑
m

∑
σ

µ0 (σ)σ∞
({
s∞ : µt (st−1) = µt, st ∈ f−1

α(µt)
(m)

})
∑

σ̂∈Σ µ0 (σ̂) σ̂∞ ({s∞ : µt (st−1) = µt})
B (µt, α (µt) ,m) (σ̄)

=
∑
m

∑
σ

σ
(
f−1
α(µt)

(m)
) µ0 (σ)σ∞ ({s∞ : µt (st−1) = µt})∑

σ̂∈Σ µ0 (σ̂) σ̂∞ ({s∞ : µt (st−1) = µt})
B (µt, α (µt) ,m) (σ̄)

=
∑
m

∑
σ

σ
(
f−1
α(µt)

(m)
)
µt (σ)

µt (σ̄)
((
σ̄ ◦ f−1

α(µt)

)
(m)

)
∑

σ′

((
σ′ ◦ f−1

α(µt)

)
(m)

)
µt(σ

′)

=
∑
m

µt (σ̄)
((
σ̄ ◦ f−1

α(µt)

)
(m)

)∑
σ

σ
(
f−1
α(µt)

(m)
)
µt (σ)∑

σ′

((
σ′ ◦ f−1

α(µt)

)
(m)

)
µt(σ

′)

=
∑
m

µt (σ̄)
((
σ̄ ◦ f−1

α(µt)

)
(m)

)
= µt (σ̄)

∑
m

((
σ̄ ◦ f−1

α(µt)

)
(m)

)
= µt (σ̄) .

where the first equality comes from the definition of expected value, the second by
the definition of pµ0

, the third from the fact that the environment is i.i.d., the fourth
from the definition of conditional probability, whereas the remaining equalities are
immediate.

(Step 2: the belief process converges) The stochastic process (µαt )t∈N0
converges

σ∞,∗-almost surely to a random limit µα∞.

(Proof of Step 2) By step 1, the sequence of random subjective probability of
models (µαt (·))t∈N0

is a martingale. Moreover, for every t ∈ N0, 0 ≤ µαt (σ̄) ≤ 1,
and therefore, (µαt (σ̄))t∈N0

is a uniformly bounded martingale. By the Martingale
Convergence Theorem (see, e.g. Billingsley Theorem 35.5), the limit random vari-
able µα∞ (σ̄) exists pµ0

-almost surely. Since the result holds for every σ̄ ∈ Σ, we have
that (µαt )t∈N0

converges pµ0
-almost surely to a random limit µα∞. Indeed, since Σ

is finite, (µαt )t∈N0
is a |Σ|-dimensional vector-valued stochastic process. Therefore,

the convergence of (µαt (σ̄))t∈N0
for every σ̄ ∈ Σ implies the convergence of the vec-

tor. Moreover, since for every t ∈ N0 µ
α
t belongs to the |Σ|-dimensional simplex, a

compact set, also the limit belongs to the simplex.
Therefore, there exists a set Ê ∈ G such that pµ0

(
Ê
)

= 1 and limt→∞ (µαt (s∞))t∈N0
=

µα∞ (s∞) for every s∞ ∈ Ê. Note that, since µ0 (σ∗) > 0

pµ0

(
Ê
)

= 1⇒ pµ0

(
SN0\Ê

)
= 0

⇒
∑
σ∈Σ

σ∞
(
SN0\Ê

)
µ0 (σ) = 0

⇒ σ∗,∞
(
SN0\Ê

)
= 0⇒ σ∗,∞

(
Ê
)

= 1.

Therefore, (µαt )t∈N0
converges σ∞,∗-almost surely to a random limit µα∞.
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(Step 3: invariance of limit belief) For every s∞ define as a∞ (s∞) the set of
actions played infinitely often (i.o.) along this path. We have that

∀a ∈ a∞ (s∞) , µα∞
({
σ ∈ Σ : σ ◦ f−1

a = σ∗ ◦ f−1
a

})
(s∞) = 1

σ∞,∗-almost surely.

(Proof of step 3) Consider the set Ē obtained as the intersection between Ê and:{
s∞ : ∀ (a, s̄) ∈ a∞ (s∞)× Suppσ∗,

(
α
(
µαt−1

)
, st
)

(s∞) = (a, s̄) i.o.
}
.

It can be shown that the latter set has probability 1.9

Consider any sample path s∞ ∈ Ē. Suppose by way of contradiction that
µα∞ (s∞) is not invariant for some a ∈ a∞ (s∞), that is, there exists m ∈ M such
that (σ ◦ f−1

a ) (m) 6= (σ∗ ◦ f−1
a ) (m) for some σ ∈ Suppµα∞ (s∞). It follows that

there exists s̄ ∈ Suppσ∗ such that (σ ◦ f−1
a ) (f (a, s̄)) 6= (σ∗ ◦ f−1

a ) (f (a, s̄)) for some
σ ∈ Suppµα∞ (s∞). Indeed,(

σ ◦ f−1
a

)
(m) 6=

(
σ∗ ◦ f−1

a

)
(m)

for some m ∈M , and since σ ◦ f−1
a and σ∗ ◦ f−1

a are elements of the |M |-dimensional
simplex, this implies that there are m′ ∈M and m′′ ∈ Supp (σ∗ ◦ f−1

a ) such that(
σ ◦ f−1

a

)
(m′) >

(
σ∗ ◦ f−1

a

)
(m′) and

(
σ ◦ f−1

a

)
(m′′) <

(
σ∗ ◦ f−1

a

)
(m′′) .

Therefore, Lemma 2 implies B (µα∞ (s∞) , a, f (a, s̄)) 6= µα∞ (s∞), and the continuity
of the Bayes map implies that there exist ε > 0 and δ > 0 such that:

||µαt−1 (s∞)− µα∞ (s∞) || ≤ δ ⇒ ||B
(
µαt−1 (s∞) , a, f (a, s̄)

)
− µα∞ (s∞) || ≥ ε.

Indeed, suppose ||B (µα∞ (s∞) , a, s̄) − µα∞ (s∞) || = 2ε > 0. There exists δ > 0
such that

||µαt−1 (s∞)−µα∞ (s∞) || ≤ δ ⇒ ||B
(
µαt−1 (s∞) , a, f (a, s̄)

)
−B (µα∞ (s∞) , a, f (a, s̄)) || ≤ ε

Therefore,

2ε ≤ ||B (µα∞ (s∞) , a, s̄)− µα∞ (s∞) ||
≤ ||B

(
µαt−1 (s∞) , a, f (a, s̄)

)
− µα∞ (s∞) ||

+||B
(
µαt−1 (s∞) , a, f (a, s̄)

)
−B (µα∞ (s∞) , a, f (a, s̄)) ||

If we subtract ε from the LHS and ||B
(
µαt−1 (s∞) , a, f (a, s̄)

)
−B (µα∞ (s∞) , a, f (a, s̄)) ||

from the RHS the inequality continues to hold and

ε ≤ ||B
(
µαt−1 (s∞) , a, f (a, s̄)

)
− µα∞ (s∞) ||.

9See the Proof of Claim 1 below.
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Since s∞ ∈ Ē, there exists a subsequence of periods tn such that, for every n ∈ N,(
α
(
µαtn−1

)
, stn

)
(s∞) = (a, s̄) and ||µαtn−1 (s∞)−µα∞ (s∞) || ≤ δ. Therefore, for every

tn
||µαtn (s∞)− µα∞ (s∞) || ≥ ε,

but this contradicts the convergence of the beliefs shown in Step 2.

(Step 4: the limit action is a short-run best reply to the limit belief) Consider any
path s∞ such that |arg maxa∈A u (a,µα∞ (s∞))| = 1 and any a∗ ∈ a∞(s∞), then

a∗ = arg max
a∈A

u(a,µα∞ (s∞))

(Proof of Step 4) Fix s∞ as above and denote the myopic best reply as:

a1 = arg max
a∈A

u (a,µα∞ (s∞)) .

It is immediate to see that there exist an open ball of radius ε centered in µα∞ (s∞),
N (µα∞ (s∞) , ε) such that10

∀µ ∈ N (µα∞ (s∞) , ε) ,∀a′ ∈ A\ {a1} , u (a1, µ)− u (a′, µ) > 0.

Fix ā ∈ a∞ (s∞) \{a1}, we show that there exists a δ such that

|µα∞ (s∞)− µt| < δ ⇒ α (µt) 6= ā.

Since the space of actions and states is finite, |u (a, s) − u (a′, s′) | ≤ K for some K
in R. Since β < 1 there exist τ ∈ N such that

u (a1,µ
α
∞ (s∞))− u (ā,µα∞ (s∞))

2
> βτ

K

1− β .

Moreover, by Step 3 and Lemma 2,

B (µα∞ (s∞) , ā, ·) = µα∞ (s∞) .

Therefore, for every ε > 0 there exists a tε ∈ N, such that if t ≥ tε, then µt+1 ∈
N (µα∞ (s∞) , ε) µt-almost surely.
Indeed, let δε be such that,11 for every a ∈ a∞ (s∞), m ∈M

||µt − µα∞ (s∞) || < δε ⇒ ||B (µt, a,m)− δµα∞(s∞)|| < ε.

Let tε be such that from that period onwards updated beliefs are in N (µα∞ (s∞) , δε)
and only actions in a∞ (s∞) are played. Therefore, since

||B (µt, a,m)− δµα∞(s∞)|| = max
µt+1∈SuppB(µt,a,m)

||µt+1 − µα∞ (s∞) ||

10Notice that u is continuous in its second argument.
11The existence of this δe is guaranteed by the continuity of the Bayes map and the invariance

of limit beliefs with respect to limit actions.
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we have that µt+1 ∈ N (µα∞ (s∞) , ε) µt-almost surely. A similar argument shows that
for every ε > 0 and j ∈ N, there exists a tε,j ∈ N, such that if t ≥ tε,j, then for every
i ∈ {1, ..., j}, µt+i ∈ N (µα∞ (s∞) , ε) µt-almost surely.
It follows that ā cannot be played from period tε,τ onward, otherwise the strategy

α1 that prescribes to play always a1 from then on would be strictly preferred to α, a
contradiction. Indeed, fix a t∗ ≥ tε,τ and let

Ṽ (α1, µt∗) = Eµt∗

( ∞∑
t=t∗

βt−t
∗
u (a1,µ

α1
t )

)

denote the subjective value at belief µt∗ of the strategy that always plays a1. We
have

Ṽ (α1, µt∗)− V (µt∗)

= u (a1, µt∗)− u (ā, µt∗) + Eµt

( ∞∑
t=t∗+1

βt−t
∗

(u (a1,µ
α1
t )− u (aαt ,µ

α
t ))

)

= u (a1, µt∗)− u (ā, µt∗) + Eµt

(
t∗+τ∑
t=t∗+1

βt−t
∗

(u (a1,µ
α1
t )− u (aαt ,µ

α
t ))

)

+Eµt

( ∞∑
t=t∗+τ+1

βt−t
∗

(u (a1,µ
α1
t )− u (aαt ,µ

α
t ))

)

≥ u (a1,µ
α
∞ (s∞))− u (ā,µα∞ (s∞))

2
− βτ K

1− β
> 0.

But this contradicts the optimality of strategy α. Therefore a∞ (s∞) = {a1} .
Summing up, there exists E, such that σ∞,∗ (E) = 1, and on E we have conver-

gence of beliefs (Step 2), a unique action played after a finite time, the myopic best
reply to limit beliefs (Step 4), and this action confirms limit beliefs (Step 3). That
is, we have convergence to a self-confirming equilibrium σ∞,∗-almost surely. �

Proof of Claim 1 Fix (a, s̄) and n ∈ N. Let E (a, s̄, n) ⊆ SN0 be the set formed
by the s∞ such that a ∈ a∞ (s∞) and such that for every t ≥ n,

(
α
(
µαt−1

)
, st
)

(s∞) 6=
(a, s̄) .
Clearly,

SN0\
{
s∞ : ∀ (a, s̄) ∈ a∞ (s∞)× Suppσ∗,

(
α
(
µαt−1

)
, st
)

(s∞) = (a, s̄) i.o.
}

⊆
⋃
a∈A

⋃
s̄∈Suppσ∗

⋃
n∈N

E (a, s̄, n) .

For (a, s̄) and n

E (a, s̄, n) ⊆
{
s∞ : ∃t1 ≥ n,

(
α
(
µαt1
)
, st1+1

)
(s∞) = (a, s′) , s′ 6= s̄

}
.
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Therefore:

Pσ∞,∗ (E (a, s̄, n)) ≤ Pσ∞,∗
({
s∞ : ∃t1 ≥ n,

(
α
(
µαt1
)
, st1+1

)
(s∞) = (a, s′) , s′ 6= s̄

})
≤ σ∗ (S\ {s̄}) < 1.

Similarly

E (a, s̄, n) ⊆
{
s∞ : ∃t1, t2 ≥ n,

(
α
(
µαt1
)
, st1+1

)
(s∞) = (a, s′) , s′ 6= s̄,(

α
(
µαt2
)
, st2+1

)
(s∞) = (a, s′′) , s′′ 6= s̄

}
Therefore:

Pσ∞,∗ (E (a, s̄, n))

≤ Pσ∞,∗
({

s∞ : ∃t1, t2 ≥ n,
(
α
(
µαt1
)
, st1+1

)
(s∞) = (a, s′) , s′ 6= s̄,(

α
(
µαt2
)
, st2+1

)
(s∞) = (a, s′′) , s′′ 6= s̄

})
≤ (σ∗ (S\ {s̄}))2 .

Proceeding in this way, we can show that Pσ∞,∗ (E (a, s̄, n)) = 0 for every Ea,s̄,n, and
then

Pσ∞,∗
(
SN0\

{
s∞ : ∀ (a, s) ∈ a∞ (s∞)× Suppσ∗,

(
α
(
µαt−1

)
, st
)

(s∞) = (a, s) i.o.
})

= 0.

�
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