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Betting and prediction markets provide a natural environment for testing theories 
of decision making under uncertainty and price formation. The uncertainty about 

the value of the assets traded in these markets is resolved unambiguously, and the 
outcome is observed publicly. In most cases it is also reasonable to presume that the 
realized outcomes are exogenous with respect to market prices. In contrast, in regular 
financial markets, the intrinsic value of assets is observed only in the long run (if ever) 
and is often affected by prices.

In racetrack betting and lottery games throughout the world, a commonly adopted 
market structure is parimutuel wagering.1 According to the parimutuel system, the 
holders of winning tickets share the total amount of money bet on all outcomes in 
proportion to their bets, net of the takeout for taxes and expenses. The parimutuel 
odds that are paid out to winning bets (as a multiple of the amount wagered) depend 

1 All horse racing betting in the United States is parimutuel. This mutual system is also used in greyhound 
racing, jai alai, and other sporting events in which participants finish in a ranked order. Recently, the parimutuel 
structure has been adopted in a number of prediction markets, where claims contingent on various economic 
indices are traded. As Jeffrey Lange and Nicholas Economides (2005) document, these markets allow traders to 
hedge risks related to the release of US nonfarm payroll employment data and European harmonized indices of 
consumer prices.
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Zeckhauser, Bill Ziemba, and seminar participants at Bocconi University, the University of Cambridge, Cornell 
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According to the favorite-longshot bias, the expected return on an 
outcome tends to increase in the fraction of bets laid on that out-
come. We derive testable implications for the direction and extent 
of the bias depending on the ratio of private information to noise 
present in the market. We link this ratio to observables such as the 
number of bettors, the number of outcomes, the amount of private 
information, the level of participation generated by recreational 
interest in the event, the divisibility of bets, the presence of ex post 
noise, as well as ex ante asymmetries across outcomes. (JEL D81, 
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on the overall distribution of bets and are thus determined by the wagering public 
itself. Because these odds are not skewed by price-setting suppliers (such as book-
makers), parimutuel betting markets are particularly well suited to testing market 
efficiency.2

The most widely documented empirical regularity observed in horse race betting 
markets is the favorite-longshot bias (hereafter, FLB): horses with “short” odds (i.e., 
favorites) tend to win more frequently than indicated by their odds, while horses 
with “long” odds (i.e., longshots) win less frequently.3 Consequently, the expected 
returns on longshots are lower than on favorites. This finding is puzzling, because 
expected returns are not equalized across horses. To further add to the puzzle, note 
that for parimutuel lottery games, such as Lotto, a reverse FLB always results. The 
expected payoff is lower on numbers that attract a higher than proportional fraction 
of bets.4

This paper develops a theory that can explain the variation in the occurrence 
of the FLB and its reverse across parimutuel betting markets. In the model, bet-
tors decide simultaneously whether, and on which of several outcomes, to bet. Each 
bettor’s payoff has two components. First, there is a “common value” component, 
equal to a bet’s expected monetary payoff according to the final odds.5 Second, bet-
tors derive a private utility from gambling.6 For simplicity, we set this “recreational 
value” to be the same for all bettors and outcomes.7

To characterize the effect of private information on market outcomes, we allow 
bettors to have heterogeneous beliefs based on a common prior and the observation 
of private signals. While private information is clearly absent in lottery games, there 
is widespread evidence of its presence in horse betting.8 In a limit case relevant for 
lottery games, the private signals contain no information.

We model betting as a simultaneous move game. This is a realistic descrip-
tion of lottery games, in which the numbers picked by participants are not made 
public before the draw. For betting on horse races, the distribution of bets (or, 
equivalently, the provisional odds given the cumulative bets placed) is typi-
cally displayed over time on the tote board and updated at regular intervals 
until post time, when no more bets are accepted. However, a large proportion 
of bets are laid in the very last seconds before post time.9 Thus, we focus on the 

2 In parimutuel markets, the demand for bets on one outcome generates the supply on all other outcomes. See 
Steven D. Levitt (2004) for a discussion of supply-driven distortions in betting markets not using the parimutuel 
system.

3 For surveys of the extensive literature, we refer to Richard H. Thaler and William T. Ziemba (1988), Donald 
B. Hausch and Ziemba (1995), Raymond D. Sauer (1998), Bruno Jullien and Bernard Salanié (2008), and Ottaviani 
and Sørensen (2008).

4 See David Forrest, O. David Gulley, and Robert Simmons (2000) for a test of rational expectations in lotter-
ies. The reverse FLB is also present in some betting markets (see e.g., Kelly Busche and Christopher D. Hall 1988, 
Leighton Vaughan Williams and David Paton 1998, and our discussion here).

5 By assuming risk neutrality, we depart from a large part of the betting literature since Martin Weitzman 
(1965) in which bettors are risk loving. Section VI discusses this and other alternative theories.

6 See, for example, John Conlisk (1993).
7 In the case of parimutuel derivative markets mentioned in footnote 1, the private value derives from the 

benefit of hedging against preexisting risks correlated with the outcome on which betting takes place.
8 See Section 6.
9 See National Thoroughbred Racing Association (2004).
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last minute simultaneous betting game and characterize the symmetric Bayes-
Nash equilibrium.10

Building on the equilibrium structure, we characterize the surprise generated by 
the ex post realization of the actual bets. The sign and extent of the FLB depend on 
the amount of information relative to noise that is present in the realized bets. We 
show that if the population of informed bettors is large and/or private information 
is sufficiently precise, then ex post favorites are more likely to win than the realized 
market odds indicate at face value. The opposite is true for longshots. If an outcome 
turns out to attract a larger fraction of bets (and the associated odds are shorter), 
more bettors must have believed privately that this outcome was likely. Hence, the 
occurrence of short odds indicates favorable information. When this information is 
sufficiently strong, the FLB results, as observed in horse betting.

When bettors are less informed, the realized bets contain less information and are 
more affected by noise. To understand the effect of noise, apply our methodology to 
Lotto. Bettors’ signals are completely uninformative about the outcome. Market odds 
will vary randomly, depending on the noisy realization of the bets. Given that all num-
bers are equally likely to be drawn, by construction the expected payoff is lower for those 
numbers that attract more than their fair share of bets. This is because the jackpot is 
shared among the lucky few who pick the winning number, according to the parimutuel 
rule. Thus, lottery outcomes with short market odds yield automatically lower expected 
returns than outcomes with long market odds. More generally, when signals contain little 
information, and there is aggregate uncertainty about the final distribution of bets due to 
noise, our model predicts a reverse FLB, as is observed in parimutuel lotteries.

The paper proceeds as follows. Section I casts our contribution within the theory 
literature. Section II formulates our general model with an arbitrary number of out-
comes. Section III characterizes the different equilibrium regimes, depending on the 
level of participation in the market. Focusing on the case in which all outcomes are ex 
ante equally likely and the recreational value is so large that no bettor abstains, Section 
IV develops our ex post comparison between market and posterior probabilities based 
on the surprise effect. This symmetric model is ideal for uncovering the role of noise 
and information in generating the FLB or its reverse. Section V examines the com-
parative statics properties of the FLB by analyzing the effect of exogenous changes in 
parameters on the ratio of private information to noise present in equilibrium. Mostly 
within tractable special cases, we illustrate how the extent of the FLB varies with 
respect to the amount of private information, the number of bettors, the number of 
outcomes, the divisibility of bets, the presence of ex post noise, factors (such as the rec-
reational interest in the event or the takeout rate) that affect the bettors’ participation 
decision, and ex ante asymmetries across outcomes. Section VI compares our expla-
nation of the empirical evidence with the main alternatives proposed in the literature. 
Section VII concludes. Appendix A collects the proofs of all propositions. Appendix 
B reports details on a tractable example using the Dirichlet distribution, including the 
proofs of all lemmas.

10 Ottaviani and Sørensen (2006) endogenize the timing of bets in a dynamic model. They show that small 
privately informed bettors have an incentive to wait until post time, and thus, end up betting simultaneously.
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I.  Literature

This paper builds on the informational explanation for the FLB proposed by 
Ottaviani and Sørensen (2009) in a simple model without noise.11 To develop test-
able implications for the extent of the FLB across different environments, this paper 
analyzes a general version of the model which allows for noise and endogenizes the 
level of market participation. We argue that the comparative statics predictions of 
the model are broadly in line with evidence from parimutuel games characterized by 
different levels of information relative to noise.

The informational explanation investigated here is fundamentally different from 
Mukhtar M. Ali’s (1977) Theorem 2, which derives the FLB from heterogeneity of 
bettors’ prior beliefs.12 We assume instead that bettors share a common prior belief, 
but possess private information. In addition, while Ali’s explanation hinges on ex 
ante asymmetries in the probabilities of the different outcomes, our explanation is 
valid also when the outcomes are all ex ante equally likely. To isolate our informa-
tional mechanism, our baseline analysis focuses on a fully-symmetric environment.

Hyun Song Shin (1991, 1992) formulates an information-based explanation of the 
FLB in the context of fixed-odds markets, in which prices are determined by book-
makers. Even though our informational assumptions are similar to Shin’s, the logic 
and the extent of the FLB are different in the two markets. While Shin’s explanation 
for the bias relies on ex ante asymmetries, our explanation in the context of parimu-
tuel markets does not.13

The first game-theoretic analysis of parimutuel markets with private informa-
tion is by Frédéric Koessler, Charles Noussair, and Anthony Ziegelmeyer (2008). 
They construct equilibria when bettors have binary signals. Our analysis is simpli-
fied by assuming instead that bettors have continuously distributed signals, as in 
other auction-theoretic models of price formation. We are then able to characterize 
and quantify the FLB, endogenize the bettors’ participation decision, and derive a 
number of empirical predictions.

II.  Model

Bets can be placed on the realization of a random variable, k ∈ { 1, … , K }, where 
K ≥ 2 is the number of possible outcomes. In Lotto games, k corresponds to the win-
ning combination. For bets on the win pool in a horse race, k represents the identity 

11 Ottaviani and Sørensen (2009) is essentially the limit version of the model of this paper as the number of 
bettors per outcome goes to infinity (so that noise disappears by the law of large numbers) and bettors are forced 
to participate.

12 See, also, Émile Borel (1938), Edmund Eisenberg and David Gale (1959), Robert J. Weber (1981), Guillermo 
Owen (1987), Sumir Chadha and Richard E. Quandt (1996), Lawrence D. Brown and Yi Lin (2003), and Justin 
Wolfers and Eric Zitzewitz (2004) for analyses of prediction markets with heterogeneous prior beliefs across bet-
tors, in the absence of private information.

13 In addition, Ottaviani and Sørensen (2005b) show that the parimutuel payoff structure involves a built-in 
insurance against the winner’s curse. In parimutuel markets, an increase in the number of informed bettors tends 
to make market odds more extreme, thereby reducing the FLB. In fixed-odds markets, in contrast, an increase in 
the fraction of informed bettors strengthens the FLB, because adverse selection is worsened.
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of the winning horse. The model applies more generally to pools on outcome com-
binations within and across races.14

There are N bettors with a common prior belief distribution q, where qk ≥ 0 is 
the prior probability of outcome k.15 Bettor i ∈ { 1, … , N } is privately endowed with 
signal s i, leading to the private (posterior) belief distribution p i. Bettors differ only 
because of the realization of their private signals, but they are identical ex ante. The 
joint distribution of private beliefs and the state is unchanged if the identities of the 
players are switched.16 We assume that this joint distribution of private beliefs is 
continuous. For any individual, the density of the private belief conditional on out-
come k is denoted by g ( p | k).

On the basis of the private belief, each bettor decides the outcome on which to 
bet a fixed and indivisible amount, normalized to one, or to abstain from betting.17 
All bettors are risk neutral and maximize the expected monetary payoff, plus a fixed 
recreational utility value received from betting. This recreational value (u ≥ 0) is 
foregone when a bettor abstains, and hence generates a demand for betting.18

The total amount of money bet on all K outcomes is placed in a common pool, 
from which a takeout fraction, τ ∈ [0,1), is subtracted for taxes and other expenses 
incurred to run the game. The remaining money is returned to those who bet on the 
winning outcome, k. We assume that there is no payment to the bettors when no 
bets were placed on the winning outcome.19 Let bk denote the total amount bet on k. 
If k is the winning outcome, then every unit bet on k receives the monetary payoff 
(1 − τ )( ​∑ l=1​ K

  ​  ​bl )/bk. The market probability of outcome k is equal to the fraction of 
money bet on that outcome, bk /( ​∑ l=1​ K

  ​  ​bl ).
To ease the exposition, we present our formal results in terms of market probabili-

ties, but it is easy to derive equivalent implications for odds. In betting markets, the 
odds on outcome k are typically defined as the amount of money paid by the system 
for each dollar laid on that outcome, in addition to the dollar wagered. In order to 
balance the budget for any outcome realization, the parimutuel odds are (1 − τ )
× ( ​∑ l=1​ 

K
  ​  ​bl )/bk − 1. Given the one-to-one correspondence between market odds and 

probabilities, our results can be immediately rephrased in terms of odds.
The strategy of a bettor maps every private belief into one of the K + 1 actions: bet 

on outcome k or abstain. In equilibrium, every bettor correctly conjectures the strat-
egies used by the opponents and then plays the best response to this conjecture. By 
assumption, the game is always symmetric with respect to the players. Throughout 

14 For example, a race with L horses thus has K = L(L − 1) “exacta” outcomes, consisting of the winner and 
the runner-up in a given race. Some exotic bets have a very large number of outcomes. In the “pick six” pool, for 
instance, bettors are asked to guess the winners in six consecutive races, usually the second through the seventh 
in a given day. If there are L horses in each race, the pick six pool admits K = L6 combinations.

15 We assume common prior to isolate the effect of asymmetric information. See Ottaviani and Sørensen 
(2005a) on the interaction of heterogeneous prior beliefs and private information.

16 The assumption that bettors are ex ante identical is not essential for our results, but allows us to obtain a 
closed-form solution for the equilibrium. See Ottaviani and Sørensen (2006) for a model in which, instead, some 
bettors are outsiders (motivated by recreation) while other bettors are privately informed insiders.

17 See Rufus Isaacs (1953) and Ottaviani and Sørensen (2006) for analyses in which bettors can choose how 
much to bet. See Section VC for a discussion of the effect of allowing bets to be divisible.

18 Without this recreational utility, there is no betting in equilibrium, as predicted by the no-trade theorem 
(Paul Milgrom and Nancy Stokey 1982).

19 Our results continue to hold qualitatively with alternative rules on how the pool is split when no one bets on 
the winner. For example, the pool could be divided equally among all active bettors.
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the paper, we focus on symmetric equilibria; that is, on Bayes-Nash equilibria in 
which all bettors use the same strategy, mapping private beliefs into actions.20

III.  Equilibrium Regimes

We begin by computing the expected payoff of a bettor. A bettor’s payoff, condi-
tional on winning, is random because of the uncertainty present in opponent signals 
and bets. By risk neutrality, a bettor who assigns probability pk to outcome k obtains 
an expected payoff equal to pk Wk − 1 + u when betting on outcome k, where Wk 
is the expected payment from the pool to a bet on k, conditional on the realization 
of outcome k. Given the opponents’ strategies, each bettor can calculate η (l | k), the 
probability that an opponent bets on outcome l when k is the winning outcome. 
Using elementary probability theory, we can explicitly compute the expected pay-
ment, Wk, as a function of the betting probabilities η (l | k):

Proposition 1: Suppose that N − 1 opponents bet on the outcomes 1, … , K with 
conditional probabilities η (1 | k), … , η (K | k). Then the expected payment from the 
pool to a bet on k conditional on the realization of outcome k satisfies

(1)	
Wk =

 

u
	(1 − τ )   ​ 

​∑ l​ 
 
 ​  ​η (l | k) − [ ​∑ l≠k​ 

 
  ​  ​η (l | k)][1 − η (k | k)]N−1

    ______________________________   η (k | k)  ​ 	 if η (k | k) > 0,

		  (1 − τ ) c1 + (N − 1) ​∑ l≠k​ 
 
  ​  ​η (l | k)d	 if η (k | k) = 0.

We are now ready to characterize the equilibrium of the game. There are three 
equilibrium regimes, depending on the level of recreational value u:21

Proposition 2: Assume that the distribution of private beliefs is continuous with 
full support. There exists a uniquely defined critical value, u*(N) ∈ (τ, 1 ), such that:

	 (i)	 if u ≥ u*(N), there exists a symmetric equilibrium in which all bettors bet 
actively;

	 (ii)	 if u ∈ (τ, u*(N)), in any symmetric equilibrium some (but not all) of the bettors 
abstain, and such an equilibrium exists;

	 (iii)	 if u ≤ τ, all bettors abstain in the only symmetric equilibrium.

20 Koessler, Noussair, and Ziegelmeyer (2008) note that there also may be asymmetric equilibria when N is 
small.

21 Proposition 2 can be extended to the case in which support is not full. Let ​
__
 p ​ denote the maximal belief that 

any bettor attaches to any outcome. Let ​
__
 u ​ = 1 − ​

__
 p ​ (1 − τ ). Then, u*(N) > ​

__
 u ​ ≥ τ, and cases 1 and 3 of Proposition 

2 hold as stated. The claim in case 2 holds when u ∈ (​__
 u ​, u*(N) ). If u ∈ (τ, ​__

 u ​ ], our proof implies a weaker version of 
case 3, that there exists an equilibrium in which every bettor abstains.
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When the recreational value is sufficiently high or, equivalently, the takeout rate 
is sufficiently low, even bettors without strong private beliefs bet on one of the 
horses. This is the “no abstention” regime on which we focus for most of the paper. 
With low recreational value or high takeout rate, bettors without strong private 
beliefs prefer not to place any bet. This is the “partial abstention” regime that we 
analyze in Section VE. Additional increases in the takeout rate further reduce par-
ticipation, until the market completely breaks down by the logic of the no-trade 
theorem.22

IV.  Market versus Posterior Probabilities

This section develops our theory of the FLB as an ex post surprise effect. Given 
that bettors are privately informed, and that their behavior depends on their private 
beliefs, the realized market probabilities contain information about the chance of 
different outcomes. In our Bayes-Nash equilibrium—as in parimutuel betting mar-
kets on horse race outcomes—bettors are surprised when they see the realization of 
the market probability, but they are unable to adjust the positions they have already 
taken.23

Applying Bayes’ rule, for each market probability, we can compute the corre-
sponding posterior probability belief held by an outside observer (with a prior belief 
equal to the common prior). The idea is to compare each realized market probabil-
ity with the corresponding posterior probability that incorporates the information 
revealed to the outside observer. As we explain below, the empirical probability can 
be identified with the posterior probability. The thrust of our approach consists of 
examining factors that affect the systematic relation between market and posterior, 
and thus empirical, probabilities.

To present our results in the clearest way, for most of the paper (up to Section VF)
we focus on the symmetric case in which all outcomes are ex ante equally likely 
(qk = 1/K ) and the posterior beliefs are symmetrically distributed. Thus, the belief 
distribution remains unchanged following a permutation of the identities of the K 
outcomes. In addition, we posit that signals are conditionally independent and identi-
cally distributed across bettors. Up to Section VE, we further prevent any abstention 
by assuming that u is sufficiently large.

The symmetric case is also an important empirical benchmark. Horse races are 
typically designed to be balanced in order to assure that their outcome is genuinely 
uncertain. Horses are sorted into categories depending on their observable charac-
teristics, and known differences are eliminated in part by burdening the advantaged 
horses with additional weights. While asymmetries are never perfectly eliminated, 
these procedures are intended to reduce the presence of strong ex ante favorites or 
ex ante longshots.

22 Bettors with beliefs p = 1 and p = 0 always participate, but these beliefs have probability zero by the 
assumption that the belief distribution is atomless.

23 Any bias would be eliminated if bettors could adjust their positions after observing the realized market 
probabilities, as in a rational expectations equilibrium. However, the information on the final odds is typically not 
available to bettors because a substantial amount of bets are placed at the end of the betting period when the final 
odds are not yet determined, as in our simultaneous-move game.
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Proposition 3: If u is sufficiently large and signals are symmetrically distrib-
uted, it is a symmetric equilibrium to bet on the most likely outcome, that is, on the 
k which maximizes pk. If bettors have private information, then the probability that 
any bettor bets on the winner, η (k | k), exceeds η (l | k) = [1 − η (k | k)]/(K − 1), the 
probability that any bettor bets on any other outcome l ≠ k.

Empirical investigations of the efficient market hypothesis proceed by grouping 
observations into classes according to their market probabilities, computed from 
final market odds. When n bets are placed on outcome k, the implied market proba-
bility for outcome k is πk  =  n/N, equal to the fraction of money bet on this outcome. 
Empiricists then compute the empirical fraction of races that are won by horses 
belonging to each observation class. As first noticed by Richard M. Griffith (1949), 
the comparison of market with empirical probabilities typically reveals systematic 
differences between these probabilities.24 At one end of the spectrum, large mar-
ket probabilities (associated to favorites) tend to be smaller than the corresponding 
empirical probabilities. At the other end of the spectrum, longshots tend to win less 
frequently than indicated by their (already low) market probabilities.

We are now ready for the key step in our analysis. Based on the realized market 
probability for outcome k, an outside observer can update the prior to the posterior 
probability for this outcome, denoted by βk. Because signals are random, bets on a 
given outcome follow a binomial distribution. When n bets are placed on k, Bayes’ 
rule then yields

(2)	 βk 	=  ​ 
qk  Pr (bets | k true)  _____________  

Pr (bets)  ​ 

		  =  ​ 
η (k | k)n [1 − η (k | k)]N−n

    ________________________________________     
η (k | k)n[1 − η (k | k)]N−n + (K − 1) η (k | l)n[1 − η (k | l)]N−n ​   ,

where l ≠ k. The law of large numbers guarantees that the empirical frequency 
of outcome k across many repetitions of the game is approximately equal to this 
posterior probability, βk. By incorporating the information revealed in the betting 
distribution and adjusting for noise, this posterior probability is the correct estimate 
of the empirical probability of outcome k.

In our model, the systematic relationship between posterior and market prob-
abilities depends on the interplay between the amount of noise and information con-
tained in the bettors’ signals. To appreciate the role played by noise, note that even 
with very few bettors, market probabilities can range from zero to one. For example, 
if most bettors happen to draw signals that lead them to believe k is the most likely 
outcome, then the market probability for outcome k would be very high. However, 
when the signals contain little information, the posterior probability is close to the 
prior. In this case, deviations of the market probability from the prior should be 

24 See footnote 3 for references to surveys of the empirical literature.



66	 American Economic Journal: Microeconomics� February 2010

largely attributed to randomness contained in the signal. Then the reverse FLB is 
present; market probabilities are more extreme than posterior probabilities.

To illustrate the role of information relative to noise, consider a setting with K = 2 
outcomes, and set the probability of a correct bet at η (k | k) = 2 ⁄3. Suppose that the 
number of bettors N is odd, and focus on the betting realizations in which exactly 
one more bet is placed on outcome one than on outcome two. The informational 
content of the first (N − 1)/2 bets placed on either outcome is identical and cancels 
out. However, the chance of the last bet is twice as large when one is the winner than 
when two is the winner. Hence, the posterior probability of 1 being the winner is 2 ⁄3. 
On the other hand, the market probability for outcome 1 is (N + 1)/(2N). This num-
ber is strictly decreasing in N and equal to the posterior probability 2 ⁄3 when N = 3. 
Noise dominates information when the number of bettors is small (N = 1), resulting 
in a reverse FLB. As the number of bettors increases, realized market bets contain 
more and more information, so that the posterior associated with any given market 
probability becomes more extreme. This implies the FLB, which results here with 
N > 3 bettors. More generally, we have:

Proposition 4: Assume that the belief distribution is symmetric, and that u is so 
large that no bettor abstains. Let π * ∈ (0, 1) be defined by

(3)	 π *  =   ​ 
log a​ 

1 − η (k | l) _________ 
1 − η (k | k) ​b    _________________________    

log a​ 
1 − η (k | l) _________ 
1 − η (k | k) ​b + log a​ 

η (k | k) ______ η (k | l) ​b
 ​

for any pair l ≠ k. Take as given any market probability πk ∈ (0, 1) for outcome k. As 
the number of bettors, N, becomes sufficiently large, a longshot’s market probability 
πk < π * (respectively, a favorite’s πk > π * ) is strictly greater (respectively, smaller) 
than its associated posterior probability, βk .

By definition (3), π * is a proportion of bets on outcome k that is neutral, i.e., at 
which the posterior belief is precisely equal to the prior.

V.  Testable Implications

We now derive testable implications of our theory by investigating a number of 
comparative statics properties that follow from Proposition 4. Exogenous changes 
in the environment affect the amount of information relative to noise contained in 
the bets, thereby determining the sign and extent of the FLB. Until Section VF, we 
maintain the assumption that the game is ex ante symmetric across outcomes.

A. Information

How does the FLB depend on the amount of information revealed in equilibrium? 
To answer this question for the symmetric case with K = 2 outcomes, we define 
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the informativeness of bets as the likelihood ratio η (1 | 1)/η (1 | 2) = η (2 | 2)/η (2 | 1), 
which determines the extent of updating following the observation of a realized bet. 
Quite naturally, we establish that the bets are more informative when individual 
bettors possess better information, in the sense of Blackwell. We find that the FLB 
arises for any market probability, provided that bets are sufficiently informative, and 
that it is more pronounced with greater informativeness.

Proposition 5: Assume K = 2, and that the belief distribution is symmetric. If 
individual bettors are better informed, bets are more informative. Take as given any 
longshot’s market probability πk < 1/2 (respectively, a favorite’s πk > 1/2). The asso-
ciated posterior probability βk is decreasing (respectively, increasing) in the bets’ 
informativeness, and is strictly smaller (respectively, greater) than πk if and only if

(4)	​   1 ______ 
1 − 2πk

 ​ log a​ 
1 − πk _____ πk

 ​ b  <  N log a  ​ 
η (1 | 1) ______ η (1 | 2) ​ b .

To illustrate the impact of private information on the FLB, consider a special 
case of the Dirichlet signal example (developed in detail in Appendix B) with K = 2 
outcomes.25 In this example, bettors have less private information when θ is higher 
and are completely uninformed in the limit as θ → ∞.

Lemma 1: In the Dirichlet signal example for K = 2 and any real θ > 0, the equi-
librium probability that any bettor bets on the winner is

(5)	 η (k | k)  =  ​ 1 __ 
2
 ​ +  ​  Γ (2θ + 1)  ___________  Γ (θ + 1) Γ (θ) ​   ​ 

4−θ
 ___ 

2θ ​ .

Holding fixed the number of bettors at N  =  4, Figure 1 displays the posterior 
probability (2) as a function of the market probability, π, for three levels of the 
Dirichlet parameter θ = 10, 1, 1/10 (corresponding to equilibrium probabilities 
η (k | k) = 0.588, 0.75, 0.942), represented in progressively darker shading. For any 
given level of θ, and, therefore, η (k | k), the FLB inequality (4) is harder to satisfy 
at more extreme market probabilities. At the easiest point, π1 = 1/2, the condition 
is 2 < N log[η (1 | 1)/η (1 | 2)]. Hence, there is a reverse FLB when the signal is very 
noisy. As the signal’s informativeness rises above a critical value, the FLB occurs 
in an ever larger region around π1 = 1 − π2 = 1/2. As the figure illustrates, the FLB 
arises for any market probability provided that the signal is sufficiently informative.

B. Number of Bettors

How does the FLB depend on the number of bettors, N? Because each bettor 
draws an independently and identically distributed signal from the same distribu-
tion, increasing the number of informed bettors increases the amount of information.

25 In a model without private information, Brown and Lin (2003) consider Dirichlet distributed prior beliefs. 
Our setting with Dirichlet distributed posterior beliefs is fundamentally different. See footnote 12.
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Proposition 6: Assume that the belief distribution is symmetric. Take as given 
any longshot’s market probability πk  < 1/2 (respectively, a favorite’s πk  > 1/2). The 
associated posterior probability βk is decreasing (respectively, increasing) in the 
number N of informed bettors.

The more bettors, the greater the extent of the FLB.26 To illustrate, consider the 
uniform signal example developed in Appendix B, corresponding to the Dirichlet 
example with θ = 1. For the special case with K = 2, we have η (1 | 1) =  η (2 | 2) 
= ¾ from (2). Figure 2 shows the posterior probability βk as a function of the market 
probability πk = n/N. The curves correspond to N = 2, 4, and 10, drawn in pro-
gressively thicker shading. The FLB results if the posterior probability is below the 
(dashed) diagonal for π < 1/2 and above the diagonal for π > 1/2.

C. Number of Outcomes

To derive results about changes in the number of outcomes, we again need to 
impose some structure on the distribution of beliefs. We begin by considering com-
pletely uninformed bettors, then turn to the uniform signal example, and finally 
extend the model to allow bets on more than one outcome.

Reverse Bias in Lotto.—Unless the game is corrupt, Lotto gamblers have no pri-
vate information about the outcome drawn, regardless of the number of possible com-
binations. Lotto corresponds to a degenerate version of our model with completely 

26 In addition, the number of bettors also affects the probability distribution over π. The law of large numbers 
implies that a greater number of bettors will generate a less random π. As the number of bettors approaches infin-
ity, the realization of market probabilities conditional on outcome k becomes deterministic and fully reveals the 
outcome.
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Figure 1. Posterior Probability as a Function of Market Probability, for θ = 10, 1, 1/10
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uninformative signals. In equilibrium, each gambler picks a random combination 
with probability 1/K. When N/K tends to infinity, the distribution of bets across all 
outcomes becomes uniform according to the law of large numbers. However, the 
designers of Lotto games typically set K according to the rule of thumb K ≈ N (see, 
e.g., Ian Walker and Juliet Young 2001). Hence, there remains a fair amount of noise 
in the bet distribution.

As a result of this noise, some combinations receive no bets, others receive one 
bet, and still others receive two or more bets. The market probability of a Lotto out-
come would be the fraction of bets placed on it. Here, we show that outcomes with 
high market probability have low expected return. Note that the jackpot is shared 
among all those who picked the winning combination, and that the posterior prob-
ability is equal to the prior probability, 1/K, regardless of the market probability. The 
expected return to a bet on an outcome with market probability π is thus (1 − τ )/
(πK ) − 1. Because this return is decreasing in the market probability, the reverse 
FLB always results. This bias is an immediate consequence of how parimutuel pay-
offs are determined.

Next, we show that when K is large and N is fixed, an increase in K results in a 
further increase in the reverse FLB. Holding N fixed, as K increases (i.e., as N/K 
tends to zero), all gamblers will bet on different outcomes with probability 1. A 
favorite then has market probability 1/N, while the posterior (as well as prior) 
probability of that outcome is 1/K. The reverse FLB, measured by the expected loss 
to a bet on any favorite, 1 − (1 − τ )N/K, is increasing in K.

Reduced Bias in Exotic Bets.—We now turn to consider how the FLB depends on 
the number of outcomes, K, holding the number of bettors fixed. We restrict atten-
tion to the uniform signal example, for which we can obtain an explicit characteriza-
tion of the equilibrium conditional betting probabilities.

Figure 2. Posterior Probability as a Function of Market Probability, for N = 2, 4, 10
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Lemma 2: In the uniform signal example, the equilibrium probability that any 
bettor bets on the winner is

(6)	 η (k | k) = ​∑ 
j=0

​ 
K−1

​ ​a​ 
K − 1

    j ​ b  ​ 
(− 1) j

 ______ 
(j + 1)2 ​.

Within the uniform signal example, we can use (6) to compute the main statis-
tics of the equilibrium for different values of K, as reported in Table 1. Note that 
the likelihood ratio for updating has the following properties. When the number of 
outcomes rises, observation of a bet on outcome k contains more favorable informa-
tion for outcome k. In Table 1, π * from (3) is the market belief that is neutral when 
N → ∞. When K = 2, an outcome earns a positive expected monetary return as 
soon as the market probability is higher than the prior, ⅟2. However, for greater K, 
we note that the neutral market probability satisfies π *  >  1/K. When there are many 
possible winning outcomes, any particular outcome must attract more than the aver-
age fraction 1/K of total bets for the posterior probability to be above the market 
probability. Intuitively, the noise present in the signals used by bettors induces this 
wedge between the prior probability and the market probability above which a horse 
becomes a good bet.

When the number of outcomes is large relative to the number of bettors, the noise 
effect dominates in equation (2), resulting in a reverse FLB. The posterior prob-
ability is higher than the market probability for longshots, but is lower for favorites. 
This finding is consistent with Peter Asch and Quandt’s (1987, 1988) observation of 
a reduced (or reverse) FLB for exotic bets, in which the ratio of outcomes to bettors 
is relatively higher than for the win pool.

Divisibility of Bets.—We illustrate the role of our indivisibility assumption 
through two simple examples. First, consider the case without private information, 
with K equally likely outcomes. If bets are perfectly divisible, then in the sym-
metric equilibrium each bettor places 1/K on each outcome. As a result, the market 
probability is always equal to the empirical probability. The reverse FLB then disap-
pears completely. Intuitively, our previous explanation for the reverse FLB relied on 
the realized bets going beyond the implied probability, but bettors can reduce this 
problem when bets are divisible. In reality, however, the divisibility constraint binds 
because the minimum bet is bounded by the price of an individual Lotto ticket. 
Because it is impossible to bet infinitesimal amounts and N/K is small, the substan-
tial amount of noise that is present in Lotto drives the reverse FLB.

Table 1—Dependence of Equilibrium Structure on Number of Outcomes K 

K= 2 K=  5 K= 10 K= 100 K= 10,000

η(k|k) 3/4 0.457 0.293 5.19 × 10−2 9.79 × 10−4

η(k|l) 1/4 0.136 0.0786 9.48 × 10−3 9.99 × 10−5

η(k|k)/η(k|l) 3 3.36 3.73 5.47 9.80
π* 1/2 0.277 0.161 2.51 × 10−2 3.86 × 10−4
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Second, the incentive to bet on more than one outcome also exists when bettors 
are privately informed. However, this incentive is reduced because it entails acting 
against one’s private information. To illustrate this point, we turn to an example with 
binary signals. Assume that there are K = 2 equally likely outcomes, N = 2 bettors, 
and no abstention. Suppose that each bettor observes a binary symmetric signal with 
precision π = Pr (s = k) > 1/2 and is allowed to split the bet between the two out-
comes. In the symmetric equilibrium, each bettor places the fraction y* ∈ (0, 1) on 
the outcome their signal indicates. The expected payoff of a bettor placing y on the 
outcome believed to be most likely is

	 π cπ ​ 
2y
 _____ 

y* + y
 ​  +  (1 − π) ​  2y

 ________ 
1 − y* + y

 ​ d

	 + (1 − π) cπ  ​ 
2(1 − y) ________ 

y* + 1 − y
 ​ + (1 − π)  ​  2(1 − y)  ___________  

1 − y* + 1 − y
 ​d .

In symmetric equilibrium, y* maximizes this expression. It is straightforward to 
verify that the solution is y* ∈ (π,  π2/ [π2 + (1 − π)2 ] ). The FLB follows. When the 
bettors obtain opposite signals, market and posterior probabilities are equal to 1/2. 
When the bettors obtain the same signal, the market probability for the favorite is y*, 
while the posterior probability is π2/ [π2 + (1 − π)2 ] > y*.

Intuitively, if players can bet on more than one outcome, then the amount of noise 
relative to information present in equilibrium decreases and the FLB increases. 
More generally, we expect that the incentive to bet on multiple outcomes is particu-
larly important in exotic bets, where the ratio of outcomes to bettors is high. For 
example, someone who received a tip on the outcome of two races fears the noise on 
the outcomes of the other four races, making a “pick-six” gamble (see footnote 14) 
akin to a lottery. Consistent with popular advice, the best strategy is to bet on many 
combinations involving different outcomes in those other races.

D. Common Error

Thus far, we have maintained the hypothesis that the private signals are indepen-
dent, conditional on the true outcome, k. However, there is often an unpredictable 
component in the outcome of the race, all the more so when weather and terrain 
conditions at the racetrack are uncertain. Equivalently, there is residual uncertainty 
about the outcome that could not be resolved even if infinitely many private signals 
were observed. To analyze the effect of common error, we define a new random 
variable x ∈ {1, … , K } as the information state and set at Pr (x = k | k) = σ > 1/K the 
chance that the information state is identical to the true outcome. Knowing infor-
mation state x, the posterior probability of the outcome k = x is then σ. Individual 
signals are informative about x, but carry no further information about the outcome.

By the symmetry of this setup, it continues to be a symmetric equilibrium for each 
individual to bet on the most likely outcome according to their private belief. Denote 
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by ​      η​ (l | x) the chance of an individual betting on l in information state x. Generalizing 
(2), an outcome k with market probability π now has posterior probability

	​       
 β​  =     ​  σ ​      η​ (k | k)Nπ[1 − ​      η​ (k | k)]N(1−π) + (1 − σ) ​      η​ (k | x)Nπ[1 − ​      η​ (k | x)]N(1−π)

      _________________________________________________       
​      η​ (k | k)Nπ[1 − ​      η​ (k | k)]N(1−π) + (K + 1 − 2σ) ​      η​ (k | x)Nπ[1 − ​      η​ (k | x)]N(1−π) ​    ,

where x ≠ k. In this symmetric setting, the expected return associated with mar-
ket probability π is ​     

 β​ (1 − τ)/π − 1. By simple algebra, it can be verified that this 
expected return is an increasing function of σ when π > π *. Hence, an increase in 
ex post noise (i.e., a reduction of σ ) flattens the expected return curve for favorites. 
As Erik Snowberg and Wolfers (2005) document, expected returns in horse races 
are an increasing function of the market probability, but present a flat segment for 
intermediate market probabilities. We conclude that the realistic addition of ex post 
noise brings our model closer to explaining this occurrence of a flat segment.

E. Participation

Turn to the second case of Proposition 2, in which some, but not all bettors choose 
to abstain. This extension allows us to show that the FLB unambiguously results as 
the no-trade outcome is approached. To simplify the exposition, focus on a setting 
with K = 2 outcomes and suppose that the symmetric belief distribution has full sup-
port on [0, 1]. In equilibrium, bettors with strong beliefs p > ​      p​1 in favor of outcome 
1 bet on outcome 1, while those with strong beliefs p < ​      p​2 (with ​      p​2 < ​      p​1 ) bet on 2.

Participation decreases when the recreational value of betting, u, is reduced (or, 
equivalently, the takeout rate, τ , is increased), because the expected loss from bet-
ting is not compensated by the recreational value for more bettors with intermedi-
ate beliefs. Hence, the overall amount of information present in the market is also 
reduced. However, the bettors with intermediate private beliefs are the first to drop 
out. Thus, the realized bets will contain relatively more information and less noise. 
According to the logic of Proposition 5, more informative bets contribute to the FLB.

Proposition 7: Assume that K = 2, that the belief distribution is symmetric 
and unbounded, and that u ∈ (τ, u*(N)). There exists a symmetric equilibrium 
with ​      p​2 = 1 − ​      p​1 ∈ (0, 1/2). Take as given any bet realization with total amounts b1, 
b2 > 0 placed on the two outcomes. If u is sufficiently close to τ , a longshot’s mar-
ket probability π1 = b1 /(b1 + b2) < 1/2 (respectively, a favorite’s π1 > 1/2) is strictly 
greater (respectively, smaller) than the associated posterior probability β1.

Note that if there is a reverse FLB at u*(N), it will persist as u falls slightly below 
u*(N) because the equilibrium changes continuously. However, the reverse bias is 
overturned as u falls further toward τ , according to Proposition 7. In conclusion, 
information swamps noise as trade vanishes (and the outcome of the no-trade theo-
rem is approached) with the reduction in recreational value, resulting unambigu-
ously in the FLB.
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F. Ex Ante Asymmetries

We turn to the effect of ex ante asymmetries in the prior probabilities of differ-
ent outcomes. Even though races are designed to be balanced, typically the public 
has access to a fair amount of prior information, in the form of past performance, 
morning line odds, and handicappers’ picks. When computing expected returns 
associated to market probabilities, empiricists typically do not have access to the 
prior probabilities of different outcomes. This lack of ex ante information about an 
outcome’s prior probability results in a mixing effect. An ex post favorite may have 
already been an ex ante favorite (having received disappointingly few bets) or an 
ex ante longshot (with surprisingly many informed bets). As a result, the empirical 
methodology used to compute expected returns induces the expected returns for 
intermediate market probabilities to be relatively flat with respect to changes in 
market probabilities.

Using the prior belief distribution and the equilibrium conditional probabilities 
η (m | l ), the expected return associated with any given realized market probability 
can be computed as follows.

Proposition 8: With N active bettors, the expected return corresponding to mar-
ket probability π is

(7)	​
__

 R ​π  =  ​ 1 − τ _____ π  ​   ​ 
​∑ k=1​ 

K
  ​  ​qk η (k | k)Nπ(1 − η (k | k))N(1 − π)

    ______________________________    
​∑ m=1​ K

  ​  ​  ​∑ l=1​ 
K
  ​  ​ql η (m | l )Nπ(1 − η (m | l ))N(1−π) ​   −  1.

We illustrate the effect of ex ante asymmetries on expected returns in the context 
of the uniform signal example introduced in Appendix B. For the numerical illustra-
tion, let τ = 0 and set u sufficiently large to ensure full participation.

Lemma 3: In the uniform signal example, given W1, … , WK, the best response of 
each bettor implies for every l ≠ k,

(8)	 η (k | k)  =  ​∑ 
j=0

​ 
K−1

​​           ​∑ 
A⊆{ 1, … , K }\k, |A|=j

​ 
 

  ​   ​​  (− 1) j
 _____________  

a1 + ​∑ 
m∈A

​ 
 

  ​ ​​ 
qk Wk _____ 
qm Wm

 ​ ​b​ 
2

​

 ​ ,

	 η (l | k)  =  ​∑ 
j=0

​ 
K−1

​ ​          ​∑ 
A⊆{ 1, … , K }\k, |A|= j

​ 
 

  ​ ​   ​ 
(− 1) j
 ___________  

1 + ​∑ 
m∈A

​ 
 

  ​ ​​ 
qk Wk _____ 
qm Wm

 ​
 ​

(9)	 + ​∑ 
j=0

​ 
K−2

​ ​            ​∑ 
A⊆{ 1, … , K }\{ k, l }, |A|=j

​ 
 

  ​ ​  ​  (− 1) j qk Wk  _______________________   
ql Wl a1 + ​ 

qk Wk ____ 
ql Wl

 ​ + ​∑ 
m∈A

​ 
 

  ​ ​ ​ 
qk Wk _____ 
qm Wm

 ​b
2
 ​ .
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From Proposition 1, with full participation, we have Wk = [1 − (1 − 
η (k | k))N ]/η (k | k). This equation and (8) reduce finding the equilibrium to a matter 
of solving equations. Once the equilibrium values of W1, … , WK have been deter-
mined as a solution to these equations, (8) and (9) allow us to calculate the equilib-
rium betting probabilities, which are then used to compute the expected return (7).

To visualize the effect of race asymmetry, Figure 3 displays how the expected 
return (7) for different market probabilities varies with the prior probability 
distribution for an example with N = 10 bettors and K = 9 outcomes. The solid line 
refers to the symmetric case with qk = 1/9 for every outcome k, while the dashed 
line refers to the asymmetric prior q = (0.29, 0.21, 0.17, 0.13, 0.09, 0.05, 0.03, 0.02, 
0.01), a specification proposed by Chadha and Quandt (1996).27 For the asymmetric 
race, the return tends to be closer to zero for most odds, as empirically observed. 
Intuitively, intermediate market probabilities can arise in two ways in an asymmetric 
race. Either the ex ante favorite has received relatively few bets, and therefore yields 
a negative return by the informational FLB, or the ex ante longshot has received rela-
tively many bets, and thus yields a positive return. These two effects counteract each 
other and tend to flatten the expected return curve in the intermediate range. This 
observation improves our model’s fit to the main qualitative features of expected 
returns observed in horse races, as documented by Snowberg and Wolfers (2005).

27 In simulations, we have verified that the properties displayed in this picture hold more generally.

Figure 3. Expected Return as a Function of Market Probability,  
Depending on Symmetry in Prior Beliefs
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VI.  Comparison with Other Explanations

In this section, we compare the performance of our theory with the main alter-
native explanations for the FLB in parimutuel betting markets.28 The most notable 
alternative theories that have been proposed in the literature are the following: 

	 •	 Griffith (1949) suggested that the FLB is due to a tendency of individual bet-
tors to overestimate low probability events. 

	 •	 Isaacs (1953) noted that an informed monopolist bettor who can place multiple 
bets does not set the expected return on his marginal bet at zero, because this 
destroys the return on inframarginal bets. 

	 •	 Weitzman (1965) hypothesized that individual bettors are risk loving, and thus 
willing to accept a lower expected payoff when they bet on riskier longshots.29 

	 •	 Ali (1977) showed that if bettors have heterogeneous (prior) beliefs, then the 
market probability of the favorite is lower than the median bettor’s belief. The 
FLB then results if the belief of the median bettor is correct. 

	 •	 William Hurley and Lawrence McDonough (1995) and Dek Terrell and Amy 
Farmer (1996) showed that the FLB can result because the amount of arbitrage 
is limited by the track take.

While we believe that all of these theories can contribute to explain the evidence, 
the information-based theory developed in this paper has a number of merits:

	 •	 Our theory builds on the realistic assumption that the differences in beliefs 
among bettors are generated by private information (see e.g., Nicholas F. R. 
Crafts 1985). Only by modeling the informational determinants of beliefs 
explicitly, can we address the natural question of information aggregation.30

	 •	 Our theory offers a parsimonious explanation for the FLB and its reverse. 
Our theory also predicts that the FLB is lower, or reversed, when the number 
of bettors is low (relative to the number of outcomes), as Russell S. Sobel and 
S. Travis Raines (2003) and Marshall Gramm and Douglas H. Owens (2005) 
verify empirically.31

	 •	 Our theory is compatible with the reduced level of FLB that Asch and Quandt 
(1987, 1988) document in exotic bets, such as exactas and trifectas (see also 
footnote 14).32 Asch and Quandt (1988) conclude in favor of private information 

28 We refer to Ottaviani and Sørensen (2008) for a more detailed presentation of the theoretical explanations 
for the FLB that have been proposed in the literature.

29 See also Richard N. Rosett (1965), Quandt (1986), and Ali (1977) on the risk-loving explanation. According 
to Joseph Golec and Maurry Tamarkin (1998), the bias is compatible with preferences for skewness rather than 
risk. Jullien and Salanié (2000) use data from fixed-odds markets to argue in favor of nonexpected utility models.

30 See Ottaviani and Sørensen (2005a) on the interplay of heterogeneous priors and private information in 
prediction markets.

31 The preponderance of noise might also account for some of Andrew Metrick’s (1996) findings in basketball 
betting.

32 Risk loving does not seem compatible with arbitrage across exacta and win pools. As Snowberg and Wolfers 
(2005) stress, probability weighting would need to be combined with additional misperceptions to be compatible 
with arbitrage across betting pools.
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because the payoffs on winners tend to be more depressed in the exacta than in 
the win pool.33

	 •	 Our explanation can account for the pattern of expected returns that Snowberg 
and Wolfers (2005) document. Asymmetries in the prior probabilities of the 
different outcomes and common errors in the bettors’ beliefs tend to flatten the 
expected returns for intermediate market probabilities.34

	 •	 Our theory is compatible with the fact that late bets tend to contain more infor-
mation about the horses’ finishing order than earlier bets, as Asch, Burton G. 
Malkiel, and Quandt (1982) observe. Ottaviani and Sørensen (2006) demon-
strate that late informed betting will result in equilibrium when (many small) 
bettors are allowed to optimally time their bets.

	 •	 Theories based on private information can explain the occurrence of the FLB 
in both fixed-odds and parimutuel markets, as well as the lower level of bias 
observed in parimutuel markets, as Alistair C. Bruce and Johnnie E. V. Johnson 
(2001) among others document (see footnote 13 above).

VII.  Conclusion

This paper investigates the information aggregation properties of parimutuel mar-
kets. The sign and the extent of the FLB depend on the amount of information rela-
tive to noise that is present in the market. When there is little private information, 
posterior odds are close to prior odds, even when the market odds are extreme. In 
this case, deviations of market odds from prior odds are mostly due to the noise 
contained in the signal. Systematically, market odds are more extreme than posterior 
odds, and the reverse FLB results.

As the number of bettors increases, the realized market odds contain more infor-
mation and less noise. Holding fixed the level of market odds, the corresponding 
posterior odds are then more extreme, increasing the extent of the FLB. Note that 
the FLB always arises with a large number of bettors, provided that they have some 
private information. This is confirmed by Ottaviani and Sørensen (2006) in a model 
with a continuum of privately informed bettors. In that setting there is no noise, so 
that the FLB always results.

Our theory delivers a number of comparative statics predictions. The FLB is more 
pronounced when the number of (informed) bettors increases, bettors have more 
private information, the number of outcomes decreases, the recreational value of 
the event decreases, or the takeout rate increases. In addition, the flat segment in 
expected returns for intermediate odds can be explained by introducing a realistic 
level of asymmetry in the prior belief distribution or a common error component in 
the information of bettors.

33 Asch and Quandt (1988) observe that the market probabilities recovered from the win pool overestimate the 
market probabilities on the exacta pool by a much larger margin for winning than for losing horses.

34 The observed flat segment is theoretically compatible with risk loving or probability weighting, but would 
imply a very specific preference pattern. For example, if bettors had mean-variance preferences, as posited by 
Quandt (1986), then the expected return would be strictly increasing in the market probability. Limited arbitrage 
à la Hurley and McDonough (1995) can explain the flat segment for horses with probability above a certain thresh-
old, but not the decreasing segment for strong favorites.
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These predictions shed light on the available evidence and could be tested 
by exploiting the variation across betting environments. The amount of private 
information tends to vary consistently depending on the prominence of the under-
lying event. Similarly, the amount of noise present depends on the number of 
outcomes, as well as on the observability of past bets. For example, there is a 
sizeable amount of noise in lotteries and exotic bets, because the number of out-
comes is high relative to the number of tickets sold, and the opponents’ bets are 
not observed.

Appendix A: Proofs of Propositions

Proof of Proposition 1:
Suppose that η (k | k) = 0 so no opponent bets on k. A bet on k then returns the 

expected pool net of the takeout, (1 − τ)[1 + (N − 1)​∑ l≠k​ 
 
  ​ ​η (l | k) ]. In the follow-

ing, assume η (k | k) > 0. If the realized number of opponent bets is n and outcome 
k is realized, the conditional chance for an active opponent to bet on outcome k is 
η (k | k)/ ​∑ l​ 

 
 ​  ​η (l | k). The conditional expected payment is then

	 (1 − τ )  ​∑ 
​     
 b​k=0

​ 
n

  ​ ​ ​ n + 1 _____ 
​     
 b​k + 1

 ​  a​ 
n
   

​     
 b​k
 ​b a ​ 

η (k | k) _______ 
​∑ l​ 

 
 ​  ​η (l | k) ​​ b​ 

​     
 b​k
​  a1 − ​ 

η (k | k) _______ 
​∑ l​ 

 
 ​  ​η (l | k) ​​ b​ 

n−​     
 b​k
​

	 = 	​ 
(1 − τ )  _____________  η (k | k)/​∑ l​ 

 
 ​  ​η (l | k) ​   ​∑ 

bk=1
​ 

n+1

 ​ ​a​ 
n + 1

    bk
 ​ b a ​  η (k | k) ________ 

​∑ l​ 
 
 ​  ​η (l | k) ​​ b​ 

​     
 b​k
​ a ​ 1 − η (k | k) _________ 

​∑ l​ 
 
 ​  ​η (l | k) ​​ b​ 

n+1−bk

​

	 =	 (1 − τ )  ​ 
1 − [1 − η (k | k)/ ​∑ l​ 

 
 ​  ​η (l | k)]n+1

   ______________________   
η (k | k)/​∑ l​ 

 
 ​  ​η (l | k)

  ​  .

Because n is binomially distributed with parameter ​∑ l​ 
 
 ​  ​η (l | k), the desired expression 

for Wk /(1 − τ ) is

		​  ∑ 
n=0

​ 
N−1

​    ​​ 
1 − [1 − η (k | k)/​∑ l​ 

 
 ​  ​η (l | k)]n+1

   ______________________   
η (k | k)/​∑ l​ 

 
 ​  ​η (l | k)

  ​  a​ 
N − 1

    n ​ b

	 × 	 a​∑ 
l

  ​ 
 

  ​ ​η (l | k)​b​ 
n

​ a1 − ​∑ 
l

  ​ 
 

  ​ ​η (l | k)​b​ 
N−1−n

​

	 =  	​ 
​∑ l​ 

 
 ​  ​η (l | k) ________ η (k | k)  ​   −   ​ 

​∑ l≠k​ 
 
  ​  ​η (l | k)

  _________ η (k | k)  ​  ​∑ 
n=0

​ 
N−1

​ ​a​ 
N − 1

    n ​ b a ​∑ 
l≠k

 ​ 
 

  ​ ​η (l | k)​b​ 
n

​ a1 − ​∑ 
l

  ​ 
 

  ​ ​η (l | k)​b​ 
N−1−n

​

	 =   	​ 
​∑ l​ 

 
 ​  ​η (l | k) − [ ​∑ l≠k​ 

 
  ​  ​η (l | k)] [1 − η (k | k)]N−1

    ______________________________   η (k | k)  ​  .
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Proof of Proposition 2:
First, suppose that u > τ, but no one is betting. Individuals with private beliefs 

pk sufficiently close to one gain from deviating to a bet on outcome k, because the 
expected utility from doing so is arbitrarily close to (1 − τ) − 1 + u > 0.

Existence of a symmetric equilibrium follows from a standard fixed point argu-
ment. Note that the winner’s payoffs (W1, … , WK ) lie in the compact, convex box 
[ 1, N ]K. Given any vector W from this box, the best response of a bettor consists 
(up to a set of probability zero) in betting on the outcome k with the greatest corre-
sponding pkWk, or abstaining if this greatest value is negative. Given the strategy of 
the bettor, we can deduce the positive probability with which bets on each outcome 
are placed, and then calculate the expected payoffs. This uniquely defined map from 
[ 1, N ]K into itself is continuous, and hence has a fixed point by Brouwer’s theorem. 
The strategy associated with the fixed point constitutes a symmetric equilibrium 
strategy.

In any symmetric equilibrium in which everyone is betting, we can find a belief ​      p​ 
at which the interim expected utility is at the lowest level. By upper hemi-continu-
ity of the equilibrium correspondence and compactness of the strategy space, there 
exists an equilibrium in which this lowest interim utility U is, in turn, minimal. 
Holding fixed these equilibrium strategies, the critical value u*(N) is defined as the 
solution to U = 0.

Finally, suppose that u ≤ τ. Any bet is reduced to 1 − τ before being placed in 
the pool. By the logic of the no-trade theorem, it is impossible that all active bettors 
expect a return in excess of 1 − τ. If there is a positive chance of betting, some active 
bettors expect a return less than 1 − τ ≤ 1 − u and are better off abstaining. This 
contradiction implies that there can be no active bettors at all.

Proof of Proposition 3:
By symmetry of the betting strategy and the belief distribution, we have  

η (1 | 1) = ⋯ = η (K | K), and hence W1 = ⋯ = WK > 0. The expected utility from 
a bet on k is pkWk + u − 1, thus the best response is to bet on the outcome with the 
greatest pk, as claimed. Again, by symmetry, η (k | l ) assumes the same value for 
every pair k ≠ l. Given that the probabilities sum to one, the proof is complete once 
we show that η (1 | 1) > 1/K. The prior chance of outcome 1 is 1/K, so Bayes’ rule 
implies that the density of beliefs satisfies g( p | 1) = Kp1 g(p). When p1 is greatest, 
almost surely p1 > 1/K. Finally, symmetry implies that with ex ante probability 1/K, 
p1 is greatest. Hence,

	 η (1 | 1) =      ​∫ 
p|p1 greatest

​ 

 

  ​  ​g(p | 1)  dp =      ​∫ 
p|p1 greatest

​ 

 

  ​  ​Kp1 g(p)  dp  >      ​∫ 
p|p1 greatest

​ 

 

  ​  ​g(p)  dp = ​ 1 __ 
K ​.

Proof of Proposition 4:
Let πk < π * be given. The desired inequality is

(10)	​ 
1 − πk _____ πk

 ​   <  (K − 1) a​ 
η (k | l ) ______ η (k | k) ​​b​ 

n

​  a​ 
1 − η (k | l ) _________ 
1 − η (k | k) ​​b​ 

N−n

​, 
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where l ≠ k. Take the natural logarithm, use n/N = πk, and rearrange (10) to arrive at

(11)	​  1 __ 
N ​ log a​ 

1 − πk ________ πk(K − 1) ​b < πk log a​ 
η (k | l ) ______ η (k | k) ​b + (1 − πk ) log a​ 

1 − η (k | l ) _________ 
1 − η (k | k) ​b .

The left-hand side tends to 0 as N → ∞. The right-hand side is positive, precisely 
because πk < π *.

Proof of Proposition 5:

First, note that

	 η (1 | 1) = ​∫ 
1/2

​ 

1

 ​  ​g( p1 | 1) dp1 = ​∫ 
1/2

​ 

1

 ​  ​2 p1 g( p1) dp1 = ​∫ 
0

 ​ 

1/2

​ ​(1 − p1) g( p1) dp1 + ​∫ 
1/2

​ 

1

 ​  ​p1 g( p1) dp1, 

where the second equality follows from Bayes’ rule, and the third equality from the 
symmetry assumption. Given that the right-hand side is the expectation of a convex 
function of p1, we conclude that η (1 | 1) increases with a mean-preserving spread of 
the belief distribution. As is well-known, Blackwell-better information is equivalent 
to such a mean-preserving spread, because, in Bayesian decision problems, the value 
function is convex in the posterior belief. Finally, η (1 | 2) = η (2 | 1) = 1 − η (1 | 1) 
falls, so that the likelihood ratio η (1 | 1)/η (1 | 2) increases, as desired.

Second, with two outcomes, η (2 | 1) = 1 − η (1 | 1). Let πk be given, and note that 
βk is a strictly decreasing transformation of the odds ratio

	​ 
1 − βk _____ βk

 ​    =   a ​ 
η (1 | 1) ______ η (1 | 2) ​ ​b​ 

N(1−2πk )
​.

If πk < 1/2, the odds ratio is a strictly increasing function of η (1 | 1)/η (1 | 2). Taking 
the natural logarithm, inequality (10) reduces to (4). Because πk < 1/2 and η (1 | 1) >
η (1 | 2), all terms in (4) are positive. The right-hand side of (4) increases without 
bound when η (1 | 1)/η (1 | 2) rises. The inequality is reversed if πk > 1/2.

Proof of Proposition 6:
Proceeding as in (11), the natural logarithm of the odds ratio is

	 log a​ 
1−βk _____ βk

 ​ b = log(K − 1) + N cπk log a​ 
η (k | l ) ______ η (k | k) ​b + (1 − πk) log a​ 

1 − η (k | l ) _________ 
1 − η (k | k) ​b d ,

which is monotone in N. It rises (respectively, falls) in N when πk < π * (respectively, 
πk > π * ).
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Proof of Proposition 7:
First, suppose that all opponents use a symmetric strategy defined by the 

threshold ​      p​1 ∈ (1/2, 1), with ​      p​2 = 1 − ​      p​1. By symmetry of the belief distribu-
tion and the thresholds, η (1 | 1) = η (2 | 2) and η (1 | 2) = η (2 | 1). Hence, W1 = W2. 
The best response of an abstaining player is, by monotonicity of the expected 
payoff functions, defined by the thresholds 0 < ​      p​2 < ​      p​1 < 1 satisfying the indif-
ference conditions ​      p​1 W1 = 1 − u = (1 − ​      p​2 ) W2. Because W1 = W2, the best 
response satisfies ​      p​1 = 1 − ​      p​2. Now, ​      p​1 defines a symmetric equilibrium if the best 
response satisfies ​      p​1 = ​      p​1, i.e., if ​      p​1 ∈ (1/2, 1) solves ​      p​1 W1 = 1 − u. We argue that 
this equation has a solution because u ∈ (τ, u*(N)). At ​      p​1 = 1/2 there would be no 
abstention, but then u < u*(N) implies ​      p​1W1 < 1 − u. At ​      p​1 = 1 we would obtain 
​      p​1 W1 = W1 ≥ 1 − τ > 1 − u by u > τ. Finally, ​      p​1 W1 is a continuous function of 
​      p​1, so there must exist some ​      p​1 ∈ (1/2, 1) with ​      p​1 W1 = 1 − u.

Second, for the limit result, we first derive a bound on W1. From (1), W1  ≤ (1 − τ) 
× [η (1 | 1) + η (2 | 1)]/η (1 | 1). Next, we consider an implication of the assumption 
that the belief distribution has full support. The private belief p = Pr (k = 1 | s) 
is distributed according to a density g on [0, 1]. Bayesian updating implies that 
g( p | 1) = 2pg( p) and g( p | 2) = 2(1 − p) g( p). Hence, g( p | 1)/g( p | 2) = p/(1 − p).
The informativeness of the private signals implies

(12)	​ 
η (1 | 2) ______ η (1 | 1) ​   =   ​ 

​∫​      p​1
​ 1
 ​  ​g( p | 2)  dp

  __________  
​∫​      p​1

​ 1
 ​  ​g( p | 1)  dp

 ​   =   ​ 
​∫​      p​1

​ 1
 ​  ​​ 

1 − p
 _____ p ​  g( p | 2)  dp

  _______________  
​∫​      p​1

​ 1
 ​  ​g( p | 2)  dp

 ​    <   ​ 1 − ​      p​1 _____ 
​      p​1

 ​  .

Given that η (2 | 1) = η (1 | 2) by symmetry, these observations imply

(13)	​  1 − u _____ 
1 − τ ​   =   ​ ​ 

    p​1 W1 _____ 
1 − τ ​   ≤   ​      p​1 a1 + ​ 

η (2 | 1) ______ η (1 | 1) ​b  <   ​      p​1 ​ 
1 __ 
​      p​1

 ​ = 1.

Suppose that u → τ. It follows that the inequality in (13) must vanish, from which 
it also follows that the inequality in (12) vanishes. It follows from inspection of 
inequality (12), that, with full support of p over [0, 1], this inequality can only vanish 
if ​      p​1 → 1.

Suppose now that the realized bet amounts are b2, b1 > 0. The implied market 
probability for outcome 1 is π1 = b1 /(b1 + b2). The bet distribution for outcome 1 is

p(b2, b1 | 1) =  ​  N! _______________  
b2!b1!(N − b2 − b1)!

 ​  η (2 | 1​)​ b2​ η (1 | 1​)​ b1​[1 − η (1 | 1) − η (2 | 1)​]​ N−b2−b1​,

and likewise for k = 2. Hence, (1 − β1)/β1 = p(b2, b1 | 2)/p(b2, b1 | 1) 
= [η (1 | 2)/η (1 | 1)]b1−b2. If π1 < 1/2, or b2 > b1, the desired FLB inequality is 
(1 − π1)/π1 < (1 − β1)/β1, i.e., [π1/[b1(1 − 2π1)]] log[(1 − π1)/π1] < log[η (1 | 1)/η (1 | 2)]. 
This inequality holds for fixed b2 and b1 once the ratio η (1 | 1)/η (1 | 2) is sufficiently 
large. From before, when u → τ then ​      p​1 → 1. It follows from (12) that η (1 | 1)/η (1 | 2) 
tends to infinity.
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Proof of Proposition 8:
Conditional on outcome l, the chance that bk = n is

	 Pr (bk = n | l )   =  a​ 
N

   n ​ b η (k | l )n[1 − η (k | l )]N−n.

Conditional on bk = n, the chance that k wins is then

(14)	 Pr(k | bk = n)   =    ​  qkη (k | k)n[1 − η (k | k)]N−n

   _____________________   
​∑ j=1​ K

  ​  ​qj η (k | j)n[1 − η (k | j)]N−n ​ .

Given that the sampled outcome z has market probability π = n/N, the relative 
chance that this outcome is k is

(15)	Pr (k = z | bz = n)   =    ​ Pr (bk = n) ________ 
Pr (bz = n) ​   =    ​ 

​∑ j=1​ K
  ​  ​qjη (k | j)n[1 − η (k | j)]N−n

   __________________________    
​∑ m=1​ K

  ​  ​​∑ l=1​ 
K
  ​  ​qlη (m | l )n[1 − η (m | l )]N−n ​  .

Combining (14) and (15), we obtain the desired posterior probability that the sam-
pled outcome with market probability π = n/N is also the winning outcome:

	​∑ 
k=1

​ 
K

 ​ ​Pr (k wins | bk = n) Pr (k = z | bz = n)  =    ​  ​∑ k=1​ 
K
  ​  ​qkη (k | k)n[1 − η (k | k)]N−n

   __________________________    
​∑ m=1​ K

  ​  ​​∑ l=1​ 
K
  ​  ​qlη (m | l )n[1 − η (m | l )]N−n ​ .

We conclude that (7) is the expected return to a bet with market probability π.

Appendix B: Dirichlet Signal Structure

This appendix introduces the Dirichlet signal structure, a tractable example that 
we use throughout the paper to illustrate our results. Suppose that the prior is sym-
metric, qk = 1/K, and that signals unconditionally have the symmetric Dirichlet 
density

	 g(s1, … , sK)   =    ​  Γ(Kθ) ______ 
(Γ(θ) )K ​ ​∏ 

k=1
​ 

K

 ​ ​​s​k​ 
θ−1​ ,

with full support on the simplex {s ∈ ​ℝ​ +​ k
 ​ | ​∑ k=1​ K

  ​  ​sk = 1}, where the parameter 
θ > 0 measures the inverse amount of private information and Γ(θ) = ​∫0​ 

∞
​  ​ t θ−1 e−t dt 

= (θ − 1) Γ(θ − 1) denotes the Gamma function. The conditional distribution has 
density Ksk g(s). Given symmetry in the prior, Bayes’ rule implies posterior belief 
p = s, so that the the posterior belief p follows the same Dirichlet distribution. The 
smaller is θ, the more spread out is the distribution of p, verifying that θ is an inverse 
measure of information.
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A particularly tractable special case of the Dirichlet example is obtained by set-
ting θ = 1. This is the uniform signal example with conditional density f (s | k) = csk, 
where c is a constant of integration. If the race is symmetric, qk = 1/K, by Bayes’ 
rule signal s results in private belief p = s. Moreover, symmetric also ensures that 
the ex ante density of p = s is uniform, f (s) = ​∑ k=1​ K

  ​  ​qk f (s | k) = c/K.

Proof of Lemma 1:
When K = 2, η (1 | 1) is equal to the probability that p1 > 1/2. Using integration 

by parts and (Γ(θ + 1) Γ(θ))/(Γ(2θ + 1)) = ​∫0​ 
1​  ​​p​1​ 

θ ​ (1 − p1 )θ−1  dp1, this probability 
satisfies

	​ 
Γ(θ + 1) Γ(θ)  __________  Γ(2θ + 1)  ​  η (1 | 1)  =  ​∫ 

1/2

​ 

1

 ​  ​​p​1​ 
θ ​ (1 − p1)θ−1 dp1  =   ​ 4

−θ
 ___ θ  ​  + ​∫ 

1/2

 ​ 

1

 ​  ​​p​1​ 
θ−1​ (1 − p1)θ dp1.

Substitution of p2 = 1 − p1 gives

	​ ∫ 
1/2

 ​ 

1

 ​  ​​p​1​ 
θ ​−1 (1 − p1)θ  dp1 	 = 	​ ∫ 

0

 ​ 

1/2

​  ​​p​2​ 
θ ​ (1 − p2)θ−1  dp2 

		  = 	 Γ(θ + 1)Γ(θ)/Γ(2θ + 1) − ​∫ 
1/2

 ​ 

1

 ​  ​ ​p​1​ 
θ ​ (1 − p1 )θ−1  dp1.

Collecting terms, we obtain

	 2 ​∫ 
1/2

 ​ 

1

 ​  ​​p​1​ 
θ ​ (1 − p1)θ−1  dp1  =   ​ 4

−θ
 ___ θ  ​  +   ​ Γ(θ + 1) Γ(θ)  __________  Γ(2θ + 1)  ​

and hence (5).

Proof of Lemma 2:
By symmetry, it suffices to derive η (1 | 1). Using f (s | 1) = cs1, s is Dirichlet dis-

tributed with parameters (2, 1, … , 1). By Proposition 3, a bettor bets on outcome 1 
when s1 =  p1 > pk  = sk for all k > 1.

Let X1, … , XK be independent χ 2 distributed random variables, with degrees 
of freedom 4 for X1 and 2 for X2, … , XK. The distribution function for Xk when 
k > 1 is

(16)	 H (x) = 1 − e−x/2.

Letting rk = Xk/​∑ l=1​ K
  ​  ​Xl, Norman L. Johnson and Samuel Kotz (1972, Section 40.5) 

note that r = (r1, … , rK) follows the same Dirichlet distribution as s. The chance that 
s1 > sk for all k > 1 is then equal to the chance that X1 > Xk for all k > 1. Given X1, 
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this chance is H(X1)K−1. Using the expression for the density of the χ2 distribution, 
we obtain

	 η (1 | 1) 	=	 ​ 1 __ 
4
 ​ ​∫ 

0

 ​ 

∞

​  ​A1 − e−x/2 BK−1 xe−x/2   dx 

		  =	 ​ 1 __ 
4
 ​ ​∫ 

0

 ​ 

∞

​  ​c  ​∑ 
j=0

​ 
K−1

​ ​a​ 
K − 1 

    j ​ b (− 1) j e−jx/2d xe−x/2   dx

		  =	 ​ 1 __ 
4
 ​ ​∑ 

j=0
​ 

K−1

​ ​a​ 
K − 1

    j ​ b (− 1) j ​∫ 
0

 ​ 

∞

​  ​xe−( j+1)x/2   dx 

		  = 	​ ∑ 
j=0

​ 
K−1

​ ​a​ 
K−1

    j ​ b (− 1) j ​  1 ______ 
(j + 1)2 ​ ,

proving (6).

Proof of Lemma 3:
Consider the case k = 1, and let X1, … , XK and r1, … , rK be the same random 

variables as in the proof of Lemma 2. With full participation, outcome 1 is the best 
response when all l ≠ 1 satisfy Xl ≤ X1 q1 W1/ql Wl. Hence, we obtain

	 η (1 | 1)  =  ​ 1 __ 
4
 ​ ​∫ 

0

 ​ 

∞

​  ​​∏ 
l≠1

 ​ 
 

  ​ ​a1 − ​e​ 
− ​ x __ 

2
 ​ ​ 
qk Wk ____ 
ql Wl

 ​
​ b xe−x/2  dx.

Expanding the product, we have

	​ ∏ 
l≠1

 ​ 
 

  ​ ​a1 − ​e​ 
− ​ x __ 

2
 ​ ​ 
qk Wk ____ 
ql Wl

 ​
​b  =  ​∑ 

j=0
​ 

K−1

​       ​​∑ 
A⊆{2, … , K}, |A|=j

​ 
 

  ​ ​(− 1) j ​e​ 
− ​ x __ 

2
 ​  a​∑ m∈A​ 

 
  ​  ​​ 

qk Wk _____ 
qm Wm

 ​ b
​.

Equation (8) follows by integration. Recalling the different distribution of X1 and Xl, 
a similar consideration gives

	 η (l | 1)  =  ​ 1 __ 
2
 ​ ​∫ 

0

 ​ 

∞

​  ​a1 − a1 + ​ x __ 
2
 ​ ​ 
q1 W1 ____ 
ql Wl

 ​b ​e​ 
− ​ x __ 

2
 ​ ​ 
q1 W1 ____ 
ql Wl

 ​
​b ​∏ 

m≠k,l
​ 

 

  ​​a1 − ​e​ 
− ​ x __ 

2
 ​ ​ 

qk Wk _____ 
qm Wm

 ​
​b ​e​ − ​ x __ 

2
 ​​   dx.

Again, expansion of the product and integration yields (9).
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