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Abstract How should a monopolist price when selling to buyers who learn from
each other’s decisions? Focusing on the case in which the common value of the good is

This paper generalizes the model and the results contained in “Monopoly pricing with social learning” by
Ottaviani (1996) and “Optimal pricing and endogenous herding” by Bose, Orosel, and Vesterlund (2001).
Ottaviani (1996) first formulated the problem and derived implications for learning and welfare. Indepen-
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dependence of the solution on the model’s parameters. Bose, Orosel, and Vesterlund’s team and Ottaviani
then joined efforts to partially characterize the solution for the general case with a finite number of signal
realizations (Bose et al. 2006), and to provide a full characterization of the equilibrium for the case with
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binary and each buyer receives a binary private signal about that value, we completely
answer this question for all values of the production cost, the precision of the buyers’
signals, and the seller’s discount factor. Unexpectedly, we find that there is a region
of parameters for which learning stops at intermediate and at extreme beliefs, but not
at beliefs that lie between those intermediate and extreme beliefs.

Keywords Monopoly · Public information · Social learning · Herd behavior ·
Informational cascade · Binary signal

JEL Classification D83 · L12 · L15

1 Introduction

This paper analyzes a simple model of dynamic monopoly pricing with buyers who
learn from each other’s decisions. For the case with fixed prices, Banerjee (1992)
and Bikhchandani et al. (1992) have shown that herd behavior results when buyers
have private signals of bounded informativeness. Eventually, the public information
inferred from prior decisions swamps the private information of an individual buyer.
An informational cascade then arises from the first time a buyer’s private information
has no effect on his decision. From that point onward, buyers imitate the prevailing
behavior of the initial buyers, and, so, their private information is lost. In this paper, we
embed Bikhchandani et al.’s (1992) social learning model in a market framework in
which a monopolist adjusts prices dynamically in response to past purchase decisions.

In our setting with variable prices, the current price not only reflects the product’s
quality (as currently perceived), but also affects the social learning process and, thus,
the perception of quality by future buyers. This intertemporal linkage is relevant for
understanding pricing of new products, as well as career paths and wages demanded
by workers to influence their future employers, who observe the employment history.
Will the seller (or, the worker) be more expensive (or, choosier) in the early stages
after product introduction (or, early in their career) in order to build a strong track
record (or, a strong vita), even at the risk of not selling (or, remaining unemployed)
for a long time? When will the seller want to sell out by inducing an informational
cascade in which all potential buyers purchase regardless of their private information?
Could it be that learning ceases for intermediate beliefs? How do monopoly prices
evolve over time?

This paper addresses these questions by providing a complete characterization of
the solution of a simplified version of the model formulated in Bose et al. (2006), hence-
forth called BOOV. The general model features an exogenous sequence of potential
buyers, one in each period. Each buyer has a unit demand for a product with a common
value that is either high or low. The seller and the buyers do not know the true common
value, but each buyer observes a partially informative private signal about the value.
In each period, the prices posted in the past and purchase decisions made by past
buyers are publicly observed by the buyers as well as the seller. Having observed this
information the seller posts a price, and the current buyer decides whether to accept
or reject the offer. The game then proceeds to the next period.
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Binary herding model 205

For the general case in which each buyer has access to a signal with many pos-
sible realizations, BOOV shows that, in the long run, the monopolist generally (i.e.,
with the exception of one specific parameter configuration) settles on a fixed price
and all subsequent buyers either purchase the good (in a purchase cascade) or do not
purchase it (in an exit cascade). Thus, typically, all buyers herd on the same decision
eventually and no information is revealed thereafter. However, the general model is
not sufficiently tractable to address the four characterization questions that are the
focus of this paper: (1) whether the monopolist finds higher prices more attractive in
the initial periods, (2) when it is optimal for the seller to induce informational cas-
cades, (3) whether an informational cascade can occur at intermediate beliefs, and (4)
how prices evolve over time. These questions have no obvious answer and without a
rigorous analysis it is not clear what to expect.

In this paper we simplify the model by restricting attention to the case in which
buyers have access to symmetric binary signals about the product’s unknown value.
By assuming that the private signal is either “high” or “low”, we are able to determine
the seller’s posted price for every possible public belief and thus obtain a complete
characterization of the dynamic pricing policy. In particular, we derive sharp and some-
what unexpected predictions regarding the short-run price dynamics and the long-run
occurrence of informational cascades.

The major advantage of the binary signal structure is that, at any public belief, the
seller who wishes not to exit the market needs to consider only two possible selling
prices: a low pooling price at which the respective buyer purchases the good irrespec-
tive of the private signal, and a high separating price at which only a buyer with a
high signal purchases the good. Whenever the seller charges the separating price, the
current buyer’s private signal is perfectly revealed by the purchase decision. On the
other hand, when the seller charges the pooling price, both buyer types purchase
the good, so that no information is revealed. Therefore, the price determines whether
the purchase decision reveals either all or none of the current buyer’s private informa-
tion. This dichotomy of all or nothing makes the model analytically tractable.

Since the seller benefits from revealing public information (see Ottaviani and Prat
2001 and BOOV), the seller’s expected future profits are maximized at the separat-
ing price. Thus, the expected immediate profits from the pooling and the separating
prices, respectively, are crucial for determining which price is charged. Specifically,
the separating price is uniquely optimal when it also maximizes expected immediate
profits, and the pooling price can only (but need not) be optimal when its expected
immediate profits exceeds those of the separating price.

The properties of the equilibrium depend on the interaction between the three main
parameters of the model: the precision of the signal, the seller’s discount rate, and the
unit cost of production. We distinguish two cases. First, when the signal is sufficiently
precise, it is uniquely optimal for the seller to charge the separating price if and only
if the public belief belongs to a single connected (non-empty) interval. What defines
a sufficiently precise signal is independent of the seller’s discount rate but depends on
the cost of production. Whenever the seller charges the separating price, the respective
buyer’s action reveals the signal, allowing the seller and future buyers to update their
beliefs accordingly. The seller then continues to charge the separating price as long
as the public belief about the good’s value stays within this interval, and demands the
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pooling price or exits the market when the public belief hits the boundaries of this
interval.

Second, when instead the signal is sufficiently noisy, the properties of the equilib-
rium depend crucially on how the cost of production compares to the low value of the
good. When the cost of production is below the low value of the good, the separating
price is optimal in a connected (though possibly empty) set of beliefs, whereas the
pooling price is optimal for beliefs that are either more optimistic or more pessimistic.
The solution is more complicated when instead the production cost exceeds the low
value of the good. In this situation, it is possible that the separating and the pooling
price are each uniquely optimal within two disconnected non-empty intervals of pub-
lic beliefs. As the public belief increases, exit is initially optimal for the seller, then
the separating price is optimal, then the pooling price is optimal, then the separating
price is optimal once more, and finally the pooling price becomes again optimal for
sufficiently optimistic public beliefs.

From a technical point of view, the characterization obtained in this paper relies
on the combined application of dynamic programming techniques and the Perron–
Frobenius theory of nonnegative matrices. This combination is the keystone of the
proof of Lemma 5, which constitutes a central building block of our analysis.

The rest of the paper is organized as follows. After discussing the related literature
in Sect. 2, Sect. 3 introduces the model, Sect. 4 explains the main trade off, Sect. 5
presents the optimal pricing policy, Sect. 6 derives the stochastic properties of the
price sequence, and Sect. 7 concludes. Appendices A.1 and A.2 contain respectively
the proofs of the propaedeutic results and of the propositions.

2 Related work

The first paper to analyze monopoly pricing in the presence of herding is Welch
(1992). He considers a similar setup to ours where buyers have binary signals, but
investigates the problem of static monopoly pricing in which the seller cannot adjust
the price depending on the purchase history. He shows that in this case it is optimal for
the seller to charge a low price and immediately trigger herding. Note that expected
monopoly profits are clearly higher when prices are allowed to depend on the history
of previous purchases, as in our model.

Avery and Zemsky (1998) are the first to study the effect of the dynamic adjustment
of prices on the occurrence of informational cascades. They focus on a competitive
financial market in which informed agents can choose to either buy or sell. In their as
well as in our setting, prices adjust to reflect the information revealed from past trades.
But in addition our monopolist sets prices so as to control the learning process.

Caminal and Vives (1996) consider a two-period model with a continuum of buyers
privately informed about the quality of two competing products. Since in their model
second-period buyers observe first-period quantities but not first-period prices, the
sellers have an incentive to set low first-period prices to boost sales in an attempt to
convince buyers that their quality is high. By assuming instead that past prices are
observed, in our model we find that the seller initially posts high prices in order to
induce social learning.
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As in Bergemann and Välimäki (1996), in our model information about quality
becomes publicly available over time. In their setting, the product price affects the
information that is publicly revealed only through the identity of the product pur-
chased (and therefore experienced) by the buyer. When instead buyers decide also on
the basis of pre-existing private information, as in our model, the price affects the
amount of public information depending on the induced probabilities (conditional on
the product’s true quality) that the buyer purchases the product.

Building on the first incarnation of this paper (Ottaviani 1996), Moscarini and
Ottaviani (1997) analyze a two-period version of the model presented here.
Chamley (2004, Sect. 4.5.2) briefly discusses a version of this model in which the
seller’s cost exceeds the low value of the good. As explained below, our complete
characterization of the seller’s optimal strategy reveals a number of somewhat unex-
pected properties of the solution.1

More broadly, we share with Sgroi (2002) the interest in studying the effect of
policies aimed at influencing the social learning process. In a model with fixed prices,
Sgroi considers the effect of allowing a group of buyers to make simultaneous deci-
sions before the other buyers make sequential decisions. In his context, the trade off is
between the cost of experimentation from less informed decisions made by the guinea
pigs and the value of the public information their decisions reveal. Similarly, in our
context the monopolist tends to subsidize the learning process by charging separating
prices in the initial periods.2

In our model, equilibrium prices are high and decline on average, similar to what
happens in the separating equilibrium of Bagwell and Riordan’s (1991) signaling
game. In their model, the high quality seller needs to charge a higher price when
there is a smaller fraction of informed buyers; as buyers become better informed over
time, the price charged by the high quality seller decreases. The two models provide
different explanations for the same phenomenon.

Finally, in Bar-Isaac (2003) a seller privately informed about product quality sup-
plies a sequence of (uninformed) buyers, whose noisy satisfaction with the product is
revealed publicly after purchase. In his model prices are assumed to be fixed, so that
signaling takes place through the seller’s decision to remain in the market or exit. Our
model eliminates instead the possibility of signaling by assuming that the seller has
no private information.3

1 Chamley presents diagrammatically a numerical solution for particular parameter values at page 79 and
discusses the model at pages 81–83. We prove here that the properties of that specific illustration (seller’s
exit at sufficiently pessimistic public beliefs, purchase cascade at sufficiently optimistic public beliefs, and
continuing learning at all intermediate public beliefs) do not hold in general.
2 See also Gill and Sgroi (2005) for a model in which a monopolist asks a reviewer to evaluate the quality of
the product before launching it. As in our model, buyers have symmetric binary signals and the monopolist
controls the product’s price. In their model however, as in Welch (1992), the monopolist cannot change the
price over time depending on the history of past sales.
3 If the seller had some imperfect private information about the good’s value, for some parameter configu-
rations the seller might be able to signal this information through prices, given that buyers are also privately
informed (compare Judd and Riordan 1994). As we focus on the aggregation of the information possessed
by buyers, we improve tractability by assuming that the seller has no private information.
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3 Model

A risk-neutral monopolist (or seller) offers identical goods to a sequence of risk-neu-
tral potential buyers with quasi-linear preferences and unit demand. In each period
t ∈ {1, 2, ...}, a different buyer arrives to the market, indexed by the arrival time.

The payoff of buyer t is (v − pt ) at , where v is the value of the good, pt is its price,
action at = 1 indicates purchase of one unit of the good, and at = 0 no purchase. The
good’s common value is either low or high, v ∈ {L , H}, with 0 ≤ L < H . Without
loss of generality we choose the monetary unit such that H − L = 1. The good’s value
is unknown to the seller and the buyers. The initial prior belief that the value is high,
v = H , is commonly known to be equal to λ1 ∈ (0, 1).

Buyer t privately observes a random signal about the good’s value v, denoted by
s̃t ∈ S with realization st (abbreviated as s if time does not matter), where S = {l, h}.
Conditional on the true value v, buyers’ signals are independent and identically dis-
tributed for all buyers, and they are imperfectly informative. The signals are cor-
rect with probability α ∈ (1/2, 1) and incorrect with probability 1 − α. That is,
Pr(st = h|H) = Pr(st = l|L) = α and Pr(st = h|L) = Pr(st = l|H) = 1 − α. A
high signal realization h (respectively a low signal l) then indicates that the high value
H is more (respectively less) likely than according to the prior.

The seller has a constant marginal cost c per unit sold, with 0 ≤ c < H .4 This
cost is incurred only if the good is sold. In the analysis, we distinguish three cases,
depending on whether the unit cost c is equal to, below, or above L . The seller’s payoff
is equal to the discounted sum of profits,

∑∞
t=1 δt−1 (pt − c) at , with discount factor

δ ∈ [0, 1). For tractability, we further assume that the seller has no private information
about the good’s value.

The key feature of the model is that the buyers’ actions are publicly observed. This
allows future buyers as well as the seller to possibly learn the signals those buyers
had. The sequence of events in each period t is as follows:

1. The seller and buyer t observe the purchase decisions taken by previous buyers,
as well as the prices posted in the past.5 This public history at time t is denoted
by ht = (p1, a1, ..., pt−1, at−1), with h1 = ∅. The set of all possible histories is
denoted by H.

2. The seller makes a take-it-or-leave-it price offer pt for a unit of the good to buyer
t . A pure strategy for the seller is a function p : H → (L , L + 1) that maps every
history ht into a price pt , t ∈ {1, 2, ...}.6

4 See Neeman and Orosel (1999) and Taylor (1999) on dynamic bidding or pricing, respectively, for a
single good.
5 If instead buyers observed only purchase decisions but not prices, the seller would have an incentive to
mislead buyers by making them believe that an observable sale has occurred at the high separating price,
rather than at the actual low pooling price. If buyers understand this incentive, they cannot be misled in
equilibrium. However, because the seller cannot commit not to lower the unobservable price if the high
price is expected, the equilibrium in pure Markov strategies results in the seller triggering an informational
cascade immediately. For details see Bose et al. (2001).
6 Since it is common knowledge that the seller can always sell at some price above L and is unable to sell
at a price at or above H , we restrict attention to pt ∈ (L , H) = (L , L + 1).
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3. Buyer t observes signal s̃t about the good’s value v and takes action at . Buyer
t purchases the good if and only if its expected value E (v|st , ht ) exceeds the
price. For technical reasons, we make the (innocent) tie-breaking assumption
that a buyer purchases the good when indifferent between purchasing and not.

This model is a dynamic game between a long-run player (the seller) and a sequence
of short-run players (the buyers). Following any history ht = (p1, a1, ..., pt−1, at−1)

of past prices and actions, past play induces a common prior belief for period t that is
shared between the seller and the current buyer, λt ≡ Pr (v = H | ht ). Since buyers
decide only once, it is immediate to characterize their behavior as a function of this
public belief, the current price charged, and the realization of their private signal. In
each period and for any public belief, the seller maximizes expected profits by antic-
ipating how the buyers react to the prices posted. The public belief is then the state
variable in the seller’s dynamic optimization problem. The perfect Bayesian equilib-
rium (PBE) of this game coincides with its Markov perfect equilibrium and is derived
directly from the seller’s optimal strategy.

When focusing on a single period, we often drop the time subscript and treat the
public belief λ as the key parameter for comparative statics. Since signals, if revealed,
lead to discrete jumps in λt , any λt must be an element of a countable set which for
any prior λ1 ∈ (0, 1) is defined as the set of beliefs that can be attained starting from
λ1,

�(λ1) ≡
{

λ
there exists an integer T and a sequence of signal realizations
(s1, ..., sT ) ∈ ST such that λ=Pr (H |λ1; s1, ..., sT )

}

⊂ (0, 1) . (1)

For any given λ j ∈ �(λ1) , we define for all k ∈ {1, 2, ...} , λ j+k ≡ Pr
(
H |λ j , k

signals s = h) and λ j−k ≡ Pr
(
H |λ j , k signals s = l

)
, where s ∈ {l, h} denotes the

signal realization. We denote the updated beliefs that the value is high conditional on a
high and low signal, respectively, as λ+ ≡ Pr (H |λ, s = h) and λ− ≡ Pr (H |λ, s = l).

4 Main trade off

Buyer t’s optimal strategy is simply to buy if and only if the posted price is (weakly)
lower than the expected value conditional on the privately observed signal:

pt ≤ E (v|λt , st ) = Pr (H |λt , st ) H + [1 − Pr (H |λt , st )] L

= Pr (H |λt , st ) (H − L) + L = Pr (H | λt , st ) + L .

When wishing to sell with positive probability at any given public λt , the seller need
only consider two possible prices, either the separating price pH (λt ) ≡ λ+

t + L =
λt α

λt α+(1−λt )(1−α)
+ L , which is the highest price at which type h buyer purchases the

good (type l declines to buy at this price), or the pooling price pL(λt ) ≡ λ−
t + L =

λt (1−α)
λt (1−α)+(1−λt )α

+ L , which is the highest price at which both type h and type l buyer
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purchase. Clearly, any price p ∈ (
pL(λt ), pH (λt )

)
is suboptimal. The H and L labels

derive from the fact that the separating price is higher than the pooling price for any
given belief λt .7

In addition, the seller can always charge a price strictly higher than pH (λt ) at
which no buyer purchases. Although all prices strictly larger than pH (λt ) are non-
selling prices, the multiplicity is clearly inconsequential, since all these prices result
in the same outcomes and profits. Hence, we treat all such prices as one exit price,
which we denote by pE (λt ). For the results in Sect. 6 we further assume that pE (λ) =
pH (λ) + ε, with ε > 0 arbitrarily small.

Given the buyers’ strategies, it is clear that whenever either pH (λt ) or pL(λt ) is
uniquely optimal, λt determines the seller’s optimal price pt in period t. If pH (λt )

and pL(λt ) are both optimal for some λt ∈ �(λ1), the seller may condition the price
pt on aspects of the history ht that are not reflected in λt . However, in all three cases
the maximum of the seller’s expected discounted profits from period t onwards is
uniquely determined by λt . For any t ∈ {1, 2, ...} and λt ∈ �(λ1) , we denote this
payoff by V (λt ). That is, V : �(λ1) → R is the seller’s value function.

In choosing between the pooling and separating price the seller must take into
account the (updated) probability that a buyer has received the high or the low sig-
nal. This probability is determined by λt and given by Pr (st = h|ht ) = λtα +
(1 − λt ) (1 − α) ≡ ϕ (λt ) and Pr (st = l|ht ) = λt (1 − α)+ (1 − λt ) α = 1 −ϕ (λt ),
respectively.

Following the pooling price in period t , buyer t purchases regardless of the private
signal, so that λt+1 = λt . Thus, if pL(λt ) is uniquely optimal at λt , it continues to be
optimal forever after. In accordance with Bikhchandani et al. (1992), we then have an
informational cascade.8

Definition An informational cascade occurs at time T , if all buyers t ≥ T make the
same purchase decisions regardless of their signal realizations.

If pL(λt ) is optimal at λt , then V (λt ) = pL(λt ) − c + δV (λt+1) = pL(λt ) − c +
δV (λt ), and thus

V (λt ) = pL(λt ) − c

1 − δ
.

Whenever the pooling price pL(λt ) is uniquely optimal for some λt , a purchase cas-
cade is triggered or continued in period t . Similarly, whenever an exit price pE (λt ) is
uniquely optimal for some λt , we have an exit cascade.

Clearly, the stochastic process of the updated probabilities {λt }∞t=1 is a martingale.
If the seller charges the pooling price pL(λt ) at some t or stays out of the market,
no information is revealed so that λt+1 = λt . If the seller demands the separating price

7 Because these prices are increasing functions of λt ∈ (0, 1), the separating price for a high belief can be
lower than the pooling price corresponding to a lower belief.
8 Since in this model there is a finite signal space as in Bikhchandani et al. (1992), an informational cascade
is equivalent to herding. See Smith and Sørensen (2000).
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pH (λt ), buyer t ’s action reveals the signal realization st so that the expected belief in
period t + 1 is

E (λt+1|λt ) = ϕ (λt ) λ+
t + [1 − ϕ (λt )] λ−

t = λt , (2)

verifying the martingale property of beliefs.
In this setting, the current price charged in any given period serves two roles. First,

the price determines the amount of rent that the seller can extract from the current
buyer. Second, the price affects the amount of the current buyer’s information that is
transmitted to future buyers. Since expected future profits depend on this information,
there is a trade-off between current and future rent extraction. To determine the seller’s
optimal price it is therefore useful to break down the seller’s expected payoff into the
expected immediate and future profits.

4.1 Expected future profits

The seller’s expected future profits are the sum of the expected discounted profits from
the next period onwards conditional on the present information λt .

If the seller charges the pooling price pL(λt ) in period t and triggers a purchase

cascade, then the future profits are δ
pL (λt )−c

1−δ
. Denote pL(λt ) − c by RL(λt ) and note

that RL (λt ) = λ−
t + L − c = λt (1−α)

λt (1−α)+(1−λt )α
+ L − c, which is a strictly convex

function for λ ∈ [0, 1]. As Lemma 1 shows, strict convexity of RL (λ) implies that
the expected future profits from charging the separating price in period t and the opti-
mal price thereafter always exceed the future profits from charging the pooling price
from period t onwards. Thus, in expectation the seller’s profits increase with public
information.

Lemma 1 For all λt ∈ �(λ1) the expected future profits to the seller from charging
the separating price pH (λt ) in period t (and charging the conditionally optimal price
thereafter), strictly exceed the expected future profits from charging the pooling price
pL (λt ) in period t and thereafter.

This result can also be derived as a corollary of a more general result proved by
Ottaviani and Prat (2001) and generalized by Saak (2007). Ottaviani and Prat show that
a sufficient condition for the monopolist to benefit from the revelation of public infor-
mation is that this information is affiliated to the private information of the buyer—
this assumption is automatically satisfied when the state is binary, as in the model
considered here. In a general model with finitely many signal realizations, BOOV’s
Proposition 4 establishes the corresponding result that an information-revealing price
maximizes future profits. In our setting with binary signals, no information is revealed
when the pooling price or an exit price is posted, so that the separating price is the
only price that reveals information. The advantage of focusing on the case with binary
signals is that the amount of information revealed at different prices can be Blackwell
ranked.

Since by Lemma 1 the separating price generates higher expected future profits
than the pooling price, for the separating price to be optimal it is sufficient that the
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separating price generates higher immediate profits. For the pooling price to be opti-
mal instead, it is necessary (but not sufficient) that its immediate profits exceeds those
associated to the separating price.

4.2 Expected immediate profits

We now turn to the seller’s expected immediate profits in period t . If the seller charges
the pooling price, immediate profits are RL (λt ) = pL(λt ) − c, a convex function of
λ with RL (0) = L − c and RL (1) = 1 + L − c = H − c. When instead the seller
charges the separating price pH (λt ) = λ+

t + L , the probability of a sale is ϕ(λt ) ≡
Pr (st = h|λt ) and expected immediate profits are RH (λt ) = [

pH (λt ) − c
]
ϕ(λt ) =

[α + (2α − 1) (L − c)] λt + (1 − α) (L − c) , a linear function of λt with RH (0) =
(1 − α) (L − c) and RH (1) = α (1 + L − c) = α (H − c).

We now compare the expected immediate profits from the pooling and separating
price. Since RL (1) = (H − c) > α (H − c) = RH (1) and profits are continuous
in λ, for sufficiently optimistic beliefs the immediate profits from the pooling price
always exceed those from the separating price. More generally, RL (λ) − RH (λ)

depends crucially on how the cost of production compares to the low value L of the
good. We distinguish three cases:

1. If c = L , either the two functions have a unique intersection for λ > 0 when α is
large enough, or RH (λ) < RL (λ) for all λ > 0, as shown in Fig. 1.a.1 and 1.a.2,
respectively.

2. If c < L , we have 0 < RH (0) < RL (0) so that the two functions have either
two intersections, no intersection, or a point of tangency depending on the level
of α, as illustrated in Fig. 1.b.1–1.b.3.

3. If c > L , we have 0 > RH (0) > RL (0) so that RH (λ) intersects with RL (λ)

exactly once. This case is illustrated in Fig. 1.c.1.

While the same price does not generally maximize both expected immediate and
future profits, in some situations we need not consider both. When the belief is suf-
ficiently optimistic, the monopolist benefits little by revealing information to future
buyers, hence the myopically optimal price is dynamically optimal. When λt is high,
the separating and the pooling price are almost identical, thus the potential increase in
the seller’s expected future profits from an increase of λt , even to its upper limit of 1,
is small. With α < 1 the probability of selling at the separating price is significantly
lower, hence RL(λt ) > RH (λt ) for high λt . According to the following lemma, the
seller triggers a purchase cascade whenever the belief is sufficiently optimistic.

Lemma 2 For every discount factor δ ∈ (0, 1) the seller chooses the pooling price
pL (λ) whenever λ is sufficiently high, i.e., there exists an εδ > 0 such that pt =
pL (λt ) whenever λt ∈ (1 − εδ, 1).

Thus, along the equilibrium path the belief λt is bounded away from 1 and buyers
cannot learn asymptotically that the good’s true value is high. Not surprisingly, the
belief at which herding is triggered depends on the seller’s discount factor. In fact,
given any public belief λt ∈ (0, 1) it is optimal for a sufficiently patient seller to charge
the separating price pH (λt ) or to exit the market. (see Lemma 4, Appendix A.1).
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Fig. 1 In these graphs, RH (λ) represents the expected immediate profit from the separating price pH (λ),
and RL (λ) the expected immediate profit from the pooling price pL (λ)

As suggested by the expected immediate profits (Fig. 1), the seller’s optimal strat-
egy depends on how the cost c relates to the low value of the object L . We distinguish
three qualitatively different cases:

1. Borderline case (c = L). The borderline case is particularly instructive to dem-
onstrate the mechanics of the solution. Even if this case may be regarded as
non-generic, there are plausible situations in which c = L . For example, patent
holders often have zero marginal cost from licensing (c = 0) and patents can
be completely worthless to licensees (L = 0). In the borderline case the seller’s
(positive) profits per sale converge to zero for λ → 0.

2. Case with socially worthless information (c < L). In this case, the buyers’ private
information has no social value because the socially optimal allocation requires
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that all buyers purchase the good regardless of the realizations of their private sig-
nals. However, information has private value for the monopolist, since it affects
the buyer’s willingness to pay. In this case, the seller’s profits per sale are bounded
away from zero for all probabilities λ ∈ [0, 1] .

3. Case with socially valuable information (c > L). In this case, the socially optimal
decision (purchase or no purchase) depends on the quality of the good (respec-
tively, v = H or v = L). Since the buyers collectively know this quality, their
information is privately as well as socially valuable. The seller’s option to exit
the market matters in this case, but not in the first two cases.

5 Optimal pricing

To illustrate the seller’s optimization problem and the resulting equilibrium, we begin
in Sect. 5.1 by considering the borderline case with c = L . The analysis of this case
provides the basic insights on how the equilibrium depends on the signal precision α

and the seller’s discount factor δ. When c = L as well as when c < L (analyzed in
Sect. 5.2), we need compare only two prices since exit is never optimal and a purchase
cascade is the only occurrence of herding. When instead c > L , exit becomes relevant
(Sect. 5.3).

5.1 Borderline case (c = L)

Without loss of generality, we normalize L = 0, so that pH (λt ) = λ+
t and pL (λt ) =

λ−
t . Since the expected immediate profits from the separating price is RH (λt ) =

ϕ(λt )pH (λt ) = αλt , the difference between the expected immediate profits from the
separating and the pooling price is

RH (λt ) − RL(λt ) = αλt − pL(λt ) = λt [α2(1 − λt ) − (1 − α)(1 − αλt )]
λt (1 − α) + (1 − λt )α

.

Figure 1.a.1 and 1.a.2 make clear that we need to distinguish the case in which
RL(λt ) > RH (λt ) for all λt ∈ (0, 1) from the case in which RH (λt ) > RL(λt )

for some λt ∈ (0, 1):

Lemma 3 If α2 > 1 − α, there exists a λ̄α ∈ (0, 1) such that the expected immediate
profits from the separating price pH (λt ) are identical to those from the pooling price
pL(λt ) for λt = λ̄α , whereas they are larger for λt < λ̄α and smaller for λt > λ̄α .
Furthermore, λ̄α → 1 for α → 1. If α2 ≤ 1 − α, the expected immediate profits
from the pooling price pL(λt ) exceed those of the separating price pH (λt ) for all
λt ∈ �(λ1).

Figure 1.a.1 and 1.a.2 illustrate the cases with α2 > 1 −α and α2 ≤ 1 −α, respec-
tively. The precision of the buyers’ signal is critical for the seller’s optimal strategy.
For example, if the signal is almost perfect (α close to 1) even an extremely impatient
seller demands the separating price unless λt is close to 1. This follows directly from
Lemmas 1 and 3 because λ̄α → 1 for α → 1.
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We consider the three sub-cases : (i) α2 > 1−α or, equivalently, α > 1
2 (

√
5−1) 


0.618; (ii) α2 = 1 − α, or α = 1
2 (

√
5 − 1); and (iii) α2 < 1 − α, or α < 1

2 (
√

5 − 1).
We say that the signal is precise in case (i) and noisy in case (iii), while (ii) is the
threshold case in which the likelihood ratio 1−α

α
is equal to the probability α that the

signal is correct.9 Propositions 1, 2, and 3 below provide a full characterization of the
seller’s optimal strategy.

Consider first the seller’s optimal pricing strategy when the signal is precise.

Proposition 1 If c = L and α2 > 1 − α, there exists a critical belief λ∗∗ ≥ λ̄α,

λ∗∗ ∈ �(λ1), that depends on the seller’s discount factor δ, such that it is uniquely
optimal for the seller to demand

pt =
{

pH (λt ) whenever λt < λ∗∗
pL (λt ) whenever λt > λ∗∗.

For λt = λ∗∗, pL (λt ) is optimal, but pH (λt ) may be optimal as well. Moreover,
λ∗∗ > λ̄α for δ > 0, and λ∗∗ = minλ∈�(λ1)∩

[
λ̄α,1

] λ for δ = 0, so that if the seller is

completely impatient, λ∗∗ is the smallest λ ∈ �(λ1) such that λ ≥ λ̄α. For δ → 1 ,
λ∗∗ → 1, so that as the seller becomes infinitely patient the separating price pH (λ)

becomes uniquely optimal for the seller for all λ ∈ (0, 1).10

Proposition 1 shows that the set of attainable beliefs can be partitioned such that
for low beliefs the separating price is optimal and for high beliefs the pooling price
is optimal for the seller. As argued earlier, the intuition is that at high beliefs there is
little to gain and much to lose from the separating price (Lemma 2 ). At low beliefs the
converse holds for precise signals. Although at low beliefs there is a high probability
of no sale at the separating price, the pooling price is low and thus the opportunity cost
of not selling at the pooling price is small as well. With precise signals, the separating
price is sufficiently large, relative to the pooling price, to more than compensate for
the expected loss of no sale. The separating price then maximizes expected immediate
profits and thus, by Lemma 1, the seller’s expected payoff.

When the good’s true value is low, λt may never hit λ∗∗ and consequently herding
may never arise. If herding does not occur, the belief will converge to zero due to the
martingale convergence theorem. Thus, with precise signals it may asymptotically be
revealed that the good’s true value is low.

9 Note that the likelihood ratio 1−α
α determines the function pL (λt ), i.e., the immediate return of the

pooling price as a function of λt . The probability α determines the expected immediate return αλt of

the separating price as a function of λt . For λt = 0 the respective derivatives are dpL (λt )
dλt

= 1−α
α and

d(αλt )
dλt

= α; thus these two slopes are identical in the threshold case with α2 = 1 − α. Incidentally,

α2 = 1 − α is the equation for the golden section.
10 In general pL (

λ∗∗)
will be uniquely optimal at λt = λ∗∗ because � (λ1) is a discrete set and thus the λ

where both pL (λ) and pH (λ) are optimal (and which would imply λ = λ∗∗) is generically not attainable.
However, it is possible that this λ is attainable and hence at λt = λ∗∗ the separating price is also optimal.
This holds for the Propositions 2–6 as well.
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Next consider the seller’s optimal strategy in the threshold case (α2 = 1 − α). In
this case, the seller’s patience plays a more important role in determining the optimal
pricing strategy.

Proposition 2 If c = L and α2 = 1 − α, there exists a discount factor δ∗ ∈ (0, 1)

such that for all δ ∈ [
0, δ∗] the uniquely optimal prices are given by pt = pL (λ1)

for all t ∈ {1, 2, ...}. For each discount factor δ ∈ (δ∗, 1) there exists a critical belief
λ∗∗ ∈ �(λ1) that depends on δ, such that it is uniquely optimal for the seller to
demand

pt =
{

pH (λt ) whenever λt < λ∗∗
pL (λt ) whenever λt > λ∗∗.

For λt = λ∗∗, pL (λt ) is optimal, but pH (λt ) may be optimal as well. Finally, λ∗∗ → 0
for δ → δ∗, and λ∗∗ → 1 for δ → 1, i.e., whereas a sufficiently impatient seller
always chooses the pooling price and triggers herding immediately, for a seller that
becomes infinitely patient the separating price pH (λ) becomes uniquely optimal for
all λ ∈ (0, 1).

In contrast to the case with precise signals, in the threshold case the separating price
generates lower expected immediate profits than the pooling price even for small λt

(Fig. 1.a.2). Thus, for an impatient seller the pooling price pL (λ1) is always uniquely
optimal and herding arises immediately. For a patient seller the threshold case is sim-
ilar to the precise signal case, and herding may, but need not, arise. The difference is
that the belief λ̄α at which RH (λ) = RL (λ) is equal to zero in the threshold case, but
is positive in the case of precise signals, as discussed in Lemma 3.

Finally, consider the seller’s optimal price when the signal is noisy, α2 < 1−α. As
in the threshold case, with noisy signals the pooling price pL (λ1) generates higher
expected immediate profits (see Lemma 3 and Fig. 1.a.2), and hence an impatient
seller chooses the pooling price and triggers herding immediately. For a patient seller
herding does not occur immediately for priors λ1 that lie within some range (λ∗, λ∗∗),
but in contrast to the two previous cases herding arises eventually.11 These results
are shown in the following proposition, along with the possibility that sometimes the
pooling and the separating price may both be optimal.

Proposition 3 If c = L and α2 < 1 −α, there exist discount factors δ∗∗ ∈ (0, 1) and
δ∗∗∗ ∈ [

δ∗∗, 1) such that:

1. For all δ ∈ [
0, δ∗∗) , the uniquely optimal prices are given by pt = pL (λ1) for

all t ∈ {1, 2, ...};
2. For δ ∈ [

δ∗∗, δ∗∗∗] , pt = pL (λt ) is optimal for all λt ∈ �(λ1) , but pt =
pH (λt ) is optimal as well for at least one λt ∈ �(λ1); and

3. For each δ ∈ (δ∗∗∗, 1) there exist critical beliefs λ∗ and λ∗∗ (that depend on δ) in
�(λ1) , where 0 < λ∗ < λ∗∗ < 1, such that it is uniquely optimal for the seller

11 Notice that for any λ1 ∈ (0, 1) ,
(
λ∗, λ∗∗)∩� (λ1) = ∅ for sufficiently large δ because, as Proposition 3

shows, λ∗ → 0 and λ∗∗ → 1 for δ → 1.
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to demand

pt =
{

pH (λt ) whenever λt ∈ (λ∗, λ∗∗)
pL (λt ) whenever λt ∈ (0, λ∗) or λt ∈ (λ∗∗, 1) ;

for λt = λ∗ and λt = λ∗∗, pL (λt ) is optimal, but pH (λt ) may be optimal as
well. For δ → 1, λ∗ → 0 and λ∗∗ → 1, i.e., as the seller becomes infinitely
patient the separating price pH (λ) becomes uniquely optimal for the seller for
all λ ∈ (0, 1).

In contrast to the case with precise signals and the threshold case, the seller triggers
herding also for sufficiently low public beliefs, with the consequence that eventually
herding occurs (almost surely). To understand this difference, consider the expected
payoff achieved by the seller when always charging the separating price. Since in
any period t the expected immediate profit from the separating price is αλt and λt

is a martingale, the expected payoff is αλt
1−δ

. If the separating price is optimal for all
sufficiently small λt , it must be that for λt → 0 the seller’s expected payoff V (λt )

converges to αλt
1−δ

.12 On the other hand, the seller’s payoff from triggering herding is
pL (λt )
1−δ

, which for λt → 0 converges to 1
1−δ

1−α
α

λt since pL (λt ) = λt (1−α)
λt (1−α)+(1−λt )α

.

Consequently, if α
1−δ

λt > 1
1−δ

1−α
α

λt , or α2 > 1 − α, the separating price is optimal

for all sufficiently small λt , whereas if α
1−δ

λt < 1
1−δ

1−α
α

λt , or α2 < 1−α, the pooling
price is optimal for all sufficiently small λt . This explains why λ∗ is positive when
the signal is noisy (Proposition 3) but zero when it is precise (Proposition 1). Since

α
1−δ

λt = 1
1−δ

1−α
α

λt in the threshold case, the probability to reach the upper threshold
λ∗∗ gives the separating price the edge and implies λ∗ = 0 (Proposition 2).

To summarize Propositions 1–3, herding may but need not arise in the case c = L .
Depending on the parameters, the seller either initiates herding immediately or starts
with a separating price. In the latter case, the buyer purchases the good following the
observation of a high signal, which results in positive updating by the seller and
the future buyers. The seller then continues to charge the separating price as long as
the updated public belief is within a certain interval. An informational cascade arises
as soon as the belief hits the lower barrier λ∗ or the upper barrier λ∗∗.

The absorbing barriers are optimally chosen by the seller and thus the seller’s prob-
lem can also be seen as one of optimal stopping. As soon as the price exceeds a critical
level in some period t and the buyer actually buys at this price, the seller reduces the
price somewhat (from pt = pH (λt ) = λ+

t to pt+1 = pL (λt+1) = λ−
t+1 = λt < λ+

t

since λt+1 = λ+
t because of the sale at t) and triggers herding. However, the price may

never hit this critical level. Instead, the price may converge to zero and thereby reveal
that the common value of the object is low. Although one might expect the seller to
trigger a purchase cascade in order to prevent buyers from asymptotically learning

12 This follows because V (λt ) cannot be below αλt
1−δ

and exceeds it only because the seller will switch to
the pooling price if and when λt attains the (upper) threshold λ∗∗. But for any small λt the threshold λ∗∗
will be reached only with a minute probability and, if at all, only after a long time. Because of this and
discounting, the effect on V (λt ) becomes vanishingly small for λt → 0, and thus if for all sufficiently
small λt the separating price is optimal, V (λt ) converges to α

1−δ
λt .
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that the true value is low, the seller will not do so, except when the precision of the
signal is poor.

If the signal is precise (or in the threshold case if the seller is patient) and λ1 < λ∗∗,
either a purchase cascade occurs in the long run or it is learnt asymptotically that
the value is low. As shown in Proposition 1, in this case the seller does not trigger a
purchase cascade as long as λt < λ∗∗, and Pr (λt < λ∗∗ for all t ∈ {1, 2, ...} |L) > 0.
Hence, with positive probability an informational cascade does not arise conditional
on the true value being low. Conditional instead on the good’s quality being high, an
informational cascade arises with probability one.

If the signal is precise (α2 > 1 − α), there is a range of λ, i.e., the interval
(
0, λ̄α

)
,

where the seller’s degree of patience δ plays no role. For λ in this interval, regardless
of δ the seller charges the separating price and herding will not occur in this range.
Nevertheless, the seller’s degree of patience matters because, as Proposition 1 shows,
the separating price is optimal not only for probabilities λ ∈ (

0, λ̄α

)
but also for

probabilities λ ∈ [
λ̄α, λ∗∗) , and λ∗∗ does depend on δ.

Depending on the signal’s precision and the seller’s patience, there may, but need
not, be public beliefs such that the separating price is optimal. However, if the sepa-
rating price is optimal for some public belief, then it is optimal for a connected set of
public beliefs. As shown in Sect. 5.2, the optimal strategy retains this simple property
also in the case in which information is socially worthless. If instead the information
is socially valuable, we show in Sect. 5.3 that there are situations in which the pooling
price is uniquely optimal for beliefs surrounded by beliefs at which the separating
price is optimal.

5.2 Case with socially worthless information (c < L)

When c < L the seller also triggers a purchase cascade when the belief is sufficiently
pessimistic, regardless of the signal’s precision. The intuition is as follows. When the
belief λ approaches zero, the separating and the pooling price both converge to L > c.
If the seller charges the pooling price, she gets the approximate profit L − c for sure,
whereas if she demands the separating price, she gets it only with a probability close to
1−α < 1/2. Thus, as seen in Fig. 1.b.1–b.3, the difference in the expected immediate
profit is bounded away from zero. On the other hand, the difference in the expected
future profits converges to zero when the belief approaches zero. Consequently, for a
small λ the difference in the expected immediate profits exceeds the difference in the
expected future profits and the pooling price is optimal. Because of this and Lemma 2,
the seller’s optimal strategy is to trigger herding at low as well as at high public beliefs,
analogously to the case c = L with noisy signals.

Depending on the signal’s precision, the seller’s patience and the cost c, there may
but need not be intermediate public beliefs such that the separating price is opti-
mal. However, as the following proposition shows, if the separating price is optimal
for some public belief, then it is optimal for all intermediate public beliefs between
the optimistic and pessimistic public beliefs, respectively, where the pooling price is
optimal.
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Proposition 4 If c < L, the seller’s optimal strategy is characterized by the following
properties:

1. If the discount factor δ is sufficiently close to 1 (i.e., if the seller is sufficiently
patient), there exist probabilities λ∗ and λ∗∗ (that depend on δ) in �(λ1), where
0 < λ∗ < λ∗∗ < 1, such that the separating price pH (λ) is uniquely optimal
for the seller for all λ ∈ (λ∗, λ∗∗) , whereas the pooling price pL (λ) is uniquely
optimal for the seller for all λ ∈ (0, λ∗) and all λ ∈ (λ∗∗, 1) . For λ = λ∗ and
λ = λ∗∗ the pooling price pL (λ) is optimal for the seller, but the separating price
pH (λ) may be optimal as well. For δ → 1 it holds that λ∗ → 0 and λ∗∗ → 1,
hence as the discount factor converges to 1 the separating price pH (λ) becomes
uniquely optimal for all λ ∈ (0, 1).

2. If α2 ≤ 1 − α, there exists a δ∗∗ > 0 such that the pooling price pL (λ) is
uniquely optimal for all λ ∈ (0, 1) whenever δ < δ∗∗; that is, if α2 ≤ 1 − α

and the discount factor δ is sufficiently low, the pooling price pL (λ) is uniquely
optimal for all λ ∈ (0, 1).

3. If the signal precision α is sufficiently high, there exist probabilities µ∗ ∈ �(λ1)

and µ∗∗ ∈ �(λ1) , where 0 < µ∗ < µ∗∗ < 1, that depend only on α and
the difference L − c between the low value and the unit cost, such that for all
λ ∈ [

µ∗, µ∗∗] the separating price pH (λ) is uniquely optimal for the seller
regardless of the discount factor δ.

Part 2 of the proposition corresponds to Fig. 1.b.2, where RL(λ) > RH (λ) for all
λ, and part 3 corresponds to Fig. 1.b.1, where RH (λ) > RL(λ) for some intermediate
values of λ. Fig. 1.b.3 depicts the threshold case. Proposition4 implies that whenever
c < L herding will occur with probability 1. We saw in Proposition 1 that when c = L
and signals are precise, pH (λ) is optimal for λ ∈ (

0, λ̄α

)
regardless of the discount

factor δ. Thus, part 3 of Proposition 4 is analogous to Proposition 1. Similarly, part 2
of Proposition 4 is analogous to Propositions 2 and 3, respectively. Notice that, as
before, the degree of patience matters more when the signal is noisy. When the signal
is precise, there is a range of public beliefs where it is uniquely optimal to charge the
separating price regardless of δ.

5.3 Case with socially valuable information (c > L)

As illustrated in Fig. 1.c.1, when c > L the seller’s option to exit the market becomes
relevant. Whenever the belief is sufficiently pessimistic, the separating price (and a
fortiori the pooling price) is below the cost c. The seller may still stay in the market
and demand the separating price because there is a positive probability that there is a
sequence of high signals, revealed by sales, that lead the price to rise above c. How-
ever, if λ is sufficiently low, the probability of ever reaching the profitable range of
prices is small and, moreover, even if all future buyers receive high signal realizations,
the seller has nevertheless to incur a loss for a long sequence of periods until at least
the separating price exceeds the unit cost. In addition, due to discounting the present
value of potential future profits is low. Consequently, whenever λ is sufficiently low,
it is not worthwhile for the seller to incur these losses, and an exit cascade results.
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If for some λ ∈ �(λ1) it holds that pL (λ) ≤ c < pH (λ), it is uniquely optimal
for the seller to stay in the market and demand the separating price pH (λ) because the
expected immediate profit from demanding the separating price, ϕ (λ)

[
pH (λ) − c

]
,

is positive (and thus the seller’s expected payoff is positive), whereas the payoff from
charging the pooling price and triggering herding, 1

1−δ

[
pL (λ) − c

]
, is non-positive.

From c > L it follows that there are exactly two attainable probabilities λ ∈ �(λ1)

that satisfy pL (λ) ≤ c < pH (λ). One, call it λ, is the largest λ ∈ �(λ1) such that
pL (λ) ≤ c. Since pH

(
λ
)

> pL
(
λ+)

> c, it must be that c < pH
(
λ
)
. In addition,

pH
(
λ−) = pL

(
λ+)

implies pL
(
λ−)

< c < pH
(
λ−)

, whereas for all λ < λ−,

λ ∈ �(λ1) , it holds that pL (λ) < pH (λ) < c , and for all λ ≥ λ+, λ ∈ �(λ1), it
holds that c < pL (λ) < pH (λ).

Recall that the seller’s expected immediate profit is linear in λt for the separat-
ing price pH (λt ), and strictly convex in λt for the pooling price pL (λt ) . Moreover,
if λt is sufficiently large, the expected immediate profit from demanding the sepa-
rating price is strictly below the immediate profit from charging the pooling price
since RH (1) = α (1 + L − c) < 1 + L − c = RL(1), as illustrated by Fig. 1.c.1.
In combination with the analysis of the preceding paragraph, this implies that there
is exactly one λ ∈ (0, 1), which we denote by λ̄α, such that the expected immediate
profit from demanding the separating price is positive and equal to the immediate
profit from charging the pooling price, i.e., RH

(
λ̄α

) = RL
(
λ̄α

)
> 0.13 Furthermore,

RH (0) = − (1 − α) (c − L) > − (c − L) = RL(0) implies RH (λ) > RL(λ) for all
λ < λ̄α. Consequently, at all public beliefs below λ̄α either the separating price or exit
is optimal for the seller.

The seller’s optimal strategy depends again on the precision of the signal α and
the discount factor δ. The solution’s qualitative characteristics depend critically on
whether α ≥ (

1 − α2
)
(H − c) or not.14 First, if signals are sufficiently precise, i.e.,

if α ≥ (
1 − α2

)
(H − c), Proposition 5 below shows that the separating price is again

optimal only in one single connected interval.15 Second, if instead the signal precision
is sufficiently low, α <

(
1 − α2

)
(H − c), the separating price may be optimal in two

disconnected intervals.
First, for the case with α ≥ (

1 − α2
)
(H − c) we derive a result analogous to

Proposition 1 , modified for exit. Provided the seller is active in the market, the seller
demands the separating price if λ is below a certain threshold and the pooling price

13 Note that for c → L , λ̄α converges to the λ̄α that we have defined above for the case c = L . In general,
λ̄α will not be an attainable λ, i.e., will not be an element of �(λ1) .

14 Without the normalization H − L = 1 the condition would read α ≥ (
1 − α2) H−c

H−L .
15 The condition α ≥ (

1 − α2)
(H − c) is equivalent to

1 − α

α
− α ≤ c − L

H − c
,

which is independent of the normalization H − L = 1. For c = L this condition reduces to α2 ≥ 1 − α

(i.e., the signal must not be noisy in the sense of Sect. 5.1), which is consistent with our analysis of the
borderline case in Sect. 5.1. However, for c > L the condition α2 ≥ 1 − α is sufficient but not necessary

for α ≥
(

1 − α2
)

(H − c) to hold, since c−L
H−c > 0.
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if λ is above that threshold. This corresponds to what we have found for the case
with c = L and precise signals. However, in contrast to Proposition 1 exit is now
optimal whenever λ is sufficiently small. As noted in footnote 15, precise or threshold
case signals in the sense of Sect. 5.1 are sufficient but not necessary for the condition
α ≥ (

1 − α2
)
(H − c) to hold.

Proposition 5 If c > L and α ≥ (
1 − α2

)
(H − c), the optimal strategy of the seller

is characterized by the following properties. For every discount factor δ ∈ [0, 1) there
exist probabilities λE and λ∗∗ (that depend on δ) in �(λ1) , with 0 < λE < λ̄α ≤
λ∗∗ < 1, such that for all λ ∈ (

0, λE
)

it is uniquely optimal for the seller to exit the
market, whereas for all λ ∈ (

λE , 1
)

it is uniquely optimal for the seller to stay in the
market. Moreover, for all λ ∈ (

λE , λ∗∗) the separating price pH (λ) is uniquely opti-
mal for the seller, and the interval

(
λE , λ∗∗) contains at least two attainable values

of λ (i.e.,
(
λE , λ∗∗) ∩ �(λ1) contains at least two elements). For all λ ∈ (λ∗∗, 1) the

pooling price pL (λ) is uniquely optimal for the seller. For λ = λE exit is optimal,
but staying in the market and charging the separating price pH (λ) may be optimal
as well; and for λ = λ∗∗ the pooling price pL (λ) is optimal, but the separating price
pH (λ) may be optimal as well. For δ = 0, λ∗∗ = minλ∈�(λ1)∩

[
λ̄α,1

] λ, i.e., if the seller

is completely impatient, λ∗∗ is the smallest λ ∈ �(λ1) such that λ ≥ λ̄α . For δ → 1,
λ∗∗ → 1, i.e., as the seller becomes infinitely patient the separating price pH (λ)

becomes uniquely optimal for the seller for all λ ∈ (
λE , 1

)
and thus the seller either

charges the separating price or exits the market.

Second, for the case with α <
(
1 − α2

)
(H − c) we find the possibility that an

informational cascade arises for interior beliefs—a key finding of this paper.

Proposition 6 If c > L and α <
(
1 − α2

)
(H − c), the optimal strategy of the seller

is characterized by the following properties. For every discount factor δ ∈ [0, 1) there
exist probabilities λE , λ̂′, λ̂′′ and λ∗∗(that depend on δ) in �(λ1), where 0 < λE <

λ̄α ≤ λ̂′ ≤ λ̂′′ ≤ λ∗∗ < 1, such that for all λ ∈ (
0, λE

)
it is uniquely optimal for the

seller to exit the market, whereas for all λ ∈ (
λE , 1

)
it is uniquely optimal for the

seller to stay in the market. Moreover, for all λ ∈ (
λE , λ̂′) and for all λ ∈ (

λ̂′′, λ∗∗)

it is uniquely optimal for the seller to charge the separating price pH (λ), whereas
for all λ ∈ (

λ̂′, λ̂′′) and for all λ ∈ (
λ∗∗, 1

)
it is uniquely optimal for the seller

to charge the pooling price pL
(
λ
)
. For λ = λE exit is optimal, but staying in the

market and charging the separating price pH (λ) may be optimal as well; and for
λ ∈ {

λ̂′, λ̂′′, λ∗∗} the pooling price pL
(
λ
)

is optimal, but the separating price pH
(
λ
)

may be optimal as well. For every c > L there exists a discount factor δ′ ∈ [0, 1)

such that λ̂′ = λ̂′′ = λ∗∗ (and thus the interval
(
λ̂′, λ̂′′) is empty) for all δ ∈ (

δ′, 1
)
.

There also exist parameter values of δ ∈ (
0, 1

)
and c > L such that λ̂′ < λ̂′′ < λ∗∗

and
(
λ̂′, λ̂′′) contains at least one attainable λ (i.e.,

(
λ̂′, λ̂′′) ∩ �

(
λ1

) = ∅). When the

seller becomes arbitrarily patient, δ → 1, we have λ∗∗ → 1 (and λ̂′ = λ̂′′ = λ∗∗),
so that the separating price pH

(
λ
)

becomes uniquely optimal for the seller for all
λ ∈ (

λE , 1
)

and thus the seller either charges the separating price or exits the market.
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An important and unexpected conclusion from our analysis is that there are cases
in which the separating price is uniquely optimal in two disconnected intervals. This
proves that the property of the specific illustration in Chamley (2004, pp. 81–83)—
according to which the seller exits the market for sufficiently pessimistic public beliefs,
charges separating prices at which learning takes place for all public beliefs in an inter-
mediate interval, and induces a purchase cascade at sufficiently optimistic beliefs—
does not hold in general. For parameter values that satisfy α <

(
1 − α2

)
(H − c) it

is possible that when we increase λ, starting with λ = 0, exit is optimal for the seller
for extremely low values of λ, then the separating price is optimal, then the pooling
price, then the separating price once more, and finally the pooling price is again opti-
mal for the seller. The proof of Proposition 6 (and specifically of Lemma 7 in the
Appendix) implies that the possibility that the separating price may be optimal in two
disconnected intervals is not due to the seller’s exit option. If exit were not feasible,
the separating price would be charged at all sufficiently low public beliefs rather than
only for those where exit is not optimal, but when we increase λ above that level it
would still be the case that first the pooling price becomes optimal, then the separating
price once more, and finally the pooling price again.16

To gain some intuitive understanding of Proposition 6, the following continuity
argument is useful. Consider a situation corresponding to Proposition 3, in which
c = L , signals are noisy (α2 < 1−α), and the pooling price is optimal for λ ∈ (0, λ∗)
and λ ∈ (λ∗∗, 1), with 0 < λ∗ < λ∗∗ < 1, whereas the separating price is optimal
for λ ∈ (λ∗, λ∗∗). That is, the pooling price is optimal for sufficiently pessimistic and
optimistic public beliefs, whereas the separating price is optimal for intermediate pub-
lic beliefs. What is the effect of increasing the cost c by a small amount so that c− L is
positive but almost zero? We know that with c > L for extremely low values of λ first
exit and then the separating price is optimal, but for the remaining (higher) levels of λ

we expect a situation that is similar to the case c = L , provided c − L is sufficiently
small. That is, for pessimistic (though not extremely pessimistic) public beliefs the
pooling price is optimal, for intermediate public beliefs the separating price, and for
optimistic public beliefs again the pooling price is optimal. Thus, when we increase
λ from zero to one, exit is optimal for the seller for extremely low values of λ, then
the separating price is optimal, then the pooling price, then the separating price once
more, and finally the pooling price is again optimal for the seller.17

To further understand the unexpected result of Proposition 6, consider how the
public belief λ affects the difference in the seller’s payoff between the separating and

16 If exit is not feasible, the separating price is optimal for all sufficiently low public beliefs λ since
whenever pL (λ) ≤ c the separating price generates a strictly larger expected immediate profit than the
pooling price. This follows because the separating price exceeds the pooling price and deters buyers who
have observed a low signal realization (notice that for pL (λ) < c the seller makes a loss at the pooling
price, and for pH (λ) < c this holds even at the separating price).
17 In contrast to the case with c = L , the separating price is optimal at the lowest public beliefs such that
the seller does not exit the market, and this makes the separating price more attractive to the seller also at
higher public beliefs (because it reduces the negative effect on the seller’s expected payoff of a non-sale).

Therefore, the condition for the occurrence of the separating price at low beliefs, α <
(

1 − α2
)

(H − c),

is more restrictive (and only necessary) than the respective (necessary and sufficient) condition for the case
with c = L , i.e., α2 < 1 − α.
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the pooling price. Why is it possible for the separating price to be optimal for λ in
an interval, but then no longer optimal for a higher λ, and finally optimal again for
even larger λs? First, the difference in the expected immediate profit between the
separating and the pooling price decreases in λ to the right of the point where RL (λ)

and RH (λ) intersect, as also illustrated in Fig. 1.c.1.18 Second, the informativeness
of the signal is maximized for λ = 1/2. For λ close to zero the signal provides little
information, but becomes more informative as λ increases towards 1/2, and then again
becomes less informative for λ beyond 1/2. Therefore, for moderate values of λ the
(positive) difference in the expected future profits between the separating and the pool-
ing price increases, whereas the difference in the expected immediate profit between
the separating and the pooling price decreases. Because of these two counteracting
forces, the difference in the seller’s total expected profit between the separating and
the pooling price need not be monotonic in λ and may first decrease from a positive
to a negative value (implying a switch from the separating to the pooling price), then
increase to a positive value (making the separating price optimal yet another time)
and finally decrease again to a negative value (and then the pooling price is optimal
anew). This intuitive argument sheds some light on Proposition 6. More precisely,
the proof of Lemma 7 in the Appendix implies (i) that for α ≥ (

1 − α2
)
(H − c) a

function related to the difference in the total expected profit between the separating
and the pooling price decreases monotonically in λ and thus α <

(
1 − α2

)
(H − c) is

a necessary condition for the “recurrence” of the separating price; and (ii) that there
can be at most two disconnected intervals in which the separating price is optimal.

6 Price sequence

We now derive the stochastic properties of the price sequence. To this end, we need to
define more precisely the prices that result in an exit cascade. An exit cascade results at
any price strictly above the separating price, since no buyer purchases the good at such
a price. We make the natural assumption that the exit price is pE (λ) = pH (λ) + ε,
with ε > 0 arbitrarily small. Under this assumption, we show that the price decreases
on average.

Proposition 7 The price sequence is a supermartingale, E
[

pt+1|λt
] ≤ pt .

To translate this result into an empirical statement, the average should be taken over
a number of (ex-ante identical) markets. Once prices are averaged in this way, they
should display a downward trend.19

18 Under the condition of Proposition 6, α <
(
1−α2)(

H −c
)
, the difference in expected immediate profits

between the separating and the pooling price decreases in λ everywhere. The slope of RH (λ) is given by
R′

H (λ) = α − (2α − 1) (c − L) and for the slope of RL (λ) it holds that R′
L (λ) ≥ R′

L (0) = 1−α
α . Since

α <
(
1 − α2)

(H − c) and c > L imply (cf. footnote 15) 1−α
α > α > α − (2α − 1) (c − L), it follows

that d
dλ

[RL (λ) − RH (λ)] > 0. However, for the argument it is actually sufficient that this result holds for
all λs that satisfy RL (λ) > RH (λ), and this is true whenever c > L .
19 However, it is easy to show that for a fixed good of high quality the price tends to increase on average
in the learning phase.
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This result is driven by the following three properties. First, the separating price
pH (λ) is a concave function of the belief λ. This first property, combined with the
fact that the belief is a martingale (see Eq. 2), implies by Jensen’s inequality that
prices decrease on average when separating prices are charged in period t + 1 as
well as in period t . Second, the pooling price is lower than the separating price,
pL (λ) < pH (λ). This second property implies that the price decreases when a pur-
chase cascade is started. Third, the exit price pE = pH (λ) + ε is arbitrarily close to
the separating price provided that ε is sufficiently small, and thus the argument given
above for the case in which the separating price is charged in period t + 1 extends to
the case in which exit takes place following no purchase. This third property implies
that the price decreases also when an exit cascade is started.

This result on the stochastic properties of the price sequence is special to our
binary signal setting. We have constructed a simple two-period example with three
signal realizations in which the optimal price increases on average over time in the
learning phase. With more than two signal realizations, there are cases in which the
price increases when a purchase cascade is induced.20

7 Conclusion

This paper analyzes monopoly pricing with an exogenous sequence of buyers who
learn from each other’s purchases. Specifically, the goods sold are non-durable and
have a common but unknown value, which is either high or low. In contrast to herding
models with a fixed price, the monopolist is free to post a new price in every period.
Consequently, the monopolist can strategically influence learning dynamically rather
than only once—as it is the case if the price is set at the outset once and for all—
or not at all—as it is the case if the price is exogenously given.21 Focusing on the

20 When a purchase cascade is induced after a purchase at a non-pooling price, there are two effects on
the price. On the one hand, the purchase results in an updated belief at which all prices are higher. On the
other hand, for any given belief the pooling price charged in a purchase cascade is lower than any price
at which some buyers do not purchase. This second effect tends to result in a price reduction. With two
signal realizations the second effect dominates, while there are three-signal examples in which the first
effect dominates.
21 If the price is exogenously fixed, the standard model applies and, depending on the price and the prior,
a cascade occurs either immediately, after one signal revelation, or as soon as two consecutive identical
signals are realized (see e.g., Chamley 2004, Sect. 4.1, pp. 62–67). If the monopolist could choose the
price but would not be able to change it thereafter, only one out of four prices can be optimal. These four
prices are the pooling price pL (λ1), the separating price pH (λ1), the exit price pE (λ1), and the “prior
price” pP (λ1) ≡ E (v|λ1) = λ1 + L . The “prior price” did not appear so far, but, in contrast to the case
with flexible prices, this price may be optimal if the monopolist can choose the price only once and for all.
The reason is that if at the prior price pP (λ1) there is no sale and thus the public belief drops to λ−

1 , the

seller has a “second chance” in the sense that the second buyer will buy at price pP (
λ1

) = pH (
λ−

1
)

when
observing a high signal (and this will bring back the public belief to λ1). This is not true for a higher price.
Moreover, a price below the prior price but above the pooling price cannot be optimal because it does not
increase the probability of a sale in any period. A similar argument shows that prices below the separating
but above the prior price cannot be optimal. Consequently, depending on the parameters the optimal fixed
price can only be one of the four prices

{
pL (λ1), pP (λ1) , pH (λ1), pE (λ1)

}
.

123



Binary herding model 225

case with symmetric binary signals, we are able to provide a complete character-
ization of the equilibrium and answer the four questions posed at the outset of the
paper.

First, a (patient) monopolist charges a relatively high price in the initial periods in
order to build a good track record, even at the risk of failing to sell for a long time.
When the buyer has a binary signal and past prices are observable, a high (separating)
price allows future buyers to infer the information of the current buyer while a low
(pooling) price induces the buyer to purchase regardless of the signal realization. The
monopolist benefits from the social learning process and so charges the separating
price.

Second, we determine when the seller induces an informational cascade in which
all potential buyers purchase regardless of their private information. Unless infinitely
patient, the monopolist always induces a purchase cascade after a sufficiently long
stream of successful sales at relatively high prices. If the value of the good is known
to exceed its cost of production, the monopolist never exits the market and eventually
induces a purchase cascade, even after many buyers refuse to purchase at separating
prices. As in the bandit literature, the intuitive reason is that the seller finds it too
costly to achieve complete learning. However, when the signal is sufficiently precise
and the cost of production is exactly equal to the low value of the good, the monop-
olist demands the separating price for all sufficiently pessimistic beliefs and hence
allows the buyers to learn the true value of the good conditional on this value being
low.

Third, we show that there is a region of parameters for which learning stops at
intermediate beliefs—a result we certainly could not foretell. When the signal is suf-
ficiently uninformative and the production cost exceeds the low value of the good by
a sufficiently small amount, the separating price is optimal in two disjoint intervals of
public beliefs, whereas the pooling price is optimal for beliefs that lie, respectively,
between or above these two intervals. In this case, a purchase cascade may arise for
both high and intermediate public beliefs. With the exception of this case (as well
as the trivial case in which they are triggered for all public beliefs), informational
cascades are triggered only for extreme (i.e., sufficiently optimistic or pessimistic) but
not for intermediate public beliefs.

Fourth, we show that monopoly prices on average decrease over time. In the initial
periods when the monopolist charges separating prices, there is active learning. Since
the expected belief tomorrow is equal to the belief today and the separating price is
a concave function of the belief, prices decrease on average in the learning phase.22

In addition, the price is reduced deterministically at the onset of a purchase cascade.
While this fourth set of results is special to our binary signal setting, the other three
results reflect more general properties.

22 In turn, concavity of the separating price in the prior belief is driven by concavity of the posterior belief
following a high signal. Intuitively, the marginal impact of an increase in the prior belief on this posterior
belief is lower for higher prior beliefs.

123



226 S. Bose et al.

Appendix

Notation

Let F (λ) denote the difference in the seller’s expected payoff obtained by (i) charging
the separating price now and the pooling price (associated with the updated belief)
from the next period onwards and (ii) charging the pooling price now and forever, i.e.,

F(λ) ≡ [α + (2α − 1)(L − c)]λ + (1 − α)(L − c) + δ[ϕ(λ)
pL (λ+)−c

1−δ
+ [1 − ϕ(λ)] ×

pL (λ−)−c
1−δ

] − pL (λ)−c
1−δ

. By 1
1−δ

= 1 + δ
1−δ

, we have

F (λ) = αc + (1 − α) L + [α + (2α − 1) (L − c)] λ − pL(λ)

+ δ

1 − δ
[ϕ(λ)pL(λ+) + (1 − ϕ(λ))pL(λ−) − pL(λ)]. (3)

If F (λ) > 0, the separating price pH (λ) is the uniquely optimal price. If F (λ) ≤ 0 ,
the separating or the pooling price (or both) may be optimal.

Given λ1, let λ j ∈ �(λ1) be an arbitrary element of the set defined in (1). Define
ϕ j ≡ ϕ

(
λ j

) ≡ Pr
(
s = h|λ j

)
.

Overview

Section A.1 collects the proofs of all the lemmas. Lemmas 5, 6, 8, and Corollary 1 are
key for the characterization of the optimal price in the subintervals in which F (λ) ≤ 0.
Essentially, we show that whenever F (λ) ≤ 0 the separating price is uniquely optimal
only if it is linked by a chain of separating prices (each optimal at its respective λ)
to a public belief λ at which F (λ) > 0. Lemma 7 derives, for different parameter
configurations, the subintervals of the set (0, 1) of possible public beliefs λ for which
F (λ) is positive, zero, or negative. These results are used repeatedly in the proofs of
the propositions.

Section A.1 also contains the proofs of Lemmas 1–3 whose statements appear in
the main text, as well as the statement and proof of Lemma 4 which is a result of
independent interest mentioned in Sect. 4.2. The proofs of Lemmas 1, 2, and 4 are
included to make the paper self contained, but these results can also be established as
corollaries of BOOV’s Lemmas 1, Proposition 6, and Proposition 5, respectively.

Section A.2 collects the proofs of all the propositions stated in the text.

A.1 Proofs of the propaedeutic results

Proof of Lemma 1 The function pL (λ) = 1−α
1−α+(1−λ)α/λ

+ L , where λ ∈ [0, 1] ,

is strictly convex. Moreover, V (λ) ≥ 1
1−δ

[
pL(λ) − c

]
for all λ ∈ �(λ1). If the

seller charges the separating price pH (λt ) in t and the optimal price thereafter, the

expected future payoff is δϕ (λt ) V
(
λ+

t
)+δ[1−ϕ (λt )] V

(
λ−

t
) ≥ δϕ (λt )

pL (λ+
t )−c

1−δ
+
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δ[1 − ϕ (λt )] pL (λ−
t )−c

1−δ
> δ

pL (λt )−c
1−δ

because λt = ϕ (λt ) λ+
t + [1 − ϕ (λt )]λ−

t and
pL(λ) is strictly convex. ��

Proof of Lemma 2 The seller’s payoff from charging pL (λt ) from period t onwards is
pL (λt )−c

1−δ
= (

λ−
t + L − c

) + δ
1−δ

[
pL (λt ) − c

]
. Since pH (λ) < H for all λ ∈ (0, 1),

the expected payoff from charging pH (λt ) is less than [α + (2α − 1) (L − c)] λt +
(1 − α) (L − c) + δ

1−δ
(H − c) . The difference, λ−

t − [α + (2α − 1) (L − c)] λt +
α (L − c) + δ

1−δ

[
pL (λt ) − H

]
, converges to 1 − α + (1 − α) (L − c) = (1 − α)

(1 + L − c) = (1 − α) (H − c) > 0 for λt → 1. Thus, pL (λt ) generates a higher
expected payoff than pH (λt ) whenever λt is sufficiently large. ��

Proof of Lemma 3 Assume α2 > 1 − α. Then, α2(1 − λ) − (1 − α)(1 − αλ) is
equal to α2 − (1 − α) > 0 for λ = 0 and to −(1 − α)2 < 0 for λ = 1. The term
α2(1−λ)−(1−α)(1−αλ) is continuous and decreasing in λ ∈ [0, 1] since α > 1/2.
Hence there is a unique λ̄α ∈ (0, 1) such that α2(1 − λ̄α) − (1 − α)(1 − αλ̄α) = 0,
and αλt − pL(λt ) � 0 for λt � λ̄α . Since α2(1 − λ) − (1 − α) (1 − αλ) increases in
α, λ̄α → 1 for α → 1. When α2 ≤ 1 − α, we have α2(1 − λt ) − (1 − α)(1 − αλt ) ≤
−(1 − α)2λt < 0, hence αλt − pL(λt ) < 0 for all λt ∈ (0, 1). ��

Lemma 4 Given any λ ∈ (0, 1), if the seller is sufficiently patient, then charging the
pooling price pL(λ) is not an optimal strategy. Either the separating price or exit is
optimal.

Proof of Lemma 4 It is enough to show that for each λ ∈ (0, 1), F (λ) > 0 if δ is
sufficiently large. Since pL is strictly convex, [ϕ(λ)pL(λ+) + (1 − ϕ(λ))pL(λ−) −
pL(λ)] > 0. For δ → 1, the right hand side of Eq. (3) becomes arbitrarily large. Hence
F (λ) > 0 for δ sufficiently large. ��

Lemma 5 Let
{
λ j , λ j+1..., λ j+K

}
, K � 2, where λ j+k ≡ Pr

(
H | λ j , k signals

s = h), be a sequence of λ’s such that F
(
λ j+k

)
� 0 for all k ∈ {0, ..., K } . If

V
(
λ j+k

)
>

pL
(
λ j+k

)−c
1−δ

for all k ∈ {1, ..., K − 1} , then either V
(
λ j

)
>

pL
(
λ j

)−c
1−δ

or

V
(
λ j+K

)
>

pL
(
λ j+K

)−c
1−δ

(or both).

Proof of Lemma 5 The proof is by contradiction. Assume V
(
λ j

) = pL
(
λ j

)−c
1−δ

and

V
(
λ j+K

) = pL
(
λ j+K

)−c
1−δ

. We simplify the notation by Vj+k ≡ V
(
λ j+k

)
, k ∈

{0, 1 . . . , K } . Recall that pL
(
λ j+k

) = λ j+k−1 + L . We have

Vj+k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ j−1+L−c+δVj for k = 0

[α + (2α − 1) (L − c)] λ j+k + (1 − α) (L − c)
+δ

(
1 − ϕ j+k

)
Vj+k−1 + δϕ j+k V j+k+1 for k ∈ {1 . . . , K − 1}

λ j+K−1 + L − c + δVj+K for k = K .

(4)
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Defining

V ≡

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Vj
.

.

.

.

.

Vj+K

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, J ≡

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ j−1 + L − c
[α + (2α − 1) (L − c)] λ j+1 + (1 − α) (L − c)
[α + (2α − 1) (L − c)] λ j+2 + (1 − α) (L − c)

.

.

.

[α + (2α − 1) (L − c)] λ j+K−1 + (1 − α) (L − c)
λ j+K−1 + L − c

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

A ≡

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 . . . 0 0 0
1 − ϕ j+1 0 ϕ j+1 0 . . . 0 0 0

0 1 − ϕ j+2 0 ϕ j+2 . . . 0 0 0

− − − − − − − − − − − −

0 0 0 0 . . . 1 − ϕ j+K−1 0 ϕ j+K−1
0 0 0 0 . . . 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(4) can be rewritten as V = J +δAV . Notice that A is a nonnegative square matrix and
that each row sum is 1. Therefore, A has a Frobenius root of 1, since the Frobenius root
must lie between the lowest and the highest row sum of A (see, e.g., Takayama 1974;

Theorem 4.C.11, p. 388). Hence, the inverse (I − δA)−1 = 1
δ

( 1
δ

I − A
)−1

, where I
denotes the identity matrix, exists and is nonnegative for δ ∈ (0, 1), since for any
nonnegative square matrix A and real number ρ the matrix B ≡ (ρ I − A) has a non-
negative inverse B−1 ≥ 0, if and only if ρ exceeds the Frobenius root of A (see e.g.,
Takayama 1974; Theorem 4.D.2, p. 392). Obviously, δ = 0 implies (I − δA)−1 = I .
Therefore, for δ ∈ [0, 1) we have

V = (I − δA)−1 J. (5)

Define Pj+k ≡ pL
(
λ j+k

) − c = λ j+k−1 + L − c for k ∈ {0, 1, ..., K }, and

P ≡

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Pj
Pj+1

.

.

.

Pj+K

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ j−1 + L − c
λ j + L − c

.

.

.

λ j+K−1 + L − c

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By construction V � 1
1−δ

P, and at least one inequality is strict because by assumption

V
(
λ j+k

)
>

pL
(
λ j+k

)−c
1−δ

for all k ∈ {1, ..., K − 1} and K � 2. Thus,

V �
1

1 − δ
P. (6)
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Note that

AP =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ j−1 + L − c
(
1 − ϕ j+1

) [
λ j−1 + L − c

]
+ ϕ j+1

[
λ j+1 + L − c

]

.

.

.
(
1 − ϕ j+k

) [
λ j+k−2 + L − c

]
+ ϕ j+k

[
λ j+k + L − c

]

.

.

.
(
1 − ϕ j+K−1

) [
λ j+K−3 + L − c

]
+ ϕ j+K−1

[
λ j+K−1 + L − c

]

λ j+K−1 + L − c

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and that for λ = λ j+k , k ∈ {1, ..., K − 1},

ϕ(λ)
[

pL(λ+) − c
]

+ [1 − ϕ(λ)]
[

pL(λ−) − c
]

= (
1 − ϕ j+k

) [
λ j+k−2 + L − c

]

+ϕ j+k

[
λ j+k + L − c

]
.

This and the assumption that F
(
λ j+k

)
� 0 for all k ∈ {0, 1, ..., K } imply J +

δ
1−δ

AP − 1
1−δ

P � 0, or J � 1
1−δ

(I − δA) P . Since (I − δA)−1 is semipositive,

(I − δA)−1 J � 1
1−δ

P . Together with (5 ) this gives V � 1
1−δ

P, which contradicts
(6). This contradiction proves the lemma. ��
Corollary 1 Let

{
λ j , . . . , λ j+K

}
, K �2,whereλ j+k ≡Pr

(
H | λ j , k signals s = h

)
,

be a set of λ’s such that F
(
λ j+k

)
� 0 for all k ∈ {0, ..., K }. If V

(
λ j

) = pL
(
λ j

)−c
1−δ

and V
(
λ j+K

) = pL
(
λ j+K

)−c
1−δ

, then V
(
λ j+k

) = pL
(
λ j+k

)−c
1−δ

for all k ∈ {1, ..., K − 1}.
Lemma 6 Let

{
λ j , λ j+1, λ j+2

}
, where λ j+k ≡ Pr

(
H |λ j , k signals s = h

)
, be a

sequence of λ’s such that F
(
λ j+1

)
< 0. If V

(
λ j+k

) = pL
(
λ j+k

)−c
1−δ

for all k ∈ {0, 2} ,

then pH
(
λ j+1

)
cannot be optimal, i.e., the price p

(
λ j+1

) = pL
(
λ j+1

)
is uniquely

optimal.

Proof of Lemma 6 By assumption F
(
λ j+1

)
< 0, and V

(
λ j+k

) = pL
(
λ j+k

)−c
1−δ

for
k ∈ {0, 2}. With the notation Vj+k ≡ V

(
λ j+k

)
, k ∈ {0, 2}, the expected payoff

from the price pH
(
λ j+1

)
equals [α + (2α − 1) (L − c)] λ j+1 + (1 − α) (L − c) +

δ
(
1 − ϕ j+1

)
Vj + δϕ j+1Vj+2 = F

(
λ j+1

) + pL
(
λ j+1

)−c
1−δ

<
pL

(
λ j+1

)−c
1−δ

, since
F

(
λ j+1

)
< 0. Hence, pH

(
λ j+1

)
is not optimal. ��

Lemma 7 If either c > L and α ≥ (
1 − α2

)
(H − c), or c = L and α > 1 − α2,

there exists a λ′ ∈ [
λ̄α, 1

)
such that

F (λ)

⎧
⎨

⎩

> 0 for all λ ∈ (
0, λ′)

= 0 for λ = λ′
< 0 for all λ ∈ (

λ′, 1
)
.

123



230 S. Bose et al.

The number λ′ is strictly increasing in δ, λ′ = λ̄α for δ = 0, and λ′ → 1 for δ → 1.

If c > L and α <
(
1 − α2

)
(H − c) , the equation F (λ) = 0, has at least one and

at most three solutions λ ∈ (0, 1); and whenever it has exactly one solution, the results
of the previous paragraph hold for α <

(
1 − α2

)
(H − c) as well. For every c > L

there exists a δ′ ∈ [0, 1) such that F (λ) = 0, has exactly one solution λ ∈ (0, 1) for
all δ ∈ (

δ′, 1
)
.

If c = L and α2 = 1 − α, there exists a δ∗ ∈ (0, 1) such that for all δ ∈ [
0, δ∗] ,

F (λ) < 0 for all λ ∈ (0, 1). For each δ ∈ (δ∗, 1) there exists a λ′ ∈ (0, 1) such that

F (λ)

⎧
⎨

⎩

> 0 for all λ ∈ (
0, λ′)

= 0 for λ = λ′
< 0 for all λ ∈ (

λ′, 1
)
.

The number λ′ is strictly increasing in δ, λ′ → 0 for δ → δ∗, and λ′ → 1 for δ → 1.

If either c = L and α2 < 1 − α or c < L , there exists a δ∗ ∈ (0, 1) such that
for all δ ∈ [

0, δ∗) , F (λ) < 0 for all λ ∈ (0, 1). For each δ ∈ [
δ∗, 1) , there exist a

λ′ ∈ (0, 1) and a λ′′ ∈ [
λ′, 1

)
such that

F (λ)

⎧
⎨

⎩

> 0 for all λ ∈ (
λ′, λ′′)

= 0 for λ ∈ {
λ′, λ′′}

< 0 for all λ ∈ (
0, λ′) ∪ (

λ′′, 1
)
.

Whereas λ′ is strictly decreasing in δ ∈ [
δ∗, 1) , λ′′ is strictly increasing in δ ∈ [

δ∗, 1) .

For all δ ∈ (δ∗, 1) , λ′ < λ′′; and for δ = δ∗, λ′ = λ′′. For δ → 1, λ′ → 0 and
λ′′ → 1.

Proof of Lemma 7 For notational convenience we define γ ≡ c − L . Simple but
tedious calculations show that F (λ) = 0 for λ ∈ (0, 1) if and only if

(2α − 1)3 δ

1 − δ
λ (1 − λ) = α2

(
1 − α − α2

)
(1 − λ) + (1 − α)3 λ

+ (1 − α)4 λ2

1 − λ
(1 − γ ) − α4 (1 − λ)2

λ
γ

+2α (1 − α) (2α − 1) λγ − α2
(

1 − α2
)

γ, (7)

and F (λ) < 0 if and only if the left-hand side of (7) is less than the right-hand side of
(7). The left-hand side of (7) is strictly concave in λ. Since 1−γ = H −L −[c − L] =
H − c > 0 and the second derivatives d2

dλ2

(
λ2

1−λ

)
= 2

(1−λ)3 and d2

dλ2

(
(1−λ)2

λ

)
= 2

λ3

are both positive, the right-hand side of (7) is strictly convex in λ if c ≤ L and thus
γ ≤ 0. Consequently, for c ≤ L there are at most two solutions of (7) and thus of
F (λ) = 0.
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Consider the case c > L , i.e., γ > 0. Dividing both sides of (7 ) by λ > 0 gives

(2α − 1)3 δ

1 − δ
(1 − λ) = α2

λ

[
1 − α − α2 −

(
1 − α2

)
γ
]

−α2
[
1 − α − α2

]
+ (1 − α)3 + (1 − α)4 λ

1 − λ
(1 − γ )

− α4 (1 − λ)2

λ2 γ + 2α (1 − α) (2α − 1) γ. (8)

The left-hand side of (8) is positive and strictly decreasing in λ ∈ (0, 1). For α ≥(
1 − α2

)
(H − c) the right-hand side of (8) is strictly increasing in λ ∈ (0, 1) because

1 − α − α2 − (
1 − α2

)
γ = (

1 − α2
)
(H − c) − α ≤ 0. Moreover, for λ sufficiently

close to zero it is negative, and for λ → 1 it diverges to ∞. Consequently, if c < L
and α ≥ (

1 − α2
)
(H − c), Eq. (8) and thus F (λ) = 0 has exactly one solution.

For the same reason F (λ) = 0 has exactly one solution if c = L and α > 1 − α2

because then 1 − α − α2 − (
1 − α2

)
γ < 0. Hence, whenever either c < L and

α ≥ (
1 − α2

)
(H − c) or c = L and α > 1 − α2, there exists a λ′ ∈ [

λ̄α, 1
)

such that

F (λ)

⎧
⎨

⎩

> 0 for all λ ∈ (
0, λ′)

= 0 for λ = λ′
< 0 for all λ ∈ (

λ′, 1
)
.

For λ ∈ (0, 1) the left-hand side of (8) is strictly increasing in δ and arbitrary large
for δ → 1, whereas the right-hand side of (8) is independent of δ. Therefore, λ′
is strictly increasing in δ and λ′ → 1 for δ → 1. For δ = 0 we get F (λ) =
ϕ (λ)

[
pH (λ) − c

] − pL (λ) − c and thus λ′ = λ̄α by definition of λ̄α . This proves
the first paragraph of Lemma 7.

If c = L and α2 = 1 −α, the right-hand side of (8) reduces to (1 − α)3 + (1−α)4λ
1−λ

,

which is positive and strictly increasing in λ ∈ (0, 1). Define δ∗ ∈ (0, 1) as the
(unique) solution of (2α − 1)3 δ

1−δ
= (1 − α)3. Then F (·) < 0 for all δ ∈ [

0, δ∗].
For all δ ∈ (δ∗, 1) the equation F (λ) = 0 has a unique solution λ′, which is strictly
increasing in δ, and λ′ → 1 for δ → 1. This implies the third paragraph of Lemma 7.

Next, we show that if c > L and α <
(
1 − α2

)
(H − c), Eq. (8) and thus F (λ) = 0

has at least one and at most three solutions. With the definition

G (λ)≡ (2α − 1)3 δ

1 − δ
λ + α2

λ

[(
1 − α2

)
(H − c) − α

]
− α2

[
(1 − α) − α2

]

+ (1−α)3 + (1 − α)4 λ

1 − λ
(1 − γ )− α4 (1 − λ)2

λ2 γ +2α (1 − α) (2α − 1) γ,

(8) is equivalent to G (λ) = (2α − 1)3 δ
1−δ

. We prove that G (λ) can be partitioned

into a strictly concave and a strictly convex part, which implies that G (λ) = (2α − 1)3
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δ
1−δ

can have at most three solutions. Differentiating G (λ) gives

G ′ (λ) = (2α − 1)3 δ

1 − δ
− α2

λ2

[(
1 − α2

)
(H − c) − α

]
+ (1 − α)4 (1 − γ )

(1 − λ)2

+2α4γ (1 − λ)

λ3

and

G ′′ (λ) = 2α2

λ3

[(
1 − α2

)
(H − c) − α

]
+ 2 (1 − α)4 (1 − γ )

(1 − λ)3 − 2α4γ (3 − 2λ)

λ4

= 2α2

λ3

[(
1 − α2

)
(H − c) − α − α2γ (3 − 2λ)

λ

]

+ 2 (1 − α)4 (1 − γ )

(1 − λ)3 .

Since 2λ < 3 and γ < 1, G ′′ (λ) increases whenever
(
1 − α2

)
(H − c) − α −

α2γ (3−2λ)
λ

< 0. Moreover, G ′′ (0) = −∞ and G ′′ (1) = ∞. Furthermore, G ′′ (λ) ≤ 0

implies
(
1 − α2

)
(H − c) − α − α2γ (3−2λ)

λ
< 0. Consequently, G ′′ (λ) has a positive

slope for any λ that satisfies G ′′ (λ) = 0, and therefore there exists some λ̄ ∈ (0, 1)

such that G ′′ (λ̄
) = 0, G ′′ (λ) < 0 for λ < λ̄ and G ′′ (λ) > 0 for λ > λ̄. That

is, G (λ) is strictly concave for λ < λ̄ and strictly convex for λ > λ̄. It follows
that the equation G (λ) = (2α − 1)3 δ

1−δ
, i.e. (8), and thus F (λ) = 0 can have

at most three solutions. Moreover, since G (0) = −∞ and G (1) = ∞, there is at
least one solution. If F (λ) = 0 has exactly one solution λ ∈ (0, 1), the proof of
the first paragraph of Lemma 7 applies as well. Finally, the right-hand side of (8)
increases in λ if λ is sufficiently large (whereas the left-hand side decreases in λ);
and (2α − 1)3 (1 − λ) δ

1−δ
→ ∞ for δ → 1, whereas the right-hand side of (8) is

independent of δ. Therefore, if δ is sufficiently close to 1, any solution of (8) will be
in the range where the right-hand side of (8) increases in λ. Consequently, F (λ) = 0
has exactly one solution whenever δ is sufficiently close to 1. This proves the second
paragraph of Lemma 7.

For the proof of the last paragraph of Lemma 7 recall that we have already shown
that for c ≤ L there are at most two solutions of (7) and thus of F (λ) = 0. The (strictly
concave) left-hand side of (7) is zero for λ = 0 and for λ = 1. For λ = 0 the (strictly
convex) right-hand side of (7) is infinite if γ = c − L < 0, and α2

(
1 − α − α2

)
> 0

if c = L and α2 < 1 − α. For λ = 1 the right-hand side of ( 7) is infinite, since
γ < 1. Consequently, F (λ) < 0 for all λ ∈ (0, 1) if δ is sufficiently small, and
there is exactly one δ, denoted by δ∗, such that F (λ) = 0 has exactly one solution.
For all δ > δ∗, F (λ) = 0 has two different solutions, λ′ ∈ (0, 1) and λ′′ ∈ (

λ′, 1
)
.

Since the left-hand side of (7) increases in δ (whereas the the right-hand side of (7) is
independent of δ), λ′ is strictly decreasing in δ ∈ [

δ∗, 1) and λ′′ is strictly increasing
in δ ∈ [

δ∗, 1). Moreover, for δ → 1 the left-hand side of (7) diverges and thus λ′ → 0
and λ′′ → 1 for δ → 1. ��
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Lemma 8 Let
{
λ j , λ j−1, ...

}
, where λ j−k ≡ Pr

(
H |λ j , k signals s = l

)
, be a

sequence of λ’s such that λ j ∈ (0, 1) and F
(
λ j−k

)
� 0 for all k ∈ {0, 1, ...}. If

V
(
λ j

) = pL
(
λ j

)−c
1−δ

, then V
(
λ j−k

) = pL
(
λ j−k

)−c
1−δ

for all k ∈ {1, 2, ...}.

Proof of Lemma 8 Lemma 5 excludes the case where V
(
λ j−k

)
>

pL
(
λ j−k

)−c
1−δ

for
some, but not all k ∈ {1, 2, ...}. Therefore, we only have to show that it is not pos-

sible that V
(
λ j−k

)
>

pL
(
λ j−k

)−c
1−δ

for all k ∈ {1, 2, ...}. Assume the contrary, i.e.,

V
(
λ j−k

)
>

pL
(
λ j−k

)−c
1−δ

for all k ∈ {1, 2, ...} and V
(
λ j

) = pL
(
λ j

)−c
1−δ

. With the nota-
tion Vj−k ≡ V

(
λ j−k

)
, k ∈ {0, 1, ...}, we have

Vj−k =

⎧
⎪⎪⎨

⎪⎪⎩

λ j−1 + L − c + δVj for k = 0
[α + (2α − 1) (L − c)] λ j−k

+ (1 − α) (L − c)
+ δϕ j−k Vj−k+1 + δ

(
1 − ϕ j−k

)
Vj−k−1 for k ∈ {1, 2, ...}

(9)

Let the infinite matrix C be defined by

C ≡

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 . . 0 0 0 . . .

ϕ j−1 0 1 − ϕ j−1 0 . . 0 0 0 . . .

0 ϕ j−2 0 1 − ϕ j−2 . . 0 0 0 . . .

− − − − − − − − − − − − − −
0 0 0 0 . . 0 ϕ j−k 0 1 − ϕ j−k 0 . .

− − − − − − − − − − − − − −
. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

With I denoting the infinite identity matrix, this gives

I − δC ≡

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − δ 0 0 0 0 0 . . .

−δϕ j−1 1 −δ
(
1 − ϕ j−1

)
0 0 0 . . .

0 −δϕ j−2 1 −δ
(
1 − ϕ j−2

)
0 0 . . .

0 0 −δϕ j−3 1 −δ
(
1 − ϕ j−3

)
0 . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Define

V ≡

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Vj
Vj−1

.

.

.

.

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, J ≡

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ j−1 + L − c
[α + (2α − 1) (L − c)] λ j−1 + (1 − α) (L − c)
[α + (2α − 1) (L − c)] λ j−2 + (1 − α) (L − c)

.

.

.

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P ≡

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Pj
Pj−1

.

.

.

.

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≡

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ j−1 + L − c
λ j−2 + L − c

.

.

.

.

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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With these definitions and (9) we get V = J + δCV , or

J = (I − δC) V . (10)

The assumption F
(
λ j−k

)
� 0 for all k ∈ {1, 2, ...} implies δ

1−δ
C P + J � 1

1−δ
P , or

J � 1

1 − δ
(I − δC) P. (11)

From (10) and (11) we get

(I − δC) V � 1

1 − δ
(I − δC) P. (12)

Define the infinite vector x = (x1, x2, ...) � 0 by x1 = 1
1−δ

and xk = 1 for k ∈
{2, 3, ...} . Then the infinite vector z ≡ x (I − δC) has the elements z1 = 1−δϕ j−1 ∈
(0, 1], z2 = 1 − δϕ j−2 ∈ (0, 1], zk = 1 − δ

(
1 − ϕ j−k+1 + ϕ j−k−1

) ∈ (0, 1] for
k ∈ {3, 4, ...}, where 1 − δ

(
1 − ϕ j−k+1 + ϕ j−k−1

) ∈ (0, 1] follows from ϕ j−k+1 −
ϕ j−k−1 ∈ (0, 1) and δ ∈ [0, 1). With the help of some calculations,

λ j−k−1

λ j−k
= 1 − (2α − 1)

(
1 − λ j−k

)

(1 − α) λ j−k + α
(
1 − λ j−k

) < 1 − (2α − 1)
(
1 − λ j

)

α
∈ (0, 1) ,

and thus
∑∞

k=0 λ j−k−1 converges. Since z P = ∑∞
k=0 zkλ

j−k−1 and zk ∈ (0, 1] for
all k ∈ {1, 2, ...}, 0 < z P ≤ ∑∞

k=0 λ j−k−1 < ∞. Multiplying both sides of (12) by
x � 0 gives

zV � 1

1 − δ
z P < ∞. (13)

However, the proof’s assumption that V
(
λ j−k

)
>

pL
(
λ j−k

)−c
1−δ

for all k ∈ {1, 2, ...},
together with V

(
λ j

) = pL
(
λ j

)−c
1−δ

and z � 0, implies zV > 1
1−δ

z P . This contradic-
tion proves the lemma. ��

A.2 Proof of the propositions

Proof of Proposition 1 We know from Lemma 2 that given δ, V (λ)= 1
1−δ

[
pL (λ)−c

]
,

if λ is sufficiently close to 1. Define λ∗∗ as the smallest µ ∈ �(λ1) such that for
all λ ≥ µ, λ ∈ �(λ1), it holds that V (λ) = 1

1−δ

[
pL (λ) − c

]
. Since V (λ) >

1
1−δ

[
pL (λ) − c

]
for all λ < λ̄α, λ ∈ �(λ1), λ∗∗ exists and λ∗∗ ≥ λ̄α . We show by

contradiction that V (λ) > 1
1−δ

[
pL (λ) − c

]
for all λ < λ∗∗, λ ∈ �(λ1). Assume

that for some λ < λ∗∗, λ ∈ �(λ1) , it holds that V (λ) = 1
1−δ

[
pL (λ) − c

]
, and

let λ j be the largest such λ < λ∗∗. This implies F
(
λ j

) ≤ 0 (otherwise pH
(
λ j

)

would be uniquely optimal). Hence by Lemma 7, λ′ ≤ λ j and F (λ) < 0 for all
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λ > λ j , λ ∈ �(λ1). Since by construction λ j < λ∗∗ and V (λ) > 1
1−δ

[
pL (λ) − c

]

for all λ ∈ �(λ1) ∩ (
λ j , λ∗∗), and since the definition of λ∗∗ implies V

(
λ−)

>
1

1−δ

[
pL

(
λ−) − c

]
for λ = λ∗∗, there exists a set

{
λ j , ..., λ j+K

}
, K ≥ 2, that satisfies

the assumptions of Lemma 5 and, in addition, V
(
λK

) = pL
(
λK

)−c
1−δ

. Because of this,

Lemma 5 implies V
(
λ j

)
>

pL
(
λ j

)−c
1−δ

, whereas by construction V
(
λ j

) = pL
(
λ j

)−c
1−δ

.

This contradiction proves that V (λ) > 1
1−δ

[
pL (λ) − c

]
and thus that pH (λ) is

uniquely optimal for all λ < λ∗∗, λ ∈ �(λ1) . Moreover, because of Lemma 7 and
λ∗∗ ≥ λ′ (which follows from F (λ∗∗) ≤ 0), Lemma 6 implies that only pL (λ) is
optimal for all λ > λ∗∗, λ ∈ �(λ1). The rest of Proposition 1 follows from the first
paragraph of Lemma 7. ��
Proof of Proposition 2 From Lemma 2 we know that given δ, the pooling price pL(λ)

is uniquely optimal whenever λ is sufficiently close to 1. By Lemma 7, there exists
a δ∗ ∈ (0, 1) such that for all δ ∈ [

0, δ∗], F (λ) < 0 for all λ ∈ �(λ1), and thus
Lemma 8 implies that pL(λ) is optimal for all λ ∈ �(λ1) . Since for any ε > 0,

(0, ε) ∩ �(λ1) = ∅, the rest of the proof of Proposition 2 is analogous to the proof of
Proposition 1 (note that for α2 = 1 − α, λ̄α = 0). ��
Proof of Proposition 3 From Lemma 2 we know that given δ, the pooling price pL(λ)

is uniquely optimal whenever λ is sufficiently close to 1. By Lemma 7, there exists
a δ∗ ∈ (0, 1) such that for all δ ∈ [

0, δ∗), F (λ) < 0 for all λ ∈ �(λ1). Therefore
Lemma 8 implies that pL(λ) is optimal for all δ ∈ (0, δ∗). Although F (λ) > 0 for
some λ ∈ (0, 1) if δ > δ∗, these λ’s may not be elements of �(λ1) and thus F (λ) < 0
for all λ ∈ �(λ1) may still hold. Hence define δ∗∗ ≥ δ∗ > 0 as the supremum of δ in
the set {δ|F (λ) < 0 for all λ ∈ �(λ1)}. Together with Lemma 6 the definition of δ∗∗
implies that for all δ ∈ (0, δ∗∗), pL (λ) is uniquely optimal for all λ ∈ �(λ1).

Consider now the case δ ∈ (δ∗∗, 1). From Lemma 7 we know that if δ ∈ (δ∗∗, 1) is
sufficiently large (and therefore λ′ and λ′′ of Lemma 7 are sufficiently close to 0 and
1, respectively), there exists a λ ∈ �(λ1) such that V (λ) > 1

1−δ

[
pL (λ) − c

]
. Let

δ∗∗∗ ≥ δ∗∗ denote the supremum of δ in the set
{
δ | V (λ) = 1

1−δ

[
pL (λ) − c

]
for all

λ ∈ �(λ1)}. Continuity implies V (λ) = 1
1−δ

[
pL (λ) − c

]
for all λ ∈ �(λ1) , if

δ = δ∗∗∗. For any δ ∈ (δ∗∗∗, 1) define λ∗ as the largest µ ∈ �(λ1) such that for all
λ ≤ µ, λ ∈ �(λ1), it holds that V (λ) = 1

1−δ

[
pL (λ) − c

]
. If such a µ does not exist,

λ∗ ≡ 0. Define λ∗∗ as the smallest µ ∈ �(λ1) such that for all λ ≥ µ, λ ∈ �(λ1) ,

it holds that V (λ) = 1
1−δ

[
pL (λ) − c

]
. These definitions and the definition of δ∗∗∗

imply λ∗ < λ∗∗. Since F (λ∗) ≤ 0 if λ∗ > 0, and F (λ∗∗) ≤ 0 , Lemma 7 implies
F (λ) < 0 for all λ ∈ �(λ1) that satisfy either λ < λ∗ or λ > λ∗∗. If we can show that
λ∗ > 0 , the part of Proposition 3 that relates to δ ∈ (δ∗∗∗, 1) follows from Corollary 1
and Lemma 8.

Hence, we prove that indeed λ∗ > 0. First, we show that if λ∗ = 0, then pH (λ)

is uniquely optimal for all λ ∈ (0, λ∗∗). Corollary 1 implies that pL (λ) is optimal
for λ ∈ (λ∗∗, 1). Assume that pL

(
λ0

)
is optimal for some λ0 ∈ (0, λ∗∗) ∩ �(λ1).

This implies F
(
λ0

) ≤ 0 and thus λ0 ≤ λ′ because of Corollary 1, Lemma 7, and the
definition of λ∗∗. Consequently, F (λ) ≤ 0 for all λ ∈ (

0, λ0
)
. Hence by Lemma 8,
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pL (λ) is optimal for all λ ∈ (
0, λ0

) ∩ �(λ1). It follows that λ∗ ≥ λ0 > 0, which
contradicts λ∗ = 0. Therefore, λ∗ = 0 implies that pH (λ) is uniquely optimal for all
λ ∈ (0, λ∗∗)∩�(λ1). Thus, if λ j ∈ (0, λ∗∗)∩�(λ1) it holds (cf. (9) with L − c = 0)
that Vj−k = αλ j−k + δϕ j−k Vj−k+1 + δ

(
1 − ϕ j−k

)
Vj−k−1 for all k ∈ {1, 2, ...}.

Hence after some calculations,

Vj−k − Vj−k−1

λ j−k − λ j−k−1 = α

θ j−k
+ δ

ϕ j−k

θ j−k

Vj−k+1 − Vj−k

λ j−k − λ j−k−1

+δ
1 − ϕ j−k−1

θ j−k

Vj−k−1 − Vj−k−2

λ j−k − λ j−k−1

for k ∈ {1, 2, ...}, where θ j−k is given by θ j−k ≡ 1 − δ
(
ϕ j−k − ϕ j−k−1

)
. If the

limit DH ≡ limk→∞
Vj−k−Vj−k−1

λ j−k−λ j−k−1 exists, DH = α + δ (1 − α) DH + αδDH (since
limk→∞ ϕ j−k = 1 − α), which gives DH = α

1−δ
. We show that the limit DH does,

in fact, exist. First we prove that
Vj−k−Vj−k−1

λ j−k−λ j−k−1 is decreasing in k. This follows because

Vj−k = αλ j−k + δϕ j−k Vj−k+1 + δ
(
1 − ϕ j−k

)
Vj−k−1 and αλ j−k < λ j−k−1 (which

holds because of α2 < 1 − α) imply

Vj−k − δVj−k < λ j−k−1 + δ
[
ϕ j−k Vj−k+1 + (

1 − ϕ j−k
)

Vj−k−1 − Vj−k
] ;

hence, because Vj−k ≥ pL
(
λ j−k

)−c
1−δ

= λ j−k−1

1−δ
,

0 ≤ Vj−k − λ j−k−1

1 − δ
<

δ

1 − δ

[
ϕ j−k Vj−k+1 + (

1 − ϕ j−k
)

Vj−k−1 − Vj−k
]
.

Therefore, ϕ j−k Vj−k+1+(
1 − ϕ j−k

)
Vj−k−1 > Vj−k . Since ϕ j−kλ

j−k+1+(
1−ϕ j−k

)

λ j−k−1 = λ j−k , this implies
Vj−k+1−Vj−k

λ j−k+1−λ j−k >
Vj−k−Vj−k−1

λ j−k−λ j−k−1 . Consequently,
Vj−k−Vj−k−1

λ j−k−λ j−k−1

is decreasing in k. Moreover, it is easy to check that Vj−k ≥ Vj−k−1 and thus
Vj−k−Vj−k−1

λ j−k−λ j−k−1 ≥ 0. As
Vj−k−Vj−k−1

λ j−k−λ j−k−1 is decreasing in k and bounded from below, DH ≡
limk→∞

Vj−k−Vj−k−1

λ j−k−λ j−k−1 exists and thus DH = α
1−δ

. Consider now the slopes of the
seller’s payoffs from herding, i.e.,

1

1 − δ

pL
(
λ j−k

) − pL
(
λ j−k−1

)

λ j−k − λ j−k−1 = 1

1 − δ

λ j−k−1 − λ j−k−2

λ j−k − λ j−k−1

= 1

1 − δ

1 − 1−α

(1−α)λ j−k−1+α(1−λ j−k−1)
α

αλ j−k−1+(1−α)(1−λ j−k−1)
− 1

.

The respective limit is DL ≡ limk→∞
[

1
1−δ

pL
(
λ j−k

)−pL
(
λ j−k−1

)

λ j−k−λ j−k−1

]

= 1
1−δ

1− 1−α
α

α
1−α

−1 =
1

1−δ
1−α
α

> α
1−δ

= DH since 1 − α > α2. This and limk→∞
pL

(
λ j−k

)−c
1−δ

= 0 =
limk→∞ Vj−k imply that Vj−k <

pL
(
λ j−k

)−c
1−δ

for large k (i.e., small λ j−k), since from
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DL > DH it follows that 1
1−δ

[
pL (λ) − c

]
is steeper than V (λ) for all sufficiently

small λ’s. This contradicts that the separating price pH
(
λ j−k

)
is uniquely optimal for

all λ = λ j−k ∈ (0, λ∗∗), and thus proves λ∗ > 0.
Finally, consider the case δ ∈ [

δ∗∗, δ∗∗∗] . The definition of δ∗∗∗ implies that for
all δ ∈ [

δ∗∗, δ∗∗∗] , V (λ) = 1
1−δ

[
pL (λ) − c

]
for all λ ∈ �(λ1) and therefore pL (λ)

is optimal for all λ ∈ �(λ1). Moreover, the definitions of δ∗∗ and δ∗∗∗, respectively,
imply that F (λ) = 0 for at least one λ ∈ �(λ1), and therefore pH (λ) is also optimal
for at least one λ ∈ �(λ1). ��
Proof of Proposition 4 First, we show that given any δ ∈ [0, 1) the seller always
charges the pooling price for sufficiently low λ’s. Since pL (λ) > L > c for all
λ ∈ (0, 1) , the seller never exits the market. In any period τ the seller’s expected
immediate profit is bounded by

max
{
λ−

τ + L − c, αλτ + [αλτ + (1 − α) (1 − λτ )] (L − c)
}

< λτ + L − c.

Hence, in any period t the seller’s expected future payoff is bounded by δ[λt +L−c]
1−δ

since
the stochastic process {λτ }∞τ=t is a martingale. Thus, in period t the seller’s expected
payoff from the separating price is bounded by αλt + [αλt +(1−α) (1−λt )] (L−c)+

δ
1−δ

[λt + L − c], whereas the payoff from the pooling price is 1
1−δ

[
λ−

t + L − c
]
. The

difference in the seller’s expected payoff from the pooling price and the separating
price exceeds λ−

t + L −c−αλt − [αλt + (1 − α) (1 − λt )] (L − c)− δ
1−δ

(
λt − λ−

t
)
,

which converges to α (L − c) > 0 for λt → 0. Therefore, the pooling price is optimal
whenever λ is sufficiently low. The rest of the first part of the proposition follows from
Lemma 7, analogously to the proof of Proposition 3.

The second part of the proposition follows directly from Lemma 7 (as explained
in the proof of Proposition 3, δ∗∗ ≥ δ∗ > 0). For the proposition’s third part notice
that the difference in the seller’s expected immediate profit from the separating and
the pooling price, respectively, is

�(α, λt ) ≡ αλt + [αλt + (1 − α) (1 − λt )] (L − c) − (
λ−

t + L − c
)

= αλt − (1 − α) λt

(1 − α) λt + α (1 − λt )
− [(1 − α) λt + α (1 − λt )] (L − c) .

For λt = 0 and λt = 1, respectively, �(α, λt ) < 0; and for α = λt ∈ �(λ1) we get
�(α, λt ) = �(α, α) = α2 − 1

2 −2α (1 − α) (L − c), which is positive for α < 1 suf-
ficiently close to 1. Therefore, and since �(α, λt ) is strictly concave in λt (because λ−

t
is a strictly convex function of λt whereas αλt −[1 − αλt − (1 − α) (1 − λt )] (L − c)
is linear in λt ), there exist µ and µ′ > µ, such that for a sufficiently large fixed α it
holds that �(α, λt ) > 0 for all λt ∈ [

µ,µ′]. Moreover, if �(α, α) > 0 and α = λt is
sufficiently close to 1, �

(
α, λ−

t
)

or �
(
α, λ+

t
)
, or both, will be positive as well. Hence

for λt = α at least λ−
t ∈ [

µ,µ′] or λ+
t ∈ [

µ,µ′]. Let µ∗ be the the smallest and µ∗∗
the largest element of

[
µ,µ′] ∩ �(λ1). For α sufficiently large, µ and µ′ can be cho-

sen such that µ∗∗ > µ∗. Because of �(α, λt ) > 0 for all λt ∈ [
µ∗, µ∗∗], Lemma 1

implies that for all λ ∈ [
µ∗, µ∗∗] the separating price is uniquely optimal regardless

123



238 S. Bose et al.

of δ. This proves that there exist an α and associated µ∗ ∈ �(λ1) , µ∗∗ ∈ �(λ1),
0 < µ∗ < µ∗∗ < 1, such that regardless of δ the separating price is uniquely optimal
for all λ ∈ [

µ∗, µ∗∗]. Note that µ∗ and µ∗∗ depend on α. Thus, we write µ∗ (α) and

µ∗∗ (α) for the following argument. Since d�(α,α)
dα

= 2α + 2 (2α − 1) (L − c) > 0,

� (α, α) > 0 implies �
(
α′, α′) > 0 for all α′ > α. Therefore, the previous argument

implies that if for some α the separating price is uniquely optimal regardless of δ for all
λ ∈ [

µ∗ (α) , µ∗∗ (α)
]
, then for all α′ ∈ (α, 1) the separating price is uniquely optimal

regardless of δ for all λ ∈ [
µ∗ (

α′) , µ∗∗ (
α′)], where 0 < µ∗ (

α′) < µ∗∗ (
α′) < 1

and µ∗ (
α′) ∈ �(λ1), µ∗∗ (

α′) ∈ �(λ1). Since above we have shown the existence
of such an α, the proposition follows. ��
Proof of Proposition 5 First, we show that there exists a λE > 0 such that for all
λ ∈ (

0, λE
)

it is uniquely optimal for the seller to exit the market, whereas for all
λ ∈ (

λE , 1
)

it is uniquely optimal for the seller to stay in the market. In any period τ

the seller’s expected immediate profit is bounded by

max
{
λ−

τ + L − c, αλτ + [αλτ + (1 − α) (1 − λτ )] (L − c)
}

< λτ − [c − L] .

This implies (because the stochastic process {λτ }∞τ=t is a martingale) that if the seller
never exits the market, her expected payoff conditional on λt is bounded by λt −[c−L]

1−δ
.

Consequently, whenever λt < c − L the seller is better off exiting the market than
staying in the market forever. Since the seller’s expected profits increase in λ, there
must exist a critical λE ∈ �(λ1) such that exit is optimal for λ = λE and uniquely
optimal for all λ ∈ (

0, λE
)
, whereas for all λ ∈ (

λE , 1
)

it is uniquely optimal for
the seller to stay in the market. As shown in Sect. 5.3, c > L implies that there are
exactly two attainable probabilities λ ∈ �(λ1) that satisfy pL (λ) ≤ c < pH (λ).
From this it follows that

(
λE , λ∗∗) ∩ �(λ1) contains at least two elements. Since exit

is optimal for λ = λE , it must hold that pL
(
λE

)
< pH

(
λE

) ≤ c and thus the pooling
price pL

(
λE

)
cannot be optimal at λ = λE . Finally, note that λE < λ̄α because

pL
(
λ̄α

) − c > 0. Because of this, the rest of the proof is analogous to the proof of
Proposition 1. ��
Proof of Proposition 6 For the parts of the proposition that relate to λE and λE < λ̄α

the proof of Proposition 5 applies as well. Because of Lemma 7 and the proof of
Proposition 5, there exists a δ′ ∈ [0, 1) such that the results of Proposition 5 hold

for all δ ∈ (
δ′, 1

)
. In this case, λ̂′ = λ̂′′ = λ∗∗ and the interval

(
λ̂′, λ̂′′

)
is empty.

Moreover, since F (λ) > 0 whenever λ is sufficiently small and since (because of
Lemma 7) there are at most three solutions λ ∈ (0, 1) of F (λ) = 0, the pooling price
can be optimal at most in two separated subintervals of (0, 1). Thus, we only need

to prove (a) that the pooling price pL (λ) is optimal for λ ∈
{
λ̂′, λ̂′′, λ∗∗

}
, but the

separating price pH (λ) may be optimal as well; and (b) that there exist parameter
values of δ ∈ (0, 1) and c > L such that λ̂′ < λ̂′′ < λ∗∗.

First we show (b). For c ≥ L we get
(
1 − α2

)
(H − c) = (

1 − α2
)
(1 + L − c) ≤

1−α2. Thus, α <
(
1 − α2

)
(H − c) implies α2 < 1−α. From Proposition 3 we know

that if c = L and α2 < 1 − α, then there exist critical probabilities λ∗ ∈ �(λ1) and
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λ∗∗ ∈ �(λ1) for each δ ∈ (δ∗∗∗, 1), δ∗∗∗ < 1, where 0 < λ∗ < λ∗∗ < 1, such that it
is uniquely optimal for the seller to demand pt = pH (λt ) whenever λt ∈ (λ∗, λ∗∗) ,

and pt = pL (λt ) whenever λt ∈ (0, λ∗) ∪ (λ∗∗, 1). Fix some δ ∈ (δ∗∗∗, 1) , some
µ′ ∈ (0, λ∗) ∩ �(λ1), and some µ′′ ∈ (λ∗, λ∗∗) ∩ �(λ1) . For any unit cost c, let
V (λ; c) denote the value function of the seller’s optimization problem, and let W (λ; c)
denote the maximum expected profit of the seller in a given period, if pH (λ) is cho-
sen in this period and from the next period onwards the optimal price is chosen, i.e.,
W (λ; c) ≡ϕ (λ)

[
pH (λ) − c

] + δ
[
ϕ (λ) V

(
λ+; c

) + (1 − ϕ (λ)) V
(
λ−; c

)]
. Obvi-

ously, V
(
λ′; c

) = W
(
λ′; c

)
if and only if pH (λ) is optimal for λ = λ′, given

c. Since profits change continuously with c, V (λ; c) and W (λ; c) are continuous

in c. If c = L , (i) pL (λ) is uniquely optimal for λ = µ′ and hence
pL(µ′)−c

1−δ
=

V
(
µ′; L

)
> W

(
µ′; L

)
> 0; and (ii) pH (λ) is uniquely optimal for λ = µ′′ and thus

V
(
µ′′; L

)
>

pL(µ′′)−c
1−δ

. Choose now some c̄ = L + ε such that ε > 0 is sufficiently

small to imply
pL(µ′)−c̄

1−δ
> W

(
µ′; L

)
and V

(
µ′′; c̄

)
>

pL(µ′′)−c̄
1−δ

. Because from this
and W

(
µ′; L

)
> 0 it follows that pL

(
µ′) − c̄ > 0, market exit is not optimal for

λ = µ′. Therefore, µ′ > λE . Since all profits decrease in c, W
(
µ′; L

) ≥ W
(
µ′; c̄

)
,

and thus
pL(µ′)−c̄

1−δ
> W

(
µ′; c̄

)
. Hence for λ = µ′ it is uniquely optimal for the seller

to stay in the market and charge the pooling price pL
(
µ′). Define λE+ ≡ Pr(H | λE ,

s = h). Since exit is optimal for λ = λE , it must hold that pH
(
λE

) ≤ c, and thus
pL

(
λE+)

cannot be optimal because pL
(
λE+)

< pH
(
λE

)
implies pL

(
λE+)

< c.
Furthermore, exit is not optimal for λ = λE+ ∈ (

λE , 1
)
. Hence the separating price

is uniquely optimal for λE+ ∈ (
λE , µ′). Moreover, V

(
µ′′; c̄

)
>

pL(µ′′)−c̄
1−δ

implies
that the separating price pH

(
µ′′) is uniquely optimal for λ = µ′′ > µ′, whereas the

pooling price pL
(
µ′) is uniquely optimal for λ = µ′. This proves point (b).

Finally, we prove point (a), i.e., that the pooling price pL (λ) is optimal for λ ∈
{λ̂′, λ̂′′, λ∗∗}, but the separating price pH (λ) may be optimal as well. For λ∗∗ this
holds because we can choose λ∗∗ to be the smallest λ such that staying in the market
and charging the pooling price pL (λ) is optimal (though not necessarily uniquely
optimal) for all λ ∈ [

λ∗∗, 1) ∩ �(λ1). This implies that λ∗∗ > λE (since pL
(
λE

)
<

pH
(
λE

) ≤ c), and that λ̂′′ < λ∗∗ if λ̂′ < λ∗∗. If λ̂′ < λ∗∗, there must exist µ′ ∈ �(λ1)

and µ′′ ∈ �(λ1) such that λE < µ′ < µ′′ < λ∗∗ and the pooling price pL
(
µ′) is

optimal (though not necessarily uniquely optimal) for λ = µ′, whereas the separating
price pH

(
µ′′) is optimal (though not necessarily uniquely optimal) for λ = µ′′. This

holds because if such a pair of µ′ and µ′′ does not exist, the interval
(
λE , 1

)
can be

partitioned into subintervals
(
λE , λ∗∗),

[
λ∗∗], and (λ∗∗, 1) such that the separating

price is uniquely optimal in
(
λE , λ∗∗) and the pooling price is uniquely optimal in

(λ∗∗, 1) , and optimal in for λ = λ∗∗, and this implies λ̂′ = λ̂′′ = λ∗∗, contradicting
λ̂′ < λ∗∗. Since µ′ and µ′′ exist, we can choose λ̂′ to be the smallest λ > λE such
that the pooling price pL (λ) is optimal, and λ̂′′ to be the largest λ < µ′′ such that the
pooling price pL (λ) is optimal. From this (a) follows. ��
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Proof of Proposition 7 When the seller exits the market or sells to both buyer types,
the purchase behavior of the current buyer does not reveal any information. Once
an informational cascade has started, beliefs and prices remains trivially constant,
λt+1 = λt and pt+1 = pt .

If instead at the current belief the seller charges the separating price, there is active
social learning. In this case, the belief in the next period is either λt+1 = λ+ (λt ) if
the current buyer purchases or λt+1 = λ− (λt ) following no purchase. The price in
the following period depends on whether at the realized belief λt+1 the seller charges
the separating price or induces either a purchase or an exit cascade.

Starting from a belief in the separating region, at the updated belief following a
purchase by the current buyer, λt+1 = λ+ (λt ), it is optimal for the seller either (A) to
charge the separating price, pt+1 = pH (λt+1) = λ+ (λt+1)+ L = λ+ (

λ+ (λt )
)+ L ,

or (B) to charge the pooling price, pt+1 = pL (λt+1) = λ− (
λ+ (λt )

) + L = λt + L .
If instead the current buyer does not purchase, at the updated belief λt+1 = λ− (λt ),
three prices can be optimal: either (i) the separating price, pt+1 = pH (λt+1) =
λ+ (

λ− (λt )
)+L =λt +L , or (ii) the pooling price pt+1 = pL (λt+1)=λ− (

λ− (λt )
)+

L , or (iii) the exit price, pt+1 = pH (λt+1) + ε = λ+ (
λ− (λt )

) + ε + L . Overall,
there are six possibilities that we cover in turn below.

First, consider case (A) in which following a purchase from the current buyer,
at = 1, the period t + 1 price is separating, pH

(
λ+ (λt )

) = λ+ (
λ+ (λt )

) + L . In
case (A.i), the separating price is also charged in period t + 1 following no purchase
in period t . Since the separating price pH (λ) = λ+ (λ) + L = λα

λα+(1−λ)(1−α)
+ L

is a concave function of the belief λ, Jensen’s inequality and the martingale prop-
erty of beliefs (verified in equation (2)) imply that the price is decreasing on average,
Et [pt+1] < pt where the inequality is strict by the assumption that the signal is infor-
mative, α > 1/2. In case (A.ii), the argument given for case (A.i) implies a fortiori
that Et [pt+1] < pt since pH

(
λ− (λt )

)
> pL

(
λ− (λt )

)
. In case (A.iii), again we have

Et [pt+1] < pt provided that ε is small enough.
Consider next case (B) in which following a purchase from the current buyer, at = 1,

in period t + 1 the seller induces a purchase cascade by charging pL
(
λ+ (λt )

) =
λ− (

λ+ (λt )
) + L = λt + L . In case (B.i), the price decreases deterministically to

pt+1 = λt + L < pt = λ+ (λt )+ L . In case (B.ii), the price decreases both following
a purchase and no purchase. In case (B.iii), the price decreases provided that ε is
sufficiently small. ��
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