










2. Model

In a general forecasting contest there are n forecasters. Each forecaster i has a noisy signal
si ∈ S informative about the state to be predicted x ∈ X. The prior joint distribution
of (x, s1, . . . , sn) is common knowledge. The forecasters simultaneously report forecasts
mi ∈ X. The prizes to the forecasters depend on how the forecasts made m1, ...,mn

compare with the realized state x. In a rank-order forecasting contest, the forecaster
whose forecast is closest to the realization obtains the first prize, and so on: Forecasts are
compared ex post with the realization of the state and ranked by accuracy, with the first
prize Z1 being awarded to forecaster i with lowest absolute deviation argmini |mi − x|, the
second prize Z2 to forecaster j with second lowest absolute deviation argmin

j 6=i |mi − x|,
and so on with Zn ≤ ... ≤ Z2 ≤ Z1. The objective of each forecaster is to maximize the
expected value of the prize won.

3. Symmetric Location Experiment without Prior Information

We first identify an important class of statistical models under which the most basic
intuition is verified: the optimal strategy for any forecaster is to issue his best forecast
of the state. The statistical model is a symmetric location experiment with no prior
information. To allow for perfect symmetry, assume that the spaces X and S are both
the unit circle, corresponding to the circumference of the unit ball in R2. A real number z
indicates a point on the circle in the usual way, giving the anti-clockwise distance along the
circumference from (1, 0), the circle’s origin in the plane.13 To build our location family,
we start from any p.d.f. g (s) over the unit circle, with these two properties:

(i) Symmetry: s is distributed on the circle symmetrically around 0, i.e. g (s) = g (−s)
for all s ∈ [0, π].

(ii) Unimodality: s is distributed unimodally around 0, i.e. g (s) is a decreasing function
of s ∈ [0, π].

A member of our location family then has p.d.f. given by f (s|x) = g (s− x). It
is simple to see that f inherits the symmetry and unimodality properties such that
f (x+ s|x) = f (x− s|x) for all s ∈ [0, π] and f (x+ s|x) is decreasing in s ∈ [0, π].

If q (x) is the uniform distribution, the posterior belief on x is described by the p.d.f.
q(x|s) = f (s|x) /f (s). By symmetry and unimodality of f (s|x), this distribution of x is
symmetric and unimodal around s. The truthtelling strategy is then to report the mode
of this distribution, namely m = s.

13For instance, the numbers −2π, 0, 2π all indicate the origin, while π/2 indicates the point (0, 1) of the
plane.
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Proposition 1 (Truthtelling as Best Reply). Assume that forecaster i’s signal is drawn
from a member of the location family fi (s|x) = gi (s− x) with gi satisfying symmetry and
unimodality. Assume that the common prior q (x) is the uniform distribution, and that
signals are independent, conditionally on x. Assume that the strategies of all players j

other than i satisfy that the distribution of mj − x is independent of x. Then truthtelling
is a best reply of player i.

Proof. See the Appendix. ¤

Proposition 2 (Truthtelling Equilibrium). Assume that each forecaster’s signal is
drawn from a member of the location family fi (s|x) = gi (s− x) with gi satisfying sym-
metry and unimodality. Assume that signals are independent, conditionally on x. If the
common prior q (x) is the uniform distribution, truthtelling is a Bayes-Nash equilibrium.

Proof. This is a direct consequence of Proposition 1. Assuming that every player j 6= i

applies the honest strategy, we have satisfied the assumption that mj − x = sj − x follows
a distribution independent of x. Then truthtelling is a best reply for player i, as needed.¤

For truthtelling in this example it is crucial that the prior on the state q (x) is uniform,
so that there is essentially no prior information.14 Intuitively, truthfully reporting mi = si

is then equivalent to reporting the mode of the posterior distribution qi (x|si). A particular
important instance of this arises for the classical statistician who can be modeled as having
an improper uniform prior belief on R. The posterior qi(x|si) is then fi (si|x). If fi is a
symmetric unimodal location experiment, the proposition applies to show that truthtelling
is an equilibrium. But truthtelling is incompatible with equilibrium as soon as we give a
proper prior belief on the state, as illustrated below.

Note that truthtelling in this result does not at all depend on the prize structure,
other than the weak monotonicity that higher prizes are rewarded to forecasters who rank
higher. This means that there is no relevance of the design of the prize structure in this
case. Whether the reward structure is convex or not, truthtelling is the outcome in this
benchmark model of a perfectly symmetric location model. When we consider failures of
truthtelling in alternative statistical models, those failures cannot be ascribed directly to
convexity or concavity properties of the reward structure.

14Notice that Propositions 1 and 2 apply to more signal structures than those on the unit circle presented
there. Assume that ϕ is a one-to-one mapping of X = S into some other space X 0 = S0. Using ϕ we
can transform q (x) into a distribution on X 0, transform g(s) into a distribution on S0, and construct f
as before. Then it is clear that the analysis carries over. For instance, with ϕ we could cut the circle
open and straighten it out to an interval. The resulting family of signal distributions is no longer a proper
location family, since it is wrapped at the ends of the interval, but it has X,S ⊆ R.
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Now we find that the first order condition Vm(m(s)|s) = 0, equivalent to

qx(m|s)
q (m|s) =

gm(m|m) + gx(m|m)
g(m|m) ,

can be rewritten as

fx (s|m) q(m) + f (s|m) qx(m)
f (s|m) q(m) =

fs(s|m) (s0(m))2 + f(s|m)s00(m) + fx (s|m) s0(m)
f(s|m)s0(m)

i.e.

f (s|m) qx(m)
q(m)

= fs(s|m) (s0(m)) + f(s|m)s
00(m)
s0(m)

or

m0(s)
qx(m)

q(m)
=

fs(s|m)
f(s|m) −

m00(s)
m0(s)

.

In the normal model, we have fs(s|x)
f(s|x) = −τ (s− x) and qx(x)

q(x)
= −ν (x− µ), so that the

necessary first-order condition is

m0ν (m− µ) = τ (s−m)− m00

m0 .

It is seen that there is a solution in linear strategies, m(s) = As + Cµ. The equation is
then

Aν (As+ Cµ− µ) = τ (s−As− Cµ) ,

so that the parameters A and C must solve νA2 = τ (1−A) and Aν (C − 1) = −τC.
Next, notice that m(µ) = µ must hold, since otherwise the necessary first-order condition
computed at s = µ would give m0(µ) = −τ/ν < 0, in contradiction with the conjecture
that m(.) is increasing. Clearly, m(µ) = µ implies A+ C = 1. There is a unique solution

A =

p
(τ 2 + 4ντ)− τ

2ν
= 1− C = 1−

p
(τ 2 + 4ντ)− τp
(τ 2 + 4ντ) + τ

∈ [ τ

(ν + τ)
, 1].

To gain intuition on the forces driving the equilibrium, it is useful to consider the best
reply of a player against opponents who all use a linear strategy of the form

m (s) = As+ (1−A)µ.

The mean location of an opponent conditional on the state is E [m|x] = Ax + (1−A)µ

and the conditional variance is V [m|x] = A2

τ
. The honest strategy h is the special case

with A = τ/ (τ + ν), for which V [h|x] = τ/ (τ + ν)2. The best reply solves

max
m

q (m|s)
g (m|m)
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where the first equality is by definition, the second uses the change of variable y = mi +

si − x in the second integral, and the last follows from Wi (si|x) and qi (x|si) depending
on their arguments only through their distance. Since [(si +mi − 2π) /2, (si +mi) /2] is
the interval of x values closer to si than mi, we have Wi (si|x) ≥Wi (mi|x) and qi(x|si) ≥
qi (x|mi). Then the integrand is always non-negative and so the integral is non-negative,
proving Vi (si|si) ≥ Vi (mi|si). ¤

Proof of Proposition 4. The derivative of this with respect to mi, V 0
i (mi|si), is found

by iterative application of Leibnitz’s rule. To compute the last term, note that

∂

ÃY
j 6=i

µ
1− R m−1j (mi)

m−1j (2x−mi)
fj (sj|x) dsj

¶!
∂mi

= −
X
k 6=i

(Ã
∂

∂mi

Z m−1k (mi)

m−1k (2x−mi)

fk (sk|x) dsk
! Y

j 6=i,k

Ã
1−

Z m−1j (mi)

m−1j (2x−mi)

fj (sj|x) dsj
!)

where

∂
∂mi

Z m−1k (mi)

m−1k (2x−mi)

fk (sk|x) dsk = dm−1k (mi)

dmi
fk
¡
m−1

k (mi) |x
¢
+

dm−1k (2x−mi)

dmi
fk
¡
m−1

k (2x−mi) |x
¢
.

Then

V 0
i (mi|si)

=
Y
j 6=i

Ã
1−

Z m−1j (mi)

m−1j (2mi−mi)

fj (sj|mi) dsj

!
qi(mi|si)

−
Z mi

−∞

X
k 6=i

½µ
dm−1

k (mi)

dmi
fk
¡
m−1

k (mi) |x
¢
+

dm−1
k (2x−mi)

dmi
fk
¡
m−1

k (2x−mi) |x
¢¶

Y
j 6=i,k

Ã
1−

Z m−1j (mi)

m−1j (2x−mi)

fj (sj|x) dsj
!)

qi(x|si)dx

−
Y
j 6=i

Ã
1−

Z m−1j (2mi−mi)

m−1j (mi)

fj (sj|mi) dsj

!
qi(mi|si)

+

Z +∞

mi

X
k 6=i

½µ
dm−1

k (mi)

dmi
fk
¡
m−1

k (mi) |x
¢
+

dm−1
k (2x−mi)

dmi
fk
¡
m−1

k (2x−mi) |x
¢¶

Y
j 6=i,k

Ã
1−

Z m−1j (2x−mi)

m−1j (mi)

fj (sj|x) dsj
!)

qi(x|si)dx

=

Z +∞

mi

U1
i (x,mi,m−i (·)) qi(x|si)dx−

Z mi

−∞
U2
i (x,mi,m−i (·)) qi(x|si)dx
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bound of integration x = m becomes y = m−1 (2m (s)−m (s)) = s and the upper bound
x =∞ becomes y = m−1 (2∞−m (s)) = m−1 (∞) =∞, so thatZ +∞

m

µ
1−

Z s

m−1(2x−m)
f (z|x) dz

¶n−2
1

m0(s)f (s|x) f (s|x) q(x)dx

= 1
2

Z +∞

s

µ
1−

Z s

y

f
³
z|m(y)+m(s)

2

´
dz

¶n−2
m0(y)
m0(s)

³
f
³
s|m(y)+m(s)

2

´´2
q(m(y)+m(s)

2
)dy

and Z +∞

m

µ
1−

Z s

m−1(2x−m)
f (z|x) dz

¶n−2
f(m−1(2x−m(s))|x)
m0(m−1(2x−m(s))) f (s|x) q(x)dx

= 1
2

Z +∞

s

µ
1−
Z s

y

f
³
z|m(y)+m(s)

2

´
dz

¶n−2
f
³
y|m(y)+m(s)

2

´
f
³
s|m(y)+m(s)

2

´
q
³
m(y)+m(s)

2

´
dy.

We have thus obtained (5.5). ¤

Proof of Proposition 5. We verify that V (µ + mi|µ + si) = V (µ−mi|µ− si). We
calculate

V (µ+mi|µ+ si) =

Z µ+mi

−∞

Ã
1−

Z m−1(µ+mi)

m−1(2x−µ−mi)

f (s|x) ds
!n−1

q(x|µ+ si)dx

+

Z +∞

µ+mi

Ã
1−

Z m−1(2x−µ−mi)

m−1(µ+mi)

f (s|x) ds
!n−1

q(x|µ+ si)dx.

Changing variables in the outer integrals to y = 2µ− x, we find V (µ+mi|µ+ si) equal toZ +∞

µ−mi

Ã
1−

Z m−1(µ+mi)

m−1(3µ−mi−2y)
f (s|2µ− y) ds

!n−1

q(2µ− y|µ+ si)dy

+

Z µ−mi

−∞

Ã
1−

Z m−1(3µ−mi−2y)

m−1(µ+mi)

f (s|2µ− y) ds

!n−1

q(2µ− y|µ+ si)dy.

Changing variables in the inner integrals to σ = 2µ− s, we find V (µ+mi|µ+ si) equal toZ +∞

µ−mi

Ã
1−

Z 2µ−m−1(3µ−mi−2y)

2µ−m−1(µ+mi)

f (2µ− σ|2µ− y) dσ

!n−1

q(2µ− y|µ+ si)dy

+

Z µ−mi

−∞

Ã
1−

Z 2µ−m−1(µ+mi)

2µ−m−1(3µ−mi−2y)
f (2µ− σ|2µ− y) dσ

!n−1

q(2µ− y|µ+ si)dy.

Notice now that anti-symmetry of the inverse strategy gives 2µ −m−1 (3µ−mi − 2y) =
m−1 (−µ+mi + 2y) and 2µ−m−1 (µ+mi) = m−1 (µ−mi), that the location assumption
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Second, since q (x|si) is of order exp (− (τ + ν)x2), we obtain that q(x|si)/H 0 (x) is of
order exp (−νx2) for large |x|, and therefore tends to zero as x → −∞. Furthermore,
H 00 (x) is of order x exp (−τx2) and dq(x|si)/dx is of order x exp (− (τ + ν)x2). Hence,
(dq(x|si)/dx) /H 0 (x) is of order x exp (−νx2) and H 00 (x) q(x|si)/ (H 0 (x))2 is of the order
x exp (−νx2) so both of the integrals in (8.2) are finite.

Finally, consider the limit as n tends to infinity. For any x < mi, so that limn→∞ (H (x))
n

for H (x) < 1. However, H (mi) = 1 so (H (mi))
n = 1. Inserting in (8.2), first addend tends

to q(mi|si)/H 0 (mi) = q(mi|si)/ (2g (mi|mi)), while the second and third addends tend to
zero as n→∞. It follows that

R mi

−∞ n [H (x)]n−1 q(x|si)dx tends to the same limit. A sym-

metric argument proves that also
R +∞
mi

n
h
1− R 2x−mi

mi
g (mj|x) dmj

in−1
q(x|si)dx tends to

q (mi|si) / (2g (mi|mi)). Overall, we conclude that the sum (8.1) tends to q(mi|si)/g (mi|mi).¤
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