How (not) to pay for advice: A framework for consumer financial protection*

Roman Inderst ${ }^{\dagger}, \ddagger \quad$ Marco Ottaviani ${ }^{\S}, \boldsymbol{q}, \|$

August 2011

Abstract

This paper investigates the determinants of the compensation structure for brokers who advise customers regarding the suitability of financial products. Our model explains why brokers are commonly compensated indirectly through contingent commissions paid by product providers, even though this compensation structure could lead to biased advice. When customers are wary of the adviser's incentives, contingent commissions can be an effective incentive tool to induce the adviser to learn which specialized product is most suitable for the specific needs of customers. If, instead, customers naively believe they receive unbiased advice, high product prices and correspondingly high commissions become a tool of exploitation. Policy intervention that mandates disclosure of commissions can protect naive consumers and increase welfare. However, prohibiting or capping commissions could have the unintended consequence of stifling the adviser's incentive to acquire information. More vigorous competition benefits consumers and reduces exploitation, but firms have limited incentives to educate naive customers.

JEL classification: D18, D83, G24, G28.
Keywords: Brokers, Financial advisers, Commissions, Consumer financial protection, Disclosure.

[^0]"Impartial advice represents one of the most important financial services consumers can receive. . . . Mortgage brokers often advertise their trustworthiness as advisers on difficult mortgage decisions. When these intermediaries accept side payments from product providers, they can compromise their ability to be impartial. Consumers, however, may retain faith that the intermediary is working for them and placing their interests above his or her own, even if the conflict of interest is disclosed. Accordingly, in some cases consumers may reasonably but mistakenly rely on advice from conflicted intermediaries." US Department of the Treasury (2009, p. 68)

1 Introduction

Across countries, customers rely on recommendations from brokers and other financial advisers when making important decisions about purchasing financial services such as mortgages, consumer credit, life insurance, and investment products. ${ }^{1}$ In many instances, however, the recommendations could be biased, because often the advising intermediaries are not paid directly by customers but, instead, receive commissions and other distribution fees from the providers of financial products. ${ }^{2}$ These payments could tilt their recommendations toward particular financial products. ${ }^{3}$ Likewise, when the payments from product providers are proportional to the size of transactions (or when the adviser is compensated only when a transaction is made), customers could be induced to take larger positions (or to make more frequent transactions). ${ }^{4}$

[^1]Concern is growing among consumer groups and government regulators that indirect compensation based on commissions could lead to unsuitable advice. ${ }^{5}$ Would customers of retail financial services be better served if, instead, intermediaries were paid directly, through an hourly fee? ${ }^{6}$ Brokers or financial advisers would then earn the same compensation regardless of the ultimate decision of the customer and would thus no longer be biased toward recommending a particular product or service. But if the prevalent compensation structure for advice seriously compromises its value, why would intermediaries and product providers not find a more efficient arrangement?

This paper offers a rationale for the prevailing compensation structure and then investigates the need for policy intervention from a normative perspective. To this end, we propose a model in which customers vary in their understanding of the advisers' conflict of interest. While wary customers understand that product providers have incentives to pay commissions to advisers to steer customers toward their offerings, naive customers believe that advisers are unbiased. The model jointly endogenizes the payments that product providers make to intermediaries such as financial advisers as well as the way customers pay for financial products and advice. In equilibrium, lower up-front fees for advice but higher product prices (in the form of higher loads for investment products or higher interest rates on loans) are associated with higher commissions or other inducements that are paid to advisers or brokers.

To set the stage, consider the benchmark case in which customers are wary about the advisers' incentives. We show that even when financial inducements to advisers can be paid secretly, there need not be a commitment problem vis-à-vis wary customers, provided that contracts are sufficiently flexible. Precisely, we show how this result holds when, first, contracts are sufficiently flexible to overcome an agency problem between product providers and advisers and, second, consumer surplus can be extracted through a fixed fee for advice. Formally, the first condition is verified when advisers are not wealth-constrained and can thus transfer profits to product providers through a lump-sum payment. More generally, the notion of joint-profit maximization could be more applicable when product providers

[^2]and advisers engage in a long-term relation, rather than operating at arm's length. With wary customers, joint profits are maximized when a product provider credibly commits not to pay secret inducements that bias advice. Intuitively, this outcome is achieved when a low price is charged for the product. Advisers then charge wary consumers a high fixed fee, which in turn is transferred to product providers.

In equilibrium wary customers would rationally anticipate how a higher price that they pay to the product provider is passed through into higher commissions to intermediaries and how these commissions ultimately affect recommendations and choices. However, when some customers naively fail to adequately take into account the potentially self-interested nature of advice, the fee structure that prevails in equilibrium is no longer efficient. Product providers are able to better exploit the misperceptions of naive customers by inducing a compensation structure involving a lower up-front charge for advice and a higher final price. In fact, when all customers are naive in this way, our model predicts that customers are not asked to pay any up-front charges for advice. Then, intermediaries are compensated only indirectly through the commission payments they receive from product providers.

In equilibrium, naive customers underestimate the likelihood with which they end up purchasing an advanced premium product (or a product at all) that generates higher profits for the respective financial institutions and for the intermediary than a more basic offering (or no purchase). Even though customers appear not to pay for advice, in reality they are thus seriously shortchanged through biased advice and higher product prices, in the form of higher management fees on investment products or higher interest rates on mortgages.

With naive customers, there is a clear benefit of policy intervention that requires firms to make customers pay directly for advice. A cap (or, ultimately, a ban) on commissions or other inducements increases consumer surplus by restricting the extent to which the customers' naive beliefs can be exploited. With a mixed population of wary and naive customers, policy intervention also affects the incentives of product providers to target different segments of the population. In fact, in the absence of policy intervention, when the market is populated mostly by naive customers, firms could generate higher profits by targeting exclusively naive customers rather than serving the whole market with a non-exploitative offer.

Policy intervention can, however, backfire when the practice of paying indirectly for advice arises in the presence of wary customers, who see through the incentives of financial institutions and intermediaries. With wary customers, we highlight an efficiency rationale for compensating intermediaries also through commissions paid by product providers. Even though indirect pay for advice leads to biased advice, the overall quality of advice that results could be higher because the adviser's incentives to acquire information are
improved. It could thus be efficient not to perfectly align the interests of advisers with those of wary customers at the recommendation stage. Specifically, even when customers are wary of the conflict of interest and presence of commissions, we show that high commissions result for products that are likely ex ante to suit the preferences and needs of only a small fraction of customers. Intuitively, in the absence of commissions, the adviser would have little incentive to learn whether such products are suitable for a customer. For relatively more complex and specialized products, for which it is optimal that the adviser be better informed, capping or prohibiting commissions could thus have more severe unintended consequences.

These negative side effects of hard-handed policy intervention can be avoided with a policy of mandatory disclosure of financial inducements paid to advisers, provided that disclosure turns otherwise naive customers into wary customers-which is why firms themselves could be reluctant to provide such information. ${ }^{7}$ In fact, we show that customer naiveté dampens competition and leads to higher joint profits in the long run, so that even with competition firms may have little incentives to educate customers.

Our exploitation result is reminiscent of DellaVigna and Malmendier (2004). While in their model customers are naive about their future demand, in our model customers are naive about the incentives behind the advice received. ${ }^{8}$ Given that incentives are endogenously determined in our model, firms exploit customers' naiveté by increasing the conflict of interest through commissions. To what extent can customers be expected to be sufficiently wary of the conflict of interest when their advisers are paid through commissions or other inducements? The form of naiveté about incentives that we posit is similar to the one documented empirically by Malmendier and Shanthikumar (2007) in the context of recommendations made by security analysts to investors. ${ }^{9}$ Using data from the Survey of Consumer Finances, Bergstresser and Beshears (2010) show that borrowers who were less able to comprehend financial questions and who were less suspicious in interviews

[^3]were more likely to purchase adjustable-rate mortgages (ARMs) in the period 2004-2007. These ARMs then exhibited higher rates of foreclosure than fixed rate mortgages (FRMs) during the mortgage crisis. Chater, Inderst, and Huck (2010) show in a survey among six thousand recent purchasers of retail financial services in Europe that respondents are largely ignorant of conflicts of interest and rarely pay directly for advice. ${ }^{10}$

Gabaix and Laibson (2006) consider a different type of customer naiveté. There, uninformed myopic consumers fully neglect the existence of (highly priced) add-ons when they purchase the respective basic product. As firms are not able to screen out sophisticated customers, these customers free-ride on the resulting low price of the basic good, but engage in substitution early on so as to avoid the highly priced add-ons. An important consequence of this is that, in their setting, a monopolist would benefit from educating customers, while under competition a firm that endeavors to turn myopic customers into sophisticated customers would simply drive them to rivals where they would continue to free-ride on the offers designed for the remaining myopic customers. In sharp contrast, we find that even a monopolist would not benefit from making naive customers wary of an adviser's true incentives, because under the equilibrium offer the monopolist extracts strictly higher profits when customers wrongly perceive advice to be unbiased. When competitive pressure forces a firm to leave customers with a higher perceived reservation value, we find that naive customers are protected from exploitation, as the difference between their perceived and the true value of advice is reduced.

To the fledgling literature on consumer financial protection, we contribute a positive and normative analysis of the compensation structure for advice. Other recent contributions in the area focus on different aspects relevant to the provision of nonverifiable information to customers. ${ }^{11}$ Bolton, Freixas, and Shapiro (2007) analyze how incentives for information provision depend on competition among banks. Inderst and Ottaviani (2009) focus on the multi-task agency problem a seller faces when hiring an agent to find as well as to advise customers. Inderst and Ottaviani (forthcoming) analyze competition through commissions as well as through prices among multiple product providers in a common agency framework.

In an early contribution cast in the context of insurance markets, Gravelle (1994) also

[^4]analyzes the compensation structure of brokers. In the Gravelle (1994) model, however, brokers truthfully reveal to customers the valuation for the product, so that the choice between up-front payment and commission trades off two monopoly-pricing problems. The up-front payment reduces the number of customers who become informed, whereas the commission charge reduces the number of informed customers who purchase the insurance product. Gravelle (1993) captures the activity of insurance brokers with respect to unsophisticated customers through an upward shift in demand. In a similar vein, Stoughton, Wu, and Zechner (2011) analyze how intermediaries can be incentivized to market more aggressively investment products to unsophisticated investors. In their analysis of delegated investment management, kickbacks paid by portfolio managers to intermediaries enable investment fund managers to price discriminate across investors with more or less wealth.

The paper proceeds as follows. Section 2 introduces the baseline model. Section 3 analyzes the provision of advice. Sections 4,5 , and 6 solve for the equilibrium compensation structure and advice in the presence of wary customers, naive customers, and a heterogeneous population with both types of customers, respectively. Sections 7, 8, and 9 extend the model to analyze the effect of agency frictions, endogenous information acquisition, and competition, respectively. Section 10 summarizes the policy implications. Section 11 concludes. Appendix A collects the proofs of all the propositions reported in the paper. Appendix B analyzes an analytical example.

2 Baseline model

We are interested in analyzing some generic features of the market for many retail financial services, such as investment products, pension plans, mortgages, and life insurance policies. Abstracting from specific features of markets for particular products and services, we frame our analysis more generally in terms of a customer's choice between two options. This choice is based on an adviser's recommendation regarding the suitability of the characteristics of either option to the customer's specific needs and circumstances, such as the customer's wealth, earnings prospects, age, risk attitude, and tax status. When deciding how to finance a home purchase, the attractiveness of a FRM relative to an ARM depends on the borrower's income stream. A household's optimal choice of pension scheme, in terms of risk and liquidity, depends on factors such as age to retirement and risk tolerance given the composition of the household's asset portfolio. ${ }^{12}$ Similarly, the tax implications of

[^5]

Figure 1: This scheme illustrates the flow of information from the adviser to the customer, the customer's purchase decision, and the monetary transfers among the product providers, the adviser, and the customer.
different investment vehicles, such as stocks and municipal bonds, depend on an investor's tax bracket.

2.1 Products, customer preferences, and advice

As represented schematically in Fig. 1, we denote the customer's options by $\theta=A, B$, where A corresponds to the choice of product A and B could stand for another product or, alternatively, for the option of not purchasing at all. Our analysis applies to both cases. In case the two options correspond to different products, we could think of B as representing the basic (or default) option; A the advanced (or premium) option. For instance, option B could represent the option of not investing or that of investing in Treasury bills, while option A could represent a mutual fund or a structured product. Alternatively, B could be a plain vanilla mortgage (such as an FRM) and A a more innovative arrangement (such as an ARM).

The price of product $A, p_{A}=p$, is chosen by the respective product provider. The price could represent management fees or required interest payments. To focus our analysis, in our baseline specification we assume that the payoff of the alternative option, B, is exogenously given. If B corresponds to an alternative product, instead of the option of not purchasing at all, we suppose that its price p_{B} is determined competitively, and thus it is equal to cost. To streamline the notation we set equal to zero all costs, i.e., both the

[^6]cost of providing each product and the cost of administering a purchase. Thus, in this baseline setting there are three strategic players: the monopolistic provider of the advanced product A, the adviser, and the customer.

The value realized by the customer depends on the match between the customer's preferences and needs with the characteristics of the options available. We capture the importance of the match by supposing that there are two customer types, $\widehat{\theta}=A, B$, with corresponding utilities $v_{\theta, \widehat{\theta}}$ in case product θ is matched with customer type $\widehat{\theta}$. The key assumption is that a fitting match creates higher utility, $v_{A, A}>v_{B, A}$ and $v_{B, B}>v_{A, B}$. We impose symmetry by supposing that $v_{A, A}=v_{B, B}=v_{h}$ and $v_{A, B}=v_{B, A}=v_{l}$, with $v_{h}>v_{l}$, and we define $\Delta_{v}:=v_{h}-v_{l}$.

The initial (or prior) public probability that choice A is more suitable is equal to q_{0}. The customer's expected gross payoff is then $v_{l}+q_{0} \Delta_{v}$ when choosing A, and it is $v_{l}+\left(1-q_{0}\right) \Delta_{v}$ when choosing B. We assume that the basic option is more suitable for the average customer, $q_{0}<1 / 2$.

The customer can obtain advice from an adviser who acts as information intermediary. Presently, we consider the quality of the adviser's information to be exogenously given. This information is captured by the cumulative distribution function of the adviser's posterior belief, $G(q)$, with full support $q \in[0,1] .{ }^{13}$ By Bayesian updating the expected posterior belief is equal to the prior, so that $\int_{0}^{1}[1-G(q)] d q=q_{0}$. In Section 8 we consider costly information acquisition by the adviser, which is then modeled by a transformation of $G(q)$. Also, this baseline model features a single customer demanding a single unit of the product sold by a joint monopoly composed of a provider and an adviser. In Section 9 we extend the model to allow for a downward-sloping demand for products and to analyze competition.

2.2 Contracting between product providers and adviser

Consider first the contract between product provider A and the adviser. In our baseline model, the contract prescribes two elements, a fixed payment T and a conditional payment t that is paid only when subsequently product A is sold. Presently, we also do not place any sign restrictions on T, which thus can be set to be negative so as to eliminate the internal agency problem in the distribution chain. This baseline scenario without agency frictions allows us to focus on the contracting problem with respect to customers. We analyze in Section 7 the case in which the agency problem is not resolved perfectly because of the

[^7]constraint that $T \geq 0$.
The adviser does not receive additional payment when option B is chosen, so that either no purchase is made or the basic (and competitively provided) product is purchased. It is, however, straightforward to extend the analysis to allow for payments that would need to be made to the adviser to cover any administrative or handling costs. After all, what will matter for our analysis is the difference between the payments that the adviser receives when the customer makes the respective choices.

The contingent payment t could take different forms in practice. For some investment products, the broker or independent financial adviser could receive all or a fraction of the load that the customer initially pays to the product provider. More generally, the intermediary could receive a commission. With credit products, brokers' compensation is often tied to the interest rate through the so-called yield spread; see Jackson and Burlingame (2007). Sellers of life insurance plans could be paid both up-front or via a trail-commission over the duration of the contract; see Cummins and Doherty (2006).

When making a recommendation, the adviser is also concerned about the suitability of the option chosen by the customer. We capture this concern by stipulating that the adviser's future payoff is reduced by $\rho>0$ when the customer ultimately realizes low utility v_{l} instead of high utility v_{h}. Even though the respective levels of the adviser's payoff is inessential for our analysis, for concreteness we specify that the adviser's payoff, gross of payments received from product providers, is equal to u_{l} when v_{l} is realized and equal to u_{h} when v_{h} is realized, so that $\rho=u_{h}-u_{l}$. This simple way of modeling the suitability concern follows Bolton, Freixas, and Shapiro (2007) and Inderst and Ottaviani (2009). ${ }^{14}$ By specifying that also $u_{l} \geq 0$, we can restrict the adviser's recommendations to either A and B even when option B represents an alternative, more basic product, so that, in principle, the third option of recommending not to purchase is also present.

The adviser's concern for suitability could have different origins. The adviser could simply have professional concerns about a customer's well-being. There could also be reputational costs, e.g., through the loss of future business with this or other customers. Further, ρ could capture the prospect of prosecution by courts or regulators following customer complaints regarding suitability or a review of past sales by supervising authorities. To be specific, we suppose that ρ represents a fine paid to regulators. ${ }^{15}$

[^8]
2.3 Contracting with customers

When purchasing product A, customers must pay the respective price $p_{A}=p$. The payment that must be made when choosing option B is set to zero. We allow the adviser to stipulate a flat fee f for advice; this is a key innovation of our analysis, as discussed in the introduction. We restrict this fee to be nonnegative, $f \geq 0$ according to a standard no-free-lunch condition that prevents the adviser from bribing the customer into business with a positive up-front payment. A standard assumption to rule out such up-front transfers is the presence of a sufficiently large pool of frivolous customers, who would then turn up to cash in the fixed payment while having no intention to make a purchase. Only when the adviser's offer is accepted by a customer, who arrives next, does the game proceed.

2.4 Customer rationality

Our analysis distinguishes between two types of customers, wary and naive. Wary customers are perfectly aware of the adviser's incentives arising both from the suitability concern ρ and from the contingent payment t that is made by provider A. To be specific, we suppose that the contract between the adviser and the product provider A is not disclosed to the customer (cf., however, the discussion of policy implications below). A wary customer, nevertheless, forms rational beliefs.

Instead, naive customers mistakenly believe that the quality of advice is not affected by the presence and the size of payments made by product providers. According to the survey evidence discussed in the introduction, customers often do not receive information about such contingent payments and hold, on average, beliefs that seem largely inconsistent with observed practice in the industry. What is more, even when customers could and should be aware of such payments, this might not be the most salient piece of information at the time of purchase, especially when the purchase takes place in a face-to-face situation.

2.5 Timeline

The game of contracting, advice, and purchasing proceeds in five periods. At time $\tau=1$, product provider A chooses the price p. At the same time, a contract (T, t) is arranged with the adviser. Given that initially we do not impose a sign restriction on T, it is inconsequential for our analysis how the bargaining power is distributed at this stage, even though it proves convenient to suppose that the product provider makes a take-it-or-leave-it offer (cf. also the discussion in Section 7). At $\tau=2$, the adviser stipulates the fee

[^9] to seek redress from the broker.
f. Provided that the customer is willing to pay f, at $\tau=3$ the adviser privately obtains additional information on the suitability of A or B, as represented by his posterior belief q. At $\tau=4$, based on this information, the adviser recommends to the customer which option to choose. The game at this stage is one of cheap talk (cf. Crawford and Sobel, 1982). As we show below, the customer follows the adviser's recommendation in the only informative equilibrium. ${ }^{16}$ At $\tau=5$, the purchase decision is made, and then all payoffs are realized. Payoffs are not discounted and all players are risk neutral.

3 Providing advice

Given the realization of a posterior belief q (that product A is more suitable), at $\tau=4$ it is optimal for the adviser to recommend product A whenever the adviser obtains a higher expected payoff when the customer purchases product A instead of B, i.e., when $t+q u_{h}+(1-q) u_{l} \geq q u_{l}+(1-q) u_{h}$. The adviser thus considers not only the monetary inducement t in case of recommending product A, but also the expected private costs of a subsequent mismatch, which are equal to $(1-q) \rho$ for A and $q \rho$ for B after substitution of $\rho=u_{h}-u_{l}$. If interior, the recommendation is characterized by a cutoff

$$
\begin{equation*}
q^{*}:=\frac{1}{2}-\frac{t}{2 \rho} \tag{1}
\end{equation*}
$$

so that the adviser strictly prefers to recommend A when $q>q^{*}$ and strictly prefers to recommend B when $q<q^{*}$. The cutoff is not interior when $t \geq \rho$, in which case the adviser always recommends product A; for this case, we specify $q^{*}=0$.

For a customer who chooses not to obtain advice it is optimal to always choose option B and, thereby, realize net utility

$$
\begin{equation*}
v_{0}:=v_{l}+\Delta_{v}\left(1-q_{0}\right)>0 . \tag{2}
\end{equation*}
$$

For this we use our simplification that in case option B consists of buying an alternative product B, this product is competitively provided at a price equal to its cost of zero. From $v_{0}>0$ we also have that the customer always follows a recommendation to purchase B, given that the expected utility conditional on $q<q^{*}$ is strictly higher than v_{0}, for any cutoff $q^{*}>0$. Instead, the customer's incentives to follow the recommendation to purchase product A depend on the prevailing price p. In equilibrium, however, the price p is chosen accordingly, so that the customer also follows the advice to choose A.

[^10]
3.1 Profits and surplus

We presently consider the case in which the relation between product provider A and the adviser is governed by a two-part contract (T, t), where the fixed payment T is not subject to a sign restriction. It is then immediate that the choice of t, which governs the adviser's recommendation, is set so as to maximize joint payoffs, i.e., the sum of the product provider's payoff

$$
\begin{equation*}
\Pi=\left[1-G\left(q^{*}\right)\right](p-t)-T \tag{3}
\end{equation*}
$$

and of the adviser's payoff

$$
\begin{equation*}
\pi=f+T+u_{l}+\int_{0}^{q^{*}} \rho(1-q) d G(q)+\int_{q^{*}}^{1}(t+\rho q) d G(q) . \tag{4}
\end{equation*}
$$

That adviser's payoff π contains three different elements: the direct fee f received from the customer; the payments from the product provider (T, t), where the contingent payment is paid only with probability $1-G\left(q^{*}\right)$; and u_{l} together with ρ, which capture the suitability concern as $\rho>0$ is received only when the product was suitable.

If q^{*} is interior, we can substitute from Eq. (1) to obtain the joint payoff of the adviser and product provider

$$
\begin{align*}
S & =\Pi+\pi \tag{5}\\
& =f+u_{l}+\left[1-G\left(q^{*}\right)\right] p+\rho L\left(q^{*}\right),
\end{align*}
$$

where

$$
\begin{equation*}
L\left(q^{*}\right)=\int_{0}^{q^{*}}(1-q) d G(q)+\int_{q^{*}}^{1} q d G(q) \tag{6}
\end{equation*}
$$

denotes the ex ante probability of a suitable choice.
Adding the consumer surplus $v_{l}+\Delta_{v} L\left(q^{*}\right)-\left[1-G\left(q^{*}\right)\right] p-f$ to firms' joint payoff S in Eq. (5), the total surplus in the market is equal to

$$
\begin{equation*}
\omega\left(q^{*}\right)=\left(u_{l}+v_{l}\right)+\left(\rho+\Delta_{v}\right) L\left(q^{*}\right) . \tag{7}
\end{equation*}
$$

Total surplus increases with the likelihood of suitable product choice, $L\left(q^{*}\right)$, which in turn is highest when advice is unbiased: $q^{*}=1 / 2$. From Eq. (1), advice is unbiased only if $t=0$.

4 Serving wary customers

In this section, we consider a market populated only by wary customers. This case provides the benchmark for our subsequent analysis of markets in which naive customers
are also present. Recall that the strategic product provider A chooses both the price p that is charged to the customer and, at the same time, the two-part contract that is offered to the adviser, (T, t). After accepting this contract, the adviser is free to specify a fee f that customers have to pay before receiving advice and possibly purchasing a product.

4.1 Customer participation constraint

A customer who chooses not to obtain advice realizes the net utility v_{0} from choosing option B, according to Eq. (2). Whether, given that the adviser applies a cutoff rule q^{*}, a customer follows the recommendation to purchase product A depends on the respective price p, as well as on the anticipated quality of the adviser's recommendation. To this end, a wary customer should form beliefs about the payment that the adviser receives, given that this payment affects the cutoff that the adviser applies. We denote these expectations by \widehat{t} and \widehat{q}, respectively. We presently stipulate that the payment t is not observable, which is why, at least off-equilibrium, the anticipated cutoff \widehat{q} could deviate from the true cutoff q^{*}.

Optimally, the wary customer follows a recommendation to purchase A if, given the anticipated cutoff \widehat{q}, the corresponding conditional payoff is higher than the one obtained from product B

$$
\begin{equation*}
v_{l}+\Delta_{v} \int_{\widehat{q}}^{1} q \frac{d G(q)}{1-G(\widehat{q})}-p \geq v_{l}+\Delta_{v} \int_{\widehat{q}}^{1}(1-q) \frac{d G(q)}{1-G(\widehat{q})}, \tag{8}
\end{equation*}
$$

which simplifies to the requirement that

$$
\begin{equation*}
p \leq \Delta_{v} \int_{\widehat{q}}^{1}(2 q-1) \frac{d G(q)}{1-G(\widehat{q})} \tag{9}
\end{equation*}
$$

Intuitively, the price that the customer is willing to pay for product A is higher when it is less likely that product A is recommended (higher \widehat{q}), so that following a recommendation, it is more likely that product A is suitable and less likely that product B is suitable.

Next, a customer is willing to pay a fee $f \geq 0$ up-front only if the respective expected payoff exceeds that from not obtaining advice:

$$
\begin{equation*}
v_{l}+\Delta_{v} \int_{0}^{\widehat{q}}(1-q) d G(q)+\int_{\widehat{q}}^{1}\left(q \Delta_{v}-p\right) d G(q)-f \geq v_{0} \tag{10}
\end{equation*}
$$

Substituting for the customer's outside option v_{0} from Eq. (2) and using the martingale property of beliefs, $\int_{0}^{1} G(q) d q=1-q_{0}$, the ex ante participation constraint Eq. (10) becomes

$$
\begin{equation*}
p+\frac{f}{1-G(\widehat{q})} \leq \Delta_{v} \int_{\widehat{q}}^{1}(2 q-1) \frac{d G(q)}{1-G(\widehat{q})} \tag{11}
\end{equation*}
$$

Given that $f \geq 0$, we thus conclude that this ex ante constraint implies the ex post constraint Eq. (9). As is intuitive, a customer who would optimally not follow the recommendation to purchase product A would clearly not be willing to pay a fee f to receive such advice. Hence, we need only consider for the customer the ex ante participation constraint Eq. (11).

4.2 Contract design

At $\tau=2$, the adviser specifies the up-front fee that the customer has to pay. If a positive fee $f \geq 0$ exists for which the customer's ex ante participation constraint Eq. (11) is satisfied, the adviser optimally sets the fee at the highest possible level. Given a product price p and given expectations about the adviser's cutoff \widehat{q}, the binding constraint Eq. (11) then pins down a unique value for $f .{ }^{17}$ Importantly, through f the adviser extracts all of the customer's residual surplus, compared with the option of choosing B without advice. This choice of f is anticipated by the product provider, who at $\tau=1$, sets both the price p and the bilateral contract with the adviser (T, t). Recall that, for simplicity, we stipulate that the product provider can make a take-it-or-leave-it offer to the adviser, even though this assumption is inconsequential for the results in this baseline specification without agency frictions. Anticipating the adviser's subsequent choice of f, which ensures that Eq. (11) binds, the product provider optimally chooses the fixed part T so as to make the adviser just indifferent between acceptance and rejection, so that $\pi=0$. This implies immediately that the product provider's choice of p and t maximizes joint firm profits, $S=\Pi+\pi$.

Note again that the actual choice of t is not observable to customers and, hence, does not affect their beliefs about the cutoff \widehat{q}. Consequently, to maximize joint profits, for a given product price p it is uniquely optimal to set $t=p$. As we set costs to zero, the adviser then fully internalizes joint profits when recommending A or B, and this outcome is in the interest of the product provider who fully extracts these profits through T. In the baseline model, the product provider can freely choose the fixed transfer T and so is able to overcome the agency problem with the adviser. We return to this observation in Section 7, when we introduce agency frictions by imposing restrictions on T.

The optimal choice of t, for given p, is then reflected in the wary customers' belief that $\widehat{t}=p$. That is, wary customers fully anticipate that a higher observed price eventually leads to higher commissions. Consequently, their rationally anticipated cutoff \widehat{q} is given

[^11]by
\[

$$
\begin{equation*}
\widehat{q}=\frac{1}{2}-\frac{p}{2 \rho} . \tag{12}
\end{equation*}
$$

\]

Compared to Eq. (1) for q^{*}, in Eq. (12) we use the price p in lieu of the unobserved commission t. Thus, given the price p, customers with wary expectations are not fooled by the potential bias in the advice, even though they cannot observe t. In turn, this implies that firms are able extract exactly the net consumer surplus of wary customers, namely, by choosing p and consequently f so that the participation constraint Eq. (11) binds for the true cutoff $\widehat{q}=q^{*}$. Summing up, with wary customers the product provider can extract the total net surplus, $\omega\left(q^{*}\right)-v_{0}$, where $\omega\left(q^{*}\right)$ was defined in Eq. (7). This surplus is uniquely maximized by specifying the price $p=0$, which gives rise to $t=0$ and thus to unbiased advice: $q^{*}=\widehat{q}=1 / 2$.

Proposition 1 The equilibrium outcome with wary customers maximizes the total surplus of firms and customers. This outcome is achieved when the adviser obtains no commission, so that advice is unbiased: $t=0$ and $q^{*}=1 / 2$. The customer pays a strictly positive fee for advice equal to

$$
\begin{equation*}
f=\Delta_{v} \int_{1 / 2}^{1}(2 q-1) d G(q) \tag{13}
\end{equation*}
$$

In equilibrium, advice remains unbiased, given that the adviser receives no distorting contingent payment: $t=0$. The joint surplus of firms and consumers is thus maximized, given that in the present setting the adviser's sole task is to provide advice. The finding that contracts maximize total surplus also holds in Section 8's extension in which the adviser also acquires costly information, even though then commissions are strictly positive even when customers are wary. This result hinges on the firms' ability to extract customer surplus by charging a fixed fee for advice, $f>0$. Given that wary customers rationally anticipate the quality of advice, it is uniquely optimal for firms to structure incentives so that advice becomes most informative.

Even though the contingent payment t is not directly observed, in our present analysis firms are able to fully overcome any commitment problem vis-à-vis customers. The reason is the following. Wary customers anticipate that the product provider and the adviser choose their two-part contract (T, t) so that the adviser fully internalizes the impact of the recommendation on firm total profits. This is the case only when $t=p$. By setting $p=0$, therefore, the product provider can credibly commit not to pay a positive commission. This is optimal for the product provider for two reasons. First, the subsequently chosen fixed fee for advice, $f>0$, still allows the extraction of the consumer surplus, and, second,
the fixed fee in the agency contract, $T<0$, allows the transfer of profits from the adviser to the product provider.

5 Exploiting naive customers

Suppose now that customers are naive about the adviser's incentives, in the sense that they invariably hold the belief that $\widehat{q}=1 / 2$. One possibility is that naive customers do not understand how a specific product price affects the product provider's incentives to boost sales by paying commissions to the adviser. Alternatively, the fact that commissions are paid and that these affect the adviser's incentives might not be sufficiently salient to enter these customers' consideration when making the purchase decision.

5.1 Contract design

By the same reasoning as in the baseline case with wary customers, we need to consider only the ex ante participation constraint for naive customers. This is obtained from Eq. (11) simply by substituting $\widehat{q}=1 / 2$. The adviser sets the fixed fee so that the participation constraint just binds, provided such a value $f \geq 0$ exists. Next, for given price p, our previous discussion of the internal agency problem between the product provider and the adviser still applies when customers are naive. That is, the product provider optimally sets $t=p$ so as to maximize joint profits $(\Pi+\pi)$ and, at the same time, sets T so as to extract the adviser's profits $(\pi=0)$.

The key difference to the case with wary customers is that now $\widehat{q}=q^{*}$ holds only when $q^{*}=1 / 2$, which in turn applies only when $t=p=0$. For all higher prices the contingent payment is strictly positive, $t=p>0$, so that naive customers' beliefs are consistently wrong. They underestimate the likelihood with which they eventually purchase product A when following advice, $q^{*}<\widehat{q}=1 / 2$. We argue now how this, optimally, induces firm A to set the highest possible price p at which the participation constraint Eq. (11) just binds when, at the same time, $f=0$.

Substituting f from the customers' binding participation Eq. (11) together with T from $\pi=0$ for the adviser, we obtain the product provider's profits

$$
\begin{align*}
\Pi= & \Delta_{v} \int_{1 / 2}^{1}(2 q-1) d G(q)+\left[u_{l}+\rho L\left(q^{*}\right)\right] \tag{14}\\
& +\left[1-G\left(q^{*}\right)\right] p-[1-G(1 / 2)] p
\end{align*}
$$

as shown in the proof of Proposition 2 in Appendix A. Intuitively, the first line reflects the customers' anticipated value from advice, given their belief that $\widehat{q}=1 / 2$, and the adviser's
payoff gross of his commission. The second line of Eq. (14) is zero when $p=t=0$, so that customers' anticipated cutoff $\widehat{q}=1 / 2$ equals the true cutoff q^{*}. Instead, for all $p>0$ the difference is strictly positive, as then the anticipated likelihood with which product A is ultimately bought, $1-G(1 / 2)$, is strictly smaller than the true probability, $1-G\left(q^{*}\right)$, given that $q^{*}<1 / 2$.

Suppose now that product provider A increases the product price. Through the optimal adjustment of $t=p$, the resulting change of the cutoff q^{*} maximizes joint profits and thus Π in Eq. (14). Applying the envelope theorem with respect to the change in q^{*} that is induced by the optimal change in $t=p$, the marginal change in profits is then

$$
\begin{equation*}
\frac{d \Pi}{d p}=G(1 / 2)-G\left(q^{*}\right) \tag{15}
\end{equation*}
$$

For $p=t=0$ (so that $\widehat{q}=q^{*}=1 / 2$) this is zero, but it is strictly positive for all $p=t>0$. Hence, the considered marginal increase in the product price and in the commission, together with a reduction in the direct fee for advice, increases profits. The unique optimal choice then implies that customers are charged no direct fee for advice, $f=0$.

When naive customers observe a higher price for product A, they do not rationally anticipate that product provider A also increases its commission to the adviser and that the adviser then optimally adjusts his recommendation strategy. In particular, a naive customer underestimates the probability of receiving a recommendation to buy the now more expensive product A. In fact, as the customer still expects that the recommendation to buy A happens only with probability $1-G(1 / 2)$, the difference in purchase probabilities (i.e., the statistical error that is made) is exactly equal to the difference $G(1 / 2)-G\left(q^{*}\right)$ in Eq. (15). This observation is key. Profits thus strictly increase whenever the upfront payment for advice is reduced, provided that the participation constraint of the naive customer is still satisfied as the product price increases accordingly. This strict monotonicity holds because of the exploitation of the naive customer's beliefs, which are wrong whenever $t>0$.

Once we substitute $f=0$, together with $\widehat{q}=1 / 2$, into the naive customers' binding ex ante participation constraint, we obtain for the corresponding equilibrium product price

$$
\begin{equation*}
p=\Delta_{v} \int_{1 / 2}^{1}(2 q-1) \frac{d G(q)}{1-G(1 / 2)} \tag{16}
\end{equation*}
$$

We have established the following result.
Proposition 2 In equilibrium, naive customers are not charged directly for advice, so that $f=0$. The corresponding price p of product A is given by Eq. (16), and the respective
advice cutoff q^{*} is obtained from substituting $t=p$ into Eq. (1), provided this is still interior, while otherwise $q^{*}=0$.

5.2 Discussion

With naive customers, Proposition 2 thus offers a possible rationale for why frequently retail financial customers do not pay directly for financial advice. Firms generate higher profits when, in equilibrium, naive customers underestimate the true probability with which they subsequently are advised to purchase. This makes it profitable to reduce the up-front fee as much as possible, while raising the price p and the commission t. Thus, advice is given at no fee, but the product's price is high.

At the equilibrium price p for product A, together with $f=0$, naive customers' true ex ante expected payoff is strictly negative. This pricing structure reduces total expected surplus, given that the likelihood of a suitable match L would be maximized when $q^{*}=$ $1 / 2$, but it increases profits by extracting more surplus from naive customers, who are unaware of this mechanism. We return to this observation when discussing possible policy implications below.

Finally, note that advice with naive customers could become completely uninformative. Then, the adviser always recommends product A, with $q^{*}=0$. After substituting $t=p$, where p is given by Eq. (16), into the cutoff Eq. (1), this is the case when

$$
\begin{equation*}
\rho \leq \Delta_{v} \int_{1 / 2}^{1}(2 q-1) \frac{d G(q)}{1-G(1 / 2)} \tag{17}
\end{equation*}
$$

6 Catering to a heterogeneous customer base

We now extend the analysis to consider a more general market composed of a fraction μ of wary customers and a fraction $1-\mu$ of naive customers. The analysis presented in the previous sections applies to the case in which the adviser directly observes whether the customer is naive or wary. In this section we turn to analyze the case in which the adviser does not observe the customer's behavioral type.

6.1 Contract design

We suppose first that the product provider has to design a single offer, p. This is a reasonable assumption for some retail financial services. For instance, in a given share class that is targeted to retail investors, mutual funds typically entail a fixed load and management fee.

As a starting point, consider again the case without commissions $(t=0)$, where we also have $p=0$, given that we set the cost to zero. Wary customers then have the same expectations as naive customers and have thus also the same willingness to pay up-front for advice. Consider now an increase in p. Naive customers then require that the fee is lowered by $d f=d p[1-G(1 / 2)]$, as they still hold the expectation that the cutoff $\widehat{q}=1 / 2$ applies. Instead, wary customers rationally anticipate that the likelihood of being recommended product A is higher, as the seller optimally increases the commission t. As product A has become more expensive, for all $p>0$ wary customers' anticipated payoff is thus strictly lower than that of naive customers.

From these observations, when there is a single offer, firms face the following two choices. When an offer shall be acceptable to all customers, the product provider sets $p=$ $t=0$, implying that both naive and wary customers' beliefs are correct with $\widehat{q}=q^{*}=1 / 2$. The adviser subsequently chooses the fixed fee f so as to satisfy their joint participation constraint Eq. (11). In other words, the offer is then identical to that characterized in Proposition 1. Alternatively, firms could offer a contract that is acceptable only to naive customers, in which case the product provider charges $p>0$ as given in Eq. (16), followed by the adviser's choice of $f=0$. Then, wary customers abstain from receiving advice because the true expected payoff from turning to the adviser is negative. There is an interior cutoff $0<\mu^{*}<1$ for the fraction of wary customers so that serving all customers with a single offer is optimal only if $\mu \geq \mu^{*}$, while only naive customers are targeted when $\mu<\mu^{*}$.

In principle, even when direct (first-degree) price discrimination between wary and naive customers is not possible, there could be scope for indirect (second-degree) price discrimination. In fact, the menu of the two offers, as characterized in Propositions 1 and 2 , is incentive compatible. Naive customers are indifferent between choosing the offer designed for them or, instead, paying the up-front fee specified by Eq. (13) in exchange for the option to buy product A at a lower price. Wary customers, however, strictly prefer the offer designed for them because they know that the expected payoff from the naive customers' contract is strictly negative.

Proposition 3 When both naive and wary customers are in the market, the following outcome obtains:
(i) If only a single contract is feasible, when the fraction of wary customers is sufficiently large ($\mu \geq \mu^{*}$ for a cutoff $0<\mu^{*}<1$) the outcome is identical to the outcome resulting with only wary customers, as characterized in Proposition 1. Instead, when $\mu<\mu^{*}$, only naive customers receive advice, and the contract is identical to the outcome resulting with
only naive customers, as characterized in Proposition 2.
(ii) If indirect price discrimination is possible, the outcome is a menu of the contracts as characterized in Proposition 1 for wary customers and in Proposition 2 for naive customers.

6.2 Policy implications

When customers are wary, the first-best outcome with unbiased advice obtains (cf. Proposition 1). From Proposition 3 this outcome also prevails when there are not too many naive customers in the market and when firms cannot (price) discriminate between wary and naive customers. In this case, the presence of wary customers protects naive customers from exploitation. This is, however, no longer the case either when there are sufficiently many naive customers in the market or when firms can successfully price discriminate between the two groups, according to assertion (ii) in Proposition 3. Then, naive customers receive biased advice under exploitative terms, so that their true expected payoff is strictly below what they naively expect. In this case, policy intervention can strictly increase consumer surplus and welfare.

Specifically, policy makers could prohibit product providers from paying commissions or making other contingent payments to advisers. When $t=0$ must hold irrespective of the prices and thus the margins that product providers earn, advisers would charge customers directly for advice, so that $f>0$. Regardless of the composition of customers (μ), in this case the outcome from Proposition 1 obtains. Such a policy would represent a drastic change in some markets for retail financial services, in which customers are typically not asked to pay directly for advice and in which product providers commonly make contingent payments to intermediaries. However, a radical policy along these lines is currently being implemented in some jurisdictions, most notably by the UK's Financial Service Authority (see footnote 6). A more gradual policy change would impose a binding cap on contingent payments, though not requiring that $t=0$. As is intuitive, in our baseline model such a cap would be preferable to no policy intervention, but it would be inferior to an outright ban on commissions.

Another commonly adopted policy consists in mandating disclosure of conflicts of interest between intermediaries and customers. For the US mortgage market, by now dominated by third-party brokers, the Department of Housing and Urban Development in November 2008 strengthened the requirement to disclose to homeowners the payments brokers receive for intermediated mortgage agreements. Similarly, since January 2008 the European Union's Markets in Financial Instruments Directive (MiFID) directive imposes mandatory
disclosure for the sale of many financial products. In addition to informing customers about the level of commissions and other payments that intermediary agents receive, such disclosure policies could have the primary effect of making customers wary in the first place. Disclosure of a conflict of interest would then act as an eye-opener to previously naive customers.

Proposition 4 In the baseline model, policy intervention is warranted when either the fraction of naive customers is sufficiently large or when firms can price discriminate between wary and naive customers. The first-best outcome obtains only when either contingent payments to advisers are prohibited or when mandatory disclosure acts as an eyeopener by turning naive customers into wary customers. Consumer surplus and efficiency monotonically increase when a lower, more stringent cap $\bar{t}>0$ on commissions is imposed.

In the baseline model, firm profits are strictly lower with wary than with naive customers. As long as we can abstract from the agency problem between the product provider and the adviser through an unconstrained fixed payment T, it is then reasonable to expect that no party will have incentives to educate naive customers, thereby eroding joint profits. We discuss this in more detail in Section 7.

In the baseline model, provided that disclosure works as an eye opener, mandatory disclosure has the same implication as the more interventionist policy of prohibiting commissions. In Section 8 we discuss how in a richer framework this equivalence might no longer hold. Observe also that in a market with only wary customers the imposition of either policy has presently no impact at all. This is so for two reasons. First, in the baseline model it is efficient to make no contingent payment, as only then the value of advice is largest (highest L). Second, even without policy intervention firms can achieve full commitment vis-à-vis customers, namely, by setting a sufficiently low price ($p=0$), which then makes it optimal to pay no secret inducements $(t=0)$. We explore next how such a commitment problem arises once we impose restrictions on the contracts between the product provider and the adviser.

7 Dealing with agency frictions

In our preceding analysis, both charges paid by customers, p and f, were ultimately chosen to maximize joint profits, as realized by the product provider and the adviser. The specification of a fixed transfer T allowed to consider separately the question of how to split profits. We now suppose that $T \geq 0$ must hold in equilibrium. In standard contracting terminology, this constraint could result when the adviser has zero initial wealth and is
protected by limited liability. More generally, the imposition of such a constraint could be warranted when the relation between product providers and advisers is more at arm's length and thus guided by short-term incentives.

Consider first the case with wary customers. In the absence of agency frictions, recall from Proposition 1 that consumer surplus was extracted only through the fixed fee for advice, while $p=0$ and thus $\tau=0$. The product provider then made profits only through the fixed transfer received from the adviser: $T<0$. When we now impose the constraint $T \geq 0$, this outcome is no longer feasible. Reconsidering the product provider's program, note first that, for given beliefs \widehat{q}, at $\tau=2$ it is still optimal for the adviser to set the fee maximally so that the customer's participation constraint Eq. (11) just binds. Note also that even when $T=0$ and when only $f=0$ is feasible from the participation constraint Eq. (11), as p is set sufficiently high, we have $\pi \geq 0$ for the adviser. ${ }^{18}$ Thus, when the product provider has all contracting power and can no longer extract surplus through a fixed transfer $T<0$, the product provider optimally sets $T=0$ and increases the price p so as to leave no scope for the adviser to charge a positive fee for advice. For a given anticipated cutoff \widehat{q}, we obtain from Eq. (11) that the respective maximum feasible product price is

$$
\begin{equation*}
p_{m}(\widehat{q})=\Delta_{v} \int_{\widehat{q}}^{1}(2 q-1) \frac{d G(q)}{1-G(\widehat{q})} \tag{18}
\end{equation*}
$$

Note next that, when $p>0$, the product provider could still have an incentive to push sales by paying a positive inducement $t>0$, even though now T can no longer be lowered in exchange. Precisely, for given p, the product provider chooses t to maximize profits $(p-t)\left[1-G\left(q^{*}\right)\right]$. Taking the derivative with respect to t, we have

$$
\begin{equation*}
(p-t) g\left(q^{*}\right) \frac{1}{2 \rho}-\left[1-G\left(q^{*}\right)\right] \tag{19}
\end{equation*}
$$

By stipulating that the hazard rate $g(q) /[1-G(q)]$ is strictly increasing, we ensure that this program has a unique solution for given p, denoted by $t^{*}(p)$. Choose now $\widehat{q}=1 / 2$, which would prevail when customers anticipated that no commissions are paid. We stipulate that $t^{*}\left(p_{m}(1 / 2)\right)>0$, so that, at the highest feasible price for product A, it is optimal for the product provider to pay commissions. From Eq. (19) this holds when ρ is not too large. Note also that $t^{*}(p)$ is strictly increasing because paying a higher inducement to push sales is more profitable when the seller's margin is higher.

Wary customers hold rational beliefs, $\widehat{t}=t^{*}(p)$, and, consequently, expect a strictly lower cutoff \widehat{q} when p increases. This gives rise to a unique price p and a respective

[^12]commission $t=t^{*}(p)$, so that for the corresponding cutoff q^{*} it holds that $p=p_{m}\left(q^{*}\right)$ (cf. the proof of Proposition 5). That is, in equilibrium the product provider can charge only the price that is commensurable with his incentives to pay commissions and, thereby, bias the adviser's recommendation in favor of product A. Instead, naive customers always believe that $\widehat{q}=1 / 2$, so that the product provider can charge $p=p_{m}(\widehat{q}=1 / 2)$.

Proposition 5 Extend the baseline model by imposing the restriction that $T \geq 0$. Then, both with wary customers and with naive customers, the product provider biases advice by paying positive commissions $(t>0)$ and charging zero fixed fee for advice $(f=0)$. With naive customers, the product price is strictly higher, leading to higher commissions and thus to more biased advice, than with wary customers.

By imposing the constraint $T \geq 0$, we restrict the product provider's ability to extract surplus from the adviser, and thus from the customer. A product provider who can extract surplus only by charging a higher price p then faces a commitment problem when commissions are not observable. In this case, the product provider has an incentive to pay commissions so as to steer advice and expand sales. In fact, recall that with wary customers a commitment not to bias advice in this way was obtained precisely by setting $p=0$, which is now no longer optimal, given the restriction $T \geq 0$. More generally, this case in which agency frictions persist can be interpreted as an instance of arm's-length contracting.

What is the effect of mandatory disclosure of commissions? When customers are wary, the product provider would then optimally pay zero commissions, $t=0$, and thus charge the highest possible price $p=p_{m}(1 / 2)$. In the presence of agency frictions and with wary customers, mandatory disclosure of commissions then strictly benefits the product provider. In Section 10 we return to a comparison of policy implications in our baseline scenario and in the scenario in which $T \geq 0$ is imposed.

8 Becoming informed to provide specialized advice

So far the quality of the adviser's recommendation was dependent only on whether his advice was biased or not. The quality of his privately observed information was, instead, exogenous. For instance, we could imagine that the observable qualification of a financial adviser is subject to regulation. However, when products are highly specialized, it could take the adviser additional effort to become familiar with the customer's specific circumstances and needs. Likewise, the adviser could have to spend time and effort to understand the features of a particular product, most notably the advanced product A.

Figure 2: An increase in information acquisition effort e rotates the distribution function of the adviser's belief $G(q \mid e)$ clockwise. The distribution is shifted upward (downward) for beliefs below (above) the prior probability q_{0}.

Denote the adviser's (privatively observed) effort by $e \geq 0$, which incurs costs $\kappa(e)$, where we stipulate that $\kappa(0)=0, \kappa^{\prime}(0)=0, \kappa^{\prime}(e) \geq 0$ for all e, and $\kappa(e) \rightarrow \infty$ as $e \rightarrow \infty .{ }^{19}$ To model the resulting quality of the adviser's information, we exploit the binary structure of the match quality. Any (additional) information that the adviser observes gives rise to some posterior belief, denoted by q, that product A provides a better match (i.e., that $\widehat{\theta}=A$). We characterize the quality of the adviser's information by the properties of the distribution of the posterior belief that is induced by e. An increase in effort affects the cumulative distribution function of the adviser's posterior belief, $G(q \mid e)$, by inducing a mean-preserving rotation of $G(q \mid e)$ around the prior belief, q_{0} :

$$
\begin{equation*}
\frac{d G(q \mid e)}{d e}>0 \text { for } q<q_{0}, \frac{d G(q \mid e)}{d e}<0 \text { for } q>q_{0}, \frac{d G(q \mid e)}{d e}=0 \text { for } q=q_{0} \tag{20}
\end{equation*}
$$

For convenience, we also suppose that for all feasible effort levels $e \geq 0$ the distribution has full support on $q \in[0,1]$ and that it is continuously differentiable in both q and e.

To understand the importance of Eq. (20), consider the extreme cases with no information and perfect information. When the adviser has access to no information, the adviser's posterior belief is always equal to the prior q_{0}. In this case, the distribution is equal to zero for $q<q_{0}$ and to one for $q \geq q_{0}$. When the adviser has access to perfect information, the adviser's posterior belief is equal to $q=0$ with probability $1-q_{0}$ and to $q=1$ with

[^13]probability q_{0}. In this case, the distribution is equal to $1-q_{0}$ for $q<1$ and to one for $q=1$. As can be seen in Fig. 2, the perfect information distribution is a clockwise rotation of the no-information distribution. According to Eq. (20), an increase in information quality results in a clockwise rotation of the distribution. Given our dichotomous structure with two states, $\widehat{\theta}=A, B$, any signal structure that results in the described rotation of the posterior distribution is more informative in the sense of Blackwell, as shown by Ganuza and Penalva (2009) Theorem 2. This way of capturing the quality of the adviser's information is thus both intuitive and general. ${ }^{20}$

In what follows, we focus on the case with wary customers, for which the introduction of endogenous information quality makes a difference, in terms of both the characterization of the optimal contracts and the implications for policy. To obtain a unique solution for the choice of information quality we further assume that

$$
\begin{equation*}
k^{\prime \prime}(e)>\rho \max _{q \in[0,1]}\left|\frac{d^{2} G(q \mid e)}{d e^{2}}\right| \tag{21}
\end{equation*}
$$

for all e, so that concavity of the maximization program is guaranteed. Without this additional assumption the equilibrium information quality need not be unique. However, standard monotone comparative statics methods can be used to extend our results also when this additional concavity assumption does not hold.

8.1 Optimal provision of effort

The adviser optimally chooses effort e to maximize the expected payoff $\pi-\kappa(e)$, where π is given in Eq. (4). When $q^{*}=0$, so that the adviser always recommends A, then clearly $d \pi / d e=0$, so that the adviser has no incentive to exert effort. When, instead, $q^{*}>0$ is determined by Eq. (1), Eq. (4) transforms to

$$
\begin{equation*}
\pi=\left(f+T+t+u_{l}+\rho q_{0}\right)+2 \rho \int_{0}^{q^{*}} G(q \mid e) d q \tag{22}
\end{equation*}
$$

after integrating by parts, substituting for q^{*}, and using $\int_{0}^{1} G(q \mid e) d q=1-q_{0}$. Eq. (22) has a simple interpretation. The first term, which is put in parentheses, is equal to the expected payoff the adviser would obtain by always recommending option A, which would allow the adviser to obtain for sure the commission t. The second term in Eq. (22) denotes

[^14]the benefits, in terms of lower expected mismatch costs, when the customer makes a more informed decision based on the advice received.

When q^{*} is interior, then from Eq. (22) an optimal choice of effort solves the first-order condition

$$
\begin{equation*}
2 \rho \int_{0}^{q^{*}} \frac{d G(q \mid e)}{d e} d q=\kappa^{\prime}(e) \tag{23}
\end{equation*}
$$

For all interior q^{*} the left-hand side of Eq. (23) is clearly strictly positive, because the adviser cares about suitability $(\rho>0)$. The maximizing level of effort e^{*} is unique by our concavity assumption in Eq. (21), and it is strictly positive by $\kappa^{\prime}(0)=0$. From the rotation ordering of $G(q \mid e)$ in Eq. (20), by inspecting the first-order condition Eq. (23) we immediately have the following result.

Lemma 1 The adviser's incentives to acquire information through the uniquely chosen effort e^{*} are hump-shaped as a function of q^{*} and thus also as a function of the commission t. Incentives are lowest at $q^{*}=0$, which holds when $t \geq \rho$. Starting from $t=0$ and thus $q^{*}=1 / 2$, as t increases also incentives increase up to $t_{0}:=\rho\left(1-2 q_{0}\right)$, where $q^{*}=q_{0}<1 / 2$. For all higher $t>t_{0}$, for which $q^{*}<q_{0}$, incentives are lower.

When the adviser is a priori relatively sure to recommend product A, as q^{*} is low, the adviser has little incentive to acquire information. Intuitively, this information is not likely to sway the recommendation and thus the customer's decision. At the opposite extreme, when at the prior beliefs the adviser is exactly indifferent between recommending either option, i.e., when $q^{*}=q_{0}$, any additional information breaks this indifference almost surely. The adviser's incentives to acquire information are then highest.

8.2 Characterization

From Lemma 1 there are now two countervailing effects when advice becomes biased $\left(q^{*}<1 / 2\right)$ because of the payment of $t>0$. The immediate effect is that this bias makes it less likely that the customer's choice is suitable, i.e., L decreases. The second effect is that, at least as long as $t<t_{0}, L$ increases as the adviser's information becomes more precise. At the unbiased recommendation cutoff, $q^{*}=1 / 2$, the first-order effect that a reduction of the cutoff has on L is, however, zero, given that then both options are equally likely to result in a suitable choice. For all $q_{0}<q^{*} \leq 1 / 2$ and thus, in particular also for $q^{*}=1 / 2$, the effect on the adviser's quality of information is, however, strictly positive. Taken together, we conclude that L is highest when $q^{*}<1 / 2$. Thus, advice is most informative when it is biased.

In the baseline model with exogenous information quality and wary customers, Proposition 1 establishes that the equilibrium contract maximizes total surplus. This insight holds also when information quality is endogenous. For brevity of exposition, we now assume that the program to choose q^{*} and thus e^{*} so as to maximize total surplus is strictly quasi-concave.

Proposition 6 When the adviser's information quality is endogenous, the equilibrium outcome with wary customers still maximizes the total surplus of the product provider, the adviser, and the customer, which is now

$$
\begin{equation*}
\omega=\left(u_{l}+v_{l}\right)+\left(\rho+\Delta_{v}\right) L\left(q^{*}\right)-\kappa\left(e^{*}\right) . \tag{24}
\end{equation*}
$$

This outcome is achieved when the adviser obtains a positive commission, $t=p>0$, and leads to biased advice (with $q^{*}<1 / 2$) but also to an overall higher quality of advice because then the adviser acquires more information than would result with zero commissions and unbiased advice ($q^{*}=1 / 2$).

Compared with the baseline model, Proposition 6 entails the following key change in terms of policy implications. Now, when customers are wary, the imposition of a binding cap on commission or their outright prohibition interferes with efficiency. When contracts are sufficiently flexible (cf. the discussion in Section 7) and customers are wary, firms commit through the choice of prices, p, to a choice of commissions, t, that leads to the second-best outcome. Their choice maximizes total surplus under the constraint that the adviser chooses two unobservable actions: the effort e to increase information quality and the recommendation cutoff q^{*}.

9 Competing

Given our focus on the structure of payments between customers, product providers, and financial advisers, our analysis abstracts from the institutional details of particular markets for retail financial services, such as investments or mortgages. Even in a particular class of financial products and services, the organization of the industry varies widely across different countries. In what follows, we therefore analyze the effect of competition in a way that does not require spelling out the details of the market structure that prevails in a particular industry.

9.1 Model extension

We still put at the heart of the analysis the provider of a more advanced product A together with an adviser, for simplicity focusing attention on the baseline scenario with exogenous information quality and without agency frictions. In our baseline model, contracts are then designed so as to maximize joint firm profits, given customers' participation constraint, which so far represented the outside option of choosing the basic product B without advice. We now envisage that customers could, instead, turn elsewhere for advice as well as for the purchase of an alternative advanced product. Precisely, we consider competition by two symmetric provider-cum-adviser dyads, $i=1,2$, which compete in utility space by offering a given customer the anticipated expected utility \widehat{u}_{i} :

$$
\begin{equation*}
\widehat{u}_{i}=v_{l}+\Delta_{v} \int_{0}^{\widehat{q}_{i}}(1-q) d G(q)+\int_{\widehat{q}_{i}}^{1}\left(q \Delta_{v}-p_{i}\right) d G(q)-f_{i}, \tag{25}
\end{equation*}
$$

where p_{i} and f_{i} denote the respective payments for product A_{i} and advice, while \widehat{q}_{i} denotes the anticipated cutoff that is used by the respective adviser. This expression applies both to wary customers, in which case \widehat{q}_{i} depends on the anticipated commission \widehat{t}_{i}, and to naive customers, who invariably use $\widehat{q}_{i}=1 / 2$. The quality of the adviser's information (signal) is exogenous. To model competition, we stipulate for convenience a symmetric and continuously differentiable demand function $x_{i}=x\left(\widehat{u}_{i}, \widehat{u}_{j}\right)$ with $j \neq i$. From $\partial x / \partial \widehat{u}_{i}>0$ and $\partial x / \partial \widehat{u}_{j}<0$, where $x(\cdot)>0$, demand for i increases when the respective expected utility \widehat{u}_{i} increases, but it decreases when \widehat{u}_{j} increases.

9.2 Firms' program

We can break up the firms' contract design problem in two steps. In the first step, firms determine the optimal way to deliver to customers a given utility \widehat{u}. Intuitively, depending on whether customers are naive or wary, the optimal contractual form mirrors that characterized in Proposition 1 and Proposition 2, respectively. That is, when customers are wary, profits are earned through a fixed fee for advice, and when customers are naive, profits are earned through a high product price. We denote, for given promised utility level \widehat{u}, the respective joint firm profits by $S^{W}(\widehat{u})=\Pi^{W}(\widehat{u})$ when consumers are wary (using $\pi=0$ as $T<0$ is set sufficiently low by the product provider). Likewise, we use for the case with naive consumers $S^{N}(\widehat{u})=\Pi^{N}(\widehat{u})$. For any given level \widehat{u} we have that $\Pi^{W}(\widehat{u})<\Pi^{N}(\widehat{u})$ because naive customers' true expected payoff is strictly smaller than what they anticipate. However, under competition this makes it more attractive for firms to gain market share, which is the second step in the firms' program.

In the second step, each firm i optimally chooses the respective level of promised utility \widehat{u}_{i} so as to maximize expected profits $\Pi^{\theta}\left(\widehat{u}_{i}\right) x\left(\widehat{u}_{i}, \widehat{u}_{j}\right)$, where $\theta=W, N$. From differentiation and using symmetry, we obtain that, in equilibrium,

$$
\begin{equation*}
\Pi^{\theta}(\widehat{u}) x_{1}(\widehat{u}, \widehat{u})+\Pi_{1}^{\theta}(\widehat{u}) x(\widehat{u}, \widehat{u})=0 \tag{26}
\end{equation*}
$$

where we use the derivatives $\Pi_{1}^{\theta}(\widehat{u})=d \Pi^{\theta}(\widehat{u}) / d \widehat{u}$ and $x_{1}(\widehat{u}, \cdot)=\partial x(\widehat{u}, \cdot) / \partial \widehat{u}$. For brevity's sake we stipulate that the firms' program is strictly quasi-concave and that best-response functions (in terms of the offered \widehat{u}_{i}) intersect only once, giving thus rise to a unique symmetric equilibrium.

We capture the prevailing degree of competition in a standard and simple way, through the elasticity of demand. Given that firms essentially compete in promised utilities, in a symmetric equilibrium the demand elasticity is given by

$$
\begin{equation*}
\eta(\widehat{u})=x_{1}(\widehat{u}, \widehat{u}) \frac{\widehat{u}}{x(\widehat{u}, \widehat{u})}, \tag{27}
\end{equation*}
$$

so that the first-order condition Eq. (26) becomes

$$
\begin{equation*}
\Pi^{\theta}(\widehat{u})=\frac{-\Pi_{1}^{\theta}(\widehat{u}) \widehat{u}}{\eta(\widehat{u})} \tag{28}
\end{equation*}
$$

More intense competition is captured by an increase of elasticity everywhere. For convenience, when $\eta(\widehat{u})=\eta$, then simply η increases.

9.3 Characterization

The introduction of competition yields now the following insights. Consider first, for a given firm, the comparative statics with respect to its customers' reservation value, \widehat{u}. This should increase when competition becomes more intense, i.e., when η increases (cf. also Proposition 7). With wary customers, this implies that their true expected surplus also increases by the same amount, while efficiency of advice is not affected, given that advice is always unbiased. As long as total demand is elastic, however, the increase in \widehat{u} leads to a standard reduction of deadweight welfare loss. ${ }^{21}$

With naive customers, however, the efficiency of advice also increases with competition. The intuition for this is as follows. As customers' reservation value \widehat{u} increases, the maximally feasible product price is reduced. (With naive customers it always holds that

[^15]$f_{i}=f=0$.) Consequently, from $t=p$, the commission also decreases and thus, ultimately, so does the bias in the adviser's recommendation: $q^{*}<1 / 2$. This has now an additional effect on naive customers' true expected payoff. As their reservation value \widehat{u} increases, the difference between the true and the wrongly anticipated cutoff, $1 / 2-q^{*}$, shrinks, which together with a reduction in the price implies that the difference between their true expected utility and their wrongly anticipated utility shrinks. Thus, naive customers are exploited less.

A further insight follows from a comparison of the cases with wary and with naive customers under competition. While we know that for a given reservation value, \widehat{u}, firms extract higher profits from naive customers, higher profits make firms compete more aggressively, which pushes up \widehat{u} when customers are naive. However, we still find that firm profits are strictly higher when customers are naive, even under competition. This result holds because the presence of naive customers effectively dampens competition through the following two channels.

The first channel is that it is more costly for firms to increase customers' anticipated utility when they are naive. It costs firms exactly one unit of profits to increase wary customers' expected utility by the same amount, $\Pi_{1}^{W}(\widehat{u})=-1$, given that this is obtained from a reduction in the fixed fee for advice. With naive customers, however, the corresponding loss in profits is strictly larger: $\Pi_{1}^{N}(\widehat{u})<-1$. This follows immediately from our previous observation that an increase in \widehat{u} reduces naive customers' exploitation, namely by reducing the difference between their naively anticipated utility and their true utility.

The second channel through which the presence of naive customers reduces competition is active when total demand is elastic. To see this, for a given level of firm profits, Π, the corresponding customer reservation value \widehat{u} is strictly larger with naive customers. When total demand is elastic, so that $x(\widehat{u}, \widehat{u})$ is strictly increasing in \widehat{u}, this would imply, for given Π, a strictly larger demand for both firms. But this makes it more expensive for firms to expand demand by increasing the promised utility, given that the resulting reduction in the price or the fee then applies to an already larger volume $x(\cdot)$. In other words, the larger demand that is realized when customers naively overstate their expected utility makes firms compete less aggressively. ${ }^{22}$

Proposition 7 Suppose firms must compete for customers, as captured by the elastic demand function $x\left(\widehat{u}_{i}, \widehat{u}_{j}\right)$, where \widehat{u}_{i} and \widehat{u}_{j} represent customers' anticipated utility from two

[^16]different offers. Then the following results hold.
(i) When competition intensifies, as captured by an increase in the elasticity of demand, customers enjoy a higher consumer surplus. When customers are naive, more intense competition also reduces customer exploitation, by reducing the difference between their naively anticipated and their true expected utility from advice.
(ii) Firm profits are still strictly higher when customers are naive because the presence of naive customers dampens competition.

9.4 Discussion

Assertion (i) brings out the double benefit that competition yields for naive customers through the reduction in the scope for exploitation that arises from biased advice. Assertion (ii) shows that, even when competition prevails, firms still benefit when customers are naive. This has the following policy implication. When firms repeatedly interact with customers, the incremental profits that can be realized over time when customers remain naive could far exceed any immediate benefits that a product provider, together with advisers, could reap from educating customers and, thereby, gaining a larger share or even all of the market for a short time. ${ }^{23}$ While from assertion (i) competition benefits naive customers, it might not provide sufficient incentives for firms to educate customers.

Our analysis admittedly ignores various other strategic aspects that could arise under competition. In particular, in contrast to our simplified setting, one could allow various product providers to compete for a favorable recommendation by the same advisers, who could then stand in competition for customers. When the same or similar products are on offer at different financial intermediaries, customers could start sampling and comparing advice. However, survey evidence suggests that, at least with retail investment products, customers seem to rarely shop for advice - and it could be conjectured that this applies, in particular, to customers who are naive about the underlying conflict of interest. ${ }^{24}$

[^17]
10 Summary of policy implications

Instead of being compensated directly by customers, advisers and salespeople in the financial industry are often paid indirectly by product providers when customers decide to purchase the product offered. This practice has led to widespread claims of unsuitable advice. Policy proposals include prohibiting or, at least, seriously capping commissions, thereby also inducing intermediary agents to charge directly and more transparently for advice. However, these or other policy proposals that are meant to rectify a potential market failure can be evaluated only after having identified the precise reason that the market does not lead to a more efficient contractual solution.

When firms face customers who are naive about the true conflict of interest that is induced by commissions, we have shown that firms can maximally exploit this naiveté by charging customers only indirectly for advice. In this case, banning commissions protects customers and, by leading to unbiased advice, increases efficiency. When customers are wary, in our baseline case without agency frictions in the supply chain we show that there is no such role for policy intervention, as firms can themselves commit to provide the highest quality of advice by setting product prices sufficiently low, thereby making it not optimal to secretly increase contingent payments to steer advice. Profits are then earned (mainly) through a fixed fee for advice. In this baseline setting with wary customers and no agency frictions, hard-handed policy intervention that caps or bans commissions can easily backfire. Specifically, these policies are counterproductive in settings in which it is necessary to pay commissions and thus to bias advice to achieve the second-best outcome, so as to increase the adviser's incentives to acquire information regarding the suitability of specialized products.

Mandatory disclosure of commissions, instead, would not interfere with firms' choice of an efficient contractual practice, even though it needs to be a sufficiently powerful eye-opener to be effective. ${ }^{25}$ The choice of a particular policy intervention should also depend on the perceived composition of customers in a market. When customers are likely to be naive about incentives, the immediate benefits of intervention are larger, and the negative side effects are smaller. As we show, intervention can then create additional efficiency gains by making it less attractive for firms to target exclusively naive customers. Also, unintended consequences of even a more interventionist policy should be a lesser

[^18]concern when it is less likely that contingent payments serve an additional purpose, such as incentivizing time-consuming information acquisition in case of very specialized products.

In our baseline model, the agency problem between a product provider and the adviser can be contracted away. Technically, this is the case when the adviser is able to make a fixed transfer to the product provider. This ability to transfer resources within the supply chain can be seen as a proxy for a long-term relation in which the product provider and the adviser have fewer incentives for opportunistic behavior and hence more scope to choose contractual arrangements that maximize their joint profits. Instead, when fixed transfers from the adviser to the product providers are not allowed, product providers raise prices even though wary customers then rationally expect that higher inducements are paid to boost sales. Then the product provider no longer maximizes joint profits of the vertical supply chain and so does not internalize the reduction in the maximum fee that can be charged for advice. Thus, for these arm's-length relations, there is more scope for policy intervention to provide firms with a commitment device vis-à-vis wary customers.

Finally, our analysis also sheds light on the potential of competition to increase efficiency and consumer surplus. With wary customers, as can be expected, our analysis reveals only standard insights, namely, that competition increases consumer surplus and reduces the deadweight loss that results when total demand is elastic. More interestingly, we show how competition reduces the scope for firms to exploit naive customers. By reducing prices and commissions alike, an increase in competition leads to a better alignment of the expectations held by naive customers with the behavior of advisers. However, eventually firms make strictly higher profits with naive than with wary customers. Thus, even in the presence of competition, the incentives for firms to educate naive customers - so as to steal market share from firms that still offer exploitative contracts-are still limited.

11 Conclusion

The present analysis aims at deriving positive and normative predictions on the compensation structure in the retail financial industry, with special emphasis on the role of advice. Our model allows for compensation from the product provider to the advising intermediary in combination with payments made by customers to both the product provider (through a price contingent on the transaction) and the intermediary (through an up-front fixed fee). Our present focus is on the role of naive versus wary customers to explain the prevalence of different forms of compensation for advice. We also analyze how restrictions on the way product providers and advisers can resolve their internal agency problem impact on how customers pay for advice and, consequently, on the resulting efficiency of
advice. Our analysis delivers a set of policy implications that tie the efficiency of different policy interventions to variables that are in principle observable, such as the customers' perception of a conflict of interest in the provision of advice or the contractual relation between advisers and product providers.

In this spirit, future work could add more structure by analyzing the separate channels through which advisers could be disciplined, such as liability or reputational concerns. While we analyzed the potential role of competition, both in increasing efficiency and in protecting naive customers from exploitation, we also remarked that a richer model of competition could allow for additional channels for firms and customers to interact strategically. Product providers could then compete for a favorable recommendation by advisers as well as for the choice of self-directed customers. Depending on their degree of financial capability, customers could sample different advisers or rely on their own judgment. In some markets for retail financial services, product providers must also compete to be selected by product platforms (also known as wraps) to which advisers or the providers of pension plans subscribe. ${ }^{26}$

Furthermore, the efficiency of making particular contractual arrangements between product providers, advisers, and customers could be impaired by various factors that remained outside our present analysis. For instance, it is often claimed that customers' up-front willingness to pay for advice is inefficiently low because they are reluctant to lock-in a certain loss. To wit, while customers pay a commission only when they decide to buy a particular product or decide to invest at all, the sure payment of an up-front fee could loom excessively large. ${ }^{27}$ Industries could also remain stuck with a particular contractual arrangement when customers react suspiciously to any innovative offer by a maverick firm. We hope that future work will analyze the role of policy intervention for improving efficiency and protecting consumers in these circumstances.

Appendix A. Proofs

Proof of Proposition 1. Proceeding backward from $\tau=2$, the adviser optimally sets

$$
\begin{equation*}
f=f(p, \widehat{q})=\Delta_{v} \int_{\widehat{q}}^{1}(2 q-1) d G(q)-[1-G(\widehat{q})] p \tag{29}
\end{equation*}
$$

provided that this is feasible with $f(p, \widehat{q}) \geq 0$. Otherwise, it is not possible to satisfy customers' participation constraint Eq. (11). At time $\tau=1$, substituting $f(p, \widehat{q})$ into the

[^19]adviser's profit π, as given in Eq. (4), the product provider optimally chooses the fixed part so that
\[

$$
\begin{equation*}
T=T(p, \widehat{q}, t)=-\left[f(p, \widehat{q})+u_{l}+\int_{0}^{q^{*}} \rho(1-q) d G(q)+\int_{q^{*}}^{1}(t+\rho q) d G(q)\right] . \tag{30}
\end{equation*}
$$

\]

Once this is now substituted into Eq. (3), the product provider's profits are equal to

$$
\begin{equation*}
\Pi=\left(u_{l}+v_{l}-v_{0}\right)+\rho L\left(q^{*}\right)+\Delta_{v} L(\widehat{q}), \tag{31}
\end{equation*}
$$

where \widehat{q} depends on p according to Eq. (12). This is uniquely maximized when $\widehat{q}=q^{*}=$ $1 / 2$, which yields $p=t=0$. Q.E.D.

Proof of Proposition 2. Proceeding as in the proof of Proposition 1, at $\tau=2$ the adviser optimally sets $f=f(p, \widehat{q})$, which the product provider anticipates when setting $T=T(p, \widehat{q}, t)$. The difference is now that, with naive customers, $\widehat{q}=1 / 2$ remains fixed even as p and thus $t=p$ change. Thus, profits of the product provider are given by Eq. (14). The constraint $f \geq 0$ is now binding, so that Eq. (16) for p is obtained by substituting $f=0$ into Eq. (11). Q.E.D.

Proof of Proposition 3. Take first the case of a simple offer (f, p). From the argument in the main text we have for all $p=t>0$ that an offer that is acceptable to wary customers is strictly so to naive customers. By optimality, the participation constraint of one customer type must be binding. Taken together, this implies that the offer is characterized either by Proposition 1, when acceptable to all customers, or by Proposition 2, when acceptable only to naive customers. Denote the resulting per-customer profits by $\Pi_{W}<\Pi_{N}$. The unique cutoff for the fraction of wary customers in assertion (i), μ^{*}, is then given by $\Pi_{W}=\left(1-\mu^{*}\right) \Pi_{N}$.

For the case with a menu, if offering the two contracts as characterized in Propositions 1 and 2 is incentive-compatible, then this is uniquely optimal. Incentive compatibility follows by construction, and strictly so for wary types, given that naive customers' true expected payoff is strictly negative. Q.E.D.

Proof of Proposition 4. It remains to consider the case with a cap on commissions $t \leq \bar{t}$, which can be binding only with naive customers. Then, from the argument in Proposition 2 , it is uniquely optimal for firms to set $t=\bar{t}$, provided this cap binds from $\bar{t} \leq p$, with p given in Eq. (16).

The cap has no impact on the choice of $f=0$ or p in Eq. (16). Given that the true cutoff strictly decreases with $t=\bar{t}$, while $L\left(q^{*}\right)$ is maximized when $q^{*}=1 / 2$, social surplus
is strictly decreasing in \bar{t}. Finally, naive customers' true expected utility is given by

$$
\begin{equation*}
v_{0}+\Delta_{v} \int_{q^{*}}^{1 / 2}(2 q-1) d G(q)-p\left[G(1 / 2)-G\left(q^{*}\right)\right] . \tag{32}
\end{equation*}
$$

The derivative with respect to q^{*} is strictly positive from $q^{*}<1 / 2$:

$$
\begin{equation*}
g\left(q^{*}\right)\left[p+\left(1-2 q^{*}\right) \Delta_{v}\right]>0 . \tag{33}
\end{equation*}
$$

Consequently, naive customers' utility is strictly increasing in q^{*}, when $q^{*}<1 / 2$, and is thus strictly decreasing in the binding constraint $t \leq \bar{t}$. Q.E.D.

Proof of Proposition 5. Both with naive and wary customers, from the arguments in Propositions 1 and 2 it still holds at $\tau=2$ that the adviser optimally sets $f=f(p, \widehat{q})$, as given in Eq. (29). For $\tau=1$, recall that even when $f=0$ and $T=0$, we have that $\pi \geq 0$. Together with the constraint $T \geq 0$, the product provider's profit Π is thus maximized when $T=0$.

With wary customers, recall that the product provider optimally chooses $t=t^{*}(p)$ and $p=p_{m}(\widehat{q})$, where \widehat{q} depends on the wary beliefs $\widehat{t}=t^{*}(p)$ [i.e., by substituting $\widehat{t}=t$ with $t=t^{*}(p)$ into Eq. (1)]. As $t^{*}(p)$ is strictly increasing and $p_{m}(\widehat{q})$, with $\widehat{q}=q^{*}$, strictly decreasing in the true commission t, an equilibrium is unique. Existence with an interior choice $t>0$ and an interior cutoff $0<q^{*}<1$ follows from the specification that $t^{*}\left(p_{m}(1 / 2)\right)>0$ and as, from Eq. (11), we have that $p_{m}(q)<0$ when q is too low. With naive customers, it is immediate that the product provider optimally chooses $p=p_{m}(1 / 2)$ and that $t=t^{*}\left(p_{m}(1 / 2)\right)$. Finally, as $q^{*}<1 / 2$ holds with wary customers, the respective price p is strictly lower and thus also $t=t^{*}(p)$ is strictly lower than with naive customers. From this it follows that the respective cutoff q^{*} is strictly higher with wary customers. Q.E.D.

Proof of Proposition 6. Recall that for the case with exogenous information, an increase in the commission for selling product A results in a reduction of the cutoff q^{*}, and, thus, in an increase in the probability that product A is recommended and sold. We now show that this probability, $1-G\left(q^{*} \mid e^{*}\right)$, is even higher when we take into account the adjustment of the information acquisition effort e^{*} that is optimally chosen by the adviser. When q^{*} is interior, we have for $q^{*}>0$ that

$$
\begin{equation*}
\frac{d}{d t}\left[1-G\left(q^{*} \mid e^{*}\right)\right]=-\frac{d q^{*}}{d t}\left[g\left(q^{*} \mid e^{*}\right)+\frac{d G\left(q^{*} \mid e^{*}\right)}{d e^{*}} \frac{d e^{*}}{d q^{*}}\right] . \tag{34}
\end{equation*}
$$

To determine the sign of Eq. (34), recall first that $d q^{*} / d t<0$ by Eq. (1). Next, from implicit differentiation of Eq.(23) we obtain

$$
\begin{equation*}
\frac{d e^{*}}{d q^{*}}=\frac{-2 \rho}{S O C} \frac{d G\left(q^{*} \mid e^{*}\right)}{d e^{*}} \tag{35}
\end{equation*}
$$

where $S O C<0$ denotes the second-order condition for e^{*}. Recall that we stipulate that the adviser's program to choose e^{*} yields a unique solution, which for $0<q^{*}<1$ is strictly positive. The sign of the second term in Eq. (34) is then given by $\left(\frac{d G\left(q^{*} \mid e^{*}\right)}{d e^{*}}\right)^{2}$, which is also strictly positive. Thus, Eq. (34) is strictly positive.

From the discussion in the main text, it remains to choose q^{*} so as to maximize the surplus ω, as given by Eq. (24), where q^{*} affects e^{*} according to Eq. (35) and where we have to take into account the constraint $f \geq 0$. Using the binding ex ante participation constraint of the wary customer

$$
\begin{equation*}
p+\frac{f}{1-G\left(q^{*} \mid e^{*}\right)} \leq \Delta_{v}\left[\int_{\widehat{q}_{W}}^{1}(2 q-1) \frac{d G\left(q \mid e^{*}\right)}{1-G\left(q^{*} \mid e^{*}\right)}\right] \tag{36}
\end{equation*}
$$

the constraint $f \geq 0$ becomes

$$
\begin{equation*}
\Delta_{v} \int_{q^{*}}^{1}(2 q-1) d G\left(q \mid e^{*}\right)-\left[1-G\left(q^{*} \mid e^{*}\right)\right] \rho\left(1-2 q^{*}\right) \geq 0 \tag{37}
\end{equation*}
$$

Using the expression ω for the surplus in Eq. (24), optimization problem with respect to the cutoff q^{*} leads to

$$
\begin{equation*}
\frac{d \omega}{d q^{*}}=\left(\rho+\Delta_{v}\right)\left(\frac{d L}{d q^{*}}+\frac{d e^{*}}{d q^{*}} \frac{d L}{d e^{*}}\right)-\kappa^{\prime}\left(e^{*}\right) \frac{d e^{*}}{d q^{*}}=0 \tag{38}
\end{equation*}
$$

Given that e^{*} maximizes the adviser's payoff, so that $\rho \frac{d L}{d e^{*}}=\kappa^{\prime}\left(e^{*}\right)$, this becomes

$$
\begin{equation*}
\left(\rho+\Delta_{v}\right) \frac{d L}{d q^{*}}+\Delta_{v} \frac{d e^{*}}{d q^{*}} \frac{d L}{d e^{*}}=0 \tag{39}
\end{equation*}
$$

Using next, after integration by parts, that

$$
\begin{equation*}
\frac{d L}{d q^{*}}=g\left(q^{*} \mid e^{*}\right)\left(1-2 q^{*}\right) \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d L}{d e^{*}}=\left(1-2 q^{*}\right) \frac{d G\left(q^{*} \mid e^{*}\right)}{d e^{*}}+2 \int_{0}^{q^{*}} \frac{d G\left(q \mid e^{*}\right)}{d e^{*}} d q \tag{41}
\end{equation*}
$$

and substituting for $\frac{d e^{*}}{d q^{*}}$ from Eq. (35), Eq. (39) becomes

$$
\begin{align*}
\frac{d \omega}{d q^{*}}= & g\left(q^{*} \mid e^{*}\right)\left(1-2 q^{*}\right)\left(\Delta_{v}+\rho\right) \tag{42}\\
& -\Delta_{v} \frac{2 \rho}{S O C} \frac{d G\left(q^{*} \mid e^{*}\right)}{d e^{*}}\left[\left(1-2 q^{*}\right) \frac{d G\left(q^{*} \mid e^{*}\right)}{d e^{*}}+2 \int_{0}^{q^{*}} \frac{d G\left(q \mid e^{*}\right)}{d e^{*}} d q\right] .
\end{align*}
$$

From Eq. (20) we have $d \omega / d q^{*}>0$ when $q \leq q_{0}$ as well as $d \omega / d q^{*}<0$ at $q^{*}=1 / 2$. As we stipulated that the program is strictly quasi-concave, there is a unique solution $q_{0}<q^{*}<1 / 2$ and a corresponding value t from Eq. (1). However, this might not be feasible when after substituting the respective values $p=t$ into the binding constraint Eq. (36) we have $f>0$. Then, from strict quasi-concavity the unique value q^{*} is the lowest value satisfying $f=0$. Finally, $q^{*}<1 / 2$ holds also then because at $q^{*}=1 / 2$ we have $f>0$, together with $t=p=0$, so that from Eq. (36) it is feasible to increase p and reduce f, as claimed. Q.E.D.

Proof of Proposition 7. We first derive profits $\Pi^{\theta}(\widehat{u})$. These are obtained from maximizing, for each pair of product provider and adviser, profits $\Pi=S$ subject to the constraint

$$
\begin{equation*}
v_{l}+\Delta_{v} \int_{0}^{\widehat{q}}(1-q) d G(q)+\int_{\widehat{q}}^{1}\left(q \Delta_{v}-p\right) d G(q)-f \geq \widehat{u}, \tag{43}
\end{equation*}
$$

where $\widehat{u} \geq v_{0}$. As previously, we have for $\theta=N$ that always $\widehat{q}=1 / 2$, while for $\theta=W$ this is obtained from the beliefs of wary customers. By applying the arguments from Propositions 1 and 2, the respective programs have a unique solution, for given \widehat{u}. When $\theta=W$, we have $p=0$ and

$$
\begin{equation*}
f=v_{l}+\Delta_{v} L(1 / 2)-\widehat{u}, \tag{44}
\end{equation*}
$$

so that

$$
\begin{equation*}
\Pi^{W}(\widehat{u})=\omega(1 / 2)-\widehat{u} . \tag{45}
\end{equation*}
$$

When $\theta=N$, we have $f=0$ and

$$
\begin{equation*}
p=\frac{v_{l}+\Delta_{v} L(1 / 2)-\widehat{u}}{1-G(1 / 2)} . \tag{46}
\end{equation*}
$$

This together with q^{*}, as obtained from substituting $t=p$ into Eq. (1), can then be substituted to obtain firm profits with naive customers

$$
\begin{equation*}
\Pi^{N}(\widehat{u})=u_{l}+\rho L(1 / 2)+p\left[1-G\left(q^{*}\right)\right]-\widehat{u} . \tag{47}
\end{equation*}
$$

With wary customers, we can now use from Eqs. (28) and (45) the explicit equilibrium characterization

$$
\begin{equation*}
\widehat{u}=\omega(1 / 2) \frac{\eta}{\eta+1} \tag{48}
\end{equation*}
$$

to obtain $d \widehat{u} / d \eta>0$. With naive customers, while this cannot be solved explicitly, $d \widehat{u} / d \eta>0$ is obtained from implicit differentiation of the first-order condition Eq. (28) after substituting Eq. (47).

It remains to show that equilibrium profits are strictly higher with naive customers. This follows from inspection of the first-order condition Eq. (28), after making the following two observations. First, $\Pi_{1}^{N}(\widehat{u})<\Pi_{1}^{W}(\widehat{u})=-1$ holds for all \widehat{u}. Second, from $\Pi^{N}(\widehat{u})>\Pi^{W}(\widehat{u})$ for all \widehat{u} and strict monotonicity we have that \widehat{u} is strictly higher when obtained from inverting $\Pi^{N}(\widehat{u})=\Pi$ than when obtained from inverting $\Pi^{W}(\widehat{u})=\Pi$, for given Π. For given Π, we can then substitute the strictly lower derivative and the strictly higher \widehat{u} into the rewritten condition Eq. (28), $\Pi \eta+\widehat{u} \Pi_{1}^{\theta}=0$. Q.E.D.

Appendix B. Example

We obtain some additional comparative statics results for a simple parametric example of the model with endogenous information acquisition introduced in Section 8. This example also allows us to show how the distribution of the adviser's posterior beliefs, $G(q \mid e)$, can be derived from a noisy signal technology.

Suppose that the adviser privately observes a signal $s \in[0,1]$ with conditional distributions $H_{A}(s \mid e)=s^{e+1}$ and $H_{B}(s \mid e)=1-(1-s)^{e+1}$ parametrized by $e \geq 0$. The adviser's posterior belief as a function of the observed signal is then equal to

$$
\begin{equation*}
q=\widetilde{q}(s):=\frac{q_{0} s^{e}}{q_{0} s^{e}+\left(1-q_{0}\right)(1-s)^{e}} \tag{49}
\end{equation*}
$$

by Bayesian updating. Note that $\widetilde{q}(0)=0$ and $\widetilde{q}(1)=1$. Also, we could now, alternatively to the specification of a cutoff q^{*}, define a cutoff on the signal s^{*} with

$$
\begin{equation*}
\frac{q_{0}}{1-q_{0}} \frac{1-q^{*}}{q^{*}}=\left(\frac{1-s^{*}}{s^{*}}\right)^{e} \tag{50}
\end{equation*}
$$

so that the adviser recommends A if $s \geq s^{*}$ and B if $s<s^{*}$. After some transformations, the likelihood of a suitable choice as a function of s^{*} is then given by

$$
\begin{equation*}
L=1-\left(1-q_{0}\right)\left(1-s^{*}\right)^{e+1}-q_{0}\left(s^{*}\right)^{e+1} . \tag{51}
\end{equation*}
$$

Given that the signal has the unconditional cumulative distribution function $q_{0} H_{A}(s \mid e)+$ $\left(1-q_{0}\right) H_{B}(s \mid e)$, we further obtain

$$
\begin{equation*}
G(q \mid e)=q_{0}\left[\widetilde{q}^{-1}(q)\right]^{e+1}+\left(1-q_{0}\right)\left[1-\left[1-\widetilde{q}^{-1}(q)\right]^{e+1}\right] . \tag{52}
\end{equation*}
$$

It is straightforward to show that this $G(q \mid e)$ satisfies the rotation ordering in Eq. (20).
For a comparative analysis we specify that the information acquisition cost is quadratic, $\kappa(e)=e^{2} /(2 c)$ with $c>0$. With this specification, we now analyze how the outcome depends on the likelihood with which the advanced product A is ex ante more suitable, q_{0}. For Fig. 3 we specify $\rho=0.75$ for the adviser's preferences, $\Delta_{v}=v_{h}-v_{l}=2$ for the incremental benefits of a suitable choice, and $c=0.65$ for the adviser's cost of effort function. As q_{0} decreases, the basic option (or, equivalently, the option of not buying) is ex ante more likely to be suitable; alternatively, product A is targeted more to a niche market. As illustrated in the figure, under the optimal contractual arrangement with wary customers, the commission t paid to advisers increases and the recommendation cutoff q^{*} decreases when the initial probability q_{0} is reduced from $1 / 2$ to 0 . While a recommendation becomes thus more and more biased, in this example the loss in the quality of advice generated by the bias is more than compensated by the higher level of information acquisition that is thereby induced.

Figure 3: For the parametric example discussed in the text, this figure reports the equilibrium level of commission t (the decreasing curve) and the equilibrium recommendation cutoff (the increasing curve) as a function of the initial probability q_{0} that product A is suitable.

References

Admati, A., Pfleiderer, P., 1986. A monopolistic market for information. Journal of Economic Theory 39, 400-438.

Bergstresser, D., Beshears, J., 2010. Who selected adjustable-rate mortgages? Evidence from the 1989-2007 Surveys of Consumer Finances. Unpublished working Paper 10083. Harvard Business School, Boston, MA.

Bergstresser, D., Chalmers, J. M. R., Tufano, P., 2007. Assessing the costs and benefits of brokers in the mutual fund industry. Review of Financial Studies 22, 4129-4156.

Bolton, P., Freixas, X., Shapiro, J., 2007. Conflicts of interest, information provision, and competition in banking. Journal of Financial Economics 85, 297-330.

Brooks, R., Simon, R., 2007, Subprime debacle traps even very credit-worthy: as housing boomed, industry pushed loans to a broader market. Wall Street Journal, A1.

Cain, D. M., Loewenstein, G., Moore, D. A., 2005. The dirt on coming clean: perverse effects of disclosing conflicts of interest. Journal of Legal Studies 34, 1-25.

Carlin, B. I., 2009. Strategic price complexity in retail financial markets. Journal of Financial Economics 91, 278-287.

CFA Institute, 2009. European Union member poll on retail investment products. Summary report. CFA Institute, Charlottesville, VA.

Chater, N., Inderst, R., Huck, S., 2010. Consumer decision-making in retail investment services: a behavioural economics perspective. Final report. European Commission Directorate-General for Health and Consumers, Brussels, Belgium.

Chen, J., Hong, H., Kubik, J. D. Outsourcing mutual fund management: firm boundaries, incentives, and performance. Journal of Finance, forthcoming.

Commission of the European Communities, 2009. On the follow up in retail financial services to the consumer markets scoreboard. Commission staff working document 1251, Brussels, Belgium.

Crawford, V. P., Sobel, J., 1982. Strategic information transmission. Econometrica 50, 1431-1451.

Cummins, D., Doherty, N., 2006. The economics of insurance intermediaries. Journal of Risk and Insurance 73, 359-396.

DellaVigna, S., Malmendier, U., 2004. Contract design and self-control: theory and evidence. Quarterly Journal of Economics 119, 353-402.

Federal Reserve System, 2008, 12 CFR Part 226 [Regulation Z; docket no. R-1305] Truth in lending; final rule. Federal register 73, 44521-44614.

Financial Services Authority, 2009. Distribution of retail investments: delivering the RDR. Consultation paper 09/18. Financial Services Authority, London, UK

Financial Services Authority, 2010. Quality of advice on pension switching: an update. Report, April. Financial Services Authority, London, UK.

Gabaix, X., Laibson, D., 2006. Shrouded attributes, consumer myopia, and information suppression in competitive markets. Quarterly Journal of Economics 121, 505-540.

Ganuza, J.-J., Penalva, J. S., 2010. Signal orderings based on dispersion and the supply of private information in auctions. Econometrica 78, 1007-1030.

Gravelle, H., 1993. Product price and advice quality: implications of the commission system in life assurance. Geneva Papers on Risk and Insurance Theory 18, 31-53.

Gravelle, H., 1994. Remunerating information providers: commissions versus fees in life insurance. Journal of Risk and Insurance 61, 425-457.

Hackethal, A., Inderst, R., Meyer, S., 2010. Trading on advice. Unpublished working paper. Goethe University Frankfurt, Frankfurt am Main, Germany.

Inderst, R., Ottaviani, M., 2009. Misselling through agents. American Economic Review 99, 883-908.

Inderst, R., Ottaviani, M., 2010. Sales talk, cancellation terms, and the role of consumer protection. Unpublished working paper. Northwestern University and Goethe University Frankfurt, Evanston, IL, and Frankfurt am Main, Germany.

Inderst, R., Ottaviani, M., Competition through commissions and kickbacks. American Economic Review, forthcoming.

Inderst, R., Valletti, T., 2011. Regulating platform charges. Occasional paper 40. Financial Services Authority, London, UK.

Investment Company Institute, 2007, 2007 Investment company fact book. Washington, DC.

Investment Company Institute and Securities Industry Association, 2005, Equity ownership in America, 2005. Washington, DC.

Jackson, H. E., Burlingame, L., 2007. Kickbacks and compensation: the case of yield spread premiums. Stanford Journal of Law, Business, and Finance 12, 289-361.

Keith, E., Bocian, D., Li, W., 2008. Steered wrong: brokers, borrowers, and subprime loans. Unpublished working paper. Center for Responsible Lending, Durham, NC.

Malmendier, U., Shanthikumar, D., 2007. Are small investors naive about incentives? Journal of Financial Economics 85, 457-489.

Pahl, C., 2007. A compilation of state mortgage broker laws and regulations, 1996-2006. Community Affairs Report 2007-2. Federal Reserve Bank of Minneapolis, MN.

Stoughton, N. M., Wu, Y., Zechner, J., 2011. Intermediated investment management. Journal of Finance 66, 947-980.

US Department of the Treasury, 2009. Financial regulatory reform; a new foundation: rebuilding financial supervision and regulation. White paper. Washington, DC.

[^0]: *We thank seminar participants at University of California at Los Angeles, University of Chicago Booth School of Business, Michigan State University, University of Mannheim, University of Rochester Simon Graduate School of Business, European University Institute, University of Bologna, and University of Vienna. We also thank our discussants Heski Bar-Isaac, Boğaçhan Çelen, Oliver Hart, and Kristóf Madarász at the 2009 Annual Federal Trade Commission and Northwestern University Microeconomics Conference, the 2010 National Bureau of Economic Research Law and Economics Summer Institute, the 2010 Utah Winter Business Economics Conference, and the 2011 American Economic Association Meetings, respectively. We are most grateful to an anonymous referee for helpful suggestions. Inderst gratefully acknowledges financial support from the European Research Council under the Seventh Framework Programme through ERC Grant 229921 on Regulating Retail Finance.
 ${ }^{\dagger}$ Johann Wolfgang Goethe University Frankfurt (IMFS), Germany.
 ${ }^{\ddagger}$ Imperial College London, United Kingdom.
 §Bocconi University, Italy.
 ${ }^{\text {4}}$ Kellogg School of Management, United States.
 ${ }^{\|}$Corresponding author. E-mail addresses: inderst@finance.uni-frankfurt.de (R. Inderst), marco.ottaviani@unibocconi.it (M. Ottaviani).

[^1]: ${ }^{1}$ A large-scale survey conducted in 2003 by the European Commission (Eurobarometer 60.2, NovemberDecember 2003) shows that in many European countries such as Finland, Germany, and Austria over 90% of respondents expect to receive advice from financial institutions. Also for the US, professional financial advice plays a key role for the purchase of investment products outside employer-sponsored plans. For instance, the Investment Company Institute (2007) finds that over 80% of mutual fund investors seek professional advice when buying mutual fund shares outside of retirement plans at work. See also Investment Company Institute and Securities Industry Association (2005).
 ${ }^{2}$ According to a pool of the European Union members of the CFA Institute 64% of respondents "believe that the fee structure of investment products drives their sale to customers rather than their suitability to customers" (CFA Institute, 2009, p. 4).

 3 "Many borrowers whose credit scores might have qualified them for more conventional loans say they were pushed into risky subprime loans. . . . The subprime sales pitch sometimes was fueled with faxes and emails from lenders to brokers touting easier qualification for borrowers and attractive payouts for mortgage brokers who brought in business. One of the biggest weapons: a compensation structure that rewarded brokers for persuading borrowers to take a loan with an interest rate higher than the borrower might have qualified for" (Brooks and Simon, 2007, p. A1). Similarly, Bergstresser, Chalmers, and Tufano (2007) and Chen, Hong, and Kubik (forthcoming) suggest that mutual funds sold through broker or agent networks tend to under-perform and that funds with higher fees improve distribution through higher commissions.
 ${ }^{4}$ Hackethal, Inderst, and Meyer (2010) document how branches of a large German bank make considerably higher revenues from increased security transactions when retail customers report to strongly rely on the bank's advice.

[^2]: ${ }^{5}$ The European Commission has singled out the provision of precontractual information through advice as one of the three main problem areas for the retail financial sector. In particular, see pp. 12-14 of the staff working document of the Commission of the European Communities (2009).
 ${ }^{6}$ In a recent consultation document, the UK financial regulator Financial Services Authority (2009) has proposed steps to encourage a complete switch toward a regime in which customers pay independent financial advisers directly. The new rules would "require adviser firms to be paid by adviser charges: the rules do not allow adviser firms to receive commissions offered by product providers" (p. 26). As part of a package of sweeping reforms adopted in the US in the wake of the financial crisis, the 2010 Dodd-Frank Wall Street Reform and Consumer Protection Act, Title X, has instituted a Bureau of Consumer Financial Protection, which has authority to write such rules to protect consumers.

[^3]: ${ }^{7}$ In 2008 the Federal Reserve Board withdrew an earlier proposal "to prohibit a creditor from paying a mortgage broker in connection with a covered transaction more than the consumer agreed in writing, in advance, that the broker would receive." According to the withdrawn proposal the "broker would also disclose that the consumer ultimately would bear the cost of the entire compensation even if the creditor paid any part of it directly; and that a creditor's payment to a broker could influence the broker to offer the consumer loan terms or products that would not be in the consumer's interest or the most favorable the consumer could obtain" (Federal Reserve System, 2008, p. 44563).
 ${ }^{8}$ Also, Carlin (2009) considers customers with varying degrees of sophistication. In his model, however, sophisticated customers are able to observe individual prices, while nonsophisticated customers purchase randomly.
 ${ }^{9}$ Experiments with games of trust and cheap talk also suggest that many subjects are willing to follow advice more than they should, even when payoffs and incentives are revealed (e.g., Cain, Loewenstein, and Moore, 2005).

[^4]: ${ }^{10}$ In particular, more than half of the respondents thought that financial advisers or the staff of a tied provider gave completely independent advice or information. Only a minority believed or even knew that the intermediary through which they purchased a product received a commission or a bonus for selling the investment. Of those purchasing through a financial adviser or a broker, only around 5% reported to have paid a direct fee for advice.
 ${ }^{11}$ Earlier papers, such as Admati and Pfleiderer (1986), analyze how a seller should optimally charge for information when its quality can be verified by customers.

[^5]: ${ }^{12}$ In a recent review of the advice provision for personal pension plans, the UK Financial Service Authority (2010) reported many instances of advised pension switches that were unsuitable given customers'

[^6]: attitude to risk, often in addition to involving an inappropriate loss of benefits from the ceding scheme.

[^7]: ${ }^{13}$ Even though it is convenient to take the distribution of posterior beliefs as the primitive, clearly this distribution can be generated by Bayesian updating from an underlying private signal s that the adviser observes with conditional distributions $H_{A}(s)$ and $H_{B}(s)$. See Appendix B for an example.

[^8]: ${ }^{14}$ Bolton, Freixas, and Shapiro (2007) and Inderst and Ottaviani (forthcoming) also show how to endogenize ρ in a dynamic model in which the penalty is due to the loss of future business following an unsuitable sale. In Inderst and Ottaviani (2010), such a penalty arises from the contractually stipulated cancellation terms of a long-term contract.
 ${ }^{15}$ As part of their occupational licensing procedures, various US states require mortgage brokers to post a surety bond or to maintain a minimum net worth; see Pahl (2007). A surety bond is typically posted

[^9]: through a third party (known as surety), who is the first to be liable but is then compelled by regulation

[^10]: ${ }^{16}$ As is well known, any cheap talk game always admits a babbling equilibrium, in which no information is conveyed. We abstract from this uninformative equilibrium in which there is no role for advice.

[^11]: ${ }^{17}$ Thereby, we stipulate that customer beliefs about commissions, and thus \widehat{q}, are not affected by the adviser's subsequent choice of f.

[^12]: ${ }^{18}$ Precisely, this follows from our specification that $u_{l} \geq 0$, thus ensuring that we can treat in the same way the case in which option B represents an alternative, more basic product and the case in which it represents the option of not purchasing at all.

[^13]: ${ }^{19}$ Even when the time spent with customers was observable and contractible, it would be difficult to verify how hard the adviser tries to find out the best match.

[^14]: ${ }^{20}$ The distribution $G(q \mid e)$ can be generated from an underlying private signal s that the adviser observes with conditional distributions $H_{A}(s \mid e)$ and $H_{B}(s \mid e)$. See Appendix B for a characterization of the equilibrium for the specification $H_{A}(s \mid e)=s^{e+1}$ and $H_{B}(s \mid e)=1-(1-s)^{e+1}$ with $s \in[0,1]$ and $e \geq 0$, which satisfies the rotation ordering in Eq. (20).

[^15]: ${ }^{21}$ Expected welfare in a symmetric equilibrium is given by $2 x(\widehat{u}, \widehat{u}) \omega(1 / 2)$, where we substitute $q^{*}=1 / 2$ into Eq. (7). With wary customers, the maximum surplus that a consumer can extract is $\widehat{u}=\omega(1 / 2)$, which leaves the adviser and the product provider with zero expected payoff. Hence, the deadweight loss is $2[x(\omega(1 / 2), \omega(1 / 2))-x(\widehat{u}, \widehat{u})] \omega(1 / 2)$.

[^16]: ${ }^{22}$ Efficiency could be enhanced by the fact that in equilibrium demand is larger when naive customers overstate their utility. This increase in demand could compensate for the deadweight loss that arises from imperfect competition. This effect is, however, only present when total demand is elastic. In addition, demand could also overshoot when competition is sufficiently intense.

[^17]: ${ }^{23}$ Precisely, such a strategy would erode naive customers' expectation of the utility obtained with the rival's offer, as well as the expectation of the utility obtained from the deviating firm's old offer. However, when the deviating firm, which educates customers, can react more quickly, namely, by now delivering a promised utility more efficiently without biased advice, the firm's instantaneous profits could increase, along with its market share.
 ${ }^{24}$ For a large online-survey among European households, Chater, Inderst, and Huck (2010) find that while the overwhelming majority of recent purchasers of retail investment products report to obtain advice, a large majority of respondents consult only a single adviser, who is often employed at their bank. Only a small fraction of respondents search actively for advice by consulting more than one professional source.

[^18]: ${ }^{25}$ Apart from the risk of remaining ineffective, Cain, Loewenstein, and Moore (2005) suggest that disclosing conflicts of interest could lead to more biased advice by morally licensing self-interested behavior. Inderst and Ottaviani (forthcoming) suggest that disclosure of commissions can reduce efficiency by making sales less responsive to cost differences. However, in their setting an outright ban of commissions would be even worse.

[^19]: ${ }^{26}$ Inderst and Valletti (2011) analyze the regulation of payments to and from such platforms from the perspective of two-sided markets.
 ${ }^{27}$ Chater, Inderst, and Huck (2010) report evidence from a large-scale online experiment that is at least consistent with such loss aversion.

