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Abstract

This paper analyzes how to optimally group a multiple number of possibly heterogeneous

risky projects into separately �nanced conglomerates. The projects grouped within the same

conglomerate are �nanced jointly, but they are insulated from the projects that are �nanced in

other conglomerates. The optimal conglomeration structure trades o¤ the bene�ts of coinsurance

and the costs of risk-contamination associated with joint �nancing. We characterize the resolution

of this tradeo¤ depending on the distributional characteristics of project returns, the structure of

bankruptcy costs, and the tax advantage of debt relative to equity. Our predictions shed light on

the optimal scope of incorporation as well as on the role of �nancial intermediation.
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1 Introduction

Which a¢ liates should a �rm hold and �nance as separately incorporated subsidiaries and which

others as branches, whose liabilities represent claims on the parent institution? Should a �nancial

institution structure itself as an integrated entity subject to a consolidated balance sheet, as in

the case of a universal bank, or as a holding company where some of the divisions are separately

capitalized? Similarly, in which �rms should investors �nance directly and for which �rms should

they make use of �nancial intermediaries?

This paper analyzes which risky projects (or groups of risky projects) should be �nanced jointly

and which projects should be �nanced separately. The model builds on the classic costly state

veri�cation (CSV) setting in which the �rm privately observe the ex post return realization. In the

baseline speci�cation the �rm has no private funds available and so must obtain �nancing exclusively

from outside investors that operate in a competitive �nancial market. Investors can observe the

return realization by paying an ex post veri�cation cost. As shown by Townsend (1979) and Gale

and Hellwig (1985), in this CSV setting debt is the optimal �nancial arrangement. Thus, veri�cation

costs can be conveniently re-interpreted as bankruptcy costs.

When multiple projects are �nanced within the same corporation we naturally assume that only

the sum of the returns of these projects is contractible. The optimal conglomeration structure is

then the one that minimizes the total expected veri�cation (or bankruptcy) costs. As we show, the

optimal structure sometimes involves partial conglomeration, contrary to claims often made in the

literature. For example, in his classic analysis of intermediation Diamond (1984, page 400) claims:

�The per-entrepreneur cost of providing incentives to the intermediary is reduced as it

contracts with more entrepreneurs with independently distributed projects. With inde-

pendent and identically distributed projects, the per-entrepreneur cost,DN , is a monoton-

ically decreasing function of the number of entrepreneurs, N , because deadweight penal-

ties are incurred when returns are in the extreme lower tail, and the probability of the



Figure 1: Comparison of Bankruptcy Probabilities for an Exogenous Debt Obligation. In

the left panel, the continuous curve represents the probability density of returns when the projects

are �nanced separately, while the dashed curve represents the density associated to the average

return when the projects are �nanced jointly. In the right panel, the continuous curve represents the

cumulative distribution of returns when the projects are �nanced separately, while the dashed curve

represents the distribution associated to the average return when the projects are �nanced jointly.

average return across projects being in that tails is monotonically decreasing.�

As we show, this monotonicity claim is not valid in general and only holds under additional

assumptions that are not made by Diamond (1984). To understand this, consider a �rm with two

ex-ante identical projects with normal returns, as depicted in the solid curve in Figure 1. If the

projects are �nanced separately, the probability of bankruptcy for each of them is equal to the area

below the density of returns that lies to the left of the vertical line, corresponding to the outstanding

debt obligation. When the projects are �nanced jointly, the relevant distribution is the dashed curve,

representing the distribution of the average returns of the two projects. Note that the density of the

average of two identical normals is more peaked around the mean than the density of the individual

returns and therefore the distribution of the average is below the individual distribution for returns

below the mean and above it for returns above the mean.

If the interest rate is held constant at the level depicted in the �gure, the probability of default

is reduced with joint �nancing. In addition, given that the probability of default is reduced by

joint �nancing, creditors are forced to reduce the gross interest payment further, so that the default

probability of joint �nancing in equilibrium is even lower. This is the logic of good conglomeration
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typically credited to Lewellen (1971) and used by Diamond (1984). The logic, however, is clearly

reversed if the original gross interest is above the return at which the densities of returns (individual

and average) peak and the distributions cross. In this case, the left tail of the distribution is actually

higher under joint than separate �nancing, so that the probability of bankruptcy is increased under

joint �nancing. Diamond (1984) disregards this possibility by implicitly assuming that the (endoge-

nous) per-project repayment obligation with joint �nancing is always less than the one obtained with

separate �nancing.1

Focusing on the case of two ex-ante identical projects, Banal-Estañol, Ottaviani, and Winton

(2013) analyze the tradeo¤ between the coinsurance bene�ts and the risk-contamination costs of

joint �nancing. This paper characterizes the tradeo¤more generally when projects are heterogeneous

and when there are multiple projects. We begin by showing that the coinsurance gains and the risk

contamination losses may be present simultaneously when two binary heterogeneous projects are

�nanced jointly. We characterize situations in which a �rst project either saves or drags down a

second project, depending on whether the �rst project succeeds or fails. This situation arises when

projects di¤er in their riskiness, measured by second-order stochastic dominance. We show that the

relative pro�tability of separate �nancing increases in the di¤erence of the riskiness of two projects.

This theoretical prediction is in line with empirical �ndings by Gorton and Souleles (2005) that

riskier originator banks are more likely to securitize.

We then characterize situations in which partial conglomeration of multiple projects into sub-

groups of intermediate size is optimal. By grouping subsets of projects into small conglomerates,

some of the bene�ts of coinsurance can be obtained while also containing the costs of risk conta-

mination. Nevertheless, using an argument based on the law of large numbers we can show that

1When illustrating this result as the number of entrepreneurs increases from one to two, Diamond (1984) implicitly

assumes away bad conglomeration by focusing on the case in which the repayment obligation when using the interme-

diary (i.e., with joint �nancing) is less than twice the one obtained without the intermediary (with separate �nancing).

His analysis, however, disregards the possibility of bad conglomeration. As we show in this paper, if the repayment rate

with joint �nancing rate is above the crossing point, conglomeration is bad even when the intermediary can observe

freely the entrepreneurs�returns.
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joint �nancing dominates separate �nancing when the number of independent and identical projects

becomes arbitrarily large. In the limit with an in�nite number of projects, the risk-contamination

e¤ect vanishes and it becomes optimal to �nance all the projects jointly. Taken together, our results

say that joint �nancing becomes unambiguously better as the number of projects increases only in

the limit case of many projects.

In our main speci�cation, bankruptcy costs are proportional to the value of the assets under

bankruptcy, as is often assumed in the theoretical and empirical literature. In a more general model

with variable returns to scale in bankruptcy costs, we show that economies of scale (according to

which per-project bankruptcy costs are lower when projects are �nanced jointly) favor joint �nancing,

while diseconomies of scale favor separate �nancing. Nevertheless, our main results on the optimality

of separate �nancing are robust to the introduction of mild (dis)economies of scale in bankruptcy

costs. We also show that the logic of risk contamination still applies when bankruptcy costs depend

on the number of projects that go bankrupt rather than on the value of assets under bankruptcy. In

fact, separate �nancing is optimal for a larger set of parameters because it becomes easier to obtain

joint �nancing, but only at a rate above the crossing point.

While for the bulk of our analysis we restrict �nancing to be obtained through debt, in an

extension we allow for �nancing through outside equity in addition to debt.2 As in the trade-o¤

theory of capital structure, equity saves on bankruptcy costs but is subject to higher taxation. We

show that if the incremental tax advantage of debt is su¢ ciently low, joint �nancing is inconsequential

because bankruptcy can be avoided altogether under either joint or separate �nancing. If the tax

advantage is somewhat higher, joint �nancing becomes more pro�table than in the baseline model,

because equity �nancing makes it possible to obtain a repayment rate below the crossing point.

Finally, if the tax advantage is su¢ ciently high, separate and joint �nancing are pro�table in the

same situations as in the main speci�cation, because then no equity is used in either �nancing regime.

2As we discuss in the next section, the costly state veri�cation literature shows that debt is the optimal contractual

arrangement if returns are privately observed by the borrower and can be veri�ed by creditors only by inducing

bankruptcy and incurring the bankruptcy costs.
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In our simple model with binary project returns, whenever separate �nancing is more pro�table than

joint �nancing, only debt �nancing is used. Equity is more expensive and is only used if it helps

to obtain a repayment rate that decreases the probability of default, in which case joint �nancing

is optimal. This dominance of debt in separate �nancing is consistent with the many empirical

studies that �nd that a large proportion of funding in project �nance is in the form of debt (see, e.g.,

Kleimeier and Megginson, 2000).

Finally, in the context of a version of the model with normal returns, we identify a simple su¢ cient

condition for the optimality of separate �nancing. Our comparative statics predictions on the optimal

scope of conglomeration are thus robust to a continuous speci�cation of returns. Nevertheless, our

baseline speci�cation with binary returns allows us to investigate the role played by asymmetries in

the distribution of returns as well as to reach a more thorough understanding and characterization

of the determinants of the optimal scope of conglomeration.

The paper proceeds as follows. Section 2 formulates the model. Focusing on the baseline version

of the model with two projects, Section 3 analyzes the conditions setting apart good from bad con-

glomeration and performs comparative statics with respect to the distribution of returns (mean, and

variance) and the bankruptcy recovery rate. Generalizing the optimal conglomeration conditions to

a setting with multiple projects, Section 4 characterizes situations in which partial conglomeration is

pro�table and demonstrates that joint �nancing is optimal when the number of independent projects

is su¢ ciently large. Section 5 shows that our results are robust to di¤erent speci�cations of bank-

ruptcy costs including economies of scale. Section 6 extends the analysis to a setting in which equity

�nancing is available, albeit with a tax disadvantage relative to debt �nancing. Section 7 charac-

terizes conditions for separate �nancing to result when projects�returns are normally distributed.

Section 8 concludes. The Appendix collects the proofs.
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2 Model

This section formulates the simplest possible model to analyze how multiple projects should be

optimally �nanced in the presence of bankruptcy costs. In the rest of the paper we derive results for

special cases of this baseline scenario.

A risk-neutral �rm has access to n independent projects. Project i requires at t = 1 an investment

outlay normalized to I = 1 and yields at t = 2 a random payo¤or return ri with a binary distribution:

the return is either low, ri = riL > 0, with probability 1� pi, or high, ri = riH > riL, with probability

pi. Each project has a positive net present value, (1� pi) riL + piriH � 1 > 0. The low return is

insu¢ cient to cover the initial investment outlay, riL < 1.

Before raising external �nance, the �rm chooses how to group projects into corporations, or

equivalently into separate nonrecourse loans. This means that investors in each corporation have

access to the returns of all projects in that corporation, but they do not have access to the returns

of the projects in the other corporations set up by the �rm. Financing for each corporation can be

obtained in a competitive credit market. For notational simplicity, we stipulate that the �rm seeks

�nancing only when expecting to obtain a strictly positive expected payo¤.

Creditors are risk neutral and lend money through standard debt contracts. Without loss of

generality, we normalize the risk-free interest rate to rf = 0. Therefore, creditors expect to make

zero expected pro�ts. This is equivalent to assuming that each corporation makes a take-it-or-leave-

it repayment o¤er to a single creditor for each loan j, promising to repay r�j at t = 2 for each

unit borrowed at t = 1.3 Thus r�j denotes the promised repayment per project. According to our

accounting convention, this repayment rate comprises the amount borrowed as well as net interest.4

Creditors are repaid in full when the total realized return of the projects pledged is su¢ cient

to cover the promised repayment. If instead the total realized return falls short of the repayment

3Thus, for the case in which each loan (or corporation) is �nanced by multiple creditors, we implicitly assume that

there are no coordination failures across the creditors who syndicate the same loan.
4The net interest rate i satis�es 1 + i = r�j and therefore the repayment obligation can be interpreted as the gross

interest rate.
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obligation, the corporation defaults and the ownership of the projects�realized returns is transferred

to the creditor. Following default, the creditor is only able to recover a fraction  2 [0; 1] of the

realized returns r, so that the bankruptcy costs following default are equal to B(r) = (1� ) r.5 In

Section 5, we show that our results hold robustly with a more general structure of bankruptcy costs,

provided that economies or diseconomies of scale in bankruptcy are not too extreme.

For the baseline speci�cation of the model we restrict external �nancing to be obtained through

debt. Note that debt is the optimal contractual arrangement if we assume that returns are privately

observed by the borrower and can be veri�ed by creditors only at a cost. In the context of the

classic analyses of the costly state veri�cation model (see Townsend, 1979, Diamond, 1984, and Gale

and Hellwig, 1985), the veri�cation of returns can be interpreted as a costly bankruptcy process. In

this context, they show that the optimal contract turns out to be the standard debt contract under

which returns are observed if and only if the borrower cannot repay the loan in full. Once bankruptcy

costs are re-interpreted as CSV veri�cation costs, the optimal contractual agreement between the

entrepreneur and the creditor is thus a debt contract. That is, if two projects are available, the

optimal contracting strategy is either two separate debt contracts, each of which is backed by the

returns of one project, or one debt contract, which is backed by the returns of the two projects. In

Section 6, we extend the model to also allow for �nancing through tax-disadvantaged equity.

3 Two Projects

Consider �rst the case of two projects. Project i, i = 1; 2, yields (independent) returns riH with

probability pi and riL with probability 1� pi. Without loss of generality, we assume that r1H + r2L >

r1L + r
2
H , interchanging the indices if necessary. Note that this is equivalent to r

1
H � r1L > r2H � r2L,

so that project 1 has a greater spread of possible outcomes than project 2. We have four levels of

combined returns. In one of them, default is avoided if project 1 yields a high return and project 2

5For estimates of bankruptcy costs and other costs of �nancial distress across industries see, for example, Warner

(1977), Weiss (1990), and Korteweg (2007).
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a low return, whereas default is not avoided if the reverse occurs.

In Section 3.1 we proceed to examine the conditions for when the borrower is able to �nance

the two projects separately and jointly. In Section 3.2 we compare the pro�tability of separate and

joint �nancing, when they are both feasible. In Section 3.3 we derive a set of comparative statics

predictions for the occurrence of joint and separate �nancing. Finally, Section 3.4 characterizes

situations in which the �nancing option with the lowest probability of bankruptcy is not optimal.

3.1 Financing Conditions

Consider the case of separate �nancing �rst. In order for the creditor to break even, the rate r0i

for each project i must satisfy r0i > 1 > rL, so that there is a positive probability that the loan is

not repaid in full. Given that the credit market is competitive, creditors must make zero expected

pro�ts. Thus the repayment requested by the creditor, r0i, is such that the gross expected proceeds,

pr0i + (1� p)rL, are equal to the initial investment outlay 1. As a result, project i can be �nanced

(at r0i) if and only if

r0i :=
1� (1� pi)riL

pi
< riH . (1)

In the case of joint �nancing, there are three possible rates and therefore three �nancing condi-

tions. There exists r0m such that bankruptcy can be avoided if one project�s return is high and the

other is low, r0m � (r1L+ r2H)=2.6 If projects are heterogeneous, there exists r00m such that bankruptcy

can be avoided if project 1�s return is high and project 2�s is low but not viceversa, r00m � (r1H+r2L)=2:

Finally, there exists r000m such that bankruptcy cannot be avoided if any of the two projects�return

is low, which can be obtained if and only if r000m � (r1H + r
2
H)=2. The dotted and dashed lines in

Figure ?? depict the cumulative distribution of returns of two heterogeneous projects, whereas the

thick line depicts the distribution of the average returns of the two projects. The three possible types

of rates correspond to the three �at parts of the average distribution.

6The precise expression is included in the Appendix, in the proof of the forthcoming Proposition 1.
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3.2 Good and Bad Conglomeration

We now turn to the question of whether the borrower should �nance the projects jointly or separately

when both �nancing regimes are feasible. If a rate that avoids bankruptcy in both intermediate

situations can be obtained, projects coinsure each other and should be �nanced jointly. If the

�rm can only obtain a rate that does not avoid bankruptcy in any of the intermediate situations,

projects should be �nanced separately because they drag each other down. If bankruptcy can only

be avoided for the more favorable intermediate situation, then both coinsurance and contamination

e¤ects are present at the same time. On the one hand, project 1, when it yields a high return,

saves project 2 when project 2 yields a low return; on the other hand, project 1, when it yields a

low return, contaminates project 2 when project 2 yields a high return. The optimality of separate

or joint �nancing depends on whether the gains from coinsurance dominate the losses from risk

contamination.

Proposition 1 (Separate v. joint �nancing with two projects) When the borrower can �nance

two projects separately as well as jointly, there exist r0m, r
00
m and r000m such that

(a) If r0m � (r1L + r2H)=2, it is optimal to �nance the projects jointly to enjoy the coinsurance gains:

(1� p1) p2(1� )r1L + p1 (1� p2) (1� )r2L.

(b) If r00m � (r1H + r
2
L)=2 but r

0
m > (r1L + r

2
H)=2, it is optimal to �nance the projects separately if

and only if the risk-contamination losses dominate the coinsurance gains: (1 � p1)p2(1 � )r2H >

p1(1� p2)(1� )r2L.

(c) If r000m � (r1H + r2H)=2 only is satis�ed, it is optimal to �nance the projects separately to avoid the

risk-contamination losses: p1(1� p2)(1� )r1H + (1� p1)p2(1� )r2H .

In the new case (b), the probability of default with joint �nancing is (i) increased by (1� p1)p2,

because a successful project 2 is dragged down by a failing project 1, but (ii) decreased by p1(1�p2),

because a failing project 2 is saved by a successful project 1. Project 2, however, is saved when it

yields a low return but it is dragged down following a high return. Thus, if project 1 has a chance
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of success that is no greater than that for project 2 (p1 � p2), the risk-contamination e¤ect always

dominates the coinsurance e¤ect.

The trade-o¤ between coinsurance and risk contamination in the new case (b) is depicted in

Figure ??. The risk-contamination losses, equal to (1� p1)p2(1� )r2L, are represented by the light

gray area and correspond to the added bankruptcy costs on the high-return project 2 that is dragged

down when project 1 has a low return. The coinsurance gains, equal to p1(1 � p2)(1 � )r2H , are

represented by the gray area and correspond to reduced bankruptcy costs on the low-return project

2 that is saved when project 1 has a high return. For the numerical value used in the �gure, it is

more pro�table to �nance the projects separately because the risk-contamination losses are larger

than the coinsurance gains.

3.3 Testable Predictions

We now derive comparative statics predictions with respect to changes in the characteristics of the

projects (bankruptcy costs, mean, and variability). We show �rst separate �nancing becomes more

attractive as bankruptcy costs increase.

Prediction 1 (Bankruptcy costs) For higher bankruptcy costs (lower ) then (a) both joint and

separate �nancing can be obtained for a smaller region of parameters and (b) joint �nancing is

optimal for a smaller region of the remaining parameters.

Second, we show that separate �nancing becomes less attractive when projects have higher re-

turns.

Prediction 2 (Mean) If project 1 �rst-order stochastically dominates project 2, and in particular,

r1H = r
2
H and r1L = r

2
L and p1 > p2, for a higher mean of any of the two projects (higher p1 or p2),

the region of parameters for which joint �nancing is optimal increases.

Third, we establish that more risk typically induces more separation when one project is a mean

preserving spread of the other.
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Prediction 3 (Mean-preserving spread) If project 2 second-order stochastically dominates project

1 so that p1 = p2 and r1H = r
2
H +" and r

1
L = r

2
L�

p1
1�p1 " for " > 0, a higher spread of the risky project

(higher ") leads to a decrease in the region of parameters for which joint �nancing is optimal.

As explained after Proposition 1, if the probabilities of success are the same joint �nancing is

optimal only if r0m can be obtained. This condition becomes more stringent as the spread of the

risky project increases. Indeed, the less favorable intermediate return (r1L + r
2
H) decreases in the

spread of project 1 and the repayment rate (r0m) increases, as the creditor recovers less in the event

of bankruptcy (when both projects yield low returns). In addition, it is easier to �nance the projects

separately as the increase in the high realization of the return is not fully compensated by the increase

in the repayment rate (ri).

Gorton and Souleles (2005) and Bannier and Hansel (2008) provide evidence that riskier originator

banks are more likely to securitize their loans, consistent with our prediction that separate �nancing

is more attractive when the risky project (the bank) is riskier.7 Similarly, Mills and Newberry (2005)

�nd that non�nancial �rms with greater credit risks are more prone to use o¤-balance sheet debt.

3.4 Managerial Implications

In this section, we characterize situations in which the �nancing option with the lowest probability

of bankruptcy is not optimal.

Proposition 2 (Separate �nancing with higher bankruptcy probability) Separate �nancing

is optimal even though it results in a higher probability of bankruptcy if and only if (i) the risk-

contamination losses dominate the coinsurance gains in case (b) of Proposition 1, i.e., (1�p1)p2r2H >

p1(1� p2)r2L, but (ii) the probability of dragging down the second project is lower than the probability

of saving it, i.e., (1� p1)p2 < p1(1� p2).

7Of course, these �ndings are consistent with other explanations. For example, riskier banks may have a higher

shadow cost of equity capital, which may make securitization more attractive as a means of conserving costly capital.

Also, riskier banks may be more prone to risk-shifting behavior, making it more attractive to shield assets from this

through securitization (Kahn and Winton, 2004).
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Notice �rst that if the levels of bankruptcy costs are �small�, so that the borrower can �nance

the two projects jointly at a rate r0m (case (a) of Proposition 1), then joint �nancing results in lower

probability of bankruptcy than with separate �nancing ((1� p1)(1� p2) as compared to 1� p1 and

1� p2) and in lower ine¢ ciency losses. If the levels of bankruptcy costs are, instead, �large�, so that

the borrower can �nance the two projects jointly only at a rate r000m (case (c) of Proposition 1), then

joint �nancing results in higher probability of bankruptcy (1�p1p2 as compared to 1�p1 and 1�p2)

and in higher ine¢ ciency losses. In both cases, it is optimal to �nance the option (joint or separate)

with the lowest probability of bankruptcy.

Suppose now that the levels of bankruptcy costs are �intermediate� so that the borrower can

�nance the two projects jointly at a rate r00m but not at a rate r0m, so that we are in case (b) of

Proposition 1. In this case, (i) if project 1 yields a low return, it drags down project 2 if project

2 has a high return (whereas project 2 would have stayed a�oat with separate �nancing) and, at

the same time, (ii) if project 1 yields a high return, it saves project 2 if project 2 has a low return

(whereas project 2 would have defaulted with separate �nancing). As shown in Proposition 1, projects

should be �nanced separately if the expected bene�ts from coinsuring project 2 are dominated by

the expected losses from risk-contaminating it. Proposition 2 highlights that the risk-contamination

losses can be greater even if the probability of saving project 2 is higher than the probability of

contaminating it (p1(1 � p2) > p2(1 � p1)), given that the losses from dragging down the second

project are greater than the gains from saving it (r2H > r
2
L). This situation is likely to occur if (i) the

probability of success of the �rst project is slightly higher than that of the second project (p1 > p2),

and (ii) the di¤erence in realized returns of the second project is large (r2H >> r
2
L).

Figure ?? is an example in point. Provided that the joint �nancing rate is r00m, the risk-

contamination losses, represented by the light gray area, dominate the coinsurance gains, represented

by the gray area, and therefore it is more pro�table to �nance the projects separately, even if the

probability of risk-contamination (height of the light gray area) is smaller than the probability of

coinsurance (height of the gray area). The borrower might then feel tempted to �nance the projects
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jointly, but this is suboptimal. In this case, a lower probability of bankruptcy associated with joint

�nancing is deceptively attractive.

4 Multiple Projects

In this section, we consider a borrower with access to a general number of identical projects with

independent returns. In Section 4.1, we characterize the size (and the number) of the groups that

it is optimal to �nance jointly, thereby identifying conditions for partial conglomeration. In Section

4.2, we show that if the number of independent projects is su¢ ciently large, it becomes possible and

optimal for the borrower to �nance all of them jointly, so that full conglomeration results.

Consider a group with k identically and independently distributed projects. Each project i yields

a low return riL � rL with probability 1�pi � 1�p and a high return riH � rH > rL with probability

pi � p. Generalizing our baseline analysis for a group with two projects, the per-project repayment

rates depend on the number of projects with high return m (1 � m � k) that are necessary to avoid

bankruptcy,

rk(m) :=
1� 

hPm�1
s=0 h(s)

srH+(k�s)rL
k

i
1�H(m� 1) ; (2)

where h(s) is the probability that s out of the k projects yield a high return,

h(s) :=

�
k

s

�
ps (1� p)k�s for s = 0; 1; ::; k; (3)

and H(s) is the corresponding probability distribution, H(s) :=
Ps
t=0 h(t).

8 As before, the equilib-

rium repayment rate is the one which requires the minimum number of high returns, i.e. r�k = rk(m
0)

where m0 is the lowest m that satis�es rk(m) < [(m� 1)rL + rH ]=m.

4.1 Partial Conglomeration

To simplify the comparison in this section, assume that the �rm can only form groups of symmetric

sizes. Then, the number of available projects n is such that n = 2z for some z 2 N. In this context,
8For notational convenience we de�ne here the density and distribution functions at the number of projects with

high return s rather than at the corresponding return, br(s) := [srH + (k � s)rL] =k.
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the �rm should choose the size of the group k, where k = 2w for w = 0; 1; ::; z. If k is the size of the

groups then n=k is the number of groups.

Proposition 3 (Partial conglomeration) Suppose that there are n projects that can be �nanced

in symmetric groups. If the probability of high return is su¢ ciently small, p � p�, then it is optimal to

�nance the projects in groups of size k�, where k� is the largest k that satis�es r�k < [(k�1)rL+rH ]=k.

First, if a rate that satis�es r�k� < [(k
�� 1)rL+ rH ]=k� can be obtained by �nancing the projects

in groups of size k�, then it is better to �nance the projects in groups of size k� rather than in smaller

groups. In this case, a single high return and k� � 1 low returns allow all the projects in the group

to stay a�oat, so that a single project coinsures the rest of the group. Groups of smaller size cannot

be better because one high-return project would save, at most, only the low-return projects of the

smaller group. If all the projects in the other group(s) yield a low return, they will go bankrupt and

the bankruptcy losses would be higher.

Second, if p is small, forming a group of size k� also dominates forming groups of larger size k0

in which r�k0 > ((k0 � 1)rL + rH)=k0. In this case, if k0 projects are �nanced jointly and k0 � 1 low

returns are realized, risk-contamination would result. Instead, if the projects had been �nanced in

smaller groups of size k�, the group with a single high-return realization would have been saved.

To illustrate, consider the case with four projects (n = 4), with (3rL + rH)=4 < r�4 < (rL + rH)=2

and r�2 < (rL + rH)=2. In this case, if all four projects are �nanced jointly, three low returns risk-

contaminate the fourth, while two high returns coinsure the other two projects. If the projects are

�nanced in two groups composed of two projects each, a high return in one project coinsures the

other project in the same group. The advantage of �nancing projects in two partial conglomerates

with two projects each is that in the event of three low returns, one of the partial conglomerates is

saved through coinsurance, while risk contamination is contained. The disadvantage is that if one

group yields two low returns and the other group yields two high returns, it would have been possible

to save the two projects with low returns through coinsurance if all projects had been �nanced jointly
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in a full conglomerate. If p is small (below p� = 2=3 if n = 4), the �rst e¤ect dominates and it is

optimal to �nance projects in groups of two.

Overall, this proposition generalizes the intuition obtained from the two-project model to the

case of multiple projects for p small (p < p�). As in the two-project case, projects should be �nanced

in small groups if, when �nancing in groups of larger sizes, we cannot obtain rates that would make

a successful project save the rest. Higher bankruptcy costs, for example, makes funding of groups of

smaller size more likely to be optimal because it is more di¢ cult to get rates that make one project

save the rest in larger groups, extending the logic of Prediction 1. Following the same reasoning,

higher probability of high return (as long as p < p�) makes funding of groups of larger size more

likely to be optimal, as in Prediction 2.

The speci�c circumstances that this result requires� probability of success not too high, high

return large enough to �rescue�the other projects if their returns are low� bears some resemblance

to the case of venture capital funds. These funds are limited partnerships that typically target �rms

with a small chance of very high returns and a large probability of failure, and are funded with

convertible preferred equity from limited partners (see Sahlman, 1990, and Fenn, Liang, and Prowse,

1995). Although failure to pay dividends on the preferred equity does not cause bankruptcy per se,

it does hurt the reputation of the fund manager. (Note that the manager may run several funds

at any one time.) Taking this as a generalized cost of �default,�Proposition 3 suggests that each

venture capital fund should be limited enough that one success can balance out failures in the rest

of its portfolio.

If p is large (p > p�), it might be optimal to form groups of larger sizes even if, in such groups,

one cannot obtain a rate that makes a successful project save the rest.9 That is again consistent with

Prediction 2: an increase in the probability of high return favors larger groups. But that makes it

di¢ cult to state a necessary and su¢ cient condition on group formation for a given p. Still, for the

9 In the case of four projects, if p > p� = 2=3, the second e¤ect described above dominates the �rst and it is optimal

to �nance all four projects jointly.
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case in which projects are symmetric (p = 1=2), we can state a su¢ cient condition on full separation

and full conglomeration, thus expanding the results of Proposition 3 for the two extreme group sizes.

These su¢ cient conditions become necessary and su¢ cient if n = 2.

Proposition 4 (Joint v. separate �nancing of multiple projects) If there are n symmetric

projects which have to be �nanced in symmetric groups, then they should all be �nanced jointly if

r�n < [(n� 1)rL + rH ]=n and all separately if r�k > (rH + rL)=2 for any k � 2.

Proposition 3 shows that all projects should be �nanced jointly if, with a full conglomerate, it is

possible to obtain a rate such that a single high-return project coinsures all the other projects. At the

other extreme, it shows that if, in any group of projects, it is not possible to obtain a rate such that

a high-return project coinsures the rest of the group, it is better to �nance all projects separately.

Proposition 4 expands the set of cases for which full separation is optimal for p = 1=2. It exploits the

fact the distribution functions of the average returns of any group of symmetric projects cross the

distribution of the single return at the mean and, as a result, the probability of bankruptcy of groups

with repayment rates above the mean is higher than the probability of bankruptcy of stand-alone

projects. Hence, full separation is optimal if, for any group of projects, it is not possible to obtain a

rate below the mean return, or equivalently, a rate such that half of the projects save the other half.

For example, this occurs for a larger set of parameters when bankruptcy costs are high or when the

mean return is low.

4.2 Large Number of Projects

As the analysis of our baseline model shows, the set of parameters for which joint �nancing is optimal

does not necessarily increase with the number of projects. This result stands in contrast with claims

often made in the literature; for example, see the discussion on page 400 and footnote 3 in Diamond

(1984). Compared to our model, Diamond (1984) adds an intermediary who contracts with several

entrepreneurs to achieve joint �nancing; in his model this intermediary can observe the entrepreneurs�

returns only by paying a cost. Joint �nancing in our model can be seen as a special case of Diamond�s
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(1984) model with an intermediary who can costlessly observe the entrepreneurs�returns. In the last

paragraph on page 400 reported above in the introduction, Diamond (1984) claims informally that

the expected bankruptcy costs associated to intermediary �nancing decrease monotonically with the

number of projects. When illustrating this result as the number of projects increases from one to

two, in footnote 3 Diamond (1984) implicitly assumes away bad conglomeration by focusing on the

case in which the repayment obligation when using the intermediary (i.e., with joint �nancing) is

less than twice the one obtained without the intermediary (with separate �nancing). This argument

is incomplete because it disregards the possibility of bad conglomeration. If the repayment rate with

joint �nancing rate is above the crossing point, conglomeration is bad even when the intermediary

can observe freely the entrepreneurs�returns.

Thus, there is a meaningful tradeo¤ between joint and separate �nancing without need of handi-

capping joint �nancing through the monitoring cost associated to intermediation. Nevertheless, using

an argument based on the law of large numbers we can show that joint �nancing dominates separate

�nancing when the number of independent and identical projects increases to in�nity.

Proposition 5 (Many projects) There exists n0 and q 2 (0; p) such that when the number of

projects satis�es n > n0, joint �nancing of all projects can be obtained at a repayment rate that

avoids bankruptcy when nq projects have high returns. The resulting per-project return approaches

the net present expected value of each project as n grows.

If the number of independent projects is su¢ ciently large, it always becomes possible for the

borrower to �nance all the projects jointly. This result exploits the law of large numbers. Namely,

as the number of projects n increases, the probability that the average number of projects with high

returns di¤ers from p, the probability of a high return, by more than a small amount " tends to zero.

We can then construct a rate o¤er to �nance all projects jointly that is acceptable to the creditors.

The borrower�s returns when �nancing all projects jointly is then arbitrarily close to the �rst-best

as the number of projects increases. Therefore, when the number of projects is large, �nancing all
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the projects jointly is approximately optimal for the borrower because the resulting payo¤ is close

to the highest possible level.

Prediction 4 (Full conglomeration) If there is a large number of independent projects, it is op-

timal to �nance all of them jointly.

In practice, however, there is an important caveat to this result: for any given �rm, projects

are likely to be generally positively correlated, due to common shocks to the �rm�s industry or the

general economy. As we have seen, such correlation can reverse the optimality of full joint �nancing.

5 Structure of Veri�cation/Bankruptcy Costs

In line with most of the theoretical and empirical literature, in our previous speci�cations ex post

veri�cation (or, equivalently, bankruptcy) costs are proportional to realized returns, with B(r) = (1�

)r. Note that this baseline speci�cation entails constant returns to scale: B(tr) = (1�)tr = tB(r)

for any t > 0. To investigate the robustness of our results to the structure of the bankruptcy costs,

this section consider a general speci�cation that allows for economies or diseconomies of scale in

bankruptcy. We retain the feature that bankruptcy costs are larger for higher levels of realized

returns, so that B(r) is increasing in r.

As is intuitive, economies of scale in bankruptcy favor joint �nancing whereas diseconomies of

scale favor separation. As demonstrated in the next result, if economies of scale are su¢ ciently strong,

so that B(2rL) � 2B(rL) is negative enough, then joint �nancing is optimal. Separate �nancing is

optimal if, instead, there are su¢ ciently strong diseconomies of scale, so that B(2rL) � 2B(rL)

is positive enough. In the intermediate case, which includes constant returns to scale as well as

weak economies and diseconomies of scale, separation is optimal if the rate that avoids intermediate

bankruptcy cannot be obtained.

Proposition 6 (Scale economies in bankruptcy costs) With a general structure of bankruptcy

costs, there exist thresholds S < 0 and S > 0 such that
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(i) If B(2rL)� 2B(rL) < S, joint �nancing is always optimal;

(ii) If S < B(2rL)� 2B(rL) < S, separate �nancing is optimal if and only if

1� (1� p)2 [rL �B(2rL)=2]
1� (1� p)2

>
rH + rL
2

;

(iii) If B(2rL)� 2B(rL) > S, separate �nancing is always optimal.

To further characterize the thresholds independently of the level of returns, consider bankruptcy

costs given by B(r) � (1 � )r + �(r � rL)r. This speci�cation allows for economies (� < 0) and

diseconomies of scale (� > 0) and includes our baseline case with constant returns to scale as a

special case (� = 0). Following the procedure set out in the previous proposition, if � < � :=

�(1�)prH=
�
(1� p)r2L + pr2H + prLrH

�
, joint �nancing is optimal (case (i)); if � < � < �, separate

�nancing is optimal if and only if the rate that avoids intermediate bankruptcy cannot be obtained

(case (ii)); and if � > � := p(1� )= [(1� p)rL], separate �nancing is optimal (case (iii)).

An alternative speci�cation with constant returns to scale consists in assuming a �xed per-project

bankruptcy cost b (< rL), so that B(r) = b for r = rH ; rL and B(r) = 2b for r = 2rH ; rH + rL; 2rL.

Thus, we have B(2rL) � 2B(rL) = 0, so that case (ii) always results. In addition, it can be shown

that with per project bankruptcy costs separate �nancing is optimal for a relatively larger set of

parameters than in our baseline case with proportional bankruptcy costs.10 Next, if there is a �xed

recovery rate per project w (< rL), case (ii) also results.

In sum, joint �nancing is optimal if there are signi�cant economies of scale in bankruptcy, while

separate �nancing is optimal if there are su¢ ciently strong diseconomies of scale. For weaker

economies or diseconomies of scale, as well as for several speci�cations with constant returns of

10To show this, set per-project bankruptcy costs at the same level as the proportional losses of the low-return project,

b = (1 � )rL. Then, the proceeds from a bankrupt high-return project are relatively higher in the per-project case

compared to the proportional case. The rate for separate �nancing r�i and the rate for joint �nancing that avoids

intermediate bankruptcy r�m are the same as in the proportional bankruptcy costs case, so the �nancing conditions do

not change. However, the rate at which projects can be �nanced without avoiding intermediate bankruptcy r��m is now

lower and it becomes easier to satisfy the condition. As a result, it becomes easier to obtain joint �nancing, but only

at the rate for which intermediate bankruptcy occurs. Therefore, when both separate and joint �nancing are feasible,

separate �nancing is optimal for a relatively larger set of parameters.
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scale in bankruptcy, separate �nancing is optimal as long as intermediate bankruptcy cannot be

avoided. Higher bankruptcy costs then favor separate �nancing more generally, as in our baseline

speci�cation.

6 Debt, Equity, and Taxes

We now extend the two-project symmetric case to allow the �rm to use outside equity, as well as debt,

to �nance part of the initial investment. As in the standard trade-o¤ theory of capital structure,

equity payments are subject to corporate taxation, whereas debt payments are tax deductible and

are therefore exempt from taxes. Our framework is isomorphic to other frictional costs linked to

equity �nancing, such as higher underwriting fees, negative signaling costs, or agency costs of excess

equity.

Model Extension. Financing for each corporation can be obtained in competitive credit and

equity markets. As in the basic model, the availability of a competitive credit market is equivalent

to assuming that each corporation makes a take-it-or-leave-it o¤er to a single creditor. Corporation

j, consisting of nj projects, promises to repay njr0j at t = 2 in exchange of njDj at t = 1. Thus, the

promised per-project repayment r0j now depends on the part of the initial investment outlay of each

project that is �nanced through debt, Dj � 1.

A competitive equity market is equivalent to assuming that each corporation makes a take-it-

or-leave-it o¤er to a single outside equity investor. We denote the fraction of the equity sold by

corporation j as �j , and the equity value of the corporation, if it consists of nj projects, as njEj .

For all the projects to be �nanced, the sum of debt and equity �nancing per-project must cover the

initial investment outlay of each project, Dj +�jEj = 1. We also assume that, while debt payments

are tax deductible and therefore exempt from taxes, equity payments are subject to a corporate tax

of � , which captures the tax disadvantage (or other net costs) of equity relative to debt.11

11Leland (2007) makes the more realistic assumption that only interest expenses are tax deductible. This, however,

creates an endogeneity problem. When interest only is deductible, the fraction of debt service attributed to interest
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Financing Conditions. For the case of separate �nancing, we now need to distinguish two cases,

because there are situations in which it is possible to obtain a rate r0i that avoids bankruptcy alto-

gether, r0i � rL, by selling a fraction � of the corporation. If this rate exists, it should satisfy

�(1� �)
�
p
�
rH � r0i

�
+ (1� p)

�
rL � r0i

��
= �Ei and r0i = Di:

Since there is no bankruptcy, the net interest rate is zero and the principal is equal to the debt value.

Substituting into the total �nancing condition, Di+�Ei = 1, this rate can be obtained if and only if

r0i(�) :=
1� �(1� �) [prH + (1� p)rL]

1� �(1� �) � rL: (4)

If the �rm uses no equity (� = 0), then r0i = 1 and the condition is never satis�ed (rL < 1), as in

the baseline debt-only case. But, as more equity is o¤ered, the debt repayment is lower (r0i(�) is

decreasing) and, if taxes are low, the condition can be satis�ed. Equity, however, is costly because of

taxes. It is optimal for the �rm to sell the lowest equity stake �0i satisfying condition (4), r
0
i(�

0
i) = rL.

Still, if taxes are high enough, it is not possible to obtain this rate, not even by selling all the equity.

Following the same procedure, a rate such that r00i < rH can be obtained if and only if

r00i (�) :=
1� �(1� �)prH � (1� p)rL

[1� �(1� �)] p � rH ; (5)

which generalizes condition (1) of the baseline setup to � > 0, as r00i (0) = r
�
i � rH . This condition

is satis�ed precisely as long as condition (1) is satis�ed, independently of the level of equity sold:

Given that the �rm prefers to sell the lowest possible fraction of equity, no equity at all is sold in

the optimum, �00i = 0: In this case, equity does not help in reducing the probability of bankruptcy.

The following proposition characterizes which of these two rates is optimally chosen when they

are both available.

Proposition 7 (Equity and taxes: separate �nancing) Suppose that both rates r0i and r
00
i are

payments depends on the value of the debt, which in turn depends on the fraction of debt service attributed to interest

payments. Instead of relying in numerical techniques to �nd debt values and optimal leverage, we follow Kale, Noe,

and Ramirez (1991) and assume that both interest and principle are tax deductible. We also assume away personal

taxes.
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available. There exists � i such that the optimal rate and fraction of equity sold are, respectively, rL

and �0i > 0 if � � � i, and r�i and � = 0 if � > � i.

If taxes are su¢ ciently high, the projects are �nanced at the same rate as in the baseline case

without equity. Moreover, it is then optimal to �nance the projects entirely with debt. When taxes

are lower, however, it becomes optimal to �nance the projects at a rate that avoids bankruptcy

altogether (r0i(�
0
i) = rL) by selling a positive amount of equity, �

0
i > 0.

For the case of joint �nancing, there are three potential rates. The �rst rate, which avoids

bankruptcy altogether, r0m � rL, is the same as (and can be obtained under the same circumstances

as) the rate resulting with separate �nancing, r0m = r
0
i. Indeed, if bankruptcy can be avoided, then

the corporate structure does not matter.

Second, a rate that avoids bankruptcy if one realized return is high and the other is low can be

obtained if and only if

r00m(�) :=
1� �(1� �)

�
p2rH + 2p(1� p) rH+rL2

�
� (1� p)2rL

[1� �(1� �)]
h
1� (1� p)2

i � rH + rL
2

; (6)

which is again a generalization for � � 0 of the �nancing condition of the baseline case, for the case

of ex-ante symmetric projects, r00m(0) = r
�
m � (rH + rL)=2, where

r�m :=
1�  (1� p)2 rL
1� (1� p)2

� rH + rL
2

: (7)

Again, it is optimal for the �rm to choose the minimum amount of equity that satis�es condition

(6). If condition (7) is satis�ed, the �rm does not need to sell any equity at all, �00m = 0. If condition

(7) is not satis�ed, this rate can still be obtained, however, by selling some equity.

Third, a rate that avoids bankruptcy only if both realized returns are high can be obtained as

long as

r000m(�) :=
1� (1� p)2rL � 2p(1� p) rH+rL2 � �(1� �)p2rH

[1� �(1� �)] p2 � rH ; (8)

which again, generalizes the condition of the baseline symmetric case for � � 0, i.e. r000m(0) = r��m � rH ,
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where

r��m :=
1�  (1� p) (prH + rL)

p2
� rH : (9)

As in the highest rate for separate �nancing (8) as long as (9) is satis�ed, independently of the equity

sold. Given that the �rm prefers to sell the lowest possible fraction of equity, the resulting level is

�000m = 0.

Proposition 8 (Equity and taxes: joint �nancing) Suppose more than one rate (r0m, r
00
m, r

000
m)

is available. There exist �am, �
b
m, and �

c
m such that:

(i) If condition (7) is satis�ed, the optimal rate and fraction of equity sold are, respectively, rL and

�0m > 0 if � � �am, and r�m and � = 0 if � > �am.

(ii) If condition (7) is not satis�ed, the optimal rate and fraction of equity sold are, respectively, rL

and �0m > 0 if � � � bm, rH+rL2 and �00m > 0 if �
b
m < � � � cm, and r��m and � = 0 if � > � cm.

Good and Bad Conglomeration. The pro�tability of joint �nancing depends on the cases iden-

ti�ed in Proposition 8. In case (i), joint �nancing is always pro�table at least weakly. This case

is equivalent to the case of good conglomeration in the baseline model. The condition is exactly

the same as the condition enabling the �rm to obtain r�m in the baseline speci�cation. In case (ii),

conglomeration is bad in the baseline model. And, if taxes are su¢ ciently high, conglomeration

is still bad here. If taxes are lower, however, �nancing with equity allows the �rm to �nance the

projects with rates that avoid bankruptcy in the case with intermediate returns and even with rates

that avoid bankruptcy altogether.

Proposition 9 (Equity and taxes: joint v. separate �nancing) When both separate and joint

�nancing are feasible:

(i) If condition (7) is satis�ed, both �nancing regimes are equally pro�table if � � �am, whereas joint

�nancing dominates if � > �am.

(ii) If condition (7) is not satis�ed, both �nancing regimes are equally pro�table if � � � bm, joint

�nancing dominates if � bm < � � � i, and separate �nancing dominates if � > � i.
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In sum, if taxes or other equity costs are su¢ ciently high, only debt is used and the same situation

analyzed in the baseline model arises. That is, joint �nancing is pro�table in case (i) and separate

�nancing is pro�table in case (ii). The condition setting apart joint and separate �nancing is exactly

the same as in the baseline model without equity. If taxes are intermediate, joint �nancing can

be pro�table in cases in which it is not pro�table in the baseline model with only debt (case ii).

This is because, by �nancing jointly and using equity, it becomes possible to obtain a rate that

avoids intermediate bankruptcy or bankruptcy altogether. Finally, if taxes are su¢ ciently low, joint

�nancing is inconsequential because bankruptcy can be avoided altogether with joint as well as with

separate �nancing.

The exclusive use of debt in separate �nance is consistent with the many empirical studies that

�nd that a disproportionate proportion of funding in project �nance is in the form of debt. Kleimeier

and Megginson (2000), for example, �nd that projects funded with project �nance loans have an av-

erage loan-to-project value ratio of 67%. Esty (2003) shows that the average (respectively median)

project company has a book value debt-to-total capitalization ratio of 70% (respectively 70%) com-

pared to 33.1% (respectively 30.5%) for similar-sized �rms. Our result is also consistent with the

almost exclusive use of debt �nancing in securitization structures, where little if any external equity

is issued.

7 Normal Returns

This section analyzes the model when returns are normally distributed rather than binary. We show

that our results on bad conglomeration and the main comparative statics predictions are robust to

continuous distributions. As part of the analysis, we also provide an easy-to-verify su¢ cient condition

for the optimality of separate �nancing.
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7.1 Model Extension

A �rm has access to n symmetric, normally distributed projects, ri � N
�
�; �2

�
for i = 1; :::; n, with

symmetric correlation coe¢ cient �. As in the binary case, the distribution function of the average

returns lies below the distribution of a single return until a unique crossing point (here equal to

the mean because of symmetry), after which the ordering is reserved. Indeed, the average of two

normal random variables is also normal with a density that is more peaked around the mean than

the original normal density. To retain analytical tractability, we assume (i) that there is a �xed

per-project recovery rate w (w < 1 < �);12 (ii) that the �rm can only form symmetric groups of

projects (and therefore n = 2z for some z 2 N), as in Section 4.1; and (iii) that projects need to be

�nanced exclusively with debt.

7.2 Financing Conditions

As in Section 4.1, the �rm should choose the size of the groups k, where k = 2w for w = 0; 1; ::; z.

The per project repayment requested by a creditor in a competitive market to �nance a group of size

k, r�k, is de�ned by

kr�k [1�G (kr�k)] + wkG (kr�k) = k; (10)

where G is the distribution function of the sum of k normal random variables. Noting that the

distribution of the sum computed at kr is

G (kr) = Pr (r1 + :::+ rk � kr) = Pr
�
r1 + :::+ rk

k
� r

�
=: H(r); (11)

where H is the distribution of the average of r1; :::; rk, this condition is equivalent to

r�k [1�H (r�k)] + wH (r�k) = 1: (12)

12Given that returns are normally distributed, with positive probability there realized return is lower than the

recovery rate. For simplicity, we disregard this problem, given that the probability of these realizations can be made

arbitrarily small with an appropriate choice of parameters. Alternatively, the proof of Proposition 10 holds for the

general class of log-concave symmetric distributions, which allow for positive support and recovery rates below the

support. The key property driving the result is that the density of the average of n random variables is more peaked

around the mean compared to the original density. As shown by Proschan (1965), this property holds generally for

log-concave symmetric distributions.
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The �rm�s per-project payo¤ is thenZ +1

r�k

r1 + :::+ rk
k

dH � r�k [1�H(r�k)] =
Z +1

r�k

�
r1 + :::+ rk

k
� r�k

�
dH: (13)

Given that this payo¤ is a decreasing function of r�k, it is optimal for the �rm to select the lowest r
�
k at

which condition (12) is satis�ed, if such a r�k exists. Financing is obtained in such a case. Figure ??

represents the mean-variance parameters allowing projects to be �nanced separately (k = 1) and in

groups of two (k = 2).

7.3 Good and Bad Conglomeration

We now turn to the question of when is it optimal to �nance the projects separately when there are

multiple options available.

Proposition 10 (Optimality of separate �nancing) If it is feasible to �nance separately n nor-

mally distributed projects with mean � and standard deviation �, separate �nancing is optimal if

�+ w < 2 and �� w < �
p
[1 + �(n� 1)]�=2n: (14)

These conditions identify the region of parameters for which separate �nancing is optimal in

Figure ??. We obtain the same comparative statics as in the baseline model. Separation holds for

a larger region of parameters if the mean returns are low (Prediction 2) and if the variance is high

(Prediction 3). Indeed, it is more di¢ cult to satisfy both conditions in (14) if � increases, and it is

easier to satisfy the second condition if � increases. In addition, when the coe¢ cient of correlation

increases the region for which separate �nancing is optimal increases. Similar to the binary case in

Section 4.2, when the number of projects increases the region for which separation is optimal shrinks.

In the limit, if there is a large number of independent projects the second condition is never satis�ed,

in accordance with Prediction 5.

Similarly, an increase in the recovery rate favors the optimality of joint �nancing (Prediction

1). To see this, consider the mean-variance parameter combinations for which joint and separate

�nancing are both feasible for two levels of recovery rates, w = w1 and w = w2 where w1 < w2.
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Then, the region for which separate �nancing is optimal is smaller for w = w2 than for w = w1.

Indeed, an increase from w1 to w2 makes it more di¢ cult for the �rst condition in (14) to be satis�ed,

thereby shrinking the region in which separate �nancing is optimal. Even though it becomes easier

to satisfy the second condition, the new parameter values for which separate �nancing is optimal

belongs to a region in which it is not feasible to �nance the projects.

8 Conclusion

We show that the bene�ts of coinsurance and the costs of risk-contamination associated with joint

�nancing depend on the distributional characteristics of the returns of each project, as well as on the

number of projects available, the structure of the bankruptcy cost, and the tax advantage of debt

relative to equity. We derive the following predictions: (1) An increase in the bankruptcy costs favors

separate �nancing. (2) An increase in the probability of a high return of any of the two projects favors

joint �nancing. (3) An increase in the riskiness of the projects favors separate �nancing. (4) Partial

conglomeration with groups of intermediate size can be optimal in the presence of multiple projects.

(5) Joint �nancing of a su¢ ciently large number of independent projects is always preferred. (6) The

presence of tax-disadvantaged outside equity favors joint �nancing. (7) If separation is optimal, no

tax-disadvantaged outside equity shall be used.

We show that there is a meaningful trade-o¤between joint and separate �nancing without need of

handicapping joint �nancing through the monitoring cost associated to intermediation. In contrast

with claims often made in the literature, the set of parameters for which joint �nancing is optimal

does not necessarily increase with the number of projects. Compared to our model, Diamond (1984)

adds an intermediary who contracts with several entrepreneurs to achieve joint �nancing; in his model

this intermediary can observe the entrepreneurs�returns only by paying a cost. Joint �nancing in

our model can be seen as a special case of Diamond�s (1984) model with an intermediary who can

costlessly observe the entrepreneurs�returns.
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Appendix: Proofs

Proof of Proposition 1: We �rst derive the �nancing conditions for the joint �nancing case. There

are three cases in which joint �nancing is feasible depending on whether bankruptcy can be avoided

in both cases with intermediate returns, or only when project 1 yields a high return and project 2

yields a low return, or in neither case. If bankruptcy can be avoided in both cases with intermediate

returns, competition in the credit market results in

[1� (1� p1) (1� p2)] 2r0m + (1� p1) (1� p2) 
�
r1L + r

2
L

�
� 2 = 0; (15)

so that this case is possible if and only if

r0m :=
1� (1� p1) (1� p2) 

r1L+r
2
L

2

1� (1� p1) (1� p2)
<
r1L + r

2
H

2
: (16)

If bankruptcy can be avoided with high intermediate returns but not with low intermediate returns,

then

p1p22r
00
m + p1(1� p2)2r00m + (1� p1)p2

�
r1L + r

2
H

�
+ (1� p1) (1� p2) 

�
r1L + r

2
L

�
� 2 = 0; (17)

and therefore this case is possible if and only if

r1L + r
2
H

2
< r00m :=

1� (1� p1)p2
r1L+r

2
H

2 � (1� p1) (1� p2) 
r1L+r

2
L

2

p1
<
r1H + r

2
L

2
: (18)

If bankruptcy cannot be avoided with either intermediate returns, then

p1p22r
000
m+p1(1�p2)

�
r1H + r

2
L

�
+(1�p1)p2

�
r1L + r

2
H

�
+(1� p1) (1� p2) 

�
r1L + r

2
L

�
�2 = 0, (19)

and therefore this is possible if and only if

r1H + r
2
L

2
< r000m <

r1H + r
2
H

2
; (20)

where

r000m :=
1� p1(1� p2)

r1H+r
2
L

2 � p2(1� p1)
r1L+r

2
H

2 � (1� p1) (1� p2) 
r1L+r

2
L

2

p1p2
:

Again, since the borrower obtains all the ex post net present value, rate r0m is preferred to r
00
m and
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r00m is preferred to r
000
m. To complete the proof we only need to show that the lower bound conditions

for r00m and r
000
m are irrelevant. From (15) and (17), and rearranging, we have

p1(r
0
m � r00m) = p2(1� p1)

�


�
r1L + r

2
H

2

�
� r0m

�
;

and therefore if r0m >
r1L+r

2
H

2 then the right-hand side is negative. As a consequence, we have

r00m > r
0
m >

r1L+r
2
H

2 . Similarly, from (17) and (19) and rearranging, we have

p2
�
r00m � r000m

�
= (1� p2)

�


�
r1H + r

2
L

2

�
� r00m

�
and therefore if r00m >

r1H+r
2
L

2 then the right-hand side is negative. As a consequence, we have

r000m > r
00
m >

r1H+r
2
L

2 .

We now turn to the choice between joint and separate �nancing. Substituting r0m in the right-hand

side of (15) and subtracting the ex post net present value of �nancing the two projects separately,

we have

p2 (1� p1) (1� )r1L + p1 (1� p2) (1� )r2L (> 0):

Similarly, substituting r00m in the right-hand side of (17) and subtracting again the ex post net present

value of �nancing the two projects separately from this, we obtain

�(1� p1)p2(1� )r2H + p1(1� p2)(1� )r2L;

which can be positive or negative. Lastly, substituting r000m in the right-hand side of (19) and sub-

tracting the ex post net present value of �nancing the two projects separately from this, we have

�p1(1� p2)(1� )r1H � p2(1� p1)(1� )r2H (< 0);

as desired. Q.E.D.

Proof of Prediction 1: The statements follow from the fact that the derivatives with respect to  of

r0m, r
00
m and r

000
m, de�ned in (16), (18), and (20), are negative. Q.E.D.

Proof of Prediction 2: From the proof of Proposition 1, if r1L = r
2
L and r

1
L = r

2
L, we have that, when
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both projects can be �nanced separately as well as jointly, joint �nancing is only optimal if a rate

r0m can be obtained. The statement follows from the fact that the derivatives of the left-hand of (16)

with respect to p1 and p2 are negative. Q.E.D.

Proof of Prediction 3: Given that one project is obtained from an elementary increase in risk from

the other and returns should still be binary, we must have that p1 = p2 � p. Letting " be such that

r1H = r
2
H + ", we have r

1
L = r

2
L�

p
1�p". Indeed, p(r

2
H + ") + (1� p)r1L = pr2H + (1� p)r2L. We can also

check that r1L + r
2
H = r

2
L �

p
1�p"+ r

2
H < r

2
L + "+ r

2
H = r

1
H + r

2
L.

As shown in the previous proposition, given that the probabilities of success are equal, we have

that, when both projects can be �nanced separately as well as jointly, joint �nancing is only optimal

if a rate r0m can be obtained. Moreover, the region for which joint �nancing is optimal shrinks as the

repayment rate r0m is more di¢ cult to obtain if " increases. Indeed, the left-hand side of condition

(16) decreases in " and the repayment rate (the right-hand side) increases in ".

On the other hand, the region for which separate �nancing is possible expands if " increases.

Indeed, the derivative of the left-hand side of condition (1) is equal to  whereas the right-hand side

is equal to 1. Hence, this condition is more easily satis�ed as " increases. Q.E.D.

Proof of Proposition 2: Clearly, from Proposition 1, if statements (i) and (ii) are satis�ed, separation

is optimal. The probability of default of project 1 is the same in both �nancing regimes. With

separate �nancing, the probability of default of project 2 is (i) reduced by (1� p1)p2, as a successful

project 2 would not be dragged down if project 1 fails, but (ii) increased by p1(1� p2), as a failing

project 2 would not be saved if project 1 is successful. Given that, according to (iii), p1 > p2, we

have that p1(1 � p2) > (1 � p1)p2. As a result, the probability of default with separate �nancing is

higher. Q.E.D.

Proof of Proposition 3: We �rst show that if r�k < [(k� 1)rL+ rH ]=k then it is better to form groups

of k projects rather than smaller groups. If this condition is satis�ed, the per-project expected
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bankruptcy losses are given by (1 � p)krL. In groups of smaller size, m < k, the minimum loss is

given by (1� p)mrL, which is larger.

We now show that if r�k < [(k � 1)rL + rH ]=k and r�m > [(m� 1)rL + rH ]=m for m > k then it is

better to form groups of size k rather than groups of larger size. Indeed, the bankruptcy losses of a

group of size m > k, are greater or equal to (1�p)mrL+m(1�p)m�1p[(m�1)rL+rH)]=m which is

in turn greater than
�
(1� p)m +m(1� p)m�1p

�
rL. Then, subtracting the per-project bankruptcy

costs of a group of size k, the di¤erence is given by (1�p)kw(p) where w(p) := (1�p)m�k�1(1+mp)�1.

But, w(0) = 0, w(1) < 0 and w0(p) := (1 � p)m�k�2 [�(m� k)mp+ k + 1]. Given that w0(0) > 0

and w0(1) � 0 there exists a unique 0 < p0 � 1 such that w0(p) > 0 if p < p0 and w0(p) < 0 if p > p0.

Therefore, there exists a unique 0 < p� < 1, such that w(p) > 0 if p < p� and w(p) < 0 if p > p�. As

a result, the per-project bankruptcy costs for a group of m projects are larger than for a group of k

projects if p < p�. Q.E.D.

Proof of Proposition 4: The �rst statement follows from the same argument as in the �rst part of

the proof of Proposition 3.

With respect to the second statement, note that for any discrete symmetric distribution H((rH+

rL)=2� ") = 1�H((rH + rL)=2 + ") for any " > 0, where the density and distribution functions are

de�ned at the average returns (rather than at the number of projects with high return s as in the

text). Given that H(�) is increasing and h((rH + rL)=2) > 0, we have that H((rH + rL)=2 � ") <

H((rH+rL)=2+") and substituting H((rH+rL)=2�") < 1=2 and therefore H((rH+rL)=2+") > 1=2.

Hence, we have that H(r) > 1=2 for any (rH + rL)=2 < r � rH and therefore the distribution of the

average return of any group of projects for (rH + rL)=2 < r � rH is above that of the returns of the

projects �nanced separately, which is equal to 1=2 for rL � r < rH .

Now, if r�k > (rH+rL)=2 for any group of k projects, then we have that the per project bankruptcy

losses is greater than H((rH + rL)=2 + ")rL, which is in turn greater than the losses in the case of

separate projects, (1=2)rL. Q.E.D.
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Proof of Proposition 5: First statement. De�ne g(�) := �rH + (1� �) rL. We have that g(p) > 1

because of the positive net present value condition, and trivially g(0) = rL < 1 and g0(�) > 0. Then

there exists a unique �� 2 (0; p) such that g(��) = 1. For a �xed rational number " (small) de�ne

q := �� + ". Clearly, qrH + (1� q) rL > 1

Take any number of projects n such that nq is an integer number. Suppose that we were to

�nance all these n projects jointly at an interest rate that avoids bankruptcy when at least nq of

them have high returns. This is possible if and only if the per-project repayment satis�es

r�n � qrH + (1� q) rL:

Given that the returns recovered in the event of bankruptcy are positive, we have that the equilibrium

repayment rate in (2) satis�es

r�n �
1

1�H(nq � 1) <
1

1�H(nq) :

From the law of large numbers we have that H(nq) tends to 0 as n grows large (remembering that

q < p). Therefore r�n is bounded above by a number that is arbitrarily close to 1. Given that

qrH + (1� q) rL > 1, there exists n0 such that for all n > n0 then r�n is such that

r�n � qrH + (1� q) rL;

as was to be shown.

Second statement: From the loan described above, the borrower obtains a per-project gross pro�t

�n = 
Xnq�1

k=0
h(k)

�
k

n
rH +

�
1� k

n

�
rL

�
+
Xn

k=nq
h(k)

�
k

n
rH +

�
1� k

n

�
rL

�
:

Fix a small rational number " and an integer n such that n(p� ") and n(p+ ") are integer numbers.

Then, given that q < p � ", and that all terms in the �rst and in the second sum are positive, we

have that

�n �
Xn(p+")

k=n(p�")
h(k)

�
k

n
rH +

�
1� k

n

�
rL

�
:

Given that the terms in the second factor in the sum are larger for larger k, the sum is reduced by
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replacing the summand of a given k by that of n(p � "), the smallest term. Then, rearranging, we

obtain

�n � [(p� ")rH + [1� (p� ")] rL] [H (n(p+ "))�H (n(p� "))] :

From the law of large numbers, H [n(p+ ")] � H [n(p� ")] tends to 1 as n grows. Indeed from

Chebyshev�s inequality we know that

H (n(p+ "))�H (n(p� ")) � 1� (p+ ")(1� p)
n"2

� (1� p+ ")p
n"2

= 1� 2p(1� p) + "
n"2

and therefore

�n � [prH + (1� p) rL � "(rH � rL)]
�
1� 2p(1� p) + "

n"2

�
:

That is for n large, the gross per-project pro�t di¤ers from the (gross) present value of each project

by an amount that is arbitrarily small, "(rH � rL). Similarly,

�n
��
�
�
1� "(rH � rL)

prH + (1� p) rL

��
1� 2p(1� p) + "

n"2

�
where �� is equal to �rst-best gross pro�ts, �� = prH + (1� p) rL. Q.E.D.

Proof of Prediction 4: The proof follows directly from Proposition 5. Q.E.D.

Proof of Proposition 6: With separate �nancing the rate satis�es pr�i + (1� p) [rL �B(rL)] = 1 and

therefore the condition is

r�i :=
1� (1� p) [rL �B(rL)]

1� (1� p) < rH ;

and the per-project net present value is prH + (1� p)rL� (1� p)B(rL)� 1. Similarly, the condition

for obtaining a rate for joint �nancing that saves both projects when one has low return is given by

r�m :=
1� (1� p)2 [rL �B(2rL)=2]

1� (1� p)2
<
rH + rL
2

; (21)

and the net present value is prH + (1 � p)rL � (1 � p)2B(2rL)=2 � 1. Finally, the rate for joint

�nancing that saves both projects only when both give high returns is given by

r��m =
1� (1� p) (p [rL + rH �B(rL + rH)]� (1� p) [rL �B(2rL)=2])

p2
< rH :
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and the per-project net present value is prH +(1�p)rL� (1�p)[pB(rL+ rH)+(1�p)B(2rL)=2]�1.

As in the baseline case, if it is possible to choose, the second rate is better than the third, as the

net present value is larger. Separate �nancing is therefore optimal if the �rst rate (and therefore also

the second) is better than the second, that is if (1� p)B(2rL)=2 > B(rL) or equivalently

B(2rL)� 2B(rL) >
2p

1� pB(rL) � S:

Similarly, joint �nancing is optimal if the third rate (and therefore also the second) is better than

the �rst, that is if pB(rL + rH) + (1� p)B(2rL)=2 < B(rL), or equivalently

B(2rL)� 2B(rL) < �
2p

1� p [B(rL + rH)�B(rL)] � S:

Finally, if the �rst rate is better than the third but worse than the second we have, as in our baseline

case, that joint �nancing is optimal if and only if the second rate can be obtained in joint �nancing,

i.e. if condition (21) is satis�ed. Q.E.D.

Proof of Proposition 7: We proceed by computing the payo¤ obtained when using each of the two

rates and then we compare the payo¤s. If the �rm uses r0i(�) (speci�ed in (4)), the �rm obtains,

substituting into (1� �)Ei,

(1� �)(1� �)
� + (1� �)(1� �) [prH + (1� p)rL � 1] : (22)

This payo¤ is decreasing in �, as the �rm obtains a fraction of the net present value that corresponds

to the (after-tax) equity holding; the remaining part is retained by the government through taxes.

Therefore the �rm should use the smallest level of equity possible. But, as explained in the text, the

�rm should use a positive level of equity to satisfy condition (4). Optimally, we have

�0i :=
(1� rL)

(1� �) [prH + (1� p)rL � 1 + (1� rL)]
:

Provided that �0i � 1 (r0i(�) can be obtained), the �rm obtains, substituting into (22),

[prH + (1� p)rL � 1]� �p (rH � rL) : (23)
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As argued in the text, if the �rm uses r00i (�) (speci�ed in (5)), the optimal amount of equity is

�00i = 0. The borrower then obtains

(1� �) [prH + (1� p)rL � 1] : (24)

Comparing the payo¤s in each case, (23) and (24), it is optimal for the �rm to choose the �rst

over the second rate if and only

� < � i := 1�
(1� rL)

(1� ) (1� p)rL + (1� rL)
;

that is if bankruptcy costs (1� ) are high enough and/or taxes are small. Q.E.D.

Proof of Proposition 8: Following the same procedure as in the proof of Proposition 7, we �rst

compute the per-project payo¤ of the �rm when using each of the three types of rate and then we

compare these payo¤s. If the projects are �nanced at a rate that avoids bankruptcy altogether,

r0m(�), which is equal to r
0
i(�) (as speci�ed in (4)), the �rm obtains the same payo¤ as in the case

of separate �nancing, equal to (23). As in the case of separate �nancing, the �rm needs to use a

positive level of equity to obtain this rate, and therefore uses the minimum amount �0m > 0 such

that r0m(�
0
m) = rL.

If projects are �nanced at a rate r00m(�) (as speci�ed in (6)), the �rm obtains

(1� �)
�
p2rH + 2p(1� p)

�
rH + rL
2

�
+ (1� p)2rL � 1

�
(25)

if condition (7) is satis�ed and

(1� �)
�
p2rH � p2

rH + rL
2

�
+
h
1� (1� p)2

i rH + rL
2

+ (1� p)2rL � 1 (26)

if condition (7) is not satis�ed. If condition (7) is satis�ed, the �rm does not need to use any equity

to obtain r00m, and therefore �
00
m = 0 and r

00
m(0) = r

�
m. If condition (7) is not satis�ed, the �rm needs

to use a positive level of equity to obtain r00m, and therefore uses the minimum amount �00m > 0 such

that r00m(�
00
m) =

rH+rL
2 .
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Finally, if projects are �nanced at a rate r000m(�) (speci�ed in (8)), the �rm obtains

(1� �)
�
p2rH + 2p(1� p)

rH + rL
2

+ (1� p)2rL � 1
�
; (27)

and no equity is used, �000m = 0, as it does not help to reduce the probability of bankruptcy.

We now compare the payo¤s in each case. Suppose �rst that condition (7) is satis�ed (part (i)

in the statement of the proposition). Then, the payo¤ when using r00m is given by (25). It can be

easily checked that this is always greater than the payo¤ that can be obtained when using r000m, (27).

Comparing the payo¤s when using r0m with those of using r
00
m, r

0
m is optimal if and only if

� < �am := 1�
(1� rL)

(1� rL) + (1� p)2(1� )rL
:

Suppose second that the condition (7) is not satis�ed (part (ii) in the statement of the proposi-

tion). Then, the payo¤ when using r00m is given by (26). In this case, r0m is preferred to r00m as long

as

� < � bm := 1�

h
1� (1� p)2

i
rH+rL
2 + (1� p)2rL � rL

(1� p
2)p [rH � rL]

;

r00m is preferred to r
000
m as long as

� < � cm := 1�
1�

h
1� (1� p)2

i
rH+rL
2 � (1� p)2rL

1� p2 rH+rL2 � 2p(1� p) rH+rL2 � (1� p)2rL
;

and r0m is preferred to r
000
m as long as

� < �dm := 1�
(1� rL)

(1� )
�
2p(1� p) rH+rL2 + (1� p)2rL

�
+ (1� rL)

:

It can be easily shown that the order of these cuto¤s is given by � bm < �
d
m < �

c
m. Therefore, we have

the optimal choices claimed in the text. Q.E.D.

Proof of Proposition 9: In this proof, we need to compare the payo¤s of joint and separate �nancing.

Suppose �rst that condition (7) is satis�ed (part (i) in the statement of the proposition). If r0m is

used for joint �nancing (� < �am), then the payo¤ with joint and separate �nancing are the same.

If r00m is used (� > �am), then the payo¤ with joint �nancing is larger than the payo¤ of separate

�nancing.
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Suppose now that condition (7) is not satis�ed (part (ii) in the statement of the proposition).

Comparing the cuto¤s for joint and separate �nancing, it is easy to show that � bm < � i < �
c
m. Then,

we can compare the payo¤s under joint and separate �nancing. First, when r0m is optimal with joint

�nancing (� < � bm), the payo¤s under joint and separate �nancing are the same. When r
00
m is optimal

with joint �nancing (� bm < � < �
c
m), it is straightforward to check that the payo¤s are higher under

joint �nancing if r0i is obtained with separate �nancing, i.e. � < � i, but are lower if r
00
i is obtained

with separate �nancing, i.e. � > � i. Finally, when r000m is optimal with joint �nancing (� > �
c
m), joint

�nancing yields a lower payo¤ than separate �nancing (under separate �nancing r00i would be optimal

because � i < � cm). As in the baseline model, the bankruptcy costs are higher under joint �nancing

because of the risk-contamination e¤ect. Q.E.D.

Proof of Proposition 10: Consider two symmetric groups of n=2 normally distributed projects with

mean � and variance �2. The average distribution of returns of each group of n=2 projects, denoted

as F (r), is a normal distribution with mean � and variance [1 + �(n=2 � 1)]�2=(n=2). The average

distribution of the total set of n projects, denoted as H(r), is a normal distribution with mean �

and variance [1 + �(n� 1)]�2=n. The two distributions cross at r = � and the second distribution is

more peaked around r = � than the �rst. Thus we have

F (r) R H (r), r Q � (28)

and as a result, for r > w,

(r � w) [1� F (r)] + w Q (r � w) [1�H (r)] + w , r Q �; (29)

and rearranging

r [1� F (r)] + wF (r) Q r [1�H (r)] + wH (r), r Q �: (30)

Note �rst that the equilibrium repayment rates for each of the two groups separately (r�i ) and

jointly (r�n) satisfy r
�
i ,r

�
n > w. Indeed, if r�n < w, the creditor�s pro�ts would be r�n [1�H (r�n)] +

wH (r�n) < w. Given that by assumption w < 1, the creditor would not be able to recover the initial
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investment. Applying the same reasoning, we conclude also that r�i < w cannot hold. From now on,

we thus restrict to repayment rates r�i ,r
�
n > w.

If r�n, the lowest r such that r [1�H (r)]+wH (r) = 1, is such that r�n < �, then r�n < r�i . Indeed,

even though r�i exists by assumption, it is not possible that r
�
i < r�n because, by (30) and single-

peakedness of the pro�t function, we have that for r < r�n, r [1� F (r)] + wF (r) < r [1�H (r)] +

wH (r) < r�n [1�H (r�n)] +wH (r�n) = 1. As a result, from (28) and monotonicity of F , we conclude

that the probability of bankruptcy is lower with joint �nancing, H (r�n) < F (r
�
n) < F (r

�
i ).

On the other hand, if r�n is such that r
�
n > �, then r�n > r�i . Indeed, given that the creditor�s

proceeds at r = w are equal to w < 1 and they are higher than 1 at r = r�n, as r
�
n [1� F (r�n)] +

wF (r�n) > r
�
n [1�H (r�n)]+wH (r�n) = 1, by the intermediate value theorem there exists some r�i < r�n

at which r�i [1� F (r�i )] + wH (r�i ) = 1. As a result, from (28) and monotonicity of H, we have that

the probability of bankruptcy is lower with separate �nancing, F (r�i ) < H (r�i ) < H(r�n). Since

F (r) < H(r) for r > �, the net surplus of the borrower is thenZ r�n

0
[1�H(x)] dx <

Z r�n

0
[1� F (x)] dx <

Z r�i

0
[1� F (x)] dx:

Therefore �nancing the two groups separately is optimal.

By single-peakedness, r�n is such that r
�
n > � if and only if the following two conditions hold

r [1�H (r)] + wH (r)jr=� < 1 and
@

@r
(r [1�H (r)] + wH (r))

����
r=�

> 0;

which are equivalent to

�+ w < 2 and (�� w)h(�) < 1

2
:

We then obtain conditions (14) by substituting for the density h of a normal distribution with mean

� and variance [1 + �(n� 1)]�2=n.

Note that if this condition is satis�ed for n then it is better to �nance each half of the n available

projects separately rather than all the n projects jointly. Now, if this condition is satis�ed for n

then it is also be satis�ed for n=2. As a result, it is optimal to �nance each half of the n=2 projects
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separately rather than jointly. Iterating this reasoning, we conclude that it is optimal to �nance all

projects separately, as claimed. Q.E.D.
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