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Abstract We introduce the possibility that the receiver naively believes the
sender’s message in a game of information transmission with partially aligned
objectives. We characterize an equilibrium in which the communication lan-
guage is inflated, the action taken is biased, and the information transmitted is
more precise than in the benchmark fully-strategic model. We provide compar-
ative statics results with respect to the amount of asymmetric information, the
proportion of naive receivers, and the size of the sender’s bias. As the state space
grows unbounded, the equilibrium converges to the fully-revealing equilibrium
that results in the limit case with unbounded state space.
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1 Introduction

The study of cheap talk games is one of the main themes in theoretical polit-
ical economy.1 Following Crawford and Sobel (1982), one of the fundamental
tenets of the standard analysis is that players are fully strategic. As a result,
deception is impossible in equilibrium. Whenever information is transmitted,
the receiver is able to undo any bias in the sender’s message, and to take equi-
librium actions that are unbiased conditional on the information transmitted.
The only effect of the conflict of interest between the players is to reduce the
amount of information credibly transmitted in equilibrium. For the same rea-
sons, the communication language cannot be determined in equilibrium and
there is no reason for an inflated language to be adopted.

In reality, however, language inflation and deception seem to be widespread
in the political sphere. For example, electoral campaigns broadcast biased ad-
verts to swing the opinions of voters. Media outlets provide partisan news
accounts, plausibly to accommodate the possibly biased agenda of stakeholders
(e.g. Groseclose and Milyo 2003). Experts sponsored by lobbies and inter-
est groups attempt to manipulate the legislators with openly biased reports.
Politicians often try to impose their partisan agenda on the Parliament. In addi-
tion, there is empirical (Malmendier and Shanthikumar 2005) and experimental
(Dickhaut et al. 1995; Forsythe et al. 1999; Cai and Wang 2006) evidence that
some of the receivers of these biased reports are deceived.

As we argue in this paper and in Kartik et al. (2006), language inflation
and deception are natural outcomes of communication when the audience has
heterogeneous strategic sophistication. While the companion paper focuses on
the case in which the state space is unbounded, here we consider the case of
bounded state space, which is closer to the basic structure of Crawford and
Sobel (1982). For the case with bounded state space, we derive here a number
of comparative statics predictions and normative implications. We argue that
our construction can account for the experimental findings by Dickhaut et al.
(1995) and Cai and Wang (2006).

Our point of departure is Crawford and Sobel (1982) model of information
transmission. A sender, privately informed of a unidimensional, continuous
state of the world, reports to a decision-maker (receiver). The players’ prefer-
ences are represented by quadratic loss functions. The sender is biased upwards
relative to the receiver. Our aim is to characterize the outcomes of commu-
nication when the receiver is allowed to be naively unaware of the sender’s
incentives and to erroneously believe that the sender always reports truthfully.

The presence of non-strategic behavior drastically alters the outcomes of
communication. We show that there is an equilibrium in which (1) the language
used is pinned down in equilibrium and inflated and (2) the action taken by the

1 Cheap talk games have been applied to legislative debate (Austen-Smith 1990), political bargain-
ing between the President and the Congress (Matthews 1989), committee referral within Congress
(Gilligan and Krehbiel 1989; Battaglini 2002), lobbying (Grossman and Helpman 2001, Chap. 4),
and macroeconomic policy announcements (Stein 1989).
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receiver (i.e., outcome) is ex-ante biased, so that naive receivers are deceived.
Furthermore, we find that the amount of information transmitted in equilibrium
is greater than predicted by the standard fully-strategic model.

If the state space is unbounded, Kartik et al. (2006) show, there is a fully-
revealing equilibrium. The equilibrium communication function is globally
invertible. If sophisticated, the receiver correctly de-biases the sender’s mes-
sage, and determines the actual state of the world. Hence, the sender has an
incentive to add more bias to her already inflated report. As long as the equilib-
rium message is already above the sender’s bliss point, however, this further bias
will damage the sender if the receiver is naive and blindly follows the sender’s
recommendation. The equilibrium strategy equalizes the marginal benefit in-
duced by the strategic type of receiver with the marginal cost induced by the
naive type.

This result stands in stark contrast to the characterization in the fully-strategic
communication model, where the equilibrium is partitional, but crucially hinges
on the assumption that the state space is unbounded. In order to penalize a
sender’s deviation from an equilibrium invertible message function, it is neces-
sary that the equilibrium message be more biased than the sender’s bliss point.
Typically, this would require the sender to send messages that lie outside the
state space, when the state of the world is close enough to the upper bound of
the state space.

For the case with bounded state space, this paper constructs an equilibrium
that is fully revealing in a low range of the state space and partitional in the
top range. When the state of the world is small, the sender may fully reveal it
by inflating the message; but full revelation is impossible when the state of the
world is large, because the required inflated message would lie outside the state
space. In this context, we study how the information transmitted depends on
the four parameters of the model: the fraction of naive receivers in the pop-
ulation; the size of the state space; the sender’s informational advantage; and
the divergence between the preferences of sender and receiver. We show that
the relative size of the fully-revealing range increases in the fraction of naive
receivers and in the informational advantage of the sender, whereas it decreases
in the bias level.

These comparative statics results yield the following normative implications.
A possible strategy for protecting naive agents from biased communication is
to make them aware of the possibility of biased advice. But in our equilib-
rium, a decrease in the fraction of naive agents results in a shrinking of the
full-revelation range. Educating naive agents may reduce the amount of infor-
mation transmitted in equilibrium. “Hard” policies that protect naive agents
and attempt to regulate communication are immune to this perverse effect.
In our model, interventions aimed at reducing the sender’s bias result in an
increase of the fully-revealing segment.

Furthermore, we find that the relative size of the equilibrium partitional inter-
val vanishes as the size of the state space goes to infinity, holding the bias level
fixed. This result confirms the robustness of our findings for the unbounded state
space case. As the state space grows unbounded, fully-revealing communication
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takes place on the entire state space except for a set whose relative size vanishes.
We conclude by discussing our results in relation to experimental findings in
Crawford and Sobel’s games with a finite number of states. We show that our
results are in broad agreement with the experimental findings, which consis-
tently report that language is inflated, that communication is more informative
than is predicted by the fully-rational model, and that messages bunched at the
top of the message set are less informative than low messages.

The paper is organized as follows. Section 2 discusses the related literature.
Section 3 summarizes some results obtained by Kartik et al. (2006) for the case
with unbounded state space. In Sect. 4 we characterize a partially-revealing
equilibrium for the model with bounded state space. Section 5 analyzes the
robustness of partitional equilibria. Section 6 concludes.

2 Related literature

Our work is mostly related to the following papers. Morgan and Stocken (2003)
study a bounded-state space communication model where players are fully stra-
tegic and the sender is either biased or unbiased.2 They find a semi-responsive
equilibrium that is fully-revealing for low states and partitional for high states.
Intuitively, the biased sender has no interest in mimicking the unbiased sender,
when the latter reveals that the state is low. In their model, as in other cheap
talk models with fully rational receivers, there is no deception—the expected
action of the receiver is unbiased. In our model, instead, the naive receiver is
deceived and ends up taking an action that is more biased than the receiver’s
bliss point.

While our paper focuses on the effect of naiveté on communication of
information, Crawford (2003) introduces naive players in the study of com-
munication of actions planned (intentions) in a subsequent asymmetric match-
ing-pennies game. In a related vein, Forges and Koessler (2003) study the set of
communication equilibria that can be achieved by adding general communica-
tion systems to Bayesian games in which players’ types are partially verifiable.

Kartik (2005) studies a version of Crawford and Sobel (1982) bounded-state
model in which the sender may send both costly reports and cheap-talk mes-
sages. He characterizes equilibria subject to a forward-induction refinement.
Lying costs play the same role as our naive receivers in turning the fully-stra-
tegic cheap talk game into a game with costly signaling and a continuum of
types.3 As in our analysis, he finds that equilibrium is fully revealing in a low
range of the state space and partitional in the top range. Unlike our analysis,
his characterization hinges on the possibility that the sender sends messages
about which the receiver is fully sophisticated. When costs become small, he

2 See Sobel (1985), Benabou and Laroque (1992) and Morris (2001) for dynamic models of
communication by advisers who may be biased.
3 Because the action of the naive receiver follows the sender’s recommendation, the sender’s
payoff is directly influenced by her message regardless of the equilibrium strategies, as is the case
in games with costly signaling and unlike in fully-strategic cheap talk games.



Naive audience and communication bias 133

shows that only the most informative Crawford and Sobel (1982) equilibrium
survives.4

Chen (2005) studies a bounded-support quadratic-loss preferences commu-
nication model with small fractions of honest senders who are always truthful
and naive receivers who always blindly believe the sender. As we noted, the
addition of these behavioral types turns the cheap talk game in a continuous
types costly signaling game. Following Manelli (1996), she proves the existence
and uniqueness of monotonic equilibrium in the cheap-talk extension of the
game, where the players also communicate with an additional message about
which they are fully strategic. She shows that as the fraction of naive players
become small, the equilibrium converges to the most informative Crawford and
Sobel (1982) equilibrium. By holding the fraction of naive receivers constant,
while taking the size of state space to infinity, we consider the opposite polar
case here. We show that the resulting equilibrium mimics our unbounded state-
space fully-revealing equilibrium, on all of the state space except for a set whose
relative measure vanishes.

A few papers have considered some aspects of non-strategic information
transmission in the context of Downsian elections. Baron (1994) studies a
Downsian model where uninformed voters naively believe campaign adverts.
The probability that they vote for a candidate depends on the candidate’s
expenditure in election campaigns. Because campaign funding is provided by
interest lobbies, electoral candidates face a trade-off between choosing policies
to attract informed voters, and raising funds to attract naive voters. Conver-
gence to the median policy occurs when policies influence all interest groups,
regardless of whether or not they contribute. Callander and Wilkie (2005) and
Kartik et al. (2006) analyze models of Downsian competition in which some
candidates may be honest and truthfully report their policy preferences. As in
our model, the strategic sophistication of candidates is private information.

3 Benchmark with unbounded support

Our communication model closely follows Crawford and Sobel (1982) but
accounts for the possibility that the receiver is naive and blindly believes the
sender’s recommendation. After being privately informed of the state of the
world, x ∈ R ≡X, with cumulative distribution function F ∈ C2 and den-
sity f , a sender (S) sends a message m ∈ R ≡M to a receiver (R). Upon
receiving the message, R takes a payoff-relevant action y ∈ R ≡Y. The von
Neuman–Morgenstern utilities of the players are US(y, x, b) ∈ C2, and UR(y, x)∈
C2, where the bias b ∈ R is common knowledge among the players. For the sake
of concreteness we focus on the quadratic-loss case. Hence we assume that
US(y, x, b) = − (y − (x + b))2 and UR(y, x) = − (y − x)2 .

4 Blume et al. (1993) develop evolutionary based refinements for finite-state signaling games,
where the sender can communicate at a cost smaller than the smallest payoff difference. For games
of partial common interest (such as a finite-state version of the Crawford and Sobel 1982, model),
they find that the babbling equilibrium cannot be evolutionary stable.
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A message strategy is a family (ν (·|x))x∈R where for each x, ν (·|x) is a c.d.f.
on the message space. Given the message strategy, the beliefs are a family
(β (·|m))m∈R where for each m, β (·|m) is a c.d.f. on the state space. In equilib-
rium, beliefs are derived by Bayes’ rule whenever possible. The receiver does
not ever play a mixed strategy, because UR

11 < 0. Hence, the receiver’s action
strategy is a function s : m �→ y. When ν(·|x) is degenerate for all x, we repre-
sent (ν (·|x))x∈R by means of a function µ : x �→ m. With a common notational
violation, we say that β(m) = x when β (·|m) is degenerate on a state x. Given
the players’ equilibrium strategies, the equilibrium outcome is represented by
the family (ξ (·|x))x∈R , where for any x, ξ (·|x) is a measure on the action space.
When ξ(·|x) is degenerate for all x, we represent (ξ (·|x))x∈R+ by means of a
function ζ : x �→ y.

We modify the fully-strategic communication model to account for the pos-
sibility that the receiver is naive and matches her action yN with the sender’s
message m. In an expanded communication game �α , the receiver is strategic
with probability 1−α and naive with probability α. In equilibrium, the strategic
receiver knows the sender’s message strategy ν, and best responds to it. The
sender does not know if her opponent is naive or strategic.

For the case in which the support of the cumulative distribution F is un-
bounded, Kartik et al. (2006) show that there always exists an equilibrium
in which the sender fully reveals the state to strategic receivers.5 For any
α > 0, the game �α has an equilibrium where the message strategy is invertible.
Remarkably, this occurs independent of the prior signal distribution. In these
fully-revealing equilibria, the sender exaggerates the state of the world even
beyond her own bias. Communication is inflated, yet detailed. Instead of report-
ing the general result, we introduce the main features of the fully revealing
equilibrium in the quadratic loss environment.

Suppose that in equilibrium, the sender adopts an invertible function µ as
her communication strategy. When a message m is sent, the strategic receiver
correctly infers the state µ−1 (m) and the naive receiver plays the action m
regardless of strategic considerations. Hence the sender will not deviate from
the strategy µ only if for any x,

µ (x) ∈ arg max
m

− (1 − α)
(
µ−1 (m) − (x + b)

)2 − α (m − (x + b))2 .

The first order condition, is

−2 (1 − α)
(
µ−1 (m) − x − b

) (
µ−1 (m)

)′ − 2α (m − x − b) = 0.

By substituting µ−1 (m) with x and m with µ (x) we obtain the differential
equation

5 More generally, Kartik et al. (2006) show that there exists a fully revealing equilibrium when the
sender’s preferences are shape invariant (see their Theorem 3).
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−2 (1 − α) (x − x − b) − 2 (µ (x) − x − b) µ′ (x) α = 0,

with the linear strictly-increasing solution

µ (x) = x + b
α

.

This strategy may be interpreted as revealing the actual state of the world, but
inflating the communication by an amount b/α. The factor by which communi-
cation is inflated is inversely proportional to the fraction of naive receivers in the
population. Verification of the sufficient second-order condition is immediate.
This concludes our equilibrium construction.

To gain some intuition on the equilibrium construction above, we note that
truthful communication is established in equilibrium by postulating that for any
state x, the sender reports the message m that reveals the state x according to
an invertible message function µ, and by checking that she has no incentive to
deviate. Since the sophisticated receiver correctly de-biases the sender’s mes-
sage, and determines x = µ−1 (m) , the sender has an incentive to add more
bias to the report µ (x). But if she does so, the naive receiver will believe this
and end up damaging her, as long as µ(x) is already above the sender’s bliss
point x+b. For any α > 0, since the sender’s quadratic utility is strictly concave
in the final outcome, it is possible to find µ (x) large enough so that the rate at
which the sender’s utility drops because of the naive receiver’s response is fast
enough to make up for the gain achieved through the response of the sophis-
ticated sender. Because the sender’s utility is quadratic, the marginal benefit
to inflate communication beyond µ is exactly offset by the marginal cost when
µ (x) = x + b/α.

4 Partially revealing equilibrium with bounded support

In the previous section the construction of our fully-revealing inflated-
communication equilibrium hinges crucially on the hypothesis of unbounded
state space. Because the sophisticated receiver correctly inverts any equilibrium
communication strategy, it is optimal for the sender to use a fully-revealing strat-
egy µ only if she is penalized by the naive receiver when adding more bias to the
equilibrium message µ (x) . This requires that µ (x) is above the sender’s bliss
point yS(x, b) = x + b. This is always possible if the state space is unbounded
above. But when the state space is bounded, sending messages µ (x) above the
bliss point x + b is impossible, as such messages lie outside the state space X.6

6 When the state space is bounded, our construction embeds the naive receivers with some degree
of strategic sophistication. Say that the state space is [0, U] . In principle, the sender may send a
message m larger than U. We implicitly assume that the receiver maintains her prior belief that
the state x belongs to [0, U] . If a naive receiver were to believe that the state x coincided with
the message m even when m is larger than U, then a fully revealing equilibrium would exist even
though the state space is bounded.
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Consider the equilibrium identified in the previous section. When the state
space is bounded above by U, the sender cannot achieve the outcome µ (x) =
x+b/α from the naive receiver when µ (x) > U. This means that the equilibrium
is necessarily partitional for a high interval in the state space. Nevertheless, we
will show that in a simple environment with bounded state space, there exists an
equilibrium that maintains the most interesting properties of our equilibrium
of the unbounded state space model, albeit for only a range of states that are
not too close to the upper bound of the state space.

To facilitate comparison with the analysis of the previous section, we assume
that the state is uniformly distributed, and let the state space (as well as the mes-
sage and action spaces) be X = M = Y = [0, U]: the limit case with U → ∞
is an unbounded support environment. Formally, we let F(x) = 0 if x < 0,
F (x) = x/U if 0 ≤ x ≤ U, and F (x) = 1 if x > U, and assume that the naive
receiver takes the action s = 0 upon receiving a message m < 0 and the action
s = U upon being sent a message m > U.

4.1 Equilibrium characterization

We proceed by constructing our semi-partitional equilibrium in several steps.
After specifying our equilibrium strategies and beliefs, we calculate the expres-
sions for the break points between the fully-revealing range and the segments
in the partitional range. We then derive conditions such that these break-points
are admissible and such that the sender is unwilling to deviate from equilibrium
by sending messages off path.

4.1.1 Equilibrium specification

We construct an equilibrium that is fully-revealing in a low range of the state
space and partitional in the top range. In the range of states X P ≡ [a0, U],
our equilibrium is partitional: it is described by the collection of intervals A =
{[ai−1, ai] : i = 1, . . . , N}, where aN = U. For any i, the sender sends a single
message µ (x) = mi for any x ∈ [ai−1, ai], and mi �= mj for any i �= j. In the
range of states x ∈ X R ≡ [0, a0] , the sender reports the fully revealing message
µ (x) = x + b/α. Of course, our “semi-partitional” equilibrium cannot exist
for all parameter configurations (b, α, U) . At a minimum, it is required that
µ (0) = 0 + b/α be within the message space M = [0, U]; that is, b/U < α. We
establish below that this equilibrium exists when the bias, b, is small relative to
the size of the state space, U, and the fraction of naive receivers, α.

The action of the naive receiver coincides with the received message m,
while the equilibrium action of the sophisticated receivers in response to mes-
sages on the equilibrium path is s (m) = m − b/α for m ∈ [

b/α, a0 + b/α
]

and s (m) = [
ai−1 + ai

]
/2 when m = mi, for i = 1, . . . , N. We conclude the

equilibrium description by specifying the beliefs (and associated actions) of the
strategic receiver following messages off the equilibrium path: MB ≡ [0, b

α
] and

MT ≡ [a0 + b
α

, U]\{mi}i=1,...,N . While Bayes’ rule imposes no restrictions on
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such beliefs, we must verify that the receiver’s beliefs and consequent actions
make the sender unwilling to deviate and send off-path messages. In order to
give our candidate equilibrium the best fighting chance, we consider beliefs that
the state is the highest possible when receiving off-path low messages, and the
lowest possible in response to high messages: β

(MB
) = U and β

(MT
) = 0.

Hence s (m) = U for all m ∈ MB and s (m) = 0 for all m ∈ MT .

4.1.2 Indifference conditions between messages on path

The break points a0, . . . , aN are determined as follows. In the partitional range
X P, the sender must be indifferent between sending message mi and mi+1 at
each break point ai for i = 1, . . . , N − 1; this imposes that

−α (mi − b)2 − (1 − α)

(
ai−1 + ai

2
− ai − b

)2

= −α
(
mi+1 − b

)2 − (1 − α)

×
(

ai + ai+1

2
− ai − b

)2

.

Calculation of these break-points is greatly simplified in equilibria where the
messages mi, while all different from each other, are all approximately equal to
the upper bound of the state space U. The indifference conditions approximate
those derived by Crawford and Sobel (1982), and we therefore obtain their
differential equation

ai+1 − ai = ai − ai−1 + 4b

for i = 1, . . . , N − 1, with final boundary condition aN = U and free initial
condition a0. The solution is

ai = a0 + (U − a0)
i

N
− 2i (N − i) b.

When x = a0, the sender must be indifferent between sending the fully reveal-
ing message x + b/α and the bunching message m1, because the break-point
a0 is the upper bound of the revealing segment X R as well as the lowest break
point of the partitional range X P. This requires that

−α

(
a0 + b

α
− a0 − b

)2

− (1 − α) (a0 − a0 − b)2 = −α (U − a0 − b)2 − (1 − α)

×
(

a0 + a1

2
− a0 − b

)2

.
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Substituting a1 = a0 +(U − a0)
1
N −2 (N − 1) b in this indifference condition,

simplifying, dividing through by b2 and defining K = (U − a0) /b, we obtain the
quadratic equation

(
α + 1

4N2 (1 − α)

)
K2 − (α + 1) K + α +

(
N2 − 1

α

)
(1 − α) = 0.

Because α + 1
4N2 (1 − α) > 0, the left-hand side is negative when K lies within

the two roots of this quadratic equation. As it must be optimal for the sender to
send the message x + b/α for all x < a0, and the message m1 for all a0 < x < a1,
the unique admissible root of the quadratic equation is

K (α, N) =
(1 + α) +

√
(1 + α)2 − 4

(
α + 1

4N2 (1 − α)
) (

α +
(

N2 − 1
α

)
(1 − α)

)

2
(
α + 1

4N2 (1 − α)
) .

We then have a0 = U − bK (α, N) . Because of the monotonic structure of the
quadratic loss – uniform prior specification, we conclude that it is optimal for
the sender to send message µ (x) = x + b/α when x ∈ [0, a0] and µ (x) = mi
when x ∈ [ai−1, ai] for all i = 1, . . . , , N − 1, where the break-points ai, for
i = 0, 1, . . . , N are approximated by the above calculations.

4.1.3 Admissibility conditions for the break point a0

We now determine under which conditions the break-point a0 is admissible, i.e.
within the state space X = [0, U], and the messages µ (x) = x + b/α are within
the message space M = [0, U] for all x ∈ [0, a0]. The latter constraint is satisfied
if a0 + b/α < U, or equivalently if K (α, N) > 1/α. Because α + 1

4N2 (1 −α) > 0,
after simplification this condition is equivalent to:

(
2αN2 − 2αN − 1

) (
2αN2 + 2αN − 1

)
< 0, i.e. α ∈

(
1

2 (N + 1) N
,

1
2N (N − 1)

)
.

Surprisingly, the possible number of intervals in the top range of the state space
[a0, U] in this “semi-partitional” equilibrium is unique and determined by α;
e.g. there is an equilibrium where [a0, U] is a single pooling interval if and
only if α > 1/4, a 2-interval semi-partitional equilibrium exists if and only if
α ∈ (1/12, 1/4) , and so on. Specifically, the number of intervals partitioning
[a0, U] in equilibrium for any given α is

N (α) ≡ max

{
N ∈ N : α <

1
2 (N − 1) N

}
,
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Fig. 1 Equilibrium ExistenceRegion for N = 1 (α > 1/4)

where N ={1, 2, . . . , } is the set of natural numbers, and we introduce the func-
tion K(α) = K (α, N (α)) . We show in the Appendix that K(α) is continuous
and decreasing in α.

The constraint that a0 is within the bounds of the state space X = [0, U] is
satisfied if a0 = U − bK(α) > 0. This condition is satisfied if

b
U

<
1

K(α)
, (1)

where 1/K(α) is a continuous threshold function increasing in α.

4.1.4 Conditions ruling out deviations off path

We now determine the set of parameters (b, α, U) for which the sender is unwill-
ing to deviate and send an off-path message m ∈ MB ∪MT . For the case N = 1,
i.e. for α ≥ 1/4, the resulting equilibrium existence region (detailed calculations
are available upon request) is

b
U

< b (α) =





1 − α −
√

(1 − α)2 − α

(
1 − 2α − (1 − α)

(
1
2 K (α) + 1

)2 + α
(

1
α − 1

)2
)

1 − 2α − (1 − α)
(

1
2 K (α) + 1

)2 + α
(

1
α − 1

)2 α ∈ [1/4, ᾱ0
]

α/
[
1 + √

α
]

α ∈ [ᾱ0, ᾱ1
]

1 − α (1 − K (α)) −
√

(α (1 − K (α)) − 1)2 − αK (α)2

K (α)2 α ∈
[
ᾱ1,

(√
5 − 1

)
/2
]

α/2 α ∈
[(√

5 − 1
)

/2, 1
]

where ᾱ0 = 0.45295 and ᾱ1 = 0.49433 approximately, and corresponds to the
area below the curve in Fig. 1. It is unfeasible to draw the precise threshold
functions for every N, but we nevertheless verify in the Appendix that the
sender has no incentive to deviate when the bias to information ratio b/U is
small with respect to the fraction α of naive receivers. Hence, the equilibrium
analysis is summarized in the following result.
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Proposition 1 There exists a threshold function b̄ (·) > 0, such that for any α,
and b/U < b̄ (α) ,7 there is an equilibrium that is fully-revealing for x ∈ [0, a0)

with communication strategy µ (x) = x+b/α, and that partitions the upper range
[a0, U] in N (α) intervals with end-points

{
a0, . . . , aN(α)

}
, where

N (α) ≡ max

{
N ∈ N : α <

1
2 (N − 1) N

}

and the thresholds are approximately

a0 = U − b




(1 + α) +
√

(1 + α)2 − 4
(
α + 1

4N(α)2 (1 − α)
) (

α +
(

N (α)2 − 1
α

)
(1 − α)

)

2
(
α + 1

4N(α)2 (1 − α)
)


 ,

ai = a0 + (U − a0)
i

N (α)
− 2i (N (α) − i) b, for i = 1, . . . , N (α) .

To gain some intuition on the above characterization, we start by discussing
the polar case in which the receiver is naive with probability α = 1. It is easy to
see that in this case the number N (1) of intervals in the partitional part of the
equilibrium equals 1. As a result, the lower threshold a0 equals U − b. At the
same time, the communication strategy µ (x) equals x + b for all x ∈ [0, a0), and
µ (x) = U for all x ∈ [a0, U]. For any state of the world x, the sender convinces
the naive receivers to play her best possible outcome x + b, as long as this rec-
ommendation is “credible” in the sense that it belongs to the state space [0, U] .
When x + b ≥ U, the sender resorts to the highest possible recommendation
U. The equilibrium when the receiver is naive with probability 1 is equivalent
to the receiver delegating the choice to the sender, with the constraint that the
action must be in the feasible set [0, U].

As the proportion of sophisticated receivers increases, i.e. as α decreases, the
sender’s message µ (x) = x + b/α is inflated beyond the sender’s bliss point
x + b for any state x ≤ a0. The equilibrium is necessarily partitional in an upper
interval of the state space, because the message cannot be higher than the upper
bound of the action set. The sender resorts to sending messages close to U, one
message for each interval

[
ai−1, ai

]
for i = 1, . . . , N (α) of the partitional range

of the state space. The requirements pinning down N (α), as well as the thresh-
olds a0, . . . , aN(α), are borne by the necessity that the sender does not have any
incentive to deviate when the state x is in the partitional range of the equilib-
rium, and when taking into account the best response of the rational receiver
to the equilibrium message strategies.

7 The strict inequality is required because our previous calculations allow us only to approximate
the equilibrium break points a0, . . . , aN . But note that for N = 1 we can set m1 = U and hence the
threshold a0 is precisely pinned down in equilibrium.
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4.2 Comparative statics

We now study how the communication properties of the equilibrium that we
have approximated change when the model’s parameters change. The quantity
a0/U measures the size of the range X R = [0, a0] where the communication is
fully revealing, relative to the size of the state space X = [0, U], the ex-ante
uncertainty. We present here some comparative statics results for this measure
of the amount of fully-revealing information transmission. The size of the sup-
port U measures the amount of asymmetric information in the problem. In
the limit case with U = 0, in fact, there is no asymmetric information. As U
grows, the importance of the sender’s private information becomes larger for
the receiver.

Result 1 The relative size of the fully-revealing segment a0/U is increasing in
the fraction of naive receivers α, positively related to the amount of asymmetric
information U, and negatively related to the relative bias b/U.

Since a0 = U − bK (α), we have

a0

U
= 1 − b

U
K (α) ,

and hence a0/U decreases in b/U because K (α) > 0. Intuitively, communica-
tion becomes more difficult when the bias increases. The relative size of the
fully-revealing segment, a0/U, increases in α because K (·) decreases in α. Intu-
itively, an increase in α results in a reduction in the penalty that the naive
receiver must impose on the sender to sustain the equilibrium, thus improving
the scope for communication.

Result 2 The relative size of the fully-revealing segment a0/U increases as the
size of state space U increases, and converges to one in the limit case where
U → ∞, so that the state space X = [0, U] becomes unbounded.

Equilibrium communication is fully revealing in the entire state space X,
and we approximate the equilibrium presented in Sect. 3 for the case with
unbounded support. This result identifies key robustness properties of the main
results of this paper: equilibrium communication may be inflated and fully-
revealing in communication models with unbounded support, if the receiver is
naive with positive probability.

Our results are compatible with experimental results obtained by Dickhaut
et al. (1995) (DMM) and Cai and Wang (2006) (CW) in Crawford and Sobel’s
games with a finite number of states. They find strong evidence that commu-
nication becomes less informative as the bias increases and that the payoffs
of both players are decreasing in the bias. These observations are compati-
ble with the comparative statics of the most informative Crawford and Sobel
equilibrium as well as of our non-fully strategic equilibrium. The addition of
non-strategic behavior can explain the otherwise puzzling finding that commu-
nication is more informative than is predicted by the fully-rational model (see
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DMM Table 3 and CW Sect. 4). DMM do not report the messages used by their
subjects. CW’s data display overwhelming language inflation (e.g., the highest
message (9) is sent 57% of the time when the bias is large). The average action
is monotonically increasing in the message and messages bunched at the top
of the message set are less informative than low messages. These findings are
broadly consistent with our inflated communication equilibrium.8

4.3 Welfare

We now turn to the welfare properties of our equilibrium. We begin with the
welfare of the receiver. The rational receiver’s utility is maximized at UR(y, x) =
0 for x < a0; whereas for any i < N (α) , and x ∈ (

ai, ai+1
)

, the utility is

UR(y, x) = −
(

ai+ai+1
2 − x

)2
. For x < a0, the naive receiver’s utility equals

− (x + b/α − x)2 = −b2/α2, and it approximates − (U − x)2 for x > a0. Because
aN(α) = U, it is easy to see that the rational receiver’s utility is higher than the
naive receiver’s utility for any x. Intuitively, the rational receiver exploits the
presence of the naive receiver to improve the inference on the state of the world,
but the naive receiver is not able to fully exploit the information transmitted
by the sender. The sender’s utility is as follows: for x < a0, US(y, x) = − 1−α

α
b2

and for x > a0, US(y, x) = −α (U − x − b)2 − (1 − α)
(

ai−1+ai
2 − x − b

)2
.

To investigate how the fraction of naive receivers in the population affects
the receiver’s utility, we first consider the key polar case in which the receiver
is naive with probability α = 1. As we have concluded before, the sender con-
vinces the naive receiver to play the sender’s optimal outcome x + b whenever
x < U−b, and when the state x is above U−b, she resorts to having the receiver
play the highest possible outcome, U. The naive receiver’s utility equals −b2

for any state of the world x < U − b, and − (U − x)2 when x ≥ U − b.
When α = 1, the game is equivalent to one in which the receiver dele-

gates the final action to the sender, who is constrained to choose an action in
the set [0, U]. Because − (U − x)2 ≥ −b2 when x ≥ U − b, the equilibrium
improves the receiver’s utility upon the unconstrained delegation outcome,
where the sender plays x + b for any states of the world x. Hence, the results
by Dessein (2002) comparing unconstrained delegation and information trans-
mission immediately imply that the (naive) receiver in the model with α = 1
fares better in an ex-ante sense than the (rational) receiver in the Crawford
and Sobel partitional equilibrium that results with α = 0. But, while improv-
ing upon information transmission, our equilibrium fails to reach Holmström
(1977) optimal ex-ante solution that implements action

a =
{

x + b for x ∈ [0, U − 2b
]

U − b for x ∈ [U − 2b, U
]

.

8 WhileBlume et al. (1998) find evidence of learning in simple communication games with 2 or 3
states, CW’s findings are persistent over time.
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This is the solution when the receiver can precommit to any outcome as a
function of the sender’s message, before receiving the message. Evidently, the
sender’s ex-ante welfare is also higher when α = 1 than in Crawford and Sobel’s
partitional equilibrium (resulting with α = 0).

Result 3 If the receiver is naive with probability one, she fares better than if she
is sophisticated with probability one.

Now, consider the effect of an increase in the fraction of rational receivers
on the welfare of naive receivers. As the fraction of naive receivers α decreases:
(i) −b2/α2 decreases, and hence the utility of the naive receiver is reduced for
low states x < a0; (ii) − (U − x)2 remains constant; and (iii) a0 decreases. Note
that the utility − (U − a0)

2 is smaller than −b2/α2 because by construction
a0 < a0 + b/α < U. Hence, a reduction in α increases the loss in the revealing
segment and increases the size of the partitional segment in which the naive
receiver obtains a worse payoff than in the revealing segment. Overall, the naive
receiver’s utility decreases as the proportion of rational receivers increases.

Turning to rational receivers, their ex-ante welfare decreases as their pro-
portion increases. This is because the utility of rational receivers is constant in
α for x < a0, and because a0 decreases as α decreases: hence (i) the partitional
segment [a0, U] increases in size and this reduces the (ex-ante) utility of the
rational receiver; and (ii) the receiver’s utility drops at the marginal state a0

from zero to − ( a1−a0
2

)2
. Note that the size of the smallest message

a1 − a0 = (U − a0)
1
N

− 2 (N − 1) b = b
(

K (α, N)

N
− 2 (N − 1)

)

is approximately equal to zero when computed at α = 1
2N(N−1)

by (2). In con-
clusion:

Result 4 The receiver’s equilibrium welfare is monotonically increasing in the
fraction of naive receivers, α.

It is also interesting to see how the receivers’ utility changes as U changes.
Rational receivers achieve their bliss point when x belongs to the fully-revealing

interval, whereas they achieve −
(

ai+ai+1
2 − x

)2
< 0 for any x ∈ [ai,

ai+ai+1
2 ) ∪

(
ai+ai+1

2 , ai+1]. Because x is uniformly distributed, the probability that x ∈ [0, a0]
is a0/U. As we have concluded that a0/U increases in U, it immediately follows
that their ex-ante welfare increases in U. Naive receivers’ utility when x ∈ [0, a0]
is −b2/α2. Whereas their average utility when x ∈ [a0, U] is:
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U∫

a0

− (U − x)2 dx
U − a0

=
U∫

U−bK(α)

− (U − x)2 dx
bK (α)

= −
0∫

bK(α)

− (y)2 dy
bK (α)

= −
bK(α)∫

0

y2

bK (α)
dy

= −1
3

[
(bK (α))3

bK (α)

]
= −1

3
K (α)2 b2.

Direct calculations show that − 1
3K (α)2 b2 > −b2/α2, hence an increment in U

reduces the ex-ante welfare of naive receivers. In conclusion:

Result 5 The rational receiver’s ex-ante welfare increases in the amount of private
information U. The naive receiver’s ex-ante welfare decreases in U.

5 Partitional equilibria

While in the previous section we have focused on partially revealing equilibria,
in this section we study whether Crawford and Sobel’s partitional equilibria are
robust with respect to the possibility of naive receivers. Our analysis does not
depend on whether the state space is bounded or unbounded. We will show that,
while not all partitional equilibria survive the introduction of naive receivers,
all partitional equilibrium outcomes are robust.

A partitional equilibrium in a fully-strategic communication game gener-
ally can be expressed by a function ζ that partitions the state space into a
collection A = {(ai−1, ai

)}i∈N of intervals, for some finite (or possibly count-
ably doubly infinite) index set N. For any i, any component

(
ai−1, ai

)
, and any

x ∈ (ai−1, ai
)

, it is the case that ζ(x) = arg maxy∈R

∫ ai
ai−1

UR(y, x)f (x)dx, and that

US
(
ζ
(
ai−1, ai

)
, ai, b

) = US
(
ζ
(
ai, ai+1

)
, ai, b

)
. The supports of ν

(
ai−1, ai

)
and

ν
(
aj, aj+1

)
are disjoint for any j �= i.

In the fully-strategic model, the support of the message strategy ν is unspec-
ified in any partitional equilibrium A. Instead, when some receivers are naive,
the structure of the message strategy ν is severely limited. For any interval(
ai−1, ai

) ∈ A, the sender can use only one message mi on the equilibrium path;
i.e., the support of ν

(
ai−1, ai

)
must be a singleton set. Because US

12 > 0, in fact,
there cannot be any two distinct messages m and m′ such that

αUS (m, x, b) + (1 − α) US (ζ (ai−1, ai
)

, x, b
) = αUS (m′, x, b

)

+ (1 − α) US (ζ (ai−1, ai
)

, x, b
)

,

for all x ∈ (
ai−1, ai

)
. Hence the sender cannot be indifferent between sending

m and m′ if they induce the same equilibrium beliefs and action ζ
(
ai−1, ai

)
by

the strategic receiver. Therefore, partitional equilibria with message strategies
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ν, such that more than one message is sent on the equilibrium path for the same
element of the partition, fail to exist in game �α , for any α > 0.

While the equilibrium correspondence of the family of games �α is not
lower hemi-continuous in α, all the partitional equilibrium outcomes A of the
fully-strategic model are robust with respect to the possibility of naive receiv-
ers. Informally, we construct an equilibrium by requiring that, for any interval(
ai−1, ai

) ∈ A and state x ∈ (
ai−1, ai

)
, the sender sends the message mi that

corresponds to the strategic receiver’s optimal choice ζ(ai−1, ai). Following the
equilibrium prescription, the sender obtains the outcome ζ

(
ai−1, ai

)
with prob-

ability 1. When sending an off-the-equilibrium-path message m ∈ (
ai−1, ai

)
smaller (or larger) than ζ

(
ai−1, ai

)
, the beliefs that we assign to the sophisti-

cated receiver lead to an action s (m) that is larger (or smaller) than ζ
(
ai−1, ai

)
.

Sending an off-path message is thus equivalent to a bet that can be made arbi-
trarily unattractive by exploiting the concavity of the sender’s utility in the final
outcome. Deviation from equilibrium is deterred by setting s (m) so that the
expected outcome when sending message m is exactly equal to ζ

(
ai−1, ai

)
.

Proposition 2 For any partition A that identifies an equilibrium outcome in the
game �0, and any α small enough, the game �α has an equilibrium that yields the
partition A.

Note that the equilibrium construction above requires somewhat implausible
specific off-path beliefs by the sophisticated type of receiver. When the sender
deviates from an equilibrium prescription mi = ζ

(
ai−1, ai

)
by sending a message

m smaller (or larger) than ζ
(
ai−1, ai

)
, the equilibrium requires that the sophis-

ticated receiver understands that she meant to communicate the opposite, i.e.
that the optimal choice is larger (or smaller) than ζ

(
ai−1, ai

)
. This problem is

unavoidable, because for any interval
(
ai, ai+1

) ∈ A, the support of ν
(
ai, ai+1

)
must be a singleton set. In the fully-revealing equilibrium reported in Sect. 3,
in contrast, all messages are on path. Hence, the fully-revealing equilibrium of
Sect. 3 cannot be criticized on the basis that it hinges on possibly implausible
off-path equilibrium beliefs.

6 Conclusion

Departing from Crawford and Sobel (1982) basic communication model, we
have introduced the possibility that receivers are naive and erroneously believe
that the sender is truthful. Focusing on the case with quadratic preferences and
a uniformly distributed state, we have shown that there is an equilibrium in
which communication is fully-revealing on a low segment of the state space and
partitional on a high segment. In this equilibrium, communication language is
inflated, the equilibrium outcome is biased, and the information transmission is
more precise than in the standard communication model. We have argued that
these results are in broad agreement with empirical observations and exper-
imental findings. We provide comparative statics results and highlight their
normative implications.
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Because the relative size of the fully-revealing segment increases in the
proportion of naive receivers, educating receivers about the sender’s strategic
behavior bears the perverse effect of reducing the amount of communication
conveyed in equilibrium. On the other hand, reducing the sender’s bias has
the effect of increasing the amount of information transmission. As the state
space grows unbounded, we have shown that the equilibrium converges to the
fully-revealing equilibrium that Kartik et al. (2006) derive for the limit case
with unbounded state space.

In the context of media bias, our analysis gives a simple account for why
political adverts are evidently biased. However, educating the decision maker
to the possibly manipulative behavior of campaigners/partisan experts would
only result in a reduction of the amount of information contained in their biased
reports. It might be preferable instead to sever all links between experts and
interest groups (such as sponsoring lobbies) through the institution of indepen-
dent bodies of experts.

Acknowledgements This paper supersedes the second part of our earlier paper, “Non-Fully Stra-
tegic Information Transmission.” The first part of that paper is subsumed by “Credulity, Lies, and
Costly Talk,” joint with Navin Kartik. We thank Navin Kartik, Joel Sobel, and an anonymous
referee for helpful suggestions.

Appendix

Lemma A.1 The function K(α) is continuous and strictly decreasing in α.

Proof Because

K
(

1
2N (N − 1)

, N
)

= 2N (N − 1) = K
(

1
2N (N − 1)

, N − 1
)

, (2)

the function K(α) (and hence the break-point a0 = U −bK(α)) change continu-
ously at the critical value α = [

2 (N + 1) N
]−1 , despite the fact that the number

of intervals partitioning [a0, U] drops from N to N −1. It is immediate that N(·)
is a decreasing function of α. We now show that the function K (α, N) decreases

in α and increases in N for α ∈
([

2 (N + 1) N
]−1 ,

[
2 (N − 1) N

]−1
)

.

The result that K (α, N) increases in N for α ∈
(

1
2(N+1)N , 1

2N(N−1)

)
imme-

diately follows from the relation K (α, N) > 1/α > K (α, N − 1) for α ∈(
1

2(N+1)N , 1
2N(N−1)

)
.

To show that K (α, N) decreases in α for α ∈
(

1
2(N+1)N , 1

2N(N−1)

)
, we differ-

entiate it and simplify, finding that

∂K
∂α

∝ −1 + 3α − 12αN2 − 4α2 + 24α2N2 − 36α2N4 + 2α3 − 8α3N2 + 4α3N4 + 16α3N6

4α2N4

√
(α − 1)

4α2N4 − 4α2N2 + α2 − 4αN2 + α − 1
αN2

− 2N2 − 1
N2
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where the second term is clearly negative and the denominator of the first term
is positive. We only need to show that the term

−1 + 3α − 12αN2 − 4α2 + 24α2N2 − 36α2N4 + 2α3 − 8α3N2 + 4α3N4 + 16α3N6

is negative for all α belonging to the interval
(

1
2N(N+1)

, 1
2N(N−1)

)
. Replacing

the positive α with its upper bound 1
2N(N−1)

and the negative α with the lower

bound 1
2N(N+1)

, we obtain

−1
4

(
−1 − 3N − 21N2 + 33N3 + 38N4 − 6N5 + 44N6 − 108N7 − 120N8 + 56N9

(N + 1)3 N3 (N − 1)3

)
.

This term is negative for N > 2. In addition, it is easy to verify directly that
∂K (α, N) /∂α < 0 for N = 1 and N = 2 in the relevant ranges (1/4, 1) and
(1/12, 1/4) . 
�
Proof of Proposition 1 There are four no-deviation conditions to be verified:
the sender must be unwilling to send “bottom” off-path messages MB when
(i) the state x is in the “revealing” interval X R and when (ii) x is in the “part-
itional” interval X P, and she must not send “top” off-path messages MT when
(iii) x ∈ X R and when (iv) x ∈ X P. For any state x, we denote by D (m, x) the
sender’s payoff when sending an off-path message m, and by E (x) her equi-
librium payoff. For each state x, we determine the highest possible deviation
payoff D∗ (x, M) = supm∈M D (m, x) for M = MT , MB. Then we determine
for which parameter configurations there is no incentive to deviate in any state,
i.e. supx∈X D∗ (x, M) − E (x) < 0 for X = X R, X P.

Fix α, which defines the corresponding number N (α) of segments in the part-
itional part of the equilibrium. We need only show that for sufficiently small b,
there is no incentive for the sender to deviate and send off-path messages.

Let the sender’s equilibrium payoff be

ER(x) = −α

(
x + b

α
− x − b

)2

− (1 − α) (x − x − b)2 = −1 − α

α
b2

for any x in the revealing segment X R = [0, a0] and

EP(x) = −α (U − x − b)2 − (1 − α)

(
ai−1 + ai

2
− x − b

)2

in the partitional segment x ∈ [ai−1, ai
]
, with i = 1, . . . , N (α).

The largest payoff achieved by the sender by sending an off-path message in
the bottom segment MB = [

0, b/α
]

is

D̄B (x) = max
m∈

[
0, b

α

]
{

DB (m, x) = −α (m − x − b)2 − (1 − α) (U − x − b)2
}

.
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Similarly, the largest payoff for the sender corresponding to an off-path message

in the top segment MT =
[
a0 + b

α
, U
]

is

D̄T (x) = max
m∈

[
a0+ b

α
,U
]
{

DT (m, x) = −α (m − x − b)2 − (1 − α) (0 − x − b)2
}

.

Consider the equations

a0 = U − bK (α, N (α)) ,

ai = a0 + (U − a0)
i

N (α)
− 2i (N (α) − i) b, for i = 1, . . . , N (α) ,

approximating the equilibrium thresholds when the messages mi associated with
the intervals [ai−1, ai], i = 1, . . . , N (α) are all different, but arbitrarily close to
U. It is apparent that each of the above threshold approximations converges to
U as b → 0. By taking each equilibrium message mi closer and closer to U as
b converges to 0, we obtain that the actual thresholds ai, i = 0, . . . , N (α) also
converge to U as b → 0.

Now the argument proceeds in two steps.
First, note that for any x, the limit of the equilibrium payoffs E (x) converges

to zero for any x as b → 0. In the revealing segment we clearly have that
ES(x) = − 1−α

α
b2 → 0−. In the partitional segment, for any i = 1, . . . , N (α)

and any x ∈ [
ai−1, ai

]
, limb→0 EP(x) = 0 because limb→0 ai = U for all i =

0, . . . , N (α) .
Second, for any x, by continuity of DB (m, x) and DT (m, x) in m, we have

lim
b→0

D̄B (x) = lim
b→0

max
m∈

[
0, b

α

]
{

DB (m, x) = −α (m − x − b)2

− (1 − α) (U − x − b)2
}

= −α (0 − x − b)2 (1 − α) (U − x − b)2 ≤ −α (1 − α) U2

and

lim
b→0

D̄T (x) = lim
b→0

max
m∈

[
a0+ b

α
,U
]
{

DT (m, x) = −α (m − x − b)2

− (1 − α) (0 − x − b)2
}

= −α (U − x − b)2 − (1 − α) (0 − x − b)2 ≤ −α (1 − α) U2,

because limb→0

(
a0 + b

α

)
= U when taking each equilibrium message mi closer

and closer to U as b converges to 0.



Naive audience and communication bias 149

The sender’s limit gains from deviating off path are negative and bounded
away from zero as b vanishes:

lim
b→0

(D̄B (x) − EB (x)) < 0 and lim
b→0

(D̄T (x) − ET (x)) < 0.

By continuity of the payoff functions in b, we conclude that it is not profitable
for the sender to deviate from equilibrium and send off-path messages provided
that b < b (α), for some threshold function b that is always strictly positive. 
�
Proof of Proposition 2 For any equilibrium partition A of game �0, any(
ai−1, ai

) ∈ A and any α, construct the strategy µ such that µ (x) = mi =
ζ
(
ai−1, ai

)
for any x ∈ (

ai−1, ai
)

. In game �α , for any α, the naive receiver
responds to mi by playing y = mi and the sophisticated receiver optimally plays
s (mi) = ζ

(
ai−1, ai

)
; and hence the sender of type ai is indifferent between send-

ing the message mi and mi+1, because by construction US
(
ζ
(
ai, ai+1

)
, ai, b

) =
US

(
ζ
(
ai−1, ai

)
, ai, b

)
.

Assign the off-path beliefs of sophisticated senders as follows. For any m ∈(
ai−1, ai

)
, m �= mi, the sophisticated receiver believes that the state x coin-

cides with yR −1
(

mi−αm
1−α

)
with certainty. As a result, this type of receiver plays

s (m) : (1 − α)s (m) + αm = mi = ζ
(
ai, ai+1

)
. Clearly if m < ζ

(
ai, ai+1

)
, then

s (m) > ζ
(
ai, ai+1

)
and vice versa.

Considering the sender’s problem, for any m ∈ (ai−1, ai
)

, m �= mi, we obtain

αUS (m, x, b) + (1 − α) US (s (m) , x, b) < αUS (mi, x, b) + (1 − α) US (mi, x, b) ,

where the inequality follows from U11 < 0, concavity of U in y, and Jensen
inequality.

Also, note that for m ∈ {ai−1, ai} we can repeat the same construction arbi-
trarily with i, with i − 1 or with i + 1. Since i is arbitrary, this concludes the
construction of the equilibrium. 
�
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