P-hacking in clinical trials and how incentives shape the distribution of results across phases

Jérôme Adda Bocconi University Christian Decker University of Zurich Marco Ottaviani Bocconi University

June 2020

Motivation

- clinical research should conform to highest ethical standards
 ⇒human lives may be at stake!
- economic incentives (large R&D costs, even larger potential profits) may generate conflicts of interest for investigators and pressure to withhold or "beautify" unfavorable results

This Paper

- first systematic evaluation of distribution of p-values reported to ClinicalTrials.gov
- investigate "suspicious patterns" depending on economic incentives resulting from
 - affiliation of lead sponsor (non-industry, small industry, large industry)
 - phase of clinical research (high-stake phase III, lower-stake phase II)

The Distribution of z-Scores on ClinicalTrials.gov

12,621 p-values from tests performed on primary outcomes of 4,977 trials

- pre-approval interventional superiority studies on drugs (phase II and phase III)
- conducted mainly between 2007 and 2019
- p-values transformed to z-statistics

Breakdown by Affiliation of Lead Sponsor

Takeaways

 No spike in density functions right above 1.96.
 ⇒ good news!

 ② Discontinuity in phase III density function at 1.96 (driven by small industry).
 ⇒ suggestive of some selective reporting

S Excess mass of significant results in phase III compared to phase II for industry sponsored trials.

⇒ selective reporting or *selective continuation*?

Linking Trials across Phases

Selective Continuation from Phase II to Phase III

Takeaways

- Higher phase II z-score significantly increases the probability of continuation to phase III.
- Larger companies continue research projects more selectively.
 - ⇒ higher opportunity costs?
 ⇒ more efficient managerial decisions?

Controlling for Selective Continuation

 estimate phase II density reweighting each observation by continuation probability predicted by selection function

 \Rightarrow predicted phase III density

 selection function increasing in phase II z-score
 ⇒ counterfactual z-density rotates counter-clockwise, increasing share of significant results

Decomposition of the Difference in Significant Results between Phase II and Phase III

Takeaways

- **1** Large sponsors: *selective continuation* can explain excess share of significant results in phase III almost entirely.
- 2 Small sponsors: *selective continuation* less pronounced, can only account for less than one third of excess share.

Conclusion

- no indication of widespread manipulation of results reported to ClinicalTrials.gov
- $\Rightarrow\,$ registries for pre-registration of RCTs and result databases help
 - two different methodologies identify suspicious reporting patterns only for phase III trials by smaller industry sponsors (robust to definition of large vs. small)
- \Rightarrow discipline of reputational concerns stronger for large companies?
- \Rightarrow disclosure regulations should focus particularly (but not exclusively) on smaller industry sponsors