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Are the highest sample realizations selected from a larger presample more or less
informative than the same amount of random data? Developing multivariate accuracy
for interval dominance ordered preferences, we show that sample selection always ben-
efits (or always harms) a decision maker if the reverse hazard rate of the data distribu-
tion is log-supermodular (or log-submodular), as in location experiments with normal
noise. We find nonpathological conditions under which the information contained in
the winning bids of a symmetric auction decreases in the number of bidders. Exploiting
extreme value theory, we quantify the limit amount of information revealed when the
presample size (number of bidders) goes to infinity. In a model of equilibrium persua-
sion with costly information, we derive implications for the optimal design of selected
experiments when selection is made by an examinee, a biased researcher, or contending
sides with the peremptory challenge right to eliminate a number of jurors.

KEYWORDS: Accuracy, comparison of experiments, strategic selection, auctions, in-
formation aggregation, persuasion, welfare, design of experiments, examinee choice,
peremptory challenge.

1. INTRODUCTION

ECONOMIC DATA ARE often nonrandomly selected, due to choices made by subjects under
investigation or sample inclusion decisions by data analysts (see, e.g., Heckman (1979)).
Are selected data more or less informative than the same amount of random data? For
example, fixing a number of objects for sale, are the winning bids in a more competitive
auction more or less revealing of market demand? When a new treatment is given to the
healthiest patients rather than to random patients in a group, does inference improve or
worsen? When testing a candidate, should the examiner ask questions at random or allow
the candidate to select the most preferred questions out of a larger batch? And how does
the common-law right of peremptory challenge—by which the attorney on each side of a
trial can strike down a number of jurors—affect judgment quality?
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FIGURE 1.—Maximal selection provides more accurate information with normal noise (left) but less accu-
rate information with exponential noise (right).

These comparisons are one and the same. There is an unknown state θ representing
a fundamental demand driver, an average treatment effect, or a candidate ability. An
evaluator must choose an action—estimate a parameter, choose a treatment, or assign
a grade—knowing that marginally increasing the action decreases payoff when θ is low
and increases it when θ is high. More precisely, we assume preferences in the general
interval dominance ordered (IDO) class introduced by Quah and Strulovici (2009). This
class encompasses monotone decision problems (Karlin and Rubin (1956)) and single-
crossing preferences (Milgrom and Shannon (1994)). The evaluator acts after seeing the
realization of an experiment, that is, a random vector X = (X1� � � � �Xn) whose distribu-
tion depends on θ. For instance, Xi may represent a bid in an auction, an outcome under
a treatment, a student potential performance in a question, or a juror opinion. Consider
the following two scenarios:

• Random Experiment. The sample observations are i.i.d. draws from a state-dependent
cumulative distribution function F(·|θ).

• Maximally Selected Experiment. The sample observations are selected—possibly
strategically, by another party—as the n highest out of k > n presampled i.i.d. draws
from F(·|θ).

In which scenario is the expected payoff of the evaluator higher (in every IDO problem)?
The comparison is generally ambiguous. To fix ideas, take a simple hypothesis testing

problem: two states θH > θL and two actions, rejection (correct choice in θL) and accep-
tance (correct choice in θH). With sample size n = 1 and additive noise drawn from a
normal distribution F , the observation is normal with mean θL in the low state and θH in
the high state—drawn in blue in the left-hand panel of Figure 1. The evaluator optimally
accepts if and only if the observation is above some cutoff x̄, the familiar trade-off be-
tween the probability 1 −F(x̄−θL) of a false positive (accepting in the low state, FP) and
the probability F(x̄− θH) of a false negative (rejecting in the high state, FN).1 How does
a selected experiment compare? The observation of the maximum of k i.i.d. draws has
distribution Fk(x− θL) in the low state and Fk(x− θH) in the high state—drawn in red.
To see why maximal selection benefits the evaluator with normal noise, as displayed in the
left panel, note that by adopting the possibly suboptimal cutoff ȳ defined so as to induce

1An experiment with additive normal noise, like every other experiment considered in the paper, satisfies
monotone likelihood ratio: given any two states, the higher the realization x, the higher the relative odds of
the higher state. This property implies that the evaluator’s optimal decision is increasing in x. With two actions
and sample size n = 1, this simply means choosing the higher action (acceptance) if and only if x is at least as
large as some cutoff x̄.
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as many false positives, that is, defined by Fk(ȳ − θL) = F(x̄− θL), the evaluator induces
fewer false negatives: Fk(ȳ − θH) < F(x̄ − θH). But, as shown in the right-hand panel of
Figure 1, with exponential noise maximal selection harms the evaluator: given any cut-
off ȳ for the selected experiment, the evaluator can match false positives and lower false
negatives by adopting cutoff x̄ in the random experiment.

What makes selection beneficial in one case and harmful in the other? More generally,
what is the welfare impact of selection with sample size n ≥ 1 and possibly nonadditive
noise? To answer these questions, we start from Lehmann’s (1988) notion of accuracy
of an experiment (with n = 1), as illustrated in the left-hand panel of Figure 1. Recall
that in the new (selected) experiment ȳ induces by definition as many false positives as
x̄ induces in the original (random) experiment. Consider now setting the cutoff in the
original experiment at x̄′, so as to induce as many false negatives as ȳ induces in the new
experiment: F(x̄′ − θH) = Fk(ȳ − θH). If x̄′ < x̄, as it is in the figure, then F(x̄′ − θH) <
F(x̄−θH), and we can conclude that Fk(ȳ−θH) < F(x̄−θH). Thus, in the new experiment
ȳ induces as many false positives and less false negatives than x̄ induces in the original
experiment. If the key inequality x̄′ ≤ x̄ holds for all possible values of θL and θH and every
possible x̄ and corresponding x̄′, the new experiment is more accurate than the original
experiment. Lehmann (1988) shows that more accuracy is necessary and sufficient to give
higher welfare in every decision problem in Karlin and Rubin’s (1956) class.2

To deal with general IDO problems and experiments with sample size n ≥ 1, Section 3
develops a multidimensional version of accuracy, sharing the basic intuition with (and
for n = 1, reducing to) Lehmann (1988). To illustrate, consider two n-dimensional ex-
periments X and Y and again a simple hypothesis testing setup. In experiment X , the
evaluator again adopts a cutoff strategy, but now the cutoff is an (n− 1)-dimensional hy-
persurface. The evaluator accepts when the realization of X lies in the set Ē above the
hypersurface.3 Similar to the unidimensional case, we define a hypersurface that induces
as many false positives under Y as are induced by accepting in Ē under X . We say that
Y is more accurate than X if the hypersurface we just defined also induces fewer false
negatives—in particular, as many false negatives as would be induced under X by accept-
ing in a set larger than Ē. Theorem 0 proves that in all IDO problems welfare increases
with accuracy, extending previous results by Persico (2000), Jewitt (2007) and Quah and
Strulovici (2009). See Table I for a roadmap of the results in the paper.

Section 4 reports our core results. Theorem 1 identifies a necessary and sufficient con-
dition for more selection, that is, an increase in presample size k, to increase or decrease
accuracy, and hence welfare, in an experiment with additive noise (called a location ex-
periment) with sample size n = 1. Increasing k monotonically benefits the evaluator if
and only if the reverse hazard function of the noise distribution, − logF , is logconcave,
as with normal or logistic noise. Likewise, welfare decreases in k if and only if − logF is
logconvex, as with exponential noise. Selection is neutral only in one case: noise drawn
from the Gumbel extreme value distribution, F(ε)= exp(−exp(ε)), the only distribution

2An equivalent formulation (adopted, e.g., by Persico (2000), who coined the term accuracy) is the following:
the new experiment is more accurate if, given any cutoff x̄ for the original experiment, letting ȳ be the cutoff
that matches false positives in the new experiment, the cutoff that matches false negatives (denoted by ȳ ′ in the
figure) is larger than ȳ . As shown in Jewitt (2007), a unidimensional experiment satisfying monotone likelihood
ratio is more accurate than another if and only if it is Blackwell more informative (Blackwell (1951, 1953)) in
simple hypothesis testing problems.

3For example, with i.i.d. observations x = (x1� � � � � xn) from a location experiment with normal noise, the
average observation is a sufficient statistic. In this case, the cutoff hypersurface has the form

∑
i xi/n = x̃ for

some x̃.
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TABLE I

ROADMAP OF RESULTS

Base Core Applications

Theorem 0 (accuracy) Theorem 1 (n= 1, location) Proposition 1 (auctions)
Proposition 0 (equilibrium) Theorem 2 (n≥ 1, general) Proposition 2 (optimal)

Theorem 3 (extreme) Propositions 3, 4 (delegated)

Extensions

Theorem 4 (truncation) Proposition 5 (n= 1, noisy)
Theorem 5 (median) Proposition 6 (n≥ 1, noisy)

with both logconcave and logconvex reverse hazard function. This benchmark case pro-
vides intuition for our result. Deviating from Gumbel, maximal selection not only pushes
realizations upward, but also changes the shape of the distribution. The pushed-up real-
izations are also more concentrated—improving accuracy, and hence welfare—when the
noise distribution is smaller than the Gumbel distribution in van Zwet’s (1964) convex
transform order. This means that noise is a concave transformation of, and hence has a
thinner top tail than, a Gumbel distributed random variable.

Our notion of accuracy is the key tool needed to tackle the new issues arising in the
multidimensional case with sample size n ≥ 1. The main difficulty lies in the fact that se-
lected observations are correlated with each other, even conditionally on the state. By
disentangling the net value of information added by each observation, we can under-
stand when selection adds or subtracts value. Our main result, Theorem 2, shows that
welfare monotonically increases or decreases in presample size, according to whether the
reverse hazard rate f (x|θ)/F(x|θ) is log-supermodular or log-submodular. In a location
experiment, log-supermodularity reduces to logconcavity of the noise distribution reverse
hazard rate f/F , strengthening the logconcavity criterion in Theorem 1.

Drawing on extreme value theory, we also quantify the impact of selection when pre-
sample size grows unboundedly large. Focusing on location experiments, Theorem 3
shows that an extremely selected sample gives the evaluator the full information payoff if
and only if the hazard rate of the noise distribution f (ε)/[1 − F(ε)] is unbounded—for
instance, with normal noise, or noise distributions with bounded-above support. With less
than full information in the limit, welfare converges to the level corresponding to an ex-
periment with scale parameter (proportional to variance) equal to the inverse of the limit
hazard rate—building on Weissman (1978), we report a closed-form expression for the
limit noise distribution.

Turning to applications, our theorems have immediate implications for the role of com-
petition in aggregating private market information, complementing Wilson (1977) and
Milgrom (1979). Section 5.1 considers an auction in which n identical objects are offered
for sale to k symmetric bidders with interdependent values (Milgrom and Weber (1982,
2000)). As a direct corollary of our three core results, Proposition 1 characterizes when
soliciting an additional bidder has a monotonic impact on the information revealed by
the winning bids. In particular, in nonpathological cases in which bidders’ signals have
log-submodular reverse hazard rate, competition monotonically decreases information—
overturning received wisdom. Using extreme value theory, we also quantify the amount
of information revealed by the winning bids in the perfectly competitive limit.
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Section 5.2 considers a different strategic source of selection, relevant for applications
to educational testing and data collection: sample selection from the presample is dele-
gated to a strategic sender (examinee or biased researcher) who wants to persuade the
evaluator. Maximal selection arises in equilibrium (Proposition 0). Combining this obser-
vation with our core results, we characterize when allowing exam candidates to choose
which questions to answer increases the informativeness of a test. By embedding the
model into a potential outcomes framework (Neyman (1923), Rubin (1974)), we then
derive implications for the welfare impact of subversion of randomization in controlled
trials (Schulz (1995)).

Taking a design perspective, what is the optimal experiment for the evaluator, when
sampling and presampling are costly and endogenous? Section 5.3 illustrates how the
evaluator can use presample size as an additional information channel, to economize on
sample size when selection is beneficial. With sufficiently small presampling costs and
unbounded hazard rate of the noise distribution, the optimal experiment must feature
sample selection (Proposition 2).

We then turn to a general model of equilibrium persuasion with costly information
where the choice of presample size is delegated to the sender. Relative to optimal persua-
sion (Rayo and Segal (2010), Kamenica and Gentzkow (2011)), in our setting information
acquisition is costly and manipulation is constrained by presample data. The choice of
presample size is akin to agent effort in Holmström’s (1999) career concern model.4 The
sender’s incentive to collect more presample data results in additional information that in-
directly benefits or harms the evaluator through maximal selection. Smaller presampling
costs strengthen this sender incentive to acquire information. An evaluator who indirectly
benefits from this information can exploit this channel to save on sampling costs, as illus-
trated by Proposition 3. If instead the sender cannot commit not to disclose all informa-
tion collected, full unraveling arises in equilibrium, with the sender effectively disclosing
the whole presample data as in Grossman (1981) and Milgrom (1981). Similar to Propo-
sitions 2 and 3, under unbounded hazard rate of the noise distribution the evaluator has
then an incentive to block unraveling by committing to a fixed sample size, again to save
on sampling costs (Proposition 4).

The general method of proof developed for Theorem 2 allows us to flesh out the com-
mon logic behind the comparison of other forms of selection such as truncation, previ-
ously considered by Goel and DeGroot (1992). According to Theorem 4, in important
cases maximal selection and truncation lead to very different conclusions. For example,
with normal or logistic noise maximal selection benefits while truncation harms the eval-
uator. In Section 6, we also analyze median selection, where the evaluator observes the
median observation in a presample (Theorem 5), deriving conclusions for peremptory
challenge. Finally, we extend our results to allow for noisy observation of presample as
well as sample data (Propositions 5 and 6).

2. SETUP

An evaluator with payoff function u : Θ × A → R chooses an action a ∈ A ⊆ R under
uncertainty about a state θ ∈ Θ ⊆ R, where Θ is a finite set or a (possibly unbounded)
interval. The prior is represented by a density (or mass) function q(θ) with cumulative
distribution Q(θ). For now, we take the action set to be finite A = {a1� � � � � aJ} with a1 <
· · ·< aJ , and in Appendix A we give an extension to continuous actions.

4See also Glaeser (2008) for a broad discussion of incentives and biases in data collection and analysis.
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Preferences. The family of functions {u(θ� ·)}θ∈Θ is assumed to be an interval domi-
nance ordered (IDO) family (Quah and Strulovici (2009)). This means that for all states
θ′ > θ and actions a′ > a,

u
(
θ�a′) ≥ (>)u(θ�a) =⇒ u

(
θ′� a′) ≥ (>)u

(
θ′� a

)
(1)

whenever u(θ�a′)≥ u(θ�a′′) for all actions a′′ such that a≤ a′′ ≤ a′. Equivalently, if action
a′ is the best action in the interval [a�a′] ∩A when the state is θ, then the (weak or strict)
preference of a′ over each action in the interval continues to hold at every higher state θ′.
As pointed out by Quah and Strulovici (2009), the IDO class includes both single-crossing
preferences (Milgrom and Shannon (1994)) and monotone preferences à la Karlin and
Rubin (1956).5

Experiments and Welfare. Before deciding, the evaluator sees the realization of an ex-
periment, a random vector X in R

n with state-dependent distribution G(·|θ) and density
g(·|θ) satisfying the following two properties. First, the set {x ∈ R

n : g(x|θ) > 0}, denoted
by S(X|θ), is an open, convex set—in particular, S(X|θ) is also the interior of the sup-
port of X in state θ. Second, increasing the state increases the distribution of X in the
likelihood ratio (LR) order,6 implying in particular the monotone likelihood ratio (MLR)
property: if θ′ > θ and x′ � x, then g(x|θ)g(x′|θ′)≥ g(x′|θ)g(x|θ′).7

An important consequence of IDO and MLR is that the evaluator can without loss
adopt a monotone strategy, where the action increases with the realization.8 Thus, recall-
ing that E ⊆R

n is an upper set if it contains every point of Rn that is larger than some point
of E, the evaluator partitions Rn into a sequence of sets (E1� � � � �EJ) such that, for all j,
the set Ēj = Ej ∪· · ·∪EJ is an upper set, and chooses aj when the realization belongs to Ej .
The evaluator welfare,

∫
Θ

∑
j Prθ(X ∈ Ej)u(θ�aj)dQ(θ), can then be rewritten, summing

by parts and disregarding constants, as

U(X) :=
∫
Θ

∑
j<J

Prθ(X ∈ Ēj+1)
[
u(θ�aj+1)− u(θ�aj)

]
dQ(θ)�

In the special case of a location experiment, observations have the form Xi = θ+ εi and
the noise vector (ε1� � � � � εn) is drawn from some distribution G. The distributions G(·|θ)
are all shifted versions of G, with G(x|θ) = G(x1 − θ� � � � � xn − θ) for all θ and x. Note
that here MLR means that for every � > 0 the noise density ratio g(ε1 + �� � � � � εn +
�)/g(ε1� � � � � εn) is decreasing in ε. With n = 1, this is simply logconcavity of g.9

5Single-crossing requires (1) to hold even if u(θ�a′) < u(θ�a′′) for some a′′ such that a ≤ a′′ ≤ a′. Mono-
tonicity requires (1) only for adjacent actions, that is, a = aj and a′ = aj+1 for some j < J, but in addition
requires that the state, say θj , where the difference u(θ�aj+1)− u(θ�aj) changes sign, is increasing in j.

6This means that for all x�x′ ∈ R
n and θ′ > θ, letting x ∨ x′ = (max{x1�x

′
1}� � � � �max{xn�x

′
n}) and x ∧ x′ =

(min{x1�x
′
1}� � � � �min{xn�x

′
n}), we have g(x∨ x′|θ′)g(x∧ x|θ) ≥ g(x|θ)g(x′|θ′). See, for instance, Section 6.E

in Shaked and Shanthikumar (2007).
7Given x = (x1� � � � � xn) and x′ = (x′

1� � � � � x
′
n), we say x′ is larger than x, and write x′ � x, to mean x′

i ≥ xi

for all i.
8By Bayes’ rule and MLR, the posterior belief on the state increases with the realization of X in the LR

order: for all θ′ ≥ θ and all x′ � x in the set
⋃

θ∈Θ S(X|θ), we have q(θ|x)q(θ′|x′) ≥ q(θ′|x)q(θ|x′). Thus, the
evaluator cannot lose by increasing the action in response to a larger realization (Quah and Strulovici (2009,
Theorem 2)).

9The ratio g(ε + �)/g(ε) decreases with ε for all � > 0 if and only if g′(ε + �)/g(ε + �) ≤ g′(ε)/g(ε) for
all ε and �> 0, that is, if and only if logg is concave.
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Example: Simple Hypothesis Testing. The simplest instance of our setup has two
states θH > θL and two actions, rejection aL and acceptance aH > aL. The evalua-
tor optimally accepts when g(x|θH)/g(x|θL) ≥ r, where r = [q(θL)/q(θH)][u(θL�aL) −
u(θL�aH)]/[u(θH�aH) − u(θH�aL)]. In the unidimensional case, this strategy takes a fa-
miliar form: accept if and only if x ≥ x̄, for some cutoff x̄. In general, with n ≥ 1, the
acceptance region is an upper set Ē. Given this, welfare rewrites (disregarding constants)
as −rPrθL(X ∈ Ē)− PrθH (X /∈ Ē), a negatively weighted sum of the probability of a false
positive (accepting in θL) and that of a false negative (rejecting in θH), with r serving as
relative weight.

Selected Experiments. In a typical scenario of statistical decision theory, the evaluator
observes a random (i.e., i.i.d.) sample from a univariate distribution F(·|θ) with density
f (·|θ) satisfying MLR. In this case, G(x|θ) = F(x1|θ) · · ·F(xn|θ) and for a fixed sample
size n welfare depends on the family of univariate distributions F(·|θ) only. In this paper,
we are interested in experiments involving selected rather than random observations. In
this scenario, G(·|θ) takes a different form, and welfare is a function of both the family
F(·|θ) and an additional parameter depending on the type of selection we consider. Our
focus is on maximally selected experiments, where X1 ≥ X2 ≥ · · · ≥ Xn are the highest,
second highest, . . . , nth highest of k ≥ n random draws. Thus, the first observation is
drawn from distribution Fk(·|θ), and for i > 1, conditional on X1 = x1� � � � �Xi−1 = xi−1

the ith observation is drawn from distribution Fk−i+1(·|θ) right-truncated at xi−1. Letting
< i denote from now on the indices 1� � � � � i− 1 to save on notation, for every x we have

G1(x1|θ)= Fk(x1|θ) and

Gi(xi|θ�x<i)= Fk−i+1(xi|θ)/Fk−i+1(xi−1|θ) for all i > 1�10
(2)

We refer to k as the presample size of the experiment, and if k= n we call the experiment
random, because it is informationally equivalent to n random draws from F(·|θ): knowing
in advance that observations are sorted so that X1 ≥ · · · ≥ Xk is clearly of no value for
the evaluator. Note that in the special case of a location experiment we can equivalently
view selection as occurring on noise terms rather than on observations. Thus, with noise
distribution F , we assume that F admits a logconcave density (so that the experiment
satisfies LR ordering) and we have Xi = θ + εi for all i, with ε1 drawn from Fk and εi

drawn from Fk−i+1(·)/Fk−i+1(εi−1). Finally, note that the distributions (2) are well-defined
for every real k≥ n and continuously differentiable in k.

3. MULTIDIMENSIONAL ACCURACY

To assess the welfare impact of selection, we develop a natural multidimensional gener-
alization of Lehmann’s (1988) notion of accuracy. Our notion can be used to compare two
experiments (not necessarily selected experiments) with the same dimension by viewing
them as boundary points of a parametrized family of experiments. Let X(t) be a family
of experiments indexed by t ∈ [0�1], and let G(t� ·|θ) and g(t� ·|θ) be the corresponding

10The corresponding joint density is g(x|θ) = [k!/(k − n)!]Fk−n(xn|θ)f (x1|θ) · · · f (xn|θ) and the interior
of the support is S(X|θ) = {x ∈ R

n : xθ < xn < · · · < x1 < xθ}, where xθ and xθ are respectively the infimum
and supremum of the set {x ∈ R : f (x|θ) > 0}. The density is LR-ordered with θ because log-supermodularity
is preserved by integration (Karlin and Rinott (1980)) and products of log-supermodular functions are log-
supermodular.
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state-dependent distributions and densities. Let Prθ(t� ·) denote the measure on R
n in-

duced by X(t), and assume that for every event E the function Prθ(·�E) is continuously
differentiable. In the application to maximal selection, we compare selected experiments
with presample sizes k and m by viewing them as boundary points of X(t), the experiment
with presample size equal to the real number tk+ (1 − t)m.

Given any state θ and pair of indices s, t, we define a bijection ϕθ : S(X(t)|θ) →
S(X(s)|θ) as follows: ϕθ(x1� � � � � xn) = (z1� � � � � zn), where z1� � � � � zn are defined recur-
sively as

z1 = (
G1(s� ·|θ)

)−1(
G1(t�x1|θ)

)
and

zi =
(
Gi(s� ·|θ�z<i)

)−1(
Gi(t�xi|θ�x<i)

)
for i > 1�11

(3)

By definition, in state θ the random vector ϕθ(X(t)) has the same distribution as X(s).
Thus, suppose that the evaluator accepts in an upper set Ē when testing a simple hypothe-
sis θ = θL vs. θ = θH under X(s). Then the evaluator can achieve the same false positives
under X(t) by (a) accepting when the realization x of X(t) is such that ϕθL(x) ∈ Ē. Sim-
ilarly, the evaluator can match false negatives by (b) accepting when ϕθH(x) ∈ Ē. Note
that since Ē is an upper set, if ϕθH(·)� ϕθL(·) then the evaluator accepts more often with
strategy (a) than with (b). But this means that under X(t) strategy (a) gives as many false
positives and fewer false negatives, compared to accepting in Ē under X(s).

This heuristic argument motivates the following definition and provides an intuition
for the result below. (Our argument is heuristic because ϕθ(x) is undefined when x lies
outside the set S(X(t)|θ). Appendix A gives the formal argument.)

DEFINITION: The family of experiments X(t) is ordered by accuracy if ϕθ′(x) � ϕθ(x)
for all states θ′ > θ, all indices t > s, and all x ∈ S(X(t)|θ)∩ S(X(t)|θ′).

Note that the inequality ϕθ′(·) � ϕθ(·) is analogous (and for sample size n = 1, re-
duces) to the inequality x̄′ ≤ x̄ discussed in the Introduction: were strategy (a) be such
that false negatives rather than false positives are matched, then the set Ē should be
larger—analogous to accepting above x̄′ rather than above x̄. In fact, it is clear that for
n = 1 our definition reduces to Lehmann’s (1988).

THEOREM 0: If the family X(t) is ordered by accuracy, then welfare U(X(t)) is increasing
in t.

In the unidimensional case, this result was proved by Lehmann (1988) for monotone
preferences, by Persico (2000) and Jewitt (2007) for single-crossing preferences, and by
Quah and Strulovici (2009) for IDO preferences with Θ and A compact and S(X(t)|θ)
constant across all t and θ. Theorem 0 extends the result to multidimensional experiments
and allows unbounded or nonconstant supports (as is necessarily the case, e.g., in loca-
tion experiments). We prove Theorem 0, and discuss further the difference among IDO,
single-crossing and monotone preferences, in Appendix A. The proofs for all other results
in the paper are in Appendix B.

11Our notation omits the dependence of ϕθ on s and t for simplicity. Note that zi is well-defined because
x ∈ S(X(t)|θ) implies x<i ∈ S(X<i(t)|θ), and hence z<i ∈ S(X<i(s)|θ). To see why ϕθ is a bijection (and is
therefore invertible), note first that the map x1 
→ z1 is a strictly increasing bijection from S(X1(t)|θ) onto
S(X1(s)|θ). Next, for every i > 1 and x<i ∈ S(X<i(t)|θ) the map xi 
→ zi is a strictly increasing bijection from
S(Xi(t)|θ�x<i), the interior of the support of Xi(t) conditional on θ and X<i(t) = x<i , onto S(Xi(s)|θ�z<i),
the interior of the support of Xi(s) conditional on θ and X<i(s)= z<i .
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Unidimensional Location Experiments: Accuracy and Dispersion. When X(t) is a fam-
ily of unidimensional location experiments with noise distributions G(t� ·), we can equiv-
alently appeal to the notion of dispersion (Bickel and Lehmann (1979)). A univariate
distribution G is less dispersed than another, F , if the quantile difference G−1(·)− F−1(·)
is decreasing. Equivalently, G is steeper than F at corresponding quantiles: g(G−1(·)) ≥
f (F−1(·)). Lehmann (1988) showed that: (a) the family X(t) is ordered by accuracy (for
every possible choice of Θ) if and only if G(t� ·) becomes less dispersed as t increases;
(b) having a less dispersed noise distribution is necessary and sufficient for a location ex-
periment to give higher welfare than another in every decision problem in Karlin and Ru-
bin’s (1956) class. It follows from (a), (b), and Theorem 0, that a family of unidimensional
location experiments is ordered by increasing welfare in every IDO decision problem if
and only if the corresponding noise distributions are ordered by decreasing dispersion.

4. IMPACT OF MAXIMAL SELECTION

This section characterizes the families of distributions F(·|θ) for which the following
monotone comparative statics hold: for fixed sample size n, the larger the presample size,
the higher (or the lower) the evaluator’s welfare. In particular, we answer our basic ques-
tion as to when a selected experiment (k > n) improves or decreases welfare compared
to a random experiment (k= n).

4.1. Unidimensional Location Experiments

We begin with unidimensional location experiments X = θ + ε, where ε is the highest
of k≥ 1 random draws from a noise distribution F admitting a logconcave density.

THEOREM 1: Fixing sample size to n = 1, an increase in presample size k increases (de-
creases) welfare in a selected location experiment if the noise reverse hazard function − logF
is logconcave (logconvex). Conversely, allowing presample size to be any real number k ≥ 1,
if − logF is not logconcave (logconvex), then there is a payoff function in the IDO class such
that welfare is not increasing (decreasing) in presample size.12

Figure 2 illustrates the proof with normal noise—our main example of welfare-
improving maximal selection. Based on the equivalence between accuracy and dispersion,
given two presample sizes k > m we ask what makes Fk steeper at any quantile εk than
Fm at the corresponding quantile εm defined by Fm(εm) = Fk(εk). By monotonicity of
− log(·), equivalently, when is − logFk steeper at εk than − logFm at εm? Or, when is the
base ε′

k − εk below the tangent to − logFk at εk smaller than the base ε′
m − εm below the

tangent to − logFm at εm? Note that − logFk and − logFm only differ by a multiplicative
constant, so we can compute ε′

k − εk also as the base below the tangent to − logFm, as
displayed in the figure. Given that the base is the inverse of the rate of decay, ε′

k − εk

is smaller than ε′
m − εm whenever − logF decays at an increasing rate, that is, − logF is

logconcave. When k and m can be any real numbers, εk and εm can be arbitrarily close
to each other, explaining necessity in that case. The argument for logconvex − logF is
analogous.

12Marshall and Olkin (2007) defined the reverse hazard function as logF . Since F ranges between zero and
one, logF is necessarily negative. Our definition uses a minus sign, so that logconcavity of the function makes
sense.
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FIGURE 2.—Normal noise: dispersion decreases with presample size (drawn for k = 8 and m= 1).

Gumbel Noise. The only noise distribution F such that − logF is both logcon-
cave and logconvex (loglinear) is the Gumbel extreme value distribution, FGum(ε) =
exp(−exp(−ε)). Given that Fk

Gum(ε) = exp(−kexp(−ε)) = FGum(ε− logk), maximal se-
lection inflates noise by a constant (logk) but does not change the shape of the distribu-
tion. Thus, every maximally selected experiment gives the same welfare—with Gumbel
noise the reverse hazard function would be exponential (decaying at constant rate), with
equal bases ε′

k − εk = ε′
m − εm.

Restatement in Terms of Convex Transform Order. Given two univariate distributions F
and G, van Zwet (1964) defines F to be smaller than G in the convex transform order, de-
noted F ≤c G, whenever G−1(F(·)) is convex. Given that F−1

Gum(F(·)) = − log(− logF(·)),
Theorem 1’s logconcavity of − logF is equivalent to F ≤c FGum. Equivalently, a random
variable with logconcave − logF can be obtained through an increasing and concave
transformation F−1(FGum(·)) of a random variable with Gumbel distribution. To gain in-
tuition, visualize the random variable F−1 (on the vertical axis) as an increasing transfor-
mation of a Gumbel distributed random variable F−1

Gum (on the horizonal axis) through a
Q–Q plot. Concavity of F−1(FGum(·)) contracts the top tail, thus making it thinner than
the top tail of the Gumbel distribution.

The restatement suggests an intuition for Theorem 1. Maximal selection raises realiza-
tions. The Gumbel distribution has exactly the shape that leaves dispersion unchanged
after this operation. Deviating from Gumbel, dispersion is reduced (increased) when the
quantile of the distribution F is more concave (convex) than the quantile of the Gumbel.
Intuitively, concavity contracts the top tail above any percentile, thus making it thinner
than the tail of the Gumbel distribution. When the tail is thinner (thicker) than Gumbel,
the pushed up realizations in the top tail are more (less) informative than less selected
realizations.

Examples of Welfare-Improving and Welfare-Decreasing Maximal Selection. Besides the
normal case, one instance where more selection benefits is with logistic noise, F(ε) =
1/(1 + e−ε); we prove this and the following claims in Appendix B.2. Our main exam-
ple of the opposite case, where − logF is logconvex, and hence more selection harms,
is exponential noise, F(ε) = 1 − e−ε. More generally, given any a < −1 the distribution
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F(ε) = exp([(1 − exp(−ε))1+a − 1]/(1 + a)) is such that − logF is logconvex—the expo-
nential is the special case a → −1. Finally, more selection harms with Bemmaor’s (1992)
shifted Gompertz, F(ε) = (1 − exp(−ε − ηexp(−ε))), as well as with the full support
distribution F(ε) = exp(1 − exp(exp(−ε))) introduced by Noe (2020). Note also that in
all these instances where more selection harms, the noise distribution is asymmetric. In
effect, as shown below, this asymmetry is necessary for maximal selection to be harmful.

Minimal Selection. Theorem 1 has a symmetric counterpart for when the evaluator
sees the lowest rather than the highest draw. Minimal selection increases (decreases)
welfare if and only if the hazard function − log(1 − F) is logconcave (logconvex). All
results on maximal (as well as extreme) selection in the rest of the paper are also ap-
plicable to minimal selection, given that if X1 ≤ · · · ≤ Xn are the n lowest of k random
draws from F(x|θ), then −X1 ≥ · · · ≥ −Xn are the n highest of k random draws from
F̃(x|θ) = 1 − F(−x|θ).

Fundamental Asymmetry Between Beneficial and Harmful Selection. For symmetric dis-
tributions, logconcavity (logconvexity) of the hazard function is equivalent to logconcavity
(logconvexity) of the reverse hazard function. Thus, an immediate corollary of Theorem 1
is that with normal or logistic noise an increase in presample size is beneficial under both
maximal and minimal selection.

But while more maximal and more minimal selection can both benefit, they cannot
both harm. To see why, observe that a random experiment is informationally equivalent
to the following: (i) two realizations are drawn; (ii) with equal chance the maximum or the
minimum of the two is selected; (iii) the evaluator sees the selected draw, without knowing
whether it is the maximum or the minimum. Now replace (iii) with (iii′) the evaluator sees
the selected draw, knowing whether it is the maximum or the minimum. If more maximal
and more minimal selection were both harmful, the evaluator would be better off with
a random experiment than with (i)–(iii′). This is impossible, because (i)–(iii′) give more
information than (i)–(iii).

Paired with Theorem 1 the above argument proves that there exists no noise distribu-
tion whose hazard function and reverse hazard function are both logconvex. In particular,
in location experiments with n = 1 and symmetrically distributed noise neither maximal
nor minimal selection can be harmful in every IDO problem.

Contribution to Stochastic Ordering of Order Statistics. The proof of Theorem 1 shows
that F <c FGum is necessary and sufficient for Fk to become less dispersed as k increases.
This complete characterization of the impact of maximal selection on dispersion of the
highest order statistic appears to be new to the literature on stochastic orders. The closest
result we could find in the literature, Khaledi and Kochar’s (2000, Theorem 2.1), shows
that if F has decreasing hazard rate then Fk becomes more dispersed as k increases. This
result follows as a corollary of our characterization, given that F has decreasing hazard
rate if and only if F is larger than the exponential distribution in the convex transform
order, and the exponential distribution is in turn larger than the Gumbel distribution in
this order.13

13Since all distributions with logconcave densities have increasing hazard rate by Prekopa’s theorem, the
only distribution with logconcave density for which Khaledi and Kochar’s (2000) result applies is the exponen-
tial.
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4.2. General Multidimensional Experiments

Extending our analysis to general (not necessarily location type) experiments with sam-
ple size n ≥ 1 poses a challenge. Since order statistics are correlated, we cannot recover
the accuracy ranking between selected experiments with (the same sample size n, but)
different presample sizes by individually comparing the order statistics in the two experi-
ments. Our multidimensional notion of accuracy allows us to characterize when the cor-
relation structure in a maximally selected experiment benefits or harms the evaluator as
presample size increases.

THEOREM 2: For fixed sample size n ≥ 1, an increase in presample size increases (de-
creases) welfare if the reverse hazard rate f (·|θ)/F(·|θ) is log-supermodular (log-submodular,
with upper bound of the support of f (·|θ) independent of θ), that is, if for all states θ′ > θ the
ratio

f
(·|θ′)/F(·|θ′)
f (·|θ)/F(·|θ)

is increasing (resp., decreasing).

As noticed by Noe (2020), with two states monotonicity of the reverse hazard ratio is
equivalent to geometric dominance.14

General Method of Proof. The method of proof of Theorem 2 is applicable beyond
selected experiments. Take any family X(t) with respective distributions G(t� ·|θ) and
suppose that for all t and θ the variables in X(t) are conditionally increasing in sequence
(CIS, Veinott (1965)): for each i > 1, conditioning on larger values of X<i(t) induces a
first-order stochastic dominance increase in Xi(t), that is, Gi(t�xi|θ�x<i) decreases in x<i

for all xi. Our method builds on two immediate observations. The first observation is that
a CIS family X(t) is ordered by accuracy if for all s < t and θ′ > θ, defining z = ϕθ(x) as
in (3), we have

Gi

(
s� zi|θ′� z<i

)
/Gi

(
t� xi|θ′�x<i

) ≥ 1 for all i ≥ 1 (4)

(the conditioning on x<i and z<i is vacuous when i = 1). To interpret, consider a simple hy-
pothesis testing problem where the evaluator either observes Xi(s) when already knowing
that X<i(s) = z<i, or observes Xi(t) when already knowing that X<i(t)= x<i. Suppose that
the acceptance cutoff is set at zi in the first experiment. Since X(s) and ϕθ(X(t)) have
the same distribution in the low state θ, setting the cutoff at xi in the second experiment
gives as many false positives. By (4), cutoff xi also gives fewer false negatives—rejection
in the high state θ′ is less likely.

Second, a sufficient condition for (4) is that for each i the ratio is (i) no smaller than
one in the limit as xi grows large and (ii) monotonically decreasing in xi. Continuing with
the interpretation, the cutoff zi reduces false negatives in the limit, and the reduction
becomes relatively smaller as the cutoff xi becomes larger. Applying the implicit function

14According to Noe’s (2020, Theorem 2), monotonicity of the reverse hazard ratioalso characterizes when
likelihood ratio dominance (between X drawn from F(·|θ′) and Y drawn from F(·|θ) with two states θ′ > θ)is
preserved by competitive selection (and thus holds also between X|X > Y and Y |Y > X). Remarkably, we
find that the same condition drives the sign of the impact of maximal selection on the welfare of an evaluator
with IDO preferences.
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theorem to z = ϕθ(x), we can write requirement (ii) more revealingly in terms of reverse
hazard rates:

gi

(
s� zi|θ′� z<i

)
/Gi

(
s� zi|θ′� z<i

)
gi(s� zi|θ�z<i)/Gi(s� zi|θ�z<i)

≤ gi

(
t� xi|θ′�x<i

)
/Gi

(
t� xi|θ′�x<i

)
gi(t�xi|θ�x<i)/Gi(t�xi|θ�x<i)

for all i ≥ 1� (5)

Thus, (5) is a general sufficient condition for any CIS family to be ordered by accuracy.
This condition goes a long way in characterizing the impact of selection—maximal and
otherwise.

Sketch of Proof of Theorem 2. Recall from (2) that with presample size k the first ob-
servation has distribution Fk(·|θ) and the ith has distribution Fk−i+1(·|θ) right-truncated
at xi−1. Powers and right-truncations only change the reverse hazard rate by a multiplica-
tive constant. In particular, the reverse hazard rate of the ith observation is k− i+1 times
that of a random draw:

(k− i+ 1)Fk−i(·|θ)f (·|θ)/Fk−i+1(·|θ) = (k− i+ 1)f (·|θ)/F(·|θ)�
Taking the ratio between reverse hazard rates at different states, the constant disappears.
In other words, when X(t) and X(s) are selected experiments with presample sizes kt ≥
ks condition (5) depends on t and s only through z, and (5) is simply log-supermodularity
of f (·|θ)/F(·|θ), because kt ≥ ks implies z � x. Order statistics are CIS, so (5) can in fact
be used.15

Positive Exponential Distribution: Neutrality of Maximal Selection. Positive-exponen-
tially distributed observations, F(x|θ) = eθx for x ≤ 0 (and θ > 0), are neutral to selec-
tion, analogous to Gumbel noise for location experiments. The reverse hazard rate is
log-modular in this case, because f (x|θ)/F(x|θ) = θ is independent of x. Moreover, the
upper bound of the support of f (·|θ) is x = 0 independently of θ. Thus, by Theorem 2,
selection has no impact on welfare.

Connection to Theorem 1. In location experiments, log-supermodularity of the reverse
hazard rate is equivalent to logconcavity of the noise reverse hazard rate. Moreover, the
upper bound of the support of f (·|θ) is independent of θ if and only if it is infinite. Thus,
we have the following.

COROLLARY 1: For fixed sample size n ≥ 1, an increase in presample size increases (de-
creases) welfare in a location experiment if the noise reverse hazard rate f (·)/F(·) is logcon-
cave (logconvex, with support of f unbounded above).

Appendix B.2 shows that the hypotheses in Corollary 1, logconcavity or logconvexity of
the reverse hazard rate, are stronger than the corresponding conditions in Theorem 1, yet
the corollary applies to all examples discussed earlier. As before, the Gumbel distribu-
tion is sandwiched between the noise distributions for which more selection benefits and
those for which more selection harms: f (ε)/F(ε) = exp(−ε) is loglinear. More selection
benefits with normal or logistic noise and harms with exponential or shifted Gompertz
noise.

15Karlin and Rinott (1980) proved that order statistics are multivariate totally positive of order 2. This no-
tion of positive dependence among random variables, known in economics as affiliation (Milgrom and Weber
(1982)), is stronger than CIS, as shown in Barlow and Proschan (1975).
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4.3. Extreme Selection

Complementing the monotone comparative statics results derived so far, we now an-
alyze extreme selection, where presample size grows unbounded. The main result here,
Theorem 3, characterizes the corresponding limit welfare. For simplicity, we restrict at-
tention to location experiments.

Our analysis draws on the fundamental result in extreme value theory, which charac-
terizes the limit distribution of the maximum of k i.i.d. random variables, properly nor-
malized for location and scale inflation. Take a noise distribution F and suppose that, for
some nondegenerate distribution F̄ and some sequence of numbers αk > 0 and βk, for
every continuity point ε of F̄ we have

Fk(βk + αkε)→ F̄(ε) as k→ ∞�

The fundamental result of extreme value theory says that F̄ must be Gumbel, Extreme
Weibull, or Frechet; see, for example, Leadbetter, Lindgren, and Rootzén (1983) for a
primer. Our maintained assumption that F has a logconcave density f implies that F̄ is,
in fact, either Gumbel or Extreme Weibull, and always Gumbel if the support of f is
unbounded above (Müller and Rufibach (2008)).

Characterization of Limit Welfare. A larger presample induces a first-order stochastic
dominance increase in the noise distribution, hence the location normalization sequence
βk is growing. But the evaluator adjusts for any such inflation without effect on welfare.
The limit impact of selection therefore hinges on the behavior of the scale normalization
sequence αk. If this sequence converges to zero, noise becomes more and more concen-
trated around βk and the evaluator perfectly learns the state. If instead αk converges to a
number α > 0, then an extremely selected experiment is welfare-equivalent to a random
experiment based on F̄(·/α). The limit behavior of the sequence αk is in turn governed
by the limit behavior of the noise hazard rate.

THEOREM 3: (a) For fixed sample size n ≥ 1, as presample size grows without bound
welfare converges to the full information payoff if and only if the noise distribution has un-
bounded hazard rate, that is, letting ε̄ ∈ (−∞�∞] denote the upper bound of the support
of f ,

lim
ε→ε̄

f (ε)

1 − F(ε)
= ∞� (UHR)

(b) If UHR does not hold (so that, in particular, ε̄ = ∞) then, letting α = limε→ε̄[1 −
F(ε)]/f (ε), the limit welfare is the welfare from an experiment with noise density

(1/α)exp
[−exp(−εn/α)− ε1/α− · · · − εn/α

]
� (6)

In particular, with n = 1, the limit welfare is the welfare from an experiment with Gumbel
noise FGum(·/α)= exp(−exp(−ε/α)).

Pairing this result with Theorem 1, there is monotonic convergence to full information
when noise has logconcave reverse hazard function and satisfies UHR. The hypotheses
in Theorems 1 and 3 are overlapping but distinct. For example, UHR holds for normal
but not for logistic noise. Moreover, UHR covers many distributions without logconcave
reverse hazard function. First, UHR holds for all distributions with logconcave density
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and bounded-above support, for example, all beta distributions with logconcave den-
sity, including uniform. Second, with unbounded-above support, beyond normal (or left-
truncated normal, which has the same right tail), UHR holds also for all distributions in
the exponential power family f (ε)= [γ/
(1/γ)]exp(−|ε|γ) with shape parameter γ > 1.
Strikingly, the Laplace (γ = 1), with exponential right tail, is the only member of this
family with logconcave density for which αk � 0. In this family, the negative impact of
selection with exponential noise is not robust to extreme selection—an arbitrarily close
distribution reverses the conclusion.

UHR and Unbounded Informativeness. The contribution of Theorem 3 is twofold.
First, at a qualitative level, the result identifies UHR as the necessary and sufficient con-
dition to have full information under extreme selection. A related notion of unbounded
informativeness of a real-valued signal, familiar in the economics literature since Milgrom
(1979), is the following:

sup
x

f
(
x|θ′)

f (x|θ) = ∞ for all θ′ > θ� (7)

In a location experiment satisfying MLR, which is our setup here, the two notions co-
incide. To see this, note that, when f (x|θ) = f (x − θ) and MLR holds, (7) can be also
written as follows: limε→ε̄ f (ε)/f (ε + c) = ∞ for all c > 0. Clearly, every f with support
bounded above satisfies this condition and, as we have already remarked, UHR. If in-
stead the support is unbounded above, then the condition limε→ε f (ε)/f (ε + c) = ∞ for
all c > 0 is in turn equivalent to − limε→ε̄ f

′(ε)/f (ε)= limε→ε̄ f (ε)/[1−F(ε)] = ∞, which
is again UHR. The equivalence between UHR and (7) sheds light on the role of UHR
in Theorem 3. Extreme selection pushes the signal toward its upper bound, and by MLR
this is precisely where the signal is arbitrarily precise in identifying the state.

Second, Theorem 3 precisely quantifies the information contained in an extremely se-
lected sample, also when that information is not full. In a unidimensional experiment,
the evaluator welfare approaches the level corresponding to a Gumbel experiment with
scale parameter (proportional to variance) equal to α, the inverse of the limit hazard
rate. More generally, the distribution in (6) with the same scale parameter α quantifies
the limit welfare for any n ≥ 1. This novel result showcases the power of extreme value
theory.

5. APPLICATION TO STRATEGIC SETTINGS

5.1. Information Aggregation in Auctions

Our characterization of the welfare impact of maximal selection abstracted away from
the mechanism generating the data. Market competition for scarce resources naturally
results in maximally selected outcomes—winning bids in an auction are the highest.
Through a direct application of our results, this section characterizes when competition
monotonically increases or decreases the amount of information contained in the winning
bids.

Consider k symmetric unit-demand bidders competing in an auction for n < k iden-
tical objects. Bidder i values an object vk�i(θ�X1� � � � �Xk) = vk(θ�Xi� {Xj}j �=i), where vk
is a nonnegative, continuous and increasing function, θ a common taste shifter, and Xi

bidder i’s private signal. Bidders have a common prior q(θ) and conditional on θ their
signals X1� � � � �Xk are i.i.d. draws from a distribution F(·|θ) with MLR density f (·|θ).
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The auction is either discriminatory, with each of the n highest bidders receiving an object
at a price equal to the submitted bid, or uniform-price, with each of the n highest bid-
ders receiving an object for a price equal to the highest rejected bid. MLR implies that θ,
X1� � � � �Xk are affiliated random variables (Milgrom and Weber (1982)). Thus, as shown
by Milgrom and Weber (2000), in a symmetric equilibrium of either auction each bidder i
bids according to a continuously differentiable, strictly increasing function bn�k(·).

Taking the point of view of an outside observer who has preferences in the IDO class
and observes only the winning bids, we ask whether the extent of competition, namely
k, has a beneficial or harmful impact on the observer welfare. Let B1�k ≥ · · · ≥ Bn�k de-
note the winning bids. Since bn�k(·) is strictly increasing, the bidder with the ith highest
signal submits the ith highest bid—letting Xi�k denote the ith highest signal, we have
Bi�k = bn�k(Xi�k) for all 1 ≤ i ≤ k. This implies that the experiments (B1�k� � � � �Bn�k) and
(X1�k� � � � �Xn�k) are informationally equivalent. The following result is therefore an im-
mediate implication of Theorems 0, 2, and 3.

PROPOSITION 1: (a) If the reverse hazard rate f (·|θ)/F(·|θ) is log-supermodular (log-
submodular, with support of f (·|θ) independent of θ) then competition increases (decreases)
the accuracy of the winning bids, and hence increases (decreases) the observer welfare. (b) As-
suming F(x|θ) = F(x − θ), (i) information is full in the limit k → ∞ if and only if UHR
holds; (ii) if UHR fails, the observer limit welfare is the welfare from an experiment with noise
density (6).

The aggregation of private information by an auction mechanism as the number of
bidders grows unbounded, first studied in Wilson’s (1977) seminal paper, was analyzed by
Milgrom (1979) in a model similar to ours.16 Assuming a single object (n = 1) and a pure
common value vk(θ� ·� ·) = θ drawn from an ordered and nowhere-dense set, Milgrom
(1979, Theorem 2) shows that unbounded informativeness (7) is necessary and sufficient
to have full information in the perfectly competitive limit k → ∞. Recalling that UHR is
equivalent to (7), Proposition 1.b.i restates Milgrom’s result, modulo the slightly different
setup. The novel Proposition 1.b.ii quantifies the information value of perfect competition
when UHR fails.

Beyond the limit case, in the auction literature nothing was known about the impact of
soliciting an additional bidder on the information contained in the winning bids. Propo-
sition 1.a gives broadly applicable conditions under which competition monotonically im-
proves or worsens the information contained in the winning bids. First, our result char-
acterizes when information, while not full in the limit, does improve with competition.
Besides location signals with logconcave reverse hazard rate and bounded hazard rate
(e.g., logistic noise), an example is with signals drawn from a positive exponential distri-
bution F(x|θ) = eθx (for θ > 0 and x ≤ 0). This is precisely Wilson’s (1977) example of a
case where information is not full in the limit. But it is notably not an instance where com-
petition worsens information—recall that in this case maximal selection has no impact on
welfare.

Second, while failure of convergence to full information is a possibility already con-
templated (and characterized) in Milgrom (1979), whether competition could actually

16Milgrom’s (1979) model is identical to our unidimensional (n = 1) model, apart from the fact that he
assumes a nowhere-dense Θ and does not restrict signals to obey MLR or even be real-valued. The two models
become identical if (in his model) we impose the MLR property on f (·|θ) and (in our model) we assume that
Θ is finite.
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worsen information was not known. A natural conjecture could have been that even when
information is not full in the limit, competition would still tend to improve information.
Proposition 1 shows that in nonpathological cases the opposite is true: under logconvexity
of the reverse hazard rate (e.g., location type signals with exponential or shifted Gompertz
noise) more competition monotonically decreases the amount of information contained
in the winning bids.

Finally, we show that our limit result for uniform-price auctions remains true if instead
of assuming that the observer sees the winning bids we assume that the observer sees the
price paid by the winning bidders, namely the (n + 1)-highest bid Bn+1�k = bn�k(Xn+1�k).
Leadbetter, Lindgren, and Rootzén (1983, Theorem 2.2.2) showed that if a pair of se-
quences βk and αk > 0 makes (X1�k − βk)/αk converge weakly to a nondegenerate ran-
dom variable, then the same pair of sequences makes (Xn+1�k − βk)/αk converge weakly
to a nondegenerate random variable. In particular, the limit distributions of the highest
and (n+ 1)-highest order statistics, while different, have the same scale. Thus, by the ar-
guments we used to prove Theorem 3 and the limit result in Proposition 1, experiment
Bn+1�k becomes arbitrarily informative as k→ ∞ if and only if UHR holds.

5.2. Delegated Selection

In the auction setup, maximal selection arises from competition among strategic bid-
ders who have no interest in the decision made by the outside observer. Now we turn
to strategic situations in which the sample data provider cares about the action taken by
the evaluator. Maximal selection results when the sender has an incentive to steer higher
actions.

Delegated Selection Game. A strategic sender, privately informed about presample
data, is tasked with sample selection. Taking sample size n and presample size k as given
for now, consider the following delegated selection game. First, the sender privately ob-
serves k random draws from F(·|θ) and chooses a subset of n draws. Second, the eval-
uator observes the selected draws and acts. The evaluator has IDO preferences and in
every state the payoff of the sender is strictly increasing in the action of the evaluator.
The following observation is immediate.

PROPOSITION 0: For all n and k ≥ n, there is a Bayes Nash equilibrium in which for every
realization of the k draws the sender selects the n largest draws, and the evaluator follows
the optimal strategy for the maximally selected experiment with sample size n and presample
size k.

We use Bayes Nash equilibrium because the sender has private information. The result
follows, as maximal selection is a best response for the sender to any monotone strategy
of the evaluator, and likewise an evaluator’s best response is monotone by MLR. Note
that the equilibrium in the proposition is not eliminated by refinements, since no report
can contradict maximal selection.

Our game constrains the sender to report precisely n data points. If instead the sender
is unconstrained, unraveling occurs in equilibrium, as it is well known in the literature on
strategic disclosure at least since Grossman (1981) and Milgrom (1981). When presample
realizations are such that the action induced by submitting the full presample is larger
than every action the sender can induce by submitting less than k data points, the sender
has a strict incentive to disclose the whole presample. Thus, in the unconstrained game



928 A. DI TILLIO, M. OTTAVIANI, AND P. N. SØRENSEN

the evaluator behaves as if the entire presample were disclosed. However, once sample
and presample size are costly and endogenous, Proposition 4 below shows that even when
the sender cannot commit to disclose less than n data points, the evaluator can value
commitment not to look at more than a set sample size.

Examinee Choice. The procedure of agrégation used in France to screen candidates
for high school and university professor positions works as follows: “Candidates draw
randomly a couple of subjects. The candidate is free to choose the subject which pleases
him among these two, the one in which he feels best able to show and highlight his knowl-
edge. He does not have to justify or comment on his choice.”17 This “give me your best
shot” type procedure is commonly adopted in many other contexts. For example, first-
year microeconomics exams at Bocconi require students to pick and answer only four out
of five or two out of three questions presented in the exam.

Consider an examiner who must assign a grade a ∈ A to a candidate of unknown ability
θ ∈ Θ after testing the candidate with a number of questions. From the ex ante perspec-
tive of the examiner, the performance in any given question is a random variable with
distribution F(·|θ), independent across questions. Once presented with any question, the
candidate perfectly anticipates the performance in that question, an assumption relaxed
in Section 6.3. Assuming that time allows a test with n questions, should the examiner
ask n questions at random or require the candidate to select n questions from a larger
set of k > n questions?18 Combining Proposition 0 with Theorem 2, we can immediately
conclude that examinee choice improves or worsens the quality of testing depending on
log-supermodularity or log-submodularity of f (·|θ)/F(·|θ).

Researcher Bias in Potential Outcomes Framework. Consider a population of individ-
uals and two alternative treatments—a default, known treatment 0 and a new treatment
1 whose benefit beyond the default is unknown. Following Neyman (1923) and Rubin
(1974, 1978), let Xt�i denote the potential outcome of individual i when receiving treat-
ment t ∈ {0�1}. For simplicity, assume for now that the treatment effect X1�i − X0�i is
homogeneous across the population—Section 6 provides results that can be used to ac-
commodate a more general case. Potential outcomes of individual i are X0�i = εi and
X1�i = θ+ εi, with εi drawn from a known F with logconcave density f .

Enter a researcher, who runs a controlled trial with n treated and n untreated indi-
viduals, denoted 1� � � � � n and n + 1� � � � �2n, respectively. Thus, the evaluator observes
X1�i = θ + εi for i = 1� � � � � n and X0�i = εi for i = n + 1� � � � �2n. If sample selection
and treatment assignment are random (subject to the equal group size constraint), then
ε1� � � � � ε2n are random draws from F . Since F is known, the control group adds no infor-
mation, and the experiment boils down to the treatment group—a random experiment
with sample size n. Suppose instead that the researcher knows the outcome of treatment
0 for k ≥ 2n individuals, and on this basis (i) selects 2n individuals for the experiment and
(ii) assigns n individuals to each treatment. An immediate extension of Proposition 0 gives
an equilibrium in which the researcher assigns the individuals with the highest value of X0

to treatment 1 and those with the lowest value of X0 to treatment 0. Thus, ε1� � � � � εn and
εn+1� � � � � ε2n are respectively the n largest and the n smallest of k random draws from F .

17Source: Ministère de l’Éducation nationale et de la Jeunesse: https://agreg.org/data/uploads/rapports/
rapport2019.pdf

18Wainer and Thissen (1994) emphasized that it is challenging for examiners to formulate questions of
similar ex ante difficulty. Our assumption that performance is i.i.d. across questions assumes away this effect.

https://agreg.org/data/uploads/rapports/rapport2019.pdf
https://agreg.org/data/uploads/rapports/rapport2019.pdf
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How do the two scenarios compare? By Corollary 1, under logconcavity of f/F selection
benefits the evaluator directly—the treatment group alone is already more informative,
and the control group can only add information. But it also benefits indirectly. The con-
trol group does add information under selection, because the untreated outcomes of the
untreated individuals, εn+1� � � � � ε2n, are correlated with, and hence informative about the
counterfactual untreated outcomes of the treated, ε1� � � � � εn. When f/F is logconvex, the
impact of selection is instead ambiguous: the treatment group alone is less informative
than the random experiment, but this negative effect is partly balanced by the fact that
the evaluator observes the control group.

5.3. Experiment Design

In many situations, the evaluator has direct or indirect control over both sample and
presample size. Realistically, presampling and sampling each involve a cost in our three
leading applications. First, besides paying for soliciting bids the outside observer of an
auction might have to compensate winning bidders unwilling to disclose their bids. Sec-
ond, for an examiner both preparing and grading questions consume time and resources.
Third, in the application to persuasion through data, the researcher bears cost for presam-
ple collection, and the evaluator spends time and cognitive effort to receive, verify, and
analyze the sample selected by the researcher. Our results characterize when the evalua-
tor can strategically leverage selection to increase the informativeness of an experiment
and save on sampling cost.

Optimal Presampling. Suppose the evaluator can set both sample size n and presample
size k at increasing costs CS(n) and CP(k), respectively. Let U(k�n) denote the evalua-
tor optimal expected (gross) payoff in the experiment with presample size k and sample
size n. An optimal experiment format is a pair (k�n) maximizing U(k�n)−CP(k)−CS(n).

Clearly, U(k�n) increases in n and increases or decreases in k according to Theorems 1
and 2 (paired with Proposition 0 if selection is delegated). Thus, if selection harms then
the optimal format features no selection. If selection benefits, the evaluator values sample
size but also values sample selection: n and k are two goods. For a stark example, consider
a location experiment with positive exponential noise. In this case, the posterior belief
about the state only depends on the largest observed realization, which for fixed k does
not depend on n. As a consequence, U(k�n) = U(k�1) for every k and n ≤ k, hence at
the optimum n= 1 and k solves maxk≥1[U(k�1)−CS(1)−CP(k)].

In general, the exact trade-off depends on the specific cost functions and family F(·|θ)
under consideration. But when selection is beneficial and presampling costs are suffi-
ciently small the evaluator can always exploit selection to economize on sample size. The-
orem 3 allows us to push this intuition further when presampling costs are very small and
UHR holds.

PROPOSITION 2: Assume that CS(n) is unbounded and F(x|θ) = F(x−θ) satisfies UHR.
There exist c > 0 and k̄ > 1 such that if CP(k̄) ≤ c then every optimal format (k�n) is such
that k> n.

The proof of the proposition is based on a simple continuity argument. By the assump-
tion on sampling costs, the design problem under constraint k= n has an optimal solution
(n̄� n̄), and by Theorem 3 we can choose k sufficiently large that (k�1) gives higher (gross)
payoff than (n̄� n̄).
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Delegated Presampling. In some strategic settings, the evaluator has limited control
over presample size. For example, data collection could be delegated to a biased re-
searcher who can costly increase the presample size. Presample size would then naturally
be unobserved by the evaluator. As we shall see, much of the intuition from optimal pre-
sampling carries over to this scenario, although the evaluator now faces a more delicate
trade-off.

Suppose that the evaluator sets the sample size n at cost CS(n) but can only decide
whether to allow selection. By not allowing selection, the evaluator obtains U(n�n) −
CS(n). Otherwise, the following delegated presampling game is played. First, the sender
privately chooses a presample size k ≥ n at cost CP(k). Second, the evaluator observes
a maximally selected experiment with sample size n and presample size k and acts. As
before, the evaluator has IDO preferences, while the sender’s (gross) payoff is strictly
increasing in the action of the evaluator.

PROPOSITION 3: Assume CS(n) is unbounded and F(x|θ) = F(x − θ) satisfies UHR.
There exist c > 0 and k̄ > 1 such that if CP(k̄) ≤ c then in every Bayes Nash equilibrium
of the delegated presampling game with n = 1 the evaluator obtains a higher payoff than by
setting any sample size n ≥ 1 and not allowing selection.

We use Bayes Nash equilibrium here, too, because the choice of k is unobserved. The
proof of Proposition 3 is similar to that of Proposition 2. Given any sample size n, the
sender has an incentive to increase k, because this choice is unobserved. But, in equilib-
rium, the evaluator correctly anticipates this incentive. Thus, from the perspective of the
sender the additional presampling costs are partly wasted.19 As presample costs become
very small, the sender sets an arbitrarily large presample size, which by UHR benefits the
evaluator even when n = 1. Thus, by delegating presampling the evaluator saves on sam-
pling costs, effectively passing the cost of information to the sender. Besides proving the
proposition, Appendix B.3 shows that an equilibrium always exists if we allow presample
size to be any real number k and CP(k) is convex.

Blocking Unraveling. Finally, can the evaluator benefit by fully delegating the exper-
iment to the sender? In a full delegation game, the sender either privately or publicly
chooses k ≥ 1 at cost CP(k), observes a presample of k draws, and selects from the pre-
sample a sample of any size n ∈ {1� � � � �k}. The evaluator pays CS(n), observes the n
selected draws, and acts. In an unraveling Bayesian equilibrium of a full delegation game,
the evaluator behaves as if the sender discloses the whole presample.

PROPOSITION 4: Assume that CS(n) is strictly increasing, CP(k) is convex and unbounded,
and F(x|θ) = F(x − θ) satisfies UHR. There exist c > 0 and k̄ > 1 such that if CP(k̄) ≤
c then in every Bayes Nash equilibrium of the delegated presampling game with n = 1 the
evaluator obtains a higher payoff than in every unraveling equilibrium of the full delegation
game.

The logic of the result is similar to Proposition 3. In an unraveling equilibrium, the
evaluator gets to see the entire presample—a random experiment, but this time a random

19With Gumbel noise presampling is pure waste. Selection only shifts the noise distribution by a constant,
so the equilibrium distribution over states and actions and hence both parties’ gross payoff are the same as in
the random experiment with equal sample size. Since inference is neutral to selection, presampling costs are
completely wasted.
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experiment with sample size chosen by the sender. Due to the sender’s lack of commit-
ment not to disclose all data, in the full delegation game the evaluator ends up bearing
a possibly large sample cost. Thus, the evaluator values commitment to receive only a
limited amount of data. When presampling costs are sufficiently small, committing to a
fixed sample size strengthens the sender incentive to collect enough presample data. It
is therefore optimal for the evaluator to block unraveling. The evaluator does not get to
see the entire presample, but this is better than seeing a whole but more expensive and
possibly smaller presample.

Contribution to Literature on Strategic Data Selection. Blackwell and Hodges (1957)
analyzed how an evaluator should optimally design a sequential experiment to minimize
selection bias, a term they coined to represent the fraction of times a strategic researcher
is able to correctly forecast the treatment assignment. Without modeling the information
available to the researcher at the assignment stage, they posited that selection harms the
evaluator—our analysis challenges this presumption.

In a complementary approach, Chassang, Padró i Miquel, and Snowberg (2012) char-
acterized the design of experiments when outcomes are affected by unobserved actions by
experimental subjects, rather than researchers. Kasy (2016) showed how deterministic as-
signment rules improve inference over randomization conditional on covariates. Tetenov
(2016) analyzed an evaluator’s optimal commitment to a decision rule when privately in-
formed researchers select into costly testing. Banerjee et al. (2020) analyzed experiment
design by an ambiguity-averse researcher facing an adversarial evaluator.

More closely, our work relates to the literature on voluntary disclosure and the wel-
fare comparison to mandatory disclosure; see Matthews and Postlewaite (1985), Dahm,
González, and Porteiro (2009), Henry (2009), Polinsky and Shavell (2012), Felgenhauer
and Schulte (2014), Henry and Ottaviani (2019), and Herresthal (2017). In the earliest
precursor to our modeling approach, Fishman and Hagerty (1990) analyzed selective dis-
closure in a setting with two states, binary signals, and sample size n = 1.20 The implica-
tions we derive for the design of selected experiments hinge on our novel characterization
of the impact of hidden data on the informativeness of the disclosed evidence.

6. OTHER FORMS OF SELECTION

Maximal (or minimal) selection is but one instance of lack of randomness in a statistical
sample. In this section, we discuss other forms of selection.

6.1. Truncation

One type of selection that is often relevant involves independent observations from a
truncated distribution. Here, we review this kind of selection and contrast it with the form
of selection analyzed earlier. Given a random variable X with distribution F(·|θ) and
density f (·|θ) satisfying MLR, and given two truncation points −∞ ≤ a < b < ∞, define
the left-truncated variables Ya :=X|X ≥ a and Yb :=X|X ≥ b. Similarly, define the right-
truncated variables Wa := X|X ≤ a and Wb := X|X ≤ b. By variants of the arguments
used in the proof of Theorem 2, we obtain the following.

20Di Tillio, Ottaviani, and Sørensen (2017) compared different types of selection in the potential outcome
framework for an illustrative model with binary noise(violating the logconcavity assumption maintained in
this paper). Hoffmann, Inderst, and Ottaviani (2020) analyzed selective disclosure of a single realization of
a continuous variable when the evaluator payoff is equal to the sum of two i.i.d. realizations from the same
variable (and thus the state is two-dimensional, rather than one-dimensional as in the model considered here).
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THEOREM 4: If the hazard rate f (x|θ)/[1 − F(x|θ)] is log-supermodular, then more left-
truncation decreases welfare: U(Yb) ≤ U(Ya). If the reverse hazard rate f (x|θ)/F(x|θ) is
log-supermodular, then more right-truncation decreases welfare: U(Wa)≤U(Wb).

Goel and DeGroot (1992) proved Theorem 4 for UHR distributions and monotone
preferences. Their proof relies on UHR, which our different proof strategy shows to be
inessential. Our result also applies more generally to IDO preferences. Meyer (2017)
proved a related result and applies it to the comparison of the performance of sequential
and simultaneous assignment protocols.

Theorem 4 compares unidimensional experiments. The extension to an arbitrary num-
ber of independent observations, with exogenous and possibly observation-specific trun-
cation points, is immediate. This is because combining more accurate mutually inde-
pendent experiments results in a more accurate experiment: if two families X(t) and
X ′(t) are both ordered by accuracy and X(t) is independent of X ′(t) for every t, then
(X(t)�X ′(t)) is also ordered by accuracy.

Truncation vs Maximal and Minimal Selection. Like maximal selection, left-truncation
moves probability mass toward the upper tail of the distribution. Similarly, minimal se-
lection as well as right truncation move mass toward the lower tail. However, Theo-
rem 4 shows that in terms of welfare the right analogy to make is different. More right-
truncation (from Wb to Wa) harms when the reverse hazard rate is log-supermodular, so its
effect is analogous to less maximal selection (Theorem 1). Similarly, more left-truncation
(from Ya to Yb) harms when the hazard rate is log-supermodular, so its impact is anal-
ogous to less minimal selection. The welfare consequences are strikingly different. With
normal or logistic noise, hazard rate and reverse hazard rate are both logconcave, so both
more maximal and more minimal selection are beneficial (Corollary 1). However, more
truncation harms both ways: Yb and Wa are respectively worse than Ya and Wb.

6.2. Median Selection

Finally, we extend our analysis of selection in a new direction, considering central rather
than maximal or minimal selection. Call median selected an experiment with sample size
n = 1 where the evaluator observes the rth highest of k random draws from a distribution
F(·|θ), where k is odd and r = (k + 1)/2. This is the random variable with cumulative
distribution function given by

F̂(·|θ) =
k∑
i=r

(
k
i

)
Fi(·|θ)[1 − F(·|θ)]k−i

�

THEOREM 5: (a) If the hazard rate f (·|θ)/[1 − F(·|θ)] and the reverse hazard rate
f (·|θ)/F(·|θ) are both log-supermodular, then median selection increases welfare over a ran-
dom experiment in every monotone problem. (b) A random experiment cannot increase wel-
fare over a median selected experiment in every simple hypothesis testing problem.

Thus, median selection is beneficial when both maximal and minimal selection are ben-
eficial. But without any assumptions on the hazard rates (other than MLR, assumed
throughout), a random experiment cannot be more accurate than a median selected
experiment—another manifestation of the fundamental asymmetry between beneficial
and harmful selection highlighted earlier.
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Peremptory Challenge. The common-law right of peremptory challenge allows the at-
torneys on each side of a trial to reject a certain number of jurors. Consider a judge
who must order a sentence based on the opinion of one juror. The judge knows that
conditional on the defendant’s level of guilt θ the jurors’ estimates are independently
distributed according to F(·|θ).21 The prosecuting attorney—desiring the judge to take
higher actions—and the defense attorney—desiring the judge to take smaller actions—
have the right to strike down (k − 1)/2 jurors each from an initial set of k jurors. Both
attorneys anticipate each juror’s opinion of the defendant’s level of guilt. Proposition 0
immediately generalizes to this two-sender setup: as long as the judge adopts a monotone
strategy, the prosecuting attorney will strike down the (k − 1)/2 jurors with the lower
opinions, while the defense attorney will strike down the (k− 1)/2 jurors with the higher
opinions. This immediately follows from the fact that, given any strategy of the defense
(prosecuting) attorney, by eliminating the jurors with the highest (lowest) opinions the
prosecuting (defense) attorney induces a first-order stochastic dominance increase (de-
crease) in the realization observed by the judge. Thus, peremptory challenge leads the
judge to decide based on the opinion of the median juror. Theorem 5 provides a prior-free
criterion to assess whether peremptory challenge provides the judge with more accurate
information, relative to a randomly chosen juror.

6.3. Noisy Selection

The results obtained so far assume that selection occurs directly on the variable ob-
served by the evaluator. In some applications, it is natural to consider also a more general
setup, where selection operates indirectly through a concomitant variable unobserved by
the evaluator. Focusing on location experiments, here we assume the evaluator observes
Xi = θ + εi but selection occurs on the concomitant variable Yi = θ + δi. Thus, the eval-
uator observes Xi when Yi ranks among the n highest in a presample of k units—for
concreteness, imagine the evaluator observing the weight of the n tallest in a group of
k> n individuals.

In order to investigate the impact of selection in this more general setup, we must spec-
ify a model relating the concomitant noise terms δi and the noise terms εi. We posit a
linear model εi = cδi + γi with c > 0 and we assume that δ1� � � � � δk are i.i.d. draws from
Fδ, while the added noise terms γ1� � � � � γk are independent of δ1� � � � � δk and identically
(not necessarily independently) drawn from Fγ . Note that if c = 0 then Xi depends on Yi

only through θ, and hence selection is clearly irrelevant—the further dependence added
through noise (c �= 0) is necessary for selection to have impact.22 With c = 1 and Fγ de-
generate at γ = 0, we recover our baseline setup.

Unidimensional Experiments. The conclusion of Theorem 1 extends seamlessly. If the
added noise density is logconcave, maximal selection benefits or harms under the same
conditions, applied to the concomitant noise distribution.

21There are few formal analyses of peremptory challenge in law and economics. Flanagan (2015) discussed
how peremptory challenges necessarily increase the probability of biased juries or affect the expected convic-
tion rate. Schwartz and Schwartz (1996) used a spatial model to highlight the role of peremptory challenge in
eliminating jurors with extreme preferences. Earlier analyses of peremptory challenge appear in Brams and
Davis (1978) and in Roth, Kadane, and DeGroot (1977) and DeGroot and Kadane (1980), who analyze op-
timal strategies for sequential processes of elimination. In all these models, jurors’ opinions are uncorrelated
with and hence uninformative about guilt, that is, in the language of this paper, F(·|θ) does not depend on θ.

22The assumption c > 0 is without loss; the case c < 0 is covered by redefining δi to be −δi , with distribution
1 − Fδ(−δi).
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PROPOSITION 5: Assume that the added noise distribution Fγ has a logconcave density.
Fixing sample size to n = 1, an increase in presample size increases (decreases) welfare if the
concomitant noise reverse hazard function − logFδ(·) is logconcave (logconvex).

The proof of the proposition exploits the equivalence between accuracy and dispersion
in unidimensional location experiments (Lehmann (1988)). As shown in the proof of The-
orem 1, when − logFδ(·) is logconcave (logconvex) a larger presample size reduces (in-
creases) dispersion in the location experiment with noise distribution Fδ. The dispersive
order is closed under multiplication by a constant and convolution with an independent
variable having a logconcave density (Lewis and Thompson (1981)). Since the added noise
is independent of concomitant noise and identically distributed across the presample, a
larger presample size will also reduce (increase) dispersion in the experiment actually
observed by the evaluator.

Multidimensional Experiments. Extending the conclusion of Corollary 1 is consider-
ably more complicated. Even though the noise terms γ1� � � � � γk are identically distributed,
their variation can make the sample units’ ranking in terms of δ values different from their
ranking in terms of ε values—an issue that cannot arise in a unidimensional experiment.
Assuming a presample-wide common value γ1 = · · · = γk eliminates this variation, allow-
ing us to extend Corollary 1.

PROPOSITION 6: Assume the added noise distribution Fγ has a logconcave density and
γ1 = · · · = γk. For fixed sample size n ≥ 1, an increase in presample size increases (decreases)
welfare if the concomitant noise reverse hazard rate fδ(·)/Fδ(·) is logconcave (logconvex, with
support of fδ unbounded above).

The proof of this result is based on a simple intuition. No matter how large n or k are, or
how little the dispersion of Fδ is, all the evaluator can hope to learn about is θ+γ1 rather
than θ. Considering the auxiliary problem where the state is θ+ γ1, the conditions in the
theorem characterize when a more selected experiment is more or less informative in that
problem (Corollary 1, plus the fact that the reverse hazard rate of a linear transformation
of a random variable with logconcave reverse hazard rate is again logconcave). Since Fγ

has a logconcave density, the state θ + γ1 in the auxiliary problem is in turn informative
about the state θ in the original problem, so the same conditions characterize the impact
of selection in the original model, too.

Noisy Delegated Selection. Proposition 0 also extends to the setup of this section. Con-
sider the noisy delegated selection game: the sender privately observes Yi = θ + δi for
each unit i in a set of k units and on this basis selects n units; the evaluator observes
Xi = θ+ εi = θ+ cδ+γi for each selected unit and takes an action. Assuming that γi has
a logconcave density, in this game there is a Bayes Nash equilibrium in which the sender
selects the n units with the largest Y values, and the evaluator’s strategy is monotone in
the observed X values. Maximal selection on Y is in turn a best response for the sender—
compared to any other strategy, it induces a first-order stochastic dominance increase in
the X values observed by the evaluator.

Examinee Choice and Researcher Bias With Noise. Pushing our strategic applications
in a natural direction, the results in this section cover realistic cases in which sender and
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evaluator have asymmetric information: the sender observes (and selects sample units
based on) a variable Y , the evaluator observes X for the selected units. To illustrate this
extension in the examinee choice setting, suppose that if candidate ability is θ then, ex
ante, examiner and candidate view the performance in any given question i as normal
random variables Xi = θ + εe�i and Yi = θ + δi, respectively. Let σ2

ε and σ2
δ denote the

variances of εi and δi, and ρ their correlation coefficient. Letting c = ρσε/σδ denote the
coefficient of the regression of ε on δ, and γi = εi − cδi the corresponding error term
(which is orthogonal to δi), we have εi = cδi + γi, as posited in our model. Note that
while we call γi an added noise term, the precision of the evaluator observations also
depends on c. In the examinee choice example, suppose Xi and Yi are imperfect signals
of the candidate true performance Zi = θ + ηi so that εi = ηi + ε̃i and δi = ηi + δ̃i. The
candidate observes the true performance more or less well than the evaluator according
to whether c < ρ or c > ρ.

Noisy Median Selection. Suppose that the evaluator observes Xi for the unit i with the
rth highest value of Y in a presample of k = 2r+1 units. By the arguments in the proof of
Theorem 5 and again by Lewis and Thompson’s (1981) result, this experiment improves
welfare over a random experiment when the concomitant noise has both a logconcave
hazard rate fδ(·)/[1 −Fδ(·)] and a logconcave reverse hazard rate fδ(·)/Fδ(·). Thus, The-
orem 5 also generalizes (for location type signals) to the model of this section. This result
covers, for example, peremptory challenge scenarios in which lawyers have private infor-
mation about juror bias but are less or more informed than the judge about how the juror
will vote.

6.4. Uncertain Selection and Beyond

Our analysis assumes that the evaluator knows the presample size. In more realistic
scenarios, the evaluator may be uncertain about presample size or even fail to anticipate
any selection.

Uncertain Selection. In some settings, assuming the evaluator is uncertain about pre-
sample size k may be natural. For instance, uncertainty arises with strategic sample selec-
tion when the evaluator does not know precisely the sender’s preferences. Our results on
beneficial selection are robust to small amounts of uncertainty—the evaluator can behave
as if k is known, and expected payoffs are continuous in k. But more sizeable uncertainty
tends to harm the evaluator, an important caveat. This is particularly evident in a loca-
tion experiment with Gumbel noise; anticipated selection leaves the evaluator indifferent,
so any uncertainty on k makes the evaluator strictly worse off. A characterization of the
impact of uncertain selection remains an open problem.

Unanticipated Selection. Consider an unwary evaluator who wrongly anticipates a
smaller presample size than true. This evaluator is clearly worse off than a rational evalua-
tor. More interestingly, if a rational evaluator benefits from selection then it is ambiguous
whether the unwary evaluator gains or loses when the true presample size is larger than
expected. Consider simple hypothesis testing with noise distribution F symmetric around
zero, so that F(ε) = 1 − F(−ε). Let x̄ be the optimal acceptance cutoff when k = 1. Se-
lection with k = 2 changes the welfare of an unwary evaluator who maintains the cutoff
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at x̄ as follows:

− q(θL)
[
F(x̄− θL)− F 2(x̄− θL)

]
︸ ︷︷ ︸

increase in false positives

[
u(θL�a1)− u(θL�a2)

]

+ q(θH)[F(x̄− θH)− F 2(x̄− θH))︸ ︷︷ ︸
reduction in false negatives

[
u(θH�a2)− u(θH�a1)

]
� (8)

In the important benchmark case of equipoise, the evaluator is a priori indifferent be-
tween accepting and rejecting, that is, q(θL)[u(θL�a1) − u(θL�a2)] = q(θL)[u(θH�a2) −
u(θH�a1)], and hence x̄ = (θL + θH)/2. By symmetry, F(x̄− θL)+ F(x̄− θH) = 1, so the
loss from the increase in false positives exactly offsets the gain from the reduction in false
negatives—the expression in (8) is zero, so the unwary evaluator is indifferent between
no selection and selection with k = 2. In fact, the first-order derivative of the expression
in (8) with respect to x̄ is positive at x̄ = (θL + θH)/2, so the unwary evaluator strictly
benefits from selection when x̄ is slightly above (θL + θH)/2, that is, when the evaluator
would reject at the prior. Going beyond this example, it is easy to see that the impact
of selection on an unwary evaluator can be also negative. For example, as k → ∞ the
unwary evaluator accepts with probability converging to one—with payoff converging to
q(θL)u(θL�a2)+ q(θH)u(θH�a2), at most equal to the no-information payoff.

APPENDIX A: ACCURACY AND WELFARE

In this Appendix, we prove Theorem 0 and provide an extension of the result to the
continuous-action case. The case of preferences satisfying Karlin and Rubin’s (1956)
monotonicity affords us a much simpler argument, so we find it instructive to start with
an independent proof for this case. After discussing the difficulty with single-crossing
and IDO preferences we provide a proof for the general IDO case. Both proofs rely on
Lemma 3 below.

Before proceeding to Lemma 3, we need to establish two preliminary results.

LEMMA 1: Fix an experiment X and for every state θ, let S̄(X|θ) denote the smallest upper
set containing S(X|θ). Then S̄(X|θ) is decreasing in θ.23

PROOF: Suppose by contradiction that for some θ′ > θ and x ∈ S̄(X|θ′) we have x /∈
S̄(X|θ). By definition of S̄(X|θ′), there exists x′ ∈ S(X|θ′) such that x � x′. Note that
since S̄(X|θ) is an upper set and x /∈ S̄(X|θ), we also have x′ /∈ S̄(X|θ). Now pick any x′′ ∈
S(X|θ). Since x′ ∧ x′′ � x′ and x′ /∈ S̄(X|θ), it follows that x′ ∧ x′′ /∈ S(X|θ), that is, g(x′ ∧
x′′|θ)= 0.24 The LR ordering of X with respect to the state now gives the contradiction:

g
(
x′ ∧ x′′|θ)

︸ ︷︷ ︸
=0

g
(
x′ ∨ x′′|θ′) ≥ g

(
x′′|θ)

︸ ︷︷ ︸
>0

g
(
x′|θ′)︸ ︷︷ ︸
>0

�

Q.E.D.

In what follows, we write S(X|> θ) as an abbreviation for
⋃

θ′>θ S(X|θ′).

LEMMA 2: Given any experiment X , the set S(X|> θ) \ S(X|θ) is decreasing in θ.

23In the statements of Lemmas 1, 2, and 3, the decrease is in the sense of set inclusion.
24Recall the notation x∨ x′ = (max{x1�x

′
1}� � � � �max{xn�x

′
n}) and x∧ x′ = (min{x1�x

′
1}� � � � �min{xn�x

′
n}).
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PROOF: Suppose by contradiction that for some θ′ > θ and x ∈ S(X| > θ′) \ S(X|θ′)
we have x /∈ S(X|> θ) \ S(X|θ). Then x /∈ S(X|θ′), and there exists θ′′ > θ′ such that x ∈
S(X|θ)∩ S(X|θ′′). Observe that x ∈ S(X|θ) and x /∈ S(X|θ′) together imply x /∈ S̄(X|θ′).
To see why, suppose that x ∈ S̄(X|θ′). Then there exists x′ ∈ S(X|θ′) such that x � x′.
Thus, by the LR ordering of X ,

g
(
x∨ x′|θ′)︸ ︷︷ ︸
=g(x|θ′)=0

g
(
x∧ x′|θ) ≥ g(x|θ)︸ ︷︷ ︸

>0

g
(
x′|θ′)︸ ︷︷ ︸
>0

�

a contradiction. Since x /∈ S̄(X|θ′) and θ′′ > θ′, we conclude by Lemma 1 that x /∈ S̄(X|θ′′),
contradicting our earlier assumption that x ∈ S(X|θ′′). Q.E.D.

LEMMA 3: If a family of experiments X(t) is ordered by accuracy and E is an upper set,
then for all t > s the set Ẽ(θ) = ϕ−1

θ (E ∩ S(X(s)|θ)) ∪ (S(X(t)| > θ) \ S(X(t)|θ)) is de-
creasing in θ.

PROOF: Fix two states θ′ > θ. For brevity, write X and Y instead of X(s) and X(t),
respectively. We must show that

ϕ−1
θ′

(
E ∩ S

(
X|θ′)) ∪ (

S
(
Y | > θ′) \ S(

Y |θ′)) ⊆ ϕ−1
θ

(
E ∩ S(X|θ)) ∪ (

S(Y | > θ) \ S(Y |θ))�
By Lemma 2, (S(Y | > θ′) \ S(Y |θ′))⊆ (S(Y | > θ) \ S(Y |θ)). Thus, it suffices to prove

ϕ−1
θ′

(
E ∩ S

(
X|θ′)) ⊆ ϕ−1

θ

(
E ∩ S(X|θ)) ∪ (

S(Y | > θ) \ S(Y |θ))�
But the range of ϕ−1

θ′ (·) is S(Y |θ′), and S(Y |θ′)⊆ S(Y | > θ). The above inclusion is there-
fore equivalent to the following:

ϕ−1
θ′

(
E ∩ S

(
X|θ′)) ∩ S(Y |θ) ⊆ ϕ−1

θ

(
E ∩ S(X|θ))�

Fix any x′ ∈ E ∩ S(X|θ′), let y = ϕ−1
θ′ (x′), and suppose that y ∈ S(Y |θ). Note that

y ∈ S(Y |θ′) by definition. We have to prove that there exists x ∈ E ∩ S(X|θ) such that
ϕ−1

θ (x)= y . Let x = ϕθ(y), which is a well-defined element of S(X|θ) because y ∈ S(Y |θ).
Then x = ϕθ(y) � ϕθ′(y) = x′, where the inequality follows from the order by accuracy,
given that y ∈ S(Y |θ)∩ S(Y |θ′). Since E is an upper set and x′ ∈ E, we are done. Q.E.D.

A.1. Monotone Preferences

Recall that preferences are monotone in the sense of Karlin and Rubin (1956) if there
exist states θ1 ≤ · · · ≤ θJ−1 such that for every j < J the difference u(θ�aj+1)− u(θ�aj) is
nonpositive for θ ≤ θj and nonnegative for θ ≥ θj .

PROOF OF THEOREM 0—MONOTONE PREFERENCES: Let X(t) be a family of experi-
ments ordered by accuracy. Fix s < t, let (E1� � � � �EJ) be the evaluator’s optimal partition
of Rn for experiment X(s), and Ēj := Ej ∪ · · ·EJ . The evaluator welfare is

∫
Θ

∑
j<J

Prθ
(
X(s) ∈ Ēj+1

)[
u(θ�aj+1)− u(θ�aj)

]
dQ(θ)�
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To prove the result, it suffices to exhibit nested sets E′
2 ⊇ · · · ⊇ E′

J such that, for every j < J
and every state θ, the difference

Prθ
(
X(t) ∈ E′

j+1

) − Prθ
(
X(s) ∈ Ēj+1

)
(9)

is nonpositive for θ ≤ θj and nonnegative for θ > θj . Indeed, this implies that the evalu-
ator can achieve a higher expected payoff in experiment X(t) by adopting the following
strategy: choose a1 when X(t) /∈ E′

2, choose a2 when X(t) ∈ E′
2 \E′

3, and so on. For every
j < J and state θ define

Ẽj+1(θ) = ϕ−1
θ

(
Ēj+1 ∩ S

(
X(s)|θ)) ∪ (

S
(
X(t)|> θ

) \ S(
X(t)|θ))

�

Let E′
j+1 = Ẽj+1(θj) for every j < J. Since Ēj+1 is decreasing in j, Ẽj+1(θ) is decreasing in

j and, by Lemma 3, also decreasing in θ. Thus, E′
2 ⊇ · · · ⊇ E′

J . Moreover,

Prθ
(
X(s) ∈ Ēj+1

) = Prθ
(
X(t) ∈ ϕ−1

θ

(
Ēj+1 ∩ S

(
X(s)|θ)))

= Prθ
(
X(t) ∈ Ẽj+1(θ)

)
�

where the first equality follows from the fact that ϕθ(X(t)) and X(s) have the same
distribution in state θ, and the second from the definition of Ẽj+1(θ) and the fact that
S(X(t)|θ) is the interior of the support of X(t) in state θ, so that Prθ(X(t) ∈ S(X(t)| >
θ) \ S(X(t)|θ))= 0. Thus, we can rewrite (9) as

Prθ
(
X(t) ∈ Ẽj+1(θj)

) − Prθ
(
X(t) ∈ Ẽj+1(θ)

)
�

For θ ≤ θj , the difference is nonpositive, because in this case Ẽj+1(θj) ⊆ Ẽj+1(θ). For
θ > θj , it is nonnegative, because then Ẽj+1(θj)⊇ Ẽj+1(θj). Q.E.D.

Note that the above proof does not use the fact that t is a continuous parameter. The
family of experiments X(t) could be indexed in an arbitrary ordered set T rather than the
interval [0�1]. This fact is used in the proof of Theorem 5 in Appendix B.5.

A.2. IDO Preferences

The above proof does not extend immediately to IDO preferences or even only single-
crossing preferences. The IDO property does imply that the difference u(θ�aj+1) −
u(θ�aj) exhibits single crossing, but does not require the crossing points θj to be increas-
ing in j. This makes the sets Ē′

2� � � � � Ē
′
J nonnested, and hence the proposed strategy for

experiment X(t) ill-defined.
To deal with this difficulty, we adopt a different strategy of proof, similar in spirit to

the argument used by Jewitt (2007) for single-crossing preferences and unidimensional
experiments. Our proof hinges on a crucial observation: any action aj such that the cross-
ing points θj and θj−1 are not ordered in Karlin and Rubin’s (1956) sense (i.e., such that
θj < θj−1) can be removed from the action set without affecting IDO. In particular, we can
remove any such action that, in addition, is not used under the optimal strategy, without
affecting the evaluator’s welfare, either.

Besides Lemma 3, the proof of the theorem uses the following.
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LEMMA 4: Fix a family of experiments X(t), a state θ, two indices s, t, and an upper
set E. Define Ẽ(θ) as in Lemma 3. Fix any x<n ∈ R

n−1. Then the section of Ẽ(θ) corre-
sponding to x<n, namely the set {x′ ∈ Ẽ(θ) : x′

<n = x<n}, is an upper set relative to the sec-
tion of

⋃
θ′∈Θ S(X(t)|θ′) corresponding to x<n, namely the set {x′ ∈ R

n : x′
<n = x<n and x′ ∈

S(X(t)|θ′) for some θ′ ∈ Θ}.

PROOF: Fix any xn ∈ R such that x = (x<n�xn) ∈ Ẽ(θ) and any x′
n > xn such that x′ =

(x<n�x
′
n) ∈ S(X(t)|θ′) for some state θ′. We have to prove that x′ ∈ Ẽ(θ). We distinguish

three cases:
Case 1: x′ ∈ S(X(t)|θ) and x ∈ S(X(t)|θ). In this case, ϕθ(x) and ϕθ(x

′) are both well-
defined and, moreover, ϕθ(x) ∈ E ∩ S(X(s)|θ) and ϕθ(x

′) ∈ S(X(s)|θ). Since x′ � x and
x′
<n = x<n, and given x<n the last coordinate of ϕθ is a strictly increasing function on

S(Xn(t)|θ�x<n), we conclude that ϕθ(x
′)� ϕθ(x). But E is an upper set and ϕθ(x) ∈ E, so

we must also have ϕθ(x
′) ∈E. We conclude that ϕθ(x

′) ∈ E∩S(X(s)|θ), that is, x′ ∈ Ẽ(θ).
Case 2: x′ ∈ S(X(t)|θ) and x ∈ S(X(t)| > θ) \ S(X(t)|θ). This case cannot arise, be-

cause x′ � x, the LR ordering of X(t), and x ∈ S(X(t)|θ′) for some θ′ > θ together give
the contradiction

g(x|θ)︸ ︷︷ ︸
=0

g
(
x′|θ′) ≥ g

(
x|θ′)︸ ︷︷ ︸
>0

g
(
x′|θ)

︸ ︷︷ ︸
>0

�

Case 3: x′ /∈ S(X(t)|θ). In this case, we must have x′ ∈ S(X(t)| > θ). Indeed, if x′ /∈
S(X(t)|θ) ∪ S(X(t)| > θ) then x′ ∈ S(X(t)|θ′) for some θ′ < θ. But x ∈ S(X(t)|θ) ∪
S(X(t)|> θ), so for some θ′′ ≥ θ the LR ordering of X(t) gives the contradiction

g
(
x′|θ′′)︸ ︷︷ ︸
=0

g
(
x|θ′) ≥ g

(
x|θ′′)︸ ︷︷ ︸
>0

g
(
x′|θ′)︸ ︷︷ ︸
>0

�

Q.E.D.

PROOF OF THEOREM 0—IDO PREFERENCES: Let {Et
1� � � � �E

t
J} be the optimal parti-

tion of Rn for experiment X(t), with Ēt
j = Et

j ∪ · · · ∪ Et
J an upper set for all 1 < j ≤ J,

and action aj chosen when X(t) ∈ Et
j . Let Prθ(t� ·) denote the measure on R

n induced by
X(t). The evaluator welfare is

U
(
X(t)

) =
∫
Θ

∑
j<J

Prθ
(
t� Ēt

j+1

)[
u(θ�aj+1)− u(θ�aj)

]
dQ(θ)�

Now take any t and u > t in [0�1]. Applying Theorem 2 in Milgrom and Segal (2002), we
obtain

U
(
X(u)

) −U
(
X(t)

) =
∫ u

t

∫
Θ

∑
j<J

∂Prθ
(
s� Ēs

j+1

)
∂t

[
u(θ�aj+1)− u(θ�aj)

]
dQ(θ)ds� (10)

and we have to show that the expression in (10) is nonnegative. We do this in four steps.
Step 1—Use IDO to rewrite the payoff difference. We start by rewriting, for each s, the

summation inside the integral in (10), as follows. Recall that, by IDO, for every 1 ≤ j < J
there exists a state θj such that the difference u(θ�aj+1)−u(θ�aj) is nonpositive for θ ≤ θj

and nonnegative for θ ≥ θj . An immediate consequence of this observation is that for any
1 < j < J such that θj < θj−1, action aj can be removed from A without affecting the IDO
property: letting ũ : Θ × A \ {aj} → R be the restriction of u to Θ × A \ {aj}, the family
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{ũ(θ� ·)}θ∈Θ is again IDO. By using this fact (repeatedly, if necessary) together with the
fact that Ēs

j+1 = Ēs
j when Es

j = ∅, we conclude that for every s there exists a list of indices
1 ≤ j(s�1) < · · · < j(s� Is) ≤ J of some length Is ≤ J, and a list of states θs

1� � � � � θ
s
Is−1, with

the following properties. First,

U
(
X(u)

) −U
(
X(t)

) =
∫ u

t

∫
Θ

∑
i<Is

∂Prθ
(
s� Ēs

j(s�i+1)

)
∂t

× [
u(θ�aj(s�i+1))− u(θ�aj(s�i))

]
dQ(θ)ds� (11)

Second, for every state θ and 1 ≤ i < Is,

u(θ�aj(s�i+1))− u(θ�aj(s�i))≶ 0 if θ≶ θs
i � (12)

Third, for every 1 ≤ i < Is − 1,

θs
i+1 ≥ θs

i if Es
j(s�i+1) = ∅� (13)

Step 2—Use order by accuracy to set a lower bound on the payoff difference. For every
θ� s�δ > 0, and i < Is, define

Ẽs
i+1(θ�δ) = ϕ−1

θ

(
Ēs

j(s�i+1) ∩ S
(
X(s − δ)|θ)) ∪ (

S
(
X(s)|> θ

) \ S(
X(s)|θ))

�

By construction, Prθ(s − δ� Ēs
j(s�i+1)) = Prθ(s� Ẽs

i+1(θ�δ)), and by Lemma 3, Ẽs
i+1(θ�δ) is

decreasing in θ. It follows that

∂Prθ
(
s� Ēs

j(s�i+1)

)
∂t

= lim
δ→0

Prθ
(
s� Ēs

j(s�i+1)

) − Prθ
(
s − δ� Ēs

j(s�i+1)

)
δ

= lim
δ→0

Prθ
(
s� Ēs

j(s�i+1)

) − Prθ
(
s� Ẽs

i+1(θ�δ)
)

δ

≶ lim
δ→0

Prθ
(
s� Ēs

j(s�i+1)

) − Prθ
(
s� Ẽs

i+1

(
θs
i � δ

))
δ

for θ≶ θs
i � (14)

Let Ls
i(θ) denote the right-hand side of (14). From (11), (12), and (14), we obtain

U
(
X(u)

) −U
(
X(t)

) ≥
∫ u

t

∑
i<Is

∫
Θ

Ls
i (θ)

[
u(θ�aj(s�i+1))− u(θ�aj(s�i))

]
dQ(θ)ds� (15)

Step 3—Rewrite the lower bound. In this and the next step, we prove that, for every s,

∑
i<Is

∫
Θ

Ls
i (θ)

[
u(θ�aj(s�i+1))− u(θ�aj(s�i))

]
dQ(θ)≥ 0� (16)

The result will then follow from (15) and (16). First, note that, since Ēs
j(s�i+1) is an upper

set, for some function x̄s
n :Rn−1 → R∪ {−∞�+∞} we have

Prθ
(
s� Ēs

j(s�i+1)

) =
∫
Rn−1

g<n(s�x<n|θ)
[
1 −Gn

(
s� x̄s

n(x<n)|θ�x<n

)]
dx<n�
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where g<n(s� ·|θ) is the density of (X1(s)� � � � �Xn−1(s)) in state θ. Similarly, by Lemma 4,
for every i < Is, δ > 0 and x<n ∈R

n−1 there is a function x̄s
n�i(δ� ·) :Rn−1 →R∪{−∞�+∞}

such that

Prθ
(
s� Ēs

i+1(θ�δ)
) =

∫
Rn−1

g<n(s�x<n|θ)
[
1 −Gn

(
s� x̄s

n�i(δ�x<n)|θ�x<n

)]
dx<n�

25

Thus,

lim
δ→0

Prθ
(
s� Ēs

j(s�i+1)

) − Prθ
(
s� Ēs

i+1(θ�δ)
)

δ

= lim
δ→0

Gn

(
s� x̄s

n(x<n)|θ�x<n

) −Gn

(
s� x̄s

n�i(x<n)|θ�x<n

)
δ

= lim
δ→0

Gn

(
s� x̄s

n(x<n)|θ�x<n

) −Gn

(
s� x̄s

n�i(δ�x<n)|θ�x<n

)
x̄s
n(x<n)− x̄s

n�i(δ�x<n)︸ ︷︷ ︸
=g(s�x<n�x̄

s
n(x<n)|θ)

× lim
δ→0

x̄n(x<n)− x̄s
n�i(δ�x<n)

δ︸ ︷︷ ︸
=:Ks

i (x<n)

�

It follows that

Ls
i(θ) =

∫
∂Ēs

j(s�i+1)

Ks
i (x<n)g(s�x<n�xn|θ)dxn dx<n�

where ∂Ēs
j(s�i+1) denotes the boundary of Ēs

j(s�i+1), and the expression in (16) can be written
as ∑

i<Is

∫
∂Ēj(s�i+1)

Ks
i (x<n)

∫
Θ

g(s�x<n�xn|θ)
[
u(θ�aj(s�i+1))− u(θ�aj(s�i))

]
dQ(θ)� (17)

Step 4—Show that the lower bound is nonnegative. Since for every i < Is and δ > 0 the set
Ēs

i+1(θ�δ) is decreasing in θ by Lemma 3, for each 1 ≤ i < Is−1 such that θs
i ≤ θs

i+1 we have
x̄s
n�i(δ�x<n) ≤ x̄s

n�i+1(δ�x<n), and hence Ks
i (x<n) ≥ Ks

i+1(x<n), for all x<n. Let i1 < · · · < iHs

denote the set of indices 1 ≤ i < Is such that Ej(s�i+1)(s) �= ∅. Then for every 1 ≤ h < Hs

and i ∈ {ih + 1� � � � � ih+1 − 1} we have Ēs
j(s�i) = Ēs

j(s�ih+1)
. Furthermore, at each point on the

boundary ∂Ēj(s�ih+1)(s) the expected payoff from action aj(s�ih+1) is at least as large as the
expected payoff from aj(s�i). Thus, using (13), for every 1 ≤ h<H(s) we have

∑
ih≤i<ih+1

∫
∂Ēj(s�i+1)

Ks
i (x<n)

∫
Θ

g(s�x<n�xn|θ)
[
u(θ�aj(s�i+1))− u(θ�aj(s�i))

]
dQ(θ)

≥
∫
∂Ēj(s�ih+1)

Ks
ih
(x<n)

∫
Θ

g(s�x<n�xn|θ)
[
u(θ�aj(s�ih+1))− u(θ�aj(s�ih))

]
dQ(θ)�

25The function x̄s
n is such that x<n 
→ inf{xn : (x<n�xn) ∈ Ēs

j(s�i+1)}, while x̄s
n�i(δ� ·) is such that

x<n 
→ min
{
inf

{
xn ∈R : (x<n�xn) ∈ ϕ−1

θsi �s−δ�s

(
E ∩ S

(
X(s − δ)|θ))}

�

inf
{
xn ∈R : (x<n�xn) ∈ S

(
Y(s)|> θ

) \ S(
Y(s)|θ)}}

�

In both cases, we adopt the usual convention that the infimum of the empty set is assumed to be +∞.
Our expressions use the obvious notation gn(−∞|θ�x<n) = gn(+∞|θ�x<n) = Gn(−∞|θ�x<n) = 0 and
Gn(+∞|θ�x<n)= 1.



942 A. DI TILLIO, M. OTTAVIANI, AND P. N. SØRENSEN

It follows that the expression in (17) is at least as large as

∑
h<Hs

∫
∂Ēj(s�ih+1)

Ks
ih
(x<n)

∫
Θ

g(s�x<n�xn|θ)
[
u(θ�aj(s�ih+1))− u(θ�aj(s�ih))

]
dQ(θ)�

Since Ej(s�ih) �= ∅ and Ej(s�ih+1) �= ∅ for every h < Hs, at each point on the boundary
∂Ēj(s�ih+1) the evaluator is indifferent between the actions aj(s�ih) and aj(s�ih+1). Thus, all
inner integrals, and hence all terms in the summation, are zero, and the proof is com-
plete. Q.E.D.

A.3. Continuous Actions

To deal with a continuous action set A, we make two assumptions. First, we assume pay-
offs are continuous and bounded below (e.g., nonnegative). Second, we impose regularity
on the family of functions {u(θ� ·)}θ∈Θ by assuming that the family of their restrictions to
every sufficiently large but finite subset of actions is also an IDO family. This assumption
is automatically satisfied with single-crossing or monotone preferences.26 Moreover, it al-
lows us to extend Theorem 0 by simply showing the following: for any fixed experiment
X , the constrained welfare the evaluator obtains when restricted to choosing from a finite
subset B of actions converges to the unconstrained welfare as B becomes large. We do
this next.

Let a(·) : Rn → A be the evaluator’s (unconstrained) optimal strategy. Let J = |B| and
denote by a1 < · · · < aJ the elements of B. Define aB : Rn → B for the restricted problem
as follows:

aB(x)= a1 if a(x)≤ a1� aB(x)= a2 if a1 < a(x) ≤ a2� � � � �

aB(x)= aJ if a(x) > aJ−1�

Then for every state θ, every B, and every b in B, we have

Prθ
(
aB(X) < b

) ≤ Prθ
(
a(X) < b

)
and Prθ

(
aB(X)≤ b

) = Prθ
(
a(X)≤ b

)
�

Thus, for every Θ′ ⊆Θ,∫
Θ′

Prθ
(
aB(x) < b

)
dQ(θ)≤

∫
Θ′

Prθ
(
a(x) < b

)
dQ(θ)

and ∫
Θ′

Prθ
(
aB(x) ≤ b

)
dQ(θ)=

∫
Θ′

Prθ
(
a(x)≤ b

)
dQ(θ)�

This implies that for every c in the union of the B’s we have

lim sup
B

∫
Θ′

Prθ
(
aB(x) < c

)
dQ(θ)≤

∫
Θ′

Prθ
(
a(x) < c

)
dQ(θ)

26In the continuous case, Karlin and Rubin’s (1956) monotonicity means that every function u(θ�a) is
(i) maximized at some a(θ) that is increasing in θ, and (ii) decreasing as a moves away from a(θ). Quah
and Strulovici (2009) referred to these preferences as quasi-concave with increasing peaks.
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and

lim inf
B

∫
Θ′

Prθ
(
aB(x) ≤ c

)
dQ(θ)=

∫
Θ′

Prθ
(
a(x) ≤ c

)
dQ(θ)�

Since Θ′ is arbitrary and we can replace c with any a in A (because the union of the B’s
is dense in A), we conclude that the probability measure on states and actions induced by
aB(·) converges weakly to that induced by a(·). Thus, lim infB EB(u)≥ E(u), where E and
EB are the expectations with respect to the measures on Θ × A induced by the optimal
and B-constrained optimal strategy, respectively. Since EB(u)≤ E(u) for every B, we are
done.

APPENDIX B: PROOFS

B.1. Maximal Selection

PROOF OF THEOREM 1: By Theorem 0 and Theorems 5.1 and 5.2 in Lehmann (1988),
it suffices to show that log(− logF) is concave (convex) if and only if for all real numbers
k >m the distribution Fk is less (more) dispersed than Fm, that is, for all εm and εk such
that Fk(εk)= Fm(εm),

mFm−1(εm)f (εm)≤ (≥)kFk−1(εk)f (εk)� (18)

Let λ(·) := log(− log(·)) and note that λ(Fk(·)) and λ(Fm(·)) only differ from λ(F(·)) by
a constant: λ(Fk(·))− logk= λ(Fm(·))− logm= λ(F(·)). Differentiating, we obtain

λ′(Fm(·))mFm−1(·)f (·)= λ′(Fk(·))kFk−1(·)f (·)= λ′(F(·))f (·)�
Thus, (18) is equivalent to

λ′(F(εm)
)
f (εm)

λ′(Fm(εm)
) ≤ (≥)

λ′(F(εk)
)
f (εk)

λ′(Fk(εk)
) �

Since Fk(εk) = Fm(εm) and λ(·) is strictly decreasing, the denominators are negative and
coincide, so the inequality is equivalent to λ′(F(εm))f (εm) ≥ (≤)λ′(F(εk))f (εk). This
holds for all εm and all real k > m if and only if λ(F(·)) is concave (convex), because
k>m implies εk ≥ εm. Q.E.D.

PROOF OF THEOREM 2: Fix two presample sizes k and m, and for every t ∈ [0�1] de-
note by X(t) the selected experiment with presample size kt := tk+ (1 − t)m. For every
state θ, let xθ and xθ, respectively, denote the upper bound and the lower bound of the
support of f (·|θ). Note that the support of X(t) in state θ does not depend on t. In par-
ticular, S(X(t)|θ) = {x ∈ R

n : xθ > x1 > · · · > xn > xθ} and, moreover, S(Xi(t)|θ�x<i) =
(xθ�xi−1) for every i > 1 and every x<i ∈ {(x1� � � � � xi−1) ∈ R

i−1 : xθ > x1 > · · ·> xi−1 > xθ}.
Fix two indices s < t and two states θ < θ′, and write ϕθ(x) = z and ϕθ′(x) = z′ for brevity.
Since the support of X1(t) in state θ does not depend on t, as x1 converges to xθ, so does
z1. Similarly, for every i = 2� � � � � n and every xi−1, as xi converges to xi−1, zi converges to
zi−1.

We must prove that under either condition in the theorem (k ≥ m and f (·|θ)/F(·|θ) is
log-supermodular, or m ≥ k and f (·|θ)/F(·|θ) is log-submodular with support of f (·|θ)
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independent of θ) for every x ∈ S(X(t)|θ) ∩ S(X(t)|θ′) we have the accuracy ordering
z′ � z, or equivalently

Fks
(
z1|θ′) ≥ Fks

(
z′

1|θ′) and Fks−i+1
(
zi|θ′) ≥ Fks−i+1

(
z′
i|θ′) for i = 2� � � � � n�

Plugging the definition of z′, we can rewrite these inequalities as

Fks
(
z1|θ′) ≥ Fkt

(
x1|θ′) and

Fks−i+1
(
zi|θ′)

Fks−i+1
(
z′
i−1|θ′) ≥ Fkt−i+1

(
xi|θ′)

Fkt−i+1
(
xi−1|θ′) for i = 2� � � � � n�

For every i = 2� � � � � n, if (z′
1� � � � � z

′
i−1) � (z1� � � � � zi−1) then the denominator of the left-

hand side of the second inequality becomes larger, and hence the left-hand side of the
inequality smaller, if we replace z′

i−1 with zi−1 (in other words, order statistics are CIS).
Rearranging terms, we conclude that it suffices to prove that

Fks
(
z1|θ′)

Fkt
(
x1|θ′) ≥ 1 and

Fks−i+1
(
zi|θ′)

Fkt−i+1
(
xi|θ′) ≥ Fks−i+1

(
zi−1|θ′)

Fkt−i+1
(
xi−1|θ′) for i = 2� � � � � n� (19)

Since x1 → xθ implies z1 → xθ, under either condition in the theorem as x1 → xθ the
left-hand side of the first inequality in (19) tends to a number no smaller than one. This
implies that the first inequality in (19) holds if the left-hand side of the inequality de-
creases with x1. Differentiating with respect to x1 and dropping the positive denominator
in the derivative, we need

ksF
ks−1

(
z1|θ′)f (

z1|θ′)dz1

dx1
Fkt

(
x1|θ′) ≤ ktF

kt−1
(
x1|θ′)f (

x1|θ′)Fks
(
z1|θ′)� (20)

By definition of z,

dz1

dx1
= ktF

kt−1(x1|θ)f (x1|θ)
ksF

ks−1(z1|θ)f (z1|θ) �

Plugging this expression in (20) and simplifying, the first inequality in (19) holds if

f
(
z1|θ′)/F(

z1|θ′)
f (z1|θ)/F(z1|θ) ≤ f

(
x1|θ′)/F(

x1|θ′)
f (x1|θ)/F(x1|θ) �

which in turn follows from log-supermodularity (log-submodularity) of the reverse hazard
rate when k ≥ m (resp., k ≤ m), because k ≥ m implies z1 ≤ x1 (resp., k ≤ m implies
z1 ≥ x1).

Take any i > 1 now. Recall that for every xi−1, as xi converges to xi−1, zi converges
to zi−1. Thus, as before, under either condition in the theorem the left-hand side of the
second inequality in (19) tends to a number no smaller than the right-hand side. The
second inequality in (19) then holds if its left-hand side decreases with xi. Differentiating
with respect to xi and simplifying,

f
(
zi|θ′)/F(

zi|θ′)
f (zi|θ)/F(zi|θ) ≤ f

(
xi|θ′)/F(

xi|θ′)
f (xi|θ)/F(xi|θ) �

which again follows from log-supermodularity (resp., log-submodularity) of the reverse
hazard rate when k ≥ m (resp., k ≤ m), because k ≥ m implies zi ≤ xi (resp., k ≤ m
implies zi ≥ xi). Q.E.D.
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B.2. Logconcavity of Reverse Hazard Rate and Reverse Hazard Function

The reverse hazard function is the right-sided integral of the reverse hazard rate:
− logF(ε) = ∫ ∞

ε
(f (ε)/F(ε))dε. The reverse hazard function therefore inherits logcon-

cavity (and logconvexity, if the support of f is unbounded above) of the reverse hazard
rate (An (1998, Lemma 3)). Thus, the hypotheses in Corollary 1 are stronger than the
corresponding conditions in Theorem 1; for example, the reverse hazard function of dis-
tribution F(ε) = ε−1/(1+e−ε)+ log(1+e−ε) is logconcave, but the reverse hazard rate is
not.27 Still, the examples discussed after Theorem 1—normal, logistic, generalized expo-
nential, shifted Gompertz—satisfy the hypotheses in the corollary. In the normal case, the
reciprocal of the reverse hazard rate, F(ε)/f (ε)= ∫ x

−∞ eε
2/2e−t2/2 dt = ∫ 0

−∞ e−u2/2e−uε du, is
logconvex because e−uε is logconvex, and logconvexity is preserved under mixtures (An
(1998, Proposition 3)). In the logistic case, the reverse hazard rate f (ε)/F(ε) = 1/(eε +1)
is logconcave. With generalized exponential noise, f (ε)/F(ε)= (1−e−ε)ae−ε is logconvex
because a < −1. In the shifted Gompertz case, the second derivative of log(f (ε)/F(ε))
is positive, having the same sign as e3ε +η(e2ε − 1).

B.3. Extreme Selection

PROOF OF THEOREM 3: We start by showing that under UHR we have αk → 0 as k→
∞. If ε̄ < ∞ then, as shown in Müller and Rufibach (2008), the limiting distribution is
either extreme Weibull or Gumbel. In the first case, by Proposition 1.13 in Resnick (2008)
we can set αk = ε̄− F−1(1 − 1/k), whence αk → 0 follows. In the second case, as well as
(Müller and Rufibach (2008, Lemma 3.5)) in the case ε̄ = ∞, the limiting distribution is
Gumbel. Thus, by Proposition 1.9 in Resnick (2008), we can set αk to be the mean residual
life evaluated at ε̄k := F−1(1−1/k), that is, αk = k

∫ ε̄

ε̄k
εf (ε)dε. As shown in Calabria and

Pulcini (1987), the limiting behavior of the mean residual life is the same as the limiting
behavior of the inverse of the hazard rate.28 Thus, using the fact that ε̄k → ε̄ as k → ∞,
we again obtain limk→∞ αk = limε→ε̄[1 − F(ε)]/f (ε)= 0.

We now show that if αk → 0 then the evaluator’s payoff converges to the full infor-
mation payoff, U := ∫

Θ
maxa u(θ�a)dQ(θ), as k → ∞. Clearly, if the conclusion holds

for n = 1 then a fortiori it holds for n > 1. Thus, we can assume n = 1. Recall that, by
IDO, for every 1 ≤ j < J there exists a state θj such that u(θ�aj) − u(θ�aj+1) is non-
negative for θ ≤ θj and nonpositive for θ ≥ θj . As we noted in the proof of Theorem 0,
this observation implies that if θj < θj−1 then aj can be removed from A without affect-
ing the IDO property. Moreover, aj is never optimal at any state, so it is never used
under full information. Thus, we may assume without loss of generality that θj ≥ θj−1

for all j > 1, and the full information payoff can then be written, summing by parts, as
U = ∫

Θ

∑
j<J 1{θ≥θj }[u(θ�aj+1)− u(θ�aj)]dQ(θ). Fix δ > 0, and let η> 0 be such that

∫
Θ

∑
j<J

1{θj−η≤θ<θj }
[
u(θ�aj+1)− u(θ�aj)

]
dQ(θ)≤ δ

2
(21)

27The support of the density f (ε) = (1 + e−ε)−2 is the interval (−∞� ε̄], where ε̄ solves F(ε̄) = 1.
28Calabria and Pulcini (1987) assumed that the support of f is bounded below. But for every ε such that

0 < F(ε) < 1 the hazard rate of distribution F is the same as the hazard rate of the left-truncated distribution
F(·)/[1 − F(ε)]. Furthermore, the two distributions have the same right tails, and hence the same limiting
distribution F̄ .
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and, furthermore,

(1 −η)

∫
Θ

∑
j<J

1{θ≥θj }
[
u(θ�aj+1)− u(θ�aj)

]
dQ(θ)≥U − δ

2
� (22)

Let ε̄ > 0 be such that F̂(ε̄)− F̂(−ε̄)≥ 1 −η/2, and choose k̂ so that, for all k≥ k̂,

αkε̄ < η� Fk(αkε̄+βk)≥ F̂(ε̄)− η

4
� and Fk(αkε̄+βk) ≤ F̂(−ε̄)+ η

4
�

Then, for each θ,

Prθ(θ−η+βk ≤X ≤ θ+η+βk)≥ Prθ(θ− αkε̄+βk ≤X ≤ θ+ αkε̄+βk)

= Fk(αkε̄+βk)− Fk(αkε̄+βk)

≥ F̂(ε̄)− η

4
− F̂(−ε̄)− η

4
≥ 1 −η� (23)

so the distribution of X in state θ assigns at least probability 1 −η to an η-neighborhood
of θ + βk. Now consider the following strategy for the evaluator: choose a1 if X < θ1 +
βk−η, choose aJ if X ≥ θJ−1 +βk−η, and for every 1 < j < J, choose aj if θj−1 +βk−η ≤
X < θj +βk −η. The corresponding payoff, again using summation by parts, is

∫
Θ

∑
j<J

Prθ(X ≥ θj +βk −η)
[
u(θ�aj+1)− u(θ�aj)

]
dQ(θ)�

By (21), (22), and (23), this payoff is at least as large as U − δ.
Finally, we show that if UHR fails, limit welfare is the welfare from an experiment with

noise density (6). Failure of UHR implies that ε̄ = ∞ and hence (as established earlier)
that F̄ is Gumbel, with limk→∞ αk = limε→ε̄[1 − F(ε)]/f (ε) =: α > 0.29 Thus, as shown
by Weissman (1978) and Leadbetter, Lindgren, and Rootzén (1983, Theorem 2.3.1), the
distribution of the n largest of k draws from F , after normalizing each draw’s location by
βk, converges weakly to a distribution with density (6). Q.E.D.

B.4. Applications

PROOF OF PROPOSITION 2: Let n̄ = arg maxn≥1 U(n�n) − CS(n) − CP(n). Note that n̄
exists because U(n�n) is bounded above by the evaluator’s full information payoff, U ,
while CS(n) is unbounded. Furthermore, U(n̄� n̄)−CS(n̄)−CP(n̄) < U −CS(1), because
CS(n) is increasing. By Theorem 3, U(k�1) → U as k → ∞. Thus, there exist k̄ > 1 and
c > 0 such that

U(k̄�1)−CS(1)− c > U(n̄� n̄)−CS(n̄)−CP(n̄)�

If CP(k̄) ≤ c then U(k̄�1)−CS(1)−CP(k̄) > U(n̄� n̄)−CS(n̄)−CP(n̄), hence no experi-
ment format with k= n is optimal. Q.E.D.

29Logconcavity of f implies increasing hazard rate f/(1 − F), so this limit exists when UHR fails.
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PROOF OF PROPOSITION 3: Define n̄ as in the proof of Proposition 2. By Theorem 3,
U(k�1)→U as k→ ∞. Since CS(n) is increasing, there exists k̄≥ 1 such that

U(k�1)−CS(1) > U(n̄� n̄)−CS(n̄) for all k ≥ k̄� (24)

Let x̄2(k
′)� � � � � x̄J(k

′) denote the cutoffs the evaluator sets when conjecturing presample
size k′. Given these cutoffs, the expected gross payoff the sender obtains by choosing
presample size k is V (k�k′) := ∫

Θ

∑
j<J[1 − Fk(x̄j+1(k

′))][v(θ�aj+1) − v(θ�aj)]dQ(θ),
where v(θ�a) denotes the sender’s payoff function and we used summation by parts
and disregarded constants. Thus, going from k to k + 1 the sender incurs marginal cost
CP(k+ 1)−CP(k) and obtains marginal gain

V
(
k+ 1�k′) − V

(
k�k′)

=
∫
Θ

∑
j<J

Fk
(
x̄j+1

(
k′))[1 − F

(
x̄j+1

(
k′))][v(θ�aj+1)− v(θ�aj)

]
dQ(θ)

> 0�

Pick any c > 0 such that c < V (k + 1�k) − V (k�k) for all k in the set {1� � � � � k̄}, and
suppose that CP(k̄) ≤ c for all k. Then, since CP(k) is increasing, CP(k+ 1)−CP(k) < c

for every k< k̄. Thus, in every Bayes Nash equilibrium the sender chooses k > k̄, and the
result follows from (24). Q.E.D.

Equilibrium Existence in the Delegated Presampling Game. Assume that presample size
can be any real k ≥ 1 and CP(k) is convex, and hence, in particular, continuous and un-
bounded. Since CP(k) is unbounded, we can without loss restrict the sender’s strategy set
to some interval [1� k̂], for example, choosing k̂ large enough that

∫
Θ
v(θ�a1)dQ(θ) −

CP(1) ≥ ∫
Θ
v(θ�aJ)dQ(θ) − CP(k̂). Thus, we can also assume the evaluator strategy set

to be the set of optimal monotone strategies for selected experiments with k ∈ [1� k̂].
Moreover, identifying the optimal strategy for k with k itself, we obtain a game where
the strategy set of each player is the interval [1� k̂] and the evaluator best response is the
identity function. Thus, an equilibrium exists if the sender best response function

k 
→ arg max
k′∈[1�k̂]

∫
Θ

∑
j<J

[
1 − Fk

(
x̄j+1

(
k′) − θ

)][
v(θ�aj+1)− v(θ�aj)

]
dQ(θ)−CP

(
k′)

has a fixed point. (This is a function by the objective function’s strict concavity: CP(k)

is convex and, moreover, v(θ�aj+1) > v(θ�aj) and d2[1 − Fk(x̄j+1(k̂) − θ)]/dk2 =
−[log(F(x̄j+1(k̂) − θ))]2Fk(x̄j+1(k̂) − θ) < 0 for every θ.) This follows from Brouwer’s
fixed-point theorem.

PROOF OF PROPOSITION 4: By Theorem 3, U(k�1) → U , and hence, since CS(n) is
strictly increasing, there exists k̄ such that U − U(k�1) < CS(n) − CS(1) for every k ≥ k̄
and n > 1. As shown in the proof of Proposition 3, there exists c such that if CP(k̄) ≤
c then in every Bayes Nash equilibrium of the delegated presampling game the sender
must choose k > k̄. Fix such a presampling cost function, and let n̄ be the corresponding
presample size (equal to sample size) chosen by the sender in an unraveling equilibrium
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of the full delegation game. The payoff of the evaluator in this equilibrium is U(n̄� n̄) −
CS(n̄) ≤U −CS(n̄) < U(k�1)−CS(1) for every k≥ k̄, so we are done. Q.E.D.

B.5. Other Forms of Selection

PROOF OF THEOREM 4: Consider first the family of experiments Y(t), where Y(t) =
X|X ≥ at and at = b − t(b − a). In each state θ, the distribution of Y(t) is [F(y|θ) −
F(at |θ)]/[1 − F(at |θ)], for y ≥ at . Fix s < t and consider the function ϕθ(·), which is
defined as follows:[

F
(
ϕθ(y)|θ

) − F(as|θ)
]
/
[
1 − F(as|θ)

] = [
F(y|θ)− F(at |θ)

]
/
[
1 − F(at |θ)

]
�

or equivalently[
1 − F

(
ϕθ(y)|θ

)]
/
[
1 − F(y|θ)] = [

1 − F(as|θ)
]
/
[
1 − F(at |θ)

]
� (25)

for y ≥ at . Now fix two states θ′ > θ. We must show that ϕθ′(y) ≤ ϕθ(y) for every y ≥ at .
Using the definition of ϕθ′(·), it suffices to show that[

F
(
y|θ′) − F

(
at |θ′)]/[1 − F

(
at |θ′)] ≤ [

F
(
ϕθ(y)|θ′) − F

(
as|θ′)]/[1 − F

(
as|θ′)]�

that is, [
1 − F

(
y|θ′)]/[1 − F

(
at |θ′)] ≥ [

1 − F
(
ϕθ(y)|θ′)]/[1 − F

(
as|θ′)]�

Since ϕθ(y) converges to as as y decreases to the lower bound at , it suffices to prove that
the ratio between right-hand and left-hand side decreases with y . Taking derivatives and
using (25), we need

f
(
ϕθ(y)|θ′)/[1 − F

(
ϕθ(y)|θ′)]

f
(
ϕθ(y)|θ

)
/
[
1 − F

(
ϕθ(y)|θ

)] ≥ f
(
y|θ′)/[1 − F

(
y|θ′)]

f (y|θ)/[1 − F(y|θ)] �
This inequality holds when the hazard rate is log-supermodular because Y(s) first-order
stochastically dominates Y(t), and hence ϕθ(y)≥ y .

Next, consider the family of experiments W (t), where W (t) = X|X ≤ bt and bt = a +
t(b− a). In state θ, the distribution of W (t) is F(w|θ)/F(bt |θ), for w ≤ bt . Fix s < t and
consider the function ϕθ(·|), which is defined as follows: for every w ≤ bs ,

F
(
ϕθ(w)|θ)

/F(bs|θ) = F(w|θ)/F(bt |θ)�
We must show that if θ′ > θ then ϕθ′�t�s(w) ≤ ϕθ(w) for all w ≤ bt . Using the definition of
ϕθ′�t�s(·), it suffices to show that

F
(
w|θ′)/F(

bt |θ′) ≤ F
(
ϕθ(w)|θ′)/F(

bs|θ′)�
Given that ϕθ(w) converges to bs as w increases to the upper bound bt , it is enough to
prove that the ratio between the right-hand side and the left-hand side of the inequality
decreases with w. Taking derivatives, this condition says that

f
(
ϕθ(w)|θ′)/F(

ϕθ(w)|θ′)
f
(
ϕθ(w)|θ)

/F
(
ϕθ(w)|θ) ≤ f

(
w|θ′)/F(

w|θ′)
f (w|θ)/F(w|θ) �

This holds when the reverse hazard rate is log-supermodular, given that ϕθ(w) ≤ w by the
fact that W (t) first-order stochastically dominates W (s). Q.E.D.
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PROOF OF THEOREM 5: When payoffs satisfy Karlin and Rubin’s (1956) monotonicity,
Theorem 0 holds for families X(t) with t in an arbitrary ordered set T , as shown in Ap-
pendix A. Thus, to prove part (a) it suffices to take T = {0�1}, with X(0) the random
experiment and X(1) the median selected experiment. The density function of X(1) is

cFr−1(·|θ)[1 − F(·|θ)]r−1
f (·|θ)�

where c depends only on k. The cumulative distribution and survival functions can be
written as

Fr(·|θ)
r−1∑
j=0

(
r + j − 1
r − 1

)[
1 − F(·|θ)]j and

[
1 − F(·|θ)]r r−1∑

j=0

(
r + j − 1
r − 1

)
Fj(·|θ)�

respectively. For each θ, the function ϕθ(x) is defined by

F
(
ϕθ(x)|θ

) = Fr(x|θ)
r−1∑
j=0

(
r + j − 1
r − 1

)[
1 − F(x|θ)]j� (26)

Fix two states θ′ > θ and let z = ϕθ�1�0(x) and z′ = ϕθ′(x|θ′) for brevity. Let xm be the
median of F(·|θ), that is, F(xm|θ) = 1/2. Note that z ≤ x when x ≤ xm and z ≥ x when
x≤ xm. Moreover,

dz/dx= cFr−1(x|θ)[1 − F(x|θ)]r−1
f (x|θ)/f (z|θ)� (27)

We must show that z′ ≤ z, or equivalently that

Fr
(
x|θ′) r−1∑

j=0

(
r + j − 1
r − 1

)[
1 − F

(
x|θ′)]j/F(

z|θ′) ≤ 1� (28)

which is the same as

[
1 − F

(
x|θ′)]r r−1∑

j=0

(
r + j − 1
r − 1

)
Fj

(
x|θ′)/1 − F

(
z|θ′) ≥ 1� (29)

Suppose first that x ≤ xm, so that z ≤ x. Since F(·|θ′) first-order stochastically domi-
nates F(·|θ), condition (28) holds at x = xm = z. Thus, it suffices to show that the left-
hand side of (28) increases in x when x ≥ z. The derivative of the left-hand side is non-
negative if and only if

cFr−1
(
x|θ′)[1 − F

(
x|θ′)]r−1

f
(
x|θ′)F(

z|θ′)

− Fr
(
x|θ′) r−1∑

j=0

(
r + j − 1
r − 1

)(
1 − F

(
x|θ′))jf (

z|θ′)dz
dx

≥ 0�
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Plugging in (27) and using (26), the inequality is the same as

f
(
x|θ′)/F(

x|θ′)
f (x|θ)/F(x|θ) ×

[
1 − F

(
x|θ′)]r−1

/

r−1∑
j=0

(
r + j − 1
r − 1

)[
1 − F

(
x|θ′)]j

[
1 − F(x|θ)]r−1

/

r−1∑
j=0

(
r + j − 1
r − 1

)[
1 − F(x|θ)]j

︸ ︷︷ ︸
≥ 1 because F(·|θ)≥ F(·|θ′)

≥ f
(
z|θ′)/F(

z|θ′)
f (z|θ)/F(z|θ)

which is true by log-supermodularity of the reverse hazard rate, since x ≥ z.
Suppose now that x ≥ xm, so that z ≥ x. Since (29) is the same as (28), it holds at

x = xm = z, so it suffices to show that its left-hand side increases in x when x ≤ z. The
derivative of the left-hand side of (29) is nonnegative if and only if

− cFr−1
(
x|θ′)[1 − F

(
x|θ′)]r−1

f
(
x|θ′)[1 − F

(
z|θ′)]

+ [
1 − F

(
x|θ′)]r r−1∑

j=0

(
r + j − 1
r − 1

)
Fj

(
x|θ′)f (

z|θ′)dz
dx

≥ 0�

Plugging in (27) and using (26), the inequality is the same as

f
(
x|θ′)/[1 − F

(
x|θ′)]

f (x|θ)/[1 − F(x|θ)] ×
Fr−1

(
x|θ′)/ r−1∑

j=0

(
r + j − 1
r − 1

)
Fj

(
x|θ′)

Fr−1(x|θ)/
r−1∑
j=0

(
r + j − 1
r − 1

)
Fj(x|θ)

︸ ︷︷ ︸
≤ 1 because F(·|θ)≥ F(·|θ′)

≤ f
(
z|θ′)/[1 − F

(
z|θ′)]

f (z|θ)/[1 − F(z|θ)]

which is true by log-supermodularity of the hazard rate, since x ≤ z.
Turning to the proof of part (b), we exhibit a simple hypothesis testing problem with

states θ′ > θ where X(1) gives higher welfare than X(0). Let x̄ be such that F(x̄|θ′) <
1/2 < F(x̄|θ) and suppose that under X(0) the evaluator sets the cutoff at x̄.30 Then
keeping the cutoff at x̄ the payoff is higher when the experiment changes to X(1). Indeed,
F(x̄|θ) > 1/2 implies

Fr(x̄|θ)
r−1∑
j=0

(
r + j − 1
r − 1

)[
1 − F(x̄|θ)]j > F(x̄|θ)�

while F(x̄|θ′) < 1/2 implies

Fr
(
x̄|θ′) r−1∑

j=0

(
r + j − 1
r − 1

)[
1 − F

(
x̄|θ′)]j < F

(
x̄|θ′)�

Q.E.D.

30To see why x̄ exists, write S(θ) and S(θ′) for the supports of X(0) (and X(1)) in states θ and θ′. By MLR,
F(x|θ′) < F(x|θ) for all x ∈ S(θ′) ∩ S(θ). We can pick x̄ right above the median of F(·|θ) if this median is in
the closure of S(θ′), or right below the median of F(·|θ′) if this is in the closure of S(θ). If both of these tries
fail, any x ∈ S(θ′)∩ S(θ) must have F(x|θ′) < 1/2 <F(x|θ), and we can let x̄ be any of these points.
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PROOF OF PROPOSITION 5: Let ik = arg max1≤i≤k δi. By Theorem 0 and Theorems 5.1
and 5.2 in Lehmann (1988) it suffices to prove that if − logFδ(·) is logconcave (logconvex)
then the distribution of cδik +γik becomes less (more) dispersed as k increases. As shown
in the proof of Theorem 1, this is true for the distribution of cδik . By Theorem 8 in Lewis
and Thompson (1981), it is also true for the distribution of cδik + γ1, which is the same as
the distribution of cδik + γik . Q.E.D.

PROOF OF PROPOSITION 6: Define θ̂ = θ+ γ1 and note that, since γ1 has a logconcave
density, the conditional density of θ̂ given θ satisfies the MLR property. This implies that
the posterior belief q(θ|θ̂) increases with θ̂ in the likelihood ratio order. Thus, defining
û(θ̂� ·) := ∫

Θ
u(θ� ·)dQ(θ|θ̂) for every θ̂, it follows from Theorem 2 in Quah and Strulovici

(2009) that the family of functions û(θ̂� ·) is an IDO family. Consider the auxiliary decision
problem where the state is θ̂ = θ + γ1, the payoff function is û(θ̂� ·), and the selected
experiment is (θ̂ + cδ1� θ̂ + cδn), where cδ1 ≥ · · · ≥ cδn are the n highest of k random
draws from distribution Fδ(·/c) with density (1/c)fδ(·/c). Clearly, (1/c)fδ(·/c)/Fδ(·/c)
is logconcave (logconvex, with support of (1/c)fδ(·/c) unbounded above) if and only if
fδ(·)/Fδ(·) is logconcave (logconvex, with support of fδ(·) unbounded above), in which
case, by Corollary 1, welfare increases (decreases) in k. The result now follows from the
fact that the payoff from experiment (θ̂+cδ1� θ̂+cδn) in the auxiliary problem is the same
as the payoff from experiment (θ + cδ1 + γ1� � � � � θ + cδn + γ1) in the original problem.

Q.E.D.
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