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Abstract

The paper develops a model of nonmarket allocation of resources such as the awarding of grants

to meritorious projects, honors to outstanding students, or journal slots to quality publications. On

the supply side, the available budget of grants is awarded to applicants who are evaluated most

favorably according to the noisy information available to reviewers. On the demand side, stronger

candidates are more likely to obtain grants and thus self-select into applying, given that applications

are costly. We establish that if evaluation is perfect, grading on a curve inefficiently discourages

even the very best candidates from applying. More generally, when the budget is insufficient to

award grants to all applicants, the equilibrium unravels if information is symmetric enough—the

paradox of relative evaluation. Leveraging a technique based on the quantile function pioneered

by Lehmann, we characterize a broad set of nonmarket allocation rules under which an increase

in evaluation noise in a field (or course) raises equilibrium applications in that field, and reduces

applications in all other fields. We empirically confirm this comparative statics by exploiting a

change in the rule for apportioning the total budget to applications in different fields at the European

Research Council, showing that a one standard deviation increase in own evaluation noise leads to a

0.4 standard deviation increase in the number of applications and budget share. Moreover, we derive

insights for the design of evaluation institutions, particularly regarding the endogenous choice of

noise by fields or courses and the optimal aggregation of fields into panels. JEL: D83, H81, I23.

Keywords: Nonmarket resource allocation, grants, applications, budget apportionment across

fields, contest, grading on a curve, evaluation noise, choice of school courses.
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“The just, then, is a species of the proportionate . . . proportion is equality of ratios

Bi

B j

=
ai

a j

and, therefore, alternando
Bi

ai

=
B j

a j

. . . all men agree that what is just in distribution must be according to merit in some sense,

though they do not all specify the same sort of merit, but democrats identify it with the

status of freeman, supporters of oligarchy with wealth (or with noble birth), and supporters

of aristocracy with excellence.”

Aristotle, Nicomachean Ethics, Book V, Chapter 3

I Introduction

Over the sweep of history, artists and scientists have long relied on wealthy patrons and public support

to finance their inventions and discoveries. In 1610 Galileo Galilei wrote to his former pupil Cosimo

de’ Medici, the Grand Duke of Tuscany, subtly asking for financial support to explore the sky with

his new powerful telescope. To lure the patron, Galileo named Jupiter’s moons he had just discovered

the Medician stars and promised “many discoveries and such as perhaps no other prince can match.”

Cosimo was duly impressed and granted Galileo a full teaching buyout at the University of Pisa.1

A more systematic process for funding talented scholars emerged in embryonic form in the first

half of the nineteenth century when science academies in France and England started offering encour-

agements and grants to support worthy projects by their members.2 To ensure the best use of funds,

learned societies began formalizing the application cycle and the review process to select grant recip-

ients. Similar selection procedures had been in place for centuries at university colleges for assigning

scholarships to promising students from families with limited means.3

With its roots steeped in patronage, grantmaking evolved in the modern era to become an effec-

tive method for identifying prospects worthy of funding. As Carnegie, Rockefeller, Russell Sage and

other industrial tycoons turned philanthropists at the beginning of the twentieth century, the private

foundations they endowed to “promote the wellbeing of humankind” were inundated by requests for

donations. Leveraging their business experience, trustees of these large foundations refined grantmak-

ing as a systematic approach to “wholesale” giving. Modern philanthropic foundations select which

applications to fund with the assistance of specialized evaluation panels and delegate to grantees the

“retail” implementation of the charitable work.4

1The quote from Galileo is reported in Westfall (1985, p. 22). For more on Galileo’s patronage, see also Biagioli (1990)

and references therein.
2See MacLeod (1971) and Crosland and Gálvez (1989).
3Rashdall (1895, p. 200–204) describes the examination procedures for selecting applicants at the first university college,

the College of Spain, founded at the University of Bologna from a bequest in 1367 and still active today.
4See Zunz (2012) and Leat (2016).



As World War II drew to a close, John Maynard Keynes (1945) stewarded the adoption of the

grantmaking model with the creation of the Arts Council of Britain by the UK government to “stimulate,

comfort and support” independent artistic initiatives in drama, music and painting.5 At around the same

time in the US, Bush (1945), building on his success as director of the wartime Office of Scientific

Research and Development, forcefully argued in favor of federal support of the best, curiosity-driven

“basic research in the colleges, universities, and research institutes” for a wide range of sciences. In

1946 the National Institutes of Health (NIH) greatly expanded its extramural grants program to cover

all areas of biomedical research, while in 1950, the National Science Foundation (NSF) was established

to fund basic research across a broad range of scientific disciplines.

As grantmaking grew exponentially in the post-war period, funding organizations developed struc-

tured procedures for soliciting and evaluating grant applications.6 Even though expert peer reviewers

are capable of evaluating projects within their specialized area, they tend to advocate for increased

funding in their field of expertise, to the detriment of other fields. The need to reconcile these con-

flicting requests makes the allocation of budget across diverse fields particularly thorny. Universities

face similar challenges when making decisions about the allocation of resources and positions across

departments.

A number of major funders, like the NIH, the main Canadian funding agencies, and the European

Research Council (ERC) adopt a “bottom up” approach based on an apportionment formula that al-

locates the total available budget to each field depending on the applications received in all fields.7

These research funding organizations allocate their budget B in proportion to the number of applica-

tions a1,a2, ...,aN received in each field i= 1,2, ...,N, resulting in budget

Bi =
ai

∑
N
j=1 a j

B (PA)

for field i.8 Under proportional apportionment, PA, fields vie against one another for funding based on

the quantity of applications they attract. It is therefore important to understand what drives applications

across different fields and how sensitive the funding of a given field is to what happens in other fields.

Answering these questions is crucial to improve the design of the funding process.

5The US Congress chartered the National Endowment for the Arts in 1965. The grantmaking model for supporting

the arts has since been adopted by governments throughout the world, both at the local and national levels; see Upchurch

(2016).
6Nowadays, US federal institutions such as the NIH or the NSF fund research across various fields, amounting to

approximately $172 billion per year. The Horizon Europe program has a funding budget of €95.5 billion for the period

from 2021 to 2027.
7See Azoulay et al. (2019) for a description of the organization of NIH funding and for a quantification of the impact of

NIH research support on innovation through patenting activity.
8See, e.g., European Commission (2007). In a more general version of the formula, ai represents the sum of the possibly

variable amounts requested by all applicants in field i. However, most applicants tend to apply for the maximum amount

allowed.
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FIGURE I: Budget Shares in ERC Funding by Disciplinary Domain

This figure shows the evolution of the budget shares for the three disciplinary domains at the ERC. The

vertical dashed line indicates the last year before the 2014 reform. Source: ERC data.

A recent change in the budget allocation rule at the ERC, the largest research funding organization in

the EU, had significant effects on applications and the final distribution of funding. The ERC organizes

its panels into three disciplinary domains: Life Sciences (LS), Physical Sciences and Engineering (PE),

and Social Sciences and Humanities (SH). Prior to 2014, ERC funds were allocated according to PA

in proportion to applications received by panels belonging to the same disciplinary domain. Starting

in 2015, the PA formula was applied across the board so that each panel’s budget became proportional

to applications received by that panel relative to applications received by all panels regardless of the

domain, rather than relative only to applications received by the panels within the same domain as

before. As shown in Figure I, the reform was followed by a substantial change in relative applications

and budget shares across domains (as well as panels within the different domains), with a 60 percent

increase in the funding for SH panels and a 20 percent decrease for LS panels.

To understand how budget allocation rules and evaluation noise impact the incentives to apply

across fields, this paper formulates a foundational model of nonmarket allocation of resources. Ac-

tivities are characterized by their ex-ante uncertain merit type, which captures the social value from

financing the activity. Proponents of activities can come forth by applying at a cost. The review panel

within each field then evaluates and ranks applications based on noisy information to select the most

worthy activities. Evaluation is noisy because it involves an important component of expert judgment

with subjective evaluation.

As we argue, a key element determining the incentives to apply in different fields is the relative level

of evaluation noise, which tends to vary systematically across fields. While in some fields, researchers

are likely to agree on the quality and novelty of projects, other fields that lack a shared paradigm
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are characterized by more disagreement. The paper derives a general set of budget allocation rules

(generalizing PA) under which an increase in evaluation noise in a field increases the applications for

grants in that field and its funding at the expense of other fields. According to our headline result, in

fields with little evaluation noise, researchers who are not at the cutting edge refrain from applying

because they stand a low chance of being funded, thus reducing available funds in those fields. In

contrast, noisy fields receive more applications and therefore obtain relatively more funds.

Our framework encompasses essential characteristics found in a diverse array of nonmarket re-

source allocation problems. These include the admission process for students across various courses

or university degree programs, the selection of papers for publication in journals, the allocation of

funds for business projects within conglomerates, and the determination of individuals or businesses to

support through government grant-in-aid programs. The following section provides a roadmap of the

paper, outlining the key points of our analysis primarily in the context of science funding, with brief

references to other applications along the way. Section IX casts our contribution within the literature.

Section X concludes.

II Roadmap and Main Insights

Grantmaking in a Single Field. Section III sets the stage by analyzing the baseline specification

with a single field populated by a continuum of candidates parametrized by their merit type. Submit-

ting an application is costly but allows the applicant to gain a private benefit when obtaining a grant.

The evaluator appraises the merit of each application received based on a noisy signal—allowing for

imperfect information is essential to justify the fact that many applicants do not succeed in obtaining

grants. We model the information (or noise) content of the signal through a quantile function approach

pioneered by Lehmann (1988), which we leverage for the purpose of equilibrium comparative statics.9

Given the limited budget available for distribution in the field, grants are supplied to the applica-

tions that receive sufficiently favorable evaluations. In turn, the evaluation on the supply side induces

candidates to apply only when they perceive a chance of success sufficiently high to compensate for the

application cost. Because higher merit applicants receive more favorable evaluations, on the demand

side, candidates with a merit type above a threshold self-select into applying. We establish the follow-

ing key comparative statics result: as evaluation becomes noisier, the probability of winning a grant

becomes less responsive to the applicant’s type, thus increasing the equilibrium amount of applications

for a given budget.

9While the approach was developed for the purpose of welfare comparisons, our analysis showcases the advantage of

using Lehmann (1988) for equilibrium comparative statics, relative to Blackwell’s (1951) common notion of information.
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Percentiling and Grading on a Curve. When the allocation across fields is based on raw scores,

specialized panels in each field have an incentive to inflate scores to attract greater resources to their

respective field. To counteract the resulting grade inflation across panels, from 1988, the NIH started

percentiling scores within each panel (known as study section at the NIH) and introduced the payline

system.10 In each panel, grants are assigned to projects that obtain percentiled scores above a level,

known as payline, that is equalized across panels. Note that the payline system is equivalent to pro-

portional allocation, given that PA implies that the success rate in field i, defined as the fraction of

successful applications in the field i

pi =
Bi

ai

=
B

∑
N
j=1 a j

, (1)

is automatically equalized across all fields, pi = p. Expert evaluators in each panel are then asked to

select the most fund-worthy applications so as to exhaust 100× p percent of the budget requested by

the applications in the field.

Similarly, teachers have incentives to give high grades to students to increase enrollment in their

classes to the benefit of their department; see Johnson (2013).11 With grading on a curve, a constant

fraction p of students enrollment a in a class (or degree program) can be awarded honors, so that the

budget of awards pa is proportional to enrollment. The case with constant payline directly captures

grading on a curve for a course that awards a given fraction of distinction grades or honors to enrolled

students.

As shown in Section III B , when the evaluator’s signal is additive in the applicant’s type, the

constant-payline equilibrium is unique and stable if the type distribution has increasing hazard rate.

Multiple equilibria arise only when the type distribution has a segment with decreasing hazard rate, so

that the marginal type that is added to the applicants’ pool as applications increase becomes closer to

the average type of the inframarginal applicants.

Paradox of Relative Evaluation. As the evaluation signal in a field becomes less noisy, applications

in that field in all stable equilibria unambiguously decrease—and decrease more under constant payline

than with a fixed budget. Consider the limit case where the grantmaker can perfectly evaluate appli-

cants’ merit types without noise. Under a constant payline, only a fraction p < 1 of applicants win.

With perfect information, candidates know their ranking. Candidates not in the top 100× p percent

10See Mandel’s (1996, p. 182–188) historical account. “A percentile ranks your application relative to the other applica-

tions reviewed by your study section . . . Percentiling counters a phenomenon called “score creep” where study sections

give applications increasingly better scores. As a result, scores cluster in the exceptional range, making it impossible to

discriminate among applications. Each study section can apply the NIH review criteria differently, scoring either more

harshly or more favorably. Percentiling counters these trends by ranking applications relative to others scored by the same

study section.” https://www.niaid.nih.gov/grants-contracts/understand-paylines-percentiles
11Relative grading can also be induced by regulation. For example, according to Texas’ Top 10% Rule, students who

graduate in the top ten percent of their high school class are guaranteed automatic admission to state-funded universities.

See Cullen, Long, and Reback (2013) for an empirical analysis.
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of the applicant’s pool anticipate that they have no chance of succeeding and thus hold off to save the

application cost. Iterating the logic, when the evaluation is perfect, the equilibrium always unravels:

no candidate applies in the only outcome compatible with equilibrium. Reversing the logic leading to

a market breakdown in Akerlof (1970), here, good types, when perceived as such, make competition

for scarce grants tougher and thus drive out bad types. But as applications decrease, the pool of grants

is proportionally reduced so that top types dig their own grave. Remarkably, with relative evaluation,

symmetric information leads to breakdown. While trading breaks down in classic market settings when

information is asymmetric, in our nonmarket environment, information asymmetry is needed to avoid

breakdown. This is the paradox of relative evaluation.

More subtly, the equilibrium unravels when the evaluator’s signal is sufficiently informative, pro-

vided that the hazard rate of the type distribution is bounded, even when the hazard rate is increasing

(e.g., with logistic types). When the type distribution has a vanishing hazard rate, as in the Weibull

distribution with a tail thicker than exponential, there is a stable equilibrium with unraveling for any

level of noise—and the unraveling equilibrium is unique when information is sufficiently symmetric.

Partial Equilibrium. When a field is sizeable, under PA, an increase in applications in a field reduces

the success rate, even when applications in the other fields are held constant. Our general analysis of

the partial equilibrium characterizes the allocation resulting in a non-negligible field.12 We show that

when the payline decreases in applications, uniqueness and comparative statics are preserved when the

type distribution has an increasing hazard rate. Uniqueness is lost with decreasing hazard rate, but all

the stable equilibria retain our comparative statics—applications increase in noise.

General Equilibrium Across Fields. Building on the partial equilibrium analysis, Section IV turns

to grantmaking across fields where applicants in each field are possibly characterized by different pa-

rameters: application cost and award benefit, type and signal distributions, and noise in the evaluator

signal. The general equilibrium takes into account the supply-side interdependence through the bud-

get allocation rule. We derive conditions for sub-proportional budget allocation rules (encompassing

fixed budget and PA as special cases) under which equilibrium applications in a field increase when the

evaluation in the same field becomes noisier and decrease when the evaluation in other fields becomes

noisier.

Empirical Validation. Leveraging the 2014 reform of the ERC budget apportionment rule presented

above, Section V empirically tests the key comparative statics prediction about the impact of noise on

applications. This change in the apportionment rule allows us to identify the effect of evaluation noise

12This case is analogous to a partial equilibrium analysis in an international trade model, where the country is large

enough to affect the terms of trade. The constant-payline case corresponds to the partial equilibrium for a small country. In

our context, a field does not affect the payline when it has negligible applications relative to the other fields.
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on the number of applications in each field, relying on a difference-in-difference design. To that effect,

we provide novel evidence on evaluation noise across fields using unique data on reviewer grades of

grant applications at the Research Council of Norway (RCN). We find stark differences in evaluation

noise across fields, with social sciences and applied sciences displaying more noise. We then show

that the relative differences in evaluation noise across fields significantly predict changes in the number

of applicants following the 2014 reform, with sizeable and policy-relevant effects. A one standard

deviation increase in evaluation noise in a given field leads to an increase in the budget for that field of

about 0.4 standard deviations.

Endogenous Evaluation Noise: Game Among Fields. Section VI endogenizes the level of evalu-

ation noise in different fields by analyzing a game played by field representatives defending the pro-

fessional interests of their field. Each field, acting as a collective through this representative, has some

capacity to introduce noise in the evaluation of their field, for example, by affecting the quality of the

panel members or introducing some randomization in the signal obtained by the panelists.13

If field representatives care about the quality of the research financed in their respective fields, they

face a tradeoff. Increasing noise increases applications but reduces the average quality of the projects

selected. In the resulting Nash equilibrium of the game, fields add noise provided that the initial noise

is not too high. When the initial noise is already high in at least one of the fields, the noise across fields

in the Nash equilibrium remains asymmetric as in our baseline analysis, showing robustness. When

the initial noise is asymmetric and relatively low, in equilibrium noise increases in all fields but is also

equalized, thus neutralizing the initial asymmetry. When, in addition to being relatively low, the initial

noise is sufficiently asymmetric across fields, the final Nash equilibrium allocation results in higher

social welfare than achieved in the (highly inefficient) initial asymmetric allocation.

Sorting Across Fields/Courses. Section VII extends the analysis to incorporate the demand-side in-

terdependence generated by the ability of candidates to select courses/fields depending on their chance

of obtaining a high grade. Grades have a discernible impact on the future of students (Murphy and

Weinhardt 2020). Given that students tend to select courses where they expect to obtain better grades,

instructors have incentives to grade generously (Achen and Courant 2009). To curb grade inflation,

universities respond by limiting the fraction of students who can obtain top grades and honors (Johnson

2013).

While in the baseline model, candidates choose whether or not to apply/enroll, in this extension,

they choose one of two courses, for example, physics or literature, by comparing their chance of ranking

among the top 100×p candidates. In the spirit of Roy’s (1951) model of occupational sorting, suppose

13In the case of the ERC, the representative could be the chair of the field panel or the member of the scientific council

more closely associated with the field.
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that candidates have a two-dimensional type corresponding to their mathematical and verbal skills.

Holding fixed acceptance/merit standards, a field attracts more talented candidates when its evaluation

becomes less noisy—intuitively, less talented candidates prefer to hide in the noisier field. As we argue,

in equilibrium applications increase in the field’s noise and decrease in the noise in the other field. The

effect is stronger with grading on a curve than under a fixed budget.

Design of Funding Rules. Section VIII turns to organizational design questions. Section VIII A

compares the baseline model’s general equilibrium allocation with the evaluator’s optimal allocation.

The optimal amount of applications in a field increases in the evaluation noise in another field, con-

trary to what happens in the equilibrium induced by a sub-proportional allocation rule. Starting from

the symmetric allocation resulting when fields have symmetric parameters, general equilibrium applica-

tions in a field increase excessively in noise relative to the socially optimal allocation. Evaluator welfare

can then be improved by decreasing proportionality in fields characterized by less noisy evaluation.

Pooling Fields and Benchmarking. Section VIII B considers the impact of pooling a noisier field

with a more consensual field into a single panel. Supposing applicants are still evaluated in the same

way, what matters for funding once fields are pooled is the candidate’s position in the mixture distribu-

tion of scores in the two fields. Now, candidates evaluated with more (or less) noise are less (or more)

likely to be at the top of the distribution. Intuitively, more accurate information increases the scores’

dispersion, which matches the underlying type distribution more closely. This way, the more accurate

field gains the lion’s share of grants within the pooled panel, at the expense of the noisier field. Pooling

fields with heterogeneous noise thus dampens the perverse effect of meritocracy on relative evaluation.

III Grantmaking in a Single Field

This section formulates our baseline grantmaking model in a single field. The field is populated by

a continuum of candidates parametrized by their merit type θ , corresponding to the value created if

the project is financed. Candidates know their merit, which follows the cumulative distribution G in

the population, with size normalized to one. For convenience assume that G admits a continuously

differentiable and strictly positive density g on a connected support
[
θ ,θ

]
, possibly unbounded on

either side.14

To be considered for a grant award, candidates must apply at a cost of c, the opportunity cost of

the time spent preparing the application and describing the work.15 Applicants awarded grants obtain

14We have G−1 (0) = θ =−∞ if the support is unbounded below and G−1 (1) = θ =∞ if the support is unbounded above.
15Application costs can well be sizeable. According to survey evidence by von Hippel and von Hippel (2015) on as-

tronomers and social and personality psychologists who submitted applications for basic research grants to NASA, the NIH,

and the NSF, principal investigators spent on average 116 hours preparing applications. This represents a major increase to

8



a private benefit v in terms of career advancement and kudos.16

An evaluator (review panel) allocates a budget of grants B to applicants on the basis of a noisy

signal x about the merit type θ of each applicant. The signal is distributed according to

Fσ (x |θ) , (2)

with continuously differentiable and strictly positive density fσ and connected support, possibly un-

bounded on either side. We assume that the signal satisfies the monotone likelihood ratio (MLR)

property

fσ

(
x |θ ′

)
fσ (x |θ)

increases in x for any θ
′ > θ , (MLR)

so that a higher signal indicates higher merit. A key role in our analysis is played by the parameter σ ,

which measures the noise in the signal in the following non-parametric way

Fσ

(
F−1

σ (q |θ) |θ ′
)

increases in σ for any θ
′ > θ and any percentile q ∈ [0,1] . (3)

Lemma 1 in Appendix A verifies that an increase in noise according to criterion (3) corresponds to a

reduction in information in the sense of Lehmann (1988).17

For algebraic tractability, we often illustrate our results for the special case with additive noise

where the signal has a location-scale structure, x = θ +σε , with noise distribution F (ε) = F
(

x−θ

σ

)
and support [ε,ε], possibly unbounded on either side. The signal perfectly reveals the merit when

σ = 0 and becomes completely uninformative as σ → ∞.18

Candidates and the evaluator have common knowledge of the model and its parameters. The eval-

uator allocates grants to the applicants that generate the most favorable noisy signals. The timing is as

follows:

1. Candidates observe their own type θ and decide whether to apply.

2. The evaluator awards the available budget of grants to the applicants based on the signal realiza-

tions x.

the early day of science funding. For comparison, in 1921, the prominent German biochemist Otto Warburg submitted to the

Notgemeinschaft der Deutschen Wissenschaft (Emergency Association of German Science, the forerunner of the Deutsche

Forschungsgemeinschaft) a funding application with a single sentence: ‘I require 10,000 marks’; see Koppenol, Bounds,

and Dang (2011).
16The model can also easily accommodate the addition of an embarrassment or psychological cost d borne by the candi-

date when the application is turned down. The cost-benefit ratio c/v, which determines demand incentives, is then replaced

by (c+d)/(v+d).
17As shown by Lehmann (1988), any decision maker with monotone decision preferences (Karlin and Rubin 1956) gains

from a noise reduction. More generally, any decision maker with preferences in the general interval dominance ordered class

introduced by Quah and Strulovici (2009) obtains a higher expected payoff state by state when σ is reduced. In addition

to monotone decision problems, this preference class also encompasses single-crossing preferences (Milgrom and Shannon

1994).
18When the noise is additive, inverting the signal distribution y = F ((x−θ)/σ), the quantile function of the signal is

x= θ+σF−1 (y). For every percentile y, the quantile difference
[
θ +σF−1 (y)

]
−
[
θ + σ̄F−1 (y)

]
decreases in y for σ < σ̄ .

Equivalently, the quantile transform θ +σF−1 (F ((x−θ)/σ̄)) = σx/σ̄ +(1−σ/σ̄)θ is increasing in θ for σ < σ̄ .
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III A Fixed-Budget Equilibrium

To illustrate the logic of the model this section considers the case with fixed budget of grants, B. In

general, equilibria have the following monotonic structure, allowing us to solve the model through a

simple representation in terms of demand and supply, even though no prices are involved:

• On the supply side, the evaluator awards grants to applications with x ≥ x̂, because E [θ |x] in-

creases in x by the MLR property.

• On the demand side, candidates with higher merit are more likely to win by MLR and thus apply

for θ ≥ θ̂ .

As we show, there always exists a unique fixed-budget equilibrium and this equilibrium is stable.

This version of the model allows us to uncover the logic that drives the comparative statics with respect

to noise: an increase in noise necessarily raises the number of applications submitted in the fixed-budget

equilibrium.

Application Demand: Self-Selection. Expecting the evaluator to accept whenever the signal is above

x̂, candidates apply if their benefit from the grant times the expected probability of obtaining a grant

outweighs the application cost

v [1−Fσ (x̂ |θ)]≥ c. (4)

For any given acceptance standard x̂, by the MLR property candidates apply if θ ≥ θ̂ , where θ̂ is the

marginal applicant implicitly defined by

1−Fσ

(
x̂ | θ̂
)
= c/v, (5)

the type whose winning probability is equal to the cost-benefit ratio.

The top panel of Figure II illustrates the signal distribution functions for the marginal type θ̂ and

for an inframarginal type θ
′ > θ̂ . The horizontal axis corresponds to the signal realization x. Note that

the distribution for θ
′ lies to the right of the distribution for θ̂ , given that the MLR property implies

first-order stochastic dominance. Inverting (5), the acceptance standard x̂ that makes type θ̂ indifferent

about applying satisfies

x̂= F−1
σ

(
1− c/v | θ̂

)
. (6)

This indifference for the marginal type pins down the demand. In the top panel, the winning probability

for a given type θ can be visualized as the difference between 1 and the value of the distribution of the

signal computed at x= x̂, according to (5): for the marginal type θ̂ the winning probability is equal to

c/v.
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FIGURE II: Fixed-Budget Equilibrium Construction

Top panel (a): The black (solid) curves depict the signal distributions for θ̂ (curve to the left) and θ
′ > θ̂

(curve to the right) with noise σ as a function of the signal realization x. The winning probabilities at acceptance

standard x̂ for type θ̂ and type θ
′ are marked in both panels as black (long dashed) and green (short dashed)

vertical segments with arrows. Bottom panel (b): The black curve is the winning probability as a function of

the type percentile G(θ). According to the demand condition, the winning probability of the marginal type θ̂ is

equal to c/v. The light blue area under the winning probability is the amount of grants awarded to all applicants.
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The winning probability for inframarginal type θ
′ > θ̂ is higher than c/v, as depicted in the figure.

The bottom panel of Figure II directly displays the winning probability 1−Fσ (x̂ |θ) as an increas-

ing function of the agent type θ on the horizontal axis, for given acceptance standard x̂. Thus, all

inframarginal types strictly prefer to apply.

Given that the distribution function increases in the signal but decreases in the type, we can see

from (5) that the marginal type, θ̂ (x̂), is an increasing function of the acceptance standard, x̂. The

application demand

aD (x̂) = 1−G(θ̂ (x̂)) (7)

is then a downward-sloping function of the acceptance standard, x̂. As the acceptance standard in-

creases, it becomes more difficult to obtain a grant, inducing fewer candidates to apply. The marginal

applicant θ̂ = G−1 (1−a) expects to obtain a grant with probability 1−F
(
x̂ |G−1(1−a)

)
. Setting

the winning probability for the marginal applicant equal to the cost-benefit ratio and solving for the

acceptance standard that makes the marginal applicant indifferent, we conclude:19

Proposition 1.a (Demand) The evaluator can induce a applications by setting the acceptance standard

at

x̂D (a) = F−1
σ

(
1− c/v |G−1(1−a)

)
. (8)

The inverse demand is downward sloping: to induce more candidates to apply, the evaluator must

reduce the acceptance standard.

Grants Awarded: Evaluation. Having derived the demand condition, the second key step of the

equilibrium construction turns on the answer to the following question: How many grants must be

awarded to induce a candidates to apply? According to the demand condition (8), by setting the accep-

tance standard at x̂D(a), each type above the marginal, θ ≥ G−1 (1−a), self-selects into applying and

obtains a grant with a probability 1−F
(
x̂D(a) |θ

)
. The grants awarded are then

A(a) =
∫

θ̄

G−1(1−a)

[
1−F

(
x̂D(a) |θ

)]
g(θ)dθ , (9)

the sum of the winning probability of all applicants, weighted by their density. As applications increase,

awards increase through two channels. First, the additional applicants are awarded some grants when-

ever they clear the acceptance standard. Second, to induce more applications, the acceptance standard

x̂D(a) must be reduced, thus resulting in more awards to inframarginal applicants. Overall:

Proposition 1.b (Grants Awarded: Monotonicity) To induce a applicants, the evaluator must award

A(a) grants according to (9), an increasing function of a.

19In the special case with additive noise, x = θ +σε , the marginal type is θ̂ = x̂−σF−1 (1− c/v), demand is aD (x̂) =
1−G

(
x̂−σF−1 (1− c/v)

)
, and inverse demand is x̂D(a) = G−1 (1−a)+σF−1 (1− c/v). When information is perfect

(σ = 0), the inverse demand is equal to the counter-quantile function of the type distribution.
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Fixed-Budget Equilibrium. A fixed-budget equilibrium results when the budget of grants available

is equal to the budget of grants awarded, according to (9). As in all specifications of the model, equilib-

rium existence follows by the intermediate value theorem, given that the award function is continuous.

An equilibrium is defined to be stable if any local perturbation leads back to the equilibrium. We have:

Proposition 1.c (Fixed-Budget Equilibrium) There exists a fixed-budget equilibrium and it is unique

and stable.

Impact of Noise. What is the impact of an increase in Lehmann noise to σ̄ > σ? As a first step, we

show that the impact of an increase in noise on application demand aD (x̂), holding fixed the acceptance

standard x̂, can be positive or negative. The sign of the impact depends on whether the initial marginal

type θ̂ benefits or is harmed by the increase in noise:

1. The top panel of Figure III illustrates an example in which the acceptance standard is above the

marginal type, x̂ > θ̂ . In this case, an increase in evaluation noise from σ to σ̄ (corresponding

to the red distributions) benefits the initial marginal applicant θ̂ by raising this applicant’s proba-

bility to obtain the grant, for given acceptance standard. The new marginal applicant has a lower

type, thus resulting in an increase in application demand, aD (x̂).

2. If, instead, the acceptance standard were below the marginal type, x̂ < θ̂ , the impact of noise

would be reversed. This would be the case in the symmetric signal example in Figure III if c/v>

1/2. In this case, noise would reduce the winning probability of the initial marginal applicant,

decreasing applications for any given acceptance standard.20

However, once the supply side of the model is introduced, the impact of Lehmann noise on equilib-

rium applications becomes unambiguous. To see this, as a second step, modify the acceptance standard

to restore indifference for the initial marginal type θ̂ . To ensure that the winning probability for type θ̂

remains constant at the initial level, set the standard at ŷ implicitly defined by

1−Fσ̄

(
ŷ|θ̂
)
= 1−Fσ

(
x̂|θ̂
)
. (10)

Inverting (10) and substituting (6), we obtain the explicit expression for the adjusted acceptance stan-

dard

ŷ= F−1
σ̄

(
Fσ

(
x̂ | θ̂
)
| θ̂
)
= F−1

σ̄

(
1− c/v | θ̂

)
. (11)

The top panel of Figure III illustrates the construction.

20With additive noise, we have x̂− θ̂ = σF−1 (1− c/v), so that demand for fixed x̂ increases or decreases in noise,

daD/dσ R 0, whenever c/vQ 1−F (0). If the signal distribution is symmetric, as in the normal example used in the figure,

F (0) = 1/2. If ε ≥ 0 we have F (0) = 0 so that demand always increases in noise; demand always decreases in noise if

instead ε ≤ 0.
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FIGURE III: Impact of Noise Increase to σ̄ > σ

Top panel (a): Impact on signal distributions. As noise increases, the signal distributions shift from the black

(solid) to the red (dotted) curves. Bottom panel (b): Impact on winning probabilities. If the marginal type θ̂ is

held constant (applications do not change), as noise increases the winning probability of inframarginal type θ
′

is reduced from the green (dashed) to the red (dot-dashed) segment, marked with arrows in both panels. Grants

awarded under the dashed red curve are below the budget. To spend the initial budget, the marginal applicant

must be reduced, as shown by the blue (solid light) segment, equating the area under the blue curve to the area

under the black curve.
14



Consider now an inframarginal type θ
′ > θ̂ , who strictly prefers to apply at the initial standard x̂.

At the adjusted standard, ŷ, the winning probability for type θ
′ decreases provided that

1−Fσ̄

(
ŷ |θ ′

)
< 1−Fσ

(
x̂ |θ ′

)
. (12)

We now link this condition to the Lehmann informativeness criterion. Substituting (11) and (6) we

obtain

Fσ

(
F−1

σ

(
1− c/v | θ̂

)
|θ ′
)
< Fσ̄

(
F−1

σ̄

(
1− c/v | θ̂

)
|θ ′
)
.

This condition holds under (3), which in turn is equivalent to signal Fσ̄ being Lehmann-noisier than

signal Fσ by Lemma 1 in Appendix A. Intuitively, an increase in noise reduces meritocracy and thus

makes the winning probability for any type less responsive to merit. As seen in the bottom panel of

Figure III, when the acceptance standard is adjusted to keep the initial marginal type indifferent, the

winning probability of all inframarginal types is reduced, as illustrated by the shift from the black to

the dashed red curve.

Weighting (12) by the density of the corresponding inframarginal types and summing (12) over all

θ
′ ≥ θ̂ , we conclude that the budget assigned will be under-spent,∫

θ̄

θ̂

[1−Fσ̄ (ŷ |θ)]g(θ)dθ <
∫

θ̄

θ̂

[1−Fσ (x̂ |θ)]g(θ)dθ ,

whenever we retain indifference by the initial marginal type.

Proposition 1.d (Impact of Noise on Award Function) As noise σ in the evaluator’s signal increases,

fewer grants are awarded for any given level of applications.

Given a fixed budget B, at the higher noise σ̄ more applications from agents with types below the

initial θ̂ must be encouraged in the new equilibrium by lowering the acceptance standard below ŷ.

Thus, we obtain our keystone comparative statics:

Proposition 1.e (Impact of Noise on Fixed-Budget Equilibrium Applications) As noise σ in the eval-

uator’s signal increases, fixed-budget equilibrium applications increase.

The remainder of the paper shows that this comparative statics result holds more generally—and

is actually strengthened—when the budget allocated to a field increases with applications. Before

proceeding, we step back and prod the robustness of this result to the simplifying assumption that

candidates have perfect information about their merit.
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Noisy Self-Selection. Does evaluation noise increase applications also when candidates have a noisy,

rather than perfect, signal t about their type θ? For the case with noisy bilateral information, we can

leverage the quantile function approach to easily extend the result once we restrict it to parametric sig-

nals, for which we can prove the Lehmann (1988) property. For example, suppose types are normally

distributed, θ ∼ N(0,1), and the evaluator, as well as the candidates, observe normal and conditionally

independent signals, x|θ ∼ N(θ ,σ2) and t|θ ∼ N(θ ,τ2), respectively. To decide whether to apply,

candidates must now forecast what their type is likely to be. Upon observing signal t, a candidate’s

updated belief about the type is θ |t ∼ N

(
1

1+τ2 t, τ2

1+τ2

)
. Candidates with higher signals are more likely

to believe their type is high. Knowing that the evaluator observes a noisy signal, x|θ ∼ N
(
θ ,σ2

)
,

the candidate’s belief about the signal the evaluator observes is x|t ∼ N

(
1

1+τ2 t,σ2+ τ2

1+τ2

)
, so that an

increase in σ reduces Lehmann (1988) information. Thus, exploiting the general argument presented

above, an increase in the evaluator noise σ makes the winning probability less responsive to the can-

didate’s signal about the type. Applications increase for any given awards budget, as in the baseline

model. In addition, we can establish that an increase in candidate noise τ also reduces Lehmann’s

(1988) information and thus reduces applications.

III B Partial Equilibrium with Sub-Proportional Budget Allocation

This section considers a single-field model where the budget of grants B(a) depends on applications,

where a is the fraction of applicants within the unit-size population of candidates in the field. We

restrict attention to the budget rules that are (weakly) increasing and sub-proportional

∂

∂a

B(a)

a
≤ 0, (13)

i.e., the grant budget per application (weakly) decreases in applications.21 Graphically, the segment

that connects any point (a,B(a)) in the graph to the origin (0,0) lies entirely below the graph itself.

Equivalently, the rays of the function become less steep as a increases so that none of the area below the

graph of the function is hidden from an observer at the origin by the graph itself. Intuitively, (13) relaxes

concavity by requiring the function’s average, rather than the derivative, to decrease. Sub-proportional

budget encompasses fixed budget, B(a) = B, as well as the case with constant payline, B(a) = pa,

where the fraction of grants is proportional to applications. This formulation allows us to deal with a

partial equilibrium version of the full model where the payline p(a) decreases in applications in a field,

holding fixed the number of applications in all other fields.

Shape of Award Function. The characterization of the equilibrium in terms of uniqueness, stability,

and comparative statics hinges on the shape of the award function (9), which gives the grant awards

21This is the opposite of a differentiable version of star-shaped, as defined by Marshall and Olkin (2007, p. 690-691).
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FIGURE IV: Award Function

Top panel (a): Super-proportional award function, with increasing rays. Bottom panel (b): Sub-proportional

award function, with decreasing rays.
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necessary to induce a candidates to apply. Notice that the award function in the example depicted in

the bottom panel of Figure II is super-proportional

∂

∂a

A(a)

a
≥ 0,

as illustrated in the top panel of Figure IV. This is the opposite of condition (13) we imposed for the

budget. From now on, we restrict attention to signals with additive noise. In this case, the super-

proportionality of the award function hinges on the monotonicity of the hazard rate of the type distrib-

ution:

Proposition 2.a (Grant Awarded: Shape) The award function A(a) is super-proportional, linear, or

sub-proportional if the type distribution G has respectively increasing, constant, or decreasing hazard

rate.

To understand the logic behind this central result, rewrite the integrand in (9) as a function of the

type percentile t = G(θ)

A(a) =
∫ 1

1−a

[
1−F

(
x̂D(a) |G−1(t)

)]
dt.

Thanks to this change of variable, the budget necessary to induce a applications can be visualized as the

area below the winning probability curve, as represented in the bottom panel of Figure II. Equivalently,

we can express this area as a rectangle with a base that spans the integration segment (of length a) and

height equal to the average winning probability under a applications, A(a)/a. The average winning

probability when a fraction a of the population applies is precisely the average of the budget necessary

to induce a applications. Graphically, the average winning probability is the slope of the segment

connecting (a,A(a)) to the origin in the two panels of Figure IV. According to the claim, if applications

increase, the average winning probability increases if and only if the hazard rate of the type distribution

G is increasing.

As applications increase, the acceptance standard must be reduced in order to attract more applica-

tions. Thus, the winning probability of all inframarginal applicants must increase.22 The impact of the

increase in applications on the average winning probability among all applicants, however, hinges on

the relative increase in winning probabilities for applicants at different percentiles of the type distribu-

tion.

The award function is super-proportional when stronger applicants, with types at higher percentiles,

absorb a larger fraction of grants—i.e., when the increase in the rent that inframarginal types obtain as

they win with higher probability increases in the type percentile. Intuitively, if the type distribution

22In panel (b) of Figure II, for example, if the acceptance standard were lowered so as to reduce the marginal type from

θ
′ to θ̂ < θ

′, the winning probability for the inframarginal types would increase from the dashed curve to the continuous

curve.
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has an increasing hazard rate (or decreasing hazard rate), the distance between the average type of

the inframarginal applicants and the type of the marginal applicant, E
(
θ |θ > θ̂

)
− θ̂ , decreases (or

increases) in the type of the marginal applicant

∂

∂ θ̂

[
E
(
θ |θ > θ̂

)
− θ̂
]
< 0 (or> 0),

see Bagnoli and Bergstrom’s (2005) Theorem 6.23 Under increasing hazard rate, inframarginal ap-

plicants on average become stronger relative to the marginal applicant, when the marginal applicant

is reduced as a result of an increase in applications. When the signal is additive, an increase in the

difference E(θ |θ > θ̂)− θ̂ translates into a higher gap between the average winning probability of

the inframarginal applicants and the winning probability of the marginal applicant. Given that along

the demand curve the winning probability of the marginal applicant is fixed at c/v by construction, in

equilibrium the average winning probability of the inframarginal applicants A(a)/a increases in a.

The opposite conclusion holds if the type distribution has a decreasing hazard rate. Reversing the

logic, the budget of awards needed to incentivize additional applicants increases less than proportionally

with the number of applications. Under decreasing hazard rate, stronger applicants absorb relatively

less incremental grants than weaker applicants. As the winning probability rises, the proportion of

grants awarded to applicants with higher types decreases. Given that relatively less applicants win with

higher probability, the average winning probability is reduced as applications increase.

In the borderline case with constant hazard rate, the type distribution is exponential. As applications

increase, the distance between the type of the marginal applicant and the average type of all inframar-

ginal applicants remains constant. Suppose the application level is a, resulting in an average winning

probability A(a)/a. To increase applications to a′ > a, the acceptance standard must be reduced—as

a result, the winning probability of all inframarginal applicants goes up. As applications increase, the

number of applicants who expect to win a grant with a probability above any given level rises, but with

constant hazard rate it remains constant as a fraction of the number of applications. As a consequence,

the average winning probability A(a)/a= A(a′)/a′ also remains constant.24

Partial Equilibrium. As illustrated in the top panels of Figures IV and V, with increasing hazard rate

the award function is super-proportional and crosses once and from below the sub-proportional budget

23Increasing (or decreasing) hazard rate of the type distribution is equivalent to logconcavity (or logconvexity) of the

counter-cumulative distribution 1−G(θ), which implies logconcavity (or logconvexity) of the right-hand integral H (θ) =∫
θ̄

θ

[
1−G

(
θ̃
)]

dθ̃ , which in turn is equivalent to the fact that the residual expectation E
[
θ − θ̂ |θ ≥ θ̂

]
is decreasing (or

increasing) in θ̂ .
24The precise condition derived in Proposition 2 hinges on the assumption of additive noise. Similar results can be

derived for more general signal distributions. For example, if the signal follows a Kumaraswamy distribution, F (x|θ) =
1−

(
1− xθ

)b
with parameter b > 0 (resulting in less precise evaluation for higher types), it can be shown that the award

function is super-proportional, linear, or sub-proportional whenever the elasticity of the type distribution is increasing,

constant, or decreasing. When the type distribution G has positive support, the borderline case is given by the Pareto

distribution.
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function for an interior a ∈ (0,1) provided that B′ (0)> A′ (0) and B(1)< A(1).25 This equilibrium is

stable, given that a small increase (or decrease) in a above (or below) the equilibrium level results in

an increase (or decrease) in grants awarded above (or below) the budget, thus inducing an adjustment

back to the equilibrium:26

Proposition 2.b (Partial Equilibrium) If the type distribution has an increasing hazard rate and the

budget rule is sub-proportional, there is a unique partial equilibrium and this equilibrium is stable.

The bottom panels of Figures IV and V illustrate sub-proportional award functions resulting when

the type distribution has decreasing hazard rate. To understand the role of the hazard rate condition on

the equilibrium, consider the special case with a proportional budget, B(a) = pa, where p > 0 repre-

sents the grants available per application. In this case with constant payline, when the type distribution

has a decreasing hazard rate, the unique stable equilibrium is always at the corner. If A′ (0)> p, unrav-

eling a= 0 results in the unique stable equilibrium; if instead A′ (0)< p, all agents apply a= 1 in the

unique stable equilibrium.

Stimulus Bill. Proposition 2.b has an immediate implication for the impact of an (anticipated) in-

crease in the budget on the success rate—also known as payline—the widely reported fraction of suc-

cessful applications:

Proposition 2.c (Impact of Budget on Success Rate) If the type distribution has an increasing, con-

stant, or decreasing hazard rate, the equilibrium success rate respectively increases, is constant, or

decreases in the budget.

This prediction can be confronted with the outcome of the increase in the NIH budget following

the 2009 Stimulus Bill. As part of the stimulus bill introduced by the US Congress in 2009 in the

aftermath of the great financial crisis, the American Recovery and Reinvestment Act (ARRA) allocated

an additional $8.97 billion to extramural research grants at the NIH in two parts:

• Part of the funds (19.3%) of the total ARRA budget appropriated to the NIH was allocated to

“not ARRA solicited” applications that had been previously submitted and reviewed in recent

evaluation cycles but were marginally rejected. Park, Lee, and Kim (2015) empirically document

that “not ARRA solicited” applications resulted in less high-impact articles than regular projects.

25These two conditions are rather natural. If the hazard rate of the type distribution is unbounded, we have A′ (0) = c/v,

so that B′ (0) > A′ (0) avoids the trivial case in which the budget is so scarce that nobody applies. Condition B(1) < A(1)
imposes that the budget is too scarce to accommodate all applications.

26When B′ (0) < A′ (0), there is a stable corner equilibrium with unraveling a = 0, in which noboby applies. When

B(1)> A(1), there is a stable corner equilibrium a= 1 in which all agents apply. In all cases, the equilibrium is unique and

stable.
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• The remainder of the funding bonanza was set aside to increase the budget for “ARRA solicited”

grant competitions. In this case, potential applicants were informed of the larger budget. A

second fact, documented by Stephan (2012, p. 145), is that such applications increased so much

that the success rate decreased.

These two facts can be rationalized within our model. First, the budget allocated to “not ARRA so-

licited” applications corresponds to an unanticipated increase in the budget. Compared to the pre-policy

equilibrium, the policy change shifts the supply to the right. Holding fixed the number of applications

at the equilibrium level aB for the initial budget B, the model predicts that the applications funded as a

result of the increase in the budget to B′ > B are of lower quality, by the MLRP of the signal (2).

Second, consider the impact of an anticipated increase in the budget on the success rate. According

to Proposition 2.d, applications must increase more than proportionally with the budget for the success

rate to decrease as the budget increases—and this occurs in equilibrium if and only if the type distri-

bution has decreasing hazard rate. This is exactly what happened as a result of the “ARRA solicited”

part of budget increase in 2009. This observation is consistent with a type distribution with decreasing

hazard rate at the top, as is natural to expect for the talent of scientists and artists; see Seglen (1992)

and Caves (2000).27

Impact of Noise on Applications. We now return to our headline comparative statics with respect

to evaluation noise σ . Recall from Proposition 1.d that an increase in noise σ shifts down the award

function. Given that the budget function is increasing and sub-proportional, if the award function is

super-proportional, as in the top panel of Figure V, we conclude that applications in the unique and

stable equilibrium increase in σ more than under constant budget.28 More generally, the following

headline comparative statics result holds for all stable equilibria:

Proposition 2.d (Partial Equilibrium) As noise σ in the evaluator’s signal increases, the application

level a increases in any stable partial equilibrium.

Grading on a Curve and the Paradox of Relative Evaluation. Turning to an extreme version of

this comparative statics result, consider the outcome resulting when the evaluation is based on a perfect

27Distributions with decreasing hazard rate are more right-skewed than the exponential distribution. They can be obtained

by stretching an exponential distribution toward the top tail through a convex transformation. A distribution has decreasing

hazard rate whenever it is larger than the exponential distribution in van Zwet’s (1964) convex transform order. Given two

distributions G and H, van Zwet (1964) defines G to be smaller than H in the convex transform order, denoted G ≺c H,

whenever H−1(G(·)) is convex. As shown by van Zwet (1964), a distribution G with increasing (or decreasing) hazard

rate can be obtained through an increasing and concave (or convex) transformation G−1(GExp(·)) of a random variable

with exponential distribution. To gain intuition, visualize the random variable G−1 on the vertical axis as an increasing

transformation of an exponential random variable G−1
Exp on the horizontal axis through a Q–Q plot. Concavity (or convexity)

of G−1(GExp(·)) contracts (or stretches) the top tail and makes it thinner (or thicker) than the top tail of an exponential.
28The comparative statics result holds strictly for interior equilibria, but weakly for corner equilibria.
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FIGURE V: Comparative Statics

Top panel (a): A super-proportional award function (red solid) crosses a sub-proportional budget (blue dot-

ted) only once from below, resulting in a unique stable equilibrium. As noise increases, the award function shifts

to the right to the red dashed curve, resulting in a larger increase in applications than under fixed budget (dashed

black horizontal segment), but smaller than under constant payline (straight green segment). Bottom panel (b):

Multiple equilibria are possible when the award function is sub-proportional. Here there is an unraveling stable

equilibrium, an unstable equilibrium with intermediate applications, and a stable equilibrium with high applica-

tions. As noise increases, applications increase in the interior stable equilibrium, but decrease in the unstable

equilibrium. 22



signal without noise, σ = 0. With fixed budget B, the most efficient allocation results: the best a agents

apply and obtain grants with probability 1.

What if, instead, grants can only be awarded to a fraction p < 1 of applicants? This case corre-

sponds to grading on a curve with binary classification, with awards for the best p < 1 participants.

Equivalently, suppose that the budget is proportional to applications, B = pa, with a constant payline,

corresponding a small panel under the NIH payline system or under the ERC’s PA rule. Given any ac-

ceptance standard x, with perfect information, all applicants with θ ≥ x anticipate that they will succeed

and thus apply to secure v> c. However, only a fraction p< 1 of these applicants can succeed. Thus, if

a> 0, a fraction 1− p of applicants cannot succeed. But applicants with types below the 1− p quantile

of the conditional type distribution among applicants, having perfect information and thus anticipating

that they will not succeed, strictly prefer not to apply and save the application cost. The process con-

tinues until we obtain that the constant-payline equilibrium for p< 1 with perfect information (σ = 0)

always unravels: the unique (stable) equilibrium features no participation, a= 0.29

This unraveling logic highlights how grading on the curve, if perfect, destroys participation in-

centives. More generally, this logic immediately extends to any budget rule with the property that

B(a)/a< 1 for any a:

Proposition 2.e (Unraveling) If the evaluation is based on perfect information, σ = 0, and B(a) < a,

in the unique partial equilibrium no candidate applies.

The result follows immediately from the observation that the award function without noise is

A(a) = a. Unraveling start at the bottom of the distribution, where applicants hold out anticipat-

ing they stand no chance of winning, thus reducing the budget available for the top applicants. In the

end, symmetric information destroys incentives for costly participation in this nonmarket environment,

turning on its head Akerlof’s (1970) classic insight that asymmetric information reduces incentives for

market participation.

Unraveling with Noisy Information. It is worth stressing that while perfect information is sufficient,

it is not at all necessary for unraveling. Well beyond the case with perfect information, unraveling

results provided that B(0) = 0 and B′ (0) < A′ (0) where A′ (0) := lima→0+ A′ (a). For example, we

verified that with uniform additive noise, F (ε) = 1/2+ε , whenever B(0) = 0 with B′ (0)< 1 (and thus

for any constant payline p< 1):30

• For type distributions with bounded hazard rate, limθ→∞ g(θ)/ [1−G(θ)]< ∞, such as logistic

G(θ) = 1/ [1+ exp(−(θ −µ)/s)] there is a stable equilibrium with unraveling, a = 0, not only

29Or, equivalently, only the highest type θ (measure-zero) applies and is awarded a fraction p of the grant.
30The derivative of the award function is then A′(a)= c/v+

[
G
(
G−1 (1−a)+(1− c/v)σ

)
− (1−a)

]
/[σg

(
G−1(1−a)

)
].
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in the absence of noise, but also when noise is limited, σ ≤ σ̃ with σ̃ > 0.31

• For type distributions with vanishing hazard rate, limθ→∞ g(θ)/ [1−G(θ)] = 0, such as Pareto

G(θ) = 1−1/θ with support [1,∞) there is always an equilibrium with unraveling, for any level

of noise.32

Equilibrium Multiplicity. When the award function is not strictly super-proportional (at least on

a subinterval) multiple equilibria possibly arise. The borderline case with equilibrium multiplicity

features exponentially distributed types, G(θ) = 1− exp(−λθ), with constant hazard rate λ . The

award function is then linear in a, with slope increasing in c/v and decreasing in λ and in σ .33 For any

given payline p> c/v, there is a threshold level of noise σ̃ at which there is a continuum of equilibria

for any a ∈ [0,1], for σ < σ̃ there is a unique equilibrium with unraveling, and for σ > σ̃ there is a

unique equilibrium with a= 1.34

When the type distribution has strictly decreasing hazard rate, the resulting sub-proportional award

function can cross multiple times with a sub-proportional budget, as illustrated in the bottom panel of

Figure V. The headline comparative statics from Proposition 2.b applies for all stable equilibria, also

when they are multiple. Given that the award and budget functions are both continuous, equilibria alter-

nate in terms of stability. By Samuelson’s (1947) correspondence principle, the sign of the comparative

statics is reversed for unstable equilibria.35

IV Grantmaking Across Fields

We now turn to the problem of grant allocation across fields i= 1, ...,N, each populated by a continuum

of candidates representing the pool of potential applicants. Field i is characterized by specific parame-

ters, such as type distribution Gi, signal noise distribution Fi, noise dispersion σ i, application cost ci,

and private benefit vi from obtaining a grant.36 As in the baseline model, candidates are atomistic

31With logisitic types the award function is A(a) = ac/v− (s/σ) ln(1−a+aexp(−(1− c/v)σ/s)). From A′(0) = c/v+
(s/σ) [1− exp(−(1− c/v)σ/s)], we have ∂A′(0)/∂σ < 0, limσ→0 A′ (0) = 1 and limσ→∞ A′ (0) = c/v, so that σ̃ uniquely

solves c/v+(s/σ̃) [1− exp(−(1− c/v) σ̃/s)] = B′ (0). E.g., for c/v= .2 and p= .3, we have σ̃ = 10s.
32With Pareto types the award function is equal to A(a) = ac/v+ (1/σ) ln(1+(1− c/v)σa), with A′(0) = 1 for all

σ > 0. For any level of noise σ , unraveling, a= 0, is a stable equilibrium.
33For example, if the signal is uniform, F (ε) = 1/2 + ε , the award function is A(a) =

a{c/v+[1− exp(−σλ (1− c/v))]/(σλ )}. If the signal is exponential, F (ε) = 1− exp(−ε), the award function is

A(a) = a

[
(c/v)λσ −λσc/v

]
/(1−λσ).

34For c/v= .2 and p= .3, with uniform signal we have σ̃ = 10λ .
35For an analytical example, with Pareto distributed types as in the last bullet point, with constant payline p < 1, in

addition to the unraveling equilibrium, for σ > σ̂ where σ̂ <∞ is the unique solution of (1/σ) ln(1+(1− c/v)σ)= p−c/v,

there is also a second stable equilibrium in which everyone applies, a = 1, as well as an intermediate unstable equilibrium

with a ∈ (0,1). E.g., for c/v= .2 and p= .3, we have σ̂ = 33.15.
36The model can be easily extended to allow for fields to have different sizes, ni, and for the individual budget, qi, that each

applicant can request to vary across fields so that if fraction ai of candidates apply in the field i the total funds requested in
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and thus do not consider their application decision’s impact on the acceptance standard. In each field,

the evaluator (think of the review panel) allocates to field i a budget Bi (a1, ...,aN) dependent on the

applications submitted in all fields. In each field, grants are awarded to applications with the highest

expected merit within the field.

Appendix B characterizes the equilibria in the model with multiple fields, with particular attention

to budget rules that satisfy a multidimensional generalization of sub-proportionality (13), condition

SPA. As shown in Proposition 4, quasi-proportional budget allocation rules

Bi =
a

ρ i

i

∑
N
j=1 a

ρ j

j

B (QPA)

with proportionality coefficients ρ i ∈ [0,1] satisfy SPA. This class encompasses the PA rule used by

the ERC, NIH, and Canadian research funding organizations (for ρ i = 1 for all i ) and the fixed budget

rule adopted by the NSF as well as by the UK and Australian agencies (for ρ i = 0 for all i), but more

generally allows for field-specific budget responsiveness ρ i.

If we combine sub-proportionality with increasing hazard rate, we obtain a unique stable equilib-

rium that preserves the comparative statics we derived for the partial equilibrium—applications increase

in own noise—and reverses it for other fields—applications decrease in noise in other fields:

Proposition 3 (Unique General Equilibrium) (a) If the type distributions in every field have increas-

ing hazard rate (IHR) and the budget rule is sub-proportional, SPA, the general equilibrium (i) is

unique, (ii) stable, and (iii) satisfies the comparative statics that an increase in noise in a field i in-

creases applications in that field

daE
i

dσ i

≥ 0 (14)

and decreases applications in any other field j

daE
j

dσ i

≤ 0. (15)

To understand this result, note that by Proposition 1.e, for any given budget size, noisier fields

tend to attract more applications. As the budget in a field increases in applications, the increased

number of applications results in an increase in the budget, which in turn induces a further increase in

applications. If applications increase less than proportionally with the budget, as is the case when the

type distribution has an increasing hazard rate, and the budget is sub-proportional in applications, the

the field are niqiai. In practice, grant calls typically set upper bounds to the size of the award applicants can ask, sometimes

depending on the applicant’s career stage. The ERC sets the maximum allowed awards at the same level for all fields. Given

that almost all applicants request (and successful applicants are awarded) approximately the maximum allowed, we do not

model the individual choice of the amount by the applicant. In the more general case where grant applicants request awards

of different sizes, panel i selects the projects with the highest score to distribute the fraction 100× p of the total funds

applied for in field i.
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FIGURE VI: Construction of General Equilibria

The general equilibria are at the crossing of the partial equilibrium correspondences for two fields: a j (ai)
represents the set of partial equilibrium applications in field j as a function the application level in field i. An

increase in σ1 shifts a1 (a2) to the right to the dashed blue curve. All stable equilibria, here (i), (iii), and (v)

satisfy (14) and (15).

process converges to a unique interior equilibrium that features more applications in the noisier field

and fewer applications in the other fields.

Multiple Equilibria. For type distributions without increasing hazard rate, multiple equilibria be-

come possible. In the borderline case with exponentially distributed types in all fields, an extreme

version of the paradox of relative evaluation arises: under proportional apportionment (PA) of a budget

B< 1, the entire budget is allocated to the field with the noisiest evaluation and all other fields unravel,

even if their noise is infinesimally lower. More generally, Appendix B shows that the comparative

statics for all stable equilibria remains well-behaved for symmetric budget rules such as PA:

Proposition 3 (Multiple General Equilibria) (b) For general type distributions, in any stable general

equilibrium under proportional apportionment (PA) applications in a field increase in the noise of that

field, (14).

Figure VI illustrates the construction of the general equilibrium and the logic of the comparative

statics result with N = 2 fields in an example featuring multiple equilibria. In each of the two fields

types follow a a mixture of two normal distributions with a non-monotonic hazard rate (increasing for
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low types, decreasing for intermediate types, and increasing again for high types). To understand the

shape of field 2’s partial equilibrium correspondence (red curve in the figure) a2 (a1), given applica-

tions a1 in field 1, note that the level of applications in field 1 impacts the equilibrium in field 2 only

through the budget function B2 (a1,a2), which decreases in a1. As can be seen from Figure V.b, the

budget reduction created by the increase in a1 results in a decrease in applications at any stable partial

equilibrium—and in an increase in applications at any unstable partial equilibrium. The two decreasing

portions of the partial equilibrium correspondence a2 (a1) in Figure VI depict stable partial equilibria,

while the increasing portion depicts an unstable interior partial equilibrium. A similar construction

applies to field 1’s partial equilibrium correspondence a1 (a2) (blue curve in the figure).

The points of intersection of the partial equilibrium correspondences a2 (a1) and a1 (a2) are general

equilibria. In this example, there are five general interior equilibria, marked by colored dots in the

figure. A general equilibrium is stable when a2 (a1) crosses a1 (a2) from below at points at which both

a2 (a1) and a1 (a2) are downward sloping. Here, general equilibria (i), (iii), and (v) are stable, while

(ii) is general-equilibrium unstable (a2 (a1) crosses a1 (a2) from above) and (iv) is partial-equilibrium

unstable (a2 (a1) is upward sloping at the crossing). As a result of an increase in noise in the field 1,

by Proposition 2.d, a1 (a2) shifts to the right (dashed blue curve). All stable equilibria satisfy both own

and cross comparative statics, (14) and (15), given that at a stable equilibrium a2 (a1) slopes down and

is flatter than the downward-sloping a1 (a2).

V Empirical Validation: The 2014 ERC Funding Reform

This section exploits the natural experiment of the 2014 reform of the European Research Council

(ERC) funding rules to test and quantify our theory’s central prediction about the impact of noise on

applications and budget shares. Figure VII explains the different steps of the analysis. We first need to

compute the evaluation noise in each ERC panel (step 1) to quantify the effect of evaluation noise on the

ERC grant applications (step 2). We detail each of these steps below after explaining the institutional

background regarding the ERC funding.

V A Institutional Background: ERC Funding

The ERC funding scheme was set up in 2007 by the European Union and has since then funded over

10,000 researchers across all research fields with a budget of about 1.7 billion euros per year.37 Be-

fore 2014, ERC used to set the budget for each of three disciplinary domains from the “top down”,

respectively at about 39% for Life Sciences (LS), 44% for Physical Sciences and Engineering (PE),

and 17% for Social Sciences and Humanities (SH). Within each of these domains, the budget was then

37The ERC has annual calls for three separate levels of seniority: Starting, Consolidator, and Advanced grants.
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FIGURE VII: Steps in Empirical Analysis

allocated to panels from the “bottom up”, in proportion to the budgetary demand by proposals sub-

mitted to the panels within the same domain according to PA. From 2015 the ERC started allocating

funds proportionally across all panels, making each panel’s budget dependent on the applications to

panels belonging to the other two domains as well.38 As shown in Figure I, the relative budgets of the

three domains were stable until the reform but started to diverge from 2015, with a sharp decline in the

budget share devoted to LS and an increase for SH.

The reform also had consequences within domains, as shown in Figure VIII. Within SH, panels such

as SH3 (environmental studies, geography, and demography), SH5 (cultural studies), and SH6 (history)

saw an increase in the share of their budget. In contrast, the relative budget of SH1 (economics, finance,

and management) remained relatively constant. Within LS, several basic-research panels ranging from

LS1 (molecular biology) to LS5 (neurosciences) saw a sustained decline, whereas the budget share of

more applied panels like LS9 (non-medical biotechnology) increased by little. In the empirical analysis

presented below, we argue that these changes can be attributed to the way in which the budget reform

38Before the reform, domain budgets B̄PE, B̄LS, B̄SH were fixed and then allocated to each panel i proportionally within

each domain, resulting in Bi = aiB̄d(i)/∑ j∈Gd(i)
a j, where d(i) ∈ {PE,LS,SH} is the domain of panel i and Gd(i) is the set

of panels in the same domain as panel i. After the reform, the budget allocation to panels became proportional within and

across domains, Bi = aiB/∑ j∈GAll
a j, where GAll contains all the panels in PE, LS and SH.
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FIGURE VIII: Budget Shares in ERC Funding by Disciplinary Domain

This figure shows the relative change in funding for each ERC panel for the years 2009-2013 compared to

2016-2021, leaving out the years around the 2014 reform. LS: Life Sciences, PE: Physical Sciences and Engi-

neering, SH: Social Sciences and Humanities. LS01 covers molecular biology, biochemistry, structural biology

and molecular biophysics. SH03 covers demography, sociology, anthropology, education and communication.

Source: ERC data.

leverages the impact of evaluation noise on application incentives across diverse panels.

V B Econometric Specification

Proposition 3 relates the number of applications aist to evaluation noise, σ i, where the indices i, s, and t

respectively represent the panel, the seniority of the grant call, and the year. We exploit the ERC reform

to inform the theory (step 2 in Figure VII) by associating to each panel a panel group Git within which

budget allocations are made in that year. We define Nit as the number of panels in group Git . Group

membership is changing over time due to the reform of the ERC funding described above. Before

the reform, panels belonging to the same domain were competing for funds only with other panels

belonging to the same domain; thus, panels are assigned to three groups depending on their domain LS,

PE, and SH. After the reform, panels started competing for the overall budget regardless of the domain;

all panels are then assigned to a single group regardless of their domain.

We stipulate that the evaluation noise in a given panel is constant over the period of analysis. How-

ever, the difference in the pool of competing panels over time implies that panels face a change in their

relative evaluation noise. We, therefore, relate applications to a given panel i to the reviewer noise in

that panel as well as the noise in the panels in the same group. For the empirical analysis, we hypothe-
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size that the number of applications to a panel depends on the difference σ i− σ̄ t(i), where σ̄ t(i) is the

average of the reviewer noise in the relevant group to which the panel belongs, Git . The reform induced

a change in the relative evaluation noise that is time and panel specific. We therefore estimate the

following econometric model with a difference-in-difference structure where the intensity of treatment

varies across panels and time periods:

aist = α is+α t+β a [σ i− σ̄ t(i)]+ ε ist , σ̄ t(i) =
1

Nit
∑

j∈Git

σ j. (16)

We allow for panel times seniority fixed effects (α is) as well as year fixed effects (α t). The identify-

ing variation derives from the reform that changed the funding allocation and its specific effect across

panels. The regression assumes that the disturbances ε ist are potentially heteroskedastic, contempo-

raneously correlated across panels, and autocorrelated. We supplement the analysis by relating the

resulting share of the budget allocation to each panel and seniority call, Bist , to evaluation noise in a

similar way as in equation (16) and we denote the marginal effect of evaluation noise on the budget

share by β B.

V C Measuring Evaluation Noise: RCN Data and Matching with ERC Panels

To estimate equation (16), we construct a measure of evaluation noise σ i for each panel. We measure

the evaluation noise as the disagreement among grades of reviewers evaluating grant applications in a

given panel. Panels with a larger share of reviewers who agree on a grade are panels with lower noise.

Given that reviewer evaluation at the ERC is not available, we quantify evaluation noise by research

field using data on grant evaluations at the RCN (see the tasks listed in Step 1 in Figure VII). We

obtained complete data, including grades for the universe of RCN applications, whether successful or

not, over an extended period from 2002 to 2021. We focus on all the proposals submitted within the

FRIPRO program, which funds curiosity-driven academic research proposed by researchers across all

disciplines, similar to the ERC. The median amount of the grant is about $1.3 million in 2020 and is

awarded to individual researchers rather than research centers. The referees are mostly senior scholars

of international standing, with a median age of 52 and based in 42 different countries, with the United

Kingdom, Germany, and Sweden being the most frequent countries of origin during the 2020-2021

period. Given that the setting is comparable to the ERC, we assume that the evaluation dispersion at

the RCN and the ERC are similar.

The next step consists in assigning each RCN application to one of the 25 ERC panels to then

compute reviewer agreements in the corresponding ERC panels. We measure reviewer agreements on

the basis of the grades of each application in a given panel. We explain each step below.

The FRIPRO program is divided into broad domains based on the applicant’s fields. First, given that

FRIPRO domains are similar to those used at the ERC, it is straightforward to assign each application
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to one of the ERC domains (LS, PE, and SH). Second, we assign each RCN application to one of

the ERC panels (6 panels in the SH domain, 10 in PE, and 9 in LS) within the corresponding domain

as follows. Exploiting text information, we construct a prediction algorithm to assign applications

to panels using text from both titles and abstracts of ERC and RCN applications. We use 10,962

ERC applications (corresponding to the universe of successful applications between 2007 and 2020),

and 9,964 RCN applications (including both successful and unsuccessful applications). In both sets

of applications, the text (title and abstract) describing the research project has a total of about 2,100

characters, corresponding to about 300 words. As explained in detail in Appendix C, we perform the

classification of each application using machine learning techniques combining BERT (Biredictional

Encoder Representations from Transformers, Devlin et al. 2019) with a neural network algorithm. The

validation accuracy ranges from 74 to 83 percent. We allocate each application to an ERC panel based

on the highest predicted probability in the main analysis. As a robustness check, we also perform a

bootstrap analysis where we randomly assign a given application to a panel according to the vector of

probabilities of belonging to a particular panel.

Having assigned RCN applications to ERC panels, we develop a measure of evaluation noise for

each ERC panel based on the agreement among reviewer grades in the RCN applications assigned to

that panel (our second task listed in Step 1 in Figure VII). Overall, we have 40,156 observations of

RCN reviewer grades, or about 4.05 grades per application.39

We borrow methods and statistics developed in education and psychology for measuring reviewer

agreement based on comparing the grading patterns of multiple evaluators. The simplest measure is the

percentage agreement between reviewers, i.e., the number of times any pair of reviewers agree on the

same grade divided by the number of possible pairs. This measure tends to overestimate the amount

of agreement because it also includes agreement that would occur by chance (Cohen 1960, 1968). To

adjust for chance agreement, measures such as Cohen’s kappa, Fleiss’ kappa, Gwet’s AC and Brennan’s

AC have been developed; see Gwet (2014) for a review and Appendix C for further details. We compute

these different measures and find them highly correlated with each other, with pair-wise correlations

ranging between 0.73 and 0.99.

For illustration, Figure IX plots the inter-rater agreement computed as Gwet’s AC. The largest

agreement among reviewers is in panels belonging to the PE domain, particularly in PE01 (mathe-

matics) and PE09 (universe sciences). In contrast, the lowest agreement occurs in the SH domain,

especially in SH05 (cultural studies) and SH06 (history). Table IV in Appendix C provides a complete

list of different agreement measures across all panels, with standard errors. We use minus the inter-rater

agreement measure to measure evaluation noise.

39Section C in the online appendix provides further descriptive statistics on the data we use for the analysis.
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FIGURE IX: Inter-rater Agreement by ERC Panel

This figure shows the inter-rater agreement, computed as Gwet’s AC, based on reviewer grades for RCN

funding applications. Each application has been assigned to an ERC panel based on text analysis. LS: Life

Sciences, PE: Physical Sciences and Engineering, SH: Social Sciences and Humanities. SH05 covers cultural

studies, whereas PE01 covers mathematics. Source: RCN and ERC data.

V D Effect of Evaluation Noise on Applications

The estimated coefficients β a and β B from equation (16) are displayed in Table I. The table displays

five regressions based on different definitions of the evaluation noise. All effects are expressed in stan-

dard deviation changes. Column 1 displays the results for grant applications. One standard deviation

increase in the evaluation noise in a field increases applications in that field by 0.4 to 0.6 of a standard

deviation. The effect is similar when using different definitions of reviewer agreement (and therefore

evaluation noise). Given the econometric model, the comparative statics predictions of Proposition 3

translate to
∂aist

∂σ i

= β a > 0
∂aist

∂σ i′
=−β a

Nit

< 0, i′ 6= i, i′ ∈ Git . (17)

We thus find empirical confirmation for the predictions of our theory. Turning to the effect of evaluation

noise on grant allocation shares, we also find consistent and statistically significant effects indicating

that budget shares are increasing in their own evaluation noise. A standard deviation increase in own

evaluation noise increases a field’s budget by 0.4 to 0.5 of a standard deviation or by 0.5 percent from

a baseline of 4 percent. In all four specifications, the reform led to a significant change in the level

of funding (and therefore applications), with the ERC fields with the lowest evaluation noise lagging.

Appendix Table V shows that the results are robust to use a probabilistic classification of proposals into

ERC panels. It also provide an event analysis that shows the absence of pre-trends.
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TABLE I: EFFECT OF EVALUATION NOISE ON FUNDING OUTCOMES

Evaluation noise Requested Budget

based on: Funding (β a) Shares (β B)
Percent agreement 0.41∗∗∗ 0.428∗∗∗

(0.093) (0.131)

Cohen’s kappa 0.583∗∗∗ 0.462∗∗
(0.162) (0.202)

Fleiss’s kappa 0.577∗∗∗ 0.448∗∗
(0.163) (0.201)

Gwet’s AC 0.402∗∗∗ 0.425∗∗∗
(0.09) (0.128)

Brennan’s AC 0.41∗∗∗ 0.428∗∗∗
(0.093) (0.131)

Observations 845 850

Note: This table shows the effect of evaluation noise computed from different inter-rater agreement measures on the re-

quested funding and allocated budget shares, see equation (16). The inter-rater agreement measures are computed using

a power weighting scheme. The coefficients are expressed in standard deviation effects. Each cell is a separate regres-

sion, controlling for time and panel*seniority fixed effects. Panel-corrected standard errors are calculated using a Prais-

Winsten regression, where a panel*seniority specific AR(1) process is assumed. This also allows the error terms to be

panel*seniority specific, heteroskedastic, and contemporaneously correlated across panels*seniority groups. Significance

level: *** p<0.01, ** p<0.05, * p<0.1.

Overall, we conclude that a simple model that accounts for differences in evaluation noise across

fields can explain the changes in the ERC budget allocations that occurred after the reform, even at the

finer 25-panel subdivision.

VI Endogenous Evaluation Noise: Game Among Fields

Our baseline analysis takes the evaluation noise in each field as exogenously given. However—given

that under proportional apportionment, the application level and thus the budget allocated to a field in-

creases in noise—each field acting as a collective might be tempted to raise its noise level, for instance,

by reducing the quality of panelists. Coordination at each field level could be achieved through a rep-

resentative appointed by the scholarly association in the field. Similarly, in the grading application,

teachers in each course could easily add noise to their grades. To analyze these situations, this section

sketches a game-theoretic extension of the model in which fields independently choose the noise level

in their evaluation process.

As a proof of concept, consider two fields, i= 1,2, with additive noise and an identical distribution

of types, Gi (θ) =G(θ). In the first stage, suppose that each field i acts as a player and simultaneously
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FIGURE X: Equilibrium Regimes in the Field Game

The best replies are depicted in blue and red. The level curve for the total payoff at (σ∗,σ∗) is in green.

sets its noise level σ i aiming to maximize the merit of the funded projects in the field

Ui (σ i,σ−i) :=
∫

θ

G−1(1−ai)
θ

[
1−F

(
G−1(1−ai)+σ iF

−1(1− c/v)−θ

σ i

)]
g(θ)dθ , (18)

where ai = ai (σ i,σ−i) is the level of applications that result in the general equilibrium in the second

stage and σ−i is the noise in the other field.40 Suppose that the action set for field i is [σ0
i ,∞): field i

can voluntarily increase its level of noise, but cannot decrease it below a set level σ0
i corresponding to

the field’s initial “intrinsic” noise level. While decreasing the level of noise is prohibitively costly, the

field can freely increase the level of noise above σ0
i .

The noise levels (σ i,σ−i) chosen in the first-stage game are publicly observed. In the second stage,

candidates in each field applies, and the total budget of B is allocated to the two fields in proportion to

applications. For any given (σ i,σ−i), the second-stage equilibrium is then determined by the solution

of the system∫
θ

G−1(1−ai)

[
1−F

(
G−1(1−ai)+σ iF

−1(1− c/v)−θ

σ i

)]
g(θ)dθ =

ai

a1+a2

B

for i= 1,2.

For an example with ε i and θ i normally distributed, Figure X displays field 2’s best reply σ2 =

R2(σ1) in red as a function of field 1’s noise and similarly σ1 = R1(σ2) in blue. To understand the

40If, instead, fields only cared about maximizing the number of grants assigned to their field, each field would aim to

make its signal as noisy as possible.
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shape of the best replies, note that when evaluation in the other field is perfect, σ−i = 0, it is enough

for field i to set an infinitesimal σ i to obtain the entire budget. As σ−i increases, field i obtains less

budget, resulting in reduced applications. Then, provided that the expected merit of the marginally

funded applicant is positive, it becomes optimal to increase the noise to obtain a larger budget. On

the one hand, holding fixed the level of applications, an increase in noise reduces the effectiveness of

evaluation and thus has a negative direct effect on the field’s payoff—this effect becomes stronger as

noise increases. On the other hand, as noise increases, equilibrium applications rise, in turn increasing

the budget allocated to the field. At the best reply level of noise, the negative effect associated with

the reduced quality of winning candidates is exactly offset by the positive marginal effect of obtaining

more budget. Raising the level of noise past this level reduces the field’s payoff. Best replies are upward

sloping for low noise levels and concave—increasing noise has diminishing marginal returns.41

Depending on the initial level of noise σ0 =
(
σ0

1,σ
0
2

)
, there is always a unique stable equilibrium,

with a basin of attraction equal to the entire action profile. As illustrated in Figure X, there exists

a benchmark level of noise σ∗ > 0, such that there are three equilibrium regimes depending on the

parameters:

1. Low initial noise in all fields: When σ0
1 ≤ σ∗ and σ0

2 ≤ σ∗, both fields sets their noise to the

same level σ∗, resulting in the symmetric equilibrium (σ∗,σ∗). For these initial conditions, noise

is equalized across fields in the equilibrium of the game.

2. Highly asymmetric initial noise across fields: When σ0
1 ≥ σ∗ and σ0

2 ≤ R2(σ
0
1), the equilib-

rium is on the red curve
(
σ0

1,R1(σ
0
1)
)
, as illustrated by the vertical arrows. In this case, field 2

increases its noise up to R2(σ
0
1), while field 1, which would prefer to decrease its noise, keeps it

at the initial σ0
1. Symmetrically, when σ∗ ≤ σ0

2 and σ0
1 ≤ R1(σ

0
2), the equilibrium is on the blue

curve
(
R1(σ

0
2),σ

0
2

)
, as illustrated by the horizontal arrows. For parameters in this second region,

the increase in noise by the less noisy field reduces only part of the initial asymmetry in noise.

Part of the initial asymmetry persists in equilibrium.

3. High initial noise in all fields: When σ0
1 ≥ R1(σ

0
2) and σ0

2 ≥ R1(σ
0
1) (and thus σ0

1 ≥ σ∗ and

σ0
2 ≥ σ∗), both fields do not modify their noise levels. For these parameters, the equilibrium is

at
(
σ0

1,σ
0
2

)
, equal to the initial level in both fields. All the initial asymmetry in noise persists.

What is the effect of the increase in noise on the total payoff in the two fields, U1(σ1,σ2) +

U2(σ1,σ2)? The solid curve corresponds to the level curves of the total payoff achieved at (σ∗,σ∗).

Strikingly, we conclude that when fields are only allowed to increase (but not to decrease) their noise,

starting from a relatively low but sufficiently asymmetric level of initial noise, the addition of noise in

41Best replies can eventually decrease if the expected type in the population of candidates is negative and the fraction of

applicants is sufficiently high, for example, because the budget is high relatively to c/v.
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the field game can generate a gain in total payoff. For example, suppose that initially, the noise levels

are (σ0
1,σ

0
2) = (1,1/3) outside the green isopayoff, but within the parameters that lead to (σ∗,σ∗).

The social planner gains by allowing field 2 to raise optimally its level of noise to R2(1), to which field

1 replies with R1 (R2 (1)), eventually reaching (σ∗,σ∗) with total payoff

U1(σ
∗,σ∗)+U2(σ

∗,σ∗)>U1(σ
0
1,σ

0
2)+U2(σ

0
1,σ

0
2).

In this second-best world, the improvement in efficiency associated with a more balanced allocation of

the budget across fields is larger than the reduction in efficiency due to the less meritocratic allocation

within fields.

VII Sorting Across Fields/Courses

To isolate the effect of the supply-side interdependence induced by the budget allocation rule, our

baseline model prevents candidates from choosing the field in which to apply. However, in the con-

text of grantmaking, researchers who work at the crossroad between fields often have some leeway in

choosing the field where they stand a better chance of funding. Similarly, university students, when

selecting their major field and elective courses, might take into account their chance of obtaining an

honors degree, which is typically awarded to the top 10 or 15 percent of students in the class. This

section extends the model to incorporate the demand-side interdependence generated by the ability of

candidates to select which field to apply in—or which course to enroll in.

In the spirit of Roy (1951), suppose that candidates are characterized by two dimensions of talent,

θ 1 and θ 2, with identical and independent distributions, Gi(θ i) = G(θ i). Candidates choose to apply

in either of two fields, where field i evaluates dimension i of the applicant’s θ through the noisy signal

xi = θ i+σ iε satisfying the MLR property. For example, candidates who apply to physics are evaluated

in terms of their mathematical talent, while verbal talent matters for literature candidates.

On the supply side, awards are allocated either (i) through a fixed budget, Bi < 1/2, or (ii) in pro-

portion to applications, aiB, where B< 1 represents the total budget and ai the number of applications

in field i.42 On the demand side, we set for simplicity the application cost to zero in both fields, ci = 0.

Nevertheless, given that candidates can submit a single application, they face an opportunity cost equal

to the foregone probability of winning a grant in the other field. In equilibrium, candidates choose the

field that maximizes their winning probability.

With either budget allocation rule, by the MLR property, the evaluator implements a cutoff accep-

tance policy to assign grants according to xi ≥ x̂i. The equilibrium is characterized by (i) the demand-

side indifference condition

1−F

(
x̂1− θ 1

σ1

)
= 1−F

(
x̂2− θ 2

σ2

)
, (19)

42If the budget were abundant B> 1, grants would always be awarded to the entire population.
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which defines an upward sloping indifference boundary θ̂ 2 (θ 1)= x̂2+
σ2

σ1
(θ 1− x̂1) in the space (θ 1,θ 2)

such that for any given θ 1 types θ 2 ≤ θ̂ 2 (θ 1) apply to field 1 and otherwise apply to field 2 and (ii)

supply-side budget equations for each field

∫
θ̄

θ

∫
θ̂ 2(θ 1)

θ

[
1−F

(
x̂1− θ 1

σ1

)]
g(θ 1)g(θ 2)dθ 2dθ 1 = B1,∫

θ̄

θ

∫
θ̄

θ̂ 2(θ 1)

[
1−F

(
x̂2− θ 2

σ2

)]
g(θ 1)g(θ 2)dθ 2dθ 1 = B2.

To illustrate the construction, start from initial noise levels σ1 and σ2, resulting in equilibrium

acceptance standards x̂1 and x̂2. The solid black line in Figure XI illustrates the indifference boundary

resulting in symmetric noise σ1 = σ2 and acceptance standards x̂1 = x̂2, with axes expressed in terms

of type percentiles (G(θ 1) ,G(θ 2)).
43 What is the impact of an increase in σ2/σ1, the noise in field 2

relative to field 1, on equilibrium applications in the two fields for the case with a fixed budget?

First, the change in relative noise has an impact on selection. Holding fixed the acceptance stan-

dards (x̂1, x̂2), the increase in σ2/σ1 induces an anti-clockwise rotation of the indifference boundary

(19) around (G(x̂1) ,G(x̂2)), corresponding to the dotted green curve. Types in the upper-right region

to the right of the dashed red curve and above the black curve— which are highly talented in both

dimensions—have the incentive to flee the relatively noisier field 2 and join field 1, where they are

now relatively more likely to clear the acceptance bar. Intuitively, the winning probability of these

candidates are now higher in the relatively more meritocratic field 1, even though they are even more

talented in dimension θ 2 than θ 1. At the same time, candidates in the lower-left region (to the left of

the dashed red curve and below the black curve) with lower talent in dimension θ 1 now find the noisier

field 2 more attractive, even though they are relatively worse in dimension θ 2 than θ 1. Overall, the

more meritocratic field 1 attracts more talented candidates, while less talented candidates prefer to hide

in the noisier field 2.

To understand how noise impacts the level of applications in the two fields, note that as a result

of the first step, application levels either (a) decrease or (b) increase, depending on the relative size of

the regions of types switching field, as represented respectively by the two panels in Figure XI. As a

proof of concept, consider the extreme case in which evaluation becomes perfect in field 1, σ ′1 = 0,

resulting in a vertical indifference boundary (red dotted curves). The second step consists in adjusting

the acceptance standard in field 1 until applications in field 1 are reset to the initial level. This is

achieved at x̂1 = G−1 (1/2), given that we started from a symmetric situation. In case (a), x̂1 should

be reduced to increase applications by translating the indifference boundary to the dashed red line—by

construction the area to the right of the dashed curve and to the left of the black curve (high-merit

applications gained) is equal to the area to the left of the dashed curve and to the right of the black

43Beyond the symmetric case, the indifference boundary θ̂ 2 (θ 1) in the type percentile space is non-linear.
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FIGURE XI: Comparative Statics with Respect to an Increase in Noise σ2

The top panel (a) represents case (a) in which the increase in noise in step 1 results in a reduction in a2

holding fixed (x̂1, x̂2) at the initial level. The bottom panel (b) represents the opposite case.
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curve (low-merit applications lost). A similar construction applies to case (b), when x̂1 should instead

be increased to move the indifference boundary to the left and thus reduce applications in field 1.

Third, with perfect information, all applicants in field 1 are awarded a grant for sure.44 Having

restored applications to the initial level, grant awards would be 1/2> B1, thus overspending the initial

budget. When the budget is fixed, to re-equilibrate the imbalance in the budget, x̂1 must necessarily

increase relative to the level in the second step, shifting the indifference boundary to the right, as

represented by the red curves in the two panels of figures. Hence, in the new equilibrium a1 must

decrease to a′1 = B1 < 1/2 and thus a2 must increase to a′1 = 1−B1 > 1/2.

Finally, turn to the outcome under proportional budget allocation. Unraveling results in field i when

evaluation is perfect in that field (σ i = 0) or completely noisy in the other field (σ−i → ∞). Under

proportional apportionment, all types can guarantee the average winning probability by applying to

field 2—thus, candidates who would win with a probability below this level leave field 1, and the

process continues until field 1 unravels, a1 = 0. More generally, when candidates choose field with

normal types and normal noise we verified numerically that (i) equilibrium applications increase in the

field’s noise and decrease in the noise in the other field, and (ii) the effect is stronger under proportional

than fixed budget.45

VIII Organization of Funding with Noisy Evaluation

VIII A Design of Funding Rules

The optimal allocation for the grantmaker maximizes the total merit across fields

N

∑
i=1

∫
θ̄ i

G−1
i (1−ai)

θ

[
1−Fi

(
x̂D (ai)−θ

σ i

)]
gi (θ)dθ

subject to the demand system x̂D
i (ai) =G−1

i (1−ai)+σ iF
−1
i (1− ci/vi) given the total budget available

for distribution

N

∑
i=1

Ai (ai) =
N

∑
i=1

∫
θ̄ i

G−1
i (1−a)

[
1−Fi

(
x̂D

i (ai)−θ

σ

)]
gi (θ)dθ = B.

To illustrate how the equilibrium compares to the optimal allocation, consider initially two sym-

metric fields with normally distributed types and signals and a PA budget rule. The identical equilibria

44In general, the composition of applicants in field 1 has now improved in the first-order stochastic order. The density for

types below (above) a critical level θ̃ is reduced (increased), implying stochastic dominance.
45We also verified that the main results of the paper extend to the field choice model with normal noise when

types in each field follow the generalized normal distribution (also known as exponential power) with density g(θ) =

βe−(|θ−µ|/α)β / [2αΓ(1/β )], encompassing the Laplace (β = 1), normal (β = 2), and uniform (β →∞) distributions. When

the type distribution has an increasing hazard rate (β > 1), the equilibrium is unique; unraveling results when the upper tail

is thicker than exponential, β < 1.
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in the first and second field is represented in the top and bottom panel of Figure XII by the blue dot

marked as (i) at the crossing of the red curve Ai (ai) and the blue curve Bi (ai). In this symmetric setting,

the PA equilibrium allocation is also optimal.

As noise dispersion σ2 in the second field increases, the award function in field 2 shifts down to

the dashed red curve in the bottom panel, so that the partial equilibrium applications increase in field

2 from the initial level corresponding to the blue dot (i) to the green dot. The top panel shows the

reduction in the budget in field 1 to the dashed curve due to the increase in applications in field 2, as we

adjust to the general equilibrium represented by the red dot (ii). In turn, this reduction in applications

in field 1 increases the budget available in field 2 to the dashed curve in the bottom panel, leading to a

further increase in applications, eventually resulting in a new general equilibrium at the red dot (ii).

As noise increases in field 2, it becomes optimal for the grantmaker to transfer some of the overall

budget from the noisier field 2 to the relatively more accurate field 1, resulting in the grantmaker optimal

allocation (iii) marked by the black dots. Departing from proportional allocation PA, the grantmaker

can implement this optimal allocation within the QPA class of budget rules by reducing proportionality

ρ1 in the first field.

VIII B Pooling Fields

In the baseline model, each panel evaluates a single field and is characterized by a field-specific level

of evaluation noise for all applicants in the panel. In reality, panels at research funding organizations

are typically assigned applications that belong to different fields. What is the impact of pooling hetero-

geneous fields into a single panel relative to assigning each field to a separate panel?

As a proof of concept, suppose there are two fields within the same discipline. Think of the basic and

clinical research within a medical specialty such as pancreatic cancer research. Suppose that evaluation

is noisier for clinical than basic research, σ2 > σ1.

It is useful to reinterpret the selection of grantees in a constant payline equilibrium for a single

field as follows. Express the acceptance standard, rather than in terms of the signal x, in terms of the

corresponding posterior expectation Eσ i
[θ |ai,x] about the application merit θ computed via Bayes’

rule. Given ai, the constant payline acceptance standard expressed in terms of the posterior expectation

(or score) Eσ i
[θ |ai,x] is then

1−Hi

(
Êi

)
= p.

Given that the score Eσ i
[θ |ai,x] is an increasing function of x by the MLR property, the two representa-

tions are equivalent when all applicants are evaluated with a common signal structure Fσ i
, as in the base-

line model. The expected merit score of the marginally accepted candidate satisfies Eσ i
[θ |ai, x̂i] = Êi,

linking x̂i and Êi.

For a field evaluated in isolation with noise σ1 and given application-level a1, the score Eσ1
[θ |a1,x]
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FIGURE XII: Design of Responsiveness of Allocation Rule

The top (a) and bottom (b) panels represent equilibria in fields 1 and 2, respectively, where award and budget

functions cross. The blue dots (i) are the initial symmetric equilibria. The red dots (ii) are the equilibria with

PA allocation following an increase in noise in field 2. The black dots are the optimal allocations, which can be

implemented with a sub-proportional budget rule in which the budget is less responsive in field 2 than 1.
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FIGURE XIII: Impact of Pooling Fields

The distributions of scores for fields 1 and 2 are represented in green and black, respectively, When fields are

evaluated in isolation, grantees correspond to the top segments of the separate distributions of scores for fields 1

(green) and 2 (black). When fields are merged, scores follow the mixture distribution (blue) resulting in a loss of

awards in field 1 (dashed red) and a gain in awards in field 2 (dashed green).

is distributed according to H1. Under constant payline the marginal score is Ê1, as illustrated by the

green curve in Figure XIII when both types and signals are normally distributed. Similarly, for a

noisier field evaluated in isolation, the black curve corresponds to distribution H2 of scores Eσ2
[θ |a2,x],

resulting in marginal score Ê2. As illustrated for this example, a reduction in noise (or increase in

accuracy) induces a mean-preserving clockwise rotation in the score distribution.46

Turn now to the case in which applicants in the two fields are pooled in the same panel. Suppose that

applications are still evaluated by the same experts in each field and that σ
1

and σ2 remain unaffected.

The pooled scores in the joint panel are distributed according to a mixture of H1 and H2, with weights

determined by the relative level of applications in the two fields

H12 =
a1

a1+a2

H1+
a2

a1+a2

H2,

corresponding to the blue curve in Figure XIII for the case a1 = a2. The resulting marginal score for a

given payline p is now Ê12, solving 1−H12

(
Ê12

)
= p.

For a realistically low payline—when the winning scores with pooled fields is above the rotation

point—we have

Ê2 < Ê12 < Ê1,

46In the limit as signal noise σ → ∞, the distribution of the posterior expectation becomes a step function at the prior

E[θ |a]. As σ → 0, the distribution of the posterior expectation converges to the prior distribution, G(θ |a).
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as illustrated in the figure. Intuitively, the winning proposals above the payline are disproportionately

originating from the more accurate field a, where scores are more extreme. Applicants in field 1 with

scores between Ê12 and Ê1 (the green dashed segment in the figure) are now awarded grants at the

expense of applicants in field 2 with scores between Ê2 and Ê12 (red dashed segment). The more

accurate field can increase the fraction of successful applications above the payline p and thus enjoys

a higher effective payline, 1−H1

(
Ê12

)
. Conversely, the noisier field experiences a lower effective

payline, 1−H2

(
Ê12

)
.

Through this mechanism, pooling fields with heterogeneous noise dampens the perverse effect of

meritocracy on the level of applications. The more consensual field obtains the lion’s share of grants

within the panel. This pattern is in line with Martin, Lindquist, and Kotchen’s (2008) empirical finding

that basic research has a higher success rate than clinical research at the NIH, where paylines across

panels (also known as study sections) are nevertheless equalized. Clinical research suffers from being

less consensual because it is pooled with basic research within the same panels, consistent with our pre-

diction. If clinical studies and basic science were regrouped in separate panels, their success rate would

automatically equalize. However, according to our analysis, more applications would be submitted for

clinical studies and fewer for basic science.

Noisier fields thus have a strong incentive to split from more consensual fields and lobby to have

their separate panel. As a result, not only will the fraction of accepted applications increase for noisier

fields that set up their panel, but incentives to apply will also be stepped up, resulting in an increase in

awards. Conversely, more consensual fields prefer to be merged with noisier fields.47

While, under proportional allocation, fields that are assigned to separate panels have a perverse

incentive to increase noise relative to the other panels, pooling with other fields induces a virtuous

incentive to decrease their noise relative to other fields in the same panel, thus gaining awards at the

expense of other fields within the same panel.

VIII C Benchmarking

This logic can also shed light on a benchmarking practice adopted by the NIH, according to which

percentiles are computed by pooling scores across recent evaluation cycles at the same panel, also

known as study sections. As explained by the National Institute of Health (1988), percentiles for

applications in each evaluation cycle are calculated by pooling current scores with scores given by the

same study sections to the applications evaluated in the preceding two cycles, a system that is still in

operation today.48

What might look like an inessential tweak to the payline system has important consequences. If

47Clearly, the benefit of pooling for the more consensal fields could be dampened if applications were assigned to less

accurate reviewers and the accuracy of evaluation were to decrease.
48See https://www.niaid.nih.gov/grants-contracts/understand-paylines-percentiles for a detailed account.
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some applications were submitted in the previous two circles, at−1+ at−2 > 0, even if in the current

cycle evaluation were perfect, σ t = 0, some budget would always be available for distribution. Hence,

unraveling would not result. More generally, benchmarking dampens the impact of noise on applica-

tions by reducing the responsiveness of the budget to applications.

Similar to pooling, benchmarking can reverse the perverse comparative statics of proportional allo-

cation with respect to noise. By improving its accuracy in this cycle compared to the previous cycle, a

panel can increase the fraction of successful applications above the payline. Under the reasonable as-

sumption that reviewers aim to assign as many grants as possible to applicants in their panel (possibly

at the expense of other panels), they now have the incentive to be more accurate than in the previous

cycle so as to increase dispersion in the posterior expectation and thus increase the number of funded

applications in the panel. Through this channel, the NIH method of computing percentiles relative to

the applications previously evaluated by the same panel incentivizes accurate evaluation, triggering vir-

tuous incentives to increase accuracy, in contrast to the vicious incentives, highlighted in our baseline

analysis.

IX Contribution to Literature

Grantmaking has received relatively limited attention from economists. While our analysis predomi-

nantly takes a positive approach to commonly employed nonmarket resource allocation methods, pre-

vious research has primarily concentrated on normative considerations. In a pioneering application of

marginal analysis, Peirce (1879) sketches the normative theory of resource allocation across research

fields for a planner. As stressed at least since Arrow (1962), market forces tend to underprovide re-

search, mostly because invention is non-rival. Governments, however, have limited information about

the benefits of research in different fields. Weisbrod (1961) offers an early attempt to evaluate the so-

cial benefits of medical research across diseases.49 Weinstein and Zeckhauser (1973) link the problem

of the optimal allocation of budget to fields to the decision-theoretic approach underlying hypothesis

testing.

Turning to positive analyses, Wildavsky (1964) describes the incremental nature of the budget ap-

portionment process for determining government funding of the NIH in the early days; our static model

abstracts from dynamic considerations.50 Zuckerman and Merton (1971) notice that acceptance rates

at leading scholarly journals vary across academic disciplines, with higher rejection rates in social

sciences and humanities compared to physical sciences; our analysis shows that the performance of al-

location rules with proportional elements is particularly problematic when fields are heterogeneous.51

49In a review of the NIH, Zeckhauser (1967) also argues that disease burden should guide funding choices.
50See also the formalization by Davis, Dempster, and Wildavsky (1964). Savage (1999) gives a historical account of the

influence process behind university earmarks in comparison to merit-based public funding of research.
51Zukerman and Merton (1971, page 77) write: “. . . the more humanistically oriented the journal, the higher the rate of
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Rejection rates also vary along similar lines across directorates at the National Science Foundation.52

In terms of theory, Lazear (1997) outlines a lottery model of research funding (researchers can

increase their chance of obtaining a grant by buying more tickets) but abstracts away from self-selection

and noisy evaluation on which we focus. Scotchmer (2004, Chapter 8) formulates a simple dynamic

model of demand for funding where high-type researchers self-select into applying and are disciplined

to deliver because they expect to be funded in the future. Building on a setting with continuous types

and scale-location signals similar to ours, Leslie (2005) sketches the demand side for submissions to

academic journals—in addition to a complete analysis of the demand side, we add a (noisy) evaluation

on the supply side and characterize the equilibrium depending on the budget allocation rule.53 See also

Stephan’s (2012, Chapter 6) discussion of science funding and Azoulay and Li’s (2022) overview of

the fledgling empirical literature on grant funding for science.54

The application cost, akin to what Nichols and Zeckhauser (1982) call an ordeal, in our model

induces more worthy applicants to self-select. The evaluator uses an additional noisy signal about

the applicant’s type, so the application cost acts as an endogenous screening device. The noise in the

evaluation process thus plays a crucial role in our model as in the literature on statistical discrimination,

pioneered by Phelps (1972) and surveyed by Moro and Fang (2011). In that strand, Cornell and Welch

(1996) argue that competition for ranking in a tournament discriminates against candidates the evaluator

is less informed about. Our base model moots this channel by focusing on an evaluator who is equally

informed about applicants in the same field. According to our new effect, competition within a field

with more noisy evaluation becomes closer to a lottery and thus encourages more applications. In

turn, when the budget of grants available to a field increases in applications, the evaluator ends up

inefficiently discriminating against candidates evaluated with less noise—the opposite of Cornell and

Welch’s outcome.

Within the agency literature, Che, Dessein, and Kartik (2013), Alonso (2018) and Frankel (2021)

largely focus on how to constrain optimally biased evaluators—in our model, instead, evaluators within

each field are unbiased. While our model zooms in on the noisy evaluation process of applicants, the

literature on tournaments and contests—from Lazear and Rosen (1981) to O’Keeffe, Viscusi, and Zeck-

hauser (1984), Moldovanu and Sela (2001), Che and Gale (2003), Siegel (2009), Gross and Bergstrom

(2019), and Fang, Noe, and Strack (2020)—mostly focus on the incentives of contestants to exert ef-

rejecting manuscripts for publication; the more experimentally and observationally oriented, with an emphasis on rigor of

observation and analysis, the lower the rate of rejection.” Referee please take notice.
52Cole and Cole’s (1981) landmark study documents differences in inter-rater agreement among reviewers across fields

at the NSF.
53See also Cotton (2013) and Taylor and Yildirim (2011), focusing on discrimination issues, which we skirt.
54Gans and Murray (2012) overview the main funding sources available for scientists (government, private firms’ internal

R&D, and foundations), with a focus on comparing their different disclosure and openness requirements. Boudreau, Guinan,

Lakhani, and Riedl (2016) investigate the role of the intellectual distance between evaluators’ expertise and the research

proposals in systematically shaping funding outcomes.
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fort, from which we abstract. Closer to our setting, Morgan, Sisak, and Várdy (2018) analyze the

incentives of applicants to select different fields in a setting with exogenous supply, while we focus on

endogenously determining the supply through the budget allocation.55

At a technical level, we leverage Lehmann’s (1988) quantile-function approach to derive sharp pre-

dictions on the impact of evaluation noise.56 Exploiting the structure of the problem, where evaluation

noise in a field affects the other fields only through the budget allocation rule, we can obtain unambigu-

ous comparative statics. Our results linking comparative statics to stability are in line with Samuelson’s

(1947) correspondence principle; see Hale et al. (2014) for an overview of the tools. Relative to the

literature on fair division of resources among claimants, recently summarized by Thomson (2019), our

model endogenizes the claims (applications are costly) and introduces imperfect verification (evalua-

tion is noisy).

X Conclusion

Our analysis emphasizes the central role of evaluation noise in nonmarket allocation processes. By

developing a non-parametric approach to information, we derive the testable comparative statics pre-

diction that applications increase in noise in all stable equilibria. In addition to empirically validating

this result, we extend the analysis to allow candidates to choose a field or course as is most relevant in

applications to course selection. Noisier fields are more attractive for weaker candidates who win with

lower probability, thus reinforcing our baseline comparative statics.

We also show that incentives of fields to add noise in their evaluation tend to rebalance initial asym-

metries to the point of even increasing allocation efficiency in the spirit of second best. However, when

the initial noise is sufficiently high, initial asymmetries persist as in the baseline analysis. Therefore, to

maximize efficiency, budget rules should be optimally designed by making the budget allocation less

responsive to applications in less noisy fields. Finally, the detrimental effect of noise on selection can

be dampened by pooling fields with heterogeneous noise. When pooled with noisier fields, less noisy

fields obtain the lion’s share of grants because their informative scores tend to be more extreme and

thus end up at the top of the score distribution.

Back to the specific proportional allocation PA rule that motivated our analysis, this rule appears

to be fair in treating all fields in the same way by automatically equalizing the fraction of successful

projects over applications across different fields. Proportional allocation also eliminates administrative

discretion and political meddling in funding allocation, given that the budget allocation is determined

55We also abstract away from dynamic considerations. See Board, Meyer-ter-Vehn, and Sadzik (2020) for a model of

recruitment where the accuracy of evaluation endogenously depends on past recruits; Moisson and Tirole (2020) for a foray

into the dynamics of cooptation; and Bardhi, Guo, and Strulovici (2020) for characterization of when costly experimentation

amplifies or dampens small differences in ability.
56This approach is little known in economics, with the notable exception of Persico (2000).

46



automatically only based on relative demand from applications across fields. As another important

virtue, the proportional allocation scheme has the merit of flexibly responding to demand-side signals.

Despite its simplicity, we argue that formula-based funding in the general sub-proportional allocation

(SPA) class has important pitfalls when fields are heterogeneous, as they typically are.

Our analysis of proportional allocation immediately applies also to large research fellowships pro-

grams, such as the EU-wide Marie Skłodowska-Curie Action (MSCA) scheme that assigns its total

budget (6.16 billion euros for the period 2014-2020) in proportion to applications across all disci-

plines.57 The drawbacks our analysis highlights are particularly severe for mechanisms that link the

budget across very heterogeneous fields, as is the case for the ERC and MSCA, but perhaps less prob-

lematic for funders (like the NIH) that focus on research in a single domain (like medicine, even though

NIH study sections cover a wide variety of disciplines, methodologies, and topics).58

The bottom-up formula-based approach to funding apportionment analyzed here can be contrasted

to alternative top-down approaches, such as those prevailing at the NSF, in the UK, and Australia,

where legislators discretionally allocate the budget across programs, following a yearly consultation

process and a detailed proposal by the directors of the research funding organizations. Even at agencies

that adopt proportional allocation, success rates for different programs and across fields are regularly

published and closely monitored. While differences in success rates across fields in non-proportional

systems persist over time, there is an implicit pressure to reduce the budget for fields with higher success

rates in favor of fields with lower success rates.

General-interest academic journals are subject to a similar pressure to allocate space to different

subfields in proportion to submissions. When co-editors are given a common target acceptance rate,

fields with less accurate (or consensual) evaluation will attract more submissions.59 Similarly, univer-

sity admission boards are tempted to admit students to different programs in proportion to applications—

or to increase slots available in areas that attract more applications. Giving in to this temptation may

spark a race to the bottom regarding the quality of admitted students.

Data Availability
Code replicating the tables and figures in this article can be found in the Harvard Dataverse

https://doi.org/10.7910/DVN/NAGMJQ.

57The Canadian SSHRC Doctoral Fellowships program (covering all humanities and social sciences) also follows PA.
58While the great majority of NIH institutes/centers adopt the payline system and publish paylines, it is only understand-

able that some institutes/centers at the NIH prefer not to publish their paylines, thus retaining some flexibility when treating

proposals from different panels.
59See also Akerlof’s (2020) discussion of how a bias toward “hardness” can arise in science. Our analysis suggests a

mechanism through which hardness prevails within a discipline, even though it is detrimental to the competition across dis-

ciplines. In our model, individual disciplines tend to be dominated by harder subfields and investigations with more accurate

evaluations. When elements of proportionality are present in the allocation of resources across disciplines, disciplines with

more accurate evaluation are destined to obtain fewer resources and thus become less attractive.
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Appendix A proves a simple lemma discussed in Section III and Proposition 2.a. Appendix B

proves Proposition 3. The other results are established in the text. Appendix C presents details and

performs robustness exercises for the empirical analysis in Section V .

A Proofs

Lemma 1 (Lehmann Equivalence) Noise increases in the sense of Lehmann

F−1
σ̄
(Fσ (x |θ) |θ) decreases in θ for any σ̄ > σ and for any signal realization x (20)

if and only if

Fσ

(
F−1

σ (q |θ) |θ ′
)

increases in σ for any θ
′ > θ and any percentile q ∈ [0,1]

according to (3).

Proof of Lemma 1. Fixing σ̄ > σ , θ
′ > θ and q ∈ [0,1], condition 3 gives

Fσ

(
F−1

σ (q |θ) |θ ′
)
< Fσ̄

(
F−1

σ̄
(q |θ) |θ ′

)
.

Define x= F−1
σ (q |θ) and y= F−1

σ̄
(q |θ), we can rewrite

Fσ

(
x |θ ′

)
< Fσ̄

(
y |θ ′

)
.

Applying F−1
σ̄
(· |θ ′) on both sides, substituting y= F−1

σ̄
(Fσ (x|θ) |θ) in terms of x, we have

F−1
σ̄

(
Fσ

(
x |θ ′

)
|θ ′
)
< F−1

σ̄
(Fσ (x |θ) |θ).

Since q is arbitrary, any signal realization can be obtained as x = F−1
σ (q |θ), so that condition (20)

holds. The other direction proceeds along similar lines.
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Proof of Proposition 2.a With an additive signal the award function is

A(a) =
∫

θ

G−1(1−a)

[
1−F

(
G−1(1−a)−θ

σ
+F−1(1− c/v)

)]
dG(θ). (21)

Integration by parts gives∫
θ

G−1(1−a)

[
1−F

(
G−1(1−a)−θ

σ
+F−1(1− c/v)

)]
dG(θ)

=

[
1−F

(
G−1(1−a)−θ

σ
+F−1(1− c/v)

)]
G(θ)

∣∣∣∣∣
θ

G−1(1−a)

−
∫

θ

G−1(1−a)

1

σ
f

(
G−1(1−a)−θ

σ
+F−1(1− c/v)

)
G(θ)dθ ,

where the first term on the right-hand side is equal to

1−F

(
G−1(1−a)−θ

σ
+F−1(1− c/v)

)
− c/v+ac/v

= −F

(
G−1(1−a)−θ

σ
+F−1(1− c/v)

)∣∣∣∣θ
G−1(1−a)

+ac/v

= ac/v+
∫

θ

G−1(1−a)

1

σ
f

(
G−1(1−a)−θ

σ
+F−1(1− c/v)

)
dθ ,

so that we have

A(a) = ac/v+
∫

θ

G−1(1−a)

1

σ
f

(
G−1(1−a)−θ

σ
+F−1(1− c/v)

)
[1−G(θ)]dθ .

Differentiation of (21) gives

A′(a) = c/v+
1

g(G−1(1−a))

∫
θ

G−1(1−a)

1

σ
f

(
G−1(1−a)−θ

σ
+F−1(1− c/v)

)
dG(θ).

The award function is super-proportional when
∂A(a)/a

∂a
≥ 0, or equivalently, when A′(a)≥ A(a)/a, that

is, whenever
1

g(G−1(1−a))

∫
θ

G−1(1−a)
1
σ

f

(
G−1(1−a)−θ

σ
+F−1(1− c/v)

)
dG(θ)

−
∫

θ

G−1(1−a)
1
σ

f

(
G−1(1−a)−θ

σ
+F−1(1− c/v)

)
1−G(θ)

a
dθ ≥ 0.

Using θ̂ = G−1(1−a) and a= 1−G
(
θ̂
)
, this is equivalent to

∫
θ

θ̂

1

σ
f

(
θ̂ −θ

σ
+F−1(1− c/v)

)[
g(θ)

g
(
θ̂
) − 1−G(θ)

1−G
(
θ̂
)]dθ ≥ 0,
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or, factoring out
1−G(θ)

g(θ̂)
,

∫
θ

θ̂

1

σ
f

(
θ̂ −θ

σ
+F−1(1− c/v)

)
1−G(θ)

g
(
θ̂
) [

g(θ)

1−G(θ)
−

g
(
θ̂
)

1−G
(
θ̂
)]dθ ≥ 0.

We conclude that if the hazard rate is increasing (or decreasing) the award function is super-proportional

(or sub-proportional).

B Equilibrium with Multiple Fields

A general equilibrium aE =
(
aE

1 , . . . ,a
E
N

)
solves in every field i,

Ai(ai,σ i)

ai

=
Bi (ai,a−i)

ai

equating the average awards and the average budget per applicant. By the implicit function theorem,

the comparative statics concerning noise are given by

∂a

∂σ
=−

[
∂ (A/a)

∂a
− ∂ (B/a)

∂a

]−1
∂ (A/a)

∂σ

where J = ∂ (A/a)/∂a−∂ (B/a)/∂a is the Jacobian matrix of the system concerning applications. By

Proposition 1.d, Lehmann informativeness guarantees that ∂ (A/a)/∂σ is a negative diagonal matrix,

and therefore, the comparative statics have the same sign pattern as the inverse of the Jacobian, J−1.

Equilibrium can also be interpreted as the steady state of a dynamic adjustment process: if excess

average grants are awarded in field i, A(ai;σ)/ai > B(ai)/ai, then the grantmaker raises the acceptance

standard, which induces fewer applications and reduces the average grants awarded, and vice versa.

Formally, this is modeled as the differential equation

dai

dt
=−Ki

(
Ai(ai;σ i)

ai

− Bi (ai,a−i)

ai

)
where the speed of adjustment Ki increases in the distance from the equilibrium, K′i > 0, and is zero

at equilibrium, Ki(0) = 0. In the neighborhood of an equilibrium, the linear approximation of the

adjustment process is

dai

dt
≈ −K′i

(
Ai

(
aE

i ;σ i

)
ai

−
Bi

(
aE

i ,a
E
−i

)
ai

)
{(

∂ (Ai/ai)

∂ai

− ∂ (Bi/ai)

∂ai

)(
ai−aE

i

)
−∑

j 6=i

∂ (Bi/ai)

∂a j

(
a j−aE

j

)}
,

where the partial derivatives are evaluated at the equilibrium. This can be expressed in matrix form

−DJ
(
a−aE

)
, where D is a positive diagonal matrix with element dii ≡K′i

(
Ai(aE

i ;σ i)
ai

− Bi(aE
i ,a

E
−i)

ai

)
> 0
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and J is the Jacobian of the equilibrium system. For the system to be dynamically stable, −DJ must be

a stable matrix: every eigenvalue of−DJ must have a negative real part. Equivalently, every eigenvalue

of DJ must have a positive real part.

Proof of Proposition 3.b. First, note that under the proportional budget rule, PA, the Jacobian J =

∂ (A/a)/∂a−∂ (B/a)/∂a is symmetric and therefore has real eigenvalues. If the system is stable, all

the eigenvalues have positive real parts. Combined with symmetry, this implies that all the eigenvalues

are real and positive; therefore, the matrix is positive definite. Second, recall that the inverse of a

positive definite matrix is also positive definite, and that positive definite matrices have positive diagonal

elements. Therefore
[

∂ (A/a)
∂a
− ∂ (B/a)

∂a

]−1

has a positive diagonal. Thus, applications in field i increase

in noise dispersion in that field.

Next, we define sub-proportionality for a multivariate budget rule.

Definition 1 (Sub-Proportional Budget) A budget function B(a1, . . . ,an) is sub-proportional if the

negation of the Jacobian of the average budget per applicant

−
[

∂ (B/a)

a

]
=−


∂ (B1/a1)

∂a1

∂ (B1/a1)
∂a2

· · · ∂ (B1/a1)
∂aN

∂ (B2/a2)
∂a1

∂ (B2/a2)
∂a2

· · · ∂ (B2/a2)
∂aN

...
...

. . .
...

∂ (BN/aN)
∂a1

∂ (BN/aN)
∂a2

· · · ∂ (BN/aN)
∂aN

 (SPA)

has:

1. non-negative principal minors

det

(
−
[

∂ (B/a)

a

]ι)
≥ 0 for ι ∈P (N ) , (SPA1)

where P(N ) is the set of all subsets of N = {1, ...,N} and−
[

∂ (B/a)
a

]ι

is the submatrix obtained

by eliminating any set ι ∈ P(N ) of rows and corresponding columns, with strict inequality for

minors of order 1, and

2. non-positive cofactors

Cι
ji = (−1)|ι

−|(−1)(i+ j) det

(
−
[

∂ (B/a)

a

]ι

ji

)
≤ 0 for ι ∈P (N ) , (SPA2)

of the submatrices obtained by eliminating the row and the column containing element j, i from

principal submatrices −
[

∂ (B/a)
a

]ι

, where the cardinality |ι−| of the set

ι
− = {k ∈ ι : min〈i, j〉< k <max〈i, j〉} (22)
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counts the number of diagonal elements with indices in ι that have been displaced off the diagonal

once row j and column i are deleted from the original matrix.

Condition SPA is a multivariate generalization of condition (13) analyzed above for the case with

N = 1 field. Condition SPA1 requires that the determinants of principal submatrices−dpι , obtained by

eliminating any set ι ∈ P(N ) of rows and corresponding columns are nonnegative (or equivalently that

−dp is a P0 matrix; see Johnson, Smith, and Tsatsomeros 2020). Condition SPA2 restricts the cofactors

of the off-diagonal elements, Cι
ji, which are the signed determinants of the submatrices obtained by

eliminating the row and the column containing element j, i from principal submatrices −dpι .

The proof of Proposition 3.a relies on the properties of M-matrices. A matrix A is a non-singular

M-matrix if it can be expressed in the form

A= sI−B

where B is a non-negative matrix and s is greater than the spectral radius (the maximum of the absolute

values of the eigenvalues) of A. An M-matrix has non-positive off-diagonal elements, and there is

a large number of equivalent conditions for a matrix with non-positive off-diagonal elements to be an

M-matrix. We will use the following two equivalences; see Chapter 6 of Berman and Plemmons (1994).

Theorem (Berman and Plemmons) Let A be a real square matrix with non-positive off-diagonal

elements. Then the following two statements are equivalent to A being an M-matrix:

1. All the eigenvalues of A have positive real parts.

2. A is inverse positive: A−1 ≥ 0.

Proof of Proposition 3.a. Fix any field i. By IHR, Ai (ai)/ai is strictly increasing in ai and, by the

strict inequality of SPA1, Bi (ai,a−i)/ai is strictly decreasing in ai Hence, the general equilibrium is

unique.

Next, we show that the inverse of the Jacobian J−1 is an M-matrix. As the off-diagonal elements

of an M-matrix are non-positive and the diagonal elements are positive, this yields the desired compar-

ative statics. Furthermore, since M-matrices are closed under positive diagonal multiplication, for any

positive diagonal matrix D, J−1D−1 is also an M-matrix, and hence all its eigenvalues have positive real

parts. It follows that all the eigenvalues of DJ have positive real parts, and therefore the equilibrium

system is dynamically stable.

First, we show that the Jacobian is invertible, and hence the equilibrium is generic, and the compar-

ative statics are well-defined. Computing the determinant of the Jacobian, we obtain

det(J) =
N

∑
|ι |=0

∑
ι∈P|ι |(N )

det

(
−
[

∂ (B/a)

∂a

]ι)
︸ ︷︷ ︸

≥0

∏
i∈ι

∂ (Ai/ai)

∂ai︸ ︷︷ ︸
>0

> 0,
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where the first sign follows from SPA1 and the second sign from IHR. To see that the inequality is

strict, observe that −∂Bi(a1,..,an)/ai

∂ai
= det(−d(B/a)ι)> 0 for ι =N \{i}, by the strict inequality part

of SPA1, hence the sum involves strictly positive addends.

Having established the inverse exists, to prove it is an M-matrix, we show it has non-positive off-

diagonal entries (i.e., it is a Z-matrix) whose inverse has nonnegative entries. To sign the off-diagonal

elements, since the determinant of J is positive, the sign of the off-diagonal entries of J−1 is the sign of

the off-diagonal cofactors of J. Denoting by C ji the cofactor obtained by removing the jth row and ith

column, we have

C ji =
N−2

∑
|ι |=0

∑
ι∈P|ι |(N r{i, j})

C ι
ji︸︷︷︸
≤0

∏
k∈ι

∂ (Ak/ak)

∂ak︸ ︷︷ ︸
>0

≤ 0,

where the first sign follows from SPA2 and the second from IHR. To show inverse-positivity, IHR

implies that
∂ (Ai/ai)

∂ai
> 0, and SPA2 together with the strict inequality part of SPA1 ensures that

∂ (B/a)
∂a

is non-positive and so
∂ (A/a)

∂a
− ∂ (B/a)

∂a
must be non-negative. Therefore the inverse Jacobian J−1 is an

M-matrix, and hence the equilibrium is dynamically stable with the desired comparative statics.

Proposition 4 Quasi-proportional allocation QPA with ρ i ∈ [0,1] is sub-proportional SPA.

Proof of Proposition 4. We verify SPA1 by computing the determinants of the principal minors

det(−dpι) = BN−|ι |
∏

i∈N rι

a
ρ i−2

i(
∑

i∈N
ai

)N+1−|ι |

 ∑
i∈N rι

a
ρ i

i ∏
j∈N rι ,

j 6=i

(
1−ρ j

)
+ ∏

i∈N rι

(1−ρ i)∑
k∈ι

a
ρk

k

 ,
which are non negative whenever ρ i ∈ [0,1] for i∈N . To verify SPA2, the cofactors of the off-diagonal

element i, j

C ι
i j =−BN−|ι |−1 ρ i

aia j
∏

m∈N rιr{i, j}
(1−ρm)

∏
m∈N rι

a
ρm−2
m(

∑
l∈N

a
ρ l

l

)N−|ι | ,

are non positive whenever ρ i ∈ [0,1] for i ∈N .

C Empirical Validation: Details and Robustness

C.A Descriptive Statistics

Table II provides a description of the two datasets we use in the analysis in Section V . We observe

40,156 grades in the RCN applications. Each application is reviewed on average by 4 reviewers, with
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TABLE II: DESCRIPTIVE STATISTICS

Obs Mean Std. Dev. Min Max

RCN data:

Number of reviewers per application 10,042 4.05 1.74 2 11

Number of applications per reviewer 3,317 12.26 18.43 1 115

Application grades 40,156 5.06 1.11 1 7

Application grades, in PE 13,226 5.17 1.06 1 7

Application grades, in LS 14,067 5.03 1.12 1 7

Application grades, in SH 12,863 4.98 1.14 1 7

ERC data:

Number of applications 101,093

Number of years 15 2007 2021

Number of applications per year 6740 1918 2034 9222

Success rate .12 .03 .03 .15

Budget per successful grant (euros) 10,962 1,797,999 444,609 104,567 3,047,831

Note: The ERC data is aggregated at the panel-year-seniority level, with two three levels of seniority between 2007 and

2012, and three from 2013 onward.

a total of 3,317 distinct reviewers. Each reviewer evaluates, on average, about 12 applications. The

number of grades in each broad field is similar, with higher grades in PE than SH. Note also that the

variance of grades is highest in SH, which is an indication that disagreement is highest in those fields.

The second part of Table II provides a description of the application data at the ERC that are used as

the dependent variable in the estimation of equation (16). The ERC receives about 7,000 applications

per year across all panels and seniority calls, with no clear trend over the period of analysis. The success

rate is about 12 percent, with again no clear trend over time.

C.B RCN Applications Classification

We describe here the machine learning procedure we set up to assign RCN applications to ERC panels,

based on the text analysis of the titles and the abstracts of the applications.

C.B.1 Datasets

Our data consists of three pairs of datasets, one for each of the ERC domains: Life Sciences (LS),

Physical Sciences and Engineering (PE) and Social Sciences and Humanities (SH). Domains are further

divided into panels: 9 in LS, 10 in PE, and 6 in SH see Table III. The challenge is to assign a panel

to unlabeled abstracts. For each field, the training set has two columns: {Title + Abstract} and Label.

We call the “prediction set” the dataset of unlabeled abstracts containing only the {Title + Abstract}
column. The prediction is the output obtained by feeding this set to our trained model, as described

below.

7



TABLE III: TRAINING CHARACTERISTICS AND PARAMETERS

Fields LS PE SH

Characteristics of training sets:

Number of Panels 9 10 6

Number of Observations 3,643 4,909 2,409

Hyperparameters for training:

Learning rate 2e-5 5e-5 5e-5

Number of epochs 5 3 3

Prediction accuracy:

Validation accuracy (%) 74 83 83

Test accuracy (%) 72 80 81

C.B.2 Training

We classified text using BERT (Biredictional Encoder Representations from Transformers), a state-

of-the-art language representation model that enables us to achieve high accuracy. Following Devlin

et al. (2019), we combine BERT with a neural network algorithm. More precisely, BERT is a pre-

trained model in the sense that it has an underlying vocabulary that maps each text input into a single

token sequence. In this sequence, each token is represented not only by its content but also by its

position in the sentence. The representation map is the by-product of prior pre-training by the Google

team on a large corpus of texts. Then, BERT can be adapted to the specific task, a step called fine-

tuning, with only one additional output layer. This step is straightforward and involves the choice

of common hyperparameters for neural networks. For the learning rate, we obtain good results with

hyperparameters in the recommended range in BERT’s foundational paper. Our batch size is fixed at

8, constrained by our GPU power. The number of epochs, the number of complete passes through the

training dataset is also in the range of recommended values. We report the parameters chosen for each

field in Table III.

C.B.3 Performance

We report two types of performance metrics: validation and test accuracy. The validation accuracy is

obtained when the training set is used in the training process. We first split the data and use the fraction

p of observations in the neural network loop. At the same time, the parameters are iteratively evaluated

and adjusted to maximize the percentage of correct predictions on the 1− p remaining fraction. This

value is the validation accuracy. In contrast, the test accuracy requires an additional earlier split. Only

a fraction q of the data is used in the training process. The steps described above are therefore executed

with the fractions qp and q(1− p) of the training dataset. The test accuracy is then estimated on the

remaining fraction 1−q of the dataset. Since the calculation of the test accuracy involves the prediction

on a dataset never encountered by the neural network, test accuracy is generally smaller than validation

8
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FIGURE XIV: Predicted Probabilities of RCN Applications Assignment

.

This figure shows the average probabilities for RCN applications of belonging to a particular ERC panel. The

assigned ERC panel is based on the highest predicted probability. The probabilities sum to one over columns.

In many cases, the probability of belonging to a particular panel is over 90 percent on average. Source: Own

calculations combining RCN and ERC data.

accuracy. We report in Table III validation and test accuracy.

C.B.4 Predicted Panel

The outcome of the classification is a vector of probabilities for each RCN application, measuring the

likelihood of belonging to a particular ERC panel. We assign each application based on the highest

9



probability among all existing panels. The prediction is usually very sharp in the sense that the al-

gorithm most often picks one ERC panel with a substantial probability. The highest probability of

belonging to a particular ERC panel is equal to 85 percent on average, the next highest prediction is

only equal to 6 percent on average. This means that few applications are marginally assigned to a

panel. There is some heterogeneity across fields, as depicted in Figure XIV. While applications that are

classified in mathematics (PE01) rarely share a similarity with applications in any other fields; it is less

the case for applications that are assigned to SH2 (Institutions, Governance and Legal Systems) or SH3

(The Social World and its Diversity). This is also the case for applied life sciences such as LS07 (Pre-

vention, Diagnosis and Treatment of Human Diseases) that shares similarities with more fundamental

life science panels. Part of this variation may be due to measurement error. Still, it is also a fact that

some applications are at the boundary between fields and that researchers in some disciplines have a

choice of multiple panels in which they would stand a chance of winning. We deal with this uncertainty

below by performing a bootstrap analysis.

C.C Inter-rater Agreement

Once each RCN application is assigned to a particular ERC panel, we turn to the analysis of the RCN

grading. On average, each application is reviewed by about 4.05 reviewers and each reviewer grades

about 12.3 applications. Our data contains about 40,000 grades in total. Grading at the RCN is done

on a scale of 1 to 7, although in practice, 98 percent of the grades range between 3 and 7. The average

grade is 5.05, and the standard deviation is equal to 1.1.

We use these data to construct inter-rating agreement measures for each ERC panel. We construct

four different measures. The first one is the simple percent agreement between reviewers. Define ni j as

the number of applications graded by two raters assigning grades i and j. Denoting the total number of

applications by n, the percentage agreement is calculated as

p0 =
∑i=1 nii

n
.

While simple, this measure tends to over-estimate agreement, as two graders may give the same grade

by chance. There is a substantial literature on accounting for chance agreement, with several Kappa

statistics, such as Cohen’s kappa or Fleiss’ kappa, the latter taking explicitly into account the possibility

of multiple reviewers. Gwet (2014) developed an Agreement Coefficient (AC) that incorporates both

the number of rating categories and the frequency with which the raters use them. In the case of Cohen’s

kappa, chance agreement is computed as

pe =
1

n2 ∑
j

∑
i

ni j ∑
i

n ji

and the statistic is then

κ =
p0− pe

1− pe

.
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TABLE IV: INTER-RATER AGREEMENT BY ERC PANELS

Percent Cohen’s Fleiss’ Gwet’s Observations

Agreement kappa AC AC

(1) (2) (3) (4) (5)

SH01 0.488∗∗∗ 0.041∗∗∗ 0.04∗∗∗ 0.286∗∗∗ 1340
(0.009) (0.015) (0.015) (0.012)

SH02 0.493∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.293∗∗∗ 5730
(0.004) (0.007) (0.007) (0.006)

SH03 0.499∗∗∗ 0.055∗∗∗ 0.055∗∗∗ 0.302∗∗∗ 3155
(0.006) (0.01) (0.01) (0.008)

SH04 0.501∗∗∗ 0.052∗∗∗ 0.052∗∗∗ 0.307∗∗∗ 1528
(0.008) (0.014) (0.014) (0.012)

SH05 0.478∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.269∗∗∗ 1799
(0.007) (0.013) (0.013) (0.011)

SH06 0.48∗∗∗ 0.016 0.015 0.276∗∗∗ 1295
(0.009) (0.015) (0.016) (0.013)

LS01 0.564∗∗∗ 0.09∗∗∗ 0.09∗∗∗ 0.41∗∗∗ 679
(0.013) (0.024) (0.024) (0.018)

LS02 0.504∗∗∗ 0.063∗∗∗ 0.061∗∗∗ 0.311∗∗∗ 702
(0.012) (0.021) (0.021) (0.018)

LS03 0.535∗∗∗ 0.038 0.037 0.37∗∗∗ 414
(0.016) (0.031) (0.031) (0.023)

LS04 0.503∗∗∗ 0.067∗∗∗ 0.067∗∗∗ 0.308∗∗∗ 1632
(0.008) (0.014) (0.014) (0.012)

LS05 0.503∗∗∗ 0.032∗∗ 0.032∗∗ 0.315∗∗∗ 1826
(0.007) (0.014) (0.014) (0.011)

LS06 0.55∗∗∗ 0.108∗∗∗ 0.108∗∗∗ 0.383∗∗∗ 1354
(0.009) (0.017) (0.017) (0.013)

LS07 0.497∗∗∗ 0.059∗∗∗ 0.059∗∗∗ 0.299∗∗∗ 8801
(0.003) (0.006) (0.006) (0.005)

LS08 0.515∗∗∗ 0.026∗∗ 0.026∗∗ 0.336∗∗∗ 2196
(0.007) (0.013) (0.013) (0.01)

LS09 0.509∗∗∗ 0.034∗∗∗ 0.033∗∗∗ 0.325∗∗∗ 2579
(0.006) (0.012) (0.012) (0.009)

PE01 0.606∗∗∗ 0.113∗∗∗ 0.112∗∗∗ 0.478∗∗∗ 896
(0.011) (0.024) (0.024) (0.015)

PE02 0.578∗∗∗ 0.075∗∗∗ 0.075∗∗∗ 0.435∗∗∗ 1053
(0.01) (0.021) (0.021) (0.014)

PE03 0.551∗∗∗ 0.055∗∗ 0.055∗∗ 0.395∗∗∗ 615
(0.013) (0.026) (0.026) (0.019)

PE04 0.533∗∗∗ 0.071∗∗∗ 0.071∗∗∗ 0.36∗∗∗ 710
(0.012) (0.024) (0.024) (0.017)

PE05 0.499∗∗∗ 0.026 0.026 0.309∗∗∗ 1202
(0.009) (0.016) (0.016) (0.013)

PE06 0.498∗∗∗ 0.06∗∗∗ 0.059∗∗∗ 0.302∗∗∗ 1659
(0.008) (0.014) (0.014) (0.011)

PE07 0.518∗∗∗ 0.061∗∗∗ 0.06∗∗∗ 0.335∗∗∗ 1252
(0.009) (0.017) (0.017) (0.013)

PE08 0.519∗∗∗ 0.066∗∗∗ 0.066∗∗∗ 0.337∗∗∗ 4324
(0.005) (0.009) (0.009) (0.007)

PE09 0.601∗∗∗ 0.138∗∗∗ 0.135∗∗∗ 0.466∗∗∗ 614
(0.013) (0.027) (0.027) (0.019)

PE10 0.532∗∗∗ 0.06∗∗∗ 0.06∗∗∗ 0.361∗∗∗ 6803
(0.004) (0.007) (0.007) (0.006)

Note: The table displays inter-rater agreement measures based on grades of funding applications at the RCN. Power-

weighted measures are displayed. 11



We refer the reader to Gwet (2014) for further details on other measures. Table IV displays the re-

sults for all inter-rater agreement measures by the ERC panel. The discrepancy between reviewers is

weighted using a power of one fourth. Such a weighting scheme places a weight of one in case of

perfect agreement but a non-zero weight on small differences in grading. A difference of one unit

(out of seven) has a weight of 0.36. The results are robust to other power schemes, such as linear or

quadratic, but those weighting schemes underweight larger disagreement. For instance, a quadratic

weighting scheme assigns a weight of 0.75 when two graders differ by four units out of seven, while

our preferred weighting scheme assigns a weight of 0.16. The measures are highly correlated, with

correlation coefficients ranging from 0.73 to 0.99.

C.D Event Analysis

To complement the analysis in Section V , we display in Figure XV an event analysis, where we regress

grant applications at the ERC and budget shares by panel on domain specific time dummies. The graph

displays 95 percent confidence areas for each domain and time period, where 2014 is set as the reference

point.

The graph shows that the outcome variable starts diverging after the reform, rather gradually. Before

the reform, there is no clear trend as the 95 percent confidence bands contain a zero effect, apart from

the year 2011 in the case of grant applications.

C.E Robustness Using Bootstrap Analysis

To complement Section V , we assess the robustness of the results to relax the assumption of assigning

the RCN applications based on the most likely ERC panel. We exploit the fact that we have a vector

of probabilities of belonging to any panel for each application instead. We implement a bootstrap

analysis based on multiple replications where we stochastically assign each grant application to a panel

based on the vector of assignment probabilities. We re-calculate the inter-rater agreement measures for

each replication and re-estimate model (16). We replicated this procedure 500 times. The results are

displayed in Table V. As in the main analysis, we find that the coefficient β a is positive and statistically

significant across all the different statistics we use to measure evaluation noise.
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FIGURE XV: Event Analysis

This figure displays the results of an event analysis, where applications and budget shares are regressed on

time dummies by ERC panel, with separate regressions by research domain. LS: Life Sciences, PE: Physical

Sciences and Engineering, SH: Social Sciences and Humanities. Source: ERC data.
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TABLE V: EFFECT OF EVALUATION NOISE ON FUNDING OUTCOMES: BOOTSTRAP

ANALYSIS

Effect of st dev 95% interval

evaluation noise

Requested funding (β a)

Percent Agreement .426 (.035) [.354,.499]

Cohen’s kappa .705 (.266) [.265,1.264]

Fleiss’ AC .703 (.274) [.261,1.289]

Gwet’s AC .418 (.03) [.356,.479]

Budget shares (β B)

Percent Agreement .486 (.057) [.369,.607]

Cohen’s kappa .752 (.408) [.051,1.61]

Fleiss’ AC .743 (.417) [.026,1.608]

Gwet’s AC .48 (.049) [.382,.583]

Note: This table shows bootstrap estimates of the effect of the inter-rater agreement measures on applications and budget

shares using the 2014 ERC reform. Each row reports the statistics computed from 500 replications. The estimation also

controls for time and panel*seniority fixed effects.
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