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Appendix

A.1. Proofs of the results in Section 3.3

To prove Proposition 1, we use the following lemma, that gives a general representation
result by means of DP mixtures.

Lemma 1. Let G be a r.p.m. on a measurable space Θ and q be a probability measure
on {1, 2, . . .} with mass qj on j.

(i) Suppose that G ∼ DP (αQ0), where Q0 is a discrete probability measure on Θ,
Q0 =

∑∞
j=1 qjδξj . Then a.s.

G =
∞∑
j=1

pjδξj ,

where the weights (p1, p2, . . .) define a r.p.m. p on {1, 2, . . .} having mass pj on j, with
p ∼ DP (αq).

(ii) Suppose that G ∼
∫
DP (αQ)dµ(Q), µ being the probability law of the r.p.m.

Q =
∑∞

j=1 qjδθ∗j , where θ∗1, θ
∗
2, . . . are random quantities with values in Θ. Then a.s.

G =
∞∑
j=1

pjδθ∗j ,

where the weights (p1, p2, . . .) define a r.p.m. p on {1, 2, . . .} with p ∼ DP (αq).

Proof. (i) If G ∼ DP (αQ0), then a.s. G =
∑∞

j=1wjδθ∗j , where the wj ’s have a stick-
breaking prior and the θ∗j are i.i.d. according to Q0. Since Q0 is discrete,

G =
∞∑
j=1

(
∑

i:θ∗i =ξj

wj)δξj =
∞∑
j=1

pjδξj .

For any measurable partition (A1, . . . , Ac) of {1, 2, . . .}, we can find a partition (B1, . . . , Bc)
of Θ such that Bi contains the uniques ξj with j ∈ Ai, i = 1, . . . , c. Then, p(Ai) =∑

j∈Ai
pj = G(Bi), for any i = 1, . . . , c. Thus, (p(A1), . . . , p(Ac)) has the same probabil-

ity law as (G(B1), . . . , G(Bc)), i.e. a Dirichlet distribution Dir(αG0(B1), . . . , αG0(Bc)) =
Dir(αq(A1), . . . , αq(Ac)), where q(Ai) =

∑
j∈Ai

qj . Thus p ∼ DP (αq).
(ii) Conditionally on Q, the finite sum representation of G is obtained from (i) and

the result follows.
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As a special case, if q has support {1, . . . , k}, k <∞ and θ∗1, . . . , θ
∗
k are i.i.d. accord-

ing to a probability measure G0, then G ∼
∫
DP (αQ)dµ(Q) implies G =

∑k
j=1 pjδθ∗j

a.s., with (p1, . . . , pk) ∼ Dir(αq1, . . . , αqk); that is, G ∼ DPk((αq1, . . . , αqk), G0). In
that sense, we say that the DPk can be represented as a mixture of Dirichlet processes∫
DP (αQ)dµ(Q).

Proof of Proposition 1
(i) If G ∼

∫
DP (αQ)dµ(Q), by Lemma ?? we have, a.s.,

G =
∞∑
j1=1

· · ·
∞∑

jm=1

p(j1, . . . , jm)δθ∗1,j1
,...,θ∗m,jm

,

with p ∼ DP (αq). Thus, G has the same probability law of a r.p.m. with a hDP (αq,G0)
prior.
Point (ii) follows from (i) by considering a probability measure q with support {1, . . . , k}m.�

An analogous result can be proved for the functional hDP . Let G0 be a probability
measure on IRD, θ∗1,θ

∗
2, . . .

i.i.d.∼ G0 and q a probability measure on {1, 2, . . .}D. Let Q
be the r.p.m. on IRD characterized by the family of finite-dimensional distributions

Qx1,...,xm =
∞∑
j1=1

· · ·
∞∑

jm=1

qx1,...,xm(j1, . . . , jm)δθ∗j1 (x1),...,θ∗jm
(xm), (1)

for all (x1, . . . , xm), and let Qk be defined analogously, replacing q with a probability
measure qk with support {1, . . . , k}D, k <∞. Denote by µ and µk the probability laws
of Q and Qk, respectively.

Proposition 3. Let G be a random probability law on IRD and Q and Qk be defined as
above. Then,

(i) a hDP (αq,G0) prior for G can be represented as the mixture of functional Dirich-
let processes

∫
fDP (αQ)dµ(Q);

(ii) a hfPDk(αkqk,G0) prior for G can be represented as the mixture of functional
Dirichlet processes

∫
fDP (αkQk)dµk(Qk).

Proof. (i) If Q ∼
∫
fDP (αQ)dµ(Q), then the finite-dimensional distributions Qx1,...,xm

of Q have probability law
∫
DP (αQx1,...,xm)dµ(Q). Therefore, by Proposition 1, the prior

process
∫
fDP (αQ)dµ(Q) a.s. selects probability measures on IRD characterized by the

(consistent) family of finite-dimensional distributions

Qx1,...,xm =
∞∑
j1=1

· · ·
∞∑

jm=1

px1,...,xm(j1, . . . , jm)δθ∗j1 (x1),...,θ∗jm
(xm),
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where px1,...,xm ∼ DP (αqx1,...,xm), and px1,...,xm are the finite-dimensional distributions
of a r.p.m. p ∼ DP (αq). Therefore, we have that Q has the same probability law of a
r.p.m. with distribution hfDP (αq,G0).

Point (ii) follows from (i) by considering a probability measure q with support on
{1, . . . , k}D.

To prove Proposition 2 we use the following lemma.

Lemma 2. Let Gk, k ≥ 1 and G be r.p.m.’s on Θ, with Gk ∼
∫
DP (αkH)dµk(H) and

G ∼
∫
DP (αH)dµ(H). Let Hk ∼ µk and E(Hk(·)) = H0,k, such that the family of

distributions (H0,k, k ≥ 1) is tight. If αk → α, 0 < α <∞ and µk converges weakly to µ
as k →∞, then the sequence Gk converges to G in distribution.

Proof. Let πk =
∫
DP (αkH)dµk(H) and π =

∫
DP (αH)dµ(H). For any partition

(B1, . . . , Bc) of Θ, we have

πk(G(B1) ≤ t1, . . . , G(Bc) ≤ tc) =
∫
Dir(t1, . . . , tc;αkH(B1), . . . , αkH(Bc))dµk(H),

where Dir(·, . . . , ·; a1, . . . , ac) denotes the Dirichlet d.f. with parameters (a1, . . . , ac). The
Dirichlet d.f. is bounded, and is continuous in its parameters (being degenerate on the
appropriate subspaces if some parameters go to zero). Thus, if αk → α and µk converges
weakly to µ for k →∞, then

πk(G(B1) ≤ t1, . . . , G(Bc) ≤ tc)→
∫
Dir(t1, . . . , tc;αH(B1), . . . , αH(Bc))dµ(H),

that are the finite-dimensional laws of π. Since

E(Gk(x)) = E(Gk((x) | H) = Eµk
(H(x)) = H0,k(x),

the family {πk, k ≥ 1} is tight, by Theorem 2.5.1 in Ghosh and Ramamoorthi (2003).
Therefore, πk → π weakly, i.e. Gk → G in distribution.

Proof of Proposition 2
Let πk = hDPk(αkqk, G0), for k ≥ 1. Proposition 1 shows that πk can be represented

as
∫
DP (αkQk)dµk. Therefore the results follow from Lemma 2 if we show that {Ḡk(·) ≡

E(Gk(·)), k ≥ 1} is tight.
LetG0,i1,...,ic , ij = 1, . . . ,m be the marginal distribution ofG0 at coordinates (i1, . . . , ic).

For any subset A = (A1 ×A2 ×Am) of IRm, we have

E(Gk(A)) =
∑
j

qk(j, . . . , j)G0(A) +
∑
j1

∑
j 6=j1

qk(j1, j, . . . , j)G0,1(A1)G0,2,...,m(A2 × · · · ×Am)

+ · · ·+
∑

j1 6=j2 6=···6=jm

qk(j1, . . . , jm)G0,1(A1) · · ·G0,m(Am).
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For any ε > 0, we can find a compact set M = (M1×M2×Mm) such that Mi is compact
and G0,i(M c

i ) < ε/m. This implies that, for any k ≥ 1,

Ḡk(M c) = E(Gk(M c)) = E(Gk(M c
1 ∪· · ·∪M c

m)) ≤ E(
m∑
i=1

Gk,i(M c
i )) =

m∑
i=1

G0,i(M c
i ) ≤ ε.

�

Proof of Theorem 1
Result (i) is known, see Ishwaran and Zarepour (2002), Theorem 3.
Let us prove case (ii). It is useful to write Gk as Gk =

∑∞
j=1 pk(j)δθ∗j , where

(pk(1), pk(2), . . .) define a random probability measure pk on {1, 2, . . .} with support
{1, . . . , k}. By assumption, (pk(1), . . . , pk(k)) ∼ D(αqk(1), . . . , αqk(k)), and is easy to
see that this is equivalent to pk ∼ DP (αqk), where qk is also regarded as a probability
measure on {1, 2, . . .} with support {1, . . . , k}.

Since, qk(j) → q(j) for any j, by assumption, and q is a probability measure, from
theorem 3.2.6 in Ghosh and Ramamoorthi (2003) it follows that pk → p, with p ∼
DP (αq). Therefore, by Slutsky’s theorem, Gk =

∑∞
j=1 pk(j)δθ∗j → G =

∑∞
j=1 p(j)δθ∗j ,

which completes the proof. �

Proof of Theorem 2
We illustrate the proof of (i) for m = 3. Then

Gk =
k∑

j1=1

· · ·
k∑

j3=1

p(j1, j2, j3) δθ∗1,j1
,θ∗2,j2

,θ∗1,j3
,

with weights p ∼ D(αqk). Let

ck,1 =
∑

j=1,2,...

qk(j, j, j), ck,2 =
∑

i,j=1,2,...;i 6=j
qk(i, j, j), ck,3 =

∑
i,j=1,2,...;i 6=j

qk(j, i, j)

ck,4 =
∑

i,j=1,2,...;i 6=j
qk(j, j, i), ck,5 =

∑
i,j=1,2,...;i 6=j

qk(i, j, l).

Then we can write Gk as

Gk = πk,1 G
(1,k) + πk,2 G

(2,k) + πk,3 G
(3,k) + πk,4 G

(4,k) + πk,5 G
(5,k),

where

πk,1 =
∑

j=1,2,...

p(j, j, j) ∼ β(αck,1, α(1− ck,1)),

πk,2 =
∑

i,j=1,2,...;i 6=j
p(i, j, j) ∼ β(αck,2, α(1− ck,2)),

...

πk,5 =
∑

i,j,l=1,2,...;i 6=j 6=l
p(i, j, l) ∼ β(αck,5, α(1− ck,5))
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where β(a, b) denotes the beta density with parameters a, b, and

G(1,k) =
∑

j=1,2,...

p(j, j, j)
πk,1

δθ∗j

G(2,k) =
∑

i,j=1,2,...;i 6=j

p(i, j, j)
πk,2

δθ∗i,1,θ∗j,2,θ
∗
j,3

G(3,k) =
∑

i,j=1,2,...;i 6=j

p(j, i, j)
πk,3

δθ∗j,1,θ
∗
i,2,θ

∗
j,3

G(4,k) =
∑

i,j=1,2,...;i 6=j

p(j, j, i)
πk,4

δθ∗j,1,θ
∗
j,2,θ

∗
i,3

G(5,k) =
∑

i,j,l=1,2,...;i 6=j 6=l

p(i, j, l)
πk,5

δθ∗i,1,θ∗j,2,θ
∗
l,3
.

Let cj = limk→∞ ck,j , j = 1, . . . , 5. Note that each cj is finite, and they cannot be
all zero since ck,1 + · · · + ck,5 = 1 for all k. By the continuity properties of the Beta
distribution in its parameters, we have that, for each j = 1, . . . , 5, πk,j converges in law
to πj ∼ β(αcj , α(1− cj)). Furthermore, by (i) of Theorem 1,
if c1 > 0, G(1,k) → G(1) ∼ DP (αc1G0);
if c2 > 0, G(2,k) → G(2) ∼ DP (αc2G0,1G0,23);
...
if c5 > 0, G(5,k) → G(2) ∼ DP (αc5G0,1G0,2G0,3), where the convergence is in distribution.

It follows that
Gk → G = π1G

(1) + π2G
(2) + · · ·+ π5G

(5)

in distribution, and extending a known property of the Dirichlet distribution (see Ghosh
and Ramamoorthi (2003), (4) on page 91) to Dirichlet processes, one can show that

G ∼ DP (α(c1G0 + c2G0,1G0,23 + c3G0,2G0,13 + c4G0,3G0,12 + c5G0,1G0,2G0,3)).

(ii) We can write

Gk =
∞∑
j1=1

· · ·
∞∑

jm=1

pk(j1, . . . , jm)δθ∗j1,1,...,θ
∗
jm,m

,

regarding pk as a probability measure on {1, 2, . . .}m with support {1, . . . , k}m; analo-
gously for qk. By assumption, the weights pk(·) have a joint Dirichlet distribution D(αqk),
but we can equivalently say that pk ∼ DP (αqk). Since qk → q and αk → α, we have that
pk → p with p ∼ DP (αq) and Gk converges in distribution to

G =
∞∑
j1=1

· · ·
∞∑

jm=1

p(j1, . . . , jm)δθ∗j1,1,...,θ
∗
jm,m

,

which has a hDP (αq,G0) prior. �
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A.2. MCMC algorithm for the applications of Section 5

We detail the full conditionals for the approximate jittered posterior of the model in
Section 5. The prior q is the discretization of a continuous distribution with uniform
marginals. Using the notation in Sections 4.1 and 5, let Ui(xj) = Fx(Li), with Li ∼
N(0, σ2

q R(φq)). Here, the jittered approximation is a perturbation of the latent Li,
L̃i(x) = Li(x) + εi(x), with εi(x) ∼ N(0, η2). So, Ũi = Fx(L̃i). The variance η2 is
fixed at a value that guarantees that Ũi and Ui share the same allocation structure
with high probability. As a rule of thumb, we suggest to take η = σq/10, since for
such a value σ2

q/(η
2 + σ2

q ) ≈ 0.99, and P (Ũi ∈ Cj1,...,jm) ≈ P (U ∈ Cj1,...,jm). The
sensitivity analyses performed in our simulation studies show that the results don’t show
any significant improvement for smaller values of η. Following Section 4.3, given the one-
to-one correspondence between Ui and Li, we consider Li|P ∼ P, P ∼ DP (αF (m)

0 ), with
F

(m)
0 = N(0, σ2

q R(φq)). The jitter and the model for q specify the relevant distribution
for the Gibbs sampler. The algorithm can be described as follows.

• The vectors L̃i are updated component by component. For notational convenience,
let L̃i,j = L̃i(xj) and Li,j = Li(xj), j = 1, . . . ,m, i = 1, . . . , n. Then, with
probability wr, L̃i,j is sampled from the univariate normal N(Li,j , η2) truncated
over the interval

(
σq Φ−1

(
r−1
k

)
, σq Φ−1

(
r
k

)]
, r = 1, . . . , k, where Φ is the gaussian

cdf. Here, for r = 1, . . . , k,

wr ∝
[
Φ
((
σqΦ−1

( r
k

)
− Li,j

)
/η
)
− Φ

((
σqΦ−1

(
r − 1
k

)
− Li,j

)
/η

)]
×

× exp
{
− 1

2σ2
(Yi(xj)− µi(xj)− θ∗r(xj))2

}

• Since the Li = (Li(x1), . . . , Li(xm))T are samples from a DP, they are updated
through a Pólya Urn scheme. Accordingly, the vector Li is either sampled from the

multivariate normal N( Λ
η2Li,Λ), Λ =

(
1
η2 Im + 1

σ2
q
R−1(φq)

)−1
with probability ω0

or is one of the existing L∗j in the DP urn (see (??)) with probability ωj , where

ω0 =
α

(2π)n/2det(Λ)1/2
exp{−1

2
LTi Λ−1Li},

ωj =
mj√
2πη2

exp{−1
2
L∗Tj L∗j}, j = 1, . . . , k,

where mj is the frequency in cluster j.

• Update θ∗1, . . . , θ
∗
k as described in Section 4.3 and the other hyperparameters ac-

cording to their (standard) full conditionals.
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